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In this thesis, I first review the fundamentals of Einstein’s theory of gravity in

four-dimensional spacetimes, and then develop the general formulas of thin shells in

this theory. Applying these formulas to spherically symmetric thin shells, I study the

gravitational collapse of dust clouds in the background of dark energy. To solve the

relevant equations, I develop a computer program, and investigate four representative

cases, in which one is without dark energy and the others are with. I find that in all

the four cases black holes can be formed from the gravitational collapse of the dust

cloud.
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CHAPTER ONE

Fundamentals of Einstein’s Theory of General Relativity

1.1 Space-time Manifolds

In this chapter, we shall provide some fundamentals that are to be used in this

dissertation. Among these are the definitions of some basic physical quantities (for ex-

ample, the Riemann tensor, parallel transport, geodesic deviation), and the Einstein

field equations with distribution valued tensors. It is not incidental that these intro-

ductory sections are lengthy. It was found necessary to present the material in such a

way that errors contained in commonly used references can be adequately corrected.

From the mathematical point of view the fundamental object of Einstein’s theory of

general relativity is the space-time manifold (Ω, gµν), where Ω is a connected four-

dimensional Hausdoff C∞ manifold and gµν is a symmetric Lorentz metric tensor, or

simply the metric, with the signature -2 on Ω (for the study of Differential Geometry,

please refer to [39]). The points in Ω are labelled by a general non-inertial coordinate

system( x0, x1, x2, x3), often written as xµ(µ = 0, 1, 2, 3). We use the convention that

Greek indices take the values 0,1,2,3 and repeated Greek indices are to be summed

over these values unless specified otherwise. According to the principle of covariance,

all coordinate systems are equivalent for the description of physical phenomena. Thus

the choice of coordinate systems is arbitrary. If we go from one coordinate system,

say, xµ, to another, say, x
′µ, a contravariant vector yµ and a covariant vector yµ

transform as

y
′µ =

∂x
′µ

∂xν
yν , y

′
µ =

∂xν

∂x′µ
yν , (1.1)

and a mixed tensor such as yµ
νλ as

y
′µ
νλ =

∂x
′µ

∂xσ

∂xρ

∂x′ν
∂xδ

∂x′λ
yσ

ρδ, (1.2)

1
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etc.

The contravariant tensor, gµν , corresponding to gµν , is defined by

gµνgµλ = δν
λ, (1.3)

where δµ
ν is the Kronecker delta, which is unity for µ = ν (no summation is taken)

and zero otherwise. By using gµν and gµν we can raise and lower the indices as

yµ = gµνyν , yµ = gµνy
ν (1.4)

We regard tensors derived by such raising and lowering of indices as representing the

same geometric quantity, since by raising an index and subsequently lowering it we

recover the orignal tensor.

All the information about the space-time is contained in the metric gµν , which

determines the square of the space-time interval ds between infinitesimally separated

events or points xµ and xµ + dxµ as

ds2 = gµνdxµdxν (1.5)

The contravariant vector dxµ is said to be time-like, space-like, or null according to

whether ds2 is positive, negative, or zero, respectively. The space-time manifold Ω

has three space-like and one time-like dimensions.

Since the Einstein field equations contain the second derivatives of the metric

and the Bianchi identities contain the third derivatives of it, it is necessary to require

gµν to be at least C3 and xµ = xµ(x
′µ) to be at least C4 so that the Einstein field

equations are defined everywhere and the Bianchi identities are defined at every point

of the space-time manifold.

1.2 Covariant Differentiation, the Riemann Tensor, and the Einstein Field
Equations

To generalize the ordinary( partial ) differentiation to the Riemann manifold,

it is required to introduce an additional structure into the manifold. This additional
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structure is an affine connection, ∇, which assigns to each vector field X on Ω a

differential operator, ∇X , which maps an arbitrary vector field Y into a vector field

∇XY .

Associated with each metric, we can endow the manifold with a unique torsion-

free connection by requiring

∇g = 0 (1.6)

where the term torsion-free means every element in g has finite order.

In a local coordinate basis{∂λ}, Eq.(1.6) can be written in the form

∇λgµν = gµν,λ − gµδΓ
δ
νλ − gδνΓ

δ
µλ = 0 (1.7)

where a comma denotes partial differentiation with respect to the corresponding vari-

able, and ∂λ ≡ ∂/∂xλ. Γλ
νµ are called the Christoffel connection coefficients, and

the connection itself called the Christoffel connection. From Eq.(1.7) by using the

symmetry of Γλ
µν , we derive

Γλ
µν =

1

2
gλδ[gµδ,ν + gνδ,µ − gµν,δ] (1.8)

The covariant differentiation for a contravariant and a covariant vector is defined as

Aµ
;ν = Aµ

,ν + Γµ
νλA

λ, Aµ;ν = Aµ,ν − Γλ
µνAλ (1.9)

and for a mixed tensor such as Aµ
νλ as

Aµ
νλ;σ = Aµ

νλ,σ + Γµ
δσA

δ
νλ − Γδ

νσA
µ
δλ − Γδ

λσA
µ
νδ (1.10)

and so on, where a semicolon denotes the covariant differentiation.

Under a coordinate transformation, say, from xµ to x
′µ, the connection coeffi-

cients, Γλ
µν , transform as

Γ
′µ
νλ =

∂x
′µ

∂xρ

∂xσ

∂x′ν
∂xδ

∂x′λ
Γρ

σδ +
∂2xσ

∂x′ν∂′λ
∂x

′µ

∂xσ
(1.11)

Therefore, the connection coefficients do not form the components of a tensor.
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For a covariant vector Aµ it can be shown that

Aµ;ν;λ − Aµ;λ;ν = AδR
δ
µνλ (1.12)

where Rδ
µνλ is the Riemann tensor defined by

Rσ
µνl = Γσ

µλ,ν − Γσ
µν,λ + Γσ

δνΓ
δ
µλ − Γσ

δλΓ
δ
µν (1.13)

and Eq.(1.12) is the Ricci identity.

The Riemann tensor has symmetry properties

Rσµνλ = −Rµσνλ = −Rσµλν

Rσµνλ = Rνλσµ

Rσµνλ + Rσλµν + Rσνλµ = 0. (1.14)

and satisfies the Bianchi identities

Rσ
µνλ;ρ + Rσ

µρν;λ + Rσ
µλρ;ν = 0 (1.15)

The Ricci tensor Rµλ is defined by

Rµλ = gσνRσµνλ = Rδ
µδλ (1.16)

From Eqs(1.14) and (1.16) it is easy to show that

Rµλ = Rλµ (1.17)

The Ricci scalar is defined by

R = gσλRσλ = Rλ
λ (1.18)

By contracting the Bianchi identities on the pairs of indices µν and σρ, we find that

(Rµν − 1

2
gµνR);λg

λν = 0 (1.19)

The tensor Gµν ≡ Rµν − 1
2
gµνR is sometimes called the Einstein tensor.
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We are now in a position to write down the Einstein field equations which are

the fundamental differential equations of GR

Rµν − 1

2
gµνR− Λgµν = κTµν (1.20)

where κ (≡ 8πG/c4) is the Einstein gravitational constant, and Λ the cosmological

constant. In the following we consider only the case where Λ = 0, unless specified oth-

erwise. Tµν denotes the energy-stress tensor of the source producing the gravitational

field. Without loss of generality, we choose units such that κ = 1.

It must be noted, however, that the form of the Einstein field equations used

by Chandrasekhar [7] is not consistent with the requirement that the energy density

of matter fields must be positive, and the correct one corresponding to the above

definitions for the Riemann and Ricci tensors [see Eqs(1.12) and (1.16)] and the

signature (-2) of metric (1.5), is Eq.(1.20)(see, for example, [23][22][37][21][9]).

The combination of Eqs.(1.19) and (1.20) gives

T µν
;ν = 0 (1.21)

which are the equations for the conservation of energy and stress of the source.

1.3 Curves, Parallel Transport, and Geodesics

A curve in a Riemannian space is defined by points xµ(λ) where xµ are suitably

differentiable functions of the real parameter λ, varying over some interval of the

real line. The curve is time-like, space-like, or null according to whether its tangent

vector, (dxµ/dλ), is time-like, space-like, or null.

In Euclidean geometry, for an arbitrary vector field X we will say that X is

“parallelly transported” along the curve if Xµ
,ν(dxν/dλ) = 0. In a general differen-

tiable manifold with a connection, we define analogously that a vector X is parallelly

transported along the curve if its covariant derivative Xµ
;ν(dxν/dλ) along this curve is

zero, that is, if
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Xµ
;ν

dxν

dλ
= Xµ

,ν

dxν

dλ
+ Γµ

νδX
δ dxν

dλ

=
dXµ

dλ
+ Γµ

νδX
δ dxν

dλ

= 0. (1.22)

A similar definition holds for tensors. Given any curve xµ(λ) with end points

λ = λ1 and λ = λ2, the theory of solutions of ordinary differential equations shows

that if the Γλ
µν ,s are suitably differentiable functions of xµ, we obtain a unique tensor

at λ = λ2 by parallelly transporting it from the point λ = λ1, along the curve, to the

point λ = λ2.

A particular case is the covariant derivative of the tangent vector itself along

the curve xµ(λ). The curve is said to be a geodesic if the tangent vector is parallelly

transported along this curve, i.e., if

d2xµ

dλ2
+ Γµ

νδ

dxν

dλ

dxδ

dλ
= 0 (1.23)

When the equation for a geodesic is reduced to the form of Eq.(1.23), we say that it

is affinely parameterized. It should be noted that the freedom of choice we have is

the origin and the scalar of λ. Eq.(1.23) also represents the motion of a free particle.

1.4 Geodesic Deviation

A major problem which has to be solved in the study of gravitational radiation

is how to identify a gravitational radiation field. The problem arises because of the

principle of equivalence, which says that the motion of a test particle in a gravita-

tional field is independent of its mass and composition. This implies that mechanical

phenomena are the same in an accelerated laboratory as in the earth’s gravitational

field, if observations are confined to a region over which the variation in the earth’s

gravitational field is small. Thus, in a local experiment we cannot distinguish an

inertial field from a genuine gravitational one. However, if we are allowed to carry
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out non-local experiments, we can distinguish one of them from another by observing

the variation of the field rather than the field itself. In GR this variation is described

by the Riemann tensor which specifies the relative acceleration of neighboring free

particles.

Let us consider a one-parameter family of geodesics Γ(w) specified by the equa-

tions

xµ = xµ(λ,w) (1.24)

where we assume xµ to be twice continuously differentiable functions of both λ and

w. The parameter w varies from one geodesic to another while λ varies along each of

geodesics. For fixed w we have the geodesics equations [see Eq.(1.23)]

∂2xµ

∂λ2
= −Γµ

νδ

∂xν

∂λ

∂xδ

∂λ
, xµ = xµ(λ,w) (1.25)

We might, in general, identify λ with the arc length on each of the geodesics. We

prefer, however, to leave λ to be defined just by Eq.(1.25) so that our following

discussion remains also valid for null geodesics.

The family of geodesics gives rise to the vector fields

tµ(λ,w) =
∂xµ(λ,w)

∂λ

ηµ(λ,w) =
∂xµ(λ,w)

∂w
(1.26)

where tµ(λ,w) is the tangent vector along each geodesic, and ηµ(λ,w) is the vector

which describes the deviation of two points on two infinitesimally near geodesics which

have the same parameter value λ. ηµ is usually called the geodesic deviation vector.

From Eq.(1.26) we find that the covariant differentiation of ηµ along each

geodesic is given by

Dηµ

Dλ
≡ ηµ

;ν

∂xν

∂λ
=

∂ηµ

∂λ
+ Γµ

νδη
δ ∂xν

∂λ
=

∂tµ

∂w
+ Γµ

νδη
δtν (1.27)

The remarkable fact is that the second differentiation of ηµ will bring us directly to
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the Riemann tensor. Actually we have

D2ηµ

Dλ2
=

∂

∂λ
{Dηµ

Dλ
}+ Γµ

νδt
ν Dηδ

Dλ

=
∂

∂w
{∂2xµ

∂λ2
}+ Γµ

νδ,ρt
ρtνηδ + Γµ

νδη
δ ∂2xµ

∂λ2
+ Γµ

νδt
ν ∂2xδ

∂λ∂w

+ Γµ
νδt

µ ∂2xδ

∂λ∂w
+ Γµ

νδΓ
δ
ρσt

νtρησ (1.28)

Inserting Eq.(1.25) into Eq.(1.28), we find the well-known geodesic deviation equa-

tions

D2ηµ

Dλ2
= −Rµ

νδση
δtνtσ (1.29)

where Rµ
νλσ is the Riemann tensor given by Eq.(1.13).

To illustrate the physical meaning of the geodesic deviation equations, let us

consider a time-like geodesic, say, C. We introduce an orthogonal triad of space-like

vectors λµ
(a) (a = 1, 2, 3). Throughout the following, we use the convention that the

indices inside parentheses denote tetrad indices, Roman indices take the values 1,2,3,

and repeated Roman indices are to be summed over these values unless some specific

statement to the contrary is made. These space-like vectors are assumed orthogonal

to each other and to the tangent vector λµ
(0) ≡ tµ,

λµ
(α)λ

ν
(β)gµν = λµ

(α)λµ(β) = ηαβ (1.30)

where ηαβ denote the Minkowiski metric components given by

(ηαβ) =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




(1.31)

The tangent vector λµ
(0) may be interpreted physically as the four-velocity of

an observer whose world-line is C, and the space-like vectors λµ
(a) as rectangular
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coordinate axes used by this observer. For the sake of convenience, we assume that

the orientations of the axes are fixed so that they are non-rotating as determined by

local dynamical experiments (for example, see [30]). This means that the vectors λµ
(a)

are parallelly transported along C,

λµ
(a);νt

ν = 0 (1.32)

Without loss of generality, we also assume that ηµ is orthogonal to λµ
(0). Thus the

tetrad components of the deviation vector ηµ are

η(a) = η(a)(σ)λµ
(σ)η

νgµν = λ(a)
ν ην , η(0) = 0 (1.33)

The components, η(a), represent the position coordinates of a particle which moves

near the observer on its own geodesic, say, C
′
.

Contracting Eq.(1.29) with λ
(a)
µ and using Eq.(1.32) we find that the acceleration

of the particle relative to the observer is given by

d2η(a)

dτ 2
= −K(a)(b)η(b) (1.34)

where

K(a)(b) ≡ Rµνρσt
νtσλµ(a)λρ(b) (1.35)

are some of the tetrad components of the Riemann tensor. In writing Eq.(1.34) we

replaced the parameter λ by the proper time τ measured by the observer using his

own clock.

On the other hand, let us consider the same question in the framework of

Newtonian gravitational theory. To be distinguishable, we use t as the time used

by the observer and ζµ(t) as the coordinate position of the particle relative to the

observer. The gravitational field is described by the Newton potential φ. If ζµ(t) is

infinitesimal, then the equation of motion for the observer and the particle are given,

respectively, by

d2xa

dt2
= −∂aφ (1.36)
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d2xa

dt2
+

d2ζa

dt2
= −{∂aφ}|x+ζ = −∂aφ− ζb∂a∂bφ

where the derivative of φ are evaluated at the point xµ. It then follows that

d2ζa

dt2
= −Kabζb, Kab ≡ ∂a∂bφ (1.37)

The condition for the Laplacian potential ∇2φ = 0 leads to

Kaa = 0 (1.38)

The similarity between Eqs(1.37) and (1.34) is evident. Moreover, we even have

K(a)(a) = 0, wherever the Einstein vacuum field equations are satisfied.

The above considerations provide additional support for the choice of the field

equation

Rµν = 0 (1.39)

as a description of a free gravitational field.

1.5 Decomposition of the Riemann Tensor

The Riemann tensor Rµ
νλρ defined by Eq.(1.13) has 20 independent components

whereas the Ricci tensor Rµν defined by Eq.(1.16) has only 10. Physically, it is

convenient to decompose the Riemann tensor into three parts which are irreducible

representations of the full Lorenz group [11]

Rµνλρ = Cµνλρ + Eµνλρ + Gµνλρ (1.40)

where

Eµνλρ ≡ 1

2
[gµλSνρ + gνρSµλ − gνλSµρ − gµρSνλ],

Gµνλρ ≡ 1

12
[gνρgµλ − gνλgµρ]R,

Sµν ≡ Rµν − 1

4
gµνR (1.41)
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In Eq.(1.41), Sµν denotes the traceless part of the Ricci tensor. The Weyl tensor

Cµνλρ, being thought of as representing the free gravitational field [34], has all the

symmetries of the Riemann tensor [see Eq.(1.14)], and is traceless

Cλ
µλν = 0 (1.42)

Combining the fact that the Weyl tensor has all the symmetries of the Riemann tensor

and Eq.(1.42), we can see that the Weyl tensor has 10 independent components. These

components are, at any point of the space-time, completely independent of the Ricci

tensor components. Globally, however, the Weyl tensor and the Ricci tensor are not

independent, as they are connected by the Bianchi identities [see Eq.(1.15)]. These

identities can be now written in the form [27]

Cµνσρ;
ρ = Rσ[µ;ν] − 1

6
gσ[µR,ν] (1.43)

where square brackets denote the antisymmetrization

A[µν] ≡ 1

2
(Aµν − Aνµ) (1.44)

The remarkable analogy between the Bianchi identities of Eq.(1.43) and the Maxwell

equations

F µν
;ν = jµ (1.45)

suggests that the Bianchi identities represent the interaction between the free gravi-

tational field and matter fields.

If we define the tensor Jµνσ as

Jµνσ ≡ Rσ[µ;ν] − 1

6
gσ[µR,ν] (1.46)

we have

Jµνλ;
λ = 0 (1.47)

which strongly resembles the equation for the conservation of charge in electrody-

namics

Jλ
;λ = 0 (1.48)
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Hence, Jµνλ defined by Eq.(1.46) can be considered as representing a matter current,

which consists of those parts of the source that interact with the free gravitational

field. These parts are called gravitationally active, while the parts of the source that

do not contribute to Jµνλ are called gravitationally inert. The propagation of the free

gravitational field is in no way dependent upon the inert parts of the source.

An equivalent form for the decomposition of Eqs(1.40) and (1.41) is given by

Rµνλρ = Cµνλρ +
1

2
[gµνRνρ + gνρRνλ− gνλRµρ− gµρRνλ] +

1

6
[gµρgνλ− gµλgνρ]R (1.49)

When the Weyl tensor Cµνλδ vanishes, the space-time is said to be conformally flat.

1.6 Matter Fields

In this thesis, besides considering exact solutions of the Einstein vacuum equa-

tions, we shall also consider solutions of the Einstein field equations for the following

physically relevant energy-stress tensors.

(α) A massless scalar field:

The energy-stress tensor for a massless scalar field, φ, takes the form

Tµν = φ;µφ;ν − 1

2
gµνφ;λφ

;λ (1.50)

where φ satisfies the massless Klein-Gordon equation

φ;µ;νg
µν = 0 (1.51)

(β) A pure radiation field:

The energy-stress tensor in this case is given by

Tµν = εκµκν , κ
νκν = 0 (1.52)

where ε is non-negative.

Note that the energy-stress tensor for several matter fields has the same form as

Eq.(1.52), for example, a electromagnetic field, a massless scalar field, or a neutrino
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field [11]. For the latter case, however, the corresponding matter field equations must

be also satisfied, while for a pure radiation field it is not necessary.

(γ) An electromagnetic field:

For an electromagnetic field Fµν , the energy-stress tensor takes the form

Tµν = FµλF
λ
ν −

1

4
gµνFρλF

λρ (1.53)

where the antisymmetric tensor Fµν satisfies the Maxwell equations

F[µν;λ] = 0, Fµν;λg
νλ = 0 (1.54)

Introducing the following notation [25]

Φ0 ≡ F(0)(2) = Fµνl
µmν

Φ1 ≡ 1

2
[F(0)(1) − F(2)(3)] =

1

2
(Fµνl

µnν − Fµνm
µm̄ν)

Φ2 ≡ −F(1)(3) = −Fµνn
µmν (1.55)

or inversely

Fµν = 2{−Φ0n[µm̄ν]−Φ̄0n[µmν]+Φ2l[µmν]+Φ̄2l[µm̄ν]}−4Re(Φ1)l[µnν]+4iIm(Φ1)m[µm̄ν]

we find that the Ricci tensors are given by

Φmn = ΦmΦ̄n, Λ = 0, (m,n = 0, 1, 2) (1.56)

and that the Maxwell equations read

DΦ1 − δ̄Φ0 = (τ − 2α)Φ0 + 2ρΦ1 − κΦ2

DΦ2 − δ̄Φ1 = (ρ− 2ε)Φ2 + 2πΦ1 − λΦ0

δΦ1 −∆Φ0 = (µ− 2γ)Φ0 + 2τΦ1 − σΦ2

δΦ2 −∆Φ1 = (τ − 2β)Φ2 + 2µΦ1 − νΦ0 (1.57)

(δ) A massless neutrino field
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The case for a massless neutrino field, in general, is much more complicated than

the previous ones. This is mainly due to the fact that a neutrino field is described by

a two-component spinor ΦA, which satisfies the neutrino Weyl equations

σµ
ABφA

;µ = 0 (1.58)

where σµ
AB are the complex Pauli spin matrices [14], and the spin indices A,B take

the values 1,2.

The energy-stress tensor for a massless neutrino field takes the form

Tµν = i[σµAḂ(φAφḂ
;ν − φḂφA

;ν) + σνAḂ(φAφḂ
;µ − φḂφA

;µ)] (1.59)

In a spinor basis (oAιA), the neutrino spinor φA can be written as

φA = ΦoA
+ ΨιA (1.60)

where oA and ιA are normalized by the conditions

oAιA = −ιAoA = 1 (1.61)

In terms of Φ and Ψ and the spin coefficients, Eq.(1.58) takes the form

DΦ + δ̄Ψ = (ρ− ε)Φ + (α− π)Ψ

δΦ + ∆Ψ = (τ − β)Φ + (γ − µ)Ψ (1.62)

The Ricci scalars are now given by
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Φ00 = i[ΨDΨ̄− Ψ̄DΨ + κΦΨ̄− κ̄ΨΦ̄ + (ε− ε̄)ΨΨ̄]

Φ01 = i
1

2
[ΨδΨ̄− Ψ̄δΨ−ΨDΦ̄ + Φ̄DΨ− (ρ̄ + ε + ε̄)ΨΦ̄ + (β − ᾱ− π̄)ΨΨ̄− κΦΦ̄

+ σΦΨ̄]

Φ02 = −i[ΨδΦ̄− Φ̄δΨ + (ᾱ + β)ΨΦ̄ + σΦΦ̄ + λΨΨ̄]

Φ11 =
1

2
i[ΦDΦ̄− Φ̄DΦ + Ψ∆Ψ̄− Ψ̄∆Ψ + (ε̄− ε)ΦΦ̄ + (τ + π̄)Ψ̄Φ− (τ̄ + π)ΨΦ̄

+ (γ − γ̄)ΨΨ̄]

Φ12 =
1

2
i[ΦδΦ̄− Φ̄δΦ−Ψ∆Φ̄ + Φ̄∆Ψ + (ᾱ− β − τ)ΦΦ̄− (µ + γ + γ̄)ΨΦ̄− ν̄ΨΨ̄

+ λ̄ΦΨ̄]

Φ22 = i[Φ∆Φ̄− Φ̄∆Φ + (γ̄ − γ)ΦΦ̄ + ν̄ΦΨ̄− νΨΦ̄] (1.63)

Eqs(1.62) and (1.63) are the basic equations for a neutrino field.

(ε) An isotropic perfect fluid

The energy-stress tensor for a perfect fluid takes the form

Tµν = (µ + ρ)uµuν − pgµν , uµuνg
µν = 1 (1.64)

where uµ is the four-velocity of the fluid, p the pressure, and µ the energy density.

Inserting Eq(1.64) into Eq.(1.21) we obtain

µ;νu
ν + (µ + p)uν

;ν = 0

(µ + p)uµ
;νu

ν + (uµuν − gµν)p;ν = 0 (1.65)

which are the conditions imposed on a perfect fluid. In order to completely describe a

perfect fluid, however, Eq(1.65) has to be supplemented by an equation of state [36].

More frequently, the relation p = p(µ) is prescribed. We call a perfect fluid isotropic

if the pressure p is a function of the energy density µ only.

The simplest of the isotropic fluids are those with a “gamma equation of state”

p = (γ − 1)µ (1.66)

where γ is a constant. In all of the above cases, the energy-stress tensor must satisfy
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some conditions in order to be accepted physically ( The energy conditions for a

neutrino field are discussed by Griffiths [14]). These are either the so-called weak

energy condition, or the dominant energy condition, strong energy condition [15].

(a) The weak energy condition

This condition says that the energy density measured by any observer must be

non-negative. Mathematically, it is equivalent to saying that for any time-like vector

uµ we must have

T µνuµuν > 0 (1.67)

Eq.(1.67) is also true even for any null vector kµ

(b) The dominant energy condition

The dominant energy condition is stronger than the weak energy condition.

Besides the requirement of Eq.(1.67), it also requires that for any observer the local

energy flow vector (T µνuµ) be non-space-like, i.e.

(T ν
µ uν)(T

µλuλ) > 0 (1.68)

(c) The strong energy condition.

The expansion θ of a timelike geodesic congruence with zero vorticity (which

means with zero local angular rate of rotation) will monotonically decrease along a

geodesic if RabW
aW b > 0 for any timelike vector W . We shall call this the timelike

convergence condition. By the Einstein equation, this condition will be satisfied if the

energy-momentum tensor obeys the inequality,

TabW
aW b > W aWa(

1

2
T − 1

8π
Λ) (1.69)

We shall say that the energy-momentum tensor satisfies the strong energy condition

if it obeys the above inequality for Λ = 0.

1.7 Matter Shells

This section is based on the lecture notes of Wang [40].
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1.7.1 Notations and Convention

In this section, we shall give a systematic study of a thin shell (a hypersurface

across which the metric coefficients are only C0) in a n-dimensional Riemannian

manifold (γAB, Ω). We shall closely follow notations and convention of d’Inverno [12].

The metric is given by

ds2 = γAB(xC)dxAdxB (1.70)

with the signature,

sign(γAB) = {+,−,−, . . . ,−} (1.71)

In this section we shall use uppercase Latin indices, such as, A, B, C, to run from 0

to n-1, and the Greek indices, such as, µ, ν, λ, to run from 0 to n− 2. The Riemann

tensor is defined by ,

(DCDD −DDDC)XA =(n) RA
BCDXB (1.72)

where DA denotes the covariant derivative with respect to γAB, and

(n)RA
BCD ≡ (n)ΓA

BD,C − (n)ΓA
BC,D + (n)Γ

A(n)
CE ΓE

BD − (n)ΓA
DE

(n)ΓE
BC (1.73)

with

(n)ΓA
BC =

1

2
γAD(γDC,B + γBD,C − γBC,D) (1.74)

and γAB,C ≡ ∂γAB/∂xC .

The Ricci and Einstein tensors are defined as

(n)RAB ≡ (n)RC
ACB

= (n)ΓC
AB,C − (n)ΓC

AC,B + (n)ΓC
CE

(n)ΓE
AB − (n)ΓC

BE
(n)ΓE

AC (1.75)

(n)GAB ≡ (n)RAB − 1

2
γAB

(n)R (1.76)

1The definition for Riemann tensor adopted here is the same as that used by [19].

2Israel [19] defined the Ricci tensor as RAB = −RC
ACB , while the Einstein tensor as that given

here. Thus, the Einstein field equations used by Israel are GAB = −κTAB .
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where

(n)R ≡ (n)RABγAB (1.77)

The Einstein field equations are given by

(n)GAB − Λnγ
AB = κn

(n)TAB (1.78)

where Λn and κn denote, respectively, the cosmological and Einstein constant, and

(n)TAB is the energy-momentum tensor.

The Weyl tensor is defined as

(n)CABCD = (n)RABCD

+
1

n− 2
(γAD

(n)RBC + γBC
(n)RAD)

− γAC
(n)RBD − γBD

(n)RAC

+
1

(n− 1)(n− 2)
(γACγBD − γADγBC)(n)R (1.79)

Note that the above definitions are simply generalizations to N dimensional space-

times used in Section 1.2, and when n = 4 they reduce to them.

If we make following exchanges, we shall get Israel’s expressions from these

presented in this section,

γAB = −γ̄AB

(n)ΓA
BC = (n)Γ̄A

BC

(n)RA
BCD = (n)R̄A

BCD

(n)RABCD = −R̄ABCD

(n)RAB = −(n)R̄AB

(n)R = (n)R̄

(n)GAB = −(n)ḠAB

gµν = −ḡµν
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Γλ
µν = Γ̄λ

µν

(n−1)Rλ
µνσ = (n−1)R̄λ

µνσ

(n−1)Rλµνσ = −(n−1)R̄λµνσ

(n−1)Rµν = −(n−1)R̄µν

(n−1)R = (n−1)R̄

(n−1)Gµν = −(n−1)Ḡµν

Kµν = K̄µν

K = −K̄

ε(n) = −ε̄(n) (1.80)

where the quantities with bars denote those used by Israel in [19].

1.7.2 Gauss and Codacci Equations

Assume that Σ is a hypersurface in Ω by

Σ := {xA : Φ(xC) = 0} (1.81)

If we choose the intrinsic coordinates of Σ as

{ξµ} = {ξ0, ξ1, . . . , ξn−2} (1.82)

we find that the hypersurface Σ can be also written in the form

xA = xA(ξµ) (1.83)

Then, we have

dΦ(xC) =
∂Φ(xC)

∂xA

∂xA(ξν)

∂ξλ
dξλ = 0 (1.84)

Since dξλ’s are linearly independent, we must have

NAeA
(µ) = 0 (1.85)



20

where

NA ≡ ∂Φ(xC)

∂xA

eA
(µ) ≡ ∂xA(ξν)

∂ξµ
(1.86)

where NA denotes the normal vector to the hypersurface Φ(xC) = 0, and eA
(µ)’s are

the tangent vectors.

When NANA 6= 0, a condition that we shall assume in the rest of the thesis, we

define the unit normal vector nA as

nA =
NA

|NCNC | 12
(1.87)

with

nAnBγAB = ε(n) (1.88)

where ε(n) = ±1. When ε(n) = +1 the normal vector nA is timelike, and the

corresponding hypersurface Σ is spacelike; and when ε(n) = −1 the normal vector

nA is spacelike, and the corresponding hypersurface Σ is timelike.

On the hypersurface Σ, the metric (1.70) reduces to

ds2|Σ = γAB(xC(ξλ))
∂xA(ξρ)

∂ξµ

∂xB(ξσ)

∂ξν
dξµdξν = gµνdξµdξν (1.89)

where gµν is the reduced metric on Σ and defined as

gµν(ξ
λ) ≡ γAB(xC(ξλ))

∂xA(ξρ)

∂ξµ

∂xB(ξσ)

∂ξν
(1.90)

On the other hand, introducing the projection operator,hAB, by

hAB = γAB − ε(n)nAnB (1.91)

we find the following useful relations

γAB = gµνeA
(µ)e

B
(ν) + ε(n)nAnB

gµν = γABeA
(µ)e

B
(ν)

hµν = γAB − ε(n)nAnB = gµνe(µ)Ae(ν)B (1.92)
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where

e(µ)A ≡ γABeB
(µ), g

µλgλν = δµ
ν , γACγCB = δA

B (1.93)

For a tangent vector A, we have

Aµ = e(m) ·A = eC
(µ)AC ,A = Aµe(µ), (1.94)

with A · n = 0, and

Aµ = gµνAν (1.95)

The intrinsic covariant derivative of A with respect to ξµ is the projection of the

vector DA/Dξµ onto Σ,

Aµ;ν ≡ e(µ) · DA

Dξν
= eC

(µ)

∂xB

∂ξν
DBAC

=
∂xB

∂ξν
[DB(eC

(µ)AC)− ACDB(eC
(µ))]

=
∂xB

∂ξν
DB(eC

(µ)AC −A · D

Dξν
(e(µ)) (1.96)

Since

D

Dξν
(e(µ) ·A) =

∂xC

∂ξν
DC(Aµ) =

∂Aµ

∂ξν

A · D

Dξν
(e(µ)) = Aσe(σ) · D

Dξν
(e(µ)) (1.97)

we find that Eq.(1.96) can be written as

Aµ;ν = e(µ) · DA

Dξν
= Aµ,ν − AλΓ

λ
µν (1.98)

where

Γλ
µν ≡ gλσe(σ) ·

De(µ)

Dξν
. (1.99)

After tedious but simple calculations, we find that

Γλ
µν ≡ gλσe(σ) ·

De(µ)

Dξν
=

1

2
gλσ(gσν,µ + gµσ,ν − gµν,σ) (1.100)



22

Properties of a non-intrinsic character enter when we consider the way in which Σ

bends in Ω. This is measured by the variations of DnA/Dξµ of the normal vector.

Since each of these (n− 1) vectors is perpendicular to nA, we can write

DnA

Dξν
= Kλ

ν eA
(λ) (1.101)

thus defining the extrinsic curvature Kµν of the hypersurface Σ. From Eqs.(1.92) and

(1.101) we obtain that

Kµν = gµλK
λ
ν = e(µ)AKλ

ν = e(µ)A
DnA

Dξν
= eA

(µ)e
B
(ν)DBnA (1.102)

Since we have nAeA
(µ) = 0, we find that

Kµν = eA
(µ)e

B
(ν)DBnA = −nAeB

(ν)DB(eA
(µ))

= −nAeB
(ν)(e

A
(µ),B +(n) ΓA

BCeC
(µ))

= −nA(
∂2xA

∂ξµ∂ξν
+(n) ΓA

BC

∂xB

∂ξν

∂xC

∂ξµ
)

= Kνµ (1.103)

On the other hand, assuming

De(µ)

Dξν
= αµνn + βσ

µνe(σ) (1.104)

we find that

n · De(µ)

Dξν
= αµνε(n) = −Kµν

e(λ) ·
De(µ)

Dξν
= βσ

µνgλσ = Γλµν (1.105)

namely

αµν = −ε(n)Kµν , β
σ
µν = Γσ

µν (1.106)

Inserting Eq.(1.106) into Eq.(1.104), we find that

De(µ)

Dξν
= −ε(n)Kµνn + Γσ

µνe(σ) (1.107)
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which is usually called the Gauss-Weingarten equation. Thus, for any vector A that

is tangent to Σ, we find that

DA

Dξν
=

D

Dξν
(Aµe(µ))

=
DAµ

Dξν
e(µ) + Aµ De(µ)

Dξν

=
∂Aµ

∂xν
e(µ) + Aµ(−ε(n)Kµνn + Γσ

µνe(σ))

= Aµ
;νe(µ) − ε(n)AµKµνn (1.108)

that is,

DA

Dξν
= Aµ

;νe(µ) − ε(n)AµKµνn (1.109)

Operating on Eq.(1.107) with D/Dξλ and using Eq.(1.101), we find that

D

Dξλ
(
DeA

(µ)

Dξν
) =

D

Dξλ
(−ε(n)Kµνn

A + Γσ
µνe

A
(σ))

= −ε(n)
DKµν

Dξλ
nA − ε(n)Kµν

DnA

Dξλ
+

DΓσ
µν

Dξλ
eA
(σ) + Γδ

µν

DeA
(δ)

Dξλ

= −ε(n)Kµν,λn
A − ε(n)KµνK

σ
λeA

(σ) + Γσ
µν,λe

A
(σ) + Γδ

µν(−ε(n)Kδλn
A + Γσ

δλe
A
(σ))

= (Γσ
µν,λ + Γδ

µνΓ
σ
δλ − ε(n)KµνK

σ
λ )eA

(σ) − ε(n)(Kµν,λ + Γδ
µνKδλ)n

A (1.110)

Thus, we have

(
D2

DξλDξν
− D2

DξνDξλ
)eA

(µ) = (n−1)Rσ
µλνe

A
(σ) + ε(n)(KµλK

σ
ν −KµνK

σ
λ )eA

(σ)

+ ε(n)(Kµλ;ν −Kµν;λ)n
A, (1.111)

where

(n−1)Rσ
µλν ≡ Γσ

µν,λ − Γσ
µλ,ν + Γδ

µνΓ
σ
δλ − Γδ

µλΓ
σ
δν (1.112)

On the other hand, we have

D2eA
(µ)

DξλDξν
=

D

Dξλ
(
DeA

(µ)

Dξν
) = eC

(λ)DC(eB
(ν)DBeA

(µ))

= eC
(λ)e

B
(ν)(DCDBeA

(µ)) + eC
(λ)(DCeB

(ν))(DBeA
(µ))

= eC
(λ)e

B
(ν)(DCDBeA

(µ)) + (DBeA
(µ))(

∂2xB

∂ξλ∂ξν

+ (n)ΓB
CD

∂xC

∂ξλ

∂xD

∂ξν
) (1.113)
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(
D2

DξλDξν
− D2

DξνDξλ
)eA

(µ) = [(DCDB −DBDC)eA
(µ)]e

C
(λ)e

B
(ν)

= (n)RA
DCBeD

(µ)e
C
(λ)e

B
(ν) (1.114)

Then, the combination of Eqns.(1.111) and (1.114) yields,

(n)RA
DCBeD

(µ)e
C
(λ)e

B
(ν) = (n−1)Rσ

µλνe
A
(σ) + ε(n)(KµλK

σ
ν −KµνK

σ
λ )eA

(σ)

+ ε(n)(Kµλ;ν −Kµν;λ)n
A (1.115)

Multiplying Eq.(1.115) by e(ρ)A we obtain the Gauss equation,

(n)RABCDeA
(ρ)e

B
(µ)e

C
(λ)e

D
(ν) =(n−1) Rρµλν + ε(n)(KµλKνρ −KµνKλρ) (1.116)

Similarly, multiplying Eq.(1.115) with nA we obtain the Codacci equation,

(n)RABCDnAeB
(µ)e

C
(λ)e

D
(ν) = Kµλ;ν −Kµν;λ (1.117)

Thus, the Gauss and Codacci equations are given by

(n)RABCDeA
(ρ)e

B
(µ)e

C
(λ)e

D
(ν) =(n−1) Rρµλν + ε(n)(KµλKνρ −KµνKλρ) (1.118)

(n)RABCDnAeB
(µ)e

C
(λ)e

D
(ν) = (Kµλ;ν −Kµν;λ)g

µν (1.119)

which are exactly the expressions of Eqs.(12) and (13) obtained by Israel in [19], after

considering the fact of Eq.(1.80).

Multiplying Eq.(1.116) by gρλgµν , and noting

gµνeA
(µ)e

B
(ν) = γAB − ε(n)nAnB (1.120)

we find that

(n)RABCDeA
(ρ)e

B
(µ)e

C
(λ)e

D
(ν)g

ρλgµν

= (n)RABCD(γAC − ε(n)nAnC)(γBD − ε(n)nBnD)

= (n)RABCD(γACγBD − ε(n)γACnBnD − ε(n)γBDnAnC)

= (n)R− 2ε(n)(n)RABnAnB

= −2ε(n)(n)GABnAnB

= (n−1)R + ε(n)(Kλ
σKσ

λ −K2) (1.121)
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this is,

−2ε(n)(n)GABnAnB = (n−1)R + ε(n)(Kλ
σKσ

λ −K2) (1.122)

where K = gµνKµν

On the other hand, multiplying Eq.(1.117) by gµν , we find that

(n)RABCDnAeB
(µ)e

C
(λ)e

D
(ν)g

µν = (n)RABCDnAeC
(λ)(γ

BD − ε(n)nBnD)

= (n)RACnAeC
(λ) =(n) GACnAeC

(λ)

= (Kσ
λ − δσ

λ);σ (1.123)

or

(n)GACnAeC
(λ) = (Kσ

λ − δσ
λ);σ (1.124)

In summary, we have

−2ε(n)(n)GABnAnB =(n−1) R + ε(n)(Kλ
σKσ

λ −K2) (1.125)

(n)GACnAeC
(λ) = (Kσ

λ − δσ
λK);σ (1.126)

which are exactly Eqs.(14) and (15) obtained by Israel in [19], after some correspond-

ing changes are made due to different definitions of some quantities [see Eq.(1.80)].

1.7.3 Surface Layers

Assume that the hypersurface Σ divides the whole spacetime Ω into two regions

Ω±, where

Ω+ := {xA, Φ > 0}, Ω− := {xA, Φ 6 0} (1.127)

If we choose the systems of coordinates differently, say, x+A in region Ω+ and x−A in

region Ω−. Then, the hypersurface Σ are given by

x+A = x+A(ξµ), x−A = x−A(ξµ) (1.128)

or equivalently

Φ+(x+B) = 0, Φ−(x−B) = 0 (1.129)
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From the above equations we find that

n+
A =

N+
A

|N+
C N+C | 12

, N+
A =

∂Φ+(x+C)

∂x+A
, e+A

(µ) ≡
∂x+A(ξλ)

dξµ

n−A =
N−

A

|N−
C N−C | 12

, N−
A =

∂Φ−(x−C)

∂x−A
, e−A

(µ) ≡
∂x−A(ξλ)

∂ξµ
(1.130)

Then, it is easy to see that in each of the two regions, the Gauss and Codacci equations

take the form of Eqs.(1.118) and (1.119), from which Eqs.(1.125) and (1.126) result.

On the hypersurface Σ, the reduced metric from each side of Σ should be the same,

so we must have

g+
µν(ξ

µ)|Σ+ = g−µν(ξ
µ)|Σ− (1.131)

On the other hand, by the Lanczos equations [20],

[Kµν ]
− − gµν [K]− = κSµν (1.132)

one defines the symmetric tensor Sµν as the surface energy-momentum tensor, where

[Kµν ]
− ≡ lim

Φ→0+
K+

µν − lim
Φ→0−

K−
µν (1.133)

and [K]− ≡ gµν [Kµν ]
−. The above definition for Sµν can be further justified by con-

sidering the integral of (n)TABeA
(µ)e

B
(ν) with respect to the proper distance τ , measured

perpendicular to Σ [10],

Sµν =

∫ +ε

−ε

(n)TABeA
(µ)e

B
(ν)dτ (1.134)

From Eq.(1.126) we find that

[(n)GACnAeC
(µ)]

− = −κSλ
µ;λ (1.135)

which serves as the conservation law for the surface EMT.

In analyzing surface layers, one usually uses the first junction conditions (1.131),

the Israel’s junction conditions (1.132), the conservation law (1.135), and the n-

dimensional Einstein field equations applied on each side of the hypersurface Σ.



27

The n-dimensional Einstein field equations,

(n)RAB − 1

2
γ

(n)
ABR = κ2

n
(n)TAB (1.136)

can be projected to the base {eA
(µ), n

A} as

(n)GABnAnB = −ε(n)

2
((n−1)R + ε(n)(Kλ

σKσ
λ −K2)) (1.137)

(n)GACnAeC
(λ) = (Kσ

λ − δσ
λ);σ (1.138)

(n)GABeA
(µ)e

B
(ν) = −(Kσ

λ − δσ
λ),AnA + f(Kαβ, K2

αβ) (1.139)

where f(Kαβ, K2
αβ) is known only in the case where Gaussian normal coordinates are

used [10]. Clearly, Eqs.(1.137) and (1.138) are, respectively, the Gauss and Codacci

equation, while the integral of Eq.(1.139) across Σ gives Israel’s junction conditions

(1.132).

Since Eq.(1.139) cannot be obtained by only using the Gauss equation (1.118),

it is clear that any equations obtained from it should not include (at least totally)

the Israel’s junction conditions (1.132). This observation is very important when we

consider the effective Einstein field equations on Σ by following Shiromizo, Maeda,

and Sasaki [35].

1.7.4 Applications to Brane Worlds

From the Gauss equation Eq.(1.116), we find that

(n−1)Rρµλν = (n)RABCDeA
(ρ)e

B
(µ)e

C
(λ)e

D
(ν) − ε(n)(KµλKνρ −KµνKλρ) (1.140)

from which we obtain

(n−1)Rµν = (n)RABeA
(µ)e

B
(ν) − ε(n)(n)RABCDnAeB

(µ)n
CeD

(ν) − ε(n)(KµσK
σ
ν −KKµν)

(n−1)R = (n)R− 2ε(n)(n)RABnAnB − ε(n)(KαβKαβ −K2) (1.141)

On the other hand, from Eq.(1.7.1), we find that

(n)RABCDnAeB
(µ)n

CeD
(ν) =

ε(n)

n− 2
(n)RABeA

(µ)e
B
(ν)+

1

n− 2
{(n)RABnAnB− ε(n)

n− 1
(n)R}gµν+

(n)Eµν

(1.142)
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where

(n)Eµν ≡(n) CABCDnAeB
(µ)n

CeD
(ν) (1.143)

with (n)CABCD being the Weyl tensor, defined by Eq.(1.7.1).

From the n-dimensional Einstein field equations (1.136), we find that

(n)RAB = κ2
n{(n)TAB − 1

n− 2
γAB

(n)T}

(n)R = −κ2
n

2

n− 2

(n)

T (1.144)

Then, combining Eqs.(1.144) - (1.144), we obtain

(n−1)Gµν = κ2
n

n− 3

n− 2
{(n)TABeA

(µ)e
B
(ν) + ε(n)[(n)TABnAnB − ε(n)

n− 1

(n)

T ]gµν}

− ε(n){KµσK
σ
ν −KKµν − 1

2
(KαβKαβ −K2)gµν}

− ε(n)(n)Eµν (1.145)



CHAPTER TWO

Gravitational Collapse of Spherically Symmetric Shells

2.1 Introduction to Dark Energy

Over the past decade, one of the most remarkable discoveries is that our universe

is currently accelerating. This was first observed from high red shift supernova Ia [1],

and confirmed later by cross checks from the cosmic microwave background radiation

[2] and large scale structure [3].

In Einstein’s general relativity, in order to have such an acceleration, one needs

to introduce a component to the matter distribution of the universe with a large

negative pressure. This component is usually referred to as dark energy. Astronomical

observations indicate that our universe is flat and currently consists of approximately

2
3

dark energy and 1
3

dark matter. The nature of dark energy as well as dark matter

is unknown, and many radically different models have been proposed, such as, a

tiny positive cosmological constant, quintessence, phantoms, Chaplygin gas, and dark

energy in brane worlds, among many others [See the review articles [33] [6] [29] [28]

[31] [32], and references therein].

On the other hand, another very important issue in gravitational physics is

black holes and their formation in our universe. Although it is generally believed

that on scales much smaller than the horizon size the fluctuations of dark energy

itself are unimportant [8], their effects on the evolution of matter overdensities may

be significant [4]. Then, a natural question is how dark energy affects the process of

the gravitational collapse of a star. It is known that dark energy exerts a repulsive

force on its surrounding, and this repulsive force may prevent the star from collapse.

Another related issue is how dark energy affects already-formed black holes (if they

29
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indeed exist in our universe). Recently, it was shown that the mass of a black hole

decreases due to phantom energy accretion and tends to zero when the Big Rip

approaches [13].

In this Chapter, we shall study the formation of black holes from the gravita-

tional collapse of a dust cloud in the background of dark energy, here “dust cloud”

means a cloud made of matter with zero pressure. Thus, it includes the dark mat-

ter as a particular case. In section 2 we discuss the basic properties of spherically

symmetrical thin shells and derive the extrinsic curverture from the metrics, and in

section 3 we study the special solution of the general case called McVittie solution,

and also the corresponding metric and the extrinsic curvature from McVittie solu-

tion. In section 4 we’ll show how to use numerical method to solve the equations of

extrinsic curverture so that we can see if it can form black holes in the background

of dark energy.

2.2 Spherically Symmetric Spacetimes, Horizons and Black Holes

The general metric for spherically symmetric spacetimes can be cast in the form

ds2 = gab(x
c)dxadxb −R2(xc)dΩ2 (2.1)

where a, b, c = 0or1, dΩ2 ≡ dθ2+sin2 θdϕ2, and θ and ϕ are the usual spherical angular

coordinates, with 0 6 θ 6 π, and 0 6 ϕ 6 2π. Clearly, the metric is invariant under

the coordinate transformations

xa = xa(x
′b), (a, b = 0, 1) (2.2)

Using one of the two degree of the freedom, we can always set g01(x
c) = 0, so the

metric can be written

ds2 = A2(T, R)dT 2 −B2(T, R)dR2 −R2(T, R)dΩ2 (2.3)
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Introducing two null coordinates u and v via the relations

du = F [A(T, R)dT −B(T, R)dR]

dv = G[A(T, R)dT + B(T,R)dR] (2.4)

where F and G satisfy the integrability conditions for u and v

∂2u

∂T∂R
=

∂2u

∂R∂T
∂2v

∂T∂R
=

∂2v

∂R∂T
(2.5)

the metric (2.3) takes the form

ds2 = 2eσ(u,v)dudv −R2(u, v)dΩ2 (2.6)

where

σ(u, v) ≡ −1

2
ln(2FG) (2.7)

Without loss of generality, we shall assume that

F > 0, G > 0 (2.8)

The coordinates u and v are two null coordinates, with −∞ < u, v < ∞. Note that

the metric remains the same under the transformations

u = u(ū), v = v(v̄) (2.9)

Using this gauge freedom, we can always make the metric coefficients σ(u, v) and

R(u, v) non-singular, except for points where the spacetime is singular. In the fol-

lowing we assume that this is always the case.

In addition, the roles of u and v can be interchanged. To fix this particular

freedom, we choose coordinates such that along the lines of constant u the radial

coordinate R increases towards the future, while along the line of constant v the

coordinate R decreases towards the future. This, of course, just defines u as outgoing

and v as ingoing null coordinates.
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Defining the two null vectors, lµandnµ, along each of the two rays by [5]

lµ ≡ ∂u

∂xµ
= δu

µ, nµ ≡ ∂v

∂xµ
= δv

µ (2.10)

we find that

lµ;νl
ν = 0 = nµ;νn

ν (2.11)

i.e these null rays are affinely parameterized null geodesics, where a semicolon denotes

the covariant derivative. The expansion for each is defined by

θ+ ≡ lµ;νg
µν = 2e−2σR,v

R
θ− ≡ nµ;νg

µν = 2e−2σR,u

R (2.12)

where (),µ ≡ ∂()
∂xµ .

It should be noted that the two null vectors lµ and nµ are uniquely defined only

up to a factor [5]. In fact,

l̄µ = f(u)lµ, n̄µ = g(v)nµ (2.13)

represent another set of null vectors that also define affinely parameterized null

geodesic

l̄µ;ν l̄
ν = 0 = n̄µ;νn̄

ν (2.14)

and the corresponding expansions are given by

θ̄+ ≡ l̄µ;νg
µν = f(u)θ+

θ̄− ≡ n̄µ;νg
µν = g(v)θ− (2.15)

However, since along each geodesic u = Const.(v = Const.)f(u)(g(v)) is constant,

this does not affect the definition of trapped surfaces in terms of the expansions. Thus

without loss of generality, in the following we consider only the expressions given by

Eq.(2.12).
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Definition [16], [5] The spatial two-surface S of constant T and R is
said trapped, marginally trapped, or untrapped, according to whether
θ+θ−|S > 0, θ+θ−|S <= 0, orθ+θ−|S < 0.

Assuming that on the marginally trapped surfaces S we have θ+|S = 0, then an

apparent horizon is the closure Σ̃ of a three-surface Σ foliated by the trapped surfaces

S on which θ−|Σ 6= 0. It is said outer, degenerate, or inner , according to whether

L−θ+|Σ < 0, L−θ+|Σ = 0, or L−θ+|Σ > 0, where L− ≡ Ln denotes the Lie derivative

along nµ. In addition, if θ−|Σ < 0 then the apparent horizon is said future, and if

θ−|Σ > 0 it is said past.

Black holes are usually defined by the existence of future outer apparent horizons

[15] [16] [18] [5]. However, in a definition given by Tipler [38] the degenerate case was

also included [16].

Finally we note that

∂T

∂u
=

1

2FA
,
∂T

∂v
=

1

2GA
∂R

∂u
= − 1

2FB
,
∂R

∂v
=

1

2GB
(2.16)

Then, we find that

R,u =
∂T

∂u
R,T +

∂R

∂u
R,R

=
1

2FAB
(BR,T − AR,R)

R,v =
∂T

∂v
R,T +

∂R

∂v
R,R

=
1

2GAB
(BR,T + AR,R) (2.17)

and

θ+ = 2e−2σR,v

R
=

2F

ABR(BR,T + AR,R)

θ− = 2e−2σR,u

R
=

2G

ABR(BR,T − AR,R) (2.18)
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2.3 Spherically Symmetric Thin Shells

In this section we consider the case of spherically symmetric thin shell of a

spherical symmetric star with finite thickness, which is made of a dust cloud in the

background of dark energy. Let’s divide the spaces into three different regions: Σ and

Ω
±
, where Σ denotes the surface of the star, Ω± denotes the inside and outside of the

shell, where + means outside and - means inside. In this section we’ll only study the

properties of the Ω+ case, the Ω− situation will be discussed in section 2.3.4. Let’s

use ds+ to denote the metric outside the dust cloud, and in general it can be cast in

the form:

ds2
+ = A2(T, R)dT 2 −B2(T, R)[d2R + R2(d2θ + sin2 θdφ2)] (2.19)

where x+µ ≡ {T, R, θ, φ} denotes the coordinates outside the collapsing of the dust

cloud. The surface of the cloud can be expressed in the x+µ coordinates as:

Σ+ : R = R0(T ) (2.20)

So substituting R = R0(T ) into the metric ds2
+ we find,

ds2
+|R=R0(T ) = (A2 −B2Ṙ2

0)dT 2 −B2R2
0(d

2θ + sin2 θd2φ) (2.21)

where Ṙ0 = dR0(T )
dT

.

This equals to the metric of the general space ds2 = dτ 2−R2(τ)(d2θ+sin2 θdφ2),

so we could find the following relations

[A2(T, R0)−B2(T, R0)Ṙ2
0(T )]

1
2 dT = dτ

R(τ) = B(R0, T )R0(T ) (2.22)

So, on the surface

Φ = R−R0(T ) = 0 (2.23)

If we write the function T in terms of the proper time τ we then have

R = R0(T ) = R0(τ), T = T (τ), θ = θ, φ = φ (2.24)
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Then from the definition of the normal vector [Eqs.(1.86)] we know that

N+
α =

∂Φ+

∂xα
=

∂(R−R0)

∂xα
= δR

α −
∂R0

∂T
· δT

α = δR
α − Ṙ0δ

T
α (2.25)

Using the same way to find N+
β we could have the following

N+
α N+

β gαβ = − 1

A2B2
(−B2Ṙ2

0 + A2) (2.26)

Thus we find the unit normal vector is given by

n+
α =

N+
α

|N+| =
AB√

A2 −B2Ṙ2
0

[δR
α − Ṙ0(T )δT

α ] (2.27)

Also from the definition of the extrinsic curvature [Eqs.(1.103)] we find

K+
ττ = −n+

ν (
∂2xν

∂τ 2
+ Γν

µλ

∂xµ

∂τ

∂xλ

∂τ
)

= − AB√
A2 −B2Ṙ2

0

[δR
ν − Ṙ0(T )δT

ν ](
∂2xν

∂τ 2
+ Γν

µλ

∂xµ

∂τ

∂xλ

∂τ
)

= − AB√
A2 −B2Ṙ2

0

[
∂2R

∂τ 2
+ ΓR

µλ

∂xµ

∂τ

∂xλ

∂τ
− ˙R0(T )

∂2T

∂τ 2

− Ṙ0(T )ΓT
µλ

∂xµ

∂τ

∂xλ

∂τ
] (2.28)

First from the expression Eq.(2.22) we find that

dT

dτ
= (A2 −B2Ṙ2

0)
− 1

2 (2.29)

Taking derivative respect to τ again we find

d2T

dτ 2
= (A2 −B2Ṙ2

0)
−2[BṘ2Ḃ + BṘ3B,R + ṘB2R̈0 − AȦ− AA,RṘ0] (2.30)

where A,R and B,R mean the derivatives of A and B with respect to R. Also from the

expression of dR
dτ

we have

d2R

dτ 2
= Ṙ0

d2T

dτ 2
+

dT

dτ
R̈0

dT

dτ
(2.31)

On the other hand

ΓR
µλ

∂xµ

∂τ

∂xλ

∂τ
= ΓR

RR(
∂R

∂τ
)2 + ΓR

TT (
∂T

∂τ
)2 + 2ΓR

RT

∂R

∂τ

∂T

∂τ
(2.32)
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where

ΓR
RR =

1

B
B,R, ΓR

TT =
A

B2
A,R, ΓR

RT =
Ḃ

B
.

Thus from Eq.(2.32) we find

ΓR
µλ

∂xµ

∂τ

∂xλ

∂τ
= (

B,R

B
Ṙ2 +

AA,R

B2
+ 2

Ḃ

B
Ṙ0)(A

2 −B2Ṙ2
0)
−1 (2.33)

Also we have

ΓT
µλ

∂xµ

∂τ

∂xλ

∂τ
= (

BḂ

A2
Ṙ2

0 +
Ȧ

A
+

2

A

∂A

∂R
Ṙ0)(A

2 −B2Ṙ2
0)
−1 (2.34)

using the relations

ΓT
RR =

BḂ

A2
, ΓT

TT =
Ȧ

A
, ΓT

RT =
1

A

∂A

∂R
.

So from Eq.(2.28) we obtain

K+
ττ = (A2−B2Ṙ2

0)
− 3

2 [−ABR̈0+
B2Ḃ

A
Ṙ3+(2BA,R−AB,R)Ṙ2+(BȦ−2AḂ)Ṙ0−A2A,R

B
]

(2.35)

On the other hand, from the definition of the extrinsic curverture [Eqs.(1.103)]

we find

K+
θθ = − AB√

A2 −B2Ṙ2
0

[ΓR
µλ

∂xµ

∂θ

∂xλ

∂θ
− Ṙ0Γ

T
µλ

∂xµ

∂θ

∂xλ

∂θ
] (2.36)

Also we have the value of ΓR
µλ

∂xµ

∂θ
∂xλ

∂θ
and ΓT

µλ
∂xµ

∂θ
∂xλ

∂θ
using

ΓR
θθ = − 1

B
B,RR2 −R

ΓT
θθ =

BḂ

A2
R2

Then the extrinsic curvature of θθ component is

K+
θθ = (A2 −B2Ṙ2

0)
− 1

2 (AB,RR2
0 + ABR0 + Ṙ0R

2
0

B2Ḃ

A
) (2.37)

The φφ component of the extrinsic curverture can be found from the properties

of spherical symmetry

K+
φφ = sin2 θ ·K+

θθ (2.38)
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So that

K+
φφ = (A2 −B2Ṙ2

0)
− 1

2 (AB,RR2 + ABR +
1

A
B2ḂR2) sin2 θ (2.39)

2.4 McVittie Solution

2.4.1 The General Properties of McVittie Solution

In 1933, McVittie [24] showed how to embed the Schwarzshild field of a massive

particle in the cosmological background given by the Robertson-Walker line element.

His solutions can be written [17] (the units in which the velocity of light c=1 and the

gravitational constant G=1 )

ds2 = −(
1− m

2w(R)

1 + m
2w(R)

)2dT 2 + eβ(1 +
m

2w(R)
)4{dR2 + h2(R)(dθ2 + sin2 θdφ2)} (2.40)

where

m = m(T ), β = β(T ), β̇ = −2
ṁ

m
(2.41)

and a dot indicates partial derivative with respect to T. The functions h(R),w(R)

depend on a choice of k(=-1,0,+1), the Riemannian curvature of the surfaces of

homogeneity T=const in the background Robertson-Walker universe;

h(R) =





sinh R, k = −1

R, k = 0

sin R, k = +1

(2.42)

and

w(R) =





2 sinh R
2
, k = −1

R, k = 0

2 sin R
2
, k = +1

(2.43)

In this thesis, we shall consider only the case k = 0.

When k = 0, this spacetime is McVittie’s solution [24] of Einstein’s equation,

for which the line element may be written as

ds2 = −(
1− m

2u

1 + m
2u

)2dt2 + eβ(T )(1 +
m

2u
)4(dr2 + r2dΩ2) (2.44)

where u = Re
β
2 . It is convenient for our purposes to introduce a metric radial coordi-



38

nate rather than isotropic coordinates. This has the advantage of being a covariantly

defined geometric object. Thus we define

R = Re
β
2 (1 +

m

2u
)2 = u(1 +

m

2u
)2 (2.45)

The resulting coordinate transformation (R,T )→(R,T) is a diffeomorphis only

if we restrict the range of u to either (0, m
2
) or (m

2
, +∞). Notice that each interval

is diffeomorphic via (2.45) to R ∈ (2m, +∞), so that McVittie’s solution does not

cover the region inside the Schwarzschild radius, R 6 2m. With u ∈ (m
2
, +∞), the

transformation (2.45) puts the line element (2.44) into the form

ds2 = −(1−2m

R −1

4
β̇2R2)dT 2−β̇R(1−2m

R )−
1
2 dRdT+(1−2m

R )−1dR2+R2dw2 (2.46)

while for u ∈ (0, m
2
) we have

ds2 = −(1−2m

R −1

4
β̇2R2)dT 2+β̇R(1−2m

R )−
1
2 dRdT+(1−2m

R )−1dR2+R2dw2 (2.47)

These are related by the exchange β(T ) → −β(T ). The region u > m
2

is the region

R > 2m of the spacetime representing a point mass embedded in a spatially flat RW

universe with scale factor e
β
2 , and the region u < m

2
is the region R > 2m of the

spacetime representing a point mass embedded in a spatially flat RW universe with

scale factor e−
β
2 . There is a scalar curvature singularity at u = m

2
, i.e. at R = 2m,

which is a strong curvature singularity [38], and prevents any extension into the region

R < 2m.

For the remainder of this section, we focus on the spacetime with line element

(2.46). The energy density and isotropic pressure calculated via Einstein’s equation

satisfy

8πρ =
3

4
β̇2, 8πp = −3

4
β̇2 − β̈(1− 2mR−1)−

1
2 (2.48)

We can immediately see an intriguing aspect of this spacetime: there is an

intrinsic curvature singularity at the gravitational radius, R = 2m. The energy



39

density and pressure of the RW background are found by setting m = 0 in (2.48);

they are given by

8πρ0 =
3

4
β̇2, 8πp0 = −3

4
β̇2 − β̈ (2.49)

The expansion of the fluid flow lines for the spacetime (2.46) is the same as that of

the RW background, and is given by

θ =
3

2
β̇(T ) (2.50)

2.4.2 The Extrinsic Curvature of the Exterior

From the Eq.(2.19) we know that the line element of the exterior can be written

as

ds2
+ = A2(T, R)dT 2 −B2(T, R)[d2R + R2(d2θ + sin2 θdφ2)] (2.51)

and from the McVittie solution Eq.(2.40) the metric is

ds2 = (
1− m

2w(R)

1 + m
2w(R)

)2dT 2 − eβ(1 +
m

2w(R)
)4{dR2 + h2(R)(dθ2 + sin2 θdφ2)} (2.52)

So by comparing the above two line elements we find that

A(T, R) =
1− m(T )

2w(R)

1 + m(T )
2w(R)

B(T, R) = e
β
2 (1 +

m(T )

2w(R)
)2 (2.53)

and by solving the differential equation of β in Eq.(2.41) we have

B(T, R) =
m0

m(T )
(1 +

m(T )

2w(R)
)2 (2.54)

where m0 is the initial value of m.

Having functions A and B written in terms of the function m and w we can

rewrite the extrinsic curvature of the exterior in terms of m and w also. Then,

combing the extrinsic curverture of Eqs.(2.35), (2.37) and the expression of the func-

tions A and B (Eqs.(2.53)) we can calculate the extrinsic curverture of the exterior.

We will leave the exact form of them in Chapter 3 in which we shall discuss how to

solve the junction conditions by using numerical method.
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2.4.3 The Extrinsic Curvature of the Interior

To simplify the problem, we assume that the spacetime inside the star is homo-

geneous and isotropic, similar to the Oppenheimer-Synyder (OS) model [26], histori-

cally the first model for gravitational collapse. Then the spacetime inside the star is

described by the metric

ds2
− = dt2 − a2(t)(dr2 + r2dΩ2) (2.55)

where a(t) is an arbitrary function of t only.

Compare this with the metric (Eq.(2.19)), we find that

A(t, r) = 1, B(t, r) = a(t) (2.56)

So to calculate the extrinsic curverture we just need to replace the function A

and B according to Eq.(2.56) in the explicit form of extrinsic curverture (Eqs.(2.35),

(2.37)).

Then, we find

K−
ττ = (1− a2ṙ2)−

3
2 (−ar̈ + a2ȧṙ3 − 2ȧṙ)

K−
θθ = (1− a2ṙ2)−

1
2 (ar + ṙr2a2ȧ) (2.57)

And due to the property of spherical symmetry we automatically have

K−
φφ = sin2 θK−

θθ = (1− a2ṙ2)−
1
2 (ar2θ + ṙr2a2ȧ) sin2 θ (2.58)

2.4.4 Dynamical of the Thin Shells

In order to connect the interior of the star with the outside of the star we need

some junction conditions.

First, the extrinsic curverture of interior and the exterior should be equal to

each other, that is

K−
ττ = K+

ττ
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K−
θθ = K+

θθ

K−
φφ = K+

φφ (2.59)

Because Kθθ and Kφφ are linearly dependent (Kθθ = sin2 θKφφ), we actually only

have two equations that are linearly independent.

Second, the metric of the outside and inside should be equal to each other

around the junction surface, that is

ds2
+

∣∣
Σ+

= ds2
−
∣∣
Σ−

(2.60)

And from Eqs.(2.51), (2.55), we have

A2(T, R)dT 2 −B2(T, R)[d2R + R2(d2θ + sin2 θdφ2)]
∣∣
Σ+

= dt2 − a2(t)(dr2 + r2dΩ2)
∣∣
Σ−

(2.61)

Rearrange the equation above we have

(A2 −B2Ṙ2)dT 2 −B2R2dΩ2 = (1− a2ṙ2)dt2 − a2r2dΩ2 (2.62)

Comparing term by term we find

(A2 −B2Ṙ2)
1
2 dT = (1− a2ṙ2)

1
2 dt

BR = ar (2.63)

So totally we have four equations (Eqs.(2.59), (2.63)) to determine the dynam-

ical situation of our problem. From the McVittie solution we know the functions A

and B can be written in terms of m and w, where w is a function of R (Eq.(2.43)).

So actually we total have four unknowns: m(t), T (t), R(t) and r(t), all of which can

be considered as functions of t only. Then we have all the equations we need to solve

the problem.
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2.5 Numerical Solutions

2.5.1 The Equation BR0 = ar0

For the case k = 0, from Eqs.(2.43) we find that w(R) = R. So the function B

(Eqs.(2.53)) is given by

B(T, R) = e
β
2 (1 +

m(T )

2R
)2 (2.64)

Also from the equation of β (Eq.(2.41)), β̇ = −2 ṁ
m

, we find e
β
2 = m0

m
, where m0 is the

initial value of m. Then we have

B =
m0

m
(1 +

m

2R
)2 (2.65)

From Eqs.(2.63) we know BR = ar, this equation means the variables R and r are

already on the surface, so we could rewrite it to be

BR0 = ar0 (2.66)

where both of R0 and r0 are a function of t.

To find a numerical solution we choose to adopt the Runge-Kutta method(see

section 2.5.4), so first we have to transform Eqs.(2.59), (2.63) into the second order

ordinary differential equations. In order to achieve this goal we take derivative of

Eq.(2.66) with respect to t twice, that is

d2

dt2
(BR0) =

d2

dt2
(ar0) (2.67)

then we find

(
m0

m
− m0m

4R2
0

)R̈0 + (
m0

4R0

− m0R0

m2
)m̈ +

m0mṘ2
0

2R3
0

+
2m0ṁ

2R0

m3

− 2ṁṘ0m0

m2
− m0ṁṘ0

2R2
0

− 2ȧṙ0 − r0ä− ar̈0 = 0 (2.68)

For the sake of convenience, when doing computer coding we put the above equation

in the form

P1m̈ + P2R̈0 + P3r̈0 + C1 = 0 (2.69)
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where

P1 =
m0

4R0

− m0R0

m2

P2 =
m0

m
− m0m

4R2
0

P3 = −a

C1 =
m0mṘ2

0

2R3
0

+
2m0ṁ

2R0

m3
− 2ṁṘ0m0

m2
− m0ṁṘ0

2R2
0

− 2ȧṙ − rä (2.70)

For convenience, from now on we define ˙( ) means time derivative respect to t, while

( )′ means time derivative with respect to T .

2.5.2 The Equation K+
ττ = K−

ττ

From Eqs.(2.59) we know K+
ττ = K−

ττ , but the equal sign only holds after

we take the limit on Σ+ and Σ−. So actually we should write K+
ττ = K−

ττ to be

lim K+
ττ

R→R0,r→r0

= lim K−
ττ

R→R0,r→r0

.

Writing the above equation explicitly we get

( A2 −B2R
′2
0 )−

3
2 [−ABR

′′
0 +

B2B̄
′

A
R
′3
0 + (2BĀ,R − AB̄,R)R

′2
0 + (BĀ

′ − 2AB̄
′
)R

′
0 −

A2Ā,R

B
]

= (1− a2ṙ2
0)
− 3

2 (−ar̈0 + a2ȧṙ3
0 − 2ȧṙ0) (2.71)

where () means lim
R→R0,r→r0

().

Then we find

R
′
0 =

dR0(T )

dT
=

dR0(T )

dt
· dt

dT
= Ṙ0 · Ṫ−1 (2.72)

Taking derivative respect to T again, we have

R
′′
0 = R̈0Ṫ

−2 − Ṫ−3Ṙ0T̈ (2.73)

Also from Eqs.(2.63) we find on the surface

Ṫ =
(1− a2ṙ2

0)
1
2

(A2 −B2R
′2
0 )

1
2

(2.74)
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then substituting the above relationships into Eq.(2.71) we have

−AB(R̈0Ṫ
−2 − Ṫ−3Ṙ0T̈ ) + ∆1 + Ṫ−3(ar̈0 − a2ȧṙ3

0 + 2ȧṙ0) = 0 (2.75)

where

∆1 ≡ B2B̄
′

A
R
′3
0 + (2BĀ,R − AB̄,R)R

′2
0 + (BĀ

′ − 2AB̄
′
)R

′
0 −

A2Ā,R

B
],

and

B̄
′
= lim

R→R0(T )

d

dT
[
m0

m
(1 +

m

2R
)2] =

m0

4
(

1

R2
0

− 4

m2
)m

′
=

m0

4
(

1

R2
0

− 4

m2
)ṁṪ−1 (2.76)

Similarly, we find

Ā,R =
4m

(2R0 + m)2

B̄,R = −m0(2R0 + m)

2R3
0

Ā
′

= − 4R0ṁṪ−1

(2R0 + m)2
(2.77)

Now Eq.(2.75) can be written as

S2R̈0 + S3r̈0 + S4T̈ + C2 = 0 (2.78)

On the other hand, combining Eq.(2.74) and Eq.(2.72) we have

Ṫ =
(1− a2ṙ2

0)
1
2

(A2 −B2Ṙ2
0Ṫ

−2)
1
2

(2.79)

so we can solve it for Ṫ to get

Ṫ =
1

A
(1− a2ṙ2

0 + B2Ṙ2
0)

1
2 (2.80)

Taking derivative with respect to t again we get

T̈ =
1

2A
(1−a2ṙ2

0+B2Ṙ2
0)
− 1

2 (−2aȧṙ2
0−2a2ṙ0r̈0+2BḂṘ2

0+2B2Ṙ0R̈0)− Ȧ

A2
(1−a2ṙ2

0+B2Ṙ2
0)

1
2

(2.81)
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which can be cast in the form

T̈ = T1R̈0 + T2r̈0 + ∆2 (2.82)

the substitution of Eq.(2.82) back into Eq.(2.78) results in

(S2 + S4T1)R̈0 + (S3 + S4T2)r̈0 + S4∆2 + C2 = 0 (2.83)

which have the form

H1R̈0 + H2r̈0 + H3 = 0 (2.84)

2.5.3 The Equation K+
θθ = K−

θθ

Writing the equation K+
θθ = K−

θθ out explicitly we find

AB̄,RR2
0 + ABR0 + Ṙ0Ṫ

−1R2
0

B2B̄
′

A
= Ṫ−1(ar0 + ṙ0r

2
0a

2ȧ) (2.85)

Now taking derivative respect to t on both sides we find

Ȧ B̄,RR2
0 + AB̄.

,RR2
0 + 2AB̄,RR0Ṙ0 + ȦBR0 + AḂR0 + ABṘ0 + R̈0Ṫ

−1R2
0

B2B̄
′

A

− Ṙ0Ṫ
−2T̈R2

0

B2B̄
′

A
+ 2Ṫ−1R0Ṙ

2
0

B2B̄
′

A
+ Ṙ0Ṫ

−1R2
0

2BḂB̄
′

A
+ Ṙ0Ṫ

−1R2
0

B2B̄
′.

A

− Ṙ0Ṫ
−1R2

0

B2B̄
′
Ȧ

A2
= −Ṫ−2T̈ (ar0 + ṙ0r0a

2ȧ) + Ṫ−1(ȧr0 + aṙ0 + r̈0r
2
0a

2ȧ

+ 2r0ṙ
2
0a

2ȧ + 2ṙ0r
2
0aȧ2 + ṙ0r

2
0a

2ä) (2.86)

where

Ȧ =
4(−R0ṁ + mṘ0)

(m + 2R0)2

B̄.
,R =

m0[−R0(ṁ− 4Ṙ0) + 3mṘ0]

2R4
0

Ḃ =
m0R0(m

2 − 4R2
0)ṁ− 3m0m

2(m + 2R0)Ṙ0

4m2R3
0

(2.87)

and

B̄
′.

=
d

dt
B̄
′
=

d

dt
[
m0

4
(

1

R2
0

− 4

m2
)ṁṪ−1]

=
m0

4
(−2R−3

0 Ṙ0 + 8m−3ṁ)ṁṪ−1 +
m0

4
(R−2

0 − 4m−2)m̈Ṫ−1

− m0

4
(R−2

0 − 4m−2)ṁṪ−2T̈ (2.88)
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which can be recast in the form

B̄
′. = M1m̈ + M2(T1R̈0 + T2r̈0 + ∆2) + ∆4 (2.89)

Combining Eq.(2.86) with Eq.(2.82) and Eq.(2.89) and after careful arrangement we

can put Eq.(2.86) in the form

Q 5M1m̈ + (Q2 + Q4T1 + Q5M2T1)R̈0 + (Q3 + Q4T2 + Q5M2T2)r̈0 + Q4∆2 + Q5∆4

+ Q5M2∆2 + C3 = 0 (2.90)

Rewriting the above equation, we have

O1m̈ + O2R̈0 + O3r̈0 + O4 = 0 (2.91)

2.5.4 The Runge-Kutta Method

Now we have three useful equations (Eqs.(2.69), (2.84), (2.91)), they are

P1m̈ + P2R̈0 + P3r̈0 + C1 = 0

H1R̈0 + H2r̈0 + H3 = 0

O1m̈ + O2R̈0 + O3r̈0 + O4 = 0 (2.92)

To use the Runge-Kutta method we have to find the explicit forms of m̈, R̈0, r̈0, so

we rewrite these equations in the form,




P1 P2 P3

0 H1 H2

O1 O2 O3



·




m̈

R̈0

r̈0




=




−C1

−H3

−O4




(2.93)

Then, the solution of m̈, R̈0, r̈0 is




m̈

R̈0

r̈0




=




P1 P2 P3

0 H1 H2

O1 O2 O3




−1

·




−C1

−H3

−O4




=




f1

f2

f3




(2.94)
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where ()−1 means the inverse matrix. Now we define




ṁ = W

Ṙ0 = G

ṙ0 = F

(2.95)

then we have a set of first order ordinary differential equations, they are




ṁ = W

Ẇ = f1

Ṙ0 = G

Ġ = f2

ṙ0 = F

Ḟ = f3

(2.96)

The next step is to find the initial conditions for the above equations.

The function a is a given function in our research, so the initial value of a is

know to be a0. From Eq.(2.66) we know

m0

m
(1 +

m

2R0

)2R0 = a0r0 (2.97)

so we can solve it for m(t), which has two solutions,

m1 =
2R0

m0

{a0r0 −m0 + [(m0 − a0r0)
2 −m2

0]
1
2}

m2 =
2R0

m0

{a0r0 −m0 − [(m0 − a0r0)
2 −m2

0]
1
2} (2.98)

On the other hand, the function A in the McVittie’s solution must be positive, so

from the expression of A (A =
1− m

R0

1+ m
R0

) we know

m < 2R0 (2.99)

Now go back to the first solution in Eq.(2.98), combining it with the above condition

we have

2R0

m0

{a0r0 −m0 + [(m0 − a0r0)
2 −m2

0]
1
2} < 2R0. (2.100)
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Solving the equation we find

m >
a0r0

2
(2.101)

Also from section 2.4.1 we know that R > 2m, where R = a0r0 on the hypersurface,

so we can have

m <
a0r0

2
(2.102)

which obviously contradicts with the solution (2.101). Then only the second solution

in Eqs.(2.98) is correct. Combining it with the conditions Eqs.(2.99) and (2.101) we

can find that the value of m has a range

0 < m <
a0r0

2
(2.103)

So we shall choose the initial value of m that falls into this range.

Now we already know the solution of m is

m =
2R0

m0

{a0r0 −m0 − [(m0 − a0r0)
2 −m2

0]
1
2} (2.104)

Taking derivatives of the above equation with respect to t we can find the initial

value of ṁ. The initial value of R0, Ṙ0, r0, ṙ0 are 20, -0.1, 5, 0.

Now we have everything to put into the Runge-Kutta method, the program of

it is in appendix.

To make sure the code is correct we used the fourth-order Runge-Kutta method

and the second-order Runge-Kutta method, the result curves are just the same. Also,

I double checked the code with the result of the variable “m”. We used the equation

(2.104) to calculate the the value of m and on the other hand we can also get the

result of m from the result value of the Runge-Kutta method, after comparing the

two result we find they are exactly the same, so we are sure our code is correct.
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2.6 Discussion and Conclusions

In this section we’ll discuss the result of the calculation of numerical method of

different cases, but first we need to introduce some quantities that are important to

study the formation of black holes. The first is the expansions (Eqs.(2.18)), from the

definition 2.2 we know that if θ+θ− > 0 then a black hole is formed. One can show

that

θ+ = (1− 2m0

R )
1
2 [β̇ +

2

R(1− 2m0

R )
1
2 ]

θ− = (1− 2m0

R )
1
2 [β̇ − 2

R(1− 2m0

R )
1
2 ] (2.105)

where R = B(T, R)R, the geometry radius of the black hole.

The second is that, we can use energy conditions to determine the state of a

black hole. They are

C1 = ρ0 + p0

C2 = ρ0 − p0

C3 = ρ0 + 3p0. (2.106)

From Eqs.(2.48) we find that 8πρ0 = 3
4
β̇2, 8πρ0 = −3

4
β̇2− β̈. Neglecting the constant

8π we have

C1 = −β̈

C2 =
1

2
(3β̇2 + 2β̈)

C3 = −3

2
(β̇2 + 2β̈). (2.107)

The last important quantity is the total mass, and it’s defined by

M(T ) =
1

2
R(1 +∇αR∇αR). (2.108)

One can show that

∇αR∇αR =
R2

4
[β̇2 − 4

R2
(1− 2m0

R )], (2.109)
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so the total mass as a function of T is

M(T ) =
1

2
R{1 +

R2

4
[β̇2 − 4

R2
(1− 2m0

R )]}, (2.110)

where R has the same definition of Eq.(2.105).

A. Gravitational Collapse of a Dust Cloud

The figures for this situation are shown below as figures 2.1, 2.2 and 2.3.

In this case the function a is chosen to be a(t) = a0(t0 − t)
2
3 , and other initial

conditions are

• r0 = 5, ṙ0 = 0, R0 = 20, Ṙ0 = −0.1, t0 = 10,m0 =
a(ti)

r0

31
, a0 = 1, ti = −70

Figure 2.1: Gravitational Collapse of a dust cloud for the functions m ≡ m(T ), Q1Q2 ≡
θ+θ− defined, respectively, by Eqs.(2.104) and (2.105)

From the figures we can see that the geometry radius (bigR in figure 2.2) is

getting smaller, and also from the prompt jump of the curve of θ+θ− (Q1Q2 in figure

2.1) we can see that there is formation of black hole at that moment.
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Figure 2.2: Gravitational Collapse of a dust cloud for the functions bigR ≡
R(T ), C1, C2andC3 defined, respectively, by Eqs. (2.105) and (2.107)

Figure 2.3: Gravitational Collapse of a dust cloud for the function bigM ≡ M(T ), defined
by Eq.(2.110).
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B. Gravitational Collapse of Dark Energy: w > −1

The figures for this situation are shown below as figures 2.4, 2.5 and 2.6.

To study the effects of dark energy on gravitational collapse, we first consider the

case where ρDM = 0, p = w, ρ 6= 0, where w is a non-zero constant. When w < −1
3

the strong energy condition is not satisfied [15], and the fluid is said to be made of

dark energy. It can be shown that the solution in this case is given by

a(t) = a0(t0 − t)
2

3(1+w)

for w > −1.

And other initial conditions are

• r0 = 5, ṙ0 = 0, R0 = 20, Ṙ0 = −0.1, t0 = 10,m0 =
a(ti)

r0

3.852
, a0 = 1, ti =

−70, w = −0.35

Figure 2.4: Gravitational Collapse of Dark Energy with w > −1 for the functions m ≡
m(T ), Q1Q2 ≡ θ+θ− defined, respectively, by Eqs.(2.104) and (2.105).
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Figure 2.5: Gravitational Collapse of Dark Energy with w > −1 for the functions bigR ≡
R(T ), C1, C2andC3 defined, respectively, by Eqs. (2.105) and (2.107).

Figure 2.6: Gravitational Collapse of Dark Energy with w > −1 for the function bigM ≡
M(T ), defined by Eq.(2.110).
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We can see that the geometry radius is getting smaller linearly and there should

be formation of black hole because the value of θ+θ− is changing from negative to

positive.

C. Gravitational Collapse of Dark Energy: w < −1

The figures for this situation are shown below as figures 2.7, 2.8 and 2.9.

In the paragraph above we discussed the case when w > −1, there is another case

that is w < −1, the solution of function a when w < −1 is given by

a(t) = a0(t− t0)
2

3(1+w) (2.111)

while other initial conditions are

• r0 = 5, ṙ0 = 0.5, R0 = 20, Ṙ0 = 0.5, t0 = 10,m0 =
a(ti)

r0

10
, a0 = 1, ti =

−70, w = −1.3

Figure 2.7: Gravitational Collapse of Dark Energy with w ¡-1 for the functions m ≡
m(T ), Q1Q2 ≡ θ+θ− defined, respectively, by Eqs.(2.104) and (2.105).
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Figure 2.8: Gravitational Collapse of Dark Energy with w ¡-1 for the functions bigR ≡
R(T ), C1, C2andC3 defined, respectively, by Eqs. (2.105) and (2.107).

Figure 2.9: Gravitational Collapse of Dark Energy with w ¡-1 for the function bigM ≡ M(T ),
defined by Eq.(2.110).
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We can find that despite of Ṙ > 0, we can always find a black hole formation

when w < −1

D. Gravitational Collapse of a Dust Cloud and Dark Energy when there is no
Interaction

The figures for this situation are shown below as figures 2.10, 2.11 and 2.12.

When there is no interaction if w = −1
2
, the function a has the solution

a(t) = a0[(t0 − t)2 − A2]
2
3 (2.112)

where A is a constant, for convenience we choose it to be 1 in calculation.

Other initial conditions are

• r0 = 5, ṙ0 = 0.5, R0 = 20, Ṙ0 = −0.1, t0 = 10,m0 =
a(ti)

r0

25
, a0 = 1, ti = −70

Figure 2.10: Gravitational collapse of a dust cloud and dark energy when there is no
interaction for the functions m ≡ m(T ), Q1Q2 ≡ θ+θ− defined, respectively, by Eqs.(2.104)
and (2.105).
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Figure 2.11: Gravitational collapse of a dust cloud and dark energy when there is no inter-
action for the functions bigR ≡ R(T ), C1, C2andC3 defined, respectively, by Eqs. (2.105)
and (2.107).

Figure 2.12: Gravitational collapse of a dust cloud and dark energy when there is no
interaction for the function bigM ≡ M(T ), defined by Eq.(2.110).
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The variable bigR means the geometric radius, so from the figure above we can

see that the radius is getting smaller linearly and from the change of signs of value

θ+θ− we can find that a black hole is formed.

2.6.1 Conclusion

In summery, in all of the four cases:

A: Gravitational Collapse of a dust cloud

B: Gravitational Collapse of Dark Energy: w > −1

C: Gravitational Collapse of Dark Energy: w < −1

D: Gravitational Collapse of a dust cloud and dark energy when there is no interac-
tion

No matter there is dark energy or not the black hole is always formed. This

means the repulsive force result from the dark energy can not balance the gravitational

force. But there is another question, there should be a minimal mass for the black

hole to collapse, otherwise the repulsive force of the dark energy should stop the

black hole from collapsing. This problem should in the next step of the research of

this problem. And also, we can use anisotropic models of the black hole but not a

sphere and add some rotation to the black hole in the next research.



CHAPTER THREE

The Numerical Program

The following is the code list of our program whose function is to solve the

differential equation group of Eqs.(2.59) and Eqs.(2.63).

%the main program======================

clear all

r(1)=5; %set the initial value of

min = 20; %set the minimum value of

max = 100; %the maximum value of

h = 0.0001; %set the date interval of

t = min:h:max; %initialize the array of

R(1) = 20; %set the initial value of

omega=-1.3; %set the value of

a0 = aa(t(1),omega); %call the function to

%find the initial value of

kk=10;

k=a0*r/kk; %calculate the value of

h1=((k-a0*r(1))^2-k^2)^(1/2);

m(1)=2*R(1)/k*(a0*r(1)-k-h1); %find the initial value of

G(1)=0.5; %initial value of

F(1)=0.5; %initial value of

a0dott=aadott(t(1),omega); %initial value of

h2=4*m(1)^2*R(1)^2*(a0dott*r(1)+a0*F(1));

h3=k*(m(1)^2-4*R(1)^2);

W(1)=(h2/h3+m(1)*G(1))/R(1);
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%initial value of betadott1(1)=\

%betadott(k,m(1),R(1),G(1),W(1),F(1),aa(t(1),omega));

%the first %value point of

%the following loop is the core part of the Runge-Kutta method

for i=1:(max-min)/h mm=m(i);

RR=R(i);

rr=r(i);

WW=W(i);

GG=G(i);

FF=F(i);

tt=t(i);

% mprime is for check use,because there are two methods to find the value of ,

%one can directly differentiate the function to find or he can also find

%it as an output of the Runge-Kutta method. So after the calculation of the

%Runge-Kutta method he can compare the two result to see if the numerical

%solution is correct.

mprime(i)=2*RR/k*(aa(t(i),omega)*r(i)-k-((k-aa(t(i),omega)\

*r(i))^2-k^2)^(1/2));

%fourth order Runge-Kutta method

[k11 k13 k15]=solution(k,mm,RR,GG,WW,FF,aa(tt,omega),aadott(tt,omega),\

aadoubledott(tt,omega),rr);

k12=WW; k14=GG; k16=FF;

[k21 k23 k25]=solution(k,mm+h/2*k12,RR+h/2*k14,GG+h/2*k13,WW+h/2*k11,\

FF+h/2*k15,aa(tt+h/2,omega),aadott(tt+h/2,omega),aadoubledott(tt+h/2,omega)\

,rr+h/2*k16);

k22=WW+h/2*k11; k24=GG+h/2*k13; k26=FF+h/2*k15;

[k31 k33 k35]=solution(k,mm+h/2*k22,RR+h/2*k24,GG+h/2*k23,WW+h/2*k21,\
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FF+h/2*k25,aa(tt+h/2,omega),aadott(tt+h/2,omega),aadoubledott(tt+h/2,omega)\

,rr+h/2*k26);

k32=WW+h/2*k21; k34=GG+h/2*k23; k36=FF+h/2*k25;

[k41 k43 k45]=solution(k,mm+h*k32,RR+h*k34,GG+h*k33,WW+h*k31,\

FF+h*k35,aa(tt+h,omega),aadott(tt+h,omega),aadoubledott(tt+h,omega)\

,rr+h*k36);

k42=WW+h*k31; k44=GG+h*k33; k46=FF+h*k35;

ttt(i)=t(i);

%if anything is calculated to be imaginary then break the loop and

%set the last

%value of calculation to be NaN;

if imag(G(i))~=0

m(i)=NaN;

R(i)=NaN;

r(i)=NaN;

W(i)=NaN;

G(i)=NaN;

F(i)=NaN;

m(i-1)=NaN;

R(i-1)=NaN;

r(i-1)=NaN;

W(i-1)=NaN;

G(i-1)=NaN;

F(i-1)=NaN;

mprime(i)=NaN;

mprime(i-1)=NaN;

Q1Q2(i)=NaN;
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bigR(i)=NaN;

C1(i)=NaN;

C2(i)=NaN;

C3(i)=NaN;

r(i-2)=NaN;

R(i-2)=NaN;

m(i-2)=NaN;

break

end

%calculate the value of next point

m(i+1)=m(i)+h/6*(k12+2*k22+2*k32+k42);

R(i+1)=R(i)+h/6*(k14+2*k24+2*k34+k44);

r(i+1)=r(i)+h/6*(k16+2*k26+2*k36+k46);

W(i+1)=W(i)+h/6*(k11+2*k21+2*k31+k41);

G(i+1)=G(i)+h/6*(k13+2*k23+2*k33+k43);

F(i+1)=F(i)+h/6*(k15+2*k25+2*k35+k45);

%find the quantities of

betadott1(i+1)=betadott(k,m(i+1),R(i+1),G(i+1),W(i+1),F(i+1),\

aa(t(i+1),omega)); betadoubledott1(i)=\

(betadott1(i+1)-betadott1(i))/h/Tdott(k,m(i),R(i),G(i),F(i),\

aa(t(i),omega));

C1(i)=-betadoubledott1(i);

C2(i)=1/2*(3*betadott1(i)^2+2*betadoubledott1(i));

C3(i)=-3/2*(betadott1(i)^2+2*betadoubledott1(i));

bigR(i)=B(k,m(i),R(i))*R(i); I(i)=(1-2*k/bigR(i))*f2(k,m(i),\

R(i),W(i),betadoubledott1(i)); bigM1(i)=bigM(k,m(i),R(i),\

betadott1(i)); Tdott1(i)=Tdott(k,m(i),R(i),G(i),F(i),\
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aa(t(i),omega));

bigR1(i)=bigR(i)-2*k; bigR2(i)=aa(t(i),omega)*r(i);

bigR3(i)=bigR(i)-bigR2(i); bigRdott(i)=Bdott(k,m(i),R(i),W(i),\

G(i))*R(i)+B(k,m(i),R(i))*G(i);

Q1Q2(i)=(1-2*k/bigR(i))*f1(k,m(i),R(i),G(i),W(i),F(i),\

aa(t(i),omega));

end

%plot everything we need, and present the parameters automatically subplot(2,2,1);plot(r);title([’r,omega=’,num2str(omega),’,k=ar/’,\

num2str(kk),’,rdot=’,num2str(F(1)),’,Rdot=’,num2str(G(1))]);

subplot(2,2,2);plot(R);title(’R’);

subplot(2,2,3);plot(Q1Q2);title(’Q1Q2’);

subplot(2,2,4);plot(m);title(’m’);

figure;

subplot(2,2,1);plot(bigR);title(’bigR’);

subplot(2,2,2);plot(C1);title(’C1’);

subplot(2,2,3);plot(C2);title(’C2’);

subplot(2,2,4);plot(C3);title(’C3’);

figure; plot(bigM1);title(’bigM’);

%======================================

%following are the functions I used,

%you can put them into seperate ‘‘.m’’ files %to rebuid the

%program yourself

%function A

function out = A(m,R)

H1 = 1-m/(2*R);

H2 = 1+m/(2*R);

out = H1/H2;



64

end

%function aa

function out = aa(t,omega)

out = (t-10)^(2/3/(1+omega));

end

%function aadott

function out = aadott(t,omega)

out = 2/3/(1+omega)*(t-10)^(2/3/(1+omega)-1);

end

%function aadoubledott

function out = aadoubledott(t,omega)

out = 2/3/(1+omega)*(2/3/(1+omega)-1)*\

(t-10)^(2/3/(1+omega)-2);

end

%function Adott

function out = Adott(m,R,W,G)

out = 4*(-R*W+m*G)/(m+2*R)^2;

end

%function AstardotR

function out = AstardotR(m,R)

out = 4*m/(m+2*R)^2;

end

%function AstardotT

function out = AstardotT(k,m,R,W,G,F,a)

Tdott1=Tdott(k,m,R,G,F,a);

out = -4*R*W/Tdott1/(m+2*R)^2;

end
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%function B

function out = B(k,m,R)

out = k/m*(1+m/(2*R))^2;

end

%function Bdott

function out = Bdott(k,m,R,W,G)

h1=k*R*(m^2-4*R^2)*W;

h2=-2*k*m^2*(m+2*R)*G;

out = (h1+h2)/(4*m^2*R^3);

end

%function betadott

function out = betadott(k,m,R,G,W,F,a)

out = -2*W/m/Tdott(k,m,R,G,F,a);

end

%function bigM

function out = bigM(k,m,R,betadott)

bigR=B(k,m,R)*R;

h1 = betadott^2-4/bigR^2*(1-2*k/bigR);

out = 1/2*bigR*(1+bigR^2/4*h1);

end

%function BstardotR

function out = BstardotR(k,m,R)

out = -k*(m+2*R)/(2*R^3);

end

%function BstardotRt

function out = BstardotRt(k,m,R,W,G)

out = -k*(2*G+W)/(2*R^3)+k/2*(2*R+m)*3*G/R^4;
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end

%function BstardotT

function out = BstardotT(k,m,R,W,G,F,a)

Tdott1=Tdott(k,m,R,G,F,a);

out = k/4*(R^(-2)-4*m^(-2))*W/Tdott1;

end

%function C1

function out = C1(k,m,R,r,G,W,F,adott,adoubledott)

h1 = k*m*G^2/(2*R^3)+2*k*W^2*R/m^3;

h2 = -2*W*G*k/m^2-k*W*G/(2*R^2)-r*adoubledott-\

2*adott*F;

out = h1+h2;

end

%function C2

function out = C2(k,m,R,G,W,F,a,adott)

delta11=delta1(k,m,R,G,W,F,a);

Tdott1=Tdott(k,m,R,G,F,a);

out = delta11+(-a^2*adott*F^3+2*adott*F)/Tdott1^3;

end

%function C3

function out = C3(k,m,R,G,W,F,a,adott,adoubledott,r)

Adott1=Adott(m,R,W,G);

BstardotR1=BstardotR(k,m,R);

A1=A(m,R);

BstardotRt1=BstardotRt(k,m,R,W,G);

h1 = Adott1*BstardotR1*R^2+A1*BstardotRt1*R^2+\

A1*BstardotR1*2*R*G;
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B1=B(k,m,R);

Bdott1=Bdott(k,m,R,W,G);

h2 = Adott1*B1*R+A1*Bdott1*R+A1*B1*G;

Tdott1=Tdott(k,m,R,G,F,a);

BstardotT1=BstardotT(k,m,R,W,G,F,a);

h3 = G/Tdott1*2*R*G*B1^2*BstardotT1/A1+\

G/Tdott1*R^2*2*B1*Bdott1*BstardotT1/A1;

h4 = -G/Tdott1*R^2*B1^2*BstardotT1*Adott1/A1^2;

h5 = -(adott*r+a*F+F*2*r*F*a^2*adott)/Tdott1;

h6 = -(F*r^2*2*a*adott^2+F*r^2*a^2*adoubledott)/Tdott1;

out = h1+h2+h3+h4+h5+h6;

end

%function delta1

function out = delta1(k,m,R,G,W,F,a)

A1=A(m,R);

B1=B(k,m,R);

Tdott1=Tdott(k,m,R,G,F,a);

BstardotT1=BstardotT(k,m,R,W,G,F,a);

AstardotR1=AstardotR(m,R);

BstardotR1=BstardotR(k,m,R);

AstardotT1=AstardotT(k,m,R,W,G,F,a);

h1 = B1^2*BstardotT1*G^3/A1/Tdott1^3;

h2 = (2*B1*AstardotR1-A1*BstardotR1)*G^2/Tdott1^2;

h3 = (B1*AstardotT1-2*A1*BstardotT1)*W/Tdott1;

h4 = -A1^2*AstardotR1/B1;

out = h1+h2+h3+h4;

end
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%function delta2

function out = delta2(k,m,R,G,W,F,a,adott)

A1=A(m,R);

B1=B(k,m,R);

Adott1=Adott(m,R,W,G);

Bdott1=Bdott(k,m,R,W,G);

h1=1/(2*A1)*(1-a^2*F^2+B1^2*G^2)^(-1/2);

h2=-Adott1/A1^2*(1-a^2*F^2+B1^2*G^2)^(1/2);

out = h1*(-2*a*adott*F^2+2*B1*Bdott1*G^2)+h2;

end

%function delta4

function out = delta4(k,m,R,G,W,F,a)

Tdott1=Tdott(k,m,R,G,F,a);

out = k/4*(-2*R^(-3)*G+8*m^(-3)*W)*W/Tdott1;

end

%function f1

function out = f1(k,m,R,G,W,F,a)

betadott1=betadott(k,m,R,G,W,F,a);

bigR=B(k,m,R)*R;

out = betadott1^2-4/bigR^2*(1-2*k/bigR);

end

%function f2

function out = f2(k,m,R,W,betadoubledott)

bigR=B(k,m,R)*R;

out = betadoubledott+\

4/bigR^2*(1-2*m/bigR)^(1/2)*(1-3*k/bigR);

end
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%function M1

function out = M1(k,m,R,G,F,a)

Tdott1=Tdott(k,m,R,G,F,a);

out = k/4*(R^(-2)-4*m^(-2))/Tdott1;

end

%function M2

function out = M2(k,m,R,G,W,F,a)

Tdott1=Tdott(k,m,R,G,F,a);

out = -k/4*(R^(-2)-4*m^(-2))*W/Tdott1^2;

end

%function P1

function out = P1(k,m,R)

out = k/(4*R)-k*R/m^2;

end

%function P2

function out = P2(k,m,R)

out = k/m-k*m/(4*R^2);

end

%function P3

function out = P3(a)

out = -a;

end

%function Q2

function out = Q2(k,m,R,G,W,F,a)

Tdott1=Tdott(k,m,R,G,F,a);

A1=A(m,R);

B1=B(k,m,R);
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BstardotT1=BstardotT(k,m,R,W,G,F,a);

out = R^2*B1^2*BstardotT1/A1/Tdott1;

end

%function Q3

function out = Q3(k,m,R,G,F,a,adott,r)

A1=A(m,R);

B1=B(k,m,R);

Tdott1=Tdott(k,m,R,G,F,a);

out = -r^2*a^2*adott/Tdott1;

end

%function Q4

function out = Q4(k,m,R,G,W,F,a,adott,r)

A1=A(m,R);

B1=B(k,m,R);

Tdott1=Tdott(k,m,R,G,F,a);

BstardotT1=BstardotT(k,m,R,W,G,F,a);

h1=-G/Tdott1^2*R^2*B1^2*BstardotT1/A1;

h2=(a*r+F*r*a^2*adott)/Tdott1^2;

out = h1+h2;

end

%function Q5

function out = Q5(k,m,R,G,F,a)

Tdott1=Tdott(k,m,R,G,F,a);

A1=A(m,R);

B1=B(k,m,R);

out = G/Tdott1*R^2*B1^2/A1;

end
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%function S2

function out = S2(k,m,R,G,F,a)

Tdott1=Tdott(k,m,R,G,F,a);

A1=A(m,R);

B1=B(k,m,R);

out = -A1*B1/Tdott1^2;

end

%function S3

function out = S3(k,m,R,G,F,a)

Tdott1=Tdott(k,m,R,G,F,a);

out = a/Tdott1^3;

end

%function S4

function out = S4(k,m,R,G,F,a)

A1=A(m,R);

B1=B(k,m,R);

Tdott1=Tdott(k,m,R,G,F,a);

out = A1*B1*G/Tdott1^3;

end

%function solution

function [out1 out2 out3] = \

solution(k,m,R,G,W,F,a,adott,adoubledott,r) P11=P1(k,m,R);

P21=P2(k,m,R);

P31=P3(a);

C11=C1(k,m,R,r,G,W,F,adott,adoubledott);

S21=S2(k,m,R,G,F,a);

S31=S3(k,m,R,G,F,a);
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S41=S4(k,m,R,G,F,a);

C21=C2(k,m,R,G,W,F,a,adott);

T11=T1(k,m,R,G,F,a,adott);

T21=T2(k,m,R,G,F,a,adott);

delta21=delta2(k,m,R,G,W,F,a,adott);

H11=S21+S41*T11;

H21=S31+S41*T21;

H31=S41*delta21+C21;

Q21=Q2(k,m,R,G,W,F,a);

Q31=Q3(k,m,R,G,F,a,adott,r);

Q41=Q4(k,m,R,G,W,F,a,adott,r);

Q51=Q5(k,m,R,G,F,a);

C31=C3(k,m,R,G,W,F,a,adott,adoubledott,r);

M11=M1(k,m,R,G,F,a);

M21=M2(k,m,R,G,W,F,a);

delta41=delta4(k,m,R,G,W,F,a);

O11=Q51*M11;

O21=Q21+Q41*T11+Q51*M21*T11;

O31=Q31+Q41*T21+Q51*M21*T21;

O41=Q41*delta21+Q51*delta41+Q51*M21*delta21+C31;

bigA=[P11 P21 P31;0 H11 H21;O11 O21 O31];

bigB=[-C11;-H31;-O41];

bigX=bigAbigB;

out1=bigX(1);

out2=bigX(2);

out3=bigX(3);

end
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%function T1

function out = T1(k,m,R,G,F,a,adott)

A1=A(m,R);

B1=B(k,m,R);

h1=1/(2*A1)*(1-a^2*F^2+B1^2*G^2)^(-1/2);

out = h1*B1^2*2*G;

end

%function T2

function out = T2(k,m,R,G,F,a,adott)

A1=A(m,R);

B1=B(k,m,R);

h1=1/(2*A1)*(1-a^2*F^2+B1^2*G^2)^(-1/2);

out = h1*(-a^2*2*F);

end

%function Tdott

function out = Tdott(k,m,R,G,F,a)

A1=A(m,R);

B1=B(k,m,R);

out = 1/A1*(1-a^2*F^2+B1^2*G^2)^(1/2);

end
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