
ABSTRACT

Clustering in High Dimension and Choosing Cluster Representatives for SimPoint

Joshua Benjamin Johnston, M.S.

Mentor: Gregory J. Hamerly, Ph.D.

In computer architecture, researchers compare new processor designs by sim-

ulating them in software. Because simulation is slow, researchers simulate small parts

of a workload to save time. The widely successful SimPoint approach identifies these

key parts with k-means clustering. The extremely high-dimensional nature of these

workloads causes difficulties for k-means, so SimPoint must reduce the dimension be-

fore clustering. We propose clustering workload data with the exponential Dirichlet

compound multinomial (EDCM), a new relative of the multinomial probability dis-

tribution and the first model that has been used to cluster workload data without

the need for dimension reduction. The EDCM mixture produces good models which

have far fewer clusters than models generated by k-means, significantly reducing the

amount of time spent in simulation. The EDCM mixture converges quickly and is a

good model for “bursty” traits which appear in workloads. We discuss model selection

and choosing cluster representatives for the EDCM mixture.

Page bearing signatures is kept on file in the Graduate School.

Clustering in High Dimension and Choosing Cluster Representatives for Simpoint

by

Joshua Benjamin Johnston, B.S.

A Thesis

Approved by the Department of Computer Science

Donald L. Gaitros, Ph.D., Chairperson

Submitted to the Graduate Faculty of

Baylor University in Partial Fulfillment of the
Requirements for the Degree

of
Master of Science

Approved by the Thesis Committee

Gregory J. Hamerly, Ph.D., Chairperson

David B. Sturgill, Ph.D.

Dennis A. Johnston, Ph.D.

Accepted by the Graduate School
August 2007

J. Larry Lyon, Ph.D., Dean

Copyright c© 2007 by Joshua Benjamin Johnston

All rights reserved

TABLE OF CONTENTS

LIST OF FIGURES vi

LIST OF TABLES viii

1 Introduction 1

1.1 What is Clustering . 2

1.2 Categories of Clustering Algorithms 4

1.3 Motivation of the Thesis . 7

1.4 Thesis Organization . 12

2 Related Work 13

2.1 SimPoint . 13

2.1.1 Hardware Simulation . 13

2.1.2 Basic Block Vectors . 15

2.2 k-Means . 18

2.2.1 Algorithm . 18

2.2.2 Shortcomings . 19

2.3 Other Clustering Algorithms . 20

2.3.1 Gaussian Mixtures . 21

2.3.2 Multinomial Mixtures . 21

3 Design and Implementation 22

3.1 Clustering With EDCM Mixtures . 23

3.1.1 Statistical Background . 23

3.1.2 Exponential Dirichlet Compound Multinomial 31

3.1.3 Burstiness . 36

3.1.4 Expectation-Maximization Algorithm 38

iii

3.1.5 Running Time and Algorithmic Complexity 48

3.2 Choosing k . 51

3.2.1 Over- and Underfitting . 51

3.2.2 Finding a Balance . 53

3.2.3 Akaike Information Criterion 54

3.2.4 Bayesian Information Criterion 54

3.2.5 Model Complexity . 55

3.3 Analysis of Clusterings . 56

3.3.1 Variation of Information . 57

3.3.2 Cluster Characteristics . 59

3.4 Choosing Cluster Representatives . 61

3.4.1 Probabilistic Methods . 62

3.4.2 Geometric Methods . 63

3.4.3 Motivation for Choice of Method 66

4 Experimental Results 67

4.1 Experimental Setup . 67

4.2 Burstiness in Program Execution . 68

4.2.1 Measuring Burstiness . 68

4.2.2 Effects of Burstiness . 77

4.3 Clustering with EDCM Mixtures . 80

4.3.1 Rates of Convergence . 80

4.3.2 Deterministic Annealing . 83

4.3.3 Running Time . 87

4.4 Choosing a Model . 88

4.4.1 AIC and BIC . 88

4.4.2 Comparison with SimPoint . 94

4.5 Choosing Cluster Representatives . 97

iv

4.5.1 Methods for Choosing Simulation Points 97

4.5.2 Motivations for Different Methods 100

4.6 Analysis of Clusterings . 101

4.6.1 Distribution of Cluster Weights 103

4.6.2 Variation of Information . 104

4.6.3 Coefficient of Variation . 105

4.7 Overview . 107

5 Summary 110

BIBLIOGRAPHY 113

v

LIST OF FIGURES

1.1 Steps of a clustering algorithm . 4

1.2 Hierarchy of clustering algorithms . 5

1.3 Relation of number of dimensions to average distance between points 8

1.4 Curse of Dimensionality . 10

2.1 Example pseudo-assembly code snippet showing basic blocks 16

2.2 k-means Clustering Algorithm . 19

3.1 Percentage of small β for program trace data 31

3.2 Gaussian distribution . 34

3.3 Expectation-Maximization algorithm 39

3.4 Deterministic Annealing EM algorithm 49

3.5 Meilă’s Variation of Information . 59

4.1 Burstiness of the Pólya urn scheme, 2 colors 69

4.2 Burstiness of the Pólya urn scheme, 3 colors 70

4.3 Burstiness of the Pólya urn scheme, 5 colors 70

4.4 Value of s per dataset . 72

4.5 Percentages of maximum values of s 72

4.6 Entropy of bursty features . 73

4.7 Percent of SimPoint features with low entropy 74

4.8 Average entropy of SimPoint features 75

4.9 Percent small entropies of text corpora 76

4.10 Probabilities of bursty data, EDCM vs. Multinomial 78

4.11 Relation between burstiness and prediction error 79

4.12 EM iterations per benchmark . 82

vi

4.13 Number of EM iterations versus number of dimensions 84

4.14 Average EM iterations per k . 85

4.15 Deterministic Annealing EM (DAEM) algorithm—Percent error . . . 86

4.16 Deterministic Annealing EM (DAEM) algorithm—Choice of k 86

4.17 Log likelihood and AIC for art-110 89

4.18 Log likelihood and AIC for gcc-int 90

4.19 AIC versus percent error . 91

4.20 BIC scores for art-110 and gcc-int 92

4.21 BIC versus percent error . 93

4.22 Projection of art-110 and gcc-int to two dimensions 93

4.23 Model selection with the EDCM—Prediction error 94

4.24 Model selection with the EDCM—Choice of k 95

4.25 SimPoint (BIC) versus EDCM (AIC)—Choice of k 96

4.26 SimPoint (BIC) versus EDCM (AIC)—Percent error 96

4.27 Selecting cluster representatives—All methods 97

4.28 Selecting cluster representatives—Probability and angle 99

4.29 Selecting cluster representatives—Distance metrics 100

4.30 Choice of distance metrics and mean or median 102

4.31 Comparison of cluster weights . 104

4.32 Variation of Information between EDCM and SimPoint 105

4.33 Coefficient of Variation of CPI . 106

4.34 Coefficient of Variation of CPI, small k 107

vii

LIST OF TABLES

2.1 Number of intervals in program trace data 14

4.1 Table of statistics for iterations needed to compute s 81

viii

CHAPTER ONE

Introduction

Consider the complexity of a modern microprocessor. Billions of transistors

are arranged, in precise nanometer scale, to form arithmetic units, caches, execution

pipelines, and all the other microscopic structures needed to power today’s com-

puter systems. Now consider the planning needed to design the next generation of

super-scalar processors. Planning out the right combination of design parameters is a

daunting task. How big should one make the level one (L1) cache? How many stages

should the execution pipeline have? What memory latency should be used? All of

these questions must be answered at the same time, examining the trade-offs between

various statistics and parameter configurations, in order to achieve the highest level

of performance for a new processor design.

Testing a particular set of these parameters is painstaking. Unable to test each

different set of parameters in hardware, one must use a software simulator to gather

runtime statistics about a particular set of parameters. One may feed the simulator

a standard set of benchmarks, like the SPEC CPU2000 suite . On the SimpleScalar

simulator (Burger and Austin 1997), which can process about 400 million instructions

per hour (depending on the speed of the computer system on which it runs), running

the full set of SPEC CPU2000 benchmarks, with 4.06 trillion instructions to execute,

will take 1.16 years of CPU time. This is only for one particular set of parameters.

These same simulations must be run for many combinations if one is to find the best

set of parameters to use for a design.

The SimPoint application uses the machine learning method of data clustering

to determine which portions of a benchmark’s execution are similar. By only run-

ning detailed simulations on parts of these similar portions, researchers are able to

1

2

get estimated statistics of their hardware design with only a small amount of error

compared to running the full benchmark through a detailed simulation. The CPU

time required to simulate these small portions is cut by several orders of magnitude,

from roughly 1.16 years to around 6 days.

We are researching a new model for clustering the high dimensional program

traces clustered by SimPoint. The exponential Dirichlet compound multinomial

(EDCM) possesses several qualities that make it attractive over the current clustering

method used by SimPoint, the k-means algorithm. The EDCM is able to handle data

in high dimension and is able to account for temporal locality, a phenomenon often

encountered in a program’s execution.

1.1 What is Clustering

In the most general sense, clustering is concerned with dividing a set of examples

into groups of similar items and, at the same time, separating those that are dissimilar.

The definitions of what it means for two items to be similar or dissimilar can vary

widely, depending on the problem context and clustering algorithm used. However,

there must be a mathematical foundation and metric for comparing two examples so

the clustering can be carried out automatically by a computer program.

Clustering is considered to belong in the machine learning subfield of unsuper-

vised learning. This means clustering is performed without a training signal to tell

the clustering algorithm whether or not it is correct. Often times, we don’t know how

many clusters we should be looking for, what the clusters might possibly look like,

or how the data should relate to one another. Contrast this to supervised learning,

where we have a training signal, a set of correct answers for a given set of data.

Hence the difficulty and unique challenge posed by clustering—our algorithms must

perform accurate clustering (accuracy can be measured many ways) without any a

priori knowledge (besides basic assumptions imposed by the choice of clustering

3

algorithm) about how the data will be organized or how the examples in our set of

data are related (Jain et al. 1999).

In many applications, the purpose of clustering is to find a concise representation

for a large set of examples by analyzing and determining a structure among the data

and fitting a set of clusters to them. If we can gather all similar examples into one

group and find some way to represent the group as a whole, we have summarized

the information for all the data examples in that cluster. The more clusters we

have, the more precise and fine-grained our representation of the overall dataset can

be. The fewer clusters we have, the greater savings we enjoy in the compression

of data representation, at the cost of losing finer detail about the dataset. Some

different types of representations that may be used to summarize a clustering may be

the cluster centroids (if using distance-based geometric similarity) or the parameters

used to fit a probability distribution to the features of the data in the cluster (using

something like a multinomial probability distribution).

Choosing a similarity metric can be difficult. Even within a particular clustering

algorithm, one may have many methods by which data items can be compared. The

choice is not always straightforward and different methods will have various strengths

and weaknesses, even for the same clustering problem. In some cases, the most

intuitive or appropriate metric to use may be some measure of distance—how far

apart things are. Or, it may be some measure of probability—how likely it is that a

particular cluster contains the data that it does. These metrics will be examined in

more detail later.

Jain and Dubes (1988) propose a series of general steps taken to solve a clus-

tering problem.

(1) Determine the number of clusters (k) to be found and the features of the data

to be used by the clustering process (which might not be an option for the

user).

4

Feature Selection
Number of Classes

Data

Data
Similarity

Data Representation
Clustering

Model

Cluster

Feedback

Feedback Clusters

Figure 1.1: Feedback loop used in many clustering contexts. Information about the
final clusterings is often used to refine initial assumptions about feature choice or
similarity metrics, giving a new and better clustering at the end of the next iteration.
Most of the time, the loop is terminated when there is not a significant change in the
clusterings from one iteration to the next, or when we have determined to have found
the best clustering (if possible). (Jain et al. 1999)

(2) Define or choose a metric to be used for data similarity.

(3) Perform the clustering using the appropriate clustering algorithm for the do-

main (see below for a discussion about different types of algorithms), yielding

a set of clusters.

(4) Extract a summarization of the data from the clustering.

Often, the first three steps are repeated in a feedback loop (Figure 1.1) to optimize

the clustering, using measurements on the clusters given in step three to reinforce

certain important features, updating the number of clusters (k) needed to more ac-

curately represent the data, or updating parameters for the similarity metric. The

final clustering will be one that converges without a significant change in the clusters

from one iteration to the next (with the definition of significance depending again on

the problem context), or until we have determined to have found the best clustering

(if possible). Again, the definition of what makes a clustering better than another

depends on the problem context.

1.2 Categories of Clustering Algorithms

Clustering is a broad field and there are many different algorithms for clustering

different sets of data. Depending on both the context of the clustering problem

and the needs of the practitioner, there are many different approaches to clustering

5

Single
Link

Complete
Link

Average
Link

Square
Error

k-means

Graph
Theoretic

Mixture
Resolving

Expectation
Maximization

Mode
Seeking

Clustering

Hierarchical Partitional

Agglomerative Divisive

Figure 1.2: General hierarchy of clustering algorithms. Many algorithms will span
multiple types, as these divisions are not perfectly disjoint. (Jain and Dubes 1988)

which fall into two broad categories, hierarchical and partitioning. Figure 1.2 (Jain

and Dubes 1988) gives a visual synopsis of some of the most common clustering

types. Obviously, every variation on these themes cannot be represented in such a

concise figure. Nor are all the divisions of the algorithms perfectly disjoint. Across

the division of clustering algorithms offered by Jain and Dubes lie many common

considerations that can be applied to a variety of situations, depending on the needs

of individual algorithms (1988).

Hierarchical clustering algorithms fall into two basic categories, agglomerative

and divisive. Hierarchical clustering methods allow one to select the amount of gran-

ularity and detail used in data representation by choosing different levels of the hier-

archy.

Agglomerative methods start by considering each data example in its own clus-

ter. Through successive iterations of the algorithm, clusters are combined into larger

groups until all the data examples are contained in one large cluster. However, all the

data about the sub-clusters is preserved. Agglomerative methods consider which clus-

ters to combine using single-link, complete-link, or average-link methods (there are

6

more methods which can be used). The three linkage methods consider the distance

between two clusters to be some function of the distances between pairs of points,

where one point lies in one cluster, and the other point lies in the other cluster.

Single-link and complete-link methods consider the distance between two clusters to

be the minimum or maximum distance, respectively, between all such pairs of points.

Average-link is, as the name implies, a trade-off between the other two. The distance

between two clusters is the average distance between all such pairs. In any case,

the two closest clusters are combined each round until there is only one large cluster

encompassing all the examples.

Divisive hierarchical methods work in the opposite manner. To begin, all data

points are contained in one large cluster. Through successive iterations of the al-

gorithm, the cluster(s) are divided at some point until each data input resides in a

cluster by itself. Divisive methods are not as widely used or researched as agglomer-

ative methods (Hastie et al. 2001).

Partitioning clustering algorithms are also generally called flat algorithms, be-

cause they do not create hierarchies of information. Instead, they partition the set of

data examples into groups based on some metric.

Squared-error algorithms are generally the most easy to understand and imple-

ment, seeking to minimize the squared distance of each data point from the centroid

of the cluster it is assigned to. k-means is a very popular algorithm using the squared

error approach and is the clustering algorithm used in the current version of the

SimPoint application (Sherwood et al. 2002), which will be discussed in detail later.

Mixture-resolving methods assume that data examples are generated by some

number of probability distributions (like multinomials). The goal of these types of al-

gorithms is to estimate the various parameters of the distributions mixtures. Usually,

the log likelihood of the model is maximized through iterative methods, like the

7

Expectation-Maximization algorithm (Dempster et al. 1977). The EM algorithm is

described in more detail later in the thesis.

Graph theoretic algorithms consider the data examples to be part of a graph

data structure and perform different transformations on the graph. For example,

Zahn (1971) considers a minimum weight spanning tree of all the examples. The

examples are nodes connected by edges of weight equal to the distances between

them. Clusters are generated by cutting the edges with the greatest weights.

Spectral clustering is a rather new area of clustering that also uses graph theory.

Consider a set of examples to be vertices in a graph, with edges between them having

weights corresponding to the distances between examples in some geometric space.

One might think of separating the graph into k sections, cutting along the edges

with the highest weights, to generate k groups of vertices that are all close together.

Finding an optimal partitioning (minimizing the number of cuts and the weight of

the edges between the nodes in each cluster) is NP-hard, but it can be approximated

using spectral techniques, where we examine the eigenvectors of the graph’s Laplacian

(Ng et al. 2001).

There are many other types of clustering algorithms other than the ones shown

here. The algorithms listed above serve as a general taxonomy rather than an ex-

haustive compendium. The k-means and EM algorithms are the main focus of this

thesis.

1.3 Motivation of the Thesis

The primary focus of this thesis is applying the EM algorithm to cluster data

in high dimension. Clustering data in high dimension must handle many interesting

problems that do not occur in lower dimension. Many common clustering domains

occur naturally in high dimension spaces, however, and it is important that clustering

techniques are developed to handle them.

8

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

Dimensions

A
ve

ra
ge

 D
is

ta
nc

e

Figure 1.3: Relation of number of dimensions to average distance between points.
The number of dimensions, D, is varied and the average distance between any two
i.i.d. random points (distributed uniformly) selected from the D-dimensional unit
hypercube is computed. The horizontal axis shows increasing number of dimensions.
The vertical axis shows the average distance between any two random points. As the
number of dimensions increases, so does the average distance between any two points.
(Hastie et al. 2001)

As an example of data occurring in high dimension, consider text documents.

Each word in the corpus’ dictionary is counted as a dimension. The value of each

dimension for a particular example is the number of times that word occurs in that

document. Therefore, it is not uncommon to see examples with hundreds of thou-

sands of dimensions. Or consider data like basic block vectors (BBVs), the program

trace data clustered by SimPoint. Each dimension represents a count of the number

of times a program basic block executes within an interval of machine instructions.

There may be thousands or millions of basic blocks that can occur in each interval

(with perhaps millions of instructions per interval), and thus each BBV has to main-

tain a correspondingly large number of counts, yielding data having incredibly high

dimension to cluster.

9

Data in high dimension poses many interesting obstacles, not just for machine

learning applications, but all of mathematics. With an increase in dimension, the

distance between objects tends to increases as well. Consider Euclidean (straight

line) distance. We see that as the number of dimensions increases, so does the average

distance between any two pairs of random points. Figure 1.3 shows the relationship

between the average Euclidean distance between any two uniformly i.i.d. random

points chosen within the D-dimensional unit hypercube. D is the dimensionality of

the data and increases from 1 to 30 dimensions.

Dimensionality also affects the number of examples needed to compute statistics

over our data. When computing covariance, we need on the order of O(D2) examples

(relating each dimension to every other) to get accurate estimations (where D is the

number of dimensions in the data). When computing joint probabilities, however, we

often need a number of examples exponential in the number of dimensions. Thus, if we

have many dimensions, we need a lot of data to get a full picture of the relationships

between the examples.

Another problem using data in high dimension is dealing with the curse of

dimensionality. The curse of dimensionality is a mathematical principle by which the

number of examples needed to densely populate a volume of space scales exponentially

with the number of dimensions. Consider a D-dimensional hypercube with sides of

length l. The volume of the region is

V =
D
∏

d=1

l (1.1)

= lD. (1.2)

Let l be bounded above by L, so we have a sub-cube of side length l within a larger

cube with side length L (0 ≤ l ≤ L). Speaking in terms of the fraction of volume

the smaller cube encompasses within the larger cube, as we increase the number of

dimensions linearly, in order to maintain the same fraction of volume within the larger

cube, l must increase multiplicatively. In other words, it takes more and more data

10

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Side Length

V
ol

um
e

1 Dimension
2 Dimensions
3 Dimensions
10 Dimensions

Figure 1.4: Curse of Dimensionality. The horizontal axis denotes the side length l of
a hypercube, expressed as some fraction of a maximum length L (side length of an
enclosing hypercube). The vertical axis denotes the volume of the smaller hypercube,
some fraction of the volume of the larger hypercube. As the number of dimensions
increases, the smaller hypercube must become larger and larger to contain the same
fraction of the larger hypercube’s volume. Note that in 10 dimensions, l must be 80%
of the maximum length L for the hypercube to contain 10% of the maximum volume
(L10). (Hastie et al. 2001)

examples (analogous to l) to express the same amount of information (the volume

of the hypercube) in higher dimension. Figure 1.4 expresses this idea (Hastie et al.

2001).

Our research with the exponential Dirichlet compound multinomial (EDCM)

(Elkan 2006) mixture shows it is well suited to working with the data in its full

dimension, avoiding most of the problems mentioned above. Clustering in the full

dimension of the data is important for several reasons which will be fleshed out later

in the thesis. With a strong algorithm for clustering in the full dimension of the

data, we can expand this research into other areas that also deal with data in high

dimension. Elkan has already used it to cluster text documents. Other areas of high

11

dimension clustering include program trace clustering (i.e. SimPoint), speech pro-

cessing, and genome classification.

The EDCM also accounts for a natural phenomenon known as burstiness. A

feature is said to be bursty if, when it occurs, it has a high probability of occurring

again in the same example. Words in text documents are bursty—if an author uses

a particular word once, especially if that word is content-bearing, it is more likely to

appear again. The basic block vectors clustered by SimPoint exhibit bursty behavior.

The temporal locality of program execution means that if a basic block is executed

within an interval, there is a high chance that it will be executed again soon (for

example, the contents of a loop). Burstiness and its importance are described in

more detail later.

We consider several different methods of choosing cluster representatives. Rep-

resentatives are the means by which a cluster can be summarized. They also serve

as the simulation points for detailed simulations run on prototype hardware designs.

With the EDCM, we can use the probabilities assigned to each data example in the

clusters to select a representative (e.g. the example with the highest probability).

We can also use basic geometric interpretations, such as Euclidean and Manhattan

distance, as well as the vector dot product, to select cluster representatives.

We can select simulation points from EDCM clusters that give prediction accu-

racies comparable to the k-means clustering algorithm currently used by SimPoint.

However, we find the EDCM algorithm is able to achieve comparable accuracies while

using half the number of clusters as SimPoint, meaning time saved when the full sim-

ulations are run on the simulation points (there is one simulation point per cluster).

Additionally, clustering with the EDCM mixture model is theoretically appealing for

several reasons. First, it is able to deal with the program trace data in its full di-

mension, without the need for dimension reduction techniques. Second, the EDCM

is able to handle the phenomenon of burstiness, a natural trait of the data which we

12

hope will help to identify similarities between examples. Third, k-means makes the

rigid assumption that the clusters have spherical covariance. In most cases, for the

program trace data we are examining, this is not true. The EDCM model avoids this

limiting assumption.

1.4 Thesis Organization

The remainder of the thesis is organized as follows. In chapter two, we discuss

the background work the thesis is based upon and related approaches at solving the

problems. In chapter three, we discuss our methodology, analyzing and providing

experimental results for it in chapter four. Chapter five ends with our conclusions

and directions for future work.

CHAPTER TWO

Related Work

The application of the research in this thesis focuses on clustering the high

dimensional program trace data clustered by the SimPoint application. In this section,

we discuss SimPoint and the clustering problem it addresses. We discuss the k-means

algorithm, the current clustering solution for SimPoint, and address motivations for

seeking a different clustering algorithm. We then take a look at clustering algorithms,

other than k-means, that are practical solutions to many real-world problems. We

discuss why these algorithms do not work well for clustering high dimensional, bursty

data, specifically the basic block vector data clustered by SimPoint

2.1 SimPoint

The SimPoint application was developed by researchers at the University of

California, San Diego (Sherwood et al. 2002). It is the de facto standard for use in

industry, including corporations such as Intel and IBM, for speeding up the simulation

tests of new chip designs.

2.1.1 Hardware Simulation

When a microprocessor manufacturer is creating a new chip design, there are

many factors to consider when choosing the various parameters of the chip specifica-

tion. For example, one may modify the number of stages in the pipeline, the number

of pipelines, the size of the L1 cache, the memory latency, etc. It is infeasible to fab-

ricate the different combinations of these parameters in actual hardware prototypes

and test the performance of the chip. Instead, a simulation is setup in software to

emulate the hardware. The software simulation provides a flexible, cheap, and ac-

13

14

Table 2.1: Number of intervals in program trace data. We count the number of
intervals for each of the program trace datasets from the SPEC CPU2000 suite of
benchmarks. Each interval is 100 million instructions long. There are a total of
40,676 intervals (and therefore 40.676e3 × 100e6 = 4.07e12 instructions) within the
suite.

Dataset Intervals Dataset Intervals
ammp-ref 3266 gcc-00-scilab-ref 621
applu-ref 2239 gcc-00-train 52
art-110 418 gzip-graphic-ref 1038
art-470 451 gzip-log-ref 396
bzip2-graphic-ref 1436 gzip-program-ref 1689
bzip2-program-ref 1250 gzip-random-ref 822
bzip2-source-ref 1089 gzip-source-ref 844
crafty-ref 1919 lucas-ref 1424
eon-cook-ref 807 mesa-ref 2817
eon-kajiya-ref 1013 perlbmk-diffmail-ref 400
eon-rushmeier-ref 579 perlbmk-makerand-ref 21
equake-ref 1316 perlbmk-splitmail-ref 1109
facerec-ref 2111 swim-ref 2259
gap-ref 2696 vortex-one-ref 1190
gcc-00-166-ref 470 vortex-three-ref 1331
gcc-00-200-ref 1087 vortex-two-ref 1387
gcc-00-expr-ref 121 vpr-place-ref 35
gcc-00-integrate-ref 132 vpr-route-ref 841

curate method for adjusting and testing the parameters of a prototypical hardware

design. Different benchmarks, like the SPEC CPU2000 suite, are then run through

the simulator. This allows hardware designers to gauge the performance of a design

with flexibility and relatively low cost.

The problem with software simulation, however, is that running one full bench-

mark can take months of CPU time. Therefore, trying to run a diverse array of

benchmarks contained in a suite will take years. This is only for one combination

of parameters, so trying to test every combination to find the best will take much

longer. For example, within the SPEC CPU2000 suite, there are a total of 36 program

trace datasets (benchmark-input pairs) comprised of a total of 4.06 trillion instruc-

tions. Table 2.1 gives the number of intervals per dataset. If these datasets are to be

15

put through a detailed simulation on the SimpleScalar simulator (Burger and Austin

1997), which runs at about 400 million instructions per hour (depending, obviously,

on the speed of the computer system it is running on), running the entire suite will

take roughly 1.16 years of CPU time for one combination of parameters.

SimPoint addresses this problem by splitting the execution of each benchmark

up into intervals of program execution. An interval is a consecutive sequence of ma-

chine instructions. For example, some of the program trace data SimPoint examines

are intervals of 100 million instructions each, though intervals of any length could

work. Researchers have found, however, that an interval length of 10 to 100 million

instructions seems to offer a good balance between the number of intervals within a

program’s execution and the simulation time required to run each interval through

the simulator. The intervals are clustered by the k-means algorithm into groups with

similar behavior. One interval from each cluster is chosen as a simulation point and

run through the simulator to obtain detailed statistics on its performance. So for

k simulation points, we obtain k performance estimates that are used in a weighted

average to tell us the performance of the benchmark as a whole. The savings are

tremendous in terms of CPU time, and the partial simulations on the simulation

points are extremely accurate, < 2% error in predicted performance statistics com-

pared with running a full simulation of the entire benchmark. Instead of over a year,

the CPU time required to run these simulations on the simulation points is reduced

to less than one week.

2.1.2 Basic Block Vectors

The execution of each benchmark is split into intervals. Within each interval,

the number of times each basic block executes is tallied. The final count is multiplied

by the number of instructions in that basic block, yielding a vector of weighted counts,

a basic block vector (BBV). A basic block is an atomic grouping of instructions that

16

1: START MOVE 11, AX

2: MOVE 0, BX

3: MOVE 0, CX

4: LOOP DEC AX

5: JZ END

6: MOVE 1, DX

7: AND AX, DX

8: JZ EVENS

9: ODDS INC BX

10: JMP LOOP

11: EVENS INC CX

12: JMP LOOP

13: END NOP

Figure 2.1: Example pseudo-assembly code snippet showing basic blocks. The ini-
tialization steps in lines 1–3 is a basic block. Line 4 starts a new basic block because
the program’s execution jumps back here each iteration of the loop. Lines 4–5 are
the next basic block, decrementing the loop’s counter and jumping if the loop should
be terminated. Lines 6–8 form a basic block that tests if a variable is even (a con-
ditional), with basic blocks from lines 9–10 and 11–12 making the bodies of the two
branches of execution stemming from the conditional. Line 13 is the last and simplest
basic block that concludes the program’s execution.

execute as a unit during a program’s execution. By atomic we mean a section of code

with one entry point and one exit point, such as the body of a simple for loop or a

conditional statement (Sherwood et al. 2001).

Figure 2.1 gives a snippet of toy assembly code for a very simple program. It

loops over a series of integers (1 through 10) and counts up how many of them are

odd and how many are even. We give the code as an example of how we split basic

blocks up. Lines 1–3 comprise the first basic block, initializing the parameters. Lines

4–5 are a basic block, entering at line 4 and possibly exiting at line 5. Lines 6–8 are a

basic block checking to see if the current integer is even. Lines 9–10 and 11–12 make

up two basic blocks, the bodies of the two branches depending on whether or not the

integer was even or odd. Finally, line 13 is a basic block that concludes the program.

If there are 100,000 unique basic blocks, then the dimensionality of each BBV is

D = 100, 000, and a BBV for one interval is x = [x1, . . . , xD]. Suppose we are working

17

with intervals of 100 million instructions each. Each interval is not composed of one

hundred million basic blocks. Rather, an interval is composed of a certain number

of basic blocks which contain a total of one hundred million instructions all together.

For a program that executes 52 billion instructions, split into intervals of one hundred

million instructions each, we have N = 52e9/1e8 = 520 BBVs. If we choose to look at

programs with an even finer granularity, say with intervals of 10 million instructions

each, N grows by a factor of 10.

Each BBV gives a synopsis of that interval’s behavior. Each basic block cor-

responds to a different action taken by the program at that step in execution. Each

BBV, then, gives the overall behavior of the interval from which it is derived. One

important note, however, is that the ordering of the execution of the basic blocks is

not recorded. All we know is that basic block d executed a certain number of times

corresponding to a total of xd instructions within this interval (Sherwood et al. 2001).

With each interval concisely represented as a vector x = [x1, . . . , xD], we can

begin to consider how two BBVs might look similar to one another. If we can find

a group of BBVs that look similar and bring them together into one cluster, we can

simulate just one of them and use the gathered statistics to represent the others

as well. This problem falls naturally into the realm of unsupervised learning and

clustering.

SimPoint’s concern is how we go about clustering the BBVs. If we can form

accurate clusters, where each BBV in a group is similar, we assume the behaviors (i.e.

performance) of all the intervals represented in a cluster are similar. Because a BBV

represents a portion of code execution, intervals with similar BBVs execute similar

code and should ultimately have similar performance. Even though the ordering of

the basic blocks within a vector is not taken into consideration, we assume similar

BBVs will have similar statistics within the simulation because they exhibit similar

behaviors.

18

Once our set of BBVs is clustered, the next task is to select a representative

from each cluster. It is important that we select an interval that is the most similar to

every other member in the group. Or, we may discuss selecting the interval that most

similar to the average behavior of the cluster. This fits nicely with our requirement

that a selected simulation point will be representative of all its peers in the same

cluster.

2.2 k-Means

k-means is the clustering algorithm SimPoint uses. k-means is a partitional

algorithm that moves cluster centroids around in geometric space. At the end of the

iterative process, the examples are clustered based on which centroid they are closest

to.

2.2.1 Algorithm

With k-means (Figure 2.2) there are k cluster centroids {µ1, · · · , µk}, one cen-

troid per cluster. These k centroids may be initialized in many different ways. One

way is simply to select k random points in the D-space spanned by all the different

BBVs xi in our interval set X. Another is to select k random xi ∈ X. There are

different heuristics that may be used in this approach to ensure the initial k are as

spread out throughout the data space (Hastie et al. 2001).

Once each center µj (1 ≤ j ≤ k) is initialized, each data point xi ∈ X is assigned

to the cluster cj whose center µj it is closest to, according to the L2 (Euclidean)

distance.

L2(a, b) = ||a− b|| =

√

√

√

√

D
∑

d=1

(ad − bd)2, (2.1)

where a = [a1, · · · , aD] and b = [b1, · · · , bD]. We define cluster cj as

cj =
{

xi : j = argmin
l
||xi − µl||

}

, (2.2)

19

Pre-Conditions: k > 0
1: Initialize k cluster centers {µ1, · · · , µk}.
2: repeat

3: for all xi ∈ X do

4: Find c(i) using Equation 2.3 (can also be thought of as determining the sets
of each cluster cj via Equation 2.2).

5: end for

6: for j from 1 to k do

7: Recompute µj using Equation 2.4.
8: end for

9: until The centers µj do not change

Figure 2.2. k-means Clustering Algorithm

the set of all examples xi that are closer to centroid µj than any other centroid. The

assigned cluster for point xi, c(i), is given as

c(i) = argmin
j
||xi − µj||, (2.3)

the centroid to which xi is closest. Once each point xi is assigned to some cluster,

the cluster centers µj are recomputed as the mean of all the xi ∈ cj.

µj =
1

|cj|
∑

xi∈cj

xi (2.4)

The new cluster centers are then used to reassign each xi to the closest center, and

the process repeats until the centers do not change.

2.2.2 Shortcomings

Unfortunately, k-means does not meet all of our needs and has several limiting

characteristics. First, because k-means uses distance metrics to determine cluster

assignments, it does not work well in high dimension. This is because all examples

tend to be far apart in higher dimension, making it hard to determine which centroid

really is the closest. This is especially evident when considering data with the high

number of dimensions of the SimPoint BBVs (upward of 100,000 dimensions). In

order to get around the problem of high dimension, the current SimPoint approach

20

is to use random projections. While this method is well motivated and sound, it

introduces several undesirable properties into the clustering. The first is that random

projections may collapse true clusters together into one new cluster. The second

is that the original features of the data are lost in the projection. If we want to

examine the data’s original structures, we can do so, but it requires an extra step

of mapping clusters back to the original space. Also, the features are lost to the

clustering algorithm, which might have helped produce better clusterings. Third,

the randomness of the projections adds another level of indirection to our algorithm

and makes replicating the exact results of an experiment potentially that much more

difficult, yielding different results each time the algorithm is run on the same dataset.

k-means, in the way that it handles cluster assignments by using simple distance

from the centroids µj, makes an underlying assumption that the covariance of each

cluster is spherical. This is very rarely the case, and certainly does not hold true

for program trace data. Thus, there must be a better approach to representing such

clusters.

SimPoint and the k-means algorithm also do not currently account for bursti-

ness occurring within the data. As described earlier, burstiness is an important

phenomenon that occurs extensively in program execution (due to temporal locality).

It would be useful to have a method for exploiting this characteristic.

2.3 Other Clustering Algorithms

There are many different clustering algorithms, several of which have been ap-

plied either specifically to the program trace data SimPoint clusters, or to trying to

address some of the shortcomings of the k-means algorithm. We discuss two algo-

rithms briefly here, the PG-Means algorithm and multinomial mixtures.

21

2.3.1 Gaussian Mixtures

Other methods have been attempted to resolve some of the issues that k-means

raises. Feng and Hamerly used mixtures of Gaussians but did not see a significant

improvement in clustering results. Their PG-means (projected Gaussian) algorithm

fits k Gaussian clusters to the data and is able to find clusters which overlap and exist

in high dimension. Projections are used to simplify the clustering, so this method

does not avoid the need for such simplification of the data beforehand. However,

there is not an assumption that the clusters have spherical covariance, although the

data still is assumed to be Gaussian. (Feng and Hamerly 2006)

2.3.2 Multinomial Mixtures

Sanghai et al. (2005) proposed a method for clustering program trace data

using multinomial mixtures. They projected the data to fewer dimensions and did

not use the full dimension of the data. However, this method was shown to not

improve the basic k-means algorithm. The multinomial approach does not do well in

high dimension and does not improve prediction error rates (Hamerly et al. 2006).

CHAPTER THREE

Design and Implementation

In this section, we describe the research employed to discover new clustering

models that address some of the shortcomings of the current methods of clustering

program trace data in SimPoint. As with any clustering algorithm, especially a new

one, we examine the basic questions that get asked, such as how we can choose the

number of clusters to be used in the model without a priori knowledge and how we

can select representative examples from each cluster.

To clarify, in much of the discussion and explanation in this chapter, we assume

a generative view of clustering for explanatory purposes (as opposed to a discrimina-

tive view). The generative idea is that given a learned model, such as a multinomial,

we could generate a set of examples if we wished. This is not actually happening. We

are not actually using a model to generate data. In truth what we are doing is learn-

ing a model that has a high likelihood of having generated the data. For instance, we

could consider a large set of basic blocks (our model), reaching into the bag multiple

times and generating a program trace in such a manner. This is the generative view.

What we are actually doing is using existing program traces to figure out what the

bag of basic blocks would look like, if one were to exist.

Note also that one popular domain of discussion for clustering algorithms, as

well as many of the probability distributions that they operate on, is text document

clustering. Because our research is not concerned with clustering text documents,

we will modify any discussion of clustering algorithms and other related topics to

deal with program traces and the basic block vectors clustered by SimPoint. The

arguments of text document clustering apply to program trace data. Both domains

contain high dimensional data, tend to be rather sparse in their count-vector repre-

22

23

sentations (only a rather small subset of the total set of all basic blocks occurs within

an interval, like a small subset of the entire vocabulary appears in a document), and

exhibit burstiness.

3.1 Clustering With EDCM Mixtures

We investigate a new clustering algorithm to cluster program trace data. We

are searching for an alternative to the k-means algorithm currently used by SimPoint.

One reason we would like another algorithm is we want a method that can operate

in the full dimension of the data. Most contemporary clustering algorithms have

difficulties with data in high dimension, such as the program trace data clustered by

SimPoint. Dimension reduction techniques used to bring the dimensionality of the

data down to an acceptable amount, such as random projections, can mask natural

features of the data and collapse true clusters together. Another reason is that we

want to avoid the limiting assumptions k-means makes about the data, namely that

each of the clusters has a spherical covariance. Lastly, we want to account for the

phenomenon of burstiness. We find that SimPoint data, like text documents, exhibits

burstiness and would like a way to harness this characteristic of the data to our

advantage.

3.1.1 Statistical Background

The exponential Dirichlet compound multinomial (EDCM) model provides a

robust framework for clustering data in high dimension. It is an exponential-family

approximation of the Dirichlet compound multinomial (DCM), which in turn is a

variant of the multinomial model. This mathematical foundation yields several useful

traits that we can exploit to our advantage.

3.1.1.1 Multinomial distribution. The multinomial is a probability distribu-

tion that provides a simple and effective framework for representing data in high

24

dimension. Consider a set of D random variables within a vector x. Each variable

xd (1 ≤ d ≤ D) represents the number of times event d occurs over n observations

(
∑

d xd = n). The different events are mutually independent, meaning the occurrence

of one has no effect on the occurrence of another, even another occurrence of the same

event. Each event has a probability θd of occurring (θd > 0,
∑

d θd = 1). The proba-

bility of all the events occurring with the counts given in x, given the probabilities θ,

is

Pr(x|θ) =
n!

∏D
d=1 xd!

D
∏

d=1

θxd

d (3.1)

=
Γ(n+ 1)

∏D
d=1 Γ(xd + 1)

D
∏

d=1

θxd

d (3.2)

(Johnson et al. 1997).

Equations 3.1 and 3.2 are equivalent to each other, using the identity Γ(ω+1) =

ω! (for ω ∈ Z
+). It is more usual to see the factorial (n!) notation, rather than the Γ

notation, since the multinomial is a discrete distribution for handling different counts

of events, which are by definition integral and non-negative (an event cannot occur a

fractional number a times).

The multinomial coefficient is similar to the binomial coefficient and is, in fact,

just a generalization of it. The binomial coefficient gives the number of possible

combinations of choosing k out of n possible items (ordering not considered). Read

“n choose k,” the binomial coefficient is

C(n, k) =

(

n

k

)

=
n!

k!(n− k)! 0 ≤ k ≤ n (3.3)

(Johnson et al. 2005). n! by itself gives the number of possible permutations of n

items, which are all the possible orderings of n items. We divide by k! and (n− k)!,

the sizes of the two groups the items are divided into. Each of these values represents

the number of different ways to order the items in the respective groups. Dividing the

total number of orderings by the number of orderings within the groups eliminates

25

the ordering consideration from the coefficient. The multinomial coefficient is
(

n

k1, · · · , kD

)

=
n!

k1!× · · · × kD!
=

n!
∏D

d=1 kd!
, (3.4)

with
∑D

d=1 kd = n;n, kd ≥ 0. It is easy to see the multinomial is simply a general-

ization of the binomial, where instead of “n choose k,” giving one group of k items

and one group of (n − k) items, we have n total items and D groups of k1, · · · , kD
items each. The multinomial simplifies to a binomial when D = 2, with k1 = k and

k2 = n− k (Johnson et al. 1997).

With a multinomial distribution, the ordering of the n events is not taken into

consideration. Each count xd only considers the number of times event d occurs,

not when it occurs in relation to others. Because each dimension is considered in-

dependent of the others, we find the multinomial to be well suited to representing

data in high dimension. We don’t need an exponential number of examples to learn

the relationships between all the dimensions because we are not concerned with such

relationships, only the individual magnitudes, considered to be mutually independent

of one another within a cluster.

One of the problems with the multinomial is that it is not well suited to ex-

pressing data that has traits that are “bursty” in nature. Burstiness is described

in more detail later, but as a short example consider the domain of program trace

clustering with SimPoint. Within this domain, we have a set of D basic blocks. We

represent each interval of program execution x as a basic block vector, counting up

the number of times each basic block d (1 ≤ d ≤ D) occurs and storing this value

(multiplied by the number of instructions in the basic block) in xd. The probability of

basic block d occurring in our interval is θd. Suppose we are analyzing some interval

containing basic block d, which is perhaps the body of an if statement that takes

the square root of a number. Because the programmer who wrote the code we are

analyzing has already used the basic block, temporal locality tells us it is likely to

appear again in the interval, even if θd ¿ 1 (in regards to the entire set of intervals,

26

taking the square root of a value may be rare, even if it occurs many times within

this specific interval). However, as the number of times the basic block occurs within

the interval increases, the term θxd

d (from Equation 3.1) becomes very small, reducing

the overall probability of the interval. We would like for a basic block, once it occurs,

to be expected to appear more often so that we can use basic block occurrences as

content (and therefore behavioral) identifiers. Instead, the multinomial penalizes the

probabilities of the intervals containing bursty basic blocks.

The multinomial makes the näıve Bayes independence assumption about the

distribution of the probabilities of each event in an example. This is the assumption

that all the basic blocks in an interval are drawn independently of one another.

While this simplifies the model and allows the multinomial to escape the curse of

dimensionality, it is not well suited to representing program trace data (as described

in the previous paragraph). The reality is that basic are indeed related to each other.

It is especially the case that for content carrying basic blocks, certain groups of basic

blocks tend to occur together, and that when a basic block is seen once it is very

likely to be seen again. The most common basic blocks (perhaps something like a

decrement followed by a jump if zero) can be accurately described under the näıve

Bayes assumption, but do not help to identify content and interval similarity.

3.1.1.2 Dirichlet distribution. The Dirichlet distribution is a distribution over

the parameters of another probability distribution (in our case, a distribution of the

parameters θ of a multinomial), defined as follows. The joint probability of parameters

θ1, · · · , θD, with θd ≥ 0 (1 ≤ d ≤ D) and
∑D

d=1 θd ≤ 1, is

Pr(θ1, · · · , θD|α) =
Γ
(

∑D
d=0 αd

)

∏D
d=0 Γ(αd)

D
∏

d=1

θαd−1
d

(

1−
D
∑

d=1

θd

)α0−1

(3.5)

(Kotz et al. 2000). The parameters of the Dirichlet distribution are α0, · · · , αD.

Parameters α1, · · · , αD are the parameters for each θ1, · · · , θD. α0 is a parameter

27

assigned to handle the portion 1 −∑D
d=1 θd, which is treated like another example

and is dependent on the sum of the observed data.

The Dirichlet distribution is a generalization of the beta distribution, much

like the multinomial is a generalization of the binomial distribution. For parameters

α, β > 0 and 0 < θ < 1, the beta distribution has probability density function

Pr(θ|α, β) = Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 (3.6)

(Balakrishnan and Nevzorov 2003). The connection between Equations 3.5 and 3.6

is apparent when we let α0 and α1 from Equation 3.5 be β and α, respectively, from

Equation 3.6, and D = 1 with θ = θ1 to convert the input of Equation 3.5 to that of

Equation 3.6.

The last term in Equation 3.5 is not usually present in the definition of the

Dirichlet distribution given in most texts. This is an artifact of the way the Dirichlet

is derived and one can see it is not necessary. One of the assumptions about the

Dirichlet is that
∑D

d=1 θd ≤ 1. If
∑D

d=1 θd < 1, there will be some remaining portion

to get the examples to sum to 1 (1−∑D
d=1 θd). The last term in Equation 3.5 is just

assigning a parameter, α0, to handle this portion, treating it like another example

that is dependent on the sum of the observed data. Thus we could define the Dirichlet

as

Pr(θ1, · · · , θD|α) =
Γ
(

∑D
d=0 αd

)

∏D
d=0 Γ(αd)

D
∏

d=1

θαd−1
d (3.7)

for θd > 0 (1 ≤ d ≤ D) and
∑D

d=1 θd = 1, as it is defined by Minka (2003). The abuse

of notation between Equations 3.5 and 3.7, namely reusing the variables θd when they

have different definitions, is employed to illustrate the similarities and relationship

between the two equations.

The Dirichlet distribution is very similar in form to the multinomial distribution

(Equation 3.1). The multinomial coefficient’s terms (Equation 3.4) are concerned

strictly with the data, and the probabilities θ are raised to the values of the data x.

28

As we’ve seen, this means that increasing counts in x reduces the overall probability

Pr(x|θ). The Dirichlet, on the other hand, is often referred to as a distribution

over parameters θ. The normalizing coefficient is the analogue of the multinomial

coefficient, but using the parameters αd rather than the data xd. Remember, n =

∑D
d=1 xd, like

∑D
d=1 αd, and Γ(ω + 1) = ω! for ω ∈ Z

+. The major difference is in

the term
∏D

d=1 θ
αd−1
d . Here, the example is raised to the parameter, the opposite of

the multinomial (which is θx). With increasing values of θd, the probability of the

example in the Dirichlet, Pr(θ|α), increases. Thus, we see a framework that allows

us to more naturally express burstiness.

3.1.1.3 Multivariate Pólya-Eggenberger distribution. The multivariate Pólya-

Eggenberger distribution is often used as the basis to describe other multivariate

distributions. It is based on the Pólya urn scheme. Consider an urn filled with balls

of two different colors, say w white balls and b black balls. Each round, we draw one

ball from the urn and record its color. We then replace the ball and add c balls of

the same color. The Pólya-Eggenberger distribution describes the probability that

x white balls are drawn during n rounds (Johnson et al. 2005). The multivariate

Pólya-Eggenberger distribution, then, considers an urn filled with balls of D different

colors (Johnson et al. 1997).

By replacing the ball of color d back into our urn and adding another c instances

of color d to the urn, we make it more likely that a ball of color d will be drawn the

next round. For example, say we start with D = 2 and c = 1, with d1 = white and

d2 = black. The first round, say we happen to draw a black ball from the urn. At

the beginning of the second round, the urn will contain one white ball and two black

balls. We now have bursty behavior because a black ball has a higher chance
(

2
3

)

of

being drawn than the white ball
(

1
3

)

. Once a ball of a certain color is seen, it is more

likely for that color to appear again in later trials (Elkan 2006).

29

3.1.1.4 Dirichlet compound multinomial distribution. The Dirichlet compound

multinomial (DCM) was used by Madsen, Kauchak, and Elkan to cluster text docu-

ments, specifically for its ability to handle word burstiness (2005). The DCM uses the

Dirichlet distribution to assign probability mass to the parameters of a multinomial

distribution, θ, which can then be used to assign a probability to the data, x (Johnson

et al. 1997).

The DCM is also called the multivariate Pólya-Eggenberger (or just multivariate

Pólya, for short) distribution, the same as described above, because the final counts

of the colors drawn in n trials follow a DCM distribution. We let αd, the parameters

of the DCM, be the initial count of the number of balls of color d in the urn (not

necessarily integral or summing to 1) (Elkan 2006).

The DCM is a distribution over probability distributions. Namely, the DCM

uses a Dirichlet distribution to generate multinomials. Madsen et al. (2005) use the

analogy that a multinomial is a “bag of words,” or, in our case, a bag of basic blocks.

The bag is filled with basic blocks such that each basic block d has probability θd of

being drawn. Taking a generative view, we can think of drawing n basic blocks to

generate some interval x. With the DCM, we have a bag of bags of basic blocks. From

the Dirichlet distribution (bag of bags), we draw a multinomial (bag of basic blocks),

and from that multinomial we draw the basic blocks for an interval. The DCM allows

us to handle burstiness for different examples by creating different multinomial distri-

butions. For the cases where a particular interval x has a burst of a certain basic block

d, the θd for that multinomial for that particular interval is higher than in any other

set of multinomial parameters (which would be used to generate different intervals).

Rather than thinking of individual multinomials for every interval, however, we usu-

ally think of the DCM as generating multinomials for clusters of intervals. Thus, all

the intervals in a particular cluster are assumed to share many common basic blocks

between them that may not be present in any of the other clusters. Additionally,

30

we have seen how the Dirichlet distribution itself encourages, rather than penalizes,

bursty traits in the data.

The probability that the DCM, with parameters α, will generate a multinomial,

with parameters θ, is

Pr(θ|α) =
Γ
(

∑D
d=1 αd

)

∏D
d=1 Γ(αd)

D
∏

d=1

θαd−1
d . (3.8)

Notice Equation 3.8 is just the Dirichlet distribution (Equation 3.7) However, we’re

not concerned with the multinomials that are drawn from the DCM, but with the

basic block that are generated from the multinomials. Madsen et al. (2005) give the

probability for an example x given a DCM with parameters α as

Pr(x|α) =

∫

θ

Pr(x|θ) Pr(θ|α)dθ (3.9)

=
n!

∏D
d=1 xd!

Γ
(

∑D
d=1 αd

)

Γ
[

∑D
d=1(xd + αd)

]

D
∏

d=1

Γ(xd + αd)

Γ(αd)
. (3.10)

Thus, in practice, we never actually talk about the multinomial parameters θ when

using the DCM. Minka (2003) gives solutions for computing the likelihood of the

DCM and for estimating the parameters α given a set of training examples.

One point to make is that because the parameters of the Dirichlet distribution,

α, are not required to sum to 1, we have an extra free parameter when compared

to the multinomial, whose parameters θ are required to sum to 1. For D dimen-

sions/features, the multinomial has D−1 free parameters because the Dth parameter

can be computed as 1 −∑D
d=1 θd. Because we do not know what

∑D
d=1 αd should

equal, we cannot assume a value for the Dth parameter of the Dirichlet distribution.

This gives the DCM (and by virtue the EDCM), because of its basis on the Dirichlet

distribution, one extra free parameter over the multinomial, giving DCM models a

bit more flexibility than multinomial models in their ability to fit the data.

31

0

20

40

60

80

100

am
m

p
ap

pl
u

ar
t−

11
0

ar
t−

47
0

bz
ip

−
gr

ap
h

bz
ip

−
pg

m
bz

ip
−

sr
c

cr
af

ty
eo

n−
co

ok
eo

n−
ka

j
eo

n−
ru

sh
eq

ua
ke

fa
ce

re
c

ga
p

gc
c−

16
6

gc
c−

20
0

gc
c−

ex
pr

gc
c−

in
t

gc
c−

sc
i

gc
c−

tr
n

gz
−

gr
ap

h
gz

−
lo

g
gz

−
pg

m
gz

−
ra

nd
gz

−
sr

c
lu

ca
s

m
es

a
pe

rl−
di

ff
pe

rl−
m

kr
nd

pe
rl−

m
ai

l
sw

im
vr

tx
−

on
e

vr
tx

−
th

re
e

vr
tx

−
tw

o
vp

r−
pl

ac
e

vp
r−

ro
ut

e
M

ea
n

M
ax

im
um

Dataset

%
 β

 P
ar

am
et

er
s

Figure 3.1: Percentage of small β for program trace data. To compute the percentages,
we counted up, per dataset, the percentage of all β parameters (after the data had
been clustered using the EDCM mixture model) less than 0.01. It is assumed, for the
sake of argument, that 0.01¿ 1. On average, nearly 80% of all values βd are < 0.01.

3.1.2 Exponential Dirichlet Compound Multinomial

The exponential Dirichlet compound multinomial (EDCM) is an exponential-

family approximation of the DCM. It was derived and first used to cluster text doc-

uments by Elkan (2006).

We can approximate the DCM as follows. First, note that since we are dealing

with sparse data (word count vectors or SimPoint data), it is not necessary to consider

any xd that are zero. In Equation 3.10, we can ignore any xd = 0 because xd! and

Γ(xd+αd)
Γ(αd)

are both equal to 1, and do not affect the products they appear in, when

this is the case. Second, Elkan points out that for domains such as text document

clustering, the parameters αd tend to be very small. A quick examination of the

EDCM mixture model parameters used to cluster program trace data for SimPoint

shows that its parameters, βd, also tend to be very small. Figure 3.1 shows that, on

average, nearly 80% of all parameters βd are < 0.01 and ¿ 1. The identities

lim
α→0

Γ(x+ α)

Γ(α)
− Γ(x)α = 0 (x ≥ 1) (3.11)

32

and

Γ(x) = (x− 1)! (x ∈ Z
+) (3.12)

(the counts of basic blocks in SimPoint data are positive integers) allow us to approx-

imate Equation 3.10, giving the EDCM as

Pr(x|β) = n!
∏

d:xd≥1
xd

Γ(s)

Γ(s+ n)

∏

d:xd≥1

βd. (3.13)

We use parameters β for the EDCM to distinguish it from the DCM, which uses

parameters α. Here, n =
∑D

d=1 xd and s =
∑D

d=1 βd. Since the EDCM is an ap-

proximation of the DCM and not an exact distribution, it is much more efficient to

compute than the DCM.

Because of its use of the multinomial model (via the DCM being a distribution

over multinomials), the EDCM is well suited to handling data in high dimension.

Each dimension is treated independently under the näıve Bayes assumption—no joint

probabilities are computed to say which basic blocks occur together in an interval or

to reflect a particular ordering of the basic blocks within an interval. The näıve

Bayes assumption does not hinder our performance here, as it does with a more

simple multinomial model, because the EDCM deals with probabilities of parameters

θ rather than working directly with the data. The multinomial had to deal with data,

where the näı ve Bayes assumption does not, in truth, hold. With the EDCM, the

assumption is made over the parameters of the multinomial θ. Because we can cluster

in the full dimension of the data we see several direct benefits, such as avoiding the

dependence on random projections. Random linear projections may mask natural

identifying features within the data, making it harder to discern which examples

exhibit similarities. Worse, random projections may collapse true clusters that are

well separated in high dimension into an amalgam that is not easily separable in

low dimension. Also, the randomness of the projections introduces another level of

uncertainty into our algorithm, meaning we must save even more data if we are to

reproduce exact results.

33

The EDCM is in the exponential family of distributions. The binomial, multi-

nomial, and Dirichlet distributions are all members of the exponential family—the

DCM is not. Therefore, the EDCM is superior to the DCM on this basis. Given some

data x and some parameters θ, a probability distribution is in the exponential family

if it can be expressed as

Pr(x|θ) = f(x)g(θ) exp (t(x) · h(θ)) (3.14)

(Elkan 2006). f and t are real-valued functions that depend only on the data, not on

the parameters, with f(x) ≥ 0. g and h are real-valued functions that depend only

on the parameters, and not the data, with g(θ) ≥ 0. The notation t(x) · h(θ) denotes

the inner product, which could also have been written

t(x) · h(θ) =
D
∑

d=1

td(x)hd(θ)

for D-vectors x and θ (Casella and Berger 2002). Elkan rearranges Equation 3.13

to show its conformance to Equation 3.14, and thus its inclusion in the family of

exponential distributions, as

Pr(x|β) =
(

∏

d:xd≥1

1

xd

)

(

n!
Γ(s)

Γ(s+ n)

)

exp

[

D
∑

d=1

I(xd ≥ 1) log βd

]

, (3.15)

with

f(x) =
∏

d:xd≥1

1

xd

g(θ) = n!
Γ(s)

Γ(s+ n)

h(θ) = 〈log β1, · · · , log βD〉

t(x) = 〈I(x1 ≥ 1), · · · , I(xD ≥ 1)〉

Thus, the sufficient statistics for the EDCM is a vector of 1 or 0 indicating which of

the elements d in the vector are non-zero (I is the identity function and returns 0 if

the parameter is false, 1 if it is true) (Elkan 2006). Distributions in the exponential

34

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

P
r(

 x
 |

µ
,σ

2)

Figure 3.2: Gaussian distribution. We say that x is distributed normally, x ∼
N(µ, σ2), if its probability density function (pdf) is the Gaussian with parameters
µ, the mean of the distribution, and σ2, the variance of the distribution. The above
figure shows the pdf of a Gaussian with µ = 0 and σ2 = 1.

family have several nice properties, of which the sufficiency principle is possibly the

most significant (Casella and Berger 2002).

The sufficiency principle states that given a set of data x and a set of parameters

θ, everything that we might want to infer about θ we can do so using a sufficient

statistic t(x) (the same t(x) in Equation 3.14). A sufficient statistic gives all the

information there is to know about a set of data. Given a sufficient statistic, we can

determine properties of the data without having to depend on the parameters θ, even

if the original sample x is not known to us. Any information about the data x, besides

t(x), does not yield any more information other than what is given by the sufficient

statistic. For example, if we have two samples x1 and x2, and it is the case that

t(x1) = t(x2), then any inferences made about θ will yield the same value whether we

actually observe x1 or x2 (Casella and Berger 2002).

As an example, consider the Gaussian distribution (standard normal distribu-

tion N(µ, σ2)) for the simplicity of its parameters µ, the mean of the distribution,

35

and σ2, the variance of the distribution. Figure 3.2 gives a visual representation of

a univariate Gaussian (a distribution over one variable). A random variable X is

distributed normally, X ∼ N(µ, σ2), if, for observed values xi ∈ R, 1 ≤ i ≤ n,

Pr(X|θ) = Pr(X|µ, σ2) = 1√
2πσ2

exp

(−(∑n
i=1 xi − µ)2
2σ2

)

(3.16)

(Casella and Berger 2002). The parameters θ (a vector of 2 parameters) are θ1 = µ

and θ2 = σ2. Elkan (2005) shows the Gaussian distribution to be in the exponential

family via the rearrangement

Pr(X|µ, σ2) = 1√
2πσ2

exp

(

−nµ
2

2σ2

)

exp

(

−
∑n

i=1 x
2
i

2σ2
+
µ
∑n

i=1 xi

σ2

)

. (3.17)

t(x) and h(θ) in Equation 3.14 are allowed to be vectors. Assigning the terms of

Equation 3.17 to Equation 3.14, we have

f(x) = 1

g(θ) =
1√
2πσ2

exp

(

−nµ
2

2σ2

)

t1(x) =
n
∑

i=1

x2i

t2(x) =
n
∑

i=1

xi

h1(θ) = − 1

2σ2

h2(θ) =
µ

σ2
.

Thus, the sufficient statistics for the Gaussian distribution are
∑n

i=1 xi and
∑n

i=1 x
2
i .

Note that the number of samples, n, is not dependent on the data itself. We can see

that the parameters for the Gaussian, µ and σ2, can be expressed in terms of the

sufficient statistics. First,

µ =
1

n

n
∑

i=1

xd

=
1

n
t2(x).

36

We can express the variance of the Gaussian as

σ2 =
n
∑

i=1

(xi − µ)2

=
n
∑

i=1

(x2i − 2xiµ+ µ2)

=
n
∑

i=1

x2i −
n
∑

i=1

2xiµ+
n
∑

i=1

µ2

= t1(x)− 2µt2(x) + nµ2.

Thus, the sufficient statistics t1 and t2 are all that we need to compute the parameters

of the Gaussian. We don’t need all of the data after we have computed the sufficient

statistics on a sample, and no matter how much data we might sample, we can infer

no more about θ than we can with the two sums
∑n

i=1 xi and
∑n

i=1 x
2
i .

3.1.3 Burstiness

As stated previously, burstiness is a trait of data wherein if a particular fea-

ture appears once, it is more likely to appear again. This trait occurs naturally in

many domains, including the basic block vectors clustered by SimPoint. Church and

Gale (1995) (along with Salva Katz) were among the first to quantify and study the

burstiness phenomenon. They noticed that the typical bag of words representation

for text documents failed to capture all the behaviors of the different words, noting

a “bunching-up effect” (i.e. burstiness) of certain words not only within documents,

but within genres (topics), paragraphs, and even sentences within a document. Katz

(1996) makes several distinctions between different types of burstiness, each relating

to the occurrences of content words that express the “ideas, feelings, facts, and events”

of language. Hooked together by function words, the content words express the topic

of a document and convey meaning and often occur in document-level bursts (where a

word occurs many times over the course of a document) and within-document bursts

(where a word will occur many times within a sentence, paragraph, or otherwise close

37

together). Church and Gale (1995) and Katz (1996) all discuss burstiness and han-

dling it with Poisson distributions. We use a different approach with the DCM, but

the underlying structure of burstiness is the same.

We have given the discussion of burstiness within the text setting. Now, consider

burstiness within the execution of a benchmark that gets analyzed to form a set of

BBVs for SimPoint. Programs undergo different phases of behavior. For example,

the first phase of a program may be to read in some certain input. The next may

be to perform various calculations or other tasks based on the input. The third may

be to report any results and perform any cleanup. Within each of these phases,

the phenomenon of temporal locality (when an instruction is executed, it is likely

to be executed again soon—the reason caches work so well) suggests that there will

probably be some repeated behaviors. For example, within the second phase of the

above behaviors, we may have a for loop that iterates over all the data. Obviously, the

instructions executed within this loop will get repeated many times in relatively quick

succession. When we split the benchmark’s execution up into fixed length intervals, we

may find that the phase containing the loop gets split into several intervals. However,

each interval, because it comes from the section of code containing the for loop, will

have bursts of the occurrences of the basic blocks within the loop.

The multinomial penalizes burstiness, as we have already discussed, where one

trait has a high number of occurrences. The EDCM, because of the definition of the

Dirichlet distribution, is able to handle burstiness (like the Pólya urn scheme). Elkan

(2006) expresses the DCM (and by virtue, the EDCM) in terms of the Pólya urn

scheme. Let the parameters αd be the initial count of the number of balls of color d

within the urn. Unlike the counts of balls within an urn, however, we can have αd /∈ Z

and αd < 1 (whereas ball counts must necessarily be positive integers). Elkan makes

the remark that the sum s =
∑D

d=1 αd can be used to assess the total burstiness of the

multivariate Pólya-Eggenberger distribution. Lower values of s mean higher levels of

38

burstiness, because drawing one ball increases its count relatively quickly to balls of

another color. Conversely, higher values for s mean a lower amount of burstiness in

the system because even if a particular color is drawn multiple times, its count may

not increase significantly compared to other colors. As s → ∞, the DCM (and by

virtue, the EDCM) begins to behave like a multinomial, where every ball drawn is

independent of all the others, and drawing a particular color does not make it more

likely to be drawn again (because there are so many balls of each color).

The multinomial performs well when the event occurrences are uniform. It is

the “rare” words, as quantified by Madsen et al. (2005), that the multinomial fails

to model correctly. This set of words carries the content and tends to identify a

document’s topic, making them important markers for clustering . Therefore, it is

essential that we model them correctly and not penalize bursty occurrences. Common

words, while tending to occur with different frequencies in different corpora, do not

exhibit burstiness (Church and Gale 1995).

3.1.4 Expectation-Maximization Algorithm

The Expectation-Maximization algorithm was formulated by (Dempster et al.

1977) in order to learn a model in the face of partial or incomplete data. We can use

it to iteratively maximize the likelihood of a model, even when we have missing values

or censored or truncated data. In the case of unsupervised learning and clustering,

the missing data are which mixture component generated each example.

The EM algorithm (Figure 3.3) operates in two basic steps, giving the algorithm

its name. The EM algorithm computes some parameters θ describing a probability

distribution mixture (of which we know or assume a general structure, perhaps a

mixture of EDCM distributions) using data x sampled from the distributions. The

unknown parameters θ are both the parameters of the distributions within the mixture

(such as the β parameters for the EDCM distributions) and the prior probabilities

39

Pre-Conditions: Data x
Post-Conditions: Parameters θ have a local maximum likelihood Pr(x|θ)
1: Initialize parameters θ
2: repeat

3: Estimation (E) Step: Using the current parameters θ and the observed data x,
estimate the expected log likelihood of the complete data (z) given a revised
hypothesis θ′ to give us Q(θ′|θ). In effect this computes the expected values
of the latent, unobserved variables (e.g. the likelihood of each point being
generated by each distribution in the mixture).

Q(θ′|θ)← E[ln Pr(y|θ′)|θ, x]

4: Maximization (M) Step: Update the set of parameters by maximizing the like-
lihood of the model assuming the latent values expected in the E step.

θ ← argmax
θ′

Q(θ′|θ)

5: until Convergence on θ

Figure 3.3. Expectation-Maximization algorithm

of each distribution (Pr(cj) for 1 ≤ j ≤ k, where there are k distributions in the

mixture). Our incomplete data is x, since we are dealing with multiple distributions

within the mixture and don’t know from which particular distribution each individual

xi is drawn. Let z be our missing data (latent variables telling us from which distri-

bution each example was drawn) and let y = x ∪ z be the full set of data generated

by the distributions we are computing θ for.

As an example, consider the k-means algorithm (given in 2.2), which is a specific

instance of the EM algorithm. Let data we observe, x, be a set of two dimensional

points in Euclidean space generated by k spherical Gaussian distributions. The clus-

tering problem is to determining the means of each of the k Gaussians µ1, · · · , µk

(since we are assuming the variance is 1 by letting the Gaussians be spherical). The

hidden variables zij tell us if example xi was generated by Gaussian j (in which case

zij = 1) or not (zij = 0). For the expectation step, given a set of means, we compute

the expected value of all the variables zij, thus maximizing the likelihood of the latent

40

variables. Because we have assumed the underlying Gaussians to be spherical, each

point xi is simply assigned to the cluster to which it is the closest (via Euclidean dis-

tance). For the maximization step, we use the newly computed cluster assignments

and adjust our estimates of the means by setting the mean of Gaussian j, µj, as the

average of all the points assigned to that distribution in the expectation step.

3.1.4.1 Likelihood. The likelihood of a model M is the probability that the

model generated the data x it represents (using the generative view). When we speak

of data we use the term probability. When we speak of models (an EDCM mixture),

we use the term likelihood. If we maximize the likelihood of a model, we adjust the

model so it has the greatest probability of producing the data.

Assuming the examples x to be independently drawn, we express the likelihood,

L, of x given a linear mixture model M (i.e. a clustering) as

L(M |x) =
N
∏

i=1

Pr(xi|M) (3.18)

=
N
∏

i=1

k
∑

j=1

Pr(xi|cj) Pr(cj). (3.19)

Each example xi has a likelihood under the model M . The product of each of each

Pr(xi|M) gives the likelihood of the model given all the data. The model itself is

composed of several constituent parts. In the case of clustering, each part is a specific

cluster cj. For the EDCM mixture model, each cluster cj is represented by a set of

parameters βj. Thus, for each xi, we sum the probability for that example for each

cluster cj (1 ≤ j ≤ k) multiplied by the prior probability of the cluster cj. The prior,

Pr(cj), tells us how likely instances of the cluster cj are to occur in general, or how

often we predict cluster cj in general. The probability Pr(x|cj) tells us that given

cluster cj, how likely is it that example xi was drawn/generated from the distribution

describing cj. Thus, the product Pr(x|cj) Pr(cj) gives a value proportional to the

41

total probability for a particular data point belonging to a particular cluster. To

compute the actual probability, we would have to compute

Pr(cj|xi) =
Pr(xi|cj) Pr(cj)

Pr(xi)
, (3.20)

according to Bayes rule. However, the probability of xi, Pr(xi), is not dependent

on a cluster and is often left out of the computation of the likelihood. Summing

along the clusters gives the probability for a particular data point. Multiplying these

probabilities for all data points gives the total likelihood of a model.

It is often the case that we deal with the log of the likelihood for mathematical

reasons. We find the log likelihood (L) is easier to maximize than the likelihood itself.

L(M |x) = log(L(M |x)) (3.21)

=
N
∑

i=1

log

(

k
∑

j=1

Pr(xi|cj) Pr(cj)
)

(3.22)

To maximize the log likelihood, we take the first order derivative, set to zero,

and solve for the variable we want to compute (like any other function we would

want to maximize using calculus). The likelihood function for the EDCM is given in

Equation 3.13. The log likelihood of the EDCM for one example is therefore

L = log n! + log Γ(s)− log Γ(s+ n) +
∑

d:xd≥1

(log βd − log xd). (3.23)

Consider the likelihood of a set of N examples, with example xi having length ni =

∑D
d=1 xid. Solving for βd, we have

βd =

∑N
i=1 I(xid ≥ 1)

∑N
i=1Ψ(s+ ni)− |N |Ψ(s)

. (3.24)

The digamma function, Ψ, is defined as the derivative of the logarithm of the gamma

function, Γ.

Ψ(x) =
d

dx
log Γ(x) (3.25)

42

We cannot solve directly for βd because it depends on the unknown s. We can put

Equation 3.24 in terms of s by remembering s =
∑D

d=1 βd.

s =

∑D
d=1

∑N
i=1 I(xid ≥ 1)

∑N
i=1Ψ(s+ ni)− |N |Ψ(s)

. (3.26)

We will examine how to solve for s when it is defined in terms of itself when discussing

the EM algorithm for EDCM mixtures.

3.1.4.2 Expected value. The EM algorithm relies on the idea of the expected

value of a variable (hence the name of the expectation step), which is simply defined.

Given a random variable x with some probability density function f(x), the expected

value is simply the value that one expects to see on any given observation of x, the

“average.” It is the sum of the probabilities of each value of x multiplied by that

value. In the case that x has a continuous probability distribution function f(x), we

can express the expected value as

E[x] =

∫ ∞

−∞

xf(x) dx. (3.27)

For discrete distributions, where each x has a probability p(x) of occurring, we can

express the expected value as

E[x] =
N
∑

i=1

xip(xi). (3.28)

As an example, consider the uniform distribution over the interval x ∈ [0, 1]

(pdf f(x) = 1,∀x ∈ [0, 1], 0 otherwise). Because we are dealing with the uniform

distribution, each value of x ∈ [0, 1] has just as likely a chance of occurring. The

expected value is

E[x] =

∫ ∞

−∞

x · 1dx (3.29)

=
1

2
x2
∣

∣

∣

∣

∞

−∞

dx (3.30)

=
1

2
x2
∣

∣

∣

∣

1

0

(3.31)

=
1

2
. (3.32)

43

Consider a discrete example, a six sided, fair die. Each side of the die, 1–6, has

an equal probability of being rolled (p(x) = 1
6
). The expected value of a roll of the

die is

E[x] =
6
∑

i=1

1

6
i (3.33)

=
1

6
1 +

1

6
2 +

1

6
3 +

1

6
4 +

1

6
5 +

1

6
6 (3.34)

=
1 + 2 + 3 + 4 + 5 + 6

6
(3.35)

=
21

6
(3.36)

= 3.5 (3.37)

Thus, we see expected value is not always in the domain of x (3.5 is not a valid value

for a roll of the die), nor is it always the median of the values (which would be 3, in

this case).

3.1.4.3 EM with the EDCM. We use the EM algorithm to maximize the log

likelihood (Equation 3.22) of a mixture of EDCM distributions. We assume our data

x is generated from a group of k EDCM distributions. The missing data is what

EDCM distribution each data point is generated by. After the EM algorithm is run,

we are left with a set of parameters βj for each EDCM distribution in our mixture

(1 ≤ j ≤ k). Elkan (2006) gives the outline for computing the EDCM mixture using

the EM algorithm and derives all of the following formulas.

We initialize our parameters β for the EDCM mixture by first considering the

data as one large cluster. We compute a set of parameters β0 to fit an EDCM to the

entire dataset. Because we are considering all examples to belong to one distribution,

there are no latent variables and we do not have to use the EM to calculate β0.

From β0, we derive k sets of individual parameters βj (1 ≤ j ≤ k) using small,

random perturbations (Elkan 2006). Each dimension d of each βj is a slight, random

modification of β0d (±5%). In other words, multiply the dimensions of β0 by a random

44

value in [0.95, 1.05] to generate k βj parameter vectors. These are the initial sets of

parameters for each distribution in our mixture model. We also initialize a uniform

set of k prior probabilities, with Pr(cj) = 1/k being the prior for model j.

With an initial set of parameters, βj, and priors, Pr(cj), for each cluster, we can

begin the EM algorithm. For the expectation step, we compute cluster assignments

mji, the probability that example xi is generated by cluster j (with parameters βj).

mji = Pr(j|xi) =
Pr(cj) Pr(xi|βj)

∑k
l=1 Pr(cl) Pr(xi|βl)

(3.38)

The EDCM uses a soft assignment scheme. That is, each example has a probability

of being generated by each EDCM in the mixture model, Pr(cj) Pr(xi|βj). Soft clus-

tering gives the EDCM flexibility as it moves through the parameter space, allowing

multiple EDCMs to be responsible for generating individual examples and sharing

traits between them. The assignments for each example are normalized such that

summing the probabilities for one example across all clusters equals 1. If we have to

make hard clustering decisions, we can choose, for each example, the cluster that is

most likely to have generated the example. The values Pr(xi|βj) can be computed

directly from Equation 3.13, with one caveat. We must compute the probability in

log space to prevent computational overflow within the computer. The magnitude of

n can be very large (remember n =
∑

d xd). For the program trace data clustered by

SimPoint, this means the n for most examples can be something like 100e6, depending

on the interval size we are using. Trying to compute 100e6! will result in overflow.

Therefore, we compute the probability Pr(xi|βj) in log space (we can compute log(n!)

using log Γ(n + 1)). Now, because we have log probabilities, we must compute the

cluster assignments in log space. We cannot simply exponentiate the probabilities and

work in normal space because the log probabilities are so negative that they would

underflow. To avoid underflow when computing the cluster assignments, we use

mji =
exp(log Pr(cj) + log Pr(xi|βj)− c)

∑k
l=1 exp(log Pr(cl) + log Pr(xi|βl)− c)

(3.39)

45

with

c = max
j

[log Pr(cj) + log Pr(xi|βj)]

(Elkan 2006). Subtracting c in log space is equivalent to dividing by c in normal

space, normalizing the product Pr(cj) Pr(xi|βj) (which is a sum in log space) to be

closer to 1. Because the number is no longer so small, we can exponentiate it without

underflowing.

An additional difficulty in using log probabilities is computing the log likelihood

of our mixture model. Recall Equation 3.22, with cluster cj being represented by its

parameters βj. To compute the log likelihood and avoid underflow, we must calculate

L as

L(M |x) =
N
∑

i=1

log

[

k
∑

j=1

exp [log Pr(xi|βj)] Pr(cj)

]

. (3.40)

We define

ρi = max
j

log Pr(xi|βj), (3.41)

the maximum probability, over all clusters, of example xi. We normalize the other

probabilities of xi by this value to avoid underflow. Modifying

k
∑

j=1

exp [log Pr(xi|βj)] Pr(cj) =
k
∑

j=1

exp [log Pr(xi|βj)− ρi + ρi] Pr(cj) (3.42)

= exp(ρi)
k
∑

j=1

exp [log Pr(xi|βj)− ρi] Pr(cj)(3.43)

we are effectively dividing all the probabilities Pr(xi|βj) (subtraction in log space is

division in normal space) to bring them closer to 1. Since they are no longer quite so

small, we can exponentiate them for use in the computation of L without the risk of

underflow. We multiply the sum by ρi to cancel out the effects of the division after

the exponentiation has taken place. We can then calculate the log likelihood as

L =
N
∑

i=1

[

ρi + log
k
∑

j=1

exp [log Pr(xi|βj)− ρi] Pr(cj)
]

(3.44)

without risking underflow associated with exponentiating such a small number.

46

For the maximization step, we use the cluster assignments m to recompute

the parameters of our EDCM mixture and the priors of each model. Recall from

Equations 3.24 and 3.26 that we must start by calculating s, and we must do so via

numerical analysis since s is defined in terms of itself.

We initialize each sj to some random value and compute a final value using fixed

point iteration. Fixed point iteration updates a variable’s value iteratively until there

is no longer a significant change (where significance is defined as a percent change

above some small threshold ε, not statistically). Modifying Equation 3.26 to take

into account the cluster assignments, Elkan (2006) computes the sj for some set of

parameters βj as

s′j =

∑D
d=1

∑N
i=1mjiI(xid ≥ 1)

∑N
i=1mjiΨ(sj + ni)−MΨ(sj)

, (3.45)

with M =
∑N

i=1mji being the sum, over all examples, of a particular cluster’s assign-

ments and s′ being the updated value per iteration on s. We iterate until the percent

change from s to s′ is less than some small ε. Minka (2003) proves the iteration is

convergent.

After computing sj, Elkan (2006) computes βj, using a modification of Equation

3.24 to account for our cluster assignments, in one, closed form step.

βjd =

∑N
i=1mjiI(xid ≥ 1)

∑N
i=1mjiΨ(sj + ni)−MΨ(sj)

1 ≤ d ≤ D (3.46)

Any dimensions that are always 0 are non-informative and are removed from the data.

We iterate the EM algorithm until there is not a significant change in the log

likelihood of the model. We compare the likelihood in one iteration to the likelihood

in the next, terminating iteration if the difference between the two likelihoods is less

than some small ε.

3.1.4.4 Random restarts. There are several points in the EM algorithm where

we use random values to initialize variables. For instance, we use random perturba-

tions to initialize the k sets of parameters βj. We also start the fixed point iteration

47

of s with a random value. It may be the case that these random values lead to poor

local minima of the log likelihood function resulting in sub-optimal configurations

of β for our EDCM mixture. To try and counteract the possible negative effects of

random initialization, we restart the EM process for each value of k multiple times

and choose the set of parameters β that has the highest log likelihood.

The number of times we should restart the EM algorithm is an easily config-

urable parameter. Setting the value higher will increase the chances that we find a

model giving a higher log likelihood. However, this relates directly to an increase in

running time as we must now perform linearly more clusterings (linear in the number

of random restarts). We can decrease the number of random restarts and our cluster-

ing will run faster. However, we do this at the risk of lowering our chances of finding

a clustering with a higher log likelihood.

3.1.4.5 Deterministic annealing. The EM algorithm is very sensitive to the

initialization of the parameters. Though it is guaranteed to converge on a maximum

log likelihood, this is only a local maximum and the solution may not be globally

optimal. The difficulty with the initialization of the EM algorithm comes in the early

iterations. At this point, especially when first starting, we are not sure which examples

should belong to which clusters. However, our division of cluster assignments for each

example is very important as early decisions will affect later iterations. If we happen

to initialize to a poor set of parameters, it will be difficult, if not impossible, for the

EM algorithm to converge on a model with a globally high log likelihood.

To try and reduce the sensitivity of EM to initialization and to try and avoid

the phenomenon of local optima, Elkan (2006) proposes using deterministic annealing

with the EM. Deterministic annealing draws from the idea of the principle of max-

imum entropy (Ueda and Nakano 1998). In the principle of maximum entropy, one

seeks to maximize the entropy of a system—make everything more uniform. A tem-

48

perature parameter is varied over the course of the EM algorithm, starting at some

maximum and decreasing to 1. At each temperature step, the EM algorithm is run to

convergence, the resultant model fed into the initialization of the next temperature

step. We repeat the EM process, moving from high to low temperatures, until we are

left with a final model.

Annealing works by using the temperatures to smooth out the probabilities

Pr(y|θ′) in the expectation step. It performs the smoothing by raising the probabilities

to the inverse of the current temperature, call it τ . When computing the expectation

over the latent variables we perform as calculations as normal but using Pr(y|θ ′)1/τ .

Working in log spaces and with log probabilities, annealing is equivalent to dividing

the log probability by the temperature. At higher temperatures, this has the effect

of driving all probabilities toward 1 and making them seem more similar. Lowering

the temperature decreases the effect of annealing, allowing the natural peaks in the

probabilities to resurface and for the EM algorithm to climb slowly toward the highest

local peak, rather than being stuck at a suboptimal local peak because of initial

parameter choices. Ueda and Nakano (1998) give a good visual representation of

deterministic annealing, Figure 3.4.

3.1.5 Running Time and Algorithmic Complexity

The running time of the EM algorithm is dependent on many variables. First,

we dealing with data matrices sized n × D—n examples of D dimensions each. Ul-

timately, we compute a β matrix sized k × D—k clusters and D dimensions—and

a matrix m of cluster assignments sized n × k—n examples belonging to k clusters.

The mathematics to compute the values, and all the values needed in between (such

as the k-vector s =
∑D

d=1 βd), result in matrix multiplications and additions bounded

by O(ndk).

49

Figure 3.4: Visual illustration of the Deterministic Annealing EM (DAEM) algorithm.
Ueda and Nakano (1998) give this visual synopsis of the running of the DAEM al-
gorithm. β = 1/τ , so as β increases to 1, the temperature τ is decreasing to 1. We
see at high temperatures (low β) the probability density function’s two peaks are
driven together as all probabilities are smoothed out. As the temperature lowers, the
probabilities assigned under the pdf are smoothed less and less, allowing the natural
peaks in the probability space to emerge. The DAEM tracks the maximum as the
peaks pull apart with lowering temperatures (increasing β). The term “negative free
energy” used in the figure comes from the analogy and theory of maximizing the
entropy of a system in thermodynamics.

50

However, one tricky point is that we must use fixed point iteration to compute

our s values, since s is defined in terms of itself (Equation 3.45). As far as we know,

there is not a theoretical upper bound on the number of iterations required to converge

on a final value for s, only that convergence is guaranteed. Therefore, we let i denote

the number of iterations needed to converge on a value for s. This brings the running

time for one iteration of the EM algorithm (computing the cluster assignments, s, β,

and any requisite values between), to O(indk). Although we don’t know the number

of iterations it should take to converge on a value for s, we see in practice for training

an EDCM mixture to cluster program trace data i is rarely greater than 9 (see the

chapter on experimental results for more information).

Now we are left with trying to determine how many iterations it will take the

EM algorithm to converge. There is a not, to our knowledge, a proven bound on the

number of iterations needed for convergence, just that it is guaranteed to converge.

The convergence rate of the EM algorithm depends largely on the values of the data,

latent variables, and parameters and so is not easily proven. Therefore, we let e

denote the number of iterations needed to converge the EM algorithm. This brings

the asymptotic upper bound of the running time for the running of the EM to

O(eindk). (3.47)

It takes e iterations of the EM to converge, and at each iteration we must compute

s, taking i iterations to converge. Computing s costs O(ndk) per iteration. We are

making the assumption, of course, that the mathematical operations we need, such as

the logarithm, square root, the Ψ function, and the Γ function, etc., all run in constant

time for a scalar input. In the experimental results, we give empirical running times

and comparisons with SimPoint.

If we are using deterministic annealing with T total temperatures, we have to

iterate the EM for each temperature. This increases the running time of the EM

algorithm to O(Teindk). However, the temperatures are of user selected values and

51

so only increase the running time by a constant factor. For instance, if we choose

five temperatures for our annealing process, we know T = 5 and can drop it from our

discussion.

With regards to space, the EM algorithm performs rather well. We must store

n×D values for the data examples, n× k values for the cluster assignments m and

probabilities Pr(xi|βj), and k ×D values for the β parameters. All the intermediate

matrices needed are of the same size as these other matrices or smaller. Therefore,

we express an upper bound on the space required to train an EDCM mixture with

the EM algorithm as O(nD+nk+ kD) (some constant number of matrices, each one

of these three sizes or smaller). We do not combine any of the terms because we do

not control the values for n and D. Additionally, if we are choosing the number of

clusters k without a priori knowledge using some automatic method, we also do not

control k.

3.2 Choosing k

There are many parameters to consider when training an EDCM mixture to

cluster a set of examples. We have seen how we can use the Expectation Maximiza-

tion algorithm to train one EDCM mixture’s parameters β to fit a set of examples

with a maximum likelihood. However, we may not always know how many EDCM

distributions we need to train within our mixture. In other words, how many clusters

k best represent the data? This is a fundamental question in unsupervised learning,

and is one of the most important pieces of information we do not know and must

learn without a priori information.

3.2.1 Over- and Underfitting

It is often the case that adding more clusters (i.e. increasing k) improves a

model’s likelihood. Therefore, we could increase the likelihood of a model M by

52

increasing the number of clusters withinM . In fact, we could maximize the likelihood

of M by setting k = n, one cluster per example. This would mean every point was

represented with perfect accuracy and our model would express the data with zero

error (where the error of a model might be the sum of the distances from each point

to the center of the clusters they are assigned to). However, expressing the data with

fewer clusters gives us a greater amount of savings in the summarization of the data,

leading to a balance that must be made.

Fitting too many clusters to the data is called overfitting. This is undesirable

for many reasons. First, if there is any noise or error in the observations, the model

will be fitted to the noise and will not be a good generalization of the underlying

processes generating the data. Second, composing a model where we have more

clusters than natural groupings of examples defeats the purpose of clustering in the

first place. It is often the goal of clustering to find some way to group data and express

the summarizations of group characteristics with cluster representatives, reducing the

amount of information needed to describe the set of examples from on the order of

n to on the order of k. If n = k (in an extreme case of overfitting), we have not

accomplished any savings. We can overfit a model to a set of examples without

necessarily constructing one cluster for every individual data point. Any model that

contains too many clusters is said to overfit the data and loses desired generality,

beginning to cluster to subtle nuances in similarity that may not be significant. It is

important not to overfit data because, unless we have an infinite number of perfectly

drawn samples (the measurement or observation process introduces no error), we will

always have a somewhat incomplete picture of the underlying structure of the data.

Every sample size is always finite, resulting in a need to remain general in order to

account for unseen or unobserved data.

The other extreme is underfitting, where we do not use enough clusters to

express the data. Although we save in the amount of data needed to summarize the

53

examples, we do so at a loss of accuracy. If we don’t have enough information to

express our data well, we do not get a clear picture of what is going on and may

lose many important details. For example, if a set of data contains five clusters in

truth, but we only fit two clusters to it, we are in effect losing three clusters’ worth

of information.

3.2.2 Finding a Balance

The difficulty in choosing k is knowing where the point of diminishing returns

lies. On one hand, we want a high enough value for k that we are adequately rep-

resenting the data with enough clusters. On the other, we want a small enough k

that our clustering is as concise as possible. The hard questions to answer are what it

means for a model’s representation to be adequate, and how concise we would like our

summarization to be at the expense of details. There are many automatic methods

for determining which model, given many with different values of k, should be used.

The methods we examine here, the Akaike Information Criterion and the Bayesian

Information Criterion, work by penalizing the log likelihood, how well a model fits a

set of examples, by the complexity of the model. Increasing k will increase the log

likelihood of the model, but at some point the penalty factor of increasing k, and,

therefore, adding more complexity, will start to decrease a model’s attractiveness.

The following criteria yield a score—an assigned value weighing the trade-off

between complexity and likelihood. We perform a deterministic search through a

bounded space of possible k and choose the model (with the corresponding value for

k) that yields the optimal score. The optimal is not always the maximum score and

depends on the formulation of the criterion, but it will always be a local optima,

either maximal or minimal. To search for the optimal score, we begin with the lower

bound on our value for k. Performing random restarts and deterministic annealing as

appropriate for the experiment at hand, we choose the best model given the current k

54

(the model with the highest log likelihood) and compute its score within the criterion.

Incrementing k, we continue to compute the scores for each model for each value of

k, keeping track of the k yielding the optimal score (which may be a minimum or

maximum depending on the score function). Experimentally, we find that each scoring

method reaches a local optimum then falls away rapidly, allowing an easy search

heuristic to be employed to optimize the score. When we find a new optimal score,

we look a certain number of values of k greater than the current value to ensure there

is not a more optimal score nearby (with a slightly larger k). As an easily modifiable

parameter, we arbitrarily chose a value of five, observing empirically that optima are

reached quickly and then fallen away from just as quickly. This is discussed in more

detail in the experimental results.

3.2.3 Akaike Information Criterion

The Akaike Information Criterion (AIC) is of the form

AIC = −2L+ 2p, (3.48)

with L being the log likelihood of our mixture model and p being the number of

independent parameters estimated by our model (Akaike 1974). See below for a

discussion on p.

Akaike noted that choosing a model based solely on the maximum likelihood

estimate (MLE) would always choose the model with the highest number of inde-

pendent parameters because the resultant model could easily overfit the examples.

However, as discussed, a perfect fit to training data means we lose generality and

possibly any goodness of fit to data that we have not seen yet.

3.2.4 Bayesian Information Criterion

The Bayesian Information Criterion (BIC, also called the Schwarz Criterion)

was proposed as an alternative method of model selection. While the AIC was for-

55

mulated to deal with different number of parameters, the BIC was formulated specif-

ically to select the number of dimensions that should be used to represent some set

of data, noting that MLE methods always choose models with the maximum number

of dimensions.

BIC = L − 1

2
log(N)p, (3.49)

where L is the log likelihood of the model, N is the number of examples used to train

the model, and p is the dimensionality of the model (Schwarz 1978). Although this

method is specifically derived to handle changes in the dimensionality of a model, it

is translatable into varying the number of clusters within a mixture model because

adding a cluster effectively adds D + 1 more parameters to our representation (each

cluster within the model is represented by some D-vector of parameters βj, and we

estimate another prior probability for the new cluster).

The primary difference between the AIC and the BIC is the penalty imposed

on the number of independent parameters. There is a slight difference in the coef-

ficients on each term in the two scoring methods, but this amounts to a constant

factor. However, the BIC multiplies p by logN , meaning the penalty includes a term

dependent on the number of examples observed, and therefore will be higher than

the AIC (for log(N) > 4). This causes the BIC to prefer models with smaller p and

allows the AIC to choose models with greater p. The difference in k chosen by each

method is examined in the experimental results.

3.2.5 Model Complexity

Both the AIC and the BIC operate by penalizing the log likelihood of a model

by some factor of the model’s complexity. The complexity of a model is measured by

the number of free parameters the model estimates. A free parameter is an unknown

within our model that we vary freely to change the fit of our model. For example,

the parameters of each EDCM in our mixture are free parameters, as are the prior

56

probabilities for each EDCM. We generally use p to represent model complexity and

express it as

p = k + kD − 1. (3.50)

We estimate p free parameters for a mixture of EDCM distributions, k parameter

vectors β of D dimensions each and k− 1 prior probabilities (one Pr(cj) per EDCM).

Because the k prior probabilities must some to 1, mathematically we only estimate

k − 1 of them, solving for the kth prior as 1−∑k
j=1 Pr(cj).

The EM algorithm must also estimate a number of cluster assignments, the

latent variablesmji. The cluster assignments for each interval xi must sum to 1 across

the different clusters (
∑k

j=1mji = 1). Therefore, the first k − 1 cluster assignment

variables are free parameters, with the kth value being solved mathematically as

mki = 1 −
∑k

j=1mji. We compute a set of cluster assignments for all n intervals,

meaning we estimate n(k − 1) latent variables. It might be the case that we need to

modify our formulation of p to take into account these additional parameters,

p = k + kD − 1 + n(k − 1). (3.51)

However, for the remainder of the thesis, we use the formulation of p given in Equation

3.50, without considering the number of cluster assignments estimated.

3.3 Analysis of Clusterings

Once we’ve clustered a set of examples with an EDCM mixture, with k selected

without the use of a priori knowledge (using either the AIC or BIC), random restarts

to reduce the effects of random initialization of the EM algorithm, and possibly using

the Deterministic Annealing EM algorithm to reduce the effects of local maxima,

we want a way to determine how well a clustering fits our examples. Specifically,

we wish to compare the clustering provided by the EDCM mixture to clusterings

provided by the k-means algorithm used in SimPoint, since it is the de facto standard

and motivation for the clustering problem at hand.

57

Much of this section will be covered in the experimental results, also. We

will lay down motivations for the processes we took to analyze our clusterings here,

separating the results and findings of the analysis into the other chapter.

3.3.1 Variation of Information

To compare two clusterings on the same dataset, we can use the Variation of

Information (VI) metric. The VI is based on mutual information shared between two

clusterings on the same dataset, regardless of the number of clusters in either model

or the cluster assignments. The VI can be used regardless of how the clusters were

obtained or whether the cluster assignments are hard or soft (Meilă 2002).

Meilă derives the VI in a straightforward manner. Consider a set of N examples

assigned to k clusters (c1, · · · , ck). If we choose one of the examples at random (with

each example having equal probability of being picked), the probability that it is

assigned to cluster cj is

Pr(cj) =
|cj|
N
. (3.52)

The entropy of these probabilities represents, for a particular clustering C, the amount

of surprise or uncertainty we face when trying to decide which cluster some randomly

drawn example will belong to.

H(C) = −
k
∑

j=1

Pr(cj) log Pr(cj) (3.53)

If the examples are uniformly spread out over all the clusters, then the amount of

uncertainty in our guess is high because the example could belong to any cluster just

as well as any other. If all the examples are assigned to one cluster, the entropy will

be low (minimized at 0) because we can be absolutely certain which cluster is correct.

Given two clustering models, C and C ′, with k and k′ clusters respectively,

Meilă (2002) computes the mutual information between them. Mutual information

tells us how much about C ′ we can infer when we know C. First, consider another

58

set of probabilities,

Pr(cj, c
′
j′) =

|cj ∩ c′j′ |
N

, (3.54)

representing a k×k′ matrix of probabilities that a randomly selected point is assigned

to cluster cj in model C and to cluster c′j′ in model C ′. The mutual information

between the two clustering models C and C ′ is then

I(C,C ′) =
k
∑

j=1

k′

∑

j′=1

Pr(cj, c
′
j′) log

Pr(cj, c
′
j′)

Pr(cj) Pr(c′j′)
. (3.55)

Meilă offers a concise and clear explanation of the meaning of I(C,C ′).

We are given a random point in [the domain of the data]. The uncer-
tainty about its cluster in C ′ is measured byH(C ′). Suppose now that
we are told which cluster the point belongs to in C. How much does
this change the uncertainty about C ′? This reduction in uncertainty,
averaged over all points, is equal to I(C,C ′). (2002)

The Variation of Information between two clusterings C and C ′, the difference

in information given by the two clusterings, is defined by Meilă as

V I(C,C ′) = H(C) +H(C ′)− 2I(C,C ′) (3.56)

= [H(C)− I(C,C ′)] + [H(C ′)− I(C,C ′)] . (3.57)

Intuitively this is the amount of uncertainty present in both clusterings minus the

amount of certainty we can infer about one clustering using the other. Therefore, it

is the total amount of uncertainty in the system composed of the two clusterings C

and C ′. Meilă gives an elucidating illustration to help explain the logic and derivation

of the VI, see Figure 3.5.

Upper and lower bounds are provided for the VI, allowing relative comparison

from one set of clusterings to another. The variation of information for two identical

clusterings is 0 (knowing one gives us total information about the other). Two upper

bounds are given for the VI. The first is

V I(C,C ′) ≤ log(N) ∀N, (3.58)

59

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

VI(C,C’)

H(C)
H(C’)

H(C|C’) I(C,C’) H(C’|C)

Figure 3.5: Variation of Information. Each circle represents the uncertainty, the
entropy H, of each clustering C and C ′. The overlap between the circles is the
amount of information we can infer from one about the other. Adding together the
entropies and subtracting out the mutual information (the middle section twice, once
for each larger circle), leaves us with the total uncertainty given the two clusterings,
the amount of information that given one clustering, we do not know about the other
clustering. (Meilă 2002)

where N is the number of examples clustered by the models C and C ′. The second

upper bound is tighter but comes with more assumptions. If we let K∗ = max(k, k′)

be the maximum number of clusters between C and C ′, and if K∗ ≤
√
N then it is

the case that

V I(C,C ′) ≤ 2 logK∗ (3.59)

(Meilă 2002). We compare SimPoint and EDCM clusterings using the Variation of

Information to determine how similar they are.

3.3.2 Cluster Characteristics

We don’t just want to compare resultant clusterings from one process against

those generated by another. Within the same process, the EDCM mixture model, we

want to analyze the clusterings produced to gain an insight into how the EDCM

60

handles program trace data. We can look at how the examples are distributed among

the clusters and how examples within the same cluster are related.

3.3.2.1 Cluster weights. The distribution of cluster weights tells us if our

clustering algorithm is doing a good job of spreading the examples evenly across

the different clusters. It is probably not the case that we always want a uniform

distribution of data across the clusters (i.e. the same number of examples in each

cluster). Being very data dependent, it is difficult, if not impossible, to describe what

the proper distribution of cluster weights should be. Hence the reason clustering

belongs in the field of unsupervised learning, because we do not know what the

clusters should look like a priori.

However, one can examine the distribution of cluster weights among different

runs of the EM algorithm for EDCM mixtures and make sure that it does not always

favor a select few clusters and put most examples into one cluster. Additionally, if

we -do- happen to have some idea of what the data should look like, even though we

might not have specifics, we can verify part of our beliefs by examining the cluster

weights to make sure the EDCM mixture model is behaving as expected.

3.3.2.2 Coefficient of variation. One can determine the amount of similarity

of all examples within a cluster using a metric like the coefficient of variation (CoV).

Simply defined, the CoV measures the amount of spread within a distribution nor-

malized by the mean, making for easy comparisons between sets of examples with

varying means. The CoV for a set of values is

CoV =
σ

µ
, (3.60)

the standard deviation divided by the mean of the set.

We use the CoV to determine the similarity of behavior between all intervals in

a cluster. We choose the cycles per instruction (CPI) statistic as a marker for interval

61

behavior. CPI tends to give an overall picture of processor performance during the

execution of a benchmark. Low CPI means our processor is doing a good job at getting

the most performance out of each clock tick. Higher CPI means our processor is doing

a poor job at tasks such as branch prediction and/or we have a lot of cache misses,

etc. We choose to examine the CPI statistic because of its overall representation

of processor performance. The CoV of the CPI statistics of the intervals within a

cluster tells us how much behavior the intervals have in common. Lower CoV means

the statistics are more similar to one another and have less variance. A higher CoV

means the behaviors are more different.

We modify Equation 3.60 to handle multiple clusters and compute a weighted

sum, giving the overall CoV for the entire clustering rather than just within one

cluster. This allows us to gauge not just the per cluster variation, but also how

closely grouped all the examples within all the clusters are with each other. For a

mixture model with k clusters, each with variance σj and mean µj, the CoV of the

CPI is

CoV =
k
∑

j=1

σj

µj

wj. (3.61)

We use σj to denote the standard deviation in the set of CPI values for the intervals in

cluster cj and µj to represent the mean of the CPI values. The weight of each cluster

is wj = |cj|/N , the percentage of all examples assigned to cluster cj. Clusterings with

relatively small CoV have done a better job at grouping similar items than clusterings

with a higher CoV.

3.4 Choosing Cluster Representatives

The previous sections dealt with ways to cluster data, including high dimen-

sional and bursty data, using the EM algorithm to train EDCM mixtures. We also

examined ways in which we could verify and validate the resultant clusterings. Once

we have a clustering that we feel confident is accurate of the clusters within the

62

underlying data, we may choose cluster representatives. Cluster representatives, ap-

propriately enough, represent the clusters they are selected for. They are the means

by which one may summarize the examples within the clusters.

In SimPoint, the cluster representatives are called simulation points. Detailed

simulations are run on the simulation points and the gathered statistics are assumed to

represent the behavior of all the intervals assigned to the same cluster. Therefore, it is

important to not only have clusters that are indeed collections of examples (intervals)

with strong similarities (behavior), but also that we choose cluster representatives that

summarize all the examples in the cluster well.

3.4.1 Probabilistic Methods

Because the EDCM mixture uses underlying probability distributions to per-

form all the clustering, each example has a probability assigned to it for each cluster,

Pr(xi|βj). A straightforward approach to choosing cluster representatives would be

to select the example with the highest probability. We can select a simulation point,

sj, for cluster cj using

sj = argmax
xi∈cj

Pr(xi|βj). (3.62)

The rationale behind using intervals with the highest probability as simulation

points is that the parameters for a cluster, once the EM algorithm terminates, are

fixed to maximize the likelihood of the cluster it describes and of the model as a whole.

Each interval has a probability under the distribution described by the parameters

for that particular EDCM. Therefore, it would seem that choosing the interval that

maximized the probability with respect to the parameters, that maximized the log

likelihood of the distribution, would give the most representative interval, because

the selected interval would fit the cluster’s parameters the best.

63

3.4.2 Geometric Methods

Alternatively, we may treat each example as a vector in some geometric space

and use geometric methods to compare similarities. Examples with similar feature

vectors will be relatively close together in the geometric space, however that sense of

distance might be measured.

3.4.2.1 Angular metrics. One method of comparing vectors in geometric space

is to normalize all the example vectors and the cluster representations (in the case

of an EDCM mixture, the parameters β) to the unit hypersphere. Using the dot

product, we select the normalized example with the smallest angle (using the dot

product) from the normalized β vector. In D dimensions, the unit hypersphere is

composed of the set of vectors x satisfying
{

x :
D
∑

d=1

x2d = 1

}

. (3.63)

To normalize all the examples to the unit hypersphere, we simply divide each example

by the sum of the square of each dimension (letting x′ denote the normalized example),

x′ =
x

√

∑D
d=1 x

2
d

. (3.64)

We normalize β in a similar fashion, giving β ′.

When comparing x′ to β ′, we want to choose as cluster representative the x′ that

is most similar to β ′. On the surface of the unit hypersphere, or some other normalized

surface, this equates to the x′ with the smallest angle to β ′. We can compute the

angle between two vectors using the dot product. For two D-dimensional vectors a

and b, the dot product, denoted 〈a · b〉, is

〈a · b〉 =
D
∑

d=1

adbd (3.65)

= ||a||||b|| cosψ, (3.66)

with ||a|| =
√

∑D
d=1 a

2
d being the length of vector a. To minimize the angle ψ between

a and b, we want to maximize the dot product. This is because when two vectors

64

are orthogonal, or at a ninety degree angle to one another, cosψ = cos 90◦ = 0 and

〈a · b〉 is 0. If, however, the two vectors are collinear and point in the same direction

(as opposed to pointing in opposite directions), ψ = 0 and cosψ = 1. For vectors

pointing in opposite directions, cosψ < 0. Thus, we see that in order to minimize

ψ, we need to maximize the dot product. Our simulation point, sj, for cluster cj is

chosen as

sj = argmax
x′

i∈cj

〈x′i · β′j〉. (3.67)

3.4.2.2 Distance metrics. We can check for similarity between points in ge-

ometric spaces without using normalizations and the dot product by using distance

metrics. Without normalizing our examples, we can treat them as points in some

D-dimensional space. The x with the minimum distance to the cluster “centers” is

chosen as the simulation point. A point that is closest to the center of a cluster is

the point that is closest to the overall, or average behavior of the examples in that

cluster.

There are several distance metrics we can choose from when deciding how to

measure distance, but all are based off the Lp norm. For D-vectors a and b, the

distance metric Lp is defined as

Lp(a, b) =
p

√

√

√

√

D
∑

d=1

|ad − bd|p (3.68)

and is a general form for computing distance, with p being a user selected parameter.

It has been shown that choosing smaller values for p yields more meaningful distance

results in high dimension (Aggarwal et al. 2001). Recall that examples tend to look

farther and farther apart as the number of dimensions is increased. Thus, for data

in high, we wish to use a distance metric Lp with some small p. The two distance

65

metrics we examine are Euclidean (straight line) distance (p = 2),

L2(a, b) =

√

√

√

√

D
∑

d=1

(ad − bd)2, (3.69)

and Manhattan distance (p = 1),

L1(a, b) =
D
∑

d=1

|ad − bd|, (3.70)

which is simply the sum of the absolute values of the differences of each dimension.

A common analogy to Manhattan distance is the distance from one point to another

in a city where the streets are laid out along a square grid. One cannot simply take a

straight line from point a to point b, one must travel along each dimension (east-west

and north-south) independently.

We can also vary the way in which we choose cluster centers, using either the

mean or median of the points in the clusters. Using the mean is the most straight-

forward method to thinking about choosing a center as it literally does, in fact, end

up being a true geometrical center. The mean of a cluster with examples x in D-space

is

µj =
1

|cj|
∑

xi∈cj

xi. (3.71)

µj represents the average value of some set of examples, but not necessarily the middle

value. In a skewed distribution, the mean will not always be the most desirable way

to express the majority behavior.

To counteract the problems that may be introduced by using the mean, we also

examine using the median as the cluster center. The median is simply the middle

value in a sorted list. If there are an even number of items within the list, there is

not a single middle item, but a middle pair of items. One may choose the upper or

lower element in the pair to act as the mean, or one may use the average of the two

values as the median. So, given a list of values x, the median νj is the value that,

given the list, satisfies Pr(X ≤ ν) = Pr(X ≥ ν). So, for the above example, νj = 0,

a much more representative value for the cluster as a whole.

66

3.4.3 Motivation for Choice of Method

It is an easy thing, given a clustering, to examine the different methods of

choosing cluster representatives and simply decide to use the method that works

best. However, we want to provide some greater insight into why one method might

outperform another in choosing ideal simulation points. Additionally, outside of a

research setting, a practitioner will not have statistics for all the intervals, as we have

for our testing purposes. Clustering will be used in order to speed up the process

of providing such statistics and statistics will not be available a priori. Therefore,

simply examining which method works best without this knowledge is infeasible.

When judging the merit of a simulation point, we judge how well it represents

the overall behavior of the cluster it is chosen from. The behavior of an interval

is reflected in its statistics, which are not known a priori. We have them for our

research because the time has been taken to gather all the statistics beforehand for the

purposes of testing the SimPoint application’s performance (Sherwood et al. 2001).

We examine the cycles per instruction, CPI, of an interval to represent its behavior.

Looking at the average CPI of a cluster cj, we can compare it with the CPI of

all the intervals xi ∈ cj . Moreover, if we examine the difference in CPI between

an interval and the cluster average versus the distance (Euclidean or Manhattan) or

angle between the example and the centroid (µj or νj), we hope to see that as distance

or angle increases, so does the difference in CPI. This would mean that the centroid

is indeed an accurate representative of overall cluster behavior.

CHAPTER FOUR

Experimental Results

The motivation and framework for the thesis has been laid out. Now we examine

the ways in which we set up experiments to test our methodologies and expound upon

the results.

4.1 Experimental Setup

For all the following experiments, we cluster program trace data in basic block

format generated by Sherwood et al. (2001), split into fixed length intervals of 100

million instructions each. Full detailed statistics have been gathered on every interval,

allowing us to judge the performance of our predictions.

For many experiments we talk about the percent error of our predictions as a

basis for judging the merits of different methods used to generate the predictions.

The prediction we are making per dataset is the average cycles per instruction (CPI).

There are many other statistics we could examine for prediction purposes, such as

the number of cache hits/misses, the number of branch prediction failures, etc. We

choose to look at the CPI because it gives an overall picture of a hardware design’s

performance. After clustering the program trace data and choosing simulation points,

we compute a weighted sum of the CPI for the dataset by multiplying the CPI of

each simulation point by the weight of the cluster it represents. The weighted CPI

statistics for all the clusters are summed, serving as the predicted CPI. The predicted

CPI is compared to the true average CPI of all the intervals in the dataset and the

percent error of the prediction is calculated.

67

68

4.2 Burstiness in Program Execution

Burstiness is an important phenomenon. As discussed previously, burstiness

occurs not only in the domain of text documents, but is expected to occur in the pro-

gram trace data clustered by SimPoint as well. We examine different ways burstiness

can be defined and how bursty program execution tends to be. We also examine the

effects of burstiness in our data.

4.2.1 Measuring Burstiness

In considering how we might quantify burstiness, we might consider the entropy

of a feature (across all examples) to be a good measure, with low entropies being

representative of bursty behavior and a feature with high entropy being non-bursty

(because occurrences would be spread uniformly across all the intervals). Another

measure of burstiness could be to examine the sum s =
∑D

d=1 βd for a particular

cluster (Elkan 2006). Elkan notes the parameters of the DCM distribution can be

thought of as representing the initial counts of differently colored balls in a Pólya urn

scheme, where a smaller value for s results in more bursty behavior.

4.2.1.1 Measuring burstiness with s. We first examine expressing the burstiness

of a distribution using the sum of the parameters of the distribution, s. Figures 4.1,

4.2, and 4.3 illustrate the bursty behavior of the balls in the Pólya urn scheme. The

three graphs differ in the number of colors present in the urn. For each graph, we vary

s, the number of balls initially in the urn. Note that for D different possible colors, we

must have s ≥ D. This is because every color must be initially represented within the

urn and ball counts are integral. Otherwise, all initial color counts could be < 1 and

s would not necessarily have to be ≥ D. For each value of s, we initially fill the urn

with s balls, the color of each ball determined by a uniform distribution over the D

color choices (with at least one ball of each color present). Once the urn is initialized,

69

2 5 10 25 50 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

s

P
er

ce
nt

 o
f B

al
ls

 in
 U

rn

Color 1
Color 2

Figure 4.1: Burstiness of the Pólya urn scheme, 2 colors. Here we demonstrate the
effect of varying s, the initial number of colored balls in Pólya’s urn, on the amount of
burstiness exhibited by the urn. For small s, we see that one color tends to dominate
the other—the urn exhibits very bursty behavior. However, as we increase s, we
see that the distribution of the colors of the balls in the urn becomes more uniform.
For the experiment, the urn was initially filled with s balls, the color of each ball
decided by a uniform distribution over all the colors (all colors equally probable of
being represented initially). We then drew a ball out of the urn at random 5000 times
(an easily modifiable parameter), replacing it and adding another ball of the same
color. After taking all our samples, we counted up the number of balls of each color
in the urn, denoting by ’Color 1’ the color with the smaller proportion of balls, and
by ’Color 2’ the color with the larger proportion of balls.

we then take some large number of samples (this is an easily modified parameter and

is set to 5000 for the figures given here), replacing the ball sampled each time and

adding another ball to the urn of the same color. After we have drawn our samples,

we count the number of balls of each color and calculate the percentage of the urn

each color comprises. We denote the color comprising the smallest percentage of the

urn Color 1, with the color comprising the highest percentage of the balls in the urn

denoted Color D.

The process of initially filling the urn and sampling balls is completely random,

but Figures 4.1, 4.2, and 4.3 show the empirically observed trend of burstiness. When

70

3 5 10 25 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

s

P
er

ce
nt

 o
f B

al
ls

 in
 U

rn

Color 1
Color 2
Color 3

Figure 4.2: Burstiness of the Pólya urn scheme, 3 colors. This experiment was carried
out just like the experiment with 2 colors (Figure 4.1), modifying only the number
of colors. Note the consistent behavior, with widely differing proportions of colors
converging to a uniform distribution of colors as s increases.

5 10 25 50 100 250 500 1000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

s

P
er

ce
nt

 o
f B

al
ls

 in
 U

rn

Color 1
Color 2
Color 3
Color 4
Color 5

Figure 4.3: Burstiness of the Pólya urn scheme, 5 colors. The same experiment as
Figures 4.1 and 4.2 but with 5 colors.

71

s is small, it is the case that there is some color that clearly makes up a higher percent-

age of the urn than all the others. Sometimes, the majority is not that pronounced,

but it is always there. As s increases, we see that all colors begin to have more and

more similar distributions throughout the urn. Finally, when s is very large, we find

that the composition of the urn is fairly uniform with regards to color, with no single

color having a true majority over any others.

We want to know, examining the values of s of the EDCM distributions, how

bursty the program trace data clustered by SimPoint is. We examine the values of s

for each dataset as described by one EDCM distribution and use it to describe how

bursty that individual dataset is as a whole. Figure 4.4 shows the value of s for each

dataset. We also compute, for comparison purposes, a theoretical maximum value for

s. s would be maximized, according to the analogy drawn to the Pólya urn scheme

by Elkan (2006), on a set of uniform data that does not exhibit burstiness. We create

artificial datasets of the same number of dimensions as each of the real program

trace datasets. The intervals in the artificial datasets are nearly uniform (with small

random perturbations) and the artificial intervals all sum to 100 million, the number

of instructions of each of the intervals in the real datasets. The theoretical maximum

value of s is plotted above each of the bars, showing for each case, the actual s is

much lower than the maximum. Figure 4.5 plots the values of s for the single EDCMs

as a percentage of the maximum value of s. We see that, on average, the value of s is

only about 12% of the maximum value, supporting the idea that program trace data

is bursty because of the relatively small values of s.

4.2.1.2 Measuring burstiness with entropy. In addition to using the value of s

to describe burstiness in program trace data, we also use the entropy of a basic block’s

occurrences in the intervals of a dataset. Entropy has been discussed several times

already, but for clarity we present its formula again and explain how it is used. For

72

0

2000

4000

6000

8000

10000

12000

Dataset

V
al

ue
 o

f s

am
m

p
ap

pl
u

ar
t−

11
0

ar
t−

47
0

bz
ip

−
gr

ap
h

bz
ip

−
pg

m
bz

ip
−

sr
c

cr
af

ty
eo

n−
co

ok
eo

n−
ka

j
eo

n−
ru

sh
eq

ua
ke

fa
ce

re
c

ga
p

gc
c−

16
6

gc
c−

20
0

gc
c−

ex
pr

gc
c−

in
t

gc
c−

sc
i

gc
c−

tr
n

gz
−

gr
ap

h
gz

−
lo

g
gz

−
pg

m
gz

−
ra

nd
gz

−
sr

c
lu

ca
s

m
es

a
pe

rl−
di

ff
pe

rl−
m

kr
nd

pe
rl−

m
ai

l
sw

im
vr

tx
−

on
e

vr
tx

−
th

re
e

vr
tx

−
tw

o
vp

r−
pl

ac
e

vp
r−

ro
ut

e

Actual s
Maximum s

Figure 4.4: Value of s per dataset. Each dataset is fitted with a single EDCM. The
value s =

∑D
d=1 βd for a dataset describes the amount of burstiness in the dataset.

Lower values for s represent bursty datasets, as in the Pólya urn scheme. The bars
for each dataset give the value of s. The plotted points above each bar give the
theoretical maximum value of s, computed by fitting an EDCM to uniform data (with
small random perturbations) with the same number of dimensions as the dataset. We
see that although there are large differences in the actual values for s for each dataset,
every one of them is far below the maximum values. This implies that the program
trace datasets are indeed bursty.

0

5

10

15

20

25

30

am
m

p
ap

pl
u

ar
t−

11
0

ar
t−

47
0

bz
ip

−
gr

ap
h

bz
ip

−
pg

m
bz

ip
−

sr
c

cr
af

ty
eo

n−
co

ok
eo

n−
ka

j
eo

n−
ru

sh
eq

ua
ke

fa
ce

re
c

ga
p

gc
c−

16
6

gc
c−

20
0

gc
c−

ex
pr

gc
c−

in
t

gc
c−

sc
i

gc
c−

tr
n

gz
−

gr
ap

h
gz

−
lo

g
gz

−
pg

m
gz

−
ra

nd
gz

−
sr

c
lu

ca
s

m
es

a
pe

rl−
di

ff
pe

rl−
m

kr
nd

pe
rl−

m
ai

l
sw

im
vr

tx
−

on
e

vr
tx

−
th

re
e

vr
tx

−
tw

o
vp

r−
pl

ac
e

vp
r−

ro
ut

e
M

ea
n

M
ax

im
um

Dataset

P
er

ce
nt

 o
f M

ax
im

um
 s

Figure 4.5: Percentages of maximum values of s. For each dataset, we compare the
value of s =

∑D
d=1 βd for a single EDCM compared with the maximum value of s (as

computed in Figure 4.4). We see that, on average, the value of s is only 12% of the
maximum. We conclude that because of the small values of s, program trace data is
bursty.

73

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 U
0

0.5

1

1.5

2

2.5

3

d

H
(d

)

Figure 4.6: Entropy of burty features. Experiment showing that entropy is minimized
when a feature is extremely bursty (i.e. all occurrences appear in one interval) and
maximized when occurrences appear uniformly throughout the space of the intervals.
The horizontal axis plots feature d, which occurs with random probability in d inter-
vals (1 ≤ d ≤ D), meaning smaller d are more bursty. Feature U occurs uniformly
over all D intervals (with probability 1/D). The vertical axis plots the entropies of
the features, averaged over multiple trials to smooth out the curve and reduce the
effects of randomization.

basic block d, consider the counts of its occurrences within all intervals xi. Consider

the number of occurrences of the basic block in a particular interval, xid. Define

Pr(xid) =
xid

∑N
l=1 xld

, (4.1)

the probability that a particular basic block d executes within interval xi. With this

probability, we can state the entropy of a feature d as

H(d) = −
N
∑

i=1

Pr(xid) log Pr(xid). (4.2)

The entropy of a basic block describes how uncertain we are about it’s occurrence

within a particular interval.

We expect bursty features to have a low entropy because occurrences of the

basic block will be limited to a select few intervals, rather than having a probability

74

0

20

40

60

80

100

Dataset

%
 F

ea
tu

re
s

am
m

p
ap

pl
u

ar
t−

11
0

ar
t−

47
0

bz
ip

−
gr

ap
h

bz
ip

−
pg

m
bz

ip
−

sr
c

cr
af

ty
eo

n−
co

ok
eo

n−
ka

j
eo

n−
ru

sh
eq

ua
ke

fa
ce

re
c

ga
p

gc
c−

16
6

gc
c−

20
0

gc
c−

ex
pr

gc
c−

in
t

gc
c−

sc
i

gc
c−

tr
n

gz
−

gr
ap

h
gz

−
lo

g
gz

−
pg

m
gz

−
ra

nd
gz

−
sr

c
lu

ca
s

m
es

a
pe

rl−
di

ff
pe

rl−
m

kr
nd

pe
rl−

m
ai

l
sw

im
vr

tx
−

on
e

vr
tx

−
th

re
e

vr
tx

−
tw

o
vp

r−
pl

ac
e

vp
r−

ro
ut

e
M

ea
n

M
ax

im
um

< 1

< 0.01

Figure 4.7: Percent of SimPoint features with low entropy. For the most part, features
in program trace data tend to be bursty, with bursty features comprising the majority
of many datasets. The horizontal axis gives data for each dataset, with the bars for
each dataset giving the percentage of all feature entropies that are below the various
thresholds. On average, we see that nearly 40% of all basic blocks in the program
trace data are bursty.

of being spread over all the intervals. To test this hypothesis, we set up a simple

experiment. Consider a set x of D features occurring in D intervals. Specific feature

d occurs in d intervals with random distribution of probability, normalized such that

∑D
i=1 xid = 1. Additionally, we add a feature D + 1 (call it U for uniform) that is

uniformly distributed, that is for all 1 ≤ i, l ≤ D, xid = xld = 1/D. We compute

the entropy of each feature, expecting the entropy of feature 1 to be 0 because all

its occurrences occur in 1 interval. The entropy of feature U should be the highest

since its occurrences are uniform throughout the intervals. We repeat the experiment

many times to remove measurement error introduced by the randomness of the data,

averaging the entropy for each feature d over all the trials. Figure 4.6 plots the

averaged entropy for each feature, showing that bursty features (where all occurrences

occur in only a few intervals) have a lower entropy, with the entropy maximized when

the occurrences are uniform through the intervals.

75

−2

0

2

4

6

8

am
m

p
ap

pl
u

ar
t−

11
0

ar
t−

47
0

bz
ip

−
gr

ap
h

bz
ip

−
pg

m
bz

ip
−

sr
c

cr
af

ty
eo

n−
co

ok
eo

n−
ka

j
eo

n−
ru

sh
eq

ua
ke

fa
ce

re
c

ga
p

gc
c−

16
6

gc
c−

20
0

gc
c−

ex
pr

gc
c−

in
t

gc
c−

sc
i

gc
c−

tr
n

gz
−

gr
ap

h
gz

−
lo

g
gz

−
pg

m
gz

−
ra

nd
gz

−
sr

c
lu

ca
s

m
es

a
pe

rl−
di

ff
pe

rl−
m

kr
nd

pe
rl−

m
ai

l
sw

im
vr

tx
−

on
e

vr
tx

−
th

re
e

vr
tx

−
tw

o
vp

r−
pl

ac
e

vp
r−

ro
ut

e

Dataset

F
ea

tu
re

 E
nt

ro
py

Figure 4.8: Average entropy of SimPoint features. An examination of the burstiness
of features in program trace data. For each dataset, the entropy of every feature is
calculated and the mean and standard deviation are calculated. The horizontal axis
shows the different datasets, with the vertical axis giving entropy values. The bars
show the average feature entropy, ± one standard deviation. The symbols along the
top show the maximum observed entropy for all features in each dataset, giving a
sort of upper bound on the observed entropies for comparison reasons (this is not
the maximum theoretical entropy). However, we do see that the maximum observed
entropies are very close to the maximum theoretical entropies.

We wish to examine program trace data and determine the amount of burstiness

within it, to see how much of a role it may play in clustering. For each set of basic

block vectors (each dataset), we compute the entropy of every feature. We calculate

the percentage of all features with an entropy smaller than a certain threshold. This

allows us to see just how many bursty features there are per dataset. Figure 4.7 shows

the percentage of all features in each dataset that have entropies below the thresholds

1 and 0.01. We consider entropies < 0.01 to be very low, corresponding to features

with a high amount of burstiness. From the figure, we see the majority of features

for many datasets have low entropies and therefore high levels of burstiness.

We also examine the mean entropy of each interval, plotted as bars in Figure

4.8 with the maximum feature entropy of each dataset plotted with a star. Error bars

show the mean ± one standard deviation. We see from the figure that it appears

76

0.01 0.1 0.5 1 1.5 2 5
0

10

20

30

40

50

60

70

80

90

100

Entropy Threshold

P
er

ce
nt

 o
f W

or
ds

20 Newsgroups

Industry Sector

Figure 4.9: Percent small entropies of text corpora. Comparison of the percentage of
all words in the two text corpora that have small entropies. We vary the threshold
along the horizontal axis and count the number of words with an entropy below that
threshold, plotting the percentage of all words along the vertical axis. We can see
clearly from this graph that the 20 Newsgroups corpus is much less bursty than the
Industry Sector corpus, with more than a fifty percent difference in the number of
words that have an entropy < 1 between the two. On average, about 40% of basic
blocks in program trace data have an entropy < 1, about halfway between the two
text corpora.

features are, on average, more bursty than not (the mean, in all cases, is at least one

standard deviation below the maximum). From empirical observation, we see that

the maximum feature entropies observed are very close to the theoretically maximum

entropy for each dataset (an entropy is maximized when the feature appears uniformly

across the intervals).

4.2.1.3 Burstiness of other domains. Briefly, we compare the burstiness of

program trace data, quantified using the feature entropy measure, to other domains.

Specifically, we analyze the burstiness of two standard corpora of text documents, the

20 Newsgroups (Hettich and Bay 1999) and Industry Sector (McCallum) datasets.

77

Each word in the vocabulary of the sets of documents is a feature. We compute the

entropy of every word in both corpora and examine them.

Figure 4.9 shows the percentage of all words in the text corpora that have en-

tropies smaller than certain thresholds. We vary the thresholds widely, examining the

change in percentages. Recall that for the program trace data clustered by SimPoint,

the mean percentage of features that had an entropy < 0.01 was about 35%. For

the text corpora, the percentage of words with entropy < 0.01 varies dramatically,

from only 5% up to 55% depending on the corpus under consideration. We see that,

by comparison with the number of bursty features, program trace data is about as

bursty as text document data, more bursty than some corpora but less bursty than

others.

4.2.2 Effects of Burstiness

We have established that basic block vector data, like text documents, is bursty.

However, it is not clear what the consequences of having bursty features within our

data are. We explore different facets of burstiness, including the probabilities assigned

to bursty data by the EDCM and multinomial models, and possible correlations

between the burstiness of data and the error in clustering it.

4.2.2.1 Probabilities of bursty data. We examine the probabilities assigned

to examples of varying levels of burstiness by both multinomial and EDCM models.

Given a number of parameters, D, in the model, we construct D + 1 examples of D

dimensions each. Example d (1 ≤ d ≤ D) has d non-zero features, with each feature

having some probability of occurrence and the sum of the probabilities within an

example equal to 1. The features in example D+1 are distributed uniformly as 1/D.

We call this example U to denote its uniform composition.

78

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 U
−300

−250

−200

−150

−100

−50

0

d

Lo
g

P
ro

ba
bi

lit
y

EDCM
Multinomial

Figure 4.10: Probabilities of bursty data, EDCM vs. Multinomial. Comparison
of probabilities assigned by the EDCM and multinomial distributions to randomly
generated test data. The test data has D features, d of which are non-zero (1 ≤
d ≤ D)—varying along the horizontal axis. Example U is composed of D uniform
features. The two sets of bars are the log probabilities assigned to each example via
the different probability distributions. We see the EDCM gives higher probabilities
to bursty data, while the multinomial gives higher probabilities to uniform data.

For each probability distribution, either the multinomial or EDCM, we compute

the probabilities for all D + 1 examples using uniform parameters. That is, for each

dimension d, θd = βd = 1/D for the multinomial and EDCM, respectively. We

compute the probabilities Pr(x|θ) and Pr(x|β) (in log space to prevent overflow) and

compare the results in Figure 4.10. Remember, burstiness decreases as d increases,

with d = 1 being the most bursty example and U being a uniformly distributed

example. Also, we are dealing with probabilities in log space, which will be negative.

The magnitude of a number is directly related to the magnitude of its logarithm,

however, so in this graph, values closer to zero correlate to higher probabilities. We

can see that the EDCM gives the highest probability to the most bursty example,

with the probabilities dropping slowly as the level of burstiness decreases toward U ,

the uniformly distributed example. The multinomial behaves in the opposite manner,

79

0 20 40 60 80 100
0

2

4

6

8

10

12

Percent of features with entropy < 0.01

P
re

di
ct

io
n

E
rr

or

Figure 4.11: Relation between burstiness and prediction error. For each dataset (a
point on the graph), we plot the percentage of all features with an entropy < 0.01
versus the prediction error, looking for a correlation. There may be a loose correlation
between the two, with the datasets that have high prediction errors having lower
percentages of bursty features. It may be easier to accurately cluster datasets that
are more bursty.

and much more dramatically, with a very low probability assigned to the most bursty

example and a sharp rise to the highest probability given to the uniform example.

The EDCM has the higher probability until about 2/3 of all the features in the test

examples are nonzero (d = 11).

4.2.2.2 Burstiness and error. We examine the relationship between burstiness

and the prediction error for each dataset, looking for a correlation between the two.

Figure 4.11 plots the two values against each other, with each point representing one

dataset. As the number of bursty features in a dataset increases, the prediction error

seems to decrease. However, it is not the case that all datasets with low burstiness

have high prediction error, just that the datasets that do have higher prediction error

80

also have lower amounts of burstiness. It may be easier to cluster datasets that are

more bursty.

4.3 Clustering with EDCM Mixtures

The EDCM is a new probability distribution approximation and has not been

used to cluster program trace data for SimPoint before. We examine how effective the

EM algorithm is in training an EDCM mixture model and how different additions

to the algorithm, such as random restarts and deterministic annealing, affect its

performance.

4.3.1 Rates of Convergence

The Expectation Maximization algorithm is fairly straightforward. There are,

however, a few points of uncertainty concerning the rate at which it converges. The

first is how many iterations are required to converge on a value for s using fixed

point iteration (i). The second is how many iterations the EM algorithm itself takes

to converge on a solution (e). Both these values factor directly into the algorithm’s

running time. We would like to see empirically what the values for e and i are, since

it is not clear what a theoretical upper bound on either would be.

Recall that the maximization step of the EM algorithm involves computing

values for β, the parameters of out mixture model. However, in order to do so, we

must first compute s using some iterative method (since the solution to s depends

on itself). One interesting question is how many iterations it takes to converge on a

value of s. We also wish to know how the number of iterations needed to compute s

changes with varying initial values of s, the data involved, and the number of clusters

k. For these experiments, we clustered each of the datasets using the EDCM. For

each dataset, we varied k = {2, 4, 6, 8, 10} clusters without random restarts or deter-

81

Table 4.1. Table of statistics for iterations needed to compute s

Mean Std. Number of Iterations
Initial value Iters Dev. 5 6 7 8 9 10
0 ≤ s ≤ 1 8.22 0.42 0 0 0 77.60% 22.3% < 0.1%
0 ≤ s ≤ 100 7.51 0.68 0.15% 3.71% 47.46% 42.49% 6.40% 0

ministic annealing, simply fitting a model to the data and counting the number of

iterations to compute s each time it was calculated.

For the first set of experiments, we initialized s to a random number 0 ≤ s ≤ 1.

We are only picking a starting point for a fixed point iteration and not the final value

for s, so it is not necessary to choose an s ≥ D as we did for the Pólya urn experiments

above. Additionally, because our β values (the parameters of the EDCM, analogous

to initial counts of each color in a Pólya urn) tend to be ¿ 1, we find that s is often

¿ D by several orders of magnitude.

Clustering every dataset for the values of k listed above, we counted the number

of iterations needed for convergence in the fixed point iteration every time s was

calculated. s was calculated a total of 2,460 times with a minimum of 8 iterations

and a maximum of 10 iterations until convergence. The mean number of iterations

needed for convergence was 8.22, with a standard deviation of 0.42. Of all 2,460

computations of s, 77.6% took 8 iterations to converge, 22.3% took 9 iterations to

converge, and < 0.1% took 10 iterations to converge.

We experiment with modifying the initial value of s. We multiply our initial

random value for s by 100, increasing it by two orders of magnitude. We run the same

experiment, looking for differences in the number of iterations needed to converge on

a final value for different initial values of s. There is not a significant difference

between the number of iterations needed for the two initial values for s. In fact, there

is almost no difference. The mean number of iterations for this method was 7.51, with

a standard deviation of 0.68. Out of 2,048 calculations of s, 0.15% took 5 iterations,

82

0

5

10

15

20

25

30

am
m

p
ap

pl
u

ar
t−

11
0

ar
t−

47
0

bz
ip

−
gr

ap
h

bz
ip

−
pg

m
bz

ip
−

sr
c

cr
af

ty
eo

n−
co

ok
eo

n−
ka

j
eo

n−
ru

sh
eq

ua
ke

fa
ce

re
c

ga
p

gc
c−

16
6

gc
c−

20
0

gc
c−

ex
pr

gc
c−

in
t

gc
c−

sc
i

gc
c−

tr
n

gz
−

gr
ap

h
gz

−
lo

g
gz

−
pg

m
gz

−
ra

nd
gz

−
sr

c
lu

ca
s

m
es

a
pe

rl−
di

ff
pe

rl−
m

kr
nd

pe
rl−

m
ai

l
sw

im
vr

tx
−

on
e

vr
tx

−
th

re
e

vr
tx

−
tw

o
vp

r−
pl

ac
e

vp
r−

ro
ut

e
M

ea
n

M
ax

im
um

Dataset

A
ve

ra
ge

 E
M

 It
er

at
io

ns

Figure 4.12: EM iterations per benchmark. We examine the average number of
iterations needed to converge the EM algorithm for every run of every value of k per
dataset. The average number of iterations is very low, around 10, with only a handful
of datasets requiring more iterations for convergence.

3.71% took 6 iterations, 47.46% took 7 iterations, 42.49% took 8 iterations, and 6.40%

took 9 iterations for convergence. Table 4.1 compares the number of iterations needed

to converge on a value for s for both initial values.

The performance of the EM algorithm also depends directly on the number of

iterations the EM algorithm must step through in order to converge on a set of cluster

assignments and parameters. We used data from our actual clustering runs, where

for every dataset, we used random restarts and a linear search through the values of

k using the AIC to find the best clustering. Each time we trained a model (for a

certain set of examples, value of k, and random restart) we counted the number of

iterations the EM algorithm took to converge.

Figure 4.12 shows the average number of EM iterations needed for convergence

per dataset. We see that on average, only around ten iterations are needed to converge

on a set of parameters and cluster assignments for an EDCM mixture model. These

averages are across all k, so for models of varying sizes, some with as many as 15–20

83

clusters, only an average of ten iterations are needed. One interesting point to note

is that the datasets with the highest number of dimensions, such as gcc, took the

fewest number of iterations, on average, to converge. To explore a possible relationship

between the number of dimensions in the data and the number of iterations needed

for the EM algorithm to converge, we plotted the two values against each other for

each dataset, shown in Figure 4.13. We see that datasets with a high number of

dimensions only undergo a few iterations of the EM algorithm. The EM algorithm

must fit EDCM parameters to each dimension of the data. With such a large number

of dimensions, the parameter space to explore is very large and it is easy for the EM

algorithm to fall into a poor locally maximum log likelihood. This makes the EM

algorithm terminate quickly even though the choice of parameters may be globally

poor in terms of model log likelihood.

Figure 4.14 shows a slightly different perspective of the same data. Rather than

average the number of iterations needed to converge the EM algorithm per dataset,

we examine the average number of iterations per value of k. Each bar on the graph

plots the average number of iterations needed to converge the EM algorithm on any

model with k clusters. The number of iterations needed to fit data into a certain

number of clusters starts to rise with k. This is because our models are more complex

(more EDCM distributions in the mixture) and need more time to converge on a

good local maximum. However, the more complex datasets, which tend to be the

datasets with a larger number of dimensions, require more k to fit accurately than

simpler datasets. As we have seen, more dimensions results in fewer iterations of the

EM algorithm because we tend to fall into poor local maxima.

4.3.2 Deterministic Annealing

We examine the effectiveness of using deterministic annealing with different

temperatures to help address the problems of local optima using the EM algorithm.

84

0 2 4 6 8 10 12

x 10
4

0

5

10

15

20

25

30

Number of Dimensions

M
ea

n
E

M
 It

er
at

io
ns

Figure 4.13: Number of EM iterations versus number of dimensions. For each dataset,
we plot the average number of EM iterations versus the number of dimensions. We
see a correlation between high numbers of dimensions and low iterations needed to
converge for the EM algorithm. This is most likely because with such a large param-
eter space to explore in high dimension (we fit a parameter for each dimension), there
are a multitude of local maxima which the EM algorithm can find quickly.

For the following set of experiments, we run three sets of trials. In each trial, we cluster

a subset of the datasets with the deterministic annealing EM (DAEM) algorithm,

using 5 random restarts to choose a model for each k, and searching through the

clusterings using the BIC score to choose a model (as described below). For each trial,

we use a different set of temperatures—a set of high temperatures {25, 5, 1} (Elkan

2006), a set of low temperatures {2, 1.5, 1.1, 1}, and no annealing (temperature of 1).

For annealing, we start with the higher temperatures and slowly cool distribution of

log likelihoods down to a temperature of 1. At a temperature of 1, there is no change

made to the distribution and annealing has no effect on clustering.

Figures 4.15 and 4.16 give the results for clustering with the DAEM algorithm.

We see that, on average, annealing gives us no significant decrease in percent error

compared to clustering without annealing, and that using the set of greater tem-

85

0

5

10

15

20

k

A
ve

ra
ge

 E
M

 It
er

at
io

ns

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

M
ea

n

M
ax

im
um

Figure 4.14: Average EM iterations per k. The number of iterations needed for
convergence of the EM algorithm are averaged per value of k, regardless of dataset.
This gives us more insight into how much work must be done by the EM algorithm as
we increase the complexity of the models. There is some increase for smaller values
of k due to the increasing complexity of the models. However, the higher values of
k are fit to the more complex datasets, which tend to have the higher numbers of
dimensions (see Figure 4.13) and converge quickly.

peratures give a better prediction error than using lower temperatures. Additionally,

using annealing also results in choosing more clusters (higher values of k), on average.

Thus, because we see a favoring of more complex models without significant benefits

in percent error, we choose not to use annealing in our implementation of the EM

algorithm.

When examining why the DAEM did not perform as well as we had hoped,

we discovered that at high temperatures, when the distribution of log likelihoods

was made more similar, the DAEM algorithm converged many of the clusters in the

mixture to very similar sets of parameters. As the distribution cooled, the clusters

were not able to separate themselves. Therefore, although the DAEM tended to select

a higher value for k than the EM without annealing, the extra clusters might not have

actually helped because several clusters were fit to the same data. As part of our

86

0

10

20

30

40

ap
pl

u

ar
t−

11
0

ar
t−

47
0

bz
ip

−
gr

ap
h

gc
c−

16
6

gc
c−

20
0

gc
c−

ex
pr

gc
c−

in
t

gc
c−

sc
i

gc
c−

tr
n

gz
−

gr
ap

h

gz
−

lo
g

vr
tx

−
th

re
e

vr
tx

−
tw

o

vp
r−

pl
ac

e

vp
r−

ro
ut

e

M
ea

n

M
ax

im
um

Dataset

P
er

ce
nt

 E
rr

or
No Annealing
Low Temp.
High Temp.

Figure 4.15: Deterministic Annealing EM (DAEM) algorithm—Percent error. We
use the DAEM algorithm to reduce the effects of poor initializations leading to local
optima. Only a select subset of datasets are clustered to save on computation time.
Using the BIC to choose the number of clusters, we see that annealing, both with
high {25, 5, 1} and low {2.0, 1.5, 1.1, 1.0} temperatures, gives no significant advantage
over not using annealing with regards to percent error.

0

5

10

15

ap
pl

u

ar
t−

11
0

ar
t−

47
0

bz
ip

−
gr

ap
h

gc
c−

16
6

gc
c−

20
0

gc
c−

ex
pr

gc
c−

in
t

gc
c−

sc
i

gc
c−

tr
n

gz
−

gr
ap

h

gz
−

lo
g

vr
tx

−
th

re
e

vr
tx

−
tw

o

vp
r−

pl
ac

e

vp
r−

ro
ut

e

M
ea

n

M
ax

im
um

Dataset

k

No Annealing

Low Temp.

High Temp.

Figure 4.16: Deterministic Annealing EM (DAEM) algorithm—Choice of k. In the
same experiment as Figure 4.15, we observe that using the DAEM results in choosing a
larger number of clusters. Deterministic annealing may actually hurt the performance
of the EM algorithm for the SimPoint domain, leading us to choose models with higher
k without significant improvement in prediction error.

87

future work, we will investigate methods to separate the clusters as the temperatures

of the DAEM algorithm are lowered.

4.3.3 Running Time

We have described the algorithmic complexity of the EM algorithm and explored

the empirical values of the number of iterations needed to converge on a value for s

and the EM algorithm itself. Here, we explore empirical running times of the EM

and k-means algorithm for clustering the same data.

We use the EDCM to cluster all thirty six datasets, using five random restarts

per value k and the AIC to automatically select the best k. On a dual-processor,

hyper-threaded 3 GHz Intel Pentium 4 computer with 2 GiB of RAM, this takes

approximately 25 hours of CPU time. Clustering the same data with the k-means

algorithm, using five random restarts and the BIC to select k, takes 757 seconds on

the same machine, about 128 times faster than the EDCM.

The discrepancy in running times occurs for several reasons. First, SimPoint

uses random projections to reduce the data to fifteen dimensions before handing it

to k-means, whereas with the EDCM we consider the data in its full dimension.

The amount of data clustered by k-means is approximately 15 × average number of

intervals per dataset × number of datasets. The EDCM, even though it uses the data

in its full dimension, deals with data that is very sparse. We count up the number

of non-zero elements in all the program trace datasets clustered by the EDCM and

find it clusters about 132 times more raw data than k-means. Interestingly, this

gives about a one to one correspondence between running times and the amount of

data clustered. Second, SimPoint is a highly optimized application written in C++,

while the our implementation of the EM algorithm to train the EDCM is unoptimized

and written in MATLAB. In light of these facts, we see the EDCM’s performance is

actually quite good.

88

It is important to note that the amount of time spent clustering is, in the end,

not of dire importance to researchers using SimPoint. More time spent clustering up

front is worth the effort if it means more accurate and quicker partial simulations

later, especially because the time needed to perform a design space exploration over

processor configurations is much greater than the time needed to cluster the datasets.

Clustering is performed once on all the program trace intervals to select a set of

simulation points. These same simulation points are used to predict performance on

all of the parameter combinations tested in the design space exploration. The EDCM,

as we will explore shortly, also chooses fewer clusters to represent the program traces

than k-means does. Fewer clusters means fewer simulation points and results in a

direct savings in the amount of simulation time needed.

4.4 Choosing a Model

An important point of discussion with any clustering algorithm is not just how

it can be applied to a new domain of data, as we have discussed, but how we can use

it without a priori knowledge about the data. A difficult problem to address when

using a clustering algorithm is how one chooses the number of clusters k. We have

examined two methods for selecting a model, the Akaike and Bayesian information

criteria. Here, we show how they perform choosing the value k for the EDCM mixture

model.

4.4.1 AIC and BIC

Recall the formula for the AIC,

AIC = −2L+ 2p. (4.3)

Likelihoods for a model are necessarily positive and ≤ 1 (it makes no sense for a

probability to be negative), usually ¿ 1, meaning the log likelihoods are negative

numbers. Greater likelihoods mean greater (less negative and closer to 0) log likeli-

89

1 2 3 4 5 6 7 8 9
−9.55

−9.5

−9.45

−9.4

−9.35

−9.3

−9.25

−9.2

−9.15

−9.1

−9.05
x 10

5

k

Lo
g

Li
ke

lih
oo

d

(a) Log likelihoods for art-110

1 2 3 4 5 6 7 8 9
1.84

1.85

1.86

1.87

1.88

1.89

1.9

1.91

1.92
x 10

6

k

A
IC

 S
co

re

(b) AIC scores for art-110

Figure 4.17: Log likelihood and AIC for art-110. The horizontal axes plot increasing
values of k, with the vertical plotting the log likelihood and AIC score of the model.
(a) In general, increasing k means strictly increasing log likelihoods, with occasional
decreases for bad local optima. (b) Increasing log likelihoods drive the AIC score
down until the point where the penalty outweighs any increase in L.

hoods and therefore smaller terms of −2L, so we want to minimize the AIC score. To

simplify our discussion, we examine two of the datasets (rather than all 36), choosing

one of the easier (art-110) and one of the harder (gcc-int) to cluster. Figure 4.17

shows a comparison of the log likelihoods of art-110 with the AIC scores. We can see

that the log likelihood is usually increasing with increasing k. The AIC score drops

quickly (we want low AIC scores) as the log likelihood increases. Soon, however, the

penalty on the model complexity (2p) drives the AIC score up. Figure 4.18 shows the

same data for the gcc-int dataset. Figure 4.19 gives two graphs, one per dataset,

that compare the scaled AIC score with the percent prediction error for each value

of k on both datasets, showing how our choice of k affects our prediction error. The

prediction error is not available to the clustering algorithm while the AIC score space

is being explored.

We also experiment using the BIC,

BIC = L − 1

2
p logN. (4.4)

90

0 2 4 6 8 10 12
−8.5

−8.25

−8

−7.75

−7.5

−7.25

−7
x 10

6

k

Lo
g

Li
ke

lih
oo

d

(a) Log likelihoods for gcc-int

0 2 4 6 8 10 12
1.54

1.56

1.58

1.6

1.62

1.64

1.66

1.68

1.7

1.72
x 10

7

k

A
IC

 S
co

re

(b) AIC scores for gcc-int

Figure 4.18: Log likelihood and AIC for gcc-int. The horizontal axes plot increasing
values of k, with the vertical plotting the log likelihood and AIC score of the model.
(a) In general, increasing k means strictly increasing log likelihoods, with occasional
decreases for bad local optima. (b) Increasing log likelihoods drive the AIC score
down until the point where the penalty outweighs any increase in L.

Similarly to the AIC, the likelihood of a model is a positive value < 1, meaning the

log likelihood L is a negative value. Larger likelihoods mean less negative (closer to

zero) log likelihoods, and subtracting off the penalty on model complexity (1
2
p logN)

drives the value lower. Therefore, we want to maximize the BIC. We examine the

same two datasets as we do with the AIC. Figure 4.20 gives the BIC scores for both

datasets. We don’t show the log likelihoods for either dataset as we did with the

AIC, because the log likelihoods will be the same for both the AIC and BIC. Figure

4.21 shows the scaled BIC scores versus the prediction error for both datasets. For

gcc-int (Figure 4.21(b)) we see how the BIC penalizes our models too harshly, not

allowing us to select a higher value for k that would give significantly less prediction

error.

We have mentioned the difficulty in clustering gcc-int while stating art-110 is

a relatively simple dataset to cluster. As a visual representation, we randomly project

the data in the two datasets to two dimensions. We can see a small number of fairly

distinct clusters of examples in art-110, Figure 4.22(a). Thus, we can easily express

91

1 2 3 4 5 6 7 8 9
0

0.02

0.04

0.06

0.08

0.1

0.12

k

N
or

m
al

iz
ed

 A
IC

 S
co

re
 /

P
er

ce
nt

 E
rr

or

Percent Error
AIC Score

(a) AIC vs Percent error for art-110

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

k

N
or

m
al

iz
ed

 A
IC

 S
co

re
 /

P
er

ce
nt

 E
rr

or

Percent Error
AIC Score

(b) AIC vs Percent error for gcc-int

Figure 4.19: AIC versus percent error. We plot scaled AIC scores versus percent error
for the different values of k. We do not know the percent error while clustering, so
we cannot use it as a basis for selecting a model. However, it is useful to examine the
percent error of a model compared to its AIC score so we can determine the quality
of our choice. (a) art-110 is such a simple dataset to cluster that increasing k above
2 does not improve the percent error. However, the AIC chooses k = 4. (b) gcc-int
is a much more complex dataset. We see that with our choice for k, based on the
minimum AIC (at k = 6), the percent error is not quite at its minimum. Here, the
lowest prediction error was given by a lower k that had a higher AIC score (and
therefore did not get selected, most likely a case of bad local optima).

art-110 with small values of k, and adding more does not significantly improve the

prediction error. However, with gcc-int, Figure 4.22(b), we see much more complex

data and need far more clusters to accurately capture similarities. There is not a clear

separation of the data. Thus, the BIC’s high penalty on model complexity hurts the

prediction error because it does not allow us to use enough clusters to capture all the

data. The AIC, on the other hand, allows us to choose more clusters and gives better

prediction error.

The way in which the spaces of AIC and BIC scores are searched for the best

model (value of k) is an important point of discussion. Empirically, we see that we

achieve local optima quickly (for relatively low values of k) in the curves of the scores.

Because program trace data exists in such a high number of dimensions, and because

the EDCM mixture model uses the data without dimension reduction, the complexity

92

2 3 4 5 6 7 8
−9.6

−9.55

−9.5

−9.45

−9.4

−9.35

−9.3
x 10

5

k

B
IC

 S
co

re

(a) BIC scores for art-110

2 3 4 5 6 7 8
−8.9

−8.8

−8.7

−8.6

−8.5

−8.4

−8.3

−8.2
x 10

6

k

B
IC

 S
co

re

(b) BIC scores for gcc-int

Figure 4.20: BIC scores for art-110 and gcc-int. The BIC scores for the two
datasets are surprisingly similar. Notice how quickly the scores drop off after peaking.
This is due to the larger penalty on p imposed by the BIC (compared to the AIC,
whose behavior is more gradual).

of our models is so great that it quickly overcomes strictly increasing log likelihoods

when k is increased. Starting at some initial value (k = 1 for most of our clustering

runs), we step through increasing k, computing the AIC/BIC score for each model.

When we see a new minimum/maximum in the scores, we increase k a certain number

of times (in the case of our experiments, 5, chosen based on empirical observation) to

make sure there is not a lower minimum or higher maximum in the immediate vicinity.

If there is not, we can be confident, based on empirical observation, that there will

not be one any farther out. This may not be the case for all domains. For example,

in SimPoint, with the projected data clustered by the k-means algorithm, the BIC

scores are strictly increasing for increasing k until k gets very large. Searching the

space of scores described above for the projected data yields a very large choice of

k, larger than most practitioners are willing to accept. So instead of a linear search

for a local maximum, a method of binary search is used as a heuristic to select k

(Sherwood et al. 2002).

93

2 3 4 5 6 7 8
0

0.0025

0.005

0.0075

0.01

0.0125

0.015

N
or

m
al

iz
ed

 B
IC

 S
co

re
 /

P
er

ce
nt

 E
rr

or

k

Percent Error
BIC Score

(a) BIC vs percent Error for art-110

2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

k

N
or

m
al

iz
ed

 B
IC

 S
co

re
 /

P
er

ce
nt

 E
rr

or

Percent Error

BIC Score

(b) BIC vs percent Error for gcc-int

Figure 4.21: BIC versus percent error. Similarly to Figure 4.19, we scale the BIC
score curve and plot it with the percent error curve for the values of k in order to
examine the relationship between our choice of k and the error. (a) Again, art-110
is such an easy dataset to cluster that any choice of k results in ¿ 1% error. (b) For
gcc-int, we see the BIC penalizes increasing k too harshly. If we would have chosen
just a slightly higher k, say around k = 5 instead of k = 3, we could have achieved
< 10% prediction error. Hence the difficulty with unsupervised learning, we aren’t
sure what the best answer is while we are deciding on it.

3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2

x 10
7

4.5

5

5.5

6

6.5

7
x 10

7

(a) Projection of art-110

2 3 4 5 6 7 8

x 10
7

3

3.5

4

4.5

5

5.5

6

6.5

7
x 10

7

(b) Projection of gcc-int

Figure 4.22: Projection of art-110 and gcc-int to two dimensions. We see how
simple the art-110 dataset is compared to gcc-int. Thus, we can easily express the
data in art-110 with few clusters. However, the complexity of gcc-int drives a need
for higher k. The BIC penalizes higher k such that we are not able to select a good
model for gcc-int (Figure 4.21(b)).

94

0

10

20

30

40

Dataset

P
er

ce
nt

 E
rr

or

am
m

p
ap

pl
u

ar
t−

11
0

ar
t−

47
0

bz
ip

−
gr

ap
h

bz
ip

−
pg

m
bz

ip
−

sr
c

cr
af

ty
eo

n−
co

ok
eo

n−
ka

j
eo

n−
ru

sh
eq

ua
ke

fa
ce

re
c

ga
p

gc
c−

16
6

gc
c−

20
0

gc
c−

ex
pr

gc
c−

in
t

gc
c−

sc
i

gc
c−

tr
n

gz
−

gr
ap

h
gz

−
lo

g
gz

−
pg

m
gz

−
ra

nd
gz

−
sr

c
lu

ca
s

m
es

a
pe

rl−
di

ff
pe

rl−
m

kr
nd

pe
rl−

m
ai

l
sw

im
vr

tx
−

on
e

vr
tx

−
th

re
e

vr
tx

−
tw

o
vp

r−
pl

ac
e

vp
r−

ro
ut

e
M

ea
n

M
ax

im
um

AIC
BIC

Figure 4.23: Model selection with the EDCM—Prediction error. Graph comparing
the prediction errors for the EDCM models selected by the AIC and BIC. On average,
both methods perform rather well, with ≈ 2% and 3% error. However, the BIC
performs poorly on several datasets, especially so on gcc-int. This is because it
penalizes the log likelihood too harshly (Figure 4.21(b)).

We compare the error and value of k for the models selected by the AIC and BIC

scores for the EDCM mixture model. We see that the AIC chooses models that result

in lower error, on average, than the BIC (Figure 4.23). However, the BIC chooses

models with smaller values of k (Figure 4.24), at the cost of higher error. There

is a trade-off that must be made between the error of a model and its complexity.

The BIC chooses models with lower k because it penalizes the complexity of a model

more than the AIC does (the BIC’s penalty on p includes a logN factor which is not

present in the AIC’s penalty on p). However, because the AIC allows the model to

have a larger value k, it is more flexible in the way it can fit the data and results in

lower prediction error.

4.4.2 Comparison with SimPoint

As noted, SimPoint uses the BIC to choose values for k for the k-means algo-

rithm. We compare SimPoint (which uses the BIC) with the EDCM (which uses the

AIC). Figures 4.25 and 4.26 show the comparisons of the values of k chosen by the two

95

0

5

10

15

20

Dataset

k

am
m

p
ap

pl
u

ar
t−

11
0

ar
t−

47
0

bz
ip

−
gr

ap
h

bz
ip

−
pg

m
bz

ip
−

sr
c

cr
af

ty
eo

n−
co

ok
eo

n−
ka

j
eo

n−
ru

sh
eq

ua
ke

fa
ce

re
c

ga
p

gc
c−

16
6

gc
c−

20
0

gc
c−

ex
pr

gc
c−

in
t

gc
c−

sc
i

gc
c−

tr
n

gz
−

gr
ap

h
gz

−
lo

g
gz

−
pg

m
gz

−
ra

nd
gz

−
sr

c
lu

ca
s

m
es

a
pe

rl−
di

ff
pe

rl−
m

kr
nd

pe
rl−

m
ai

l
sw

im
vr

tx
−

on
e

vr
tx

−
th

re
e

vr
tx

−
tw

o
vp

r−
pl

ac
e

vp
r−

ro
ut

e
M

ea
n

M
ax

im
um

AIC
BIC

Figure 4.24: Model selection with the EDCM—Choice of k. Graph comparing the
value k selected for each dataset by the AIC and BIC. We see that, on average, the
BIC chooses about half as many clusters as the AIC (because the BIC penalizes the
complexity of the model more than the AIC). However, as we have seen, this comes
at the cost of increased prediction error.

methods and the percent errors of the resultant models. The EDCM performs within

1% of the percent error from SimPoint’s clusterings. However, the EDCM chooses

half the number of clusters as SimPoint. This is quite a significant amount of savings

achieved with still a very low error rate. Even the maximum error of the EDCM,

about ten percent, gives sufficiently low prediction error for comparing different pro-

cessor designs. Remember, the ultimate purpose of SimPoint is not how accurate

we can make the clusterings, but how much we can speed up the process of getting

reliable results for comparing new processor designs. Fewer clusters (lower k) means

fewer simulation points and less time performing full simulations on them. Running

full simulations on the entire suite of SPEC CPU2000 benchmarks takes over a year

of CPU time. Running full simulations on the simulation points selected by k-means

takes about 6 days, whereas full simulations on the simulation points selected by the

EDCM take 3 days of CPU time to run.

96

0

5

10

15

20

25

30

Dataset

k

am
m

p
ap

pl
u

ar
t−

11
0

ar
t−

47
0

bz
ip

−
gr

ap
h

bz
ip

−
pg

m
bz

ip
−

sr
c

cr
af

ty
eo

n−
co

ok
eo

n−
ka

j
eo

n−
ru

sh
eq

ua
ke

fa
ce

re
c

ga
p

gc
c−

16
6

gc
c−

20
0

gc
c−

ex
pr

gc
c−

in
t

gc
c−

sc
i

gc
c−

tr
n

gz
−

gr
ap

h
gz

−
lo

g
gz

−
pg

m
gz

−
ra

nd
gz

−
sr

c
lu

ca
s

m
es

a
pe

rl−
di

ff
pe

rl−
m

kr
nd

pe
rl−

m
ai

l
sw

im
vr

tx
−

on
e

vr
tx

−
th

re
e

vr
tx

−
tw

o
vp

r−
pl

ac
e

vp
r−

ro
ut

e
M

ea
n

M
ax

im
um

EDCM Mixture

SimPoint

Figure 4.25: SimPoint (BIC) versus EDCM (AIC)—Choice of k. We compare the
values selected for k via the BIC and AIC for SimPoint and the EDCM, respectively.
We see that on average, the EDCM chooses half the number of clusters as SimPoint.

0

2

4

6

8

10

12

Dataset

P
er

ce
nt

 E
rr

or

am
m

p
ap

pl
u

ar
t−

11
0

ar
t−

47
0

bz
ip

−
gr

ap
h

bz
ip

−
pg

m
bz

ip
−

sr
c

cr
af

ty
eo

n−
co

ok
eo

n−
ka

j
eo

n−
ru

sh
eq

ua
ke

fa
ce

re
c

ga
p

gc
c−

16
6

gc
c−

20
0

gc
c−

ex
pr

gc
c−

in
t

gc
c−

sc
i

gc
c−

tr
n

gz
−

gr
ap

h
gz

−
lo

g
gz

−
pg

m
gz

−
ra

nd
gz

−
sr

c
lu

ca
s

m
es

a
pe

rl−
di

ff
pe

rl−
m

kr
nd

pe
rl−

m
ai

l
sw

im
vr

tx
−

on
e

vr
tx

−
th

re
e

vr
tx

−
tw

o
vp

r−
pl

ac
e

vp
r−

ro
ut

e
M

ea
n

M
ax

im
um

EDCM Mixture

SimPoint

Figure 4.26: SimPoint (BIC) versus EDCM (AIC)—Percent error. We compare the
prediction errors of the selected models for EDCM and SimPoint. We see that, on
average, SimPoint predicts with about half the error as EDCM (1% compared to
2%). However, this small change in prediction error comes at the savings in number
of clusters needed by EDCM. 2% error is still low enough for comparing processor
designs with each other.

97

0

10

20

30

40

50

60

70

80

Dataset

P
er

ce
nt

 E
rr

or

am
m

p
ap

pl
u

ar
t−

11
0

ar
t−

47
0

bz
ip

−
gr

ap
h

bz
ip

−
pg

m
bz

ip
−

sr
c

cr
af

ty
eo

n−
co

ok
eo

n−
ka

j
eo

n−
ru

sh
eq

ua
ke

fa
ce

re
c

ga
p

gc
c−

16
6

gc
c−

20
0

gc
c−

ex
pr

gc
c−

in
t

gc
c−

sc
i

gc
c−

tr
n

gz
−

gr
ap

h
gz

−
lo

g
gz

−
pg

m
gz

−
ra

nd
gz

−
sr

c
lu

ca
s

m
es

a
pe

rl−
di

ff
pe

rl−
m

kr
nd

pe
rl−

m
ai

l
sw

im
vr

tx
−

on
e

vr
tx

−
th

re
e

vr
tx

−
tw

o
vp

r−
pl

ac
e

vp
r−

ro
ut

e
M

ea
n

M
ax

im
um

Manhattan

Euclidean

Probability

Angular

Figure 4.27: Comparison of all four methods for selecting cluster representatives.
Overall, using the angular measure performs the worst in terms of prediction error,
followed closely by using probabilities. The best methods were the two distance
metrics, with about half the error, on average, as the other methods.

4.5 Choosing Cluster Representatives

After we’ve clustered the data and chosen a suitable value of k using an auto-

matic method, the next difficulty is choosing cluster representatives. The choice of

simulation points is very important to the SimPoint application. If we are not able to

pick simulation points that are representative of the overall behaviors of the dataset

we are performing clustering on, our prediction of performance will be off and we will

not have gained anything by clustering. If however, we are able to accurately cluster

the data and choose good simulation points, out predictions will be very accurate.

4.5.1 Methods for Choosing Simulation Points

We discussed several methods for choosing cluster representatives. For choosing

a simulation point sj for cluster cj, we could consider the point with the highest

probability.

sj = argmax
xi∈cj

Pr(xi|βj) (4.5)

98

We could also think of the examples as vectors in a geometric space. Normalizing the

basic block vectors to the unit hypersphere,

x′i =
xi

√

∑D
d=1 x

2
id

, (4.6)

we normalized β ′j in a similar fashion and choose as a simulation point the example

satisfying

sj = argmax
x′

i∈cj

〈x′i · β′j〉, (4.7)

the x′i with the smallest angle from βj. Or, we may compute the mean (µj) for each

cluster and choose the interval that is the closest using some distance metric Lp.

sj = arg min
xi∈cj

Lp(xi, µj) (4.8)

Figure 4.27 compares all the methods for selecting simulation points. We used

the EM algorithm with no annealing, 5 random restarts, and the AIC to choose the

value for k. From the selected models for each dataset, we chose cluster representa-

tives using each method and compared the prediction errors. We see that the angular

measure performs with the highest percent error on average, with the probability

method performing nearly as poorly. Figure 4.28 compares the probability and angu-

lar method, both methods with greater than ten percent error overall. In the worst

case, both methods perform with over fifty percent error. The two distance metrics,

Euclidean (L2) and Manhattan (L1), perform the best of all the methods. Figure 4.29

compares the distance metrics, showing that both methods achieve less than five per-

cent error on average. However, Euclidean distance has a maximum error of almost

twenty five percent, with six datasets having over ten percent error. The average

error for Manhattan distance is about two percent, with only one dataset having just

barely more than ten percent error.

One of the most interesting results when comparing the methods for selecting

simulation points was the fact that the probability measure performed the worst. We

99

0

20

40

60

80

Dataset

P
er

ce
nt

 E
rr

or

am
m

p
ap

pl
u

ar
t−

11
0

ar
t−

47
0

bz
ip

−
gr

ap
h

bz
ip

−
pg

m
bz

ip
−

sr
c

cr
af

ty
eo

n−
co

ok
eo

n−
ka

j
eo

n−
ru

sh
eq

ua
ke

fa
ce

re
c

ga
p

gc
c−

16
6

gc
c−

20
0

gc
c−

ex
pr

gc
c−

in
t

gc
c−

sc
i

gc
c−

tr
n

gz
−

gr
ap

h
gz

−
lo

g
gz

−
pg

m
gz

−
ra

nd
gz

−
sr

c
lu

ca
s

m
es

a
pe

rl−
di

ff
pe

rl−
m

kr
nd

pe
rl−

m
ai

l
sw

im
vr

tx
−

on
e

vr
tx

−
th

re
e

vr
tx

−
tw

o
vp

r−
pl

ac
e

vp
r−

ro
ut

e
M

ea
n

M
ax

im
um

Probability

Angular

Figure 4.28: Comparison of the probability and angular based methods for selecting
simulation points. Both methods have a mean error of over ten percent, with many
datasets having over twenty percent error. Using probabilities did not work as well
as we would have liked, due in part to burstiness.

had hoped, since the EDCM assigns probabilities to each example for each cluster,

that we would be able to select the interval with the highest probability as a cluster

representative. We concluded that probabilities did not work because of burstiness,

exactly the problem we use the EDCM to help address. The problem is that certain

intervals within the clusters are very bursty and get assigned higher probabilities than

the other, more uniform examples. However, the bursty behavior of the single interval

with the highest probability may not be representative of the cluster as a whole. In

fact, more than likely, the overall behavior is going to be more uniform since, in the

scope of one interval of program execution, a program will be doing more than one

thing, even if it is just a small set of related tasks. It is our belief that if a method is

devised to split the intervals based on boundaries of common behavior, rather than

the current methods of using fixed length intervals, using assigned probabilities may

end up being a viable method for choosing representatives.

100

0

5

10

15

20

25

Dataset

P
er

ce
nt

 E
rr

or

am
m

p
ap

pl
u

ar
t−

11
0

ar
t−

47
0

bz
ip

−
gr

ap
h

bz
ip

−
pg

m
bz

ip
−

sr
c

cr
af

ty
eo

n−
co

ok
eo

n−
ka

j
eo

n−
ru

sh
eq

ua
ke

fa
ce

re
c

ga
p

gc
c−

16
6

gc
c−

20
0

gc
c−

ex
pr

gc
c−

in
t

gc
c−

sc
i

gc
c−

tr
n

gz
−

gr
ap

h
gz

−
lo

g
gz

−
pg

m
gz

−
ra

nd
gz

−
sr

c
lu

ca
s

m
es

a
pe

rl−
di

ff
pe

rl−
m

kr
nd

pe
rl−

m
ai

l
sw

im
vr

tx
−

on
e

vr
tx

−
th

re
e

vr
tx

−
tw

o
vp

r−
pl

ac
e

vp
r−

ro
ut

e
M

ea
n

M
ax

im
um

Manhattan (L1)
Euclidean (L2)

Figure 4.29: Comparison of using distance metrics to select cluster representatives.
Both methods achieve less than five percent error on average. However, Euclidean
distance has a maximum error of almost twenty five percent, with six datasets having
over ten percent error. The average error for Manhattan distance is about two percent,
with only one dataset having more than ten percent error.

Very rarely do SimPoint and EDCM choose the same intervals as cluster repre-

sentatives. SimPoint chooses simulation points using Euclidean distance from cluster

means. Compared to the EDCM, using both Euclidean and Manhattan distance from

the center mean, the two methods, on average, have less than one simulation point

in common per dataset. This is with the EDCM having an average of around eight

clusters per model and SimPoint having an average of about seventeen clusters per

model.

4.5.2 Motivations for Different Methods

We want to compare different methods of choosing simulation points using

more than a “what worked best” approach. We would like to have some basis for

choosing Manhattan distance from cluster means as our method for choosing cluster

representatives. To try and get some understanding why the Manhattan distance

from the mean works best, we set up an experiment.

101

For each dataset, we find the mean and median of all the intervals and the

average of the CPI statistic for the entire dataset. We compute the L2 (Euclidean)

and L1 (Manhattan) distances from every interval to both the mean and median.

We examine the difference of an interval’s CPI from the mean CPI versus the L2

distance from the mean, and the same difference in CPI against the L2 distance

from the median. Similar examinations are made for the L1 distance. We compute

the coefficient of correlation for all four sets of data, giving the amount that one

variable (difference in CPI) varies with the other (distance from the mean/median).

We observe that most often, L1 distance from the mean gives the most accurate

information in terms of difference in CPI (intervals that were closest to the mean

via L1 distance had the smallest differences from the average CPI). Additionally,

L1 distance from the mean tends to have higher a coefficient of correlation than

the other methods, meaning the farther we get away from the mean, the larger the

difference in the CPI. Figure 4.30 shows the four combinations of distance metric and

mean/median for one dataset.

In high dimension, the reliability of distance metrics tends to break down (Ag-

garwal et al. 2001). For distance metrics Lp, smaller values of p work better at

defining the distance between two points in high dimension. This is why using L1

distance is better suited to selecting cluster representatives than L2 distance.

4.6 Analysis of Clusterings

We want to analyze the clusters produced by the EM algorithm training an

EDCM mixture model. We want to know how the EDCM mixture models groups

things together, how similar the items within a cluster are, etc. These are questions

are concerned with actual clustering characteristics.

102

2 4 6 8

x 10
6

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
eon−rushmeier−ref, −0.89617

L
2
 from Median

C
P

I D
iff

2 4 6 8

x 10
6

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
eon−rushmeier−ref, −0.75696

L
2
 from Mean

C
P

I D
iff

2 4 6 8 10

x 10
7

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
eon−rushmeier−ref, −0.88558

L
1
 from Median

C
P

I D
iff

2 4 6 8 10

x 10
7

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
eon−rushmeier−ref, −0.72105

L
1
 from Mean

C
P

I D
iff

Figure 4.30: Choice of distance metrics and mean or median. We examine using the
two different distance metrics, L1 and L2, and using the mean and the median. We
compute the mean and median of every dataset and the distance (using both L1 and
L2) of every interval to it. We also compute the average CPI for the dataset and the
difference in CPI of every interval from it. For each interval, we plot the distance
from the mean and median against the difference from the mean CPI. In terms of
choosing the interval with the smallest difference in CPI, choosing the interval with
the smallest L1 distance from the mean is the best choice. Additionally, it gives the
highest coefficient of correlation, meaning that the closer to the mean/median get, the
better our prediction becomes. Here we show the different combinations of distance
metrics and mean/median for one dataset, eon-rushmeier, giving the coefficient of
correlation for each combination as well.

103

4.6.1 Distribution of Cluster Weights

One question worth asking is how well the EDCM mixture model spreads out

cluster membership among the examples. There is no right answer for this question as

it is almost completely data dependent. For one clustering method, two sets of data

may have wildly different distributions of cluster weights just because the makeup

of the data is different. Figure 4.31 shows the mean size of all the clusters, sorted

by cluster size, across all models generated for all datasets while running clustering

using the AIC for model selection.

Figure 4.31 gives the average distribution of cluster weights for two clusterings of

the datasets, one with SimPoint and one with the EDCM. We see that both methods

produce clusterings that have largely the same weights. However, SimPoint does

tend to produce clusters that are more uniform in size, with the largest clusters being

smaller than the largest EDCM clusters. This is because SimPoint uses random

linear projections to reduce the number of dimensions in the data. The projected

intervals may tend to look more similar to one another, resulting in clusters of more

similar sizes, because there are fewer dimensions in which to express all the differences

between the characteristics. Additionally, the differences that do exist in the features

are muted because of the random linear projections.

We don’t know what a correct distribution of cluster weights should be, espe-

cially not on average as each dataset will vary. However, we can see that the EDCM

and SimPoint produce clusters with very similar weights. Thus, the EDCM does not

tend to skew toward putting too much data in one cluster, or toward spreading out

the data too much among the clusters. Though we do not know what the make up of

each individual cluster is, we can assume that, for the most part, the clusters of the

EDCM and SimPoint methods are composed of largely the same intervals (coupling

the similarities between the cluster weights with the similarity in prediction error).

104

1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k

W
ei

gh
t

EDCM
SimPoint

(a) Three Clusters

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

k

W
ei

gh
t

EDCM
SimPoint

(b) Eight Clusters

Figure 4.31: Comparison of cluster weights. We cluster all 36 datasets into 3 and
8 clusters using both SimPoint and the EDCM. We look at the cluster weights and
compute the mean weight of the largest cluster for each dataset, the mean of the
next largest cluster, etc. We see from the two graphs that both clustering methods
produce clusters that are largely the same size, with SimPoint clusters tending to be
just a bit smaller and more of the same size (evident in (b)). This is not surprising
as the random linear projections would tend to make things look more similar (there
are fewer dimensions in which to express dissimilarities between intervals).

4.6.2 Variation of Information

We use Meilă’s Variation of Information (VI) metric to compare the clusterings

generated by SimPoint and EDCM and see how similar they are to one another in the

cluster assignments that have been made. Figure 4.32 shows the VI of every dataset

along with the tighter theoretical upper bound on the VI (Meilă 2002). The upper

bound on the VI between two clusterings C and C ′ is defined as

V I(C,C ′) ≤ 2 logK∗, (4.9)

with K∗ = max(k, k′) being the larger of the number of clusters in C and C ′, respec-

tively. The upper bound holds for K∗ ≤
√
N , which is the case for program trace

data and the number of clusters chosen by SimPoint and the EDCM.

We see that, on average, the VI tends to be about 1/3 the maximum, with

a VI of 0 meaning two clusterings share all information about one another. Thus,

we conclude that while there is some difference in the clusterings of the EDCM and

105

0

2

4

6

8

Dataset

V
I

am
m

p
ap

pl
u

ar
t−

11
0

ar
t−

47
0

bz
ip

−
gr

ap
h

bz
ip

−
pg

m
bz

ip
−

sr
c

cr
af

ty
eo

n−
co

ok
eo

n−
ka

j
eo

n−
ru

sh
eq

ua
ke

fa
ce

re
c

ga
p

gc
c−

16
6

gc
c−

20
0

gc
c−

ex
pr

gc
c−

in
t

gc
c−

sc
i

gc
c−

tr
n

gz
−

gr
ap

h
gz

−
lo

g
gz

−
pg

m
gz

−
ra

nd
gz

−
sr

c
lu

ca
s

m
es

a
pe

rl−
di

ff
pe

rl−
m

kr
nd

pe
rl−

m
ai

l
sw

im
vr

tx
−

on
e

vr
tx

−
th

re
e

vr
tx

−
tw

o
vp

r−
pl

ac
e

vp
r−

ro
ut

e
M

ea
n

M
ax

im
um

Actual VI of EDCM mixture/SimPoint

Upper Bound 2 log(K*)

Figure 4.32: Variation of Information between EDCM and SimPoint. For each
dataset, we compute the VI between the clustering given by SimPoint and the clus-
tering given by the EM algorithm on the EDCM. We see that, on average, the VI
between the clusterings is about 1/3 the theoretical maximum. Thus, we conclude
that although the clusterings are obviously not identical, they are more similar than
they are different. The term K∗ in the upper bound is defined as max(k, k′), the
maximum number of clusters in either of the clusterings compared using the VI, and
holds for K∗ ≤

√
N .

SimPoint, the two clustering methods are more similar than they are different. They

will not be perfectly correlated, of course, because the random linear projections used

by SimPoint are changing the data before it is clustered.

4.6.3 Coefficient of Variation

For each dataset, we compute the weighted sum coefficient of variation of the

CPI metric. The CoV is the standard deviation of a variable divided by the mean,

allowing us to compare the variance in populations with different means. Computing

the CoV of the CPI for the clusters tells us how much, within a cluster, the CPI

metric varies. A lower CoV means the CPI of intervals within a cluster are more

similar. The more similar the CPI values are within a cluster, the better the job we

106

0

0.1

0.2

0.3

0.4

0.5

Dataset

C
oV

 o
f C

P
I

am
m

p
ap

pl
u

ar
t−

11
0

ar
t−

47
0

bz
ip

−
gr

ap
h

bz
ip

−
pg

m
bz

ip
−

sr
c

cr
af

ty
eo

n−
co

ok
eo

n−
ka

j
eo

n−
ru

sh
eq

ua
ke

fa
ce

re
c

ga
p

gc
c−

16
6

gc
c−

20
0

gc
c−

ex
pr

gc
c−

in
t

gc
c−

sc
i

gc
c−

tr
n

gz
−

gr
ap

h
gz

−
lo

g
gz

−
pg

m
gz

−
ra

nd
gz

−
sr

c
lu

ca
s

m
es

a
pe

rl−
di

ff
pe

rl−
m

kr
nd

pe
rl−

m
ai

l
sw

im
vr

tx
−

on
e

vr
tx

−
th

re
e

vr
tx

−
tw

o
vp

r−
pl

ac
e

vp
r−

ro
ut

e
M

ea
n

M
ax

im
um

EDCM Mixture
SimPoint

Figure 4.33: Coefficient of variation (CoV) of CPI. We compute the CoV of the CPI
statistic for both clusterings, SimPoint and EDCM, for every dataset. Lower values
for CoV mean more similar items within the clusters, meaning the clustering has
done a good job at grouping similar items. We see that SimPoint gives clusterings
with lower CoV values than the EDCM when each clustering method is allowed to
choose its own value for k. However, SimPoint picks larger values of k than the
EDCM, allowing it to more closely fit the differences in behavior in program trace
data. Because it uses more clusters, SimPoint has a lower CoV of CPI.

have done at clustering examples with similar behavior. Figure 4.33 compares the

CoV for the clusterings generated by SimPoint and the EDCM for every dataset. We

see that, on average, SimPoint has a lower CoV, and therefore clusters with intervals

exhibiting more similar behavior, than the EDCM.

SimPoint chooses a larger number of clusters than the EDCM. This gives it

more flexibility to fit the data’s behaviors. Because we can fit smaller differences in

behavior better with a higher number of clusters, SimPoint clusterings have a smaller

CoV within them. To reduce the effect of the larger number of clusters selected by

SimPoint and the k-means algorithm, we force both clustering methods to use only

k = 3 clusters to fit the data. Figure 4.34 compares the coefficient of variation of

the CPI metric when we force SimPoint and the EDCM to use a small number of

clusters (k = 3). This removes the advantage of being able to use more clusters that

107

0

0.5

1

1.5

2

Dataset

C
oV

 o
f C

P
I

am
m

p
ap

pl
u

ar
t−

11
0

ar
t−

47
0

bz
ip

−
gr

ap
h

bz
ip

−
pg

m
bz

ip
−

sr
c

cr
af

ty
eo

n−
co

ok
eo

n−
ka

j
eo

n−
ru

sh
eq

ua
ke

fa
ce

re
c

ga
p

gc
c−

16
6

gc
c−

20
0

gc
c−

ex
pr

gc
c−

in
t

gc
c−

sc
i

gc
c−

tr
n

gz
−

gr
ap

h
gz

−
lo

g
gz

−
pg

m
gz

−
ra

nd
gz

−
sr

c
lu

ca
s

m
es

a
pe

rl−
di

ff
pe

rl−
m

kr
nd

pe
rl−

m
ai

l
sw

im
vr

tx
−

on
e

vr
tx

−
th

re
e

vr
tx

−
tw

o
vp

r−
pl

ac
e

vp
r−

ro
ut

e
M

ea
n

M
ax

im
um

EDCM Mixture
SimPoint

Figure 4.34: Coefficient of variation of CPI, small k. We force both SimPoint and the
EDCM mixture to use a very small number of clusters, k = 3. We see that without
its ability to use more clusters to fit data behavior more carefully, the CoV of the
CPI statistic for k-means is nearly exactly equal to the EDCM (except for one large
difference in the ammp dataset, attributable to either a large standard deviation or a
small mean, < 1, in the CPI). We conclude that both the EDCM and k-means do
just as well in clustering items with similar CPI statistics, and the difference is due
to the difference in k.

SimPoint previously had over the EDCM when comparing the CoV. We see that, on

average, the two clustering methods give nearly identical CoV measures. The large

coefficient of variation given by SimPoint for the ammp-ref dataset can be attributed

to either a very large standard deviation in the CPI, or a small mean (< 1). Overall,

both methods produce clusters that have the same amount of variation of behavior

per cluster.

4.7 Overview

We have shown many results in this chapter. At a high level, we have first

shown the importance of the discussion of burstiness with regards to program trace

data. Program trace data is indeed burstiness and it is important that we have a

clustering method that can take this natural phenomenon into consideration. We

showed that the EDCM is well suited to expressing burstiness.

108

The EM algorithm is well suited to training mixtures of EDCM distributions.

The algorithm converges quickly and we see that the EM runs very quickly when

training an EDCM mixture, especially considering the amount of data that is being

clustered compared to SimPoint and the k-means algorithm. Out implementation of

deterministic annealing did not help the EM algorithm, forcing the model selection

methods to choose models with higher values for k without offering a significant

improvement in percent prediction error.

The Akaike and Bayesian information criteria offer trade-offs that must be taken

into consideration when deciding which model selection method to use. Because of

its larger penalty on the model complexity, the BIC tends to choose models with a

smaller number of clusters. While this would mean time saved when simulating a

fewer number of cluster representatives, it also means less flexibility in the model in

its ability to fit the behaviors present in the data. The AIC, on the other hand, is

more flexible and can choose models with a higher value for k, meaning we can fit

the data more accurately and see a reduction in prediction error.

Of the four methods of choosing cluster representatives that we examined, using

the L1 distance from the cluster means gave us the smallest amount of prediction error.

The probability method did not work as well as we had hoped it might because the

EDCM places the highest probability on the most bursty intervals, which may not

be truly representative of overall cluster behavior (even though burstiness helps us to

cluster similar intervals).

We also showed how similar the clusterings given by SimPoint and the EDCM

are. Both methods produce clusters with largely the same coefficient and variation

of the CPI metric (equal amounts of similarity between the intervals in the clusters),

produce clusterings that are mostly the same size, and have values for the variation

of information metric. SimPoint is a time-proven method for clustering program

109

behavior, and seeing the similarities the EDCM has with it increases our confidence

that the EDCM mixtures are good models for expressing program trace behaviors.

CHAPTER FIVE

Summary

The SimPoint project is an important tool for researchers of new hardware

designs. Running full benchmark simulations to test a collection of designs can be

extremely time consuming, taking years of CPU time. SimPoint allows researchers to

cut the time needed to get accurate estimations of performance to days, rather than

years. To do so, SimPoint clusters benchmark data using the k-means algorithm,

grouping intervals of program execution with similar behavior. From these clusters,

simulation points are drawn that represent overall behaviors within the program’s

execution. Statistics are gathered on this handful of intervals rather than the entire

benchmark, yielding accurate predictions at a fraction of the simulation cost.

The k-means algorithm does have some difficulties, however. First, program

trace data exists in a very high number of dimensions. Benchmarks are split into

basic block vectors, with each basic block of a program’s execution, of which there

may be thousands or millions, being one dimension. Because the k-means algorithm

uses distance metrics to perform its clustering, and because points tend to look farther

and farther apart with increasing dimension, SimPoint must use dimension reduction

techniques before clustering the data down to a manageable number of dimensions

(the default for SimPoint is 15). Dimension reduction may mask natural features that

occur in the data. Or, worse, it may collapse two or more true clusters of behavior

in the original space into one cluster in the projected space. We would like to use a

clustering algorithm that does not require dimension reduction—one that can work

in the full dimension of the data.

Additionally, we would like a method that allows us to account for the phe-

nomenon of burstiness, which is present is program execution (temporal locality) and

110

111

therefore the program data clustered by SimPoint. The exponential Dirichlet com-

pound multinomial (EDCM), developed by Elkan (2006), allows us to cluster in the

full dimension of the data and to account for burstiness. To our knowledge, this

research is the first application of the EDCM to a domain outside of text document

clustering and is the first application to SimPoint. It is also one of the few methods

able to cluster the program trace data used by SimPoint in its full dimension.

In applying the EDCM mixture model to the task of clustering SimPoint data,

we also examine different methods for choosing the value k. Picking the number

of clusters without a priori knowledge is a major problem in clustering. We find

that the Bayesian Information Criterion penalizes too harshly on the large number

of free parameters present in a model with high dimension. The Akaike Information

Criterion is more lenient on the number of parameters and gives the EDCM mixture

model more flexibility than the BIC. Thus, the AIC, while using more clusters, gives

better prediction performance. The EDCM, using the AIC to select the number of

clusters, chooses half the number of clusters as SimPoint, a significant savings.

Once a clustering has been fit to the data using the EM algorithm and the AIC,

we need to choose a representative from each cluster to serve as simulation points.

We examine several methods of selection, finding that the probability based method

does not perform as well as we has hoped. However, using the L1 distance from the

cluster means yields simulation points that give very accurate prediction results, less

than 2% error on average.

The EDCM performs very well in the task of clustering SimPoint data and

choosing simulation points. The EDCM gives only slightly more error than SimPoint,

while doing so with half the number of clusters needed. This is a significant result

because while accuracy is important, it is not the purpose of SimPoint. Accuracy

can be off slightly because we are using the simulation points to compare statistics

of several different processor designs. As long as we use the same simulation points,

112

our results should be comparable. However, the savings in number of clusters is

significant, because the main purpose of SimPoint is to save time performing estima-

tion simulations. The fewer clusters we have, the fewer simulation points we have to

simulate in full to get an accurate idea of performance, yielding a direct savings in

the amount of simulation time needed. Theoretically, we also find the EDCM more

appealing to work with that the k-means algorithm because we can cluster in the full

dimension of the data and account for the phenomenon of burstiness.

Future work involving the EDCM includes implementing an optimized version

of the EM algorithm used to train it in C++ and incorporating the method into

SimPoint so others may use it. We would also like to find a way to make proper use

of the probabilities assigned to the data by the EDCM mixture.

113

BIBLIOGRAPHY

Aggarwal, C. C., A. Hinneburg, and D. A. Keim (2001). On the surprising behavior
of distance metrics in high dimensional spaces. In ICDT ’01: Proceedings of the
8th International Conference on Database Theory, London, UK, pp. 420–434.
Springer-Verlag.

Akaike, H. (1974, December). A new look at the statistical model identification.
IEEE Transactions on Automatic Control 19 (6), 716–723.

Balakrishnan, N. and V. B. Nevzorov (2003). A Primer on Statistical Distributions.
Hoboken: Wiley-Interscience.

Burger, D. C. and T. M. Austin (1997, June). The SimpleScalar tool set, version
2.0. Technical Report CS-TR-97-1342, U. of Wisconsin, Madison.

Casella, G. and R. L. Berger (2002). Statistical Inference (2 ed.). Australia:
Duxbury.

Church, K. W. and W. A. Gale (1995). Poisson mixtures. Natural Language
Engineering 1 (2), 163–190.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Statistics
Society 39 (1), 1–38.

Elkan, C. (2005, January). Lecture #8. Univ. California San Diego, CSE291:
Statistical Learning, http://www-cse.ucsd.edu/users/elkan/291/lect08.pdf.

Elkan, C. (2006). Clustering documents with an exponential-family approximation
of the Dirichlet compound multinomial distribution. In ICML ’06: Proceedings
of the 23rd international conference on Machine learning, New York, NY, USA,
pp. 289–296. ACM Press.

Feng, Y. and G. Hamerly (2006). PG-means: learning the number of clusters in
data. In B. Schölkopf, J. Platt, and T. Hoffman (Eds.), Advances in Neural
Information Processing Systems, Volume 19, Cambridge, MA. MIT Press.

Hamerly, G., E. Perelman, and B. Calder (2006, March). Comparing multino-
mial and k-means clustering for SimPoint. In Proceedings of the International
Symposium on Performance Analysis of Systems and Software (ISPASS).

Hastie, T., R. Tibshirani, and J. Friedman (2001). The elements of statistical
learning: data mining, inference, and prediction. Springer Series in Statistics.
New York: Springer.

114

Hettich, S. and S. D. Bay (1999). The UCI KDD archive: 20 newsgroups.
University of California, Department of Information and Computer Science.
http://kdd.ics.uci.edu/.

Jain, A. K. and R. C. Dubes (1988). Algorithms for clustering data. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc.

Jain, A. K., M. N. Murty, and P. J. Flynn (1999). Data clustering: a review. ACM
Comput. Surv. 31 (3), 264–323.

Johnson, N. L., A. W. Kemp, and S. Kotz (2005). Univariate Discrete Distributions
(3 ed.). Wiley series in probability and statistics. Hoboken: Wiley-Interscience.

Johnson, N. L., S. Kotz, and N. Balakrishnan (1997). Discrete Multivariate
Distributions. Wiley Series in Probability and Statistics. New York: Wiley-
Interscience.

Katz, S. M. (1996). Distribution of content words and phrases in text and language
modelling. Nat. Lang. Eng. 2 (1), 15–59.

Kotz, S., N. Balakrishnan, and N. L. Johnson (2000). Continuous Multivariate
Distributions (2 ed.), Volume 1: Models and Applications of Wiley series in
probability and statistics. New York: Wiley-Interscience.

Madsen, R. E., D. Kauchak, and C. Elkan (2005). Modeling word burstiness using
the Dirichlet distribution. In ICML ’05: Proceedings of the 22nd international
conference on Machine learning, New York, NY, USA, pp. 545–552. ACM Press.

McCallum, A. Industry sector. http://www.cs.umass.edu/∼mccallum/code-
data.html.

Meilă, M. (2002, October). Comparing clusterings. Department of Statistics, Uni-
versity of Washington.

Minka, T. (2003). Estimating a Dirichlet distribution. http://
research.microsoft.com/∼minka/papers/dirichlet/.

Ng, A. Y., M. I. Jordan, and Y. Weiss (2001, mar). On spectral clustering: Anal-
ysis and an algorithm. In Advances in Neural Information Processing Systems
(NIPS), Number 14.

Sanghai, K., T. Su, J. G. Dy, and D. R. Kaeli (2005). A multinomial clustering
model for fast simulation of computer architecture designs. In KDD, pp. 808–
813.

Schwarz, G. (1978, mar). Estimating the dimension of a model. The Annals of
Statistics 6 (2), 461–464.

115

Sherwood, T., E. Perelman, and B. Calder (2001, September). Basic block distri-
bution analysis to find periodic behavior and simulation points in applications.
In International Conference on Parallel Architectures and Compilation Tech-
niques.

Sherwood, T., E. Perelman, G. Hamerly, and B. Calder (2002). Automatically char-
acterizing large scale program behavior. In ASPLOS-X: Proceedings of the 10th
international conference on Architectural support for programming languages
and operating systems, New York, NY, USA, pp. 45–57. ACM Press.

SPEC. SPEC CPU2000. http://www.spec.org/cpu2000/.

Ueda, N. and R. Nakano (1998). Deterministic annealing EM algorithm. Neural
Netw. 11 (2), 271–282.

Zahn, C. T. (1971, January). Graph-theoretical methods for detecting and describ-
ing gestalt clusters. IEEE Transactions on Computers C-20 (20), 68–86.

