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Gravitational Collapse of Spherical Clouds and Formation of Black Holes in the
Background of Dark Energy

Lei Zhao
Advisor: Anzhong Wang, Ph.D.

In this thesis, I first review the fundamentals of Einstein’s theory of gravity in
four-dimensional spacetimes, and then develop the general formulas of thin shells in
this theory. Applying these formulas to spherically symmetric thin shells, I study the
gravitational collapse of dust clouds in the background of dark energy. To solve the
relevant equations, I develop a computer program, and investigate four representative
cases, in which one is without dark energy and the others are with. I find that in all
the four cases black holes can be formed from the gravitational collapse of the dust

cloud.
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CHAPTER ONE

Fundamentals of Einstein’s Theory of General Relativity

1.1 Space-time Manifolds

In this chapter, we shall provide some fundamentals that are to be used in this
dissertation. Among these are the definitions of some basic physical quantities (for ex-
ample, the Riemann tensor, parallel transport, geodesic deviation), and the Einstein
field equations with distribution valued tensors. It is not incidental that these intro-
ductory sections are lengthy. It was found necessary to present the material in such a
way that errors contained in commonly used references can be adequately corrected.
From the mathematical point of view the fundamental object of Einstein’s theory of
general relativity is the space-time manifold (€2, g, ), where  is a connected four-
dimensional Hausdoff C*° manifold and g, is a symmetric Lorentz metric tensor, or
simply the metric, with the signature -2 on 2 (for the study of Differential Geometry,
please refer to [39]). The points in €2 are labelled by a general non-inertial coordinate

0 xl 22 2?), often written as z#(u = 0,1,2,3). We use the convention that

system(
Greek indices take the values 0,1,2,3 and repeated Greek indices are to be summed
over these values unless specified otherwise. According to the principle of covariance,
all coordinate systems are equivalent for the description of physical phenomena. Thus
the choice of coordinate systems is arbitrary. If we go from one coordinate system,
say, x*, to another, say, x/“, a contravariant vector y* and a covariant vector y,
transform as

’ 851/'/“ ’ 8x”
H__ T Y —_
' =g e = e (1.1)

and a mixed tensor such as y, as

/ Ox'* Oz Ox®
I g
Yox = g1 arv 92 e (1.2)




etc.

The contravariant tensor, g*”, corresponding to g, is defined by

" g = 0%, (1.3)

where % is the Kronecker delta, which is unity for ;4 = v (no summation is taken)

and zero otherwise. By using ¢ and g,, we can raise and lower the indices as

y,u = glwyua Yu = g,uuyy (14)

We regard tensors derived by such raising and lowering of indices as representing the
same geometric quantity, since by raising an index and subsequently lowering it we
recover the orignal tensor.

All the information about the space-time is contained in the metric g,,, which
determines the square of the space-time interval ds between infinitesimally separated

events or points z* and x* + dz" as
ds* = g, da"dz” (1.5)

The contravariant vector dz* is said to be time-like, space-like, or null according to
whether ds? is positive, negative, or zero, respectively. The space-time manifold ©
has three space-like and one time-like dimensions.

Since the Einstein field equations contain the second derivatives of the metric
and the Bianchi identities contain the third derivatives of it, it is necessary to require
gy to be at least C* and 2# = 2#(z'") to be at least C* so that the Einstein field
equations are defined everywhere and the Bianchi identities are defined at every point

of the space-time manifold.

1.2 Covariant Differentiation, the Riemann Tensor, and the Einstein Field
FEquations

To generalize the ordinary( partial ) differentiation to the Riemann manifold,

it is required to introduce an additional structure into the manifold. This additional



structure is an affine connection, V, which assigns to each vector field X on 2 a
differential operator, Vx, which maps an arbitrary vector field Y into a vector field
VxY.

Associated with each metric, we can endow the manifold with a unique torsion-
free connection by requiring

Vg=0 (1.6)

where the term torsion-free means every element in g has finite order.

In a local coordinate basis{0,}, Eq.(1.6) can be written in the form

V)\guu = Guv\ — gu(sri)\ - géuri)\ =0 (17)

where a comma denotes partial differentiation with respect to the corresponding vari-
able, and 9y = 9/dz”. F;}M are called the Christoffel connection coefficients, and

the connection itself called the Christoffel connection. From Eq.(1.7) by using the

A

s We derive

symmetry of I’

1
I, = 59"

2 Gus,v + Guéu — g,uu,d] (18)

The covariant differentiation for a contravariant and a covariant vector is defined as
A A
A{fj = Aff, + FffAA A=A, — FWAA (1.9)
and for a mixed tensor such as A,‘j \ as

A#

VAo

VAo

+ FgaAiA - FiUAg)\ - FioAg(S (]‘]‘0)

and so on, where a semicolon denotes the covariant differentiation.
. . / .
Under a coordinate transformation, say, from x* to z #, the connection coeffi-

cients, F;\W, transform as

ax’“% ox? ) &2x° Ox'+
Oxr Oz'v x> 0 " Ax'vdN Oz

e — (1.11)

Therefore, the connection coefficients do not form the components of a tensor.



For a covariant vector A, it can be shown that

0
Apwix — Appnwy = AsR

LU

where RZM is the Riemann tensor defined by

2 :FU

o
uvl Ay I

o 79 o 179
8N + Féur,u)\ - Fé)\r

g

and Eq.(1.12) is the Ricci identity.

The Riemann tensor has symmetry properties

Raul/)\: _R,um/)\ = _Ro,u)\l/
Ram/)\ = Ru)\a,u

RUMV)\ + Raz\pu + RO’V}\M = 0.
and satisfies the Bianchi identities

+ Rpun + Bl =0

ka;p
The Ricci tensor R,y is defined by
Rux = 97" Ropur = RZ&\
From Eqs(1.14) and (1.16) it is easy to show that
Ryux = Ry,

The Ricci scalar is defined by

R= ga)\RoA = Ri

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

(1.18)

By contracting the Bianchi identities on the pairs of indices ur and op, we find that

1
(R — §guvR);Ag/\V =0

The tensor G, = R, — %gwR is sometimes called the Einstein tensor.

(1.19)



We are now in a position to write down the Einstein field equations which are

the fundamental differential equations of GR

1
R[,LV - ng/R - Aguu — K'TNV (120)

where r (= 87G/c?) is the Einstein gravitational constant, and A the cosmological
constant. In the following we consider only the case where A = 0, unless specified oth-
erwise. T}, denotes the energy-stress tensor of the source producing the gravitational
field. Without loss of generality, we choose units such that x = 1.

It must be noted, however, that the form of the Einstein field equations used
by Chandrasekhar [7] is not consistent with the requirement that the energy density
of matter fields must be positive, and the correct one corresponding to the above
definitions for the Riemann and Ricci tensors [see Eqs(1.12) and (1.16)] and the
signature (-2) of metric (1.5), is Eq.(1.20)(see, for example, [23]][22][37][21][9]).

The combination of Egs.(1.19) and (1.20) gives

TH =0 (1.21)

which are the equations for the conservation of energy and stress of the source.

1.3  Curves, Parallel Transport, and Geodesics

A curve in a Riemannian space is defined by points x#(\) where z# are suitably
differentiable functions of the real parameter A\, varying over some interval of the
real line. The curve is time-like, space-like, or null according to whether its tangent
vector, (dz"/d\), is time-like, space-like, or null.

In Euclidean geometry, for an arbitrary vector field X we will say that X is
“parallelly transported” along the curve if X (dz"/d\) = 0. In a general differen-
tiable manifold with a connection, we define analogously that a vector X is parallelly
transported along the curve if its covariant derivative X% (dz”/d)) along this curve is

zero, that is, if



dz” dz” dz”
XF = XP TR XO
YN O IR )Y
G dz”
= = 4 THr X
an et
— (1.22)

A similar definition holds for tensors. Given any curve z#(\) with end points
A = A and A = )y, the theory of solutions of ordinary differential equations shows
that if the Ffw,s are suitably differentiable functions of z*, we obtain a unique tensor
at A = Ay by parallelly transporting it from the point A = A;, along the curve, to the
point A = .

A particular case is the covariant derivative of the tangent vector itself along
the curve z#(\). The curve is said to be a geodesic if the tangent vector is parallelly

transported along this curve, i.e., if

A2zt dz dx’
e 0T 4T 19
oz Tl 70 (1.23)

When the equation for a geodesic is reduced to the form of Eq.(1.23), we say that it
is affinely parameterized. It should be noted that the freedom of choice we have is

the origin and the scalar of A. Eq.(1.23) also represents the motion of a free particle.

1.4  Geodesic Deviation

A major problem which has to be solved in the study of gravitational radiation
is how to identify a gravitational radiation field. The problem arises because of the
principle of equivalence, which says that the motion of a test particle in a gravita-
tional field is independent of its mass and composition. This implies that mechanical
phenomena are the same in an accelerated laboratory as in the earth’s gravitational
field, if observations are confined to a region over which the variation in the earth’s
gravitational field is small. Thus, in a local experiment we cannot distinguish an

inertial field from a genuine gravitational one. However, if we are allowed to carry



out non-local experiments, we can distinguish one of them from another by observing
the variation of the field rather than the field itself. In GR this variation is described
by the Riemann tensor which specifies the relative acceleration of neighboring free
particles.

Let us consider a one-parameter family of geodesics I'(w) specified by the equa-
tions

= (A w) (1.24)

where we assume z* to be twice continuously differentiable functions of both A and
w. The parameter w varies from one geodesic to another while A varies along each of

geodesics. For fixed w we have the geodesics equations [see Eq.(1.23)]

Ozt ox¥ Ox°
3% —Is N il (A, w) (1.25)

We might, in general, identify A with the arc length on each of the geodesics. We
prefer, however, to leave A to be defined just by Eq.(1.25) so that our following
discussion remains also valid for null geodesics.

The family of geodesics gives rise to the vector fields

PO\ w) —a‘x“éi’ w)
(A w) = W (1.26)

where t#(\, w) is the tangent vector along each geodesic, and n*(\, w) is the vector

which describes the deviation of two points on two infinitesimally near geodesics which

have the same parameter value \. n* is usually called the geodesic deviation vector.
From Eq.(1.26) we find that the covariant differentiation of n* along each

geodesic is given by

Dn# ox¥  on* ox¥  Oth
Dy = Mgy = ax Tl gy = g Tt (1.27)

The remarkable fact is that the second differentiation of n* will bring us directly to



the Riemann tensor. Actually we have

D?pt 0 Dnt Dn?
= —{— ey —
D2 oo et oy
o 0%xH 0t 0?20
= VT ey 4 TR IH
aw{ a)\z }+ vé,p n + 11677 8)\2 + Vo a)\aw
0%x°
A AT tviPn® 1.28
+ v INOw + v~ po n ( )

Inserting Eq.(1.25) into Eq.(1.28), we find the well-known geodesic deviation equa-

tions

D2nu 10 o0

D—)\2 = —RV(;UT] t't (129)
where R', is the Riemann tensor given by Eq.(1.13).

To illustrate the physical meaning of the geodesic deviation equations, let us
consider a time-like geodesic, say, C. We introduce an orthogonal triad of space-like
vectors )\fa) (a = 1,2,3). Throughout the following, we use the convention that the
indices inside parentheses denote tetrad indices, Roman indices take the values 1,2,3,
and repeated Roman indices are to be summed over these values unless some specific
statement to the contrary is made. These space-like vectors are assumed orthogonal

to each other and to the tangent vector )\?0) = tH,

Moy A9 = Ny M(8) = Thas (1.30)

where 7,3 denote the Minkowiski metric components given by

1 0 0 0
0 -1 0 0
(Map) = (1.31)
00 —1 0
00 0 -1

The tangent vector )\’(‘0) may be interpreted physically as the four-velocity of

an observer whose world-line is C, and the space-like vectors )\‘(”a) as rectangular



coordinate axes used by this observer. For the sake of convenience, we assume that
the orientations of the axes are fixed so that they are non-rotating as determined by
local dynamical experiments (for example, see [30]). This means that the vectors Af,,

are parallelly transported along C,

Mot =0 (1.32)

Without loss of generality, we also assume that n* is orthogonal to /\’(’“O). Thus the

tetrad components of the deviation vector n* are
77(a) = n(a)(g))\éla)nuguu = )‘z(/a)nu7 77(0) =0 (133>

The components, N, represent the position coordinates of a particle which moves
near the observer on its own geodesic, say, C'.
Contracting Eq.(1.29) with A" and using Eq.(1.32) we find that the acceleration

of the particle relative to the observer is given by

d277(a)
= —K@® 1.34
e () (1.34)
where
K@® = R, 47 (o) \o(b) (1.35)

are some of the tetrad components of the Riemann tensor. In writing Eq.(1.34) we
replaced the parameter A\ by the proper time 7 measured by the observer using his
own clock.

On the other hand, let us consider the same question in the framework of
Newtonian gravitational theory. To be distinguishable, we use t as the time used
by the observer and (*(t) as the coordinate position of the particle relative to the
observer. The gravitational field is described by the Newton potential ¢. If (#(t) is
infinitesimal, then the equation of motion for the observer and the particle are given,

respectively, by
d?x®

dt?

= —0% (1.36)
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dea d2<a
- -2 = _1p° . = 0% — baaab

where the derivative of ¢ are evaluated at the point x*. It then follows that

d?ca ab ~b ab — aaqb
= KOO KT = 00 (1.37)

The condition for the Laplacian potential V2¢ = 0 leads to
K* =0 (1.38)

The similarity between Eqs(1.37) and (1.34) is evident. Moreover, we even have
K@@ =0, wherever the Einstein vacuum field equations are satisfied.
The above considerations provide additional support for the choice of the field
equation

Ry, =0 (1.39)

as a description of a free gravitational field.

1.5 Decomposition of the Riemann Tensor
The Riemann tensor R\ , defined by Eq.(1.13) has 20 independent components
whereas the Ricci tensor R, defined by Eq.(1.16) has only 10. Physically, it is
convenient to decompose the Riemann tensor into three parts which are irreducible

representations of the full Lorenz group [11]

Ruvng = Cuvrp + Eunp + G (1.40)
where
Euyn = %[gu)\sup + 9upSur — GurxSup — GupSuals
Gunp = %[gupgm — GG B,
Sw = Ry — —guR (1.41)

4
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In Eq.(1.41), S, denotes the traceless part of the Ricci tensor. The Weyl tensor
Clwap, being thought of as representing the free gravitational field [34], has all the

symmetries of the Riemann tensor [see Eq.(1.14)], and is traceless
Chy, =0 (1.42)

Combining the fact that the Weyl tensor has all the symmetries of the Riemann tensor
and Eq.(1.42), we can see that the Weyl tensor has 10 independent components. These
components are, at any point of the space-time, completely independent of the Ricci
tensor components. Globally, however, the Weyl tensor and the Ricci tensor are not
independent, as they are connected by the Bianchi identities [see Eq.(1.15)]. These

identities can be now written in the form [27]

1
C/ﬂ/crp;p = Ra[u;u] - éga[uR,V} (143>

where square brackets denote the antisymmetrization

1

Apw) = 5(14#” — Ayy) (1.44)

The remarkable analogy between the Bianchi identities of Eq.(1.43) and the Mazwell
equations

F = (1.45)
suggests that the Bianchi identities represent the interaction between the free gravi-
tational field and matter fields.

If we define the tensor J,,, as

1
Juua = Ro’[,u;z/} - aga[,uR,z/] (146)
we have
']/ﬂ/)\;)\ =0 (147>

which strongly resembles the equation for the conservation of charge in electrody-
namics

Jy =0 (1.48)
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Hence, J,,» defined by Eq.(1.46) can be considered as representing a matter current,
which consists of those parts of the source that interact with the free gravitational
field. These parts are called gravitationally active, while the parts of the source that
do not contribute to J,, are called gravitationally inert. The propagation of the free
gravitational field is in no way dependent upon the inert parts of the source.

An equivalent form for the decomposition of Eqs(1.40) and (1.41) is given by

1 1
Ruvng = Crwrp + §[g/WRVP + GupRur — guaRpp — guplion] + é[gupgvk — gurgup| R (1.49)

When the Weyl tensor C,, )5 vanishes, the space-time is said to be conformally flat.

1.6 Matter Fields
In this thesis, besides considering exact solutions of the Einstein vacuum equa-
tions, we shall also consider solutions of the Einstein field equations for the following
physically relevant energy-stress tensors.
(o) A massless scalar field:

The energy-stress tensor for a massless scalar field, ¢, takes the form
1 A
T;u/ = ¢;u¢;u - §g,uu¢;)\¢7 (150)
where ¢ satisfies the massless Klein-Gordon equation
Gyg” =0 (151)

(8) A pure radiation field:

The energy-stress tensor in this case is given by

T, = ekpky, KKy =0 (1.52)

where € is non-negative.
Note that the energy-stress tensor for several matter fields has the same form as

Eq.(1.52), for example, a electromagnetic field, a massless scalar field, or a neutrino
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field [11]. For the latter case, however, the corresponding matter field equations must
be also satisfied, while for a pure radiation field it is not necessary.
(7) An electromagnetic field:

For an electromagnetic field F),,, the energy-stress tensor takes the form

ws
I A
TMV = M/\FV — Zgupr)\F P (153)
where the antisymmetric tensor F),, satisfies the Mazwell equations

Flwx =0, Fug" =0 (1.54)

Introducing the following notation [25]

(D() = F(O)(Q) = FWl“m”
1 1
¢ = SlFow — Foel = 5(Fwln” — Fum"m’)
Py = —Fuye = —Fun'm” (1.55)

or inversely
F,, = 2{—<I>0n[um,,]—@Dn[umy]+®2l[#ml,]+(f>gl[ufn,,]}—4Re(®1)l[unl,]+4i[m(q)1)m[ufn,4
we find that the Ricci tensors are given by

D, =0,9,,A=0,(m,n=0,1,2) (1.56)
and that the Maxwell equations read

D(Dl - gq)o = (’7’ - 20&)(1)0 + 20(I>1 - H(DQ
Dq)g - Sq)l = (p - 26)(1)2 + 27'('@1 - >\(I)0
(5@1 — Aq)() = (,LL — 27)@0 + 27’@1 — O'CI)Q

(S(I)Q - Aq)l == (7' - 25)@2 + 2[1,(131 - V(I)O (157)

(6) A massless neutrino field
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The case for a massless neutrino field, in general, is much more complicated than
the previous ones. This is mainly due to the fact that a neutrino field is described by

a two-component spinor ® 4, which satisfies the neutrino Weyl equations
B A
oap®,, =0 (1.58)

where o4 5 are the complex Pauli spin matrices [14], and the spin indices A,B take
the values 1,2.

The energy-stress tensor for a massless neutrino field takes the form
T = i[0,45(6" 0 — 6°60) + 0,.45(6" 0, — 6"93)] (1.59)
In a spinor basis (04t4), the neutrino spinor ¢4 can be written as
b4 =Dy, + U, (1.60)
where 04 and ¢4 are normalized by the conditions
oatt = —10t =1 (1.61)
In terms of ® and ¥ and the spin coefficients, Eq.(1.58) takes the form

DP+6V = (p—e)®+ (a—m)V¥

50+ AV = (r—B)D+ (y— p) (1.62)

The Ricci scalars are now given by
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Pog = VDV — VDV + kP — RUP + (¢ — &)U U]
Dy = i%[xp(s@ — WOV — VDD +PDV — (p+e+&) VP + (B—a— 1)V — kPP
+ odVY]
Doy = —i[UOP — POV + (@ + B)UD + oD + AV
By — %i[(I)DfD _3D® + UAT — DAY + (2 — )0D + (7 + 7)ID — (7 + 1)U
+ (=)0
Dy = %i[@d@ —®6D — VAP + DAV + (a— B —7)PD — (u+v+7)¥P — vV
+ AV
Dyy = i[PAD — PAD + (7 — 7)PD + DY — VD] (1.63)
Eqs(1.62) and (1.63) are the basic equations for a neutrino field.
(¢) An isotropic perfect fluid

The energy-stress tensor for a perfect fluid takes the form

Ty = (1 + pluytty, — pg,,, uuu,g" = (1.64)
where u,, is the four-velocity of the fluid, p the pressure, and p the energy density.
Inserting Eq(1.64) into Eq.(1.21) we obtain

ppu” + (p+pluy, = 0
(1 + pubu” + (uu” — ¢g")py, = 0 (1.65)
which are the conditions imposed on a perfect fluid. In order to completely describe a
perfect fluid, however, Eq(1.65) has to be supplemented by an equation of state [36].
More frequently, the relation p = p(p) is prescribed. We call a perfect fluid isotropic

if the pressure p is a function of the energy density u only.

The simplest of the isotropic fluids are those with a “gamma equation of state”

p=(—u (1.66)

where v is a constant. In all of the above cases, the energy-stress tensor must satisfy
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some conditions in order to be accepted physically ( The energy conditions for a
neutrino field are discussed by Griffiths [14]). These are either the so-called weak
energy condition, or the dominant energy condition, strong energy condition [15].

(a) The weak energy condition

This condition says that the energy density measured by any observer must be
non-negative. Mathematically, it is equivalent to saying that for any time-like vector

u,, we must have

T" uu, >0 (1.67)

Eq.(1.67) is also true even for any null vector &,

(b) The dominant energy condition

The dominant energy condition is stronger than the weak energy condition.
Besides the requirement of Eq.(1.67), it also requires that for any observer the local

energy flow vector (T*"w,) be non-space-like, i.e.
(T uy)(TH uy) > 0 (1.68)

(c) The strong energy condition.

The expansion 6 of a timelike geodesic congruence with zero vorticity (which
means with zero local angular rate of rotation) will monotonically decrease along a
geodesic if RgyWeW? > 0 for any timelike vector W. We shall call this the timelike
convergence condition. By the Einstein equation, this condition will be satisfied if the
energy-momentum tensor obeys the inequality,

1 1
TWeW®t > WaWa(iT — 87A) (1.69)

We shall say that the energy-momentum tensor satisfies the strong energy condition

if it obeys the above inequality for A = 0.

1.7 Matter Shells

This section is based on the lecture notes of Wang [40].
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1.7.1 Notations and Convention

In this section, we shall give a systematic study of a thin shell (a hypersurface
across which the metric coefficients are only CY) in a n-dimensional Riemannian
manifold (yap,2). We shall closely follow notations and convention of d’Inverno [12].
The metric is given by

ds? = yap(2©)dz*de® (1.70)
with the signature,
Sign(VAB) = {+7_>_7"'7_} (171)

In this section we shall use uppercase Latin indices, such as, A, B, C, to run from 0
to n-1, and the Greek indices, such as, u, v, A, to run from 0 to n — 2. The Riemann

tensor is defined by
(DeDp — DpDe) XA = R4 . X5 (1.72)
where D, denotes the covariant derivative with respect to v45, and
™ Rgop = (n)FgD,C - (n)FgC,D + (")Fé%‘)FgD — 3T 5 (1.73)

with
1
MIrge = §’YAD(’YDC,B +YBD,c — VBCO,D) (1.74)

and yap.c = 0vap/02°.

The Ricci and Einstein tensors are defined as

MR = (N)RSCB
= OTpe— MG+ "I,V — WG, T . (1.75)
1
(n)GAB = (n)RAB — §7A3(n)R (176)

1The definition for Riemann tensor adopted here is the same as that used by [19].

2Israel [19] defined the Ricci tensor as Rap = —RY g, while the Einstein tensor as that given
here. Thus, the Einstein field equations used by Israel are Gap = —kTap.
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where

MR = MR,y (1.77)
The Einstein field equations are given by

where A, and k, denote, respectively, the cosmological and Einstein constant, and
(")T,p is the energy-momentum tensor.

The Weyl tensor is defined as

™Cusep = ™Ragep
1
+ m('}’AD(n) Rpe +v80"™ Rap)
— vac™Rpp — v8p™ Rac
1
— MR 1.79
+ (n — 1)(n — 2) (VACVBD 'VAD’VBC) ( )

Note that the above definitions are simply generalizations to N dimensional space-
times used in Section 1.2, and when n = 4 they reduce to them.
If we make following exchanges, we shall get Israel’s expressions from these

presented in this section,

YAB = —7aB
"rg - WTg
(n)RgCD - nRgcp
" Rapcp = —Rasco
™R = —M™WRyp
mp — ™p
MGup = —"MGap
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Lo = T
(m-DRA - DR
(nil)R)\,uua = _(nil)R)\,u,VU
(n—l)RW — _(n—l)RW

(nfl)R _ (nfl)R

(n—1) G,u,u _ _ (n-1) G,u,u
K,LLV = [_(},LV
K = —-K
e(n) = —&(n) (1.80)

where the quantities with bars denote those used by Israel in [19].

1.7.2  Gauss and Codacci Equations

Assume that ¥ is a hypersurface in 2 by
o= {z?: ®(2%) =0} (1.81)
If we choose the intrinsic coordinates of 3 as
{& ={"¢,.... % (1.82)

we find that the hypersurface ¥ can be also written in the form

N () (1.83)
Then, we have
oy _ 02(x9) 0x(€) |y
d®(z%) = T TS der =0 (1.84)

Since déM’s are linearly independent, we must have

Naey =0 (1.85)
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where
_ 09(29)
NA = —amA
axA 51/
ea) = 8§<f‘ ) (1.86)

where N, denotes the normal vector to the hypersurface ®(z%) = 0, and ea)’s are
the tangent vectors.
When Ny4N4 # 0, a condition that we shall assume in the rest of the thesis, we

define the unit normal vector n4 as

N
ny=——"a (1.87)
[NeNC|z
with
nanpy P = e(n) (1.88)
where e(n) = 4+1. When £(n) = +1 the normal vector n, is timelike, and the
corresponding hypersurface ¥ is spacelike; and when £(n) = —1 the normal vector
n 4 is spacelike, and the corresponding hypersurface X is timelike.
On the hypersurface ¥, the metric (1.70) reduces to
0z (€°) 027 (%)
2 o CreA W icv W jev
5%l = 1an (e (€)= g 6 AE" = g€ (1.89)
where g, is the reduced metric on ¥ and defined as
0z (€°) 02 (€7)
A\ — Clex
y = 1.90
g# (5 ) ’YAB("B (é )) agu aé-,, ( )
On the other hand, introducing the projection operator,h g, by
hAB = YAB —€(n)nAnB (1.91)

we find the following useful relations

AAB = g”“e&)eﬁ)—l—e(n)nAnB
G = VABECG)

hy = 7vap —e(n)nang = ¢"ewaews (1.92)
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where
eua = Va8 9" 9w = 04,7y = 07 (1.93)

For a tangent vector A, we have

Ay =em) - A=cl,Ac, A = Ale(,, (1.94)
with A-n =0, and
At =g A, (1.95)

The intrinsic covariant derivative of A with respect to &* is the projection of the

vector DA /D&M onto 3,

DA o 0xP
A = e Dev = €(u)a—€,DBAC
orP
orP D
= a—gljDB(ea)AC —A e (e(w) (1.96)
Since
D 0z¢ 0A
-A) = De(A,) = =4
Dgl, (e(ﬂ) ) aé-,, C( H) agu
D D
A pelew) = A% palew) (1.97)
we find that Eq.(1.96) can be written as
DA
A,LL;I/ =€) - Dg” = A,u,,zz - AAF/);u (198)
where
De
A — Ao (1)
F;u/ =9 €@o)- Dfu . (199)
After tedious but simple calculations, we find that
De 1
sz = gAae(g) : J = _gAU(QUV,M + Guoy — g;w,a) (1100)

DEv 2
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Properties of a non-intrinsic character enter when we consider the way in which X
bends in . This is measured by the variations of Dn,/DE" of the normal vector.

Since each of these (n — 1) vectors is perpendicular to n4, we can write

Dn*
D¢y

= K)ep, (1.101)

thus defining the extrinsic curvature K, of the hypersurface ¥. From Eqgs.(1.92) and

(1.101) we obtain that

Dn#
A A A _B
Ky = g = eaky) = G(M)AD—SV = €(,ew)Dpna (1.102)
Since we have nAeéL) = 0, we find that
K,ul/ = 6&)65)13371,4 = —nAe(B;)DB(G‘(L))

= —naefy(¢(y.s T Theel,)

D2 oxB 0x¢
Do g 20
OErIE aE ogr
- K, (1.103)

= —nul

On the other hand, assuming

%egﬁ’ = aum + 37,€() (1.104)
we find that
n- DDif(l:) = aue(n) =—-K,
en) - %eg(’j) = BLde =Taw (1.105)
namely
Oy = () Ky B, = T, (1.106)

Inserting Eq.(1.106) into Eq.(1.104), we find that

Dey)

D—gl’ —€<H)Kw,n + FZVG(O') (1107)



23

which is usually called the Gauss-Weingarten equation. Thus, for any vector A that

is tangent to Y, we find that

DA D
Dgl/ = Dgl, (Aue(/‘))
DA* De( )
= pewt A”D—gff
OAH " "
— 8_x’/e(”) + A (—s(n)Kw,n + Fuye(g))
= Aley) —e(n)A"K,n (1.108)
that is,
DA
DEv Abe) —e(n)A"K,,n (1.109)
Operating on Eq.(1.107) with D/D¢&* and using Eq.(1.101), we find that
D Dej) D .

DK 4 Dn* DIV, A 5 Deé;)
DEX n® —e(n) K DEX + DEN (o) Y DEN
= —a(n)KW,\nA — E(n)KuVngé) + FZV,/\eé,) + Ffw(—e(n)KMnA + Fg)\eé‘))

— —<(n)

= ([, +T0,I%, — g(n)KWKg)e(;) — e(n) (K + T9, Koy )n™ (1.110)

Thus, we have

D2 D2 A n—1 oz A o o\ A
(Bope ~ Dope i = " Rl T e KKy — K KS)efy)
+ () (K — KMV;A)”Ay (1.111)
where
(n=1) Z}\V = FZV,)\ - FZ)\,V + Ffuxrg)\ - Fi/\rgu (1112>

On the other hand, we have
2 A A
D¢ _ D Pl
DENDEY D& DeY
= e(yei)(DeDpe,) + ey (Doeg)) (Dpeg,)

= e(yDeleq) Defy)

_ C _B D~D A D A anB
= new(Pelie) + (Dsei)(5e56
C D
4+ ps 9T 0T (1.113)
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D? D? A
(Dé—)\Dgy - Df”D?‘)e(“)

= [(DeDp = DpDe)efletet,)
Then, the combination of Eqns.(1.111) and (1.114) yields,
(n)RgCBegL)eg)egz) = (D ,u)\ue(a) +e(n)(KunKy — KWKST)‘?(A)
+ e(n)(Kuxw — K ) (1.115)
Multiplying Eq.(1.115) by e, 4 we obtain the Gauss equation,
(n)RABCDGé)ea)G(C;\)eg) =(r=1) Rppnw + e(n)(KinKyp — K Kp) (1.116)
Similarly, multiplying Eq.(1.115) with n4 we obtain the Codacci equation,
(")RABCDnAea)eg)eﬁ) == KH)\;V — Kﬂl’§>\ (1117)

Thus, the Gauss and Codacci equations are given by

" Rancne(yelyeineo =" Bow + e)(KnKyp = K K) (1.118)
(")RABCDnAea)eg)eﬁ) = (K“)\;U — K;W;)\)g‘uy (1119)

which are exactly the expressions of Egs.(12) and (13) obtained by Israel in [19], after
considering the fact of Eq.(1.80).
Multiplying Eq.(1.116) by g”*¢g"*, and noting

g‘“’eét) f) = A8 — c(n)nnP (1.120)

we find that

™ Rapcpefyeqeten 9™ 9"

= WRapep(v*” — e(n)nn)(y"P — e(n)n"n")
— () RABC (,YAC’,VBD ( ),VAC'anD 6(71)’)/BD71ATLC)
= (R —2(n) ™R pn"n"

= —2e(n)™G pn?n®

= DR 4 e(n)(K2K] — K?) (1.121)
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this is,

—2e(n) ™G apn*n? = VR 4 e(n) (KK — K?) (1.122)
where K = g" K,

On the other hand, multiplying Eq.(1.117) by ¢**, we find that

™ Rapepn’elyetein g™ = ™ Rapepn’el)(vP" —e(n)nn”)
= (n)RACnAG(C;\) :(n) GAane(C/\)
= (BX =)0 (1.123)
or
MG aen?ely = (K5 = 65):0 (1.124)
In summary, we have
—2¢(n) WG apnnf ="V R 4 e(n)(K2K] — K?) (1.125)
WG aen’elyy = (KT — 5K (1.126)

which are exactly Eqgs.(14) and (15) obtained by Israel in [19], after some correspond-

ing changes are made due to different definitions of some quantities [see Eq.(1.80)].

1.7.3 Surface Layers
Assume that the hypersurface ¥ divides the whole spacetime € into two regions
OF, where
Qf = {24, ®>0},Q = {20 <0} (1.127)

If we choose the systems of coordinates differently, say, 74 in region Q* and 2= in

region €27. Then, the hypersurface ¥ are given by
p A = AR, oA = A () (1.128)

or equivalently

(2P =0,0 (2 P) =0 (1.129)
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From the above equations we find that

L NE o 0eaO) L, et

Ny = ——————73:Vq4 = ——F 171 € = T g
|N3-N+C|§ aI+A (1) dgli

N @), e e

Then, it is easy to see that in each of the two regions, the Gauss and Codacci equations
take the form of Eqgs.(1.118) and (1.119), from which Eqgs.(1.125) and (1.126) result.
On the hypersurface X, the reduced metric from each side of ¥ should be the same,

so we must have
9 (€5 = g, (6|5~ (1.131)

On the other hand, by the Lanczos equations [20],
K™ = g K] = S (1.132)
one defines the symmetric tensor S, as the surface energy-momentum tensor, where

- — . + _ . —
K]~ = q)li)rgl+ K., q)hjglﬁ K, (1.133)

and [K]~ = ¢"[K,w|”. The above definition for S, can be further justified by con-
sidering the integral of WT) Bea)eﬁ) with respect to the proper distance 7, measured

perpendicular to 3 [10],

+e
Sy = / (”)TABeét)eg)dT (1.134)

€

From Eq.(1.126) we find that
[(")GACnAe(C;L)]_ = —/iS;‘;A (1.135)

which serves as the conservation law for the surface EMT.
In analyzing surface layers, one usually uses the first junction conditions (1.131),
the Israel’s junction conditions (1.132), the conservation law (1.135), and the n-

dimensional Einstein field equations applied on each side of the hypersurface X.
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The n-dimensional Einstein field equations,

1 .
MR Ap — 57253 = 2Ty (1.136)

can be projected to the base {ea), n“} as

MG pnin? = —5(2—”)(<”—1>R +e(n)(K2KS — K?)) (1.137)
MG yen’elyy = (K5 — 65):0 (1.138)
MG apelyel, = — (K5 — 03) an™ + f(Kag, K25) (1.139)

where f(Kas, K25) is known only in the case where Gaussian normal coordinates are
used [10]. Clearly, Eqs.(1.137) and (1.138) are, respectively, the Gauss and Codacci
equation, while the integral of Eq.(1.139) across X gives Israel’s junction conditions
(1.132).

Since Eq.(1.139) cannot be obtained by only using the Gauss equation (1.118),
it is clear that any equations obtained from it should not include (at least totally)
the Israel’s junction conditions (1.132). This observation is very important when we
consider the effective Einstein field equations on ¥ by following Shiromizo, Maeda,

and Sasaki [35].

1.7.4 Applications to Brane Worlds

From the Gauss equation Eq.(1.116), we find that
(n_l)Rplu)\y = (n)RABCDQé)G(i)e(C;\)G(’i) — 8(%)(Ku/\K,,p — KHVKAP> (1140)

from which we obtain

("_I)RW = (”)RABe‘(‘L)eg,) — 5(n)(”)RABCDnAea)nceg) —e(n) (K K] — KK,,)
DR = R —2(n)™Ripn*n® — c(n)(K,zK*° — K?) (1.141)

On the other hand, from Eq.(1.7.1), we find that

" Rapcpn’e(yn”eg) = n<_)2( )RABB@)G&JFH{( )RAB”A”B—ﬁ( 'RY g+ " B,

(1.142)
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where

M E,, =" Capcon’elynel, (1.143)

with ™ Cypep being the Weyl tensor, defined by Eq.(1.7.1).

From the n-dimensional Einstein field equations (1.136), we find that

1

MWRap = K {"MTup - vas"T}
n—2
)
MR = —k 1.144
Then, combining Eqs.(1.144) - (1.144), we obtain
(n—1) 21 =3 A B (n) A p _ En) ")
G = Fin— 2{ Tape(yen) +em)[™Tapnn” — 1 T g}

1
- 5(”) K,uUKyJ - KK;W - é(KaﬂKaﬁ - K2)guu}

— e(n)™E,, (1.145)



CHAPTER TWO

Gravitational Collapse of Spherically Symmetric Shells

2.1 Introduction to Dark Energy

Over the past decade, one of the most remarkable discoveries is that our universe
is currently accelerating. This was first observed from high red shift supernova Ia [1],
and confirmed later by cross checks from the cosmic microwave background radiation
2] and large scale structure [3].

In Einstein’s general relativity, in order to have such an acceleration, one needs
to introduce a component to the matter distribution of the universe with a large
negative pressure. This component is usually referred to as dark energy. Astronomical
observations indicate that our universe is flat and currently consists of approximately
% dark energy and % dark matter. The nature of dark energy as well as dark matter
is unknown, and many radically different models have been proposed, such as, a
tiny positive cosmological constant, quintessence, phantoms, Chaplygin gas, and dark
energy in brane worlds, among many others [See the review articles [33] [6] [29] [28]
[31] [32], and references therein].

On the other hand, another very important issue in gravitational physics is
black holes and their formation in our universe. Although it is generally believed
that on scales much smaller than the horizon size the fluctuations of dark energy
itself are unimportant [8], their effects on the evolution of matter overdensities may
be significant [4]. Then, a natural question is how dark energy affects the process of
the gravitational collapse of a star. It is known that dark energy exerts a repulsive
force on its surrounding, and this repulsive force may prevent the star from collapse.

Another related issue is how dark energy affects already-formed black holes (if they

29
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indeed exist in our universe). Recently, it was shown that the mass of a black hole
decreases due to phantom energy accretion and tends to zero when the Big Rip
approaches [13].

In this Chapter, we shall study the formation of black holes from the gravita-
tional collapse of a dust cloud in the background of dark energy, here “dust cloud”
means a cloud made of matter with zero pressure. Thus, it includes the dark mat-
ter as a particular case. In section 2 we discuss the basic properties of spherically
symmetrical thin shells and derive the extrinsic curverture from the metrics, and in
section 3 we study the special solution of the general case called McVittie solution,
and also the corresponding metric and the extrinsic curvature from McVittie solu-
tion. In section 4 we’ll show how to use numerical method to solve the equations of
extrinsic curverture so that we can see if it can form black holes in the background

of dark energy.

2.2 Spherically Symmetric Spacetimes, Horizons and Black Holes

The general metric for spherically symmetric spacetimes can be cast in the form
ds? = gop(2°)dadx® — R*(2€)dQ? (2.1)

where a, b, c = Oorl, dQ? = df?+sin® Ody?, and 0 and ¢ are the usual spherical angular
coordinates, with 0 < 0 < 7, and 0 < ¢ < 27. Clearly, the metric is invariant under

the coordinate transformations
xt = m“(wlb), (a,b=0,1) (2.2)

Using one of the two degree of the freedom, we can always set goi(xz¢) = 0, so the

metric can be written

ds®* = A*(T, R)dT* — B*(T, R)dR* — R*(T, R)dQ* (2.3)
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Introducing two null coordinates u and v via the relations

du = F[A(T,R)dT — B(T, R)dR)

dv = G[A(T,R)dT + B(T, R)dR] (2.4)

where F' and G satisfy the integrability conditions for v and v

Pu  Pu
OTOR — OROT
0% *v
= 2.5
JTOR OROT (2:5)
the metric (2.3) takes the form
ds?® = 2¢7) dudy — R*(u, v)d? (2.6)
where
1
o(u,v) = —3 In(2FG) (2.7)
Without loss of generality, we shall assume that
F>0,G>0 (2.8)

The coordinates u and v are two null coordinates, with —oo < u,v < oco. Note that

the metric remains the same under the transformations
u=u(u),v="1v(0) (2.9)

Using this gauge freedom, we can always make the metric coefficients o(u,v) and
R(u,v) non-singular, except for points where the spacetime is singular. In the fol-
lowing we assume that this is always the case.

In addition, the roles of v and v can be interchanged. To fix this particular
freedom, we choose coordinates such that along the lines of constant u the radial
coordinate R increases towards the future, while along the line of constant v the
coordinate R decreases towards the future. This, of course, just defines u as outgoing

and v as ingoing null coordinates.
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Defining the two null vectors, [,andn,, along each of the two rays by [5]

ou w _ Ov ;
ZN‘E?:6N’”“:@:5M (210)
we find that
Lyl" =0=mn,,n" (2.11)

i.e these null rays are affinely parameterized null geodesics, where a semicolon denotes

the covariant derivative. The expansion for each is defined by

—20 va

0+ g™ = 2e

g

(2.12)

SEE

0_ = nug"” = 2¢ 72

where () , = %.
It should be noted that the two null vectors [, and n,, are uniquely defined only

up to a factor [5]. In fact,
L= (W)l T = g(v)ny, (2.13)

represent another set of null vectors that also define affinely parameterized null

geodesic

Lyl =0 = ny,n” (2.14)

and the corresponding expansions are given by

0, = lug" = f(u)d,

- = nu,g" =g(v)o_ (2.15)

However, since along each geodesic u = Const.(v = Const.) f(u)(g(v)) is constant,
this does not affect the definition of trapped surfaces in terms of the expansions. Thus
without loss of generality, in the following we consider only the expressions given by

Eq.(2.12).
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Definition [16], [5] The spatial two-surface S of constant T and R is
said trapped, marginally trapped, or untrapped, according to whether
9+0_|5 > 0,9+0_|3 <= 0,0T‘0+9_|S < 0.

Assuming that on the marginally trapped surfaces S we have 6, |s = 0, then an

apparent horizon is the closure ¥ of a three-surface ¥ foliated by the trapped surfaces

S on which 0_|y # 0. It is said outer, degenerate, or inner, according to whether

L O |s<0,LO]s=0,or L_O,|x >0, where L_ = L,, denotes the Lie derivative

along n*. In addition, if #_|x < 0 then the apparent horizon is said future, and if

0_|x > 0 it is said past.

Black holes are usually defined by the existence of future outer apparent horizons

[15] [16] [18] [5]. However, in a definition given by Tipler [38] the degenerate case was

also included [16].

Finally we note that

Then, we find that

and

orT

ou
OR

du

oo 1
2F/}’ G%R QGA1
“5FB v = BYel:] (2.16)
2Ff43 (BR1 = AR.)
Z_Z;R,T + g_fR,R
5 GZB (BR1 + AR ) (2.17)
R
227 R
%(BR,T + AR )
262"%
28 BRy - AR (2.18)
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2.3 Spherically Symmetric Thin Shells

In this section we consider the case of spherically symmetric thin shell of a
spherical symmetric star with finite thickness, which is made of a dust cloud in the
background of dark energy. Let’s divide the spaces into three different regions: 3 and
Qi, where Y denotes the surface of the star, QF denotes the inside and outside of the
shell, where + means outside and - means inside. In this section we’ll only study the
properties of the Q case, the Q= situation will be discussed in section 2.3.4. Let’s
use ds, to denote the metric outside the dust cloud, and in general it can be cast in

the form:
ds’ = A*(T, R)dT® — B*(T, R)[d*R + R*(d*0 + sin” 0d¢?)] (2.19)

where T = {T  R,0, ¢} denotes the coordinates outside the collapsing of the dust

cloud. The surface of the cloud can be expressed in the z1# coordinates as:
Y. :R=RyT) (2.20)
So substituting R = Ry(T) into the metric ds>. we find,

52 | pepo(r) = (A% — B2R2)dT? — B2R2(d*0 + sin® 0d>p) (2.21)

dRo(T)

where R() = —ar

This equals to the metric of the general space ds* = d7?— R?(7)(d?0+sin® 0d$?),

so we could find the following relations

[A%(T, Ry) — BX(T, Ry)R3(T)|2dT = dr

R(r) = B(Ry,T)R(T) (2.22)

So, on the surface

®=R— Ry(T) =0 (2.23)

If we write the function 7" in terms of the proper time 7 we then have

R=Ry(T) = Ro(7),T =T(r),0 =0, = ¢ (2.24)
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Then from the definition of the normal vector [Eqgs.(1.86)] we know that

+ _ .
Nt = aaia = a(RaxaRo) — ol — o 67 = 6% — Ryo? (2.25)

Using the same way to find N g we could have the following

NIN;g™ = (—=B2R2 + A?) (2.26)

- A2p2
Thus we find the unit normal vector is given by

N+ AB
nt =2

[e + = -
|N’ 1/A2—BQR3

Also from the definition of the extrinsic curvature [Eqgs.(1.103)] we find

(64 — Ro(T)d7] (2.27)

PPz Ozt Oz
G g5

. 2.V o A
AP s gy g, 20

\/m orz "M or or

AB O*R  _p Ozt ox? . 0T

[ + T —— — Ro(T) ==
\/m orr "M oar or T T or?

. oz* oz
pa— T —
RO(T)FN/\ 87' 87_ ]

+ o +
KTT = —n,

(2.28)

First from the expression Eq.(2.22) we find that

dT :
= A= B*RE)": (2.29)

Taking derivative respect to 7 again we find

=z = (A — B*R2) ?[BR?B + BR3B r + RB*Ry — AA — AA g Ry (2.30)
-

where A p and B z mean the derivatives of A and B with respect to R. Also from the
expression of i—f we have

d’R . d*T  dT . dT

g2 g T (2.31)
On the other hand

Ozt O OR oT OROT
R _TE 240 01R (ZZN\2 L opB T2 2.32
U 6’7' 8’7’ RR( 87') + TT( 87') + RT 6’7' 87’ ( 3 )
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where
1 A B
e, = 5Bx, k. = EA’R’ e, = 5
Thus from Eq.(2.32) we find
Ozt Ox* B AA B . :
R R 3o R o A? — B2R2)1 2.33
B or Ot ( B R B2 B )( 0) ( )

Also we have

ot o> BB ... A 20A :
T o 2 2 o 2 p2\—1
DT —(AZR +A+A8RR)(A B?R?) (2.34)

using the relations

BB 10A
Thr = VER Trr = R Thr = AR
So from Eq.(2.28) we obtain
B2B . ) . . A%Ag

Kt = (A>-B®R2)":[~ABR,+ ]

(2.35)

B+ (2BA = AB ) R +(BA-2AB) Ko~

On the other hand, from the definition of the extrinsic curverture [Eqs.(1.103)]

we find
AB ort oz . dzH Ox
K}y = — I — Rl — 2.36
o0 \/m[f“ae a7~ Tl g 5 (2:36)
Also we have the value of T'¥, 222 %% and Fﬁ%% using
R 1 2
BB
Tge = ?Rz
Then the extrinsic curvature of 0 component is
+ 2 2 p2\—3 2 QBQB
Kg, = (A" — B°R§) 2(ABrR;+ ABR, + RyR? I —) (2.37)

The ¢¢ component of the extrinsic curverture can be found from the properties

of spherical symmetry

K, =sin®0- K§, (2.38)
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So that
Son_ 1 1o :
K;, = (A*— B°R3)"(ABRrR’+ ABR + ZB2BR2) sin? ¢ (2.39)
2.4 McVittie Solution
2.4.1 The General Properties of McVittie Solution
In 1933, McVittie [24] showed how to embed the Schwarzshild field of a massive
particle in the cosmological background given by the Robertson-Walker line element.
His solutions can be written [17] (the units in which the velocity of light ¢=1 and the

gravitational constant G=1)

_ 50(R) 3 m :
ds® = (1 . )2dT? + €’ (1 + 20 (R YHdR? + h*(R)(d6* + sin® 0dp*)}  (2.40)
where
m=m(T), 3= B(T), 3 = —2= (2.41)

and a dot indicates partial derivative with respect to 7. The functions h(R),w(R)
depend on a choice of k(=-1,0,+1), the Riemannian curvature of the surfaces of

homogeneity T=const in the background Robertson-Walker universe;

sinhR, k=-1
h(R) = R, k=0 (2.42)
sin R, k=+1

and

2sinh &, k= -1

w(R) = R, k=0 (2.43)

2sinf, k=+1

In this thesis, we shall consider only the case k = 0.
When k = 0, this spacetime is McVittie’s solution [24] of Einstein’s equation,

for which the line element may be written as

m

1-2 m
ds? = — (2224t 4+ D (1 + )4 (dr?® + r?dQ? 2.44
F = g O T ) (2.44)
where u = Re2. Tt is convenient for our purposes to introduce a metric radial coordi-
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nate rather than isotropic coordinates. This has the advantage of being a covariantly

defined geometric object. Thus we define

8 m

R = Rei(1+ ) = u(l + )2 (2.45)

2u

The resulting coordinate transformation (R,T)—(R,T) is a diffeomorphis only
if we restrict the range of u to either (0,%) or (%, +00). Notice that each interval
is diffeomorphic via (2.45) to R € (2m,+00), so that McVittie’s solution does not
cover the region inside the Schwarzschild radius, R < 2m. With u € (%, +00), the

transformation (2.45) puts the line element (2.44) into the form

2m 1 2m. 1 2m

ds? = —(1—7—Zﬁ'%@)dT?—ﬁ'Ra—%)*ﬁdndﬂ(l—7)*1dn2+7z2dw2 (2.46)
while for v € (0, %) we have
) 2m 1 .o o0 o - 2m, _1 2m. g o o 9

These are related by the exchange 3(T') — —3(T'). The region u > % is the region

R > 2m of the spacetime representing a point mass embedded in a spatially flat RW

universe with scale factor e% and the region u < 7 is the region R > 2m of the

spacetime representing a point mass embedded in a spatially flat RW universe with

B
scale factor e” 2.

There is a scalar curvature singularity at v = %, i.e. at R = 2m,
which is a strong curvature singularity [38], and prevents any extension into the region
R < 2m.

For the remainder of this section, we focus on the spacetime with line element
(2.46). The energy density and isotropic pressure calculated via Einstein’s equation
satisfy

3 - 3 -
8mp = 0%, 8mp = — 12— B(1 - 2mR7") 2 (2.48)

We can immediately see an intriguing aspect of this spacetime: there is an

intrinsic curvature singularity at the gravitational radius, R = 2m. The energy
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density and pressure of the RW background are found by setting m = 0 in (2.48);
they are given by

87 py = Zﬁ'?, 87po = —232 ~ 3 (2.49)
The expansion of the fluid flow lines for the spacetime (2.46) is the same as that of

the RW background, and is given by

0= 55’(T) (2.50)

2.4.2  The Extrinsic Curvature of the Exterior
From the Eq.(2.19) we know that the line element of the exterior can be written
as
ds® = A*(T, R)dT* — B*(T, R)[d’R + R*(d*0 + sin® 0d¢*)] (2.51)

and from the McVittie solution Eq.(2.40) the metric is

1—_—m m
ds? = (—22B 2972 _ oB(] 4 Y dR? + h?(R)(d6? + sin® 0d¢*)}  (2.52)
L+ 52 2w(R)

So by comparing the above two line elements we find that

A(T,R) = m

B(T,R) = e3(1+ ;Z)((Q))? (2.53)
and by solving the differential equation of § in Eq.(2.41) we have

BT, R) = 01 4 D) 2 (2.54)

)t 2u(®)
where myg is the initial value of m.

Having functions A and B written in terms of the function m and w we can
rewrite the extrinsic curvature of the exterior in terms of m and w also. Then,
combing the extrinsic curverture of Eqs.(2.35), (2.37) and the expression of the func-
tions A and B (Eqs.(2.53)) we can calculate the extrinsic curverture of the exterior.
We will leave the exact form of them in Chapter 3 in which we shall discuss how to

solve the junction conditions by using numerical method.
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2.4.3 The Extrinsic Curvature of the Interior

To simplify the problem, we assume that the spacetime inside the star is homo-
geneous and isotropic, similar to the Oppenheimer-Synyder (OS) model [26], histori-
cally the first model for gravitational collapse. Then the spacetime inside the star is

described by the metric
ds® = dt* — a®(t)(dr® + r*dQ?) (2.55)

where a(t) is an arbitrary function of ¢ only.

Compare this with the metric (Eq.(2.19)), we find that
A(t,r) =1,B(t,r) = a(t) (2.56)

So to calculate the extrinsic curverture we just need to replace the function A
and B according to Eq.(2.56) in the explicit form of extrinsic curverture (Egs.(2.35),
(2.37)).

Then, we find

Ko = (1—a*?) 3 (—ai + d®ai® — 2ar")

D=

Ky = (1—a*?) 2(ar + rra’a) (2.57)

And due to the property of spherical symmetry we automatically have

K, = sin 0Ky, = (1 — a%?) 72 (ar®0 + rr2a%a) sin® 0 (2.58)
2.4.4 Dynamical of the Thin Shells

In order to connect the interior of the star with the outside of the star we need
some junction conditions.

First, the extrinsic curverture of interior and the exterior should be equal to

each other, that is

K. = K

TT TT
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K,, = Kj,

K, = Kj, (2.59)

Because Kgp and Ky are linearly dependent (Kpy = sin®0K,,), we actually only
have two equations that are linearly independent.
Second, the metric of the outside and inside should be equal to each other

around the junction surface, that is

dsily, = dst|, (2.60)

And from Egs.(2.51), (2.55), we have

A%(T, R)dT? — B*(T, R)[d*R + R*(d®0 + sin® 0d¢?)] g, = dt* = a*(t)(dr® + r?d0?)|,.

(2.61)
Rearrange the equation above we have
(A2 — BR®)dT? — B*R%d0? = (1 — a*?)dt? — a*r?dQ? (2.62)
Comparing term by term we find
(A2 = B2R*)2dT = (1-—a%P)2dt
BR = ar (2.63)

So totally we have four equations (Eqs.(2.59), (2.63)) to determine the dynam-
ical situation of our problem. From the McVittie solution we know the functions A
and B can be written in terms of m and w, where w is a function of R (Eq.(2.43)).
So actually we total have four unknowns: m(t),T'(t), R(t) and r(t), all of which can
be considered as functions of t only. Then we have all the equations we need to solve

the problem.
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2.5 Numerical Solutions
2.5.1 The Fquation BRy = arg
For the case k = 0, from Eqgs.(2.43) we find that w(R) = R. So the function B

(Egs.(2.53)) is given by
m<T) )2
2R

B8
2

B(T,R) =7 (1 + (2.64)

Also from the equation of § (Eq.(2.41)), 6 = —2%, we find 7

= B0 where my is the
m

initial value of m. Then we have

myo m

B=— (1+ ﬁ)“’ (2.65)

From Egs.(2.63) we know BR = ar, this equation means the variables R and r are

already on the surface, so we could rewrite it to be
BR() = ary (266)

where both of Ry and ry are a function of .

To find a numerical solution we choose to adopt the Runge-Kutta method(see
section 2.5.4), so first we have to transform Egs.(2.59), (2.63) into the second order
ordinary differential equations. In order to achieve this goal we take derivative of

Eq.(2.66) with respect to t twice, that is

d? d?
@(BRO) = ﬁ(aro) (2.67)
then we find
myo mom. .- mo m()R() .. mong 2m0m2R0
00 NYR 0
( m  4R2 Vo + (4R0 m?2 Jrit 2R3 m3
2R, WR
- mmgmo - m;;; O _ 245y — 1o — iy = 0 (2.68)
0

For the sake of convenience, when doing computer coding we put the above equation
in the form

Pyin + PyRy + Psig + Cy = 0 (2.69)
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where

mo mo Ry

P o= 0
! 4R,  m?
mo mom
p = 207
? m 4R2
Pg = —a
o momR(z) 2m0m2R0 QT;’LRQTTLO m()T;’LR() .. ..
C, = 2RI + o —2ar —ra (2.70)

For convenience, from now on we define () means time derivative respect to t, while

() means time derivative with respect to 7.

2.5.2  The Equation K = K__
From Eqs.(2.59) we know KI = K_

TT)

but the equal sign only holds after
we take the limit on X% and ¥~. So actually we should write K = K_ to be

. + 71 _
lim K = limK__ .
R—Rp,r—1ro R— Ry, r—10

Writing the above equation explicitly we get

B%B' A2A R

( A’>— B>R?)":[-ABR, + R+ (2BA g — ABR)R? + (BA' —2AB)R, —

]
= (1 —a®?2) % (—aiy + aaid — 2arq) (2.71)

where () means  lim
R—Rg,r—10

Then we find
Ry = dR;;T) = dR;ET) : j—; =Ry -T7! (2.72)
Taking derivative respect to 1" again, we have
Ry = Ry T2 —T3R,T (2.73)
Also from Egs.(2.63) we find on the surface
o (-ait) (2.74)

(42 - B2R{):
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then substituting the above relationships into Eq.(2.71) we have

—AB(RyT™* = T3RT) + Ay + T3 (ai’y — a*arg + 2ary) = 0 (2.75)
where
B2B/ / - — / -/ —/ / A2A
Ay === Ri+ (2BAg — ABp)RS + (BA' — 2AB) R, — B’R],
and
_, ) d mo m ., mo, 1 4 r mg, 1 4 0.y
B = lim —[—(14+-—=)="2(% - —)m = (= — —)mT™' (2.76
i, W el =Tl — g = i — T (276)

Similarly, we find

- 4m
Ap = — %
o (QR() + m)2
5. — _ mo(2Ro + m)
e 2R}
” ARy T
A = ——— 2.77
(2R0 + m)2 ( )
Now Eq.(2.75) can be written as
SyRo + Ssy + ST + Cy = 0 (2.78)

On the other hand, combining Eq.(2.74) and Eq.(2.72) we have

(1 a%i)}

P - LT
(A% — B2R2T-2)2

(2.79)
so we can solve it for T' to get

' 1 2.2 2 H2y\1
Taking derivative with respect to ¢ again we get

[ : - . A .

(2.81)
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which can be cast in the form
T = ThRy + Toitg + Ay (2.82)
the substitution of Eq.(2.82) back into Eq.(2.78) results in
(Sy + SyT1)Ro + (S5 + SyTy)ig 4+ SsAg + Cy = 0 (2.83)

which have the form

H1R0+H27.”.0+H3 :O (284)

2.5.3 The Equation Kj, = K,,
Writing the equation K, = K,, out explicitly we find

BB
A

AB R+ ABRy + R,T'R2 = T~ Yarg + toria’a) (2.85)

Now taking derivative respect to ¢ on both sides we find

. _ _ ) . . ) .. B2B
A BRrRj+ AByR} + 2AB grRoRy + ABRy + ABRy + ABRy + RoT 'R} 1
oo . B2B . .. BB . . . __92BBB . . BB
— RyT°TR} 1 + 2T 1R0R(2)T+R0T 'R2 1 + RyT 'R} T
S o1 QB2B,A Y, L . 2. 1/ . . 92 9.
— RT ' R; O =TT (arg + roroa-a) + T (arg + arg + Forgaa
+ 2rgrga’a + 2rgrgaa® + rorga’a) (2.86)
where
(m + 2R0)2
H 2R}
. mORO (m2 — 4R3)m — 3m0m2(m + 2R0)R0
B = 2.
4m? R} (2.:87)
and
—/. d — d mo 1 4 .
B = —B =—[—"(=—-— nT!
al = alt m
mo —37 =3 N1, 0 52 N |
= T<_2RO Ry + 8m ™ m)mT " + I(RO —4m™=)ymT

- %(352 — dm )T (2.88)
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which can be recast in the form
B,' = Mlm -+ MQ(TlRO + T27.".0 + AQ) + A4 (289)

Combining Eq.(2.86) with Eq.(2.82) and Eq.(2.89) and after careful arrangement we

can put Eq.(2.86) in the form

Q sMim+ (Q2+ QuTh + Q5M2T1)R0 + (Q3 + QuTo + Qs MoTo)ig + QulAs + Q54

+ QsMyA; +C3 =0 (2.90)
Rewriting the above equation, we have

Orin + O3 Ry + Ogifg + 04 = 0 (2.91)

2.5.4 The Runge-Kutta Method

Now we have three useful equations (Eqgs.(2.69), (2.84), (2.91)), they are

le—i—PQR()—i—Pg’I‘;O—FCl - 0
H1R0+H27‘;0+H3 - O

Oqiin + O2Ry + Osig + Oy = 0 (2.92)

To use the Runge-Kutta method we have to find the explicit forms of m, Ry, ¥o, 0

we rewrite these equations in the form,

P P, P i) -
0 H H, || Ry | =| —H; (2.93)
01 02 03 7.“.0 _04

Then, the solution of 77, Ry, 7y is
m PP P —C f1

Ry |=| o H H, A -H | =] f (2.94)
To O, Oy O3 —0y4 I3
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where ()~! means the inverse matrix. Now we define

m=W
Ro=G (2.95)
o= F

then we have a set of first order ordinary differential equations, they are

;

m=W

W:fl

Ry =G

! (2.96)
G:fQ

ro=F
L F:f3

The next step is to find the initial conditions for the above equations.
The function a is a given function in our research, so the initial value of «a is

know to be ag. From Eq.(2.66) we know

™m, m
0+ g = oo

so we can solve it for m(t), which has two solutions,

2R 1
m; = #{aom —mg + [(mo — agre)® — ma)2}
0
2R 1
me = — O{aorg —mg — [(mo — agro)* — mg]2} (2.98)
0

On the other hand, the function A in the McVittie’s solution must be positive, so

1-2=
from the expression of A (A = {75&) we know
Ro

m < 2R, (2.99)

Now go back to the first solution in Eq.(2.98), combining it with the above condition

we have
2Ry 2 211
FO{CL(]TO — mgy + [(mo — CLQTo) — mo] 2} < 2R0 (2100)
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Solving the equation we find
QoTo

Also from section 2.4.1 we know that R > 2m, where R = agry on the hypersurface,
so we can have
aopTo

< %o 2.102
5 (2.102)

which obviously contradicts with the solution (2.101). Then only the second solution
in Egs.(2.98) is correct. Combining it with the conditions Eqgs.(2.99) and (2.101) we

can find that the value of m has a range

0<m< % (2.103)

So we shall choose the initial value of m that falls into this range.
Now we already know the solution of m is

2R,
m=—

o {agry — mo — [(mo — agre)® — mg]%} (2.104)

Taking derivatives of the above equation with respect to ¢ we can find the initial
value of 7i. The initial value of Ry, Ry, ro, 7o are 20, -0.1, 5, 0.

Now we have everything to put into the Runge-Kutta method, the program of
it is in appendix.

To make sure the code is correct we used the fourth-order Runge-Kutta method
and the second-order Runge-Kutta method, the result curves are just the same. Also,
I double checked the code with the result of the variable “m”. We used the equation
(2.104) to calculate the the value of m and on the other hand we can also get the

result of m from the result value of the Runge-Kutta method, after comparing the

two result we find they are exactly the same, so we are sure our code is correct.
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2.6 Discussion and Conclusions
In this section we’ll discuss the result of the calculation of numerical method of
different cases, but first we need to introduce some quantities that are important to
study the formation of black holes. The first is the expansions (Egs.(2.18)), from the

definition 2.2 we know that if 6,0_ > 0 then a black hole is formed. One can show

that
2 1 2 2 1
0. = (1= =3B+ — (1 - =)
. 27710 % . _z _ 2m0 %
0. = (L= 08— (1 501 (2:105)

where R = B(T, R) R, the geometry radius of the black hole.
The second is that, we can use energy conditions to determine the state of a

black hole. They are

Ci = po+po
Cy = po—no
03 = po + 3]90. (2106)

From Egs.(2.48) we find that 87wpy = 252, 8mpy = —%BQ — (. Neglecting the constant

&1 we have

i = =5
C2 = 535 +20)

Cy = —%(8%25). (2.107)

The last important quantity is the total mass, and it’s defined by

1
M(T) = 573(1 + V,RVR). (2.108)
One can show that
o Rz 9 4 ng
VJRVIR = T[ﬁ — @(1 — 7)], (2.109)
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so the total mass as a function of 7' is

M(T) = %R{lJrRTQ[BQ—i(l—@)}}, (2.110)

where R has the same definition of Eq.(2.105).

A. Gravitational Collapse of a Dust Cloud
The figures for this situation are shown below as figures 2.1, 2.2 and 2.3.
In this case the function a is chosen to be a(t) = ag(ty — )3, and other initial

conditions are

° 7’0:5,7;D:O,R0:20,R0: —0.1,t0: 1O,m0: a(gim?aoz 17tZ:—7O

r.Rdot=-0.1 k=ar/30.9433 R

] 21
g
20
7
19
a]
i 14
] 2000 4000 B000 a 2000 4000 G000
o102 m
14 25
10
20
&
14
0
3] 10
a 2000 4000 s000 o 2000 4000 B000

Figure 2.1: Gravitational Collapse of a dust cloud for the functions m = m(T),Q1Q2 =
00_ defined, respectively, by Eqgs.(2.104) and (2.105)

From the figures we can see that the geometry radius (bigR in figure 2.2) is
getting smaller, and also from the prompt jump of the curve of 6, 6_ (Q1Q2 in figure

2.1) we can see that there is formation of black hole at that moment.
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bigR « 10* C1

100 B
a0 4

80 2

70 0

B0 200 4000 eo0 oo 2000 4000 OO
2}{10“ c2 15}{10“ C3

0 10

2 5

4 0

0 200 400 eo0 o 2000 4000 BOOO

Figure 2.2: Gravitational Collapse of a dust cloud for the functions bigR =
R(T),Cy,CeandCs defined, respectively, by Eqgs. (2.105) and (2.107)

w107 bight

o 1000 2000 3000 4000 5000 8000

Figure 2.3: Gravitational Collapse of a dust cloud for the function bigM = M(T), defined
by Eq.(2.110).
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B. Gravitational Collapse of Dark Energy: w > —1
The figures for this situation are shown below as figures 2.4, 2.5 and 2.6.
To study the effects of dark energy on gravitational collapse, we first consider the
case where ppy = 0,p = w, p # 0, where w is a non-zero constant. When w < —%
the strong energy condition is not satisfied [15], and the fluid is said to be made of

dark energy. It can be shown that the solution in this case is given by
2
a(t) = Qo (t() — t) 3(1+w)

for w > —1.

And other initial conditions are

20,Ry = —0.1,tg = 10,my = S22 a9 = 1,t; =

([ ]
<
o
I
ot
3.
o
I
=
oy
(=)
I

—70,w = —0.35

r.=0.35 k=ari3 852 R

502 20
5015
18
501
15
£.005
5 14
0 000 4000 6don 0 o000 4000 6000
7 a1a2 m
p 10 75
r
7.4
2
73
3
4 72
0 2000 4000 edon 0 2000 4000 6don

Figure 2.4: Gravitational Collapse of Dark Energy with w > —1 for the functions m =
m(T), Q1Q2 = 6,0_ defined, respectively, by Egs.(2.104) and (2.105).
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higR }{10-5 c1
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1400 5
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w10° c2 «10° C3
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15 2
0 2000 4000 6000 0 2000 4000 BOOD

Figure 2.5: Gravitational Collapse of Dark Energy with w > —1 for the functions bigR =
R(T),Cy, CeandCs defined, respectively, by Egs. (2.105) and (2.107).
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Figure 2.6: Gravitational Collapse of Dark Energy with w > —1 for the function bigM =
M (T), defined by Eq.(2.110).
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We can see that the geometry radius is getting smaller linearly and there should
be formation of black hole because the value of #,60_ is changing from negative to

positive.

C. Gravitational Collapse of Dark Energy: w < —1
The figures for this situation are shown below as figures 2.7, 2.8 and 2.9.
In the paragraph above we discussed the case when w > —1, there is another case

that is w < —1, the solution of function a when w < —1 is given by
alt) = ap(t — to) 304w (2.111)

while other initial conditions are

=70,w =-1.3
rwm=-1.3 k=ar"10 rdot=0.5 Rdot=0.5 R
a0 1580
B0
100
40
50
20
0 il
0 5000 10000 15000 0 5000 10000 15000
—¢]
¥ 1|:|11 o102 m
4 30
2 20
0 10
-2 1]
0 a000 10000 15000 0 a000 10000 18000

Figure 2.7: Gravitational Collapse of Dark Energy with wj-1 for the functions m =
m(T), Q1Q2 = 6,0_ defined, respectively, by Egs.(2.104) and (2.105).
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Figure 2.8: Gravitational Collapse of Dark Energy with wj-1 for the functions bigR
R(T),Cy, CeandCs defined, respectively, by Egs. (2.105) and (2.107).
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Figure 2.9: Gravitational Collapse of Dark Energy with wij-1 for the function bigM = M (
defined by Eq.(2.110).
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We can find that despite of R > 0, we can always find a black hole formation

when w < —1

D. Gravitational Collapse of a Dust Cloud and Dark Energy when there is no

Interaction

The figures for this situation are shown below as figures 2.10, 2.11 and 2.12.

When there is no interaction if w = —%, the function a has the solution
alt) = aol(to — t)> — A5

where A is a constant, for convenience we choose it to be 1 in calculation.

Other initial conditions are

o 79 =5,79=0.5,Ry =20, Ry = —0.1,t0 = 10, mg = 2 g5 =1,t; =

25

r Rdot=-0.1 k=ar2s R
=) 20
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Figure 2.10: Gravitational collapse of a dust cloud and dark energy when there is no
interaction for the functions m = m(7T), Q1Q2 = 0 0_ defined, respectively, by Eqs.(2.104)

and (2.105).
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Figure 2.11: Gravitational collapse of a dust cloud and dark energy when there is no inter-
action for the functions bigR = R(T), C1, CoandC3 defined, respectively, by Eqs. (2.105)

and (2.107).
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Figure 2.12: Gravitational collapse of a dust cloud and dark energy when there is no
interaction for the function bigM = M(T), defined by Eq.(2.110).
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The variable bigR means the geometric radius, so from the figure above we can
see that the radius is getting smaller linearly and from the change of signs of value

0. 6_ we can find that a black hole is formed.

2.6.1 Conclusion

In summery, in all of the four cases:

A: Gravitational Collapse of a dust cloud
B: Gravitational Collapse of Dark Energy: w > —1
C: Gravitational Collapse of Dark Energy: w < —1
D: Gravitational Collapse of a dust cloud and dark energy when there is no interac-
tion

No matter there is dark energy or not the black hole is always formed. This
means the repulsive force result from the dark energy can not balance the gravitational
force. But there is another question, there should be a minimal mass for the black
hole to collapse, otherwise the repulsive force of the dark energy should stop the
black hole from collapsing. This problem should in the next step of the research of
this problem. And also, we can use anisotropic models of the black hole but not a

sphere and add some rotation to the black hole in the next research.



CHAPTER THREE

The Numerical Program

The following is the code list of our program whose function is to solve the

differential equation group of Eqs.(2.59) and Eqs.(2.63).

Jthe main program
clear all

r(1)=5; %set the initial value of

min = 20; %set the minimum value of

max 100; %the maximum value of
h = 0.0001; %set the date interval of

t

min:h:max; %initialize the array of

R(1) = 20; %set the initial value of
omega=-1.3; %set the value of

a0 = aa(t(1),omega); %call the function to
%find the initial value of

kk=10;

k=a0O*xr/kk; Y%calculate the value of
h1=((k-a0*r(1))"2-k"2)~(1/2);

m(1)=2*R(1) /k*x(a0*xr(1)-k-h1); %find the initial value of
G(1)=0.5; %initial value of

F(1)=0.5; %initial value of
a0dott=aadott (t(1) ,omega); %initial value of
h2=4*m(1) "2*R (1) "2* (a0dott*r (1) +a0*F (1)) ;
h3=k*(m(1) "2-4%R(1)"2);

W(1)=(h2/h3+m(1)*G(1))/R(1);
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%hinitial value of betadottl1(1)=\

hbetadott (k,m(1),R(1),G(1),W(1),F(1),aa(t(1),omega));

Jthe first Yvalue point of

%the following loop is the core part of the Runge-Kutta method

for i=1:(max-min)/h mm=m(i);

RR=R(1);

rr=r(i);

WW=W(i);

GG=G(i);

FF=F(i);

tt=t(i);

% mprime is for check use,because there are two methods to find the value of ,
%one can directly differentiate the function to find or he can also find
%it as an output of the Runge-Kutta method. So after the calculation of the
J#Runge-Kutta method he can compare the two result to see if the numerical
%hsolution is correct.

mprime (1)=2%RR/k*(aa(t (i) ,omega)*r(i)-k-((k-aa(t(i),omega)\
*r(1))"2-k"2)"(1/2));

hfourth order Runge-Kutta method

[k11 k13 k15]=solution(k,mm,RR,GG,WW,FF,aa(tt,omega),aadott(tt,omega),\
aadoubledott (tt,omega) ,rr);

k12=WW; k14=GG; k16=FF;

[k21 k23 k25]=solution(k,mm+h/2*k12,RR+h/2xk14,GG+h/2*k13,WW+h/2xk11,\
FF+h/2%k15,aa(tt+h/2,omega) ,aadott (tt+h/2,omega) ,aadoubledott (tt+h/2,omega)\
,rr+h/2*xk16) ;

k22=WW+h/2%k11; k24=GG+h/2*k13; k26=FF+h/2%k15;

[k31 k33 k35]=solution(k,mm+h/2*k22,RR+h/2*k24,GG+h/2xk23,WW+h/2*xk21,\



61

FF+h/2%k25,aa(tt+h/2,omega) ,aadott (tt+h/2,omega) ,aadoubledott (tt+h/2,omega)\
,rr+h/2*xk26) ;

k32=WW+h/2*k21; k34=GG+h/2%k23; k36=FF+h/2*xk25;

[k41 k43 k45]=solution(k,mm+h*k32,RR+h*k34,GG+h*k33,WW+h*k31,\
FF+h*k35,aa(tt+h,omega) ,aadott (tt+h,omega) ,aadoubledott (tt+h,omega)\
,rr+h*k36) ;

k42=WW+h*k31; k44=GG+h*k33; k46=FF+h*k35;

ttt(1)=t(i);

%»if anything is calculated to be imaginary then break the loop and
%set the last

%value of calculation to be NaN;

if imag(G(i))~=0

m(i)=NaN;

R(i)=NaN;

r(i)=NaN;

W(i)=NaN;

G(i)=NaN;

F(i)=NaN;

m(i-1)=NaN;

R(i-1)=NaN;

r(i-1)=NaN;

W(i-1)=NaN;

G(i-1)=NaN;

F(i-1)=NaN;

mprime (i)=Nal;

mprime (i-1)=NaN;

Q1Q2(i)=NaN;



bigR(i)=NaN;

C1(i)=NaNl;

C2(i)=NaNl;

C3(i)=NaN;

r(i-2)=NaN;

R(i-2)=NaNl;

m(i-2)=NaN;

break

end

%hcalculate the value of next point
m(i+1)=m(i)+h/6*(k12+2*k22+2*k32+k42) ;

R(i+1)=R(i)+h/6%* (k14+2*k24+2xk34+k44) ;
r(i+1)=r(i)+h/6*(k16+2xk26+2*xk36+k46) ;
W(i+1)=W(i)+h/6*(k11+2%¥k21+2xk31+k41) ;

G(i+1)=G(i)+h/6%* (k13+2xk23+2*k33+k43) ;

F(i+1)=F(i)+h/6%* (k15+2xk25+2*k35+k45) ;

%find the quantities of

betadottl(i+1)=betadott (k,m(i+1) ,R(i+1),G(i+1),W(Ei+1),F(i+1),\
aa(t(i+1),omega)); betadoubledottl (i)=\
(betadott1(i+1)-betadott1(i))/h/Tdott(k,m(i),R(i),G(1),F(i),\
aa(t(i),omega));

C1(i)=-betadoubledott1(i);
C2(i)=1/2*(3*betadottl (i) "2+2*betadoubledott1(i));
C3(i)=-3/2x(betadott1(i) "2+2*betadoubledott1(i));
bigR(i)=B(k,m(i),R(i))*R(i); I(i)=(1-2%k/bigR(i))*f2(k,m(i),\
R(i),W(i),betadoubledott1(i)); bigM1(i)=bigM(k,m(i),R(i),\

betadott1(i)); Tdottl1(i)=Tdott(k,m(i),R(i),G(1i),F(i),\
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aa(t(i),omega));

bigR1(i)=bigR(i)-2%k; bigR2(i)=aa(t(i),omega)*r(i);
bigR3(i)=bigR(i)-bigR2(i); bigRdott (i)=Bdott (k,m(i),R(i),W(i),\
G(1))*R(i)+B(k,m(i) ,R(1))*G(i);
Q1Q2(i)=(1-2*k/bigR(i))*f1(k,m(i) ,R(i),G(1),W(i),F(i),\
aa(t(i),omega));

end

hplot everything we need, and present the parameters automatically subplot(2,2,1);
num2str(kk),’ ,rdot=’,num2str(F(1)),’ ,Rdot=’ ,num2str(G(1))]);
subplot(2,2,2);plot(R);title(’R’);
subplot(2,2,3);plot(Q1Q2);title(’Q1Q2’);

subplot(2,2,4) ;plot(m);title(’m’);

figure;

subplot(2,2,1);plot(bigR);title("bigR’);
subplot(2,2,2);plot(Cl);title(’C1’);
subplot(2,2,3);plot(C2);title(’C2’);

subplot(2,2,4) ;plot(C3);title(’C3’);

figure; plot(bigMl);title(’bigM’);

b
hfollowing are the functions I used,

Jhyou can put them into seperate ‘‘.m’’ files %to rebuid the
%iprogram yourself

%function A

function out = A(m,R)

H1

1-m/ (2%R) ;

H2

1+m/ (2*R) ;

out = H1/H2;



end

%function aa

function out = aa(t,omega)

out = (t-10)"(2/3/(1+omega));

end

%function aadott

function out = aadott(t,omega)

out = 2/3/(1l+omega)*(t-10) "~ (2/3/(1+omega)-1);
end

%function aadoubledott

function out = aadoubledott(t,omega)
out = 2/3/(1+omega)*(2/3/(1+omega)-1)*\
(t-10) " (2/3/(1+omega) -2) ;

end

%function Adott

function out = Adott(m,R,W,G)

out = 4x(-R¥W+m*G)/(m+2*R) "2;

end

%function AstardotR

function out = AstardotR(m,R)

out = 4*m/(m+2*R)"2;

end

%function AstardotT

function out = AstardotT(k,m,R,W,G,F,a)
Tdott1=Tdott(k,m,R,G,F,a);

out = —-4%RxW/Tdottl/(m+2*R) "2;

end
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%function B

function out = B(k,m,R)

out = k/m*(1+m/(2*R))"2;

end

%function Bdott

function out = Bdott(k,m,R,W,G)
h1=k+*R* (m~2-4*R"~2)*W;

h2=-2xk*m~2* (m+2*R) *G;

out = (hi1+h2)/(4*m~2*R"3);

end

%function betadott

function out = betadott(k,m,R,G,W,F,a)
out = -2*W/m/Tdott(k,m,R,G,F,a);
end

%function bigM

function out = bigM(k,m,R,betadott)
bigR=B(k,m,R) *R;

h1 = betadott"2-4/bigR"2%(1-2+k/bigR);
out = 1/2%bigR*(1+bigR~2/4%h1);

end

%function BstardotR

function out = BstardotR(k,m,R)

out = -kx(m+2*R)/(2%¥R"3);

end

%function BstardotRt

function out = BstardotRt(k,m,R,W,G)

out = -k*x(2%G+W)/(2*R"3) +k/2* (2*R+m) *3*G/R"4;
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end

%function BstardotT

function out = BstardotT(k,m,R,W,G,F,a)
Tdott1=Tdott (k,m,R,G,F,a);

out = k/4*(R™(-2)-4*m" (-2) ) *W/Tdott1;
end

%function C1

function out = Ci(k,m,R,r,G,W,F,adott,adoubledott)

hl = k*m*G~2/(2%¥R"3)+2*k*W"2*R/m"3;

h2 = -2xWxGxk/m"2-k*W*G/ (2*%R~2) -r*adoubledott-\
2%adott*F;

out = hil+h2;

end

%function C2

function out = C2(k,m,R,G,W,F,a,adott)
deltali=deltal(k,m,R,G,W,F,a);

Tdott1=Tdott (k,m,R,G,F,a);

out = deltall+(-a"2*adott*F~3+2*adott*F)/Tdott1"3;
end

%function C3

function out = C3(k,m,R,G,W,F,a,adott,adoubledott,r)
Adotti1=Adott (m,R,W,G);
BstardotR1=BstardotR(k,m,R);

A1=A(m,R);

BstardotRt1=BstardotRt (k,m,R,W,G);

h1l = Adottl*BstardotR1*R"2+A1*BstardotRt1*R"2+\

Al1*BstardotR1*2*R*G;
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B1=B(k,m,R) ;

Bdott1=Bdott(k,m,R,W,G);

h2 = Adott1*B1*R+A1*xBdott1*R+A1*B1%G;
Tdott1=Tdott(k,m,R,G,F,a);
BstardotT1=BstardotT(k,m,R,W,G,F,a);

h3 = G/Tdott1*2*R*G*B1~2*BstardotT1/A1+\

G/Tdott1*R"2*2*B1*Bdott1*BstardotT1/A1l;

h4 = -G/Tdott1*R"2*B1~2%BstardotT1*Adott1/A1°2;
h5 = -(adott*r+axF+F*2*r*F*a”~2*adott)/Tdott1;
h6 = - (Fxr~2*2*a*xadott”2+F*r~2*a”2*adoubledott) /Tdott1;

out = hl1+h2+h3+h4+h5+h6;

end

%function deltal

function out = deltal(k,m,R,G,W,F,a)
A1=A(m,R);

B1=B(k,m,R);
Tdott1=Tdott(k,m,R,G,F,a);
BstardotT1=BstardotT(k,m,R,W,G,F,a);
AstardotR1=AstardotR(m,R);
BstardotR1=BstardotR(k,m,R) ;
AstardotT1=AstardotT(k,m,R,W,G,F,a);
hl = B1"2*BstardotT1*G"3/A1/Tdott1"3;

h2

(2xBlxAstardotR1-Al1*BstardotR1)*G~2/Tdott1"2;

h3 (BlxAstardotT1-2*A1*BstardotT1) *W/Tdott1;
h4 = -A1"2xAstardotR1/B1;
out = h1+h2+h3+h4;

end
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%function delta?2

function out = delta2(k,m,R,G,W,F,a,adott)
A1=A(m,R);

B1=B(k,m,R);

Adottl=Adott(m,R,W,G);

Bdott1=Bdott (k,m,R,W,G);
h1=1/(2*A1)*(1-a"2%F"2+B1"2*%G"2) " (-1/2) ;
h2=-Adott1/A1"2%(1-a"2xF"2+B1°2*G"2) " (1/2);
out = hl*(-2xa*adott*F~2+2%B1*Bdott1*G~2)+h2;
end

%function deltad

function out = delta4(k,m,R,G,W,F,a)
Tdott1=Tdott(k,m,R,G,F,a);

out = k/4*(-2*R~(-3)*G+8*m"~ (-3) *W) *W/Tdott1;
end

%function f1

function out = f1(k,m,R,G,W,F,a)
betadottl=betadott(k,m,R,G,W,F,a);
bigR=B(k,m,R)*R;

out = betadottl1”2-4/bigR~2*(1-2%k/bigR) ;
end

%function f2

function out = f2(k,m,R,W,betadoubledott)
bigR=B(k,m,R)*R;

out = betadoubledott+\
4/bigR~2*(1-2*m/bigR) " (1/2)*(1-3*k/bigR) ;

end



%function M1

function out = M1(k,m,R,G,F,a)
Tdott1=Tdott(k,m,R,G,F,a);

out = k/4*(R™(-2)-4*m"~(-2))/Tdott1;
end

%function M2

function out = M2(k,m,R,G,W,F,a)
Tdott1=Tdott(k,m,R,G,F,a);

out = -k/4*%(R~(-2)-4*m"~ (-2))*W/Tdott1"2;
end

%function P1

function out = P1(k,m,R)

out = k/(4*R)-k*R/m"~2;

end

%function P2

function out = P2(k,m,R)

out = k/m-k*m/(4*xR"2);

end

%function P3

function out = P3(a)
out = -a;
end

%function Q2

function out = Q2(k,m,R,G,W,F,a)
Tdott1=Tdott(k,m,R,G,F,a);
A1=A(m,R);

B1=B(k,m,R);
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BstardotT1=BstardotT(k,m,R,W,G,F,a);
out = R"2*B1"2*BstardotT1/A1/Tdott1;
end

%function Q3

function out = Q3(k,m,R,G,F,a,adott,r)
A1=A(m,R);

B1=B(k,m,R);
Tdott1=Tdott(k,m,R,G,F,a);

out = -r"2*a”"2*adott/Tdott1;

end

%function Q4

function out = Q4(k,m,R,G,W,F,a,adott,r)
A1=A(m,R);

B1=B(k,m,R);
Tdott1=Tdott(k,m,R,G,F,a);
BstardotT1=BstardotT(k,m,R,W,G,F,a);
h1=-G/Tdott1~2*R~2%B1~2*BstardotT1/A1;
h2=(a*r+F*r*a~2*adott)/Tdott1"2;

out = hil+h2;

end

%#function Q5

function out = Q5(k,m,R,G,F,a)
Tdott1=Tdott(k,m,R,G,F,a);

A1=A(m,R);

B1=B(k,m,R);

out = G/Tdottl1*R"2*xB1°2/A1;

end



%function S2

function out = S2(k,m,R,G,F,a)
Tdott1=Tdott(k,m,R,G,F,a);
A1=A(m,R);

B1=B(k,m,R);

out = -A1*B1/Tdott172;

end

%function S3

function out = S3(k,m,R,G,F,a)
Tdott1=Tdott(k,m,R,G,F,a);

out = a/Tdott1°3;

end

%function S4

function out = S4(k,m,R,G,F,a)
A1=A(m,R);

B1=B(k,m,R);
Tdott1=Tdott(k,m,R,G,F,a);

out = A1*B1*G/Tdott1"3;

end

%function solution

function [outl out2 out3] = \
solution(k,m,R,G,W,F,a,adott,adoubledott,r) P11=P1(k,m,R);
P21=P2(k,m,R);

P31=P3(a);
C11=C1(k,m,R,r,G,W,F,adott,adoubledott);
S$21=82(k,m,R,G,F,a);

S$31=83(k,m,R,G,F,a);
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S41=84(k,m,R,G,F,a);
c21=C2(k,m,R,G,W,F,a,adott);
T11=T1(k,m,R,G,F,a,adott);
T21=T2(k,m,R,G,F,a,adott) ;
delta21l=delta2(k,m,R,G,W,F,a,adott);
H11=821+S41%T11;

H21=831+S41%T21;

H31=S41*delta21+C21;
Q21=Q2(k,m,R,G,W,F,a);
Q31=Q3(k,m,R,G,F,a,adott,r);
Q41=Q4(k,m,R,G,W,F,a,adott,r);
Q51=Q5(k,m,R,G,F,a);
C31=C3(k,m,R,G,W,F,a,adott,adoubledott,r) ;
M11=M1(k,m,R,G,F,a);
M21=M2(k,m,R,G,W,F,a);
deltadl=deltad(k,m,R,G,W,F,a);
011=Q51%M11;

021=Q21+Q41*T11+Q51*M21*T11;
031=Q31+Q41*xT21+Q51*M21*T21;
041=Q41*delta21+Q51*deltad1+Q51*M21*delta21+C31;
bigA=[P11 P21 P31;0 H11 H21;011 021 031];
bigB=[-C11;-H31;-041];

bigX=bigAbigB;

out1=bigX(1);

out2=bigX(2);

out3=bigX(3);

end
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%function T1

function out = T1(k,m,R,G,F,a,adott)
A1=A(m,R);

B1=B(k,m,R);
h1=1/(2*A1)*(1-a"2%F"2+B1"2*%G"2) " (-1/2) ;
out = h1*xB172%2x*G;

end

%function T2

function out = T2(k,m,R,G,F,a,adott)
A1=A(m,R);

B1=B(k,m,R);
h1=1/(2xA1)*(1-a"2%¥F"2+B1°2%G"2) " (-1/2) ;
out = hi1*(-a”2%2*F);

end

%function Tdott

function out = Tdott(k,m,R,G,F,a)
A1=A(m,R);

B1=B(k,m,R);

out = 1/A1x(1-a"2+F"2+B1°2%G"2)"(1/2);

end
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