
 
 
 
 
 
 
 
 

ABSTRACT 
 

Remotely Sensed Hyperspectral Image Unmixing 
 

Zhuocheng Yang, M.S.E.C.E. 
 

Advisor: James B. Farison, Ph.D. 
 
 

Estimating abundance fractions of materials in hyperspectral images is an 

important area of study in the field of remote sensing. The need for liner unmixing in 

remotely sensed imagery arises from the fact that the sampling distance is generally 

larger than the size of the targets of interest. We present two new unmixing methods, 

both of which are based on a linear mixture model. The first method requires two 

physical constraints imposed on abundance fractions:  the abundance sum-to-one 

constraint and the abundance nonnegativity constraint. The second method relaxes the 

abundance sum-to-one constraint as this condition is rarely satisfied in reality and uses 

the relaxed sum-to-one constraint instead. Another contribution of this work is that the 

estimation is, unlike many other proposed methods, performed on noise reduced 

hyperspectral images instead of original images.  
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CHAPTER ONE 
 

Introduction 
 
 

Hyperspectral Imagery 

 
Hyperspectral imagery is an important technology often adopted in the field of 

remote sensing to collect detailed information about the material properties in a scene. 

The “hyper” in hyperspectral means that the images are simultaneously obtained in 

hundreds of narrow and contiguous bands, with wavelengths ranging from visible light to 

infrared bands. As a result, hyperspectral images offer more accurate and subtle 

information than any other type of remotely sensed data. Hyperspectral images are 3-

dimensional arrays with two spatial dimensions and one spectral dimension. An example 

of a hyperspectral image is displayed in Figure 1. The image cube contains hundreds of 

 

 
 

Figure 1: An Example of a Hyperspectral Image [1] 
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layers, with each layer obtained at a certain wavelength. A pixel in a hyperspectral image 

contains a vector which is the measure of the reflectance spectrum of that pixel area. The 

reflectance spectrum of a material is a plot of the ratio of reflected energy to incident 

energy as a function of wavelength. The reflectance spectrum of the leaves of a maple 

tree is illustrated in Figure 2. The shape of each reflectance curve varies from material to 

material, so the unique spectral information can be used to identify and discriminate 

different materials.  

 

 
 

Figure 2: Reflectance Spectrum of the Leaves of a Maple Tree 
 
 

Despite the fine spectral resolution, the underlying difficulty of studying 

hyperspectral images is due to the fact that the sampling distance is generally larger than 

the size of the targets of interest because hyperspectral sensing platforms usually fly at a 

high altitude. For example, NASA’s Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS) has a spatial resolution of 20 meters when flying at 20 kilometers above sea 
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level. Under this circumstance, it is likely that a pixel area is occupied by more than one 

material and that the measured spectrum is actually a mixture of different material 

spectra. The fact that hyperspectral pixels of interest are frequently a combination of 

distinct material classes introduces a need to unmix these mixtures. 

 
Linear Unmixing 

 
Linear unmixing is the procedure by which the measured spectrum of a pixel is 

decomposed into a collection of material spectra, called endmembers, and the 

corresponding fractions that indicate the proportion of each endmember present in the 

pixel area. The procedure can be illustrated by Figure 3. The results of linear unmixing 

include one abundance fractional image for each endmember. 

 

 

 
Figure 3: Simplified Procedure for Linear Unmixing [2] 

 
 

Purpose and Overview of Thesis Research 

 
The purpose of this research is to develop algorithms to automatically estimate 

endmember fractions via quadratic programming. To further enhance the performance of 

this approach, the noise adjusted principal components (NAPC) transform [3] is also used 
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to reduce the noise. Then, unlike many other methods, fraction estimation is performed 

on noise reduced hyperspectral images. 

The remaining chapters in this thesis are organized as follows. Chapter Two 

provides an introduction to the linear model adopted in this thesis and the related work 

that has been developed in the last decade. Two least squares estimation methods based 

on quadratic programming and the noise reduction by the NAPC transform are described 

in Chapter Three. Computer simulations and real hyperspectral image experiments are 

demonstrated in Chapter Four to compare the performance of our methods with 

algorithms developed by others. Finally, a brief conclusion and suggestion for future 

work are offered in Chapter Five. 
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CHAPTER TWO 
 

Problem Formulation and Related Work 
 
 

Linear Model 

 
Mathematical models for the mixing of different spectra provide the foundation 

for developing techniques to estimate the abundance fraction of each material from mixed 

pixels. Two mixture models have been proposed to represent the synthesis of the mixed 

pixels. One is a linear model that considers a mixed spectrum as a linear combination of 

endmember spectra present in the pixel area weighted by fractional area coverage [4]. 

The other model, suggested by Hapke, is a nonlinear model [5]. As the linear model is the 

most frequently used model for studying hyperspectral images, only the linear model is 

considered in this work. 

For the sake of simplicity, we use the following notations throughout this thesis. 

Matrices are denoted using italic letters. Vectors are denoted using bold italic letters. 

Assume that the imaging system has L  channels, each measuring the reflectance of one 

of the L  spectral bands and that r  is an L-dimensional pixel vector containing the 

measured spectrum. Suppose that there are )( Lpp   distinct endmembers present in the 

pixel area and their spectra are pmmm  , . . . , , 21 , respectively. The fraction i  of each 

endmember is specified by the values p  , . . . , , 21 . Then, the linear mixture model can 

be expressed as follows: 

 nmr 
p

i
ii

 
(2.1)
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where n represents additive noise. Equation (2.1) can also be written in the matrix form: 

 nαr  M  (2.2)

where ] , . . . , ,[ 21 pM mmm  and ] , . . . , ,[ 21 pα . 

This linear model is subject to two constraints imposed on the fraction vector α . 

To be physically meaningful, the abundance nonnegativity constraint requires that all 

abundance fractions are nonnegative, such that 0iα  for all pi 1 . The abundance 

sum-to-one constraint demands that fractions in each pixel sum to one, such that

1
1

 

p

i i . The inversion of Equation (2.2) is known as linear unmixing. Finding an 

accurate estimate of the vector α  is the primary goal of this work. 

 
Problem Formulation 

 
Considering the least squares error as the criterion for optimality, the linear 

unmixing can be formulated as the following optimization problem: 

 )()()( Minimize αrαrα MMf T   (2.3)

subject to the sum-to-one constraint (SC) and the nonnegativity constraint (NC), 

expressed as follows: 

 1 :SC Eα  (2.4)

 piαi  1  0 :NC  (2.5)

where the p-dimensional vector ]1 , . . . ,1 ,1[E . 

 
Related Work 

 
In order to estimate the desired target abundance fraction, Miller et al. proposed 

the simultaneous diagonalization (SD) filter [6], which gives an integrated filter 
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composed of an orthogonal operator and a matched filter. A subsequently similar 

approach named the orthogonal subspace projection (OSP) operator was suggested by 

Harsanyi and Chang [7] and later restudied by Chang [8]. The idea of these two  

approaches is to further decompose Equation (2.2) as follows: 

 nγdr  Up  (2.6)

where d  is the spectrum vector of the desired feature and p  is the corresponding 

fraction. Without loss of generality, the last column of M  in Equation (2.2) is assumed to 

be the desired spectral signature d . The remaining columns of M  are the corresponding 

spectral signatures of the undesired features, denoted by ] , . . . , ,[ 121  pU mmm
 
, and γ  is 

the fraction vector of the undesired features. The SD filter is obtained by maximizing the 

ratio of the energy of the desired feature to the energy of the undesired features as well as 

the noise energy. The OSP operator is an orthogonal operator that projects r  onto a 

subspace that is orthogonal to the subspace spanned by the columns of U , followed by a 

matched filter to maximize the signal to noise ratio. 

Other papers considered this problem from the signal estimation viewpoint. They 

produced a complete vector estimate α̂  of the fraction vector α  rather than only the 

fraction of the desired target. Maximum likelihood estimation [9], [10] and unconstrained 

least squares estimation [11] have been introduced to solve this problem. Given white 

Gaussian noise, these two estimation methods achieve the same results. Moreover, α̂  

produced by unconstrained least squares estimation can be decomposed as 








p̂
γ̂

, where 

p̂  is the same as the estimate of the desired feature obtained by the OSP operator [8] 

and γ̂  is the estimate of the remaining undesired features. Thus, the OSP operator can be 
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considered as the scalar version of the unconstrained least squares estimation. The 

advantage of a vector estimate over scalar estimates (OSP and SD) is that the former can 

estimate p  fractions at one time. It is also worth noting that the least squares estimator is 

valid for Gaussian as well as non-Gaussian noise. Therefore, this investigation uses the 

least squares error as the criterion for optimality in developing a vector estimate. 

According to the Cramer-Rao Lower Bound theory, there exists a lower bound on 

the variance of any unbiased estimator [12]. All of the aforementioned estimates achieve 

this lower bound, given white Gaussian noise. In other words, all of these methods 

produce the optimal estimates from the mathematical point of view. However, one 

common drawback of these methods is that they do not utilize the abundance sum-to-one 

and abundance nonnegativity constraints. There has been some recent work reported in 

the literature considering these two constraints. The sum-to-one constrained least squares 

(SCLS) estimation can be solved by the technology of Lagrangian multipliers [12], [13], 

but neither the nonnegativity constrained least squares estimation nor the fully 

constrained least squares estimation has an analytical solution. A nonnegative least 

squares (NNLS) problem was solved iteratively [14] and later employed to estimate 

endmember fractions in [15], [16], where the method was referred to as the nonnegatively 

constrained least squares method. A fully constrained least squares linear unmixing 

(FCLSLU)  method was suggested by Chang et al. [17], which was an extended version 

of the NNLS suggested by Haskell and Hanson [18].  

In the following sections, we will introduce several of the least squares estimation 

methods mentioned above. 
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Unconstrained Least Squares Estimation 

 
Setting gradient of )(αf  in Equation (2.3) with respect to α  equal to zero yields: 

 
02ˆ2

0
)(

ˆ





rα

α

α
α

T
UCLS

T MMM

d

df
UCLS  

(2.7)

The unconstrained least squares estimation is obtained: 

 rα TT
UCLS MMM 1)(ˆ   (2.8)

 
Sum-to-One Constrained Least Squares Estimation 

 
Least squares estimation with the sum-to-one constraint can be tackled using 

Lagrangian multipliers. The fraction estimation can be determined by minimizing: 

 








Eαrrαrαα

Eααrαrα
TTTT

T

MMM

MMf

2            

)1()()(),(
 (2.9)

where   is a scalar Lagrangian multiplier. Setting the gradient of ),( αf  with respect to 

α  equal to zero gives: 

 
02ˆ2

0
),(

ˆ








TT
SCLS

T MMM

f
SCLS

Erα

α

α
α




 

 

(2.10)

and 

 
TT

UCLS

TTTT
SCLS

MM

MMMMM

Eα

Erα

1

11

)(
2

ˆ       

)(
2

)(ˆ













 (2.11)

Applying the sum-to-one constraint, we have: 

 1)(
2

ˆˆ 1   TT
UCLSSCLS MM EEαEαE


 (2.12)
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So 

 )1ˆ(])([
2

11  
UCLS

TT MM αEEE


 (2.13)

The sum-to-one constrained least squares (SCLS) estimation can be obtained by 

substituting 
2


 into Equation (2.11) 

 TT
UCLS

TTTT
SCLS MMMMMMM EαEEErα 1111 ))(1ˆ(])([)(ˆ    (2.14)

 
Fully Constrained Least Squares Linear Unmixing 

 
A fully constrained least squares linear unmixing method (FCLSLU) is suggested 

in [17]. That paper first considered the nonnegativity constrained least squares (NCLS) 

problem, which only imposed the nonnegativity constraint. The estimate can be found by 

minimizing: 

 
cλαλrrαrαα

cαλαrαrλα
TTTTTT

TT

MMM

MMf





2            

)()()(),(
 (2.15)

where c  is the p-dimensional positive constant vector defined as T
pccc ] , . . . , ,[ 21c  and 

λ  is the Lagrange multiplier vector defined as T
p ] , . . . , ,[ 21 λ . Setting the gradient of 

),( λαf  with respect to α  equal to zero gives: 

 
02ˆ2

0
),(

ˆ








λrα

α

λα
α

T
NCLS

T MMM

f
NCLS  

 

(2.16)

Equation (2.16) leads to the following two iterative equations:  

 λrα 11 )(
2

1
)(ˆ   MMMMM TTT

NCLS  (2.17)
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 )ˆ(2 NCLS
T MM αrλ   (2.18)

The solution to the NCLS problem can be obtained by iterating Equations (2.17) and 

(2.18). 

To find the fully constrained estimate, the spectra matrix M  is replaced by 







E

M
 

and the pixel vector r  is replaced by 







1

r
. The FCLSLU solution can be derived from 

the solution of Equations (2.17) and (2.18) using the new spectra matrix and the pixel 

vector [17]. The parameter   is a very small number to control the impact of the sum-to-

one constraint on FCLSLU. The value of   is set to 610  in [17].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



12 
 

 
 
 

CHAPTER THREE 
 

Methods 
 
 

Overview of Methods 

 
In this chapter, we discuss in detail our new constrained methods based on 

quadratic programming. Least squares error is used as the criterion for optimality, as it is 

valid for Gaussian as well as non-Gaussian noise. In addition, a noise reduction method is 

suggested in this chapter, which can further enhance the capability of our methods when 

the noise level rises. 

 
Quadratic Programming Based Fully Constrained Least Squares 

 
Quadratic programming (QP) is a convex optimization problem of minimizing a 

quadratic function subject to equality and inequality constraints, which can be expressed 

in the form: 

 xCxxx TTQf 
2

1
)( Minimize

 
(3.1a)

 bxdx  HG   and   subject to
 

(3.1b)

We use this QP technology to achieve the fully constrained estimation. The 

method is referred to as quadratic programming based fully constrained least squares 

(QPFCLS) estimation. Before QP can be utilized, we first reorganize Equations (2.3)–

(2.5) as follows: 

 rrαrααα TTTT MMMf  2)( Minimize  (3.2a)
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 0αEα  B  and  1 subject to
 

(3.2b)

where E  is a p-dimensional vector ]1 , . . . ,1 ,1[  and B  is a pp  identity matrix. If we 

ignore the constant term rrT , Equation (3.2a) is similar to (3.1a). The sum-to-one 

constraint is expressed as an equality constraint, while the nonnegativity constraint is 

replaced by an inequality constraint. The inequality symbol   in Equation (3.2b) 

represents componentwise inequality. Interior-point methods is capable of solving 

quadratic programming problems in practice [19]. The main idea behind the barrier 

method, a particular interior-point algorithm, is to put the inequality constraint into the 

objective function as follows: 

 



p

i

T
i

TTTT hMMMf
1

)(2)( Minimize αbrrαrααα  (3.3a)

 1 subject to Eα
 

(3.3b)

where T
ib is the ith row of B  and )(xh  is the indicator function defined as: 

 








0

00
)(

x

x
xh  (3.4)

Violation of the nonnegativity constraint can lead to infinity in Equation (3.3a) 

because 



p

i

T
ih

1

)( αb  approaches infinity, so minimizing Equation (3.3a) implicitly 

guarantees that the nonnegativity constraint is satisfied. Since the function 


p

i

T
ih

1
)( αb  

is not differentiable, the indicator function is approximated by the function )(xb  [19], 

described as: 

 )log(
1

)( x
t

xb   (3.5)
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As t  grows, the function )(xb  becomes a better approximation to )(xh  [19], and hence 

the estimation becomes more accurate. Figure 4 shows the function )(xb  for several 

values of t . 

 

 
 

Figure 4: Function )(xb  for Several Values of t  
 
 

Substituting )( αb T
ib   for )( αb T

ih   in Equation (3.3a) gives the final form: 

 )log(
1

2)( Minimize
1

αbrrαrααα T
i

p

i

TTTT

t
MMMf 



  (3.6a)

 1 subject to Eα
 

(3.6b)

However, when the value of t  is large, Equation (3.6) is difficult to minimize. To 

overcome this dilemma, the estimate QPFCLSα̂  for the above optimization problem is 

obtained by repeatedly applying Newton’s method to a sequence of equality constrained 

problems [19]. The value of t  increases at each iteration until the stopping criterion is 

satisfied, and Newton’s method is implemented to find an estimate from Equation (3.6). 

Then, this estimate is used as the starting point for the next iteration. A vector with equal 

-3 -2.5 -2 -1.5 -1 -0.5 0
-5

0

5
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fractions is used as the initial starting point. The details of implementing the QPFCLS 

method are given in Algorithm 3.1. 

 
Algorithm 3.1 QPFCLS Algorithm with SC and NC Constraints 

  1: Initialize parameters t , )1( ,  ,  , Newton  

  2: 1k  
  3: while tp  do 

  4: Compute the Newton step )(kα  and the decrement   
  5: while Newton   do 

  6:  Find step size   by backtracking line search 
  7:   )()()( kkk ααα    
  8:  Compute the Newton step )(kα  and the decrement   
  9: end while 
10: tt   

11: )()1( kk αα  , 1 kk  
12: end while 
13: )(ˆ k

QPFCLS aα   

 
 

The Newton step )(kα  is the solution of the following 1p  linear equations: 

 






 

















0

)(

0

)( )()()(2 kkTk f

w

f αα

E

Eα
 (3.7)

where f2  and f are the first and second derivatives of function )(αf , respectively. 

Equation (3.7) guarantees that )(kα  moves along the descent direction, such that  

)()( )()()( kkk ff ααα    holds, and that the updated solution )()( kk αα   is a feasible 

solution, such that 1)( )()(  kk ααE   holds as long as the starting point is feasible. The 

Newton decrement   determined by   2
1

)()(2)( )()(


 kkTk f ααα  is used as the stopping 

criterion for the inner while loop. The number of the distinct endmembers is specified by 

the value of p .  
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Noise-Adjusted Principal Components Transform Noise Reduction 

 
To further enhance the performance of our method, we use the noise-adjusted 

principal components (NAPC) transform [19], which is an extension of the principal 

components analysis (PCA), to reduce noise in hyperspectral images and perform the 

QPFCLS on noise reduced images. If the hyprspectral pixel vectors are considered as 

realizations of a random vector, the PCA finds linearly transformed data ordered by 

decreasing variance by the linear transformation: 

 rr T
PCPC A  (3.8)

assuming the mean has been subtracted from the data. PCA , the transform matrix, is the 

eigenvector matrix of the covariance matrix of r . The covariance matrix of PCr  is given 

by: 

  PC
TT

PCPC
TT

PC
T

PCPCPC AEAAAEE )()()( rrrrrr  (3.9)

where E  is the expectation. )( TE rr  is actually the covariance matrix of r  since r  is 

zero mean. By eigendecomposition, we find that   is the diagonal matrix whose 

diagonal elements are the eigenvalues of the covariance matrix of r . We assume that the 

eigenvalues in   are ordered by decreasing value. Notice that the transformed data are 

de-correlated and have decreasing data variance.  

 However, it is revealed that data variance does not necessarily reflect signal-to-

noise ratio (SNR) if different bands have unequal noise variances [20], and thus a 

component with large variance does not necessarily indicate high SNR. To deal with this 

problem, Green et al. [20] proposed a maximum noise fraction (MNF) transform which 

can produce components ordered by decreasing SNR instead of variance as is used in the 
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PCA. The MNF transform was reinterpreted as the noise-adjusted principal components 

(NAPC) transform [19], which is a two-stage process. Image data are first whitened so 

that the noise covariance matrix becomes an identity matrix, and then the standard PCA 

is applied to the whitened image data. In this section we discuss how the NAPC can be 

used to reduce noise in hyperspectral images. 

First, the noise covariance matrix n  is obtained from prior knowledge or 

estimated directly from images. One particular method that will be used in this paper was 

suggested by Roger [21]. Then the orthonormal eigenvector matrix V and the diagonal 

matrix   of eigenvalues are computed. The whitening transform matrix is obtained by 

2
1 VF . Image data are whitened by transforming each pixel vector by: 

 rr Fw   (3.10)

Then the covariance matrix of the whitened data, denoted by w , is calculated, 

and then the standard PCA is applied to obtain the eigenvector matrix A  of  w . Noise 

reduction can be achieved by deleting the noisiest components. Therefore, we only retain 

the first k  eigenvectors in A , with the new matrix denoted by Â . The transformed data 

can be obtained by: 

 )(ˆ
gw

TA mry   (3.11)

where gm  is the sample mean vector of the whitened image data. The reconstruction r̂  

of r  can be determined by: 

 )ˆ(ˆ 1
gAF myr    (3.12)

It is worth noting that if the additive noise is independent and identically 

distributed (i.i.d.), the NAPC transform is actually identical to the PCA. Another issue 
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encountered in this noise reduction method is the number of eigenvectors in A  that 

should be retained. It turns out that this number is related to the number of distinct 

endmembers in image data. Suppose that hyperspectral images are generated from L  

spectral bands, and that there are p  distinct endmembers. We should get p  significant 

eigenvalues of w , and pL   less significant eigenvalues. These significant eigenvalues 

contain most of the useful signals, while pL   eigenvalues correspond to noisy 

components. Therefore, if we retain the first p  eigenvectors in A , we find the optimal 

reconstruction r̂ . If the number of endmembers is known a priori, we should keep the 

same number of the eigenvectors in A . However, in most cases, when such knowledge is 

not accessible, we can still estimate the number of the endmembers directly from the 

image data. It is always safe to keep more eigenvectors than the estimated number of the 

endmembers, especially when such estimation becomes less reliable as the noise level 

rises. Experiments in the next chapter show that even though the performance of fraction 

estimation degrades slightly as more eigenvectors are retained, estimation results are still 

significantly improved. 

 
Unmixing with Nonnegativity and Relaxed Sum-to-One Constraints 

 
The linear mixture model has been a dominant model in the literature for the 

study of remotely sensed image data. It has been pointed out that the linear model 

implicitly suggests the sum-to-one constraint; that is, 1
1

 

p

i i . Nevertheless, this 

constraint is strictly valid only for the situation where endmembers in a pixel are arranged 

on the surface in a segregated manner, analogous to the squares on a checkerboard [22], 

as depicted in Figure 5. In reality, however, endmembers are more or less distributed in a 
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homogeneous way, which makes the sum-to-one constraint not strictly valid. As a result, 

a method specifically designed for the sum-to-one constraint can easily become 

vulnerable when the sum-to-one condition is not met. In this section, we propose a 

relaxed sum-to-one constraint and develop a corresponding method for this relaxation. 

The sum of the estimated fractions in every pixel is bound to a range rather than being 

fixed on the value of one. From here on, we call this new constraint the relaxed sum-to-

one constraint. The method with the relaxed sum-to-one and nonnegativity constraints is 

referred to as the relaxed-quadratic programming based fully constrained least squares 

(R-QPFCLS). 

 

 
 

Figure 5: Illustration of the Linear Model [22] 
 

 
The relaxed sum-to-one constraint (RSC) and the nonnegativity constraint (NC) 

have the following forms: 

 hl  Eα :RSC  (3.13)

 0 :NC  αB
 

(3.14)

where the p-dimensional vector ]1 , . . . ,1 ,1[E , B  is a pp  identity matrix, and p  is 

the number of the endmembers present in the pixel area. The lower bound l  and upper 
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bound h  define the box constraint imposed on the abundance fractions. Combining 

Equations (3.13) and (3.14), we get one inequality constraint qα H , where 






















E

E

B

H  

and 




















l

h

0

q . The same barrier method discussed in the previous section can solve this 

optimization problem, too. By putting the inequality constraint into the objective function 

by the logarithmic barrier function  


p

i i
T

i q
t1

)log(
1

αH , where T
iH is the ith row of 

H , the final form can be obtained as follows: 

 )log(
1

2)( Minimize
1

i
T

i

p

i

TTTT q
t

MMMf  


αHrrαrααα  (3.15)

The discussion about t  in Equation (3.6a) applies to (3.15), too. Newton’s method 

repeatedly applied to a sequence of unconstrained problems can find an estimate for 

Equation (3.15). The details of our method are given in Algorithm 3.2. The Newton step 

)(kα  and Newton decrement   are determined by )()( )(1)(2 kk ff αα    and 

  2
1

)()(2)( )()(


 kkTk f ααα . As before, it is guaranteed that )(kα  moves along the descent 

direction.  

 
Algorithm 3.2 R-QPFCLS Algorithm with RSC and NC Constraints 

  1: Initialize parameters t , )1( ,  ,  , Newton  

  2: 1k  
  3: while tp  do 

  4: Compute the Newton step )(kα  and the decrement   
  5: while Newton   do 

  6:  Find step size   by backtracking line search 
  7:   )()()( kkk ααα    
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  8:  Compute the Newton step )(kα  and the decrement   
  9: end while 
10: tt   

11: )()1( kk αα  , 1 kk  
12: end while 
13: )(ˆ k

QPFCLSR aα   
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CHAPTER FOUR 
 

Results 
 
 

Simulations for Fully Constrained Least Squares 

 
 
Implemented without Noise Reduction 
 

In this section, we demonstrate a comparative analysis among the OSP [7], SCLS, 

FCLSLU [16], and QPFCLS. A set of reflectance spectra is selected from the U.S. 

Geological Survey (USGS) Digital Spectral Library [23]. The set contains seven 

vegetation spectra: maple leaf, blackbrush, pinon pine, aspen leaf, saltbrush, azurite, and 

sagebrush. Their respective spectra are shown in Figure 6. Their fractions in each pixel  

 
Figure 6: Reflectance Spectra 
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are illustrated in Figure 7. In this example, 1000 mixed pixels are simulated according to 

the linear model in Equation (2.2). The sum of the fractions in each pixel is set to one to 

comply with the sum-to-one constraint. White Gaussian noise is added to every spectral 

band to achieve the SNR of 30:1. The SNR is defined as 

L

i iSNR
L 1

1
, where L  is the 

number of the bands and iSNR  is the SNR of the ith band, defined as 50% of the 

averaged reflectance in the ith band divided by the standard deviation of the noise. 

 
Figure 7: Simulated Fractions 

 
 

Four methods, the OSP, SCLS, FCLSLU, and QPFCLS, are implemented to 

estimate the fraction of saltbrush, which is added only to pixel numbers 400–600 with 
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Figure 8: Estimation Results of (a) OSP, (b) SCLS, (c) FCLSLU, and (d) QPFCLS (SNR=30:1) 
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(a) OSP
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(b) SCLS
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(c) FCLSLU
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10% abundance fraction. Their resulting estimated fractions are displayed in Figure 8. 

The parameters for the implementation of the QPFCLS are listed in Table 1.  

 
Table 1: Parameters for QPFCLS 

 
t  )1(      Newton  

4000 
Equal 

Fractions 
50 5100.1  5100.1 

 
 

We can see that the OSP and SCLS produce some negative fractions, which is 

physically meaningless. Two fully constrained methods, the FCLSLU and our method, 

QPFCLS, generate nonnegative results. To better compare the performance of each 

method, we calculate the root mean square (RMS) error between the actual and estimated 

fractions. The RMS errors are 310344.5   for OSP, 310273.5   for SCLS, 310218.4   

for FCLSLU, and 310219.4   for QPFCLS. The RMS errors of all seven materials are 

listed in Table 2. The FCLSLU and QPFCLS produce the best estimates for all materials.  

 
Table 2: Root Mean Square Errors of Seven Materials (SNR=30:1) 

 
Endmember OSP SCLS FCLSLU QPFCLS 
Maple leaf 210455.1   310730.7   310787.6   310787.6   
Blackbrush 210746.2   210462.2   210222.2   210222.2   
Pinon pine 210022.3   210913.2   210603.2   210603.2   
Aspen leaf 210928.1   210349.1   210261.1   210261.1   
Saltbrush 310344.5   310273.5   310218.4   310219.4   
Azurite 310401.4   310983.3   310567.3   310567.3   
Sagebrush 310811.5   310807.5   310788.4   310788.4   

 
 

Next, the SNR is reduced to 10:1 in order to demonstrate the capability of each 

estimation approach at high noise level. The estimation results are shown in Figure 9. As 

SNR decreases, the estimation results degrade dramatically. Again, we find that both the 
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Figure 9: Estimation Results of (a) OSP, (b) SCLS, (c) FCLSLU, and (d) QPFCLS (SNR=10:1) 
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(a) OSP
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(b) SCLS
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(c) FCLSLU
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OSP and SCLS produce negative fractions. The RMS errors are 210621.1   for OSP,

210589.1   for SCLS, 210228.1   for FCLSLU, and 210227.1   for QPFCLS. The 

RMS errors of all seven materials are shown in Table 3. In both cases, we find that the 

FCLSLU and QPFCLS perform comparably while OSP always performs the worst. This 

is because the FCLSLU and QPFCLS apply both the sum-to-one and nonnegativity 

constraints, but OSP is just an unconstrained estimation approach. In addition, SCLS 

performs slightly better than OSP, which indicates that applying the sum-to-one 

constraint alone does not lead to a significant improvement in estimation performance. 

 
Table 3: Root Mean Square Errors of Seven Materials (SNR=10:1) 

 
Endmember OSP SCLS FCLSLU QPFCLS 
Maple leaf 210527.4   210292.2   210917.1   210917.1   
Blackbrush 210292.8   210473.7   210022.6   210016.6   
Pinon pine 210158.9   210859.8   210152.7   210145.7   
Aspen leaf 210922.5   210003.4   210578.3   210578.3   
Saltbrush 210621.1   210589.1   210228.1   210227.1   
Azurite 210308.1   210189.1   310930.9   310931.9   
Sagebrush 210767.1   210768.1   210385.1   210385.1   

 
 

Implemented with Noise Reduction 
 

We have demonstrated that as noise level rises, the estimation results degrade. We 

will show in this example that noise reduction can noticeably enhance the estimation 

performance. The same reflectance spectra and simulated fractions are used here. White 

Gaussian noise is added to achieve the SNR of 10:1. Because we attempt to demonstrate 

the effectiveness of noise reduction, only the QPFCLS is considered in this example. The 

QPFCLS implemented with the same parameters as in Table 1 is performed on the noise 

reduced images instead of the original images. The number of the endmembers is 
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assumed to be known. Estimation results from images reconstructed from 7, 9, and 15 

principal components (PCs), respectively, are displayed in Figure 10. The fraction 

estimation obtained by the QPFCLS without noise reduction is also included for better 

comparison. The RMS errors are 310129.8   for 7 PCs, 310288.8   for 9 PCs, and 

310539.8   for 15 PCs. Recall that the RMS error is 210227.1   for QPFCLS from the 

previous example. The RMS errors of all seven materials are shown in Table 4. It can be 

observed from this example that even though the performance of fraction estimation 

deteriorates slightly as more PCs are included for reconstruction, the estimation results 

are still much better than those generated by the QPFCLS without noise reduction. 

 
Table 4: Root Mean Square Errors of Seven Materials with Noise Reduction (SNR=10:1) 

 
Endmember QPFCLS QPFCLS-7 PCs QPFCLS-9 PCs QPFCLS-15 PCs
Maple leaf 210917.1   210472.1   210482.1   210535.1   
Blackbrush 210016.6   210922.1   210943.1   210471.2   
Pinon pine 210145.7   210761.1   210787.1   210727.2   
Aspen leaf 210578.3   210068.2   210068.2   210321.2   
Saltbrush 210227.1   310129.8   310288.8   310539.8   
Azurite 310931.9   310420.6   310457.6   310994.6   
Sagebrush 210385.1   310847.8   310049.9   310239.9   
 
 

When the number of the endmembers is not accessible, a Neyman-Pearson 

detection theory-based thresholding method proposed by [24] can be used to estimate this 

number. By setting the false-alarm probability to 410 , this method leads to an estimate of 

the number of the endmembers equal to 4 as opposed to 7 material spectra used in this 

example. It is our belief that it may be a good practice to use more PCs than the estimated 

number of materials because it becomes more complicated to accurately estimate this  
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Figure 10: Estimation Results of (a) QPFCLS and QPFCLS with (b) 7, (c) 9, and (d) 15 PCs Reconstruction (SNR=10:1)
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(a) QPFCLS
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(b) QPFCLS with 7 PCs Reconstruction
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(c) QPFCLS with 9 PCs Reconstruction
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(d) QPFCLS with 15 PCs Reconstruction
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number as the noise level grows. In addition, including more PCs can only result in a 

minor decline in estimation capability, as already illustrated in this example. 

 
Real Hyperspectral Image Experiments for Fully Constrained Least Squares 

 
In this example, the QPFCLS algorithm implemented with noise reduction is 

applied to a real hyperspectral image scene collected by the AVIRIS sensor over Cuprite, 

NV, USA, in 1997, which is available at 

http://aviris.jpl.nasa.gov/html/aviris.freedata.html. This image set was atmospherically 

corrected using the MODTRAN radiative transfer model at the Jet Propulsion  

Laboratory [25]. Our study is based on a subimage of this scene with 350×350 pixels and 

224 spectral bands, shown in Figure 11. Due to water absorption and low SNR, bands 1–

3, 105–115, and 150–170 have been removed. Since no previous knowledge about this 

scene is available, a preprocessing step is needed to determine the endmember spectra 

 

 
 

Figure 11: Spectral Band 30 of a Subimage of the AVIRIS Cuprite Image Scene 
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prior to the operation of our method. The same Neyman-Pearson detection theory-based 

method [24] used in the previous example is implemented here to estimate the number of 

the endmembers. A false-alarm probability of 410  leads to an estimation of 22 distinct 

endmembers. Then a simplex growing method [26] suggested by Chang et al. is adopted 

in this example to extract these 22 endmember spectral signatures. The spatial locations 

of the 22 endmembers generated by this method are shown in Figure 12, with the 

numbers indicating the order that the target endmembers are found. The fraction images  

 

 
 

Figure 12: Spatial Locations of 22 Endmembers 
 
 
obtained by the OSP and QPFCLS with noise reduction are displayed in Figures 13 and 

14, respectively. Unlike computer simulations, we have no access to the ground truth of 

the image scene, which makes it difficult to directly evaluate the methods. However, 

although rigid proof is lacking that the QPFCLS with noise reduction produces better 

results than the OSP, it can be observed that the noise in the fraction images obtained by 
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the former is less pronounced than that in the fraction images generated by the latter. 

Figure 13(b), 13(g), 13(j), 13(m), 13(s), and 13(t), for example, suffer from intense 

fluctuations of brightness, but their counterparts in Figure 14 are less subject to this 

problem. This improvement is consistent with what has been found in the previous 

computer simulations. Moreover, endmember abundance fractions should be continuous. 

The fractions obtained by the QPFCLS with noise reduction vary more smoothly in 

spatial spaces. Figure 14(c), 14(g), 14(h), 14(n) and 14(t), for example, have smoother 

transition than their counterparts in Figure 13. 
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Figure 13: 22 Fraction Images Obtained by OSP 
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Figure 14: 22 Fraction Images Obtained by QPFCLS with Noise Reduction 

 
 

Simulations for Unmixing with Nonnegativity and Relaxed Sum-to-One Constraints 

 
In this section, we consider the situation where the sum-to-one condition is not 

strictly valid and demonstrate a comparative analysis among OSP [8], SCLS, QPFCLS, 

and R-QPFCLS. The first three approaches are selected to represent the unconstrained, 

partially constrained, and fully constrained approaches, respectively. The same set of 
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reflectance spectra and simulated fractions are used. The parameters for the 

implementation of the QPFCLS and R-QPFCLS are listed in Tables 1 and 5, respectively. 

 
Table 5: Parameters for R-QPFCLS 

 
t  )1(      Newton l h

1000 
Equal 

Fractions 
50 510  410  0.9 1.1 

 
 
 Sum-to-One Condition Strictly Satisfied 
 

In this example, we demonstrate the performance of the R-QPFCLS using the 

nonnegativity and relaxed sum-to-one constraints when the sum-to-one condition is met. 

The sum of the fractions in each pixel is set to one to comply strictly with the sum-to-one 

condition. White Gaussian noise is added to every spectral band to achieve the SNR of 

30:1.  Figure 15 displays the fraction estimations of saltbrush, which is added only to 

pixel numbers 400–600 with 10% fraction. The RMS errors are 310229.5   for OSP, 

310182.5   for SCLS, 310956.3   for QPFCLS, and 310970.3   for R-QPFCLS. We 

find that the QPFCLS produces the best estimate when the sum-to-one condition is 

strictly satisfied. However, relaxing the sum-to-one constraint does not significantly 

sacrifice the performance of the R-QPFCLS. The RMS errors of all seven materials are 

listed in Table 6. However, this will not be the case as we add variations to the fraction 

vectors. 

 
Sum-to-One Condition Not Satisfied 

 
In this example, we simulate the situation where the sum-to-one condition is not 

satisfied by multiplying each fraction vector by a random variable x , where 
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Figure 15: Estimation Results of (a) OSP, (b) SCLS, (c) QPFCLS, and (d) R-QPFCLS When Sum-to-One Condition Satisfied 
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(b) SCLS
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(c) QPFCLS
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(d) R-QPFCLS
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Table 6: Root Mean Square Errors of Seven Materials 
When Sum-to-One Condition Satisfied 

  
Endmember OSP SCLS QPFCLS R-QPFCLS 
Maple leaf 210486.1   310599.7   310378.6   210304.1   
Blackbrush 210690.2   210414.2   210242.2   210423.2   
Pinon pine 210992.2   210889.2   210647.2   210712.2   
Aspen leaf 210985.1   210378.1   210295.1   210795.1   
Saltbrush 310229.5   310182.5   310956.3   310970.3   
Azurite 310382.4   310905.3   310534.3   310292.4   
Sagebrush 310709.5   310700.5   310648.4   310777.4   
 
 

),(~ 2Nx . We set the values  and   to be 1 and 0.0304, respectively. The fraction 

vector that we need to estimate in each pixel becomes xαα New . Estimation results of 

saltbrush are illustrated in Figure 16. We find that the QPFCLS, a method specifically 

designed to handle both the sum-to-one and nonnegativity constraints, degrades the most 

when the sum-to-one condition is not met. The RMS errors are 310439.5   for OSP, 

310809.6   for SCLS, 310754.9   for QPFCLS, and 310239.4   for R-QPFCLS. The 

RMS errors of all seven materials are given in Table 7. Apparently, the QPFCLS, a fully 

constrained approach is less effective than the R-QPFCLS in handling the situation where 

the sum-to-one condition is not satisfied. 

 
Table 7: Root Mean Square Errors of Seven Materials 

When Sum-to-One Condition Not Satisfied 
 
Endmember OSP SCLS QPFCLS R-QPFCLS 
Maple leaf 2101.500   210108.6   210821.4   210285.1   
Blackbrush 210644.2   210283.6   210496.4   210335.2   
Pinon pine 210887.2   210686.4   210472.3   210574.2   
Aspen leaf 210984.1   210816.6   210383.5   210749.1   
Saltbrush 310439.5   310809.6   310754.9   310239.4   
Azurite 310232.4   210003.1   210198.2   310030.4   
Sagebrush 310951.5   310012.6   210801.1   310956.4   
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Figure 16: Estimation Results of (a) OSP, (b) SCLS, (c) QPFCLS, and (d) R-QPFCLS When Sum-to-One Condition Not Satisfied 
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(b) SCLS
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(c) QPFCLS
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CHAPTER FIVE 
 

Conclusion and Future Work 
 
 

Conclusion 

 
When the size of the targets of interest is smaller than the hyperspectral image 

resolution, the need arises to estimate the endmember fractions. Two estimation methods 

are presented in this paper. The first method considers both the sum-to-one and 

nonnegativity constraints when developing a new fully constrained least squares 

estimation. We also use the noise-adjusted principal components transform to reduce the 

noise in hyperspectral images, which extends the capability of this estimation method. 

Experiments with simulated data and real AVIRIS image data demonstrate that our fully 

constrained method, the QPFCLS, can generate results comparable to those obtained by 

an existing linear unmixing method, the FCLSLU, and superior to the OSP and sum-to-

one constrained least squares estimation and that noise reduction can significantly 

enhance the performance of our approach when the noise level rises. 

The first proposed method relies on the validity of the linear mixture model. 

Nevertheless, the linear mixture model is strictly valid for the situation where the 

endmembers are arranged on the surface in a segregated manner. If, however, the 

endmembers are in a more intimate association, the suggested method may become less 

accurate as the linear mixture model does not remain valid. To circumvent this difficulty, 

we propose the relaxed sum-to-one constraint and the second unmixing method, R-

QPFCLS. The unmixing with the nonegativity and relaxed sum-to-one constraints 
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provides more robust estimation of the abundance fractions when the sum-to-one 

constraint is violated, while producing similar results to other existing methods when the 

constraint holds.  

 
Future Work 

 
For computer simulations in this work, it is assumed that the endmember spectra 

are known a priori. For real hyperspectral image examples, a simplex growing method 

suggested by Chang et al. [26] is used to find the endmember spectra. The simplex 

growing method is based on the fact that a data cloud, created by the linear model 

together with the sum-to-one and nonnegativity constraints, forms a simplex. Thus, the 

entire hyperspectral pixel vectors in a scene should lie in a simplex, and the vertices of 

this simplex are the spectra of the endmembers present in the scene. The method 

proposed in [26] extracts endmember spectra directly from a hyperspectral image by 

finding a simplex that best fits the data cloud of the hyperspectral pixel vectors. However, 

the success of this method relies on the linear model and two physical constraints. The 

suggested future work of this research is to use the technology of clustering, especially 

clustering methods for high-dimensional problems, to develop a more robust method to 

find endmember spectra. 
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