
ABSTRACT

On The Performance of Convolutional Neural Networks Initialized with Gabor
Filters

Mehang Rai, M.S.

Mentor: Pablo Rivas, Ph.D.

Over the years, image recognition has been gaining popularity due to its var-

ious possible usages. Convolutional Neural Networks (CNNs) have been the classic

approach taken on by many researchers because of their capability to learn through

the parameter space given a sufficient amount of representative data. When observ-

ing a fully trained CNN, researchers have found that the pattern on the kernel filters

(convolution window) of the receptive convolutional layer closely resembles the Gabor

filters. Gabor filters have existed for a long time, and researchers have been using

them for texture analysis. Given the nature and purpose of the receptive layer of

CNN, Gabor filters could act as a suitable replacement strategy for the randomly

initialized kernels of the receptive layer in CNN, which could potentially boost the

performance without any regard to the nature of the dataset. The findings in this

thesis show that when low-level kernel filters are initialized with Gabor filters, there

is a boost in accuracy, Area Under ROC (Receiver Operating Characteristic) Curve

(AUC), minimum loss, and speed in some cases based on the complexity of the dataset.

On The Performance of Convolutional Neural Networks Initialized with Gabor
Filters

by

Mehang Rai, B.S.

A Thesis

Approved by the Department of Computer Science

Erich Baker, Ph.D., Chairperson

Submitted to the Graduate Faculty of
Baylor University in Partial Fulfillment of the

Requirements for the Degree
of

Master of Science

Approved by the Thesis Committee

Pablo Rivas, Ph.D., Chairperson

Greg Hamerly, Ph.D.

Liang Dong, Ph.D.

Accepted by the Graduate School

August 2021

J. Larry Lyon, Ph.D., Dean

Page bearing signatures is kept on file in the Graduate School.

Copyright © 2021 by Mehang Rai

All rights reserved

TABLE OF CONTENTS

LIST OF FIGURES . vii

LIST OF TABLES . ix

ACKNOWLEDGMENTS . xii

DEDICATION . xiii

1 Introduction . 1

2 Literature Review on CNNs and Gabor Filters 4

2.1 Gabor Filter . 4

2.2 Convolutional Neural Network . 10

2.3 Gabor and CNN . 17

3 Methodology . 21

3.1 Gabor Initialization and Control Group 21

3.1.1 Random Weight Initialization 22

3.1.2 Random Initialization with a Gabor Filter on Each Channel . 22

3.1.3 Repeated Gabor Filter on All Channels 23

3.2 Datasets . 23

3.2.1 Cats Vs Dogs Version-1.0 . 23

3.2.2 CIFAR-10 Version-3.0.2 . 24

3.2.3 CIFAR-100 Version-3.0.2 . 25

3.2.4 Caltech 256 Version-2.0 . 27

3.2.5 Stanford Cars Version-2.0 . 28

iv

3.2.6 Tiny Imagenet . 30

3.3 Architectures . 31

3.3.1 Cats vs Dogs . 31

3.3.2 CIFAR-10 . 34

3.3.3 CIFAR-100 . 35

3.3.4 Caltech 256 . 36

3.3.5 Stanford Cars . 36

3.3.6 Tiny Imagenet . 37

3.4 Loss Functions . 37

3.4.1 Cats vs Dogs . 38

3.4.2 CIFAR-10 . 39

3.4.3 CIFAR-100 . 39

3.4.4 Caltech 256 . 40

3.4.5 Stanford Cars . 40

3.4.6 Tiny Imagenet . 40

3.5 Success Metrics . 41

3.5.1 Accuracy . 41

3.5.2 AUC . 42

3.5.3 Loss . 43

3.5.4 Epoch . 43

3.6 Experiments . 44

3.6.1 Multiple Experiments with Same Gabor Size and Same Image
Size . 45

3.6.2 Rigid/Static Gabor Filters vs Trainable Gabor Filters 45

3.6.3 Different Gabor Size . 46

v

4 Results and Discussion . 47

4.1 Multiple Experiments With Same Gabor Size and Same Image Size . 47

4.1.1 Fully-trained Models . 47

4.1.2 Gabor Initialized CNN Constrained to Maximum Accuracy Epoch 51

4.1.3 Gabor Initialized CNN Constrained to Minimum Loss Epoch . 53

4.2 Rigid/Static Gabor Filters vs Trainable Gabor Filters 54

4.3 Effect of Different Kernel Size and Image Size 56

4.3.1 Cats vs Dogs . 57

4.3.2 CIFAR-10 . 59

4.3.3 CIFAR-100 . 61

4.3.4 Caltech 256 . 62

4.3.5 Stanford Cars . 64

4.3.6 Tiny Imagenet . 66

5 Conclusion . 68

5.1 Future Work . 70

APPENDICES . 72

APPENDIX A Code . 73

A.1 Gabor Filters Generation . 73

A.2 Visualization of Gabor Filters . 74

A.3 Random Gabor Filter on All Channels of Receptive Convolutional Layer 74

A.4 Repeated Gabor Filter on the 3 Channels of Receptive Convolutional
Layer . 76

BIBLIOGRAPHY . 79

vi

LIST OF FIGURES

2.1 Gabor filters . 5

2.2 CNN Architecture . 10

2.3 Trained receptive convolutional kernels 11

3.1 Cats vs Dogs dataset. 24

3.2 Cats vs Dogs dataset distribution. 24

3.3 CIFAR-10 dataset. 25

3.4 CIFAR-10 dataset distribution. 25

3.5 CIFAR-100 dataset. 26

3.6 CIFAR-100 dataset distribution. 27

3.7 Caltech 256 dataset. 27

3.8 Caltech 256 dataset distribution. 28

3.9 Stanford cars dataset. 29

3.10 Stanford cars dataset distribution. 29

3.11 Tiny Imagenet dataset. 30

3.12 Tiny Imagenet dataset distribution. 31

3.13 CNN architecture for Cats vs Dogs dataset. 32

3.14 CNN architecture for CIFAR-10 dataset. 34

3.15 CNN architecture for CIFAR-100 dataset. 35

3.16 CNN architecture for caltech 256 dataset. 36

3.17 CNN architecture for stanford cars dataset. 36

3.18 CNN architecture for Tiny Imagenet dataset. 37

vii

4.1 Kernel filters in receptive layer of fully trained traditional CNN, where
three consecutive filters belong to same kernel set 50

4.2 Gabor filters with different size . 56

viii

LIST OF TABLES

4.1 Improvement in maximum accuracy of Gabor configured CNN with
respect to traditional CNN . 48

4.2 Improvement in AUC at maximum accuracy of Gabor configured CNN
with respect to traditional CNN . 48

4.3 Improvement in minimum loss of Gabor configured CNN with respect
to traditional CNN . 49

4.4 Improvement in maximum accuracy of epoch-constrained Gabor ini-
tialized CNN with respect to traditional CNN when training period
constrained to maximum accuracy epoch of traditional CNN 51

4.5 Improvement in AUC at maximum accuracy of epoch-constrained Ga-
bor initialized CNN with respect to traditional CNN when training
period constrained to maximum accuracy epoch of traditional CNN . 52

4.6 Improvement in maximum accuracy epoch of epoch-constrained Gabor
initialized CNN with respect to traditional CNN when training period
constrained to maximum accuracy epoch of traditional CNN 52

4.7 Improvement in minimum loss of Gabor initialized CNN with respect
to traditional CNN when training period constrained to minimum loss
epoch of traditional CNN . 53

4.8 Improvement in minimum loss epoch of Gabor initialized CNN with
respect to traditional CNN when training period constrained to mini-
mum loss epoch of traditional CNN 53

4.9 Improvement in maximum accuracy of Gabor initialized CNN (frozen
receptive convolutional layer variant) with respect to traditional CNN 54

4.10 Improvement in AUC of Gabor initialized CNN (frozen receptive con-
volutional layer variant) with respect to traditional CNN 55

4.11 Improvement in minimum loss of Gabor initialized CNN (frozen recep-
tive convolutional layer variant) with respect to traditional CNN . . . 55

4.12 Improvement in maximum accuracy on Cats vs Dogs dataset with dif-
ferent kernel size and image size . 57

ix

4.13 Improvement in AUC at maximum accuracy on Cats vs Dogs dataset
with different kernel size and image size 58

4.14 Improvement in minimum loss on Cats vs Dogs dataset with different
kernel size and image size . 58

4.15 Improvement in maximum accuracy on CIFAR-10 dataset with differ-
ent kernel size and image size . 59

4.16 Improvement in AUC at maximum accuracy on CIFAR-10 dataset with
different kernel size and image size 60

4.17 Improvement in minimum loss on CIFAR-10 dataset with different ker-
nel size and image size . 60

4.18 Improvement in maximum accuracy on CIFAR-100 dataset with dif-
ferent kernel size and image size . 61

4.19 Improvement in AUC at maximum accuracy on CIFAR-100 dataset
with different kernel size and image size 61

4.20 Improvement in minimum loss on CIFAR-100 dataset with different
kernel size and image size . 62

4.21 Improvement in maximum accuracy on caltech 256 dataset with dif-
ferent kernel size and image size . 62

4.22 Improvement in AUC at maximum accuracy on caltech 256 dataset
with different kernel size and image size 63

4.23 Improvement in minimum loss on caltech 256 dataset with different
kernel size and image size . 63

4.24 Improvement in maximum accuracy on stanford cars dataset with dif-
ferent kernel size and image size . 64

4.25 Improvement in AUC at maximum accuracy on stanford cars dataset
with different kernel size and image size 65

4.26 Improvement in minimum loss on stanford cars dataset with different
kernel size and image size . 65

4.27 Improvement in maximum accuracy on Tiny Imagenet dataset with
different kernel size and image size 66

4.28 Improvement in AUC at maximum accuracy on Tiny Imagenet dataset
with different kernel size and image size 67

x

4.29 Improvement in minimum loss on Tiny Imagenet dataset with different
kernel size and image size . 67

xi

ACKNOWLEDGMENTS

First, I would like to express my sincere gratitude to my advisor, Dr. Pablo

Rivas for mentoring me during the whole research and writing phase. He has blessed

me with his wise words, encouragement and support and it has been a wonderful

experience to work under him. I would also like to thank my defense committee

members, Dr. Greg Hamerly and Dr. Liang Dong. I am extremely grateful towards

the Department of Computer Science at Baylor University for providing me with such

an incredible opportunity over the span of two years. At last, I want to thank my

precious family and friends who where there during my high and low moments. To

be honest, it was a huge struggle, especially being far from home, but their moral

support always kept my smile and head held high. I will forever be grateful to you

all. Thank you everyone.

xii

Dedicated to my family for their sacrifice, unconditional love and support

xiii

CHAPTER ONE

Introduction

This thesis explores the impact of Gabor filters on the performance of the

Convolutional Neural Network (CNN) when initialized on the receptive layer filters.

Image/Object recognition has been a widely popular field for ages now, and with

the emerging new technologies, it has begun to pique more interest. This is due

to its usage in various fields like Augmented Reality (AR), biometric system, auto-

mated driving vehicles, etc. to which a lot of industries have been trying to push

forward. When talking about image recognition nowadays it has almost become syn-

onymous with CNN because research has shown that CNN can achieve remarkable

performance. Over the years, much research has been conducted, seeking to enhance

the performance of CNN concerning various topics, but only a few studies have been

done to enhance the fundamental core of CNN. CNN is a supervised learning model,

which means that given a training dataset it will begin to correct itself provided that

it made a mistake when labelling that image incorrectly. In regard to that, how the

CNN is initialized has been seen to be crucial to its performance because there can

exist problems like vanishing gradient, local optima, etc. And, although different

variants of CNN has evolved over the years to address these issues, only a few studies

have been conducted over the improvement in initialization method because most of

the time people tend to go for random initialization.

Years before the emerging popularity of CNN, there were different techniques

for image processing and Gabor filter has been seen to be one of the popular tech-

niques. Gabor filter is a band pass filter, which can be thought of as Gaussian

modulated by a sinusoid. Depending upon the different hyper-parameters like orien-

tation, frequency, etc., Gabor filter when convolved with image is capable of extracting

1

information regarding texture segmentation. When thinking in CNN, this feature ex-

traction is mainly the job of receptive/first low-level convolutional layer. Since all

the deeper convolutional layers build upon the features from preceding layers, it is

integral for the receptive layer to perform well. But, as mentioned before in most of

the cases these layers are initialized randomly and it takes significant effort for the

model to align these layers in correct fashion with back propagation algorithm.

When AlexNet (Krizhevsky, Sutskever, and Hinton 2012) famously won the

2012 ImageNet Large Scale Visual Recognition Challenge (LSVRC)-2012 competition

by a large margin, it revolutionized CNN and more importantly, upon close analysis it

gave the idea that the kernel filters (convolution window) in the receptive layer of CNN

tend to resemble the shape of Gabor filters. While being a significant fact, few studies

have been conducted to explore the intersection of these two computer vision tools,

and the studies which do have only explored a small sample space or imposed some

form of restriction on the structure of the Gabor filters. While imposing restriction

on the structure of the Gabor filter may certainly be good in some form of sample

space, it definitely adds some complexity. It is to be noted that though CNN is an

excellent learner and provides the complexity of general object image recognition task

in hand, it is certainly not a good idea to impose such restriction. Since CNN corrects

itself when it has made a mistake, it can be hypothesized that when there is a need,

CNN will itself correct the Gabor filter as necessary. This particular configuration

in CNN can boost the performance of CNN because it could be significantly more

efficient than random initialization. Since the Gabor filter has been shown by past

studies to work well in different kind of image processing, it can be a good idea to give

a thought to Gabor filter as an initialization method for the low-level kernel filters

in the receptive convolutional layer to make CNN better in terms of general object

recognition.

2

While previous studies have emphasized on initialization of multiple convolu-

tional layers with Gabor filters, we are focusing on the initialization of the receptive

convolutional layer with the Gabor filter because only the receptive filters resemble

the nature of Gabor filters, and the succeeding deeper filters tend to become more

abstract as shown by previous research (Krizhevsky, Sutskever, and Hinton 2012).

Also, any form of restriction on the Gabor filter structure has been removed, because

it helps the CNN to unlearn the existing filter on the receptive layer, if necessary.

This technique provides the freedom to the CNN to rectify and change the Gabor

filter structure as per necessity, which eventually allows to extract complex features

from which the succeeding convolutional layer could build upon. This can lead to

boost in performance of CNN like in terms of accuracy, AUC, etc. Even if it is a

small improvement in accuracy of general object recognition, it can make significant

impact. For example, even if the automated ZIP Code recognition is improved by

1%, it could still prevent millions of packages from being delivered to wrong place.

The remainder of the thesis is organized as follows: Chapter Two gives the

literature review of the CNN and Gabor filter. Mehang Rai wrote the entire paper

under the supervision from Dr. Pablo Rivas. Chapter Three provides the methodol-

ogy of the research with an explanation of each component within the architecture.

Chapter Four presents the result and gives analysis of all the research conducted.

Chapter Five summarizes the findings of the research and provides insight for future

work.

3

CHAPTER TWO

Literature Review on CNNs and Gabor Filters

This chapter published as Rai and Rivas (2020). A Review of Convolutional Neural
Networks and Gabor Filters in Object Recognition. In 2020 International

Conference on Computational Science and Computational Intelligence (CSCI), pp.
1560–1567.

2.1 Gabor Filter

A Gabor filter, derived from Gabor elementary functions (GEF), is a lin-

ear filter used for a multitude of image processing applications for texture analysis,

edge detection, feature extraction, etc. As a band-pass filter, the Gabor filter en-

ables the extraction of patterns at the specified certain frequency and orientation

of the signal. Therefore this resulting property of transforming texture differences

into detectable filter-output discontinuities at texture boundary has established itself

to mimic the functionality of the visual cortex (Dunn, Higgins, and Wakeley 1994;

Dunn and Higgins 1995; Jain, Ratha, and Lakshmanan 1997). While the concept

of Gabor elementary function was initially presented by Hungarian-British physicist

Dennis Gabor (Gabor 1946), it was later extended to 2-D filters by Daugman (1985).

In basic terms, a Gabor elementary function (GEF) can be thought of as a

Gaussian being modulated by a complex sinusoid, where the Cosine and Sine waves

generate the real and imaginary component. GEF can be formulated as:

g(x, y) = exp

(
−x

′2 + γ2y′2

2σ2

)
exp

(
i

(
2π
x′

λ
+ ψ

))
(2.1)

where (x′, y′) = (x cos θ+ y sin θ,−x sin θ+ y cos θ) represents rotated spatial-domain

rectilinear coordinates; λ represents the wavelength of the sinusoidal factor, θ rep-

resents the orientation of the normal to the parallel stripes of a Gabor function, ψ

is the offset, σx and σy characterize the spatial extent and bandwidth of the filter.

4

Figure 2.1. Different Gabor filters with different values for λ, θ and γ. Different
parameters will change filter properties.

Most of the time a symmetric filter (σx = σy) will suffice for texture segmentation,

but when the texture contains texels not arranged in square lattice, asymmetric fil-

ters (σx 6= σy) could be useful (Dunn, Higgins, and Wakeley 1994). This asymmetric

nature is given by γ 6= 1, where γ is the spatial aspect ratio:

γ =
σx
σy
. (2.2)

Since a single Gabor filter can only be responsible for a certain feature, a

multitude of Gabor filters is necessary to yield meaningful features. As shown by

Jain, Ratha, and Lakshmanan (1997) a multitude of features computed over different

spatial orientations and frequencies was necessary to yield a successful segmentation

of an image with complex background. Because of its reputation in texture segmen-

tation, Gabor features have also been popular in the automated defect detection of

textured materials (Kumar and Pang 2002; Jing, Fang, and Li 2016; Li, Ma, and Liu

2016). But, since the Gabor filter only gives out texture features, an algorithm that

5

yields a meaningful result from those features is necessary. Kumar and Sherly (Kumar

and Pang 2002), used a multi-channel filtering scheme, while Jing et al. (Jing, Fang,

and Li 2016) used Kernel Principal Component Analysis upon the extracted features

along with the OTSU threshold method to give a high defect detection rate. Cor-

respondingly, Li, Ma, and Liu (2016) used Pulse Coupled Neural Network (PCNN)

giving a detection accuracy of around 98.6%

Over the years, the Gabor filter has seen its use in a variety of applications. Li,

Ma, and Liu (2016), proposed a method for road detection using Gabor filters. They

effectively demonstrated the robustness of Gabor filters by detecting roads in various

lighting conditions (night, entering tunnel, and shadowing). Their proposed methods

consisted of two steps: locating vanishing-point based on a soft voting scheme upon

dominant texture orientations, and then detecting the road lane ahead of the vehicle

via edge detection method, while effectively constraining the search of lane marks

using the vanishing point.

El-Sayed, Hassaballah, and Abdel-Latif (2016) proposed an authentication

mechanism based on the identification of retinal features. They efficiently used the

Gabor filter to segment the retinal blood-vessel, and then ran Support Vector Machine

(SVM) upon the resulting feature pattern for feature matching. They claim this

method to be stable regarding multiple and rotary shifts of digital retina images, and

their test result corroborates their claim as they were able to achieve an accuracy of

around 96.9%.

In their research, Gornale, Patil, and C. (2016) showed an interesting way

of identifying gender based on features gathered from Discrete Wavelet Transform

(DWT) and Gabor-based feature. When most of the research was focusing on facial

features, this was a pretty interesting method as it was able to achieve 97% accuracy.

6

Rizvi, Cabodi, Gusmao, and Francini (2016) demonstrated the use of Gabor

features for object detection. Aided with Gabor filters, the feedforward Neural Net-

work model was able to achieve an accuracy of 50.71%, which was comparable to that

of CNN (52.15%). This was fascinating as it was able to achieve such accuracy in less

training time.

Avinash, Manjunath, and Kumar (2016), argued about the failure of previ-

ously employed methods in a real-time application for detection of lung cancer in early

stages. They propose the usage of the Gabor filter along with a Marker-driven wa-

tershed segmentation technique on Computed Tomography (CT) images to overcome

the hurdle.

Continuing on Gabor filters, Daamouche, Fares, Maalem, and Zemmouri (2016)

proposed an unsupervised method of application of Gabor filters and morphological

operators for building detection on remotely sensed images.

Over the years, the Gabor filter has seen its heavy usage in the extraction of

facial features. In 2016, Hemalatha and Sumathi (2016) proposed the Median and

Gabor filters along with Histogram Equalization as a combined preprocessing method

for yielding a better-enhanced image. They argue that their technique will lead to a

color-normalized, noise-reduced, edge-enhanced, and contrast-illuminated image.

In the same fashion, Lefkovits, Lefkovits, and Emerich (2017) proposed the

use of Gabor filters to aid detection of the eye and its openness. Their methodology

primarily consisted of using the Gabor filter to detect the eye which was aided with

Viola-Jones face detection (Viola and Jones 2001) to speed up the process and a

self-created face classifier based on Haar features to lower false positive of detection

rate.

Around the same time, Pumlumchiak and Vittayakorn (2017) presented a

novel framework for facial expression recognition. Their method primarily consisted of

extraction of Gabor filter responses as facial features, mapped upon feature subspace

7

using the joint framework of Principal Component Analysis (PCA), Principle Compo-

nents (PCs) removal, and Linear Discriminant Analysis (LDA). Their experimental

result outperformed existing baselines, and thus substantiating that the weighted

neighbor as a good approach to classifying facial expressions to four different classes:

anger, surprise, happiness, and neutral.

However, Mahmood, Jalal, and Evans (2018) went with a different approach to

tackling the facial expression recognition task. Their method comprised of a combined

Radon transform and Gabor transform for facial feature extraction, fed towards a

fused-classifier approach in the form of Neural Network over Self-Organized Maps

(SOM). This particular method achieved accuracy of 84.87% on average over two

public datasets on classification of six different expressions - surprise, anger, sadness,

disgust, happiness, and fear.

Rather than using Standard Gabor Filter Ensemble (SGFE) of varying scale

and orientation, Low, Teoh, and Ng (2016) proposed a Condensed Gabor Filter En-

semble (CGFE) in which the diversified traits of multiple SGFE are condensed into

a single one. Their method of self-cross convolving the pre-selected Gabor filters out-

performed the state of the art face descriptors Linear Binary Pattern (LBP) variants:

Discriminant Face Descriptor (DFD) (Lei, Pietikäinen, and Li 2014) and Compact

Binary Face Descriptor (CBFD) (Lu, Liong, Zhou, and Zhou 2015).

Nava, Escalante-Ramirez, and Cristobal (2012) proposed a new filtering scheme,

Log-Gabor, designed to eliminate the non-uniform coverage in Fourier domain pro-

duced by the Gabor filter, and thus strongly correlating with Human Visual System

(HVS). In 2017, Nunes and Pádua (2017), expanded on this filtering scheme and

proposed a local descriptor called multi-spectral feature descriptor (MFD), designed

specifically to work with images acquired over different frequencies across the elec-

tromagnetic spectrum. Upon evaluation, it was found to be computationally efficient

8

while maintaining the same precision and recall as the extant state-of-the-art algo-

rithms.

The feature point matching method presented by Liu, Lao, and Pang (2019)

for infrared and visible image matching also effectively utilizes Log-Gabor for gener-

ating the descriptors. This method based upon the Log-Gabor filters and Distinct

Wavelength Phase Congruency (DWPC) effectively helps in matching non-linear im-

ages with different physical wavelength, and the experiment results corroborate it,

as this method outperformed traditional approaches: edge-oriented histogram de-

scriptor (EHD), phase congruency edge-oriented histogram descriptor (PCEHD), and

log-Gabor histogram descriptor (LGHD), in infrared and visible images by 50%.

In the case of image segmentation, the Gabor filter has been the standard,

and Premana, Wijaya, and Soeleman (2017) demonstrated this by using just simple,

yet powerful K-Means clustering algorithm to segment the object from its complex

background with the aid of Gabor filter responses. Fan, Zhang, Mei, and Liu (2017)

proposed a novel woven fabric recognition method based on a similar concept. They

proposed the utilization of Gabor filter to determine the orientation of texture at

yarn crossing points segmented with K-means clustering and gradient accumulation.

This segmentation capability of the Gabor filter is further demonstrated by Srivastava

and Srivastava (2019) as they propose a novel method for salient object detection.

Combined with the foreground saliency map formed from backgroundness score via

minimum directed backgroundness and segmented images obtained from Gabor fil-

ters, this method utilizes an objectness criterion to choose the segment containing

the salient object. Although failing in some conditions, this method effectively out-

performs state-of-the-art algorithms (evaluated by PR-curve, F-Measure curve, and

Mean Absolute Error upon 8 different public datasets).

Recently, Khaleefah, Mostafa, Mustapha, and Nasrudin (2019) proposed an

interesting method to combat the deformations in paper images formed by extant

9

scanners. Their novel Automated Paper Fingerprinting (APF) utilized the combined

effort of Gabor filters and Uniform Local Binary Patterns (ULBP) for extracting

both local and global information for better texture classification. Their evaluation

effectively highlights the need for Gabor filter as the combined approach was able to

outperform the standalone ULBP system by 30.68%.

2.2 Convolutional Neural Network

In the field of image processing, many consider Convolutional Neural Network

(CNN) to be state-of-the-art. CNN represents a family of statistically learning models

which is primarily based upon the convolution operation of images with filters leading

to feature-mapping layers. In a similar fashion to any other Neural Network (NN)

models, it is biologically inspired by visual neuroscience theory. Hubel and Wiesel

(1962), found out that in a cat’s visual cortex there are simple cells and complex cells

present which fire in response to certain properties of visual sensory inputs. While

the simple cell showed a response to low-level spatial features like the orientation

of edges, complex cells exhibited more spatial invariance. And, the architecture of

CNN is similar to that - a hierarchical multi-layer network where receptive layers are

designed to capture some specific peculiarity of the image while the following layers

build upon that to create more abstract features.

Figure 2.2. An illustration of architecture of CNN with convolutional layers, pooling
layers and dense layers.

10

Figure 2.3. Visual representation of 64 convolutional kernels of size 9×9×3 learned
by the first convolutional layer on the 32×32×3 input images.

A general CNN consists of some combinations of convolution layers, pool-

ing layer, activation layer, and dense (fully-connected) layer, but modification can

be seen according to the application as required like the addition of dropout layer,

normalization layer, etc. for issues like overfitting, uniformity, etc. CNN is trained

usually via backpropagation (Le Cun, Boser, Denker, Henderson, Howard, Hubbard,

and Jackel 1990) in which the weight is updated using variation of gradient descent

like Stochastic Gradient Descent (SGD), Mini-batch Gradient Descent, etc. (Ruder

2017).

CNN is not new in the field. It has seen its usage back in the 1990s too.

Le Cun, Boser, Denker, Henderson, Howard, Hubbard, and Jackel (1990) effectively

utilized the model for recognizing handwritten zip codes to constrain the error rate

to 1%, while Lawrence, Giles, Ah Chung Tsoi, and Back (1997) and Rivas and Cha-

con (Chacon and Rivas 2009) effectively demonstrated the capability of CNN in face

recognition by outperforming Karhunen-Loeve (KL) transform and Multi-Layer Per-

ceptron (MLP). But it was the work of Krizhevsky, Sutskever, and Hinton (2012)

11

that brought CNN back into the limelight. AlexNet made a significant stride in the

field of image recognition as it effectively demonstrated that a deeper model is much

better than a wider model. With a margin of 10.9% compared to the second-placed

model, it won the ILSVRC-2012 competition. Following the success of AlexNet vari-

ous deeper models like Residual Networks (ResNets) (He, Zhang, Ren, and Sun 2016),

GoogleNet (Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, and Ra-

binovich 2015), VGGNet (Simonyan and Zisserman 2015), etc. have been developed,

and also various studies like object recognition (Ishii, Nakamura, Nakada, Mochizuki,

and Ishikawa 2015; Kumar and Sherly 2017; Sudharshan and Raj 2018; Zulkeflie,

Fammy, Ibrahim, and Sabri 2019), 3D object detection (Wang, Lu, Chen, and Wu

2015; Schwarz, Schulz, and Behnke 2015), pedestrian detection (Szarvas, Yoshizawa,

Yamamoto, and Ogata 2005), learning scene gist (Wu, Wu, and Kreiman 2018), etc.

have been conducted.

CNN generally outperforms other supervised learning algorithms when it comes

to image processing. Ishii, Nakamura, Nakada, Mochizuki, and Ishikawa (2015) con-

firmed CNN outperforms Support Vector Machine (SVM) while automating the task

of analysis of the image coming from the satellite. Szarvas, Yoshizawa, Yamamoto,

and Ogata (2005) showed that CNN is able to reduce the False Positive Rate (FPR)

to less than 1
5

of SVM when trained on pedestrian images with complex background

and subject, and they mainly attributed this to the optimization of feature repre-

sentation by CNN. Likewise, regarding the multi-class object recognition problem,

Hayat, Kun, Tengtao, Yu, Tu, and Du (2018) showed that a 5-layered CNN was able

to achieve 90.12% accuracy, which completely outperformed different classical bag-of-

words (BOW) approaches. Similarly, the research of Zulkeflie, Fammy, Ibrahim, and

Sabri (2019) evaluates AlexNet, basic CNN, and Bag of Features (BoF) with Speeded-

Up Robust Feature (SURF) and SVM classifier, and found out that AlexNet and basic

CNN model outperforms BoF model. Looking at all this research, it is evident that

12

most of the timen the general CNN model suffices for the task at hand, though some-

times tweaks may be necessary concerning the complexity of task, accuracy, memory

requirements, etc.

Kawano and Yanai (2014) integrated conventional hand-crafted image fea-

tures, namely, Fisher Vectors with Histogram of Oriented Gradients (HOG) and

Color patches, with the convolutional features, boosting the accuracy to 72.6% in

a 100-class food dataset. It completely outperformed the existing best accuracy rate

- which was at 59.6%.

Biologically inspired, Wu, Wu, and Kreiman (2018) proposed integration of

scene’s gist for object recognition improvement, similar to how humans foveate on an

object and incorporate periphery information to aid object recognition. Coined as

GistNet, their model consisted of two CNN models - a fovea sub-network for object

recognition and a periphery sub-network for contextual modulation. With VGG-

16 as a baseline, their approach improved the accuracy by 50% for certain object

recognition while increasing the size by only 5%.

Kumar and Sherly (2017) fine-tuned the last two layers of a pre-trained VGG-

16 CNN model and trained on their augmented data to avoid overfitting due to lack

of training data. This approach led them to an accuracy of 81.6%, which is good

considering the scarcity of training data.

In regard to overfitting and data deficiency, as a supervised learning approach,

CNN needs a large amount of data in order to boost its performance and generaliza-

tion. While transfer learning could be done to deviate from the need for an expensive

labeling process, Dosovitskiy, Springenberg, Riedmiller, and Brox (2014) proposed a

discriminative unsupervised feature learning approach. Training the network to dis-

criminate between surrogate classes, created by applying a variety of transformations

to a randomly sampled seed image path, led it to outperform extant state-of-the-art

13

unsupervised methods. With regard to the context and argument, this novel approach

is certainly worth taking.

Over the years, CNN has seen its fair share of use as a feature extractor

too (Chen, Lam, Jacobson, and Milford 2014; Kataoka, Iwata, and Satoh 2015; Wang,

Lu, Chen, and Wu 2015; Cao, Chen, and Khosla 2015; Fang, Ding, Zhong, Love, and

Luo 2018). Upon evaluation of AlexNet and VGGNet, Kataoka, Iwata, and Satoh

(2015) showcased that not only the final fully-connected layers but the intermediate

layers too, can act as a source of features to enhance recognition performance. Simi-

larly, Chen, Lam, Jacobson, and Milford (2014) also ascertained that different layers

in CNN could engender features suitable for the detection of different aspects of place

recognition task.

Wang, Lu, Chen, and Wu (2015), proposed the use of CNN along with SVM,

where CNN acts as the feature extractor and SVM as the classifier, for 3D object

recognition. In their proposed approach, they first converted depth modality into 3

channels, and then fine-tuned two pre-trained Caffe models (Jia, Shelhamer, Don-

ahue, Karayev, Long, Girshick, Guadarrama, and Darrell 2014), in order to extract

representative sparse features from color (RGB) and depth (RGB-D) images, finally

to be used by SVM classifier. On experimentation, this approach yielded 91.35%

accuracy, much better than the state-of-the-art and also CNN model trained solely

on RGB images from the RGB-D object dataset.

Similarly, Schwarz, Schulz, and Behnke (2015) proposed the use of a pre-

trained CNN model as a feature extractor, in conjunction with SVM classifier for

RGB-D object recognition based on its pose estimation. Their approach incorporated

depth features by rendering objects from canonical views and coding metric distance

from the object center with the color scheme, making it suitable for CNN to extract

meaningful features.

14

Continuing on 3D object recognition, Gao, Wang, Xue, Xu, Zhang, and Wang

(2018) proposed pairwise Multi-View CNN (coined as PMV-CNN), designed to explic-

itly deal with lack of training samples while also maintaining latent complementary

information from different views explored via view pooling. Their novel approach

used a pair of CNN in order to jointly learn the visual features from multiple views

and optimize towards object recognition.

Since Spiking Neural Network (SNN) based architecture is energy efficient

when used in conjunction with spike-based neuromorphic hardware,Cao, Chen, and

Khosla (2015) proposed a novel approach for converting CNN into an SNN in order

to map into spike-based hardware. When training the tailored CNN, this approach

gets exposed to the learning capability of CNN, and while transferring the learned

weight of the tailored CNN back to SNN, it becomes energy efficient and compatible

with spike-based neuromorphic hardware. Regarding real-time object recognition,

they found this approach to be more energy efficient than Field Programmable Gate

Array (FPGA)-based implementation of CNN by two orders of magnitude.

As shown by all these aforementioned studies, while CNN has been established

as the state of the art for object recognition, it can be expanded to recognition in

real-time too. Upon implementation of CNN on FPGA, Ahn (2015) was able to

achieve 170,000 classifications per second and scale-invariant object recognition from

a 720×480 video stream at a speed of 60 fps. Similarly, Radovic, Adarkwa, and

Wang (2017) proposed the use of YOLO - a CNN based open-source object detection

and classification platform - for classification of the object on real-time video feed

obtained form Unmanned Aerial Vehicles (UAV).

Maturana and Scherer (2015) proposed a 3D CNN architecture, coined VoxNet,

that integrated a volumetric occupancy grid representation with 3D CNN for real-

time object detection. This representation enabled full utilization of information

coming from range sensors, ultimately boosting performance to labeling hundreds

15

of instances per second. Inspired by Maturana and Scherer (2015), Garcia-Garcia,

Gomez-Donoso, Garcia-Rodriguez, Orts-Escolano, Cazorla, and Azorin-Lopez (2016)

proposed the use of density occupancy grids as the inner representation for input

data in a model coined PointNet. When integrated with the 3D CNN model, this

approach significantly boosted the performance. Expanding upon Maturana and

Scherer (2015), Zhi, Liu, Li, and Guo (2017) proposed LightNet — a lightweight

volumetric 3D CNN. Their compact model was more computationally efficient than

VoxNet, while a combination of different kinds of auxiliary learning tasks made it less

vulnerable to overfitting.

Likewise, Jing Huang and Suya You (2016) introduced a 3D point cloud label-

ing scheme based on 3D CNN. Representation based on only voxelized data made it

straightforward. While complications like exceeding memory usage, biased classifica-

tion, etc. could exist, they did present solutions for handling such data.

Fang, Ding, Zhong, Love, and Luo (2018) devised a novel approach Improved

Faster Regions with CNN Features (IFaster R-CNN) to address the generalization

issue while detecting objects on construction sites in real-time. Their approach was

also based upon the use of CNN as base feature extractor from images, which then

with the use of Region Proposal Network (RPN) to concurrently predict object bounds

and objectness scores at a particular position, fed the extracted regional proposals

were fed into Fast R-CNN module for detection. With detection speed at real-time

at 0.101 s per image and accuracy of about 91% and 95% for worker and excavator

respectively, they completely outperformed extant state-of-the-art by an average of

50%.

Du, Muslikhin, Hsieh, and Wang (2020) experimented with a six-degree-of-

freedom (6-DOF) robot arm with a gripper, their proposed method successfully

yielded an accuracy of 98.44% for the stereo vision-based object recognition and

manipulation. Their hybrid algorithm comprised of an adaptive network-based fuzzy

16

inference system (ANFIS) for the eye-to-hand calibration and R-CNN for object de-

tection.

While accuracy has been the most important aspect researchers prioritized,

there has been considerable research done to boost the speed of recognition too (Cire-

san, Meier, Masci, Gambardella, and Schmidhuber 2011; Anwar, Hwang, and Sung

2015; Xu, Dehghani, Corrigan, Caulfield, and Moloney 2016). The authors of (Cire-

san, Meier, Masci, Gambardella, and Schmidhuber 2011) were able to considerably

drop the error rates in fewer epochs when trained using their fast, fully parameteriz-

able GPU based CNN.

Similarly, with regard to speed, Anwar, Hwang, and Sung (2015) proposed

fixed-point optimization for reducing the number of parameters. They effectively

quantized layers of pre-trained high precision networks using L2 error minimization

based on layerwise sensitivity on word-length reduction. Their approach not only

significantly reduced memory usage but also generalized the model.

As 3D object detection is computationally demanding, Xu, Dehghani, Cor-

rigan, Caulfield, and Moloney (2016) proposed Volumetric Accelerator (VOLA) for

the memory-efficient representation of the 3D volumetric object. With a reduction in

memory usage, they claimed their representation model to be better in terms of speed,

and their experimental result supported this as their VOLA-based CNN performed

1.5 times faster than the original LeNet.

2.3 Gabor and CNN

Judging from all these studies it can be clearly seen that both the Gabor

filter and CNN can act as excellent feature extractors. However, as seen in previous

research (Kawano and Yanai 2014; Wu, Wu, and Kreiman 2018), CNN can skip over

some of the valid specific information and therefore, can immensely benefit by being

complemented with other manual features. Since Gabor has been defined to extract

all sorts of features (Pumlumchiak and Vittayakorn 2017; Lefkovits, Lefkovits, and

17

Emerich 2017; Nunes and Pádua 2017) in a different domain, this makes it a well-

suited candidate to complement CNN, and in fact, a lot of studies have shown this

to be the case (Yao, Chuyi, Dan, and Weiyu 2016; Molaei, Shiri, Horan, Kahrobaei,

Nallamothu, and Najarian 2017; Hosseini, Lee, Kwon, Koo, and Cho 2018; Jiang and

Su 2018).

In conjunction with Gabor filter features, Yao, Chuyi, Dan, and Weiyu (2016)

found that CNN yielded a 1.26% boost in accuracy when employed for object recog-

nition in the natural scene. With an accuracy of 81.53%, it outperformed standalone

CNN marginally and significantly outperformed the Bag-of-Words model with Scale

Invariant Feature Transform (SIFT). In the same manner, Hosseini, Lee, Kwon, Koo,

and Cho (2018) utilized the Gabor filter responses to boost the accuracy of CNN

for classification based on age and gender. Zadeh Taghi Zadeh, Imani, and Majidi

(2019), also noted the boost in speed and accuracy when Gabor filter features were

incorporated with CNN for fast facial emotion recognition.

The visualization of Gabor filters and first convolutional layers of CNN shows

that they are quite alike. This was confirmed by Krizhevsky, Sutskever, and Hinton

(2012) as when trained on real images, the first convolutional layers of the deep CNN

was found to be similar to Gabor filters. Motivated by this fact, Alekseev and Bobe

(2019) modified the architecture where the first layer of CNN was constrained to fit

the Gabor function. Upon experimentation with different datasets, it was found to

yield the same or even better accuracy with significant improvement in convergence.

Inspired by traditional local Gabor binary patterns, Jiang and Su (2018) pro-

posed Gabor Binary Layer (GBL) as an alternative for the first layer of the CNN

model. Composed of a module of predefined Gabor filters with different shape and

orientation and a module of fixed randomly generated binary filters, GBL when ex-

perimented with different CNN models gave a better performance than the state-of-

the-art CNNs.

18

In a similar fashion, Luan, Chen, Zhang, Han, and Liu (2018) extended the

concept to multiple layers CNN. Coined as Gabor Convolutional Networks (GCN),

their network comprised of predefined Gabor filters of different scale and orientation

in multiple layers. Proposed to enhance the robustness of the model against image

transitions, scale changes, and rotations, their model significantly enhanced perfor-

mance over the baseline model while simultaneously reducing the training complexity

too.

Built upon GCN, Liu et al. (Liu, Ding, Wang, and Zhang 2018) proposed a

new learning model, Hybrid Gabor Convolutional Network (HGCN). While (Luan,

Chen, Zhang, Han, and Liu 2018) focused on accuracy, (Liu, Ding, Wang, and Zhang

2018) went for memory efficiency. With hybrid binarized input and Gabor Binarized

Filters (GBFs) in an end-to-end framework, HGCN was able to reduce memory usage

by a factor of 32 while maintaining accuracy due to usage of GCN.

Molaei, Shiri, Horan, Kahrobaei, Nallamothu, and Najarian (2017) also ini-

tialized the first layer of CNN with predefined Gabor filters for effective Left Ventricle

segmentation. Due to the robust nature of the Gabor filter, the model increased the

performance in terms of specificity and sensitivity. Later on, Molaei and Shiri Ah-

mad Abadi (2020), expanded the model to maintain the structure of the Gabor filter

during the training process. When compared with different initialization methods, it

significantly outperformed all, even when dealing with noisy data and a lesser amount

of training data.

All these existing approaches have a number of issues that have not been

explored yet. First, restricting Gabor filters as the only thing that a CNN can use

might be severely limiting the potential of a CNN to alter the structure, even so

slightly, of a Gabor filter in order to maximize performance, or even completely

destroy the spatial shape of an existing, under-performing filter. Second, current

studies combining Gabor filters and CNNs have not shown a conclusive relationship

19

between the use of Gabor filters and convergence of a CNN, which is crucial to

understanding the added computational cost of using Gabor filters as opposed to

using randomly generated uniform white noise, which is the traditional approach.

Third, while the evidence that CNNs and Gabor filters together are successful in very

specific computer vision tasks, there is no sufficient evidence that Gabor filters can

provide a significant advantage in general object recognition tasks.

In this thesis, we focus on the impact of Gabor filters on CNN when the recep-

tive layer of CNN is initialized with Gabor filters. We try to obtain an improvement in

the performance of CNN like accuracy, loss and convergence, on general object recog-

nition. In the next chapter, we will discuss our proposed approach to experiment on

initialization of CNNs with Gabor filters.

20

CHAPTER THREE

Methodology

This chapter presents the experimental methodology followed in our study.

This chapter is organized as follows: Section 3.1 explains the construction of Gabor

filter bank. Section 3.2 presents the different natures of dataset used for experimen-

tation. Section 3.3 gives the insight to CNN architecture employed with each dataset.

Section 3.4 describes the loss function and other training methodology employed for

all CNN models. Section 3.5 highlights the success metrics upon which the experi-

ments are evaluated. Section 3.6 explains the structure of each experiment.

3.1 Gabor Initialization and Control Group

A Gabor filter can be created using Equation 2.1, but in order to extract

features from an image, a bank of Gabor filters is necessary. This is because a

Gabor filter with certain orientation and frequency can only extract texture features

aligning with that specific Gabor filter only. To design a bank of Gabor filters for

the experiments, the approach proposed in Meshgini, Aghagolzadeh, and Seyedarabi

(2012) has been used. The orientations θm and frequencies ωn of the Gabor filters are

obtained by the following equations:

θm =
(π

8

)
.(m− 1),m ∈ [1, 8] (3.1)

ωn = (
π

2
).2−

n−1
2 , n ∈ [1, 5] (3.2)

σ is set as σ ≈ π
ω

and ψ is set by uniform distribution U(0, π).

Depending upon the model of CNN, there can be a lot of convolutional layers,

but for the sake of simplicity, the experiments have been designed to focus on the

21

impact of Gabor filters at the first receptive convolutional layer only. The nature of

the experiment models can be divided into three major categories:

(1) Random weight initialization (Control group)

(2) Random initialization with a Gabor filter on each channel

(3) Repeated Gabor filter on all channels

3.1.1 Random Weight Initialization

This is the classic/traditional CNN kernel initialization method in which each

kernel filter is initialized randomly. To be specific, Glorot uniform initialization

method (Glorot and Bengio 2010), also known as Xavier uniform initialization, has

been employed for initialization of the filters. In Glorot uniform initialization the

samples are drawn from a uniform distribution within [−limit, limit], where limit

=
√

6
(fan in+fan out)

, where fan in is the number of input units and fan out is the

number of output units.

3.1.2 Random Initialization with a Gabor Filter on Each Channel

For this particular approach, a bank of Gabor filters of the necessary filter size

is generated using the approach of Meshgini, Aghagolzadeh, and Seyedarabi (2012)

described above, and each kernel filter (also called convolution window) of the recep-

tive layer of CNN was initialized with a random Gabor filter from the filter bank, thus

giving different filters for the receptive layer. The receptive layer has many sets of

kernels, and each set of kernels in the receptive convolutional layer has three different

kernel filters corresponding to 3 different channels of the image. Therefore within

each set of kernel those 3 filters are initialized with different Gabor filter. During

the training period, CNN is allowed to change the structure of those Gabor filters in

order to extract features as needed.

22

3.1.3 Repeated Gabor Filter on All Channels

Similar to the previous approach, a bank of Gabor filters is generated using

same technique, but instead of assigning to each filter in a kernel set randomly, a

Gabor filter is chosen and assigned to all the 3 filters in that particular kernel set.

So while the Gabor filter is different among different kernel sets, it is same within a

set corresponding to the channels of the image during initialization. However, when

trained upon given datasets, the structure of the Gabor filters could be changed by

the CNN as needed.

3.2 Datasets

In order to analyze the effect of Gabor filter on CNNs, diverse multi-class

datasets ranging in terms of number of classes, nature of objects, image size and

distribution were considered. Depending upon the nature of dataset, the training

images were subjected to an optional image pre-processing, followed by rescaling

pixels by 1
255

and one-hot encoding of the labels before being passed to respective

CNN architecture for training and validation.

3.2.1 Cats Vs Dogs Version-1.0

Cats vs Dogs (Elson, Douceur, Howell, and Saul 2007) is a balanced dataset

comprising of images of cats and dogs. There are a total of 25,000 images with equal

distribution among the two classes. Since the images are in varying sizes, they have

all been resized to 256×256 size and then split up in 80:20 ratio to represent training

and test data respectively, giving 10,000 images per class for training set and 2500

images per class for validation set. Samples of the dataset can be seen in Figure 3.1,

and its distribution in Figure 3.2.

23

Figure 3.1. Cats vs Dogs dataset.

Figure 3.2. Cats vs Dogs dataset distribution.

3.2.2 CIFAR-10 Version-3.0.2

The CIFAR-10 (Krizhevsky 2009) dataset is one of the standard tiny images

dataset which was collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.

The dataset consists of 60,000 32 × 32 color images in 10 classes, with 6,000 images

per class. There are 50,000 training images and 10,000 test images. Samples of the

dataset can be seen in Figure 3.3, and its distribution in Figure 3.4.

24

Figure 3.3. CIFAR-10 dataset.

Figure 3.4. CIFAR-10 dataset distribution.

3.2.3 CIFAR-100 Version-3.0.2

The CIFAR-100 dataset is also the contribution of Alex Krizhevsky, Vinod

Nair, and Geoffrey Hinton. For this experiment, the version 3.0.2 of the dataset has

been utilized. The dataset consists of 60,000 32 × 32 color images in 100 classes,

with 600 images per class. There are 50,000 training images and 10,000 test images.

Although the dataset is balanced, to address the relatively small number of training

dataset per class, data augmentation was performed on the training images. Data

augmentation basically means applying set of transformations like rotation, zooming,

etc. on the original image, thus giving a new variation of the image. Applying data

augmentation does not mean increasing the number of training samples per epoch

25

of training, but it means that on each epoch the model will be learning from new

variations of the original image, thus increasing the total number of unique images in

the whole training process from start to finish, but not in terms of epoch. This helps

the learned model to become more robust and accurate as it is trained on different

variants of the original image. The particular set of transformations applied were:

(1) Rotation - Randomly rotate the image d degree, where d ∈ [0, 40]

(2) Width shift - Randomly shift the image x pixels horizontally, where x ∈ [0, w]

and w = 0.2∗fraction of total width of the image

(3) Height shift - Randomly shift the image x pixels vertically, where x ∈ [0, h]

and h = 0.2∗fraction of total height of the image

(4) Shear - Randomly shear the image d degree in counter-clockwise direction,

where d ∈ [0, 0.2]

(5) Zoom - Randomly zoom the image in range [0.8, 1.2]

(6) Horizontal flip - Randomly flip the image horizontally

Samples of the dataset can be seen in Figure 3.5, and its distribution in Figure 3.6.

Figure 3.5. CIFAR-100 dataset.

26

Figure 3.6. CIFAR-100 dataset distribution.

3.2.4 Caltech 256 Version-2.0

Caltech 256 (Griffin, Holub, and Perona 2007) is one of the highly regarded

general objects datasets that is considered to be a significant improvement over its

predecessor - the Caltech 101 dataset, in terms of larger category sizes, new and

larger clutter categories, and overall increased difficulty. This dataset consists of

30,607 images in 257 object categories. Samples of the dataset can be seen in Figure

3.7, and its distribution in Figure 3.8.

Figure 3.7. Caltech 256 dataset.

27

Figure 3.8. Caltech 256 dataset distribution.

The distribution of images per object category are:

(1) Mean: 119.0933

(2) Median: 100

(3) Minimum: 80

(4) Maximum: 827

Since the dataset was not distributed into the training dataset and validation dataset,

a split in 80:20 ratio of the whole dataset was made for training and validation. This

gave 24,485 images for training and 6,122 images for validation distributed among 257

classes while also maintaining their original distribution ratio among different classes

in both training dataset and validation dataset. Since the size of most of the class

was small, data augmentation was performed here with a set of transformations, the

same as described in Subsection 3.2.3.

3.2.5 Stanford Cars Version-2.0

The Stanford cars dataset (Krause, Stark, Deng, and Fei-Fei 2013) contains

large image sets of different car models from different years. The dataset has a total

of 16,185 color images of cars in 196 categories. The data has already been split to

8,144 training images and 8,041 testing images, thus giving a balanced 50-50 split for

each class. Classes are typically at the level of Make, Model, Year, e.g. 2012 Tesla

Model S or 2012 BMW M3 coupe. Samples of the dataset can be seen in Figure 3.9,

and its distribution in Figure 3.10.

28

Figure 3.9. Stanford cars dataset.

Figure 3.10. Stanford cars dataset distribution.

The distribution of images per object category for training dataset are:

(1) Mean: 41.7641

(2) Median: 42

(3) Minimum: 24

(4) Maximum: 77

The distribution of images per object category for validation dataset are:

(1) Mean: 41.2358

(2) Median: 42

(3) Minimum: 24

(4) Maximum: 75

29

To tackle the small size of this training dataset and skewness in distribution, data

augmentation was employed on this dataset as well. The set of image transformations

applied was same as that for Subsection 3.2.3 with one additional transformation,

converting the RGB image to grayscale.

3.2.6 Tiny Imagenet

The Tiny Imagenet dataset is a subset of widely popular Imagenet dataset (Rus-

sakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein,

Berg, and Fei-Fei 2015). It contains a diverse range of 64×64 object images to be

considered as a valid recognition problem. There are 100,000 training images and

10,000 test images distributed over 200 object categories evenly, giving 500 training

images and 50 testing images per class. Samples of the dataset can be seen in Figure

3.11, and its distribution in Figure 3.12.

Figure 3.11. Tiny Imagenet dataset.

30

Figure 3.12. Tiny Imagenet dataset distribution.

Since the size of training dataset is relatively small, to make the model more

robust data augmentation was applied to the training images. The set of transforma-

tions varied slightly compared to the previously employed ones in Subsection 3.2.3.

(1) Horizontal flip - Randomly flip the image horizontally

(2) Width shift - Randomly shift the image x pixels horizontally, where x ∈ [0, w]

and w = 0.2∗fraction of total width of the image

(3) Height shift - Randomly shift the image x pixels vertically, where x ∈ [0, h]

and h = 0.2∗fraction of total height of the image

(4) Saturation - Randomly saturate the image with s factor, where s ∈ [0.5, 0.2]

3.3 Architectures

Depending upon the nature of the dataset like number of classes, nature of

images, etc. different architectures of CNN were employed. The choice of all CNN

architecture was made upon some preliminary experiments and thus it was ensured

that our model did not underfit or overfit the data. While these models certainly do

not outperform state-of-the-art, they do represent the basic traditional CNN structure

which give good performance without the need for any external features or immense

change in the basic structure.

3.3.1 Cats vs Dogs

The CNN model designed for this dataset consisted of 3 convolutional layers,

where each convolutional layer was followed by batch normalization, activation, max

31

Figure 3.13. CNN architecture for Cats vs Dogs dataset.

pooling and dropout in the same order. The network was expanded with a densely

connected neural network followed by batch normalization, its activation and dropout

and then the final densely connected neural network. The CNN architecture can be

seen in Figure 3.13.

All the convolutional layers were operated with 3 × 3 kernel filter size, (2, 2)

stride and valid padding, except the receptive convolutional layer, which has different

kernel size depending upon the experiment and (1, 1) stride. Bias was also each added

on all convolutional layers and densely connected neural networks. All biases were

initialized to zero, while all kernel filters were initialized with Glorot uniform sampling

as mentioned in Subsection 3.1.1, except for the receptive layer where the kernel filters

were initialized with either Glorot uniform sampling or a Gabor filter depending upon

the experiment. The number of sets of kernel filters in each convolutional layer was

in order of 32, 64 and 128, while the number of units in densely connected neural

networks was in order of 256 and 2.

Batch normalization helps to normalize the inputs by maintaining the mean

close to 0 and standard deviation close to 1. A batch of size 32 was used for the train-

ing process. The batch normalization (Ioffe and Szegedy 2015) works in different ways

during training and inference (prediction/validation). When training, normalization

is done over the given size of a batch by calculating the mean and standard deviation

32

of the current batch. For each channel the batch input is normalized as:

normalization(batch) = γ ∗ batch− µbatch√
σbatch + ε

+ β (3.3)

where ε = small constant (0.001), γ = learned scaling factor (1) and β = learned

offset factor (0).

During validation, since there is only batch size 1 involved, the normalization is

performed using a moving average of the mean and standard deviation of the batches

it has seen during training.

normalization (batch) = γ ∗ batch− µmoving√
σmoving + ε

+ β (3.4)

µmoving = µmoving ∗momentum+ µbatch ∗ (1−momentum) (3.5)

σmoving = σmoving ∗momentum+ σbatch ∗ (1−momentum) (3.6)

µmoving and σmoving is updated during training, thus normalizing the inference inputs

after having been trained on data that has similar statistics as that of the inference

data.

Except for the last densely connected neural network, the activation layer has

utilized ReLU as its activation function. Rectified Linear Unit (ReLU) function is

defined as:

f(x) = max(0, x) (3.7)

Softmax has been used for the activation of the last layer of the classification model

because it gives the result as probability distribution. Softmax is defined as:

σ(~z)i =
ezi∑K
j=1 e

zj
(3.8)

33

where ~z = input vector to the softmax function, zi = element of the input vector, K

= number of classes in the multi-class classifier.

Max pooling downsamples the input in regard to its spatial dimensions (height

and width) by taking the maximum value over the certain input window defined by

pool size and shifted along each dimension by specific stride. Both pool size and

stride are set at (2, 2) for all max pool, with padding being valid.

All the dropout layer randomly set its input units to 0 with a frequency of

specified rate during each step in training process. All the inputs not set to 0 are

scaled up by 1
1−rate so that the sum over all inputs does not change. Since this dropout

is only applicable during training process it helps in preventing over-fitting. The rate

is fixed at 0.5 for all dropout layers.

3.3.2 CIFAR-10

The CNN model designed for this dataset is similar to that of Cats vs Dogs.

All the parameters and structure is the same with only variation being in the hidden

densely connected neural network as it is configured to have 512 units and dropout

being set to a rate of 0.25 as show in Figure 3.14.

Figure 3.14. CNN architecture for CIFAR-10 dataset.

34

Figure 3.15. CNN architecture for CIFAR-100 dataset.

3.3.3 CIFAR-100

Since the number of classes in CIFAR-100 is really large compared to the

previous datasets, a deeper model of CNN was employed. The architecture resembles

that of VGG-16, but with fewer filters and units. The architecture follow the sequence

of: two convolutional filters with 32 filters, two convolutional filters with 64 filters,

three convolutional filters with 128 filters, three convolutional filters with 256 filters,

two hidden densely connected neural networks with 512 units with dropout in between

them, and finally followed by an output densely connected neural network with 100

units as shown in Figure 3.15.

As before, each of the convolutional layers and hidden densely connected neural

networks is followed by batch normalization and activation. Max pooling and dropout

is added in between the transition from convolution filters with a certain number of

filters to another with a different number of filters. Each of the convolutional layers

has a stride of (1,1) and the same padding, and the dropout rate is 0.1 for all dropout

layers. Besides these, all the remaining parameters are same as the CNN model for

Cats vs Dogs describe in Subsection 3.3.1.

35

Figure 3.16. CNN architecture for caltech 256 dataset.

3.3.4 Caltech 256

The CNN model for Caltech 256 dataset is same as that for CIFAR-100 with

a minor variation being in the number of units in the output layer. It is set to 257

units since there are 257 different classes as shown in Figure 3.16.

3.3.5 Stanford Cars

The CNN model for the Stanford cars dataset is the same as that for CIFAR-

100 described in Subsection 3.3.3 with a minor variation being in the number of units

in the output layer. It is set to 195 units since there are 195 different classes as shown

in Figure 3.17.

Figure 3.17. CNN architecture for stanford cars dataset.

36

Figure 3.18. CNN architecture for Tiny Imagenet dataset.

3.3.6 Tiny Imagenet

The CNN model for Tiny Imagenet is also similar to that of CIFAR-100 de-

scribed in Subsection 3.3.3 but with slight variation. The number of sets of kernel

filters on each convolutional layer has been doubled and the dropout has been removed

from convolutional layers. The number of units in densely connected neural networks

has been set to 2048 with dropouts at rate 0.1 in between them. The number of units

in output densely connected neural networks is set to 200 units since there are 200

different classes. Besides these, the remaining architecture and its parameters are

same. The CNN architecture can be seen in Figure 3.18.

3.4 Loss Functions

Loss function is integral because it defines how much the model is currently

off in terms of inference/prediction from the actual one and based on that the model

is able to learn to improve upon that certain loss. Since there are many ways to

define loss, the training model needs an optimal definition of loss and this can change

depending upon the nature of dataset. There are two types of loss:

(1) Training loss - Loss calculated over training dataset

(2) Validation loss - Loss calculated over validation dataset

37

While minimum loss in both scenario is desired, it is important to focus on validation

loss because at the end the learned model will be working on unseen data in a real-

world scenario just like the validation data. Because of this need, all the models are

being trained with an emphasis on the minimization of the validation loss.

3.4.1 Cats vs Dogs

For calculating the validation loss for this model, categorical cross-entropy

function was chosen to be calculated as a sum over the batch of training data. Cat-

egorical cross-entropy function is simply cross-entropy function but it expects the

class labels to be in one-hot encoding representation. Categorical cross-entropy loss

is calculated by computing the following sum:

Cross-Entropy loss = −
N∑
i=1

yi.ŷi (3.9)

where ŷi is the i-th scalar value in the model output, yi is the corresponding target

value and N is the number of scalar values in the model output.

Adaptive Moment Estimation (Kingma and Ba 2017), often referred to as

Adam, has been chosen as the optimizer for the model based on the validation loss.

Adam optimization is a stochastic gradient descent method that is based on the

adaptive estimation of first-order and second-order moments of gradient that adapts

the learning rate for each weight of the neural network. Adam is generally preferred

because it combines the heuristics of both Momentum and RMSProp. Adam keeps

exponentially decaying the average of past gradients mt, similar to momentum. For

each weight parameter wt, the decaying averages are calculated as follows:

mt = β1mt−1 + (1− β1)gt (3.10)

38

where mt is the estimate of the first moment (mean) of the gradients along wj, gt

is the gradient of the loss function on current mini batch at time t and β1 is the

exponential decay rate for the first moment estimates.

vt = β2vt−1 + (1− β2)g2t (3.11)

where mt is the estimate of the second moment (uncentered variance) of the gradients

along wj, gt is the gradient of the loss function on current mini batch at time t and

β2 is the exponential decay rate for the second moment estimates.

wt+1 = wt − η
mt√
vt + ε

gt (3.12)

where wt+1 is the new weight parameter, ε is the learning rate and ε is very small

number to prevent any division by zero.

As suggested by Kingma and Ba (2017), β1 is kept constant at 0.9, β2 is

kept constant at 0.999 and ε at 1e−7. The learning rate for Adam is set at 0.001

initially. This learning rate is reduced by a factor of 0.5 whenever the validation loss

stopped improving for 10 consecutive epochs. The minimum threshold for measuring

the new optimum is set at 0.0001. The model is trained until the validation loss

stops improving, and this early stopping is executed when the validation loss stops

improving at all for 35 consecutive epochs.

3.4.2 CIFAR-10

For CIFAR-10 dataset, same metrics were used as described in Subsection

3.4.1.

3.4.3 CIFAR-100

For CIFAR-100 dataset, same metrics were used as described in Subsection

3.4.1.

39

3.4.4 Caltech 256

For Caltech 256 dataset, same metrics were used as described in Subsection

3.4.1.

3.4.5 Stanford Cars

For Stanford cars dataset, same metrics were used as described in Subsection

3.4.1.

3.4.6 Tiny Imagenet

For Tiny Imagenet, there is a slight variation in the learning procedure. Al-

though the loss function was the same — categorical cross-entropy — label smoothing

was applied to label values. Label smoothing helps to relax the confidence on label

values. For example, when a label is smoothed by s, s
number of classes

is assigned to

non-target labels and (1 − s) + s
number of classes

for target labels. The value of s is set

at 0.1.

Beside this, there is also change in the optimizer. Stochastic Gradient Descent

(SGD) with Nesterov momentum (Sutskever, Martens, Dahl, and Hinton 2013) has

been used as the optimizer for the learning procedure. The Stochastic Gradient

Descent with Nesterov momentum updates the weight as follows:

vt+1 = µ ∗ vt − η ∗ gt (3.13)

where vt is the velocity, gt is the gradient of the loss function on the current mini

batch at time t, µ is the momentum and η is the learning rate

wt+1 = wt + µ ∗ vt+1 − η ∗ gt (3.14)

where wt+1 is the new updated weight.

40

Momentum accelerates the gradient descent in the relevant direction and

dampens oscillations. Velocity and momentum control how fast the velocity can

change and how much the local gradient influences long term movement. The mo-

mentum is set at 0.9 and the learning rate is set at 0.01. The validation loss is also

monitored and if the improvement is not over the threshold of 0.0001 for three consec-

utive epochs the learning rate is reduced by a factor of 0.2. Similarly, if the validation

loss does not improve at all for 15 epochs then early stopping is performed.

3.5 Success Metrics

The experiments were evaluated based on the metrics from the validation. As

aforementioned, every dataset has been divided into training datasets and validation

datasets. If there was not an existing split in such categories, then an 80-20 split was

made while maintaining the distribution of each class. The model was continuously

trained and validated on their respective dataset for each epoch until early stopping

was executed based on the parameters mentioned above in Subsection 3.4.1. The

main success metrics based on validation are:

(1) Accuracy

(2) AUC

(3) Loss

(4) Epoch

which are discussed next.

3.5.1 Accuracy

Accuracy calculates how often our trained model predictions match the target

one-hot encoding label. The argmax of logits of classes and probabilites are same,

so the logits of the classes can be compared with the one-hot encoding label. The

41

categorical accuracy is computed as:

Categorical accuracy =
Number of correct predictions

Total number of predictions
(3.15)

In terms of positives and negatives, it can be also defined as:

Categorical accuracy =
TP + TN

TP + TN + FP + FN
(3.16)

where TP = True Positive, TN = True Negative, FP = False Positive, and FN =

False Negative.

True Positive is the total number of outcomes where the model correctly pre-

dicts the positive class, and similarly True Negative is the total number of outcomes

where the model correctly predicts the negative class. False Positive defines the

total number of outcomes where the model incorrectly predicts the positive class,

and similarly False Negative defines the total number of outcomes where the model

incorrectly predicts the negative class. The higher the accuracy, the better the clas-

sification model. It is expected that Gabor initialized CNNs will perform better in

terms of accuracy than the classic/traditional CNNs.

3.5.2 AUC

ROC (Receiver operating characteristic) curve is a graph showing the perfor-

mance of a classification model at all classification thresholds. ROC curve plots True

Positive Rate (TPR, recall) vs False Positive Rate (FPR).

True Positive Rate =
True Positive

True Positive + False Negative
(3.17)

False Positive Rate =
False Positive

False Positive + True Negative
(3.18)

42

The Area under the curve (AUC) of the ROC curve provides an aggregate

measure of performance across all possible classification thresholds. AUC gives the

measure of ability of the model to distinguish between classes. Classes approximate

AUCs using an approximation of an integral by a finite sum called Riemann sum.

During metric accumulation, predictions are accumulated within predefined buckets

by value. The AUC is then computed by interpolating per-bucket averages. These

buckets define the evaluated operational points. True Positive, True Negative, False

Positive and False Negative are then used to compute AUC. Since AUC can be com-

puted at different epochs, the AUC at maximum accuracy epoch has been chosen

for analysis. The higher the AUC, the better the classification model. It is expected

that Gabor initialized CNNs will give better AUC in comparison to classic/traditional

CNNs.

3.5.3 Loss

Loss is calculated between prediction and target labels using categorical cross-

entropy and should be as low as as possible. Classification models tend to minimize

the validation loss well, but it is expected that Gabor initialized CNNs will give even

lower loss in comparison to classic/traditional CNNs.

3.5.4 Epoch

There is no defined number of epoch constraints imposed upon the learning

model, so it can learn as long as it reaches the saturation point defined by the early

stopping. Due to the lack of this constraint, various models can learn for a different

number of epochs till they reach the point of convergence in terms of validation

loss. The number of epochs the model took cannot be directly compared in between

the Gabor initialized models and the traditional models because it could be true

that one of the models was learning more epochs and was able to minimize the loss

even more. Since the original hypothesis was to measure the impact of Gabor filters

43

on traditional CNNs, Gabor initialized CNNs could be constrained to the number

of epochs defined by different metrics — particularly maximum validation accuracy

and minimum validation loss — of traditional CNNs. Based on the these types of

experiments, different metrics including number of epochs could give better insight

of how well Gabor initialized models have performed.

3.5.4.1 Gabor initialized CNN constrained to the epoch of maximum accu-

racy of traditional CNN. The epoch at which the traditional CNN reaches its maxi-

mum accuracy can be taken and set as a hard limit for the Gabor initialized CNNs

in regard to the maximum number of epochs that model can be trained. It is done

by finding the epoch at which the traditional CNN obtained its maximum accuracy,

say epoch X. The Gabor initialized CNN is now allowed to train until epoch X and

based on success metrics like accuracy, AUC and epoch can be compared. Maximum

accuracy and higher AUC are both desirable for the Gabor initialized CNN, as well

as the maximum accuracy epoch being lower when compared to its counterpart —

traditional CNN.

3.5.4.2 Gabor initialized CNN constrained to the epoch of minimum loss of

traditional CNN. The epoch at which the traditional CNN reached its minimum loss

can be taken and set as a hard limit for the Gabor initialized CNNs in regard to

maximum number of epochs in which the model could be trained. Similar to Section

3.5.4.1 , different success metrics like loss and epoch could be compared. It is desired

that both the minimum loss and minimum loss epoch of the Gabor initialized CNN

be lower when compared to its counterpart - traditional CNN.

3.6 Experiments

There are different datasets differing in terms of nature, distribution, size,

etc. and with regard to this different CNN models have been employed. The CNN

models are not necessarily the perfect, ground-breaking models but they do represent

44

the classic CNN architecture which gave decent performance. A sufficient number

of preliminary experiments were performed and the CNN architecture was refined

iteratively. In order to have a holistic view of how Gabor filters affected CNN, different

types of experiments were conducted.

3.6.1 Multiple Experiments with Same Gabor Size and Same Image Size

In order to be sure of the effect of Gabor filters on CNN, 30 different ex-

periments were performed on the same dataset - 10 experiments for each type of

initialization method described in Section 3.1. Gabor size was fixed at 15 × 15 be-

cause initial experiments showed this size to be better. Since there were different

sizes of images on the original dataset, they were all resized to a specific size.

(1) Cats vs Dogs - 256× 256

(2) CIFAR-10 - 128× 128

(3) CIFAR-100 - 128× 128

(4) Caltech 256 - 128× 128

(5) Stanford cars - 128× 128

(6) Tiny Imagenet - 128× 128

A larger image size was chosen because CNN tends to perform better with larger im-

ages and Gabor filters tends to work better with larger images when compared with

a smaller ones. Sizes beyonds 15 × 15 were not explored since it was computation-

ally expensive. Since there were two different types of Gabor initialization methods,

success metrics were calculated with respect to traditional CNNs for each case.

3.6.2 Rigid/Static Gabor Filters vs Trainable Gabor Filters

The Gabor filter itself is a great feature extractor, but CNN could make it

better. In order to explore this hypothesis, experiments were designed to see how

CNN did when it was allowed to change the Gabor filters compared to when the

Gabor filters were statically placed and not allowed to change. For each type of

45

dataset, 10 different experiments were performed again, but this time the receptive

layer of the Gabor initialized CNN was made rigid i.e. not allowing the Gabor filters

to change its structure.

3.6.3 Different Gabor Size

Gabor filters could have an effect on the performance of CNN based on the

filter’s varying sizes. To explore this, Gabor filter of sizes 3, 5, 7, 9, 11, 13 and

15 were chosen for the both types of Gabor initialization method, and experiments

were carried out with different datasets, where a success metric being calculated with

respect to traditional CNN’s random initialization method. Only odd-sized filters

were chosen as it maintains the symmetry when encoding the information of the

neighborhood during convolution.

This concludes the description of our experimental setup. In the next chapter,

we will present and discuss the results of all the experiments.

46

CHAPTER FOUR

Results and Discussion

4.1 Multiple Experiments With Same Gabor Size and Same Image Size

A total of 10 different experiments were performed on each of the datasets with

their respective CNN architecture and receptive convolutional layer kernel configura-

tion, which is comprised of random initialization, Gabor filter randomly assigned to

each channel and repeated Gabor filter on the three channels. It was made sure that

each experiment used same dataset for training and validation purposes with respect

to the kernel configuration.

4.1.1 Fully-trained Models

The presence of Gabor filters could push the Gabor configured models to learn

even more. With this in mind, there was no restriction imposed on the number of

epochs in which the model could be trained, with the only exception being the early

stopping, which could be triggered due to lack of improvement for a certain number of

epochs. On each experiment, the traditional (randomly initialized) CNN’s maximum

accuracy, AUC at maximum accuracy and minimum loss were directly compared with

those of the Gabor filter configured ones and evaluated as shown by Tables 4.1, 4.2

and 4.3 respectively.

Table 4.1 shows that on average Gabor configured CNN tended to perform

better than the traditional CNN in terms of accuracy. This can be particularly seen

in the Cats vs dogs, CIFAR-10 and Stanford cars dataset. The low standard deviation

on Cats vs dogs and CIFAR-10 dataset shows that Gabor configured models tend to

give better and more consistent performance in terms of accuracy when the dataset is

not complex. Additionally, it can be noticed that generally the repeated Gabor con-

figuration performs slightly better than the random configuration, but this is not the

47

Table 4.1. Improvement in maximum accuracy of Gabor configured CNN with
respect to traditional CNN

Dataset
Base maximum accuracy Random Gabor filter Repeated Gabor filter
Mean Stdev Mean Stdev Mean Stdev

Cats vs Dogs 0.8839 0.004 +0.0233 0.007 +0.0263 0.006
CIFAR-10 0.8024 0.004 +0.0205 0.004 +0.0213 0.005
CIFAR-100 0.7132 0.003 +0.0065 0.005 +0.0074 0.005
Caltech 256 0.5085 0.007 +0.0147 0.009 +0.0188 0.011
Stanford cars 0.2326 0.070 +0.1294 0.072 +0.1625 0.072
Tiny Imagenet 0.5175 0.004 +0.0133 0.003 +0.0003 0.007
Average 0.6097 0.015 +0.0346 0.017 +0.0394 0.018

Table 4.2. Improvement in AUC at maximum accuracy of Gabor configured CNN
with respect to traditional CNN

Dataset
Base AUC Random Gabor filter Repeated Gabor filter

Mean Stdev Mean Stdev Mean Stdev
Cats vs Dogs 0.9515 0.003 +0.0136 0.004 +0.0169 0.004
CIFAR-10 0.9719 0.001 +0.0031 0.001 +0.0025 0.001
CIFAR-100 0.9621 0.002 +0.0013 0.002 +0.0015 0.002
Caltech 256 0.8885 0.004 +0.0076 0.005 +0.0040 0.005
Stanford cars 0.8077 0.026 +0.0507 0.021 +0.0626 0.025
Tiny Imagenet 0.9370 0.003 +0.0024 0.004 -0.0012 0.007
Average 0.9198 0.006 +0.0131 0.006 +0.0144 0.007

case when dataset complexity increases. In random Gabor filter configuration, there

are multiple random Gabor filters spread out among the kernel set with each kernel

filter corresponding to different channels of image. This increases the probability of

the presence of a filter that is capable of extracting valuable features from the image.

But the probability of such a filter is reduced in case of repeated Gabor filter configu-

ration as a specific Gabor filter is assigned for all kernel filters within that set, i.e. the

same Gabor filter will correspond to all three channels of image. Datasets like Cats

vs dogs and CIFAR-10 are not that complex when compared to other multi-class

datasets, thus few Gabor filters are quite capable of extracting necessary features.

On these datasets, the repeated Gabor filter configuration performed better since the

same Gabor filter will be used to extract information from all channels and thus giving

48

Table 4.3. Improvement in minimum loss of Gabor configured CNN with respect to
traditional CNN

Dataset
Base minimum loss Random Gabor filter Repeated Gabor filter
Mean Stdev Mean Stdev Mean Stdev

Cats vs Dogs 0.2960 0.012 -0.0437 0.017 -0.0562 0.012
CIFAR-10 0.6555 0.013 -0.0544 0.015 -0.0570 0.017
CIFAR-100 1.1823 0.020 -0.0227 0.018 -0.0296 0.020
Caltech 256 2.6428 0.067 -0.1041 0.078 -0.1030 0.065
Stanford cars 4.1857 0.356 -0.7812 0.291 -1.0398 0.360
Tiny Imagenet 2.7390 0.014 -0.0528 0.024 -0.0037 0.027

similar texture segmentation analysis for the succeeding layers to build upon. But,

in case of random Gabor filter configuration the texture segmentation information

varies between the channels, thus requiring some CNN adjustment.

When analyzing the kernel filters in receptive layer of fully trained traditional

CNN, it was seen that with simple datasets like Cats vs Dogs the trained kernel filters

tended to resemble the Gabor filters as shown by Figure 4.1a, which was not the case

with complex datasets as shown by Figure 4.1b. This can explain the higher gain in

performance on simpler datasets with a Gabor initialized model. The kernel filters of

trained CNNs on complex datasets resemble with each other a lot, and they seem to be

developing a form. It can be hypothesized that they were not able to train the kernel

filters in the receptive layer to full capacity because the early stopping triggered and

did not let the model train for a long enough period of time as desired. Upon closer

analysis of the kernel filters in Figure 4.1a, it can be seen that the trained kernel filters

corresponding to each channel of the image are similar, as seen in the kernel filters

in the bounded red box which belong to the same set of kernel filters. While these

kernel filters are not exactly the same, they seem to be extracting similar features from

each channel, which explains why the repeated Gabor filter configuration performed

slightly better than the random Gabor filter configuration.

Table 4.2 and 4.3 show the analysis of AUC at maximum accuracy and min-

imum loss and show similar analysis as that of the analysis of maximum accuracy

49

(a) Kernel filters in receptive layer of fully trained traditional CNN on Cats vs Dogs dataset.

(b) Kernel filters in receptive layer of fully trained traditional CNN on CIFAR-100 dataset.

Figure 4.1. Kernel filters in receptive layer of fully trained traditional CNN, where
three consecutive filters belong to same kernel set

50

to Table 4.1. They both show that on average Gabor configured models tend to

have higher AUC and lower minimum loss compared to that of traditional CNN, and

that the repeated Gabor filter configuration has slightly better performance than the

random Gabor filter configuration provided that the dataset is simple.

4.1.2 Gabor Initialized CNN Constrained to Maximum Accuracy Epoch

The analysis in Subsection 4.1.1 showed that the presence of Gabor filters

allowed the CNN models to increase learning within limitations, depending upon the

nature of the dataset. While this is desirable, it certainly leads to the question of

how will the Gabor configuration models perform when their training periods are

constrained to a certain defined number of epochs. With regard to that, the epoch at

which the traditional CNN obtained its maximum accuracy during each experiment

was taken, and it was defined as the number of epochs the Gabor configured model

was allowed to train. On each experiment, the maximum accuracy, AUC at maximum

accuracy and epoch at which the model obtained its maximum accuracy metrics of

the traditional CNN were compared with that of Gabor configured models as shown

by Tables 4.4, 4.5 and 4.6 respectively.

Table 4.4 and 4.5 show considerable improvement in the accuracy and AUC

of the model even when the models are restricted to only a certain number of epochs

Table 4.4. Improvement in maximum accuracy of epoch-constrained Gabor
initialized CNN with respect to traditional CNN when training period constrained

to maximum accuracy epoch of traditional CNN

Dataset
Base maximum accuracy Random Gabor filter Repeated Gabor filter
Mean Stdev Mean Stdev Mean Stdev

Cats vs Dogs 0.8839 0.004 +0.0212 0.007 +0.0253 0.006
CIFAR-10 0.8024 0.004 +0.0197 0.003 +0.0212 0.005
CIFAR-100 0.7132 0.003 +0.0054 0.005 +0.0053 0.005
Caltech 256 0.5085 0.007 +0.0131 0.008 +0.0163 0.010
Stanford cars 0.2326 0.070 +0.1200 0.065 +0.1576 0.068
Tiny Imagenet 0.5175 0.004 +0.0128 0.003 -0.0008 0.007
Average 0.6097 0.015 +0.0320 0.015 +0.0375 0.017

51

Table 4.5. Improvement in AUC at maximum accuracy of epoch-constrained Gabor
initialized CNN with respect to traditional CNN when training period constrained

to maximum accuracy epoch of traditional CNN

Dataset
Base AUC Random Gabor filter Repeated Gabor filter

Mean Stdev Mean Stdev Mean Stdev
Cats vs Dogs 0.9515 0.003 +0.0129 0.004 +0.0164 0.004
CIFAR-10 0.9719 0.001 +0.0033 0.001 +0.0026 0.001
CIFAR-100 0.9621 0.002 +0.0013 0.002 +0.0022 0.002
Caltech 256 0.8885 0.004 +0.0086 0.004 +0.0062 0.005
Stanford cars 0.8077 0.026 +0.0552 0.022 +0.0645 0.026
Tiny Imagenet 0.9370 0.003 +0.0023 0.004 -0.0010 0.003
Average 0.9198 0.006 +0.0134 0.006 +0.0151 0.007

Table 4.6. Improvement in maximum accuracy epoch of epoch-constrained Gabor
initialized CNN with respect to traditional CNN when training period constrained

to maximum accuracy epoch of traditional CNN

Dataset
Base epoch Random Gabor filter Repeated Gabor filter

Mean Stdev Mean Stdev Mean Stdev
Cats vs Dogs 88.4 13.8 -5.2 5.4 -17.6 15.2
CIFAR-10 67.9 5.6 -8.9 6.1 -6.6 3.6
CIFAR-100 99.3 6.4 -4.3 2.9 -6.5 6.2
Caltech 256 73.3 5.4 -4.2 4.4 -5.7 4.0
Stanford cars 103.6 13.2 -5.7 5.1 -5.9 5.4
Tiny Imagenet 37.3 6.6 -6.1 5.7 -4.7 5.7

to train. Furthermore, Table 4.6 shows that the Gabor configured model is generally

able to achieve that maximum accuracy in fewer epochs compared to traditional

CNN. While the standard deviation in this epoch metric is not small, the presence of

improvement in all metrics — accuracy, AUC and epoch till maximum accuracy —

shows that Gabor configured models performs better and generally faster than the

traditional CNN. The analysis in these tables also echoes the same sentiment that the

repeated Gabor configuration tends to do better when the dataset is not complex.

52

4.1.3 Gabor Initialized CNN Constrained to Minimum Loss Epoch

Similar to Subsection 4.1.2, the Gabor configured models were trained only

for a defined number of epochs, where this defined epoch was the epoch at which

the traditional CNN obtained its minimum loss. On each experiment the metrics

— minimum loss and the epoch at which the model obtained its minimum loss —

were compared among the traditional CNN and Gabor configured model as shown by

Tables 4.7 and 4.8 respectively. Table 4.7 shows that even when constrained to only

a fixed number of epochs the Gabor configured model is able to decrease the loss to

a greater extent, and the epoch metric in Table 4.8 shows that it is generally able to

reach its minimum loss faster than the traditional CNN. Even with the presence of a

slightly higher standard deviation in some cases, the Gabor configured model is able

Table 4.7. Improvement in minimum loss of Gabor initialized CNN with respect to
traditional CNN when training period constrained to minimum loss epoch of

traditional CNN

Dataset
Base minimum loss Random Gabor filter Repeated Gabor filter
Mean Stdev Mean Stdev Mean Stdev

Cats vs Dogs 0.2960 0.012 -0.0406 0.015 -0.0553 0.013
CIFAR-10 0.6555 0.013 -0.0517 0.015 -0.0567 0.013
CIFAR-100 1.1823 0.020 -0.0150 0.038 -0.0192 0.029
Caltech 256 2.6428 0.067 -0.0908 0.038 -0.0192 0.029
Stanford cars 4.1857 0.356 -0.6513 0.231 -0.8913 0.264
Tiny Imagenet 2.7390 0.014 -0.0522 0.024 -0.0027 0.028

Table 4.8. Improvement in minimum loss epoch of Gabor initialized CNN with
respect to traditional CNN when training period constrained to minimum loss epoch

of traditional CNN

Dataset
Base epoch Random Gabor filter Repeated Gabor filter

Mean Stdev Mean Stdev Mean Stdev
Cats vs Dogs 70.6 13.5 -7 5.4 -14 9.8
CIFAR-10 40.1 5.5 -8.6 8.1 -10 7.4
CIFAR-100 70.2 6.5 -6.2 3.3 -8.8 7.7
Caltech 256 42.1 5.1 -3.5 2.7 -5.2 3.5
Stanford cars 74.0 14.9 -5.1 4.4 -6.4 3.9
Tiny Imagenet 32.2 4.6 -5.2 5.6 -5.9 6.1

53

to perform better. Similar to previous analyses, the metrics in these tables shows

that the repeated Gabor configured model is generally better than random Gabor

configured model, provided that the dataset is not that complex.

4.2 Rigid/Static Gabor Filters vs Trainable Gabor Filters

While it can be seen from the analysis in Section 4.1 that the presence of Gabor

filters definitely helps the CNN to perform better, it begs the question of whether the

Gabor alone is sufficient for boosting the performance or if CNN plays a vital role in

its correction. To figure out how the Gabor filters alone performed, in each of the

CNN architecture the Gabor filters were made rigid/static i.e. in the a sense that the

CNN was not allowed to alter the Gabor filters. With a rigid/frozen configuration, all

the same type of experiments as in Section 4.1 were performed the same number of

times. It is to be noted that while the Gabor filters were frozen the traditional CNN

was not frozen in any of the cases. For the same reasoning as in Subsection 4.1.1,

the presence of Gabor filters could push the Gabor configured models to learn even

more. Therefore there was no restriction imposed upon the number of epochs the

model was allowed to train, with early stopping being the only exception. On each

experiment, the traditional CNN’s maximum accuracy, AUC at maximum accuracy

and minimum loss were directly compared with those of the Gabor filter configured

ones and evaluated as shown by Tables 4.9, 4.10 and 4.11.

Table 4.9. Improvement in maximum accuracy of Gabor initialized CNN (frozen
receptive convolutional layer variant) with respect to traditional CNN

Dataset
Base maximum accuracy Random Gabor filter Repeated Gabor filter
Mean Stdev Mean Stdev Mean Stdev

Cats vs Dogs 0.8839 0.004 +0.0029 0.009 +0.0183 0.005
CIFAR-10 0.8024 0.004 +0.0086 0.005 -0.0075 0.007
CIFAR-100 0.7132 0.003 +0.0022 0.004 -0.0559 0.007
Caltech 256 0.5085 0.007 +0.0079 0.011 +0.0012 0.012
Stanford cars 0.2326 0.070 +0.0924 0.096 +0.1662 0.086
Tiny Imagenet 0.5175 0.004 +0.0045 0.009 -0.0391 0.004
Average 0.6097 0.015 +0.0197 0.022 +0.0139 0.020

54

Table 4.10. Improvement in AUC of Gabor initialized CNN (frozen receptive
convolutional layer variant) with respect to traditional CNN

Dataset
Base AUC Random Gabor filter Repeated Gabor filter

Mean Stdev Mean Stdev Mean Stdev
Cats vs Dogs 0.9515 0.003 +0.0020 0.006 +0.0133 0.002
CIFAR-10 0.9719 0.001 +0.0012 0.001 -0.0017 0.002
CIFAR-100 0.9621 0.002 -0.0003 0.003 -0.0095 0.002
Caltech 256 0.8885 0.004 +0.0052 0.007 +0.0048 0.006
Stanford cars 0.8077 0.026 +0.0408 0.035 +0.0684 0.032
Tiny Imagenet 0.9370 0.003 +0.0012 0.004 -0.0081 0.003
Average 0.9198 0.006 +0.0083 0.009 +0.0112 0.008

Table 4.11. Improvement in minimum loss of Gabor initialized CNN (frozen
receptive convolutional layer variant) with respect to traditional CNN

Dataset
Base minimum loss Random Gabor filter Repeated Gabor filter
Mean Stdev Mean Stdev Mean Stdev

Cats vs Dogs 0.2960 0.012 -0.0100 0.018 -0.0475 0.010
CIFAR-10 0.6555 0.013 -0.0352 0.019 +0.0086 0.022
CIFAR-100 1.1823 0.020 -0.0099 0.035 +0.2437 0.037
Caltech 256 2.6428 0.067 -0.0794 0.091 -0.0466 0.068
Stanford cars 4.1857 0.356 -0.6217 0.502 -1.0837 0.487
Tiny Imagenet 2.7390 0.014 -0.240 0.027 +0.1628 0.019

As can be seen in Tables 4.9, 4.10 and 4.11, while random Gabor configuration

was able to provide some improvement in the performance, the same cannot be said

for the repeated Gabor configuration. Repeated Gabor configuration was able to do

better in simple datasets like Cats vs Dogs, but as the complexity of dataset increased,

the Gabor configuration got worse. This can be attributed to the fact that repeated

Gabor configuration will have an even lower probability of having a particular Gabor

filter which could extract the desired feature. When compared with the results in

Table 4.1, 4.2 and 4.3 respectively, it is evident that both types of Gabor configured

models performed fairly worse in terms of maximum accuracy, AUC at maximum

accuracy and minimum loss. Thus, it provides some substantial evidence that, while

a Gabor filter is certainly great at feature extraction unless carefully designed and

55

engineered to work with that specific dataset, it is certainly beneficial to let the CNN

do the work and correct the filters as necessary.

4.3 Effect of Different Kernel Size and Image Size

Filters can have different sizes, as shown in Figure 4.2. The size of the image

and kernel size could definitely impact the performance of the CNN and even the

Gabor filter. While the initial experiments showed that comparatively larger Gabor

filters performed well on large image sizes, it was needed to be seen on how it fared

on different image sizes and different kernel sizes. With this question in mind, each

of the CNN architecture was trained in its respective dataset with varying image size

and kernel size. The maximum accuracy, AUC at maximum accuracy and minimum

loss of traditional CNN was noted and compared with the Gabor configured models.

All the models were allowed to train without any restriction on the number of epochs,

except the early stopping restriction.

(a) 5×5 Gabor filter.

(b) 15×15 Gabor filter.

Figure 4.2. Gabor filters with different size

56

4.3.1 Cats vs Dogs

Each experiment with the Cats vs Dogs dataset differed in terms of image size

and the kernel size for the receptive convolutional layer. Tables 4.12, 4.13 and 4.14

gives the analysis of improvement in maximum accuracy, AUC at maximum accuracy

and minimum loss of Gabor configured models when compared with traditional CNN

respectively.

After close inspection of Table 4.12, it can be seen that when the image size is

32×32 traditional CNN performed worse when the kernel size was increased linearly.

This makes sense because the image size is already small, and as the kernel size

increases, it starts to miss out on the details of some smaller features. But, as the

image size was gradually increased, the accuracy started to increase to a considerable

extent. The negative effect of linear increase in kernel size was also reduced to a

considerable extent.

It can also be noticed that as the image size increased the effect of the Gabor

filter came more into effect. With larger Gabor filters, there was more significant

improvement when compared to smaller Gabor filters. This can be explained by the

fact that on a small window size, the Gabor filter structure is not clear enough, and

Table 4.12. Improvement in maximum accuracy on Cats vs Dogs dataset with
different kernel size and image size

Image size Gabor configuration
Kernel size

3×3 5×5 7×7 9×9 11×11 13×13 15×15

32×32
Traditional CNN (Base) 0.8261 0.8303 0.8165 0.8143 0.8035 0.8037 0.7869
Random Gabor (∆) -0.0202 -0.0389 -0.0114 +0.0036 +0.0120 +0.0044 +0.0094
Repeated Gabor (∆) -0.0258 -0.0174 -0.0170 -0.0120 -0.0174 -0.0020 +0.0090

64×64
Traditional CNN (Base) 0.8015 0.8403 0.8381 0.8297 0.8425 0.8315 0.8279
Random Gabor (∆) -0.0168 +0.0038 +0.0100 +0.0132 +0.0022 +0.0128 +0.0058
Repeated Gabor (∆) +0.0126 -0.0070 +0.0204 +0.0162 +0.0044 +0.0116 +0.0180

128×128
Traditional CNN (Base) 0.8672 0.9026 0.8948 0.9022 0.8992 0.8804 0.8952
Random Gabor (∆) +0.0062 -0.0138 -0.0022 +0.0114 +0.0150 +0.0242 +0.0150
Repeated Gabor (∆) +0.0134 +0.0120 +0.0228 +0.0144 +0.0160 +0.0341 +0.0216

256×256
Traditional CNN (Base) 0.8932 0.8892 0.8926 0.8862 0.8924 0.8916 0.8870
Random Gabor (∆) -0.0170 -0.0058 -0.0078 +0.0076 +0.0156 +0.0214 +0.0142
Repeated Gabor (∆) -0.0214 +0.0120 +0.0142 +0.0264 +0.0136 +0.0170 +0.0240

57

Table 4.13. Improvement in AUC at maximum accuracy on Cats vs Dogs dataset
with different kernel size and image size

Image size Gabor configuration
Kernel size

3×3 5×5 7×7 9×9 11×11 13×13 15×15

32×32
Traditional CNN (Base) 0.9028 0.9092 0.8947 0.8946 0.8789 0.8809 0.8650
Random Gabor (∆) -0.0161 -0.0391 -0.0076 -0.0012 +0.0137 +0.0024 +0.0107
Repeated Gabor (∆) -0.0208 -0.0149 -0.0110 -0.0081 -0.0110 +0.0008 +0.0095

64×64
Traditional CNN (Base) 0.8900 0.9232 0.9213 0.9077 0.9214 0.9127 0.9097
Random Gabor (∆) -0.0179 +0.0027 +0.0053 +0.0103 +0.0022 +0.0113 +0.0081
Repeated Gabor (∆) +0.0090 -0.0066 +0.0127 +0.0146 +0.0037 +0.0116 +0.0139

128×128
Traditional CNN (Base) 0.9461 0.9690 0.9641 0.9670 0.9651 0.9557 0.9638
Random Gabor (∆) +0.0032 -0.0094 -0.0028 +0.0071 +0.0093 +0.0148 +0.0094
Repeated Gabor (∆) +0.0068 +0.0044 +0.0118 +0.0089 +0.0097 +0.0188 +0.0103

256×256
Traditional CNN (Base) 0.9586 0.9565 0.9602 0.9531 0.9570 0.9565 0.9541
Random Gabor (∆) -0.0099 -0.0016 -0.0056 +0.0072 +0.0086 +0.0139 +0.0087
Repeated Gabor (∆) -0.0129 +0.0054 +0.0086 +0.0178 +0.0085 +0.0121 +0.0141

Table 4.14. Improvement in minimum loss on Cats vs Dogs dataset with different
kernel size and image size

Image size Gabor configuration
Kernel size

3×3 5×5 7×7 9×9 11×11 13×13 15×15

32×32
Traditional CNN (Base) 0.7039 1.0208 1.3793 0.8991 0.8574 0.9765 1.0263
Random Gabor (∆) -0.0630 -0.3510 -0.7026 -0.2184 -0.1522 -0.1801 +0.1596
Repeated Gabor (∆) -0.0696 -0.3772 -0.6521 -0.2515 -0.1687 -0.1927 -0.1891

64×64
Traditional CNN (Base) 0.8884 0.9717 0.8448 0.9905 1.2597 1.3066 1.4466
Random Gabor (∆) -0.1744 -0.2768 -0.1251 -0.3048 -0.5674 -0.4398 -0.6611
Repeated Gabor (∆) -0.2145 -0.2895 -0.1689 -0.3397 -0.5842 -0.6421 -0.6685

128×128
Traditional CNN (Base) 1.0480 0.8813 1.1060 0.7639 0.8840 1.0305 1.3318
Random Gabor (∆) -0.3270 -0.0753 -0.3405 -0.0858 -0.1525 -0.3765 -0.5583
Repeated Gabor (∆) -0.4209 -0.2144 -0.4912 -0.2167 -0.2957 -0.3765 -0.7697

256×256
Traditional CNN (Base) 1.1261 0.6374 0.7055 0.7233 1.1426 0.8459 0.8025
Random Gabor (∆) -0.4575 -0.0646 -0.0882 -0.0916 -0.5824 -0.2015 -0.2225
Repeated Gabor (∆) -0.4516 -0.0561 +0.0252 -0.0221 -0.5944 -0.0720 -0.1276

because of this it could not fully extract desired features. Figure 4.2 shows that the

Gabor filter is able to obtain full structure with larger window size, thus its better

performance with larger sizes. But this does not mean that Gabor filter size is in

linear relationship with the performance of CNN or that an increase in the Gabor

filter size will always boost CNN’s performance. Rather, it can be clearly seen that

at some point as the Gabor filter increases in size, the gain in performance stagnates.

58

The analysis in Table 4.13 shows similar trend. On smaller image sizes, there

was significant decrease in the AUC when the kernel size was increased linearly, but

as the image size increased this was not the case. Also, larger Gabor filters tended to

perform better compared to smaller ones. The analysis of minimum loss in Table 4.14

does not clearly show the trend as expected, but it seems to follow the same trend

as seen on the 64 × 64 image size. As with increase in kernel size, the model does

not seem to get better. However, with Gabor filters the CNN tend to learn better

because even with higher minimum loss in traditional CNN, the Gabor configured

model tends to perform better than its counterpart by decreasing the minimum loss

even more.

4.3.2 CIFAR-10

Each experiment with the CIFAR-10 dataset differed in terms of image size

and the kernel size for the receptive convolutional layer. Tables 4.15, 4.16, and 4.17

gives the analysis of improvement in maximum accuracy, AUC at maximum accuracy,

and minimum loss of Gabor configured models when compared with traditional CNN

respectively. When analysing the result corresponding to 32×32 image size in Table

4.15, it can be seen that the CNN gets worse as the kernel size is increased, but on

increasing the size of the image, as in the case of 128× 128, the kernel size does not

Table 4.15. Improvement in maximum accuracy on CIFAR-10 dataset with different
kernel size and image size

Image size Gabor configuration
Kernel size

3×3 5×5 7×7 9×9 11×11 13×13 15×15

32×32
Traditional CNN (Base) 0.7818 0.7896 0.7929 0.7712 0.7713 0.7744 0.7654
Random Gabor (∆) -0.0049 -0.0090 -0.0122 +0.0143 +0.0124 +0.0089 +0.0101
Repeated Gabor (∆) -0.0037 -0.0028 -0.0087 +0.0283 +0.0164 +0.0234 +0.0155

64×64
Traditional CNN (Base) 0.7086 0.7257 0.7199 0.7207 0.7115 0.7203 0.7219
Random Gabor (∆) -0.0076 -0.0129 +0.0077 +0.0143 +0.0279 +0.0393 +0.0403
Repeated Gabor (∆) -0.0098 -0.0107 +0.0206 +0.0348 +0.0466 +0.0416 +0.0394

128×128
Traditional CNN (Base) 0.7936 0.7988 0.8007 0.7930 0.7989 0.8004 0.8067
Random Gabor (∆) +0.0086 +0.0073 +0.0146 +0.0258 +0.0228 +0.0271 +0.0177
Repeated Gabor (∆) +0.0093 +0.0113 +0.0134 +0.0273 +0.0281 +0.0199 +0.0142

59

Table 4.16. Improvement in AUC at maximum accuracy on CIFAR-10 dataset with
different kernel size and image size

Image size Gabor configuration
Kernel size

3×3 5×5 7×7 9×9 11×11 13×13 15×15

32×32
Traditional CNN (Base) 0.9759 0.9773 0.9777 0.9744 0.9734 0.9737 0.9722
Random Gabor (∆) -0.0011 -0.0011 -0.0027 +0.0018 +0.0023 +0.0019 +0.0018
Repeated Gabor (∆) -0.0010 -0.0006 -0.0019 +0.0036 +0.0037 +0.0034 +0.0021

64×64
Traditional CNN (Base) 0.9575 0.9615 0.9606 0.9614 0.9598 0.9621 0.9623
Random Gabor (∆) -0.0026 -0.0019 +0.0020 +0.0032 +0.0069 +0.0073 +0.0081
Repeated Gabor (∆) -0.0018 -0.0006 +0.0050 +0.0080 +0.0104 +0.0086 +0.0076

128×128
Traditional CNN (Base) 0.9730 0.9724 0.9734 0.9725 0.9737 0.9733 0.9746
Random Gabor (∆) +0.0008 +0.0017 +0.0011 +0.0023 +0.0023 +0.0047 +0.0033
Repeated Gabor (∆) +0.0005 +0.0029 +0.0021 +0.0044 +0.0031 +0.0023 +0.0015

have great impact on the performance. The result of Gabor configured models shows

that it tends to favor larger Gabor filters because as the kernel size increased the

performance significantly improved. A similar trend was also observed earlier while

presenting our analysis in Table 4.16 and Table 4.17; however, in that example the

evidence shown was not as clear as in this case. AUC and loss depends upon the

nature of datasets like size, distribution, etc. So, there is no defined correlation of

those metrics with accuracy. For example with imbalanced datasets, there could be

high accuracy but with low AUC. And, in case of complex datasets, there could be

varying loss because of the magnitude of errors made on varying amount of data. If

Table 4.17. Improvement in minimum loss on CIFAR-10 dataset with different
kernel size and image size

Image size Gabor configuration
Kernel size

3×3 5×5 7×7 9×9 11×11 13×13 15×15

32×32
Traditional CNN (Base) 1.4764 1.5682 1.9694 1.9144 1.6672 1.5935 2.1591
Random Gabor (∆) -0.1391 -0.2193 -0.5082 -0.5611 -0.1535 -0.1015 -0.6806
Repeated Gabor (∆) -0.0672 -0.1756 -0.6604 -0.6354 -0.0718 -0.1837 -0.8144

64×64
Traditional CNN (Base) 1.6460 1.9160 2.3001 1.6342 1.6378 1.8921 2.0575
Random Gabor (∆) -0.0266 -0.3585 -0.6622 -0.0978 -0.1412 -0.2156 -0.4911
Repeated Gabor (∆) +0.0670 -0.3258 -0.7804 -0.0624 -0.1956 +0.3132 -0.3499

128×128
Traditional CNN (Base) 1.4920 2.2684 1.2744 1.3457 1.3687 1.7287 1.4233
Random Gabor (∆) -0.2609 -1.1010 -0.0477 -0.1184 -0.1824 -0.3236 -0.0045
Repeated Gabor (∆) -0.2781 -1.0944 +0.2863 -0.1774 -0.2432 -0.1496 -0.0947

60

the model made little errors on a few data, there will be low loss, but it made huge

errors on a few data, there will be huge loss.

4.3.3 CIFAR-100

Each experiment with the CIFAR-100 dataset differed in terms of image size

and the kernel size for the receptive convolutional layer. Tables 4.18, 4.19, and 4.20

gives the analysis of improvement in maximum accuracy, AUC at maximum accuracy

and minimum loss of Gabor configured models when compared with traditional CNN

respectively. In the case of CIFAR-100 too, the result in Tables 4.18, Table 4.19 and

Table 4.20 follows the same trend as discussed earlier. When compared to the Table

Table 4.18. Improvement in maximum accuracy on CIFAR-100 dataset with
different kernel size and image size

Image size Gabor configuration
Kernel size

3×3 5×5 7×7 9×9 11×11 13×13 15×15

32×32
Traditional CNN (Base) 0.5842 0.5740 0.5854 0.5488 0.5605 0.5678 0.5590
Random Gabor (∆) -0.0237 +0.0114 -0.0281 +0.0192 +0.0201 -0.0139 +0.0081
Repeated Gabor (∆) -0.0189 +0.0003 -0.0021 +0.0023 +0.0004 -0.0086 -0.0029

64×64
Traditional CNN (Base) 0.6803 0.6869 0.6807 0.6866 0.6898 0.6886 0.6867
Random Gabor (∆) +0.0007 +0.0025 -0.0007 -0.0015 -0.0087 -0.0094 -0.0015
Repeated Gabor (∆) +0.0039 +0.0018 +0.0027 -0.0028 -0.0080 -0.0010 -0.0006

128×128
Traditional CNN (Base) 0.7144 0.7065 0.7162 0.7164 0.7138 0.7123 0.7112
Random Gabor (∆) -0.0060 +0.0037 +0.0018 +0.0002 +0.0012 +0.0073 0.0059
Repeated Gabor (∆) +0.0017 +0.0106 -0.0070 -0.0041 +0.0040 +0.0086 +0.0145

Table 4.19. Improvement in AUC at maximum accuracy on CIFAR-100 dataset
with different kernel size and image size

Image size Gabor configuration
Kernel size

3×3 5×5 7×7 9×9 11×11 13×13 15×15

32×32
Traditional CNN (Base) 0.9550 0.9503 0.9530 0.9525 0.9511 0.9514 0.9512
Random Gabor (∆) -0.0025 +0.0035 +0.0003 -0.0028 +0.0023 -0.0007 -0.0004
Repeated Gabor (∆) -0.0036 +0.0018 -0.0006 +0.0025 -0.0019 +0.0020 -0.0006

64×64
Traditional CNN (Base) 0.9636 0.9652 0.9659 0.9628 0.9655 0.9643 0.9652
Random Gabor (∆) +0.0008 +0.0002 -0.0009 +0.0030 -0.0006 +0.0025 +0.0007
Repeated Gabor (∆) -0.0004 -0.0004 -0.0007 +0.0027 -0.0012 +0.0021 +0.0006

128×128
Traditional CNN (Base) 0.9694 0.9686 0.9684 0.9690 0.9682 0.9691 0.9682
Random Gabor (∆) +0.0008 +0.0002 +0.0010 +0.0021 +0.0028 +0.0000 +0.0016
Repeated Gabor (∆) +0.0002 +0.0011 +0.0030 +0.0013 +0.0010 +0.0007 +0.0029

61

Table 4.20. Improvement in minimum loss on CIFAR-100 dataset with different
kernel size and image size

Image size Gabor configuration
Kernel size

3×3 5×5 7×7 9×9 11×11 13×13 15×15

32×32
Traditional CNN (Base) 4.3399 4.5608 4.0880 5.9439 4.1416 4.2599 5.1038
Random Gabor (∆) +0.1598 -0.6657 -0.0989 -1.7213 +0.1809 -0.2785 +2.1429
Repeated Gabor (∆) +0.4380 -0.4634 +0.7734 -1.5532 +0.5421 +0.2966 -1.1574

64×64
Traditional CNN (Base) 3.6348 3.7467 3.5715 3.8046 3.8158 4.0575 4.0832
Random Gabor (∆) +0.1774 -0.0744 +0.0242 -0.3521 +0.2289 +0.1263 +0.2179
Repeated Gabor (∆) +0.5789 +0.3015 +1.7995 -0.0274 +0.1685 +0.8609 +0.1275

128×128
Traditional CNN (Base) 3.4936 4.1385 4.1666 5.1151 3.7694 3.5885 4.0887
Random Gabor (∆) +0.2320 -0.2233 -0.6036 -1.3428 +0.9635 +0.0513 -0.0090
Repeated Gabor (∆) +0.4857 -0.2240 -0.1239 -0.6645 +0.0184 -0.0016 +0.1811

4.12 and Table 4.15, it can be seen the the accuracy gain is really subtle, which can be

attributed to the increase in the complexity of the dataset, as the CIFAR-100 dataset

is very complex compared to the CIFAR-10 and Cats vs Dogs dataset.

4.3.4 Caltech 256

Caltech 256 dataset was experimented with different image sizes with tradi-

tional CNN as well as Gabor configured CNN models, each experiment differed in

terms of image size and the kernel size for the receptive convolutional layer. Tables

4.21, 4.22 and 4.23 gives the analysis of improvement in maximum accuracy, AUC at

maximum accuracy and minimum loss of Gabor configured models when compared

Table 4.21. Improvement in maximum accuracy on caltech 256 dataset with
different kernel size and image size

Image size Gabor configuration
Kernel size

3×3 5×5 7×7 9×9 11×11 13×13 15×15

32×32
Traditional CNN (Base) 0.3086 0.3084 0.3022 0.3096 0.3061 0.3099 0.2978
Random Gabor (∆) -0.0007 +0.0002 +0.0195 +0.0106 +0.0064 +0.0010 +0.0008
Repeated Gabor (∆) +0.0123 +0.0020 +0.0146 +0.0115 +0.0056 +0.0008 -0.0005

64×64
Traditional CNN (Base) 0.4296 0.4388 0.4375 0.4404 0.4403 0.4380 0.4313
Random Gabor (∆) -0.0090 -0.0028 +0.0113 +0.0025 -0.0116 +0.0119 +0.0214
Repeated Gabor (∆) +0.0039 -0.0054 +0.0082 +0.0072 +0.0113 +0.0059 +0.0059

128×128
Traditional CNN (Base) 0.5028 0.5025 0.5350 0.5200 0.5113 0.5195 0.5092
Random Gabor (∆) +0.0151 +0.0208 +0.0008 +0.0026 +0.0211 +0.0061 +0.0041
Repeated Gabor (∆) +0.0195 +0.0128 -0.0043 +0.0036 +0.0188 +0.0051 +0.0198

62

Table 4.22. Improvement in AUC at maximum accuracy on caltech 256 dataset with
different kernel size and image size

Image size Gabor configuration
Kernel size

3×3 5×5 7×7 9×9 11×11 13×13 15×15

32×32
Traditional CNN (Base) 0.8481 0.8419 0.8513 0.8574 0.8454 0.8474 0.8392
Random Gabor (∆) -0.0021 +0.0162 +0.0019 -0.0027 +0.0050 +0.0003 +0.0057
Repeated Gabor (∆) +0.0055 +0.0095 -0.0030 +0.0005 +0.0131 +0.0037 +0.0069

64×64
Traditional CNN (Base) 0.8741 0.8853 0.8846 0.8853 0.8837 0.8848 0.8840
Random Gabor (∆) +0.0026 -0.0037 +0.0036 +0.0033 -0.0010 +0.0060 -0.0001
Repeated Gabor (∆) +0.0037 -0.0028 -0.0007 +0.0050 +0.0114 +0.0034 +0.0041

128×128
Traditional CNN (Base) 0.9034 0.9097 0.9062 0.9036 0.9046 0.9049 0.9021
Random Gabor (∆) +0.0053 -0.0004 +0.0072 +0.0020 +0.0006 -0.0059 +0.0036
Repeated Gabor (∆) +0.0050 +0.0002 +0.0010 +0.0028 +0.0045 +0.0044 +0.0054

Table 4.23. Improvement in minimum loss on caltech 256 dataset with different
kernel size and image size

Image size Gabor configuration
Kernel size

3×3 5×5 7×7 9×9 11×11 13×13 15×15

32×32
Traditional CNN (Base) 8.1892 6.2550 7.0410 7.8705 8.5046 11.1519 5.8391
Random Gabor (∆) -2.5809 +0.6026 -1.6581 -2.3008 +0.8493 -0.4026 -0.3982
Repeated Gabor (∆) -1.6821 +1.8756 -1.0074 -1.6438 -0.5016 -5.2436 +2.1425

64×64
Traditional CNN (Base) 6.3774 8.1425 6.8721 6.7314 7.0304 8.6386 5.2090
Random Gabor (∆) -0.8742 -3.0356 -1.2754 -1.3800 -1.0103 -2.7627 +0.8800
Repeated Gabor (∆) -1.1548 -2.6945 +3.0506 -0.1708 +5.0498 -2.1193 +0.7651

128×128
Traditional CNN (Base) 4.9090 5.1978 13.0624 6.8160 6.3426 7.1236 7.1915
Random Gabor (∆) +0.3547 +0.1951 -8.0269 -1.6014 -1.3128 -1.7678 -1.8235
Repeated Gabor (∆) +0.7467 +0.3598 -7.7013 -0.7981 -0.6349 +1.1454 -1.4903

with traditional CNN respectively. When looking at the result of the experiment, in

general, it was found that as the complexity of dataset increased, traditional CNN

itself had a hard time giving a satisfactory performance. But even in such a case, the

Gabor configured model was able to bring some performance gain to some extent.

Like in our previous experiments, a similar pattern was found in this experiment

as well i.e. on larger image size traditional CNN performed better and also Gabor

configured tended to improve its performance compared to traditional CNN. This is

particularly evident when we look into the improvement in the maximum accuracy,

63

AUC at maximum accuracy and minimum loss of CNN models on 128 × 128 image

size compared to that of CNN models on 32× 32 and 64× 64 image sizes.

4.3.5 Stanford Cars

Each experiment with the Stanford Cars dataset differed in terms of image size

and the kernel size for the receptive convolutional layer. Tables 4.24, 4.25, and 4.26

gives the analysis of improvement in maximum accuracy, AUC at maximum accuracy

and minimum loss of Gabor configured models when compared with traditional CNN

respectively.

The performance of traditional CNN is the lowest for the Stanford cars, due to

the fact that Stanford cars is a pretty complex dataset. To distinguish cars of different

companies produced in different years is a hard job even for human beings, and the

fact that the images represent information from only certain perspectives makes it

worse. But, the effect of kernel and image size is fairly evident in this case. As can

be seen in Tables 4.24 and 4.25, the accuracy and AUC decreased dramatically as the

kernel size was increased. Traditional CNN performed better as the image size was

increased, and with that the effect of Gabor filter was even more evident. Looking

closely at the result of the 128 × 128 image size, it can be seen that as the Gabor

Table 4.24. Improvement in maximum accuracy on stanford cars dataset with
different kernel size and image size

Image size Gabor configuration
Kernel size

3×3 5×5 7×7 9×9 11×11 13×13 15×15

32×32
Traditional CNN (Base) 0.0493 0.0426 0.0442 0.0425 0.0304 0.0334 0.0300
Random Gabor (∆) -0.0088 +0.0090 -0.0002 +0.0060 +0.0133 +0.0076 +0.0009
Repeated Gabor (∆) +0.0051 +0.0024 +0.0004 +0.0059 +0.0152 +0.0115 +0.0139

64×64
Traditional CNN (Base) 0.1774 0.1602 0.1498 0.1350 0.1386 0.0818 0.1143
Random Gabor (∆) -0.0330 +0.0081 +0.0015 +0.0019 -0.0162 +0.0436 -0.0009
Repeated Gabor (∆) -0.0339 +0.0117 +0.0326 +0.0281 -0.0092 +0.0524 +0.0410

128×128
Traditional CNN (Base) 0.4103 0.3879 0.4180 0.3598 0.3010 0.3102 0.3517
Random Gabor (∆) -0.0151 +0.0396 +0.0157 +0.0802 +0.1398 +0.1930 +0.0600
Repeated Gabor (∆) -0.0818 +0.0274 +0.0005 +0.0029 +0.1313 +0.0788 +0.0648

64

Table 4.25. Improvement in AUC at maximum accuracy on stanford cars dataset
with different kernel size and image size

Image size Gabor configuration
Kernel size

3×3 5×5 7×7 9×9 11×11 13×13 15×15

32×32
Traditional CNN (Base) 0.7107 0.6970 0.7114 0.6907 0.6290 0.6427 0.6325
Random Gabor (∆) -0.0198 +0.0019 -0.0198 +0.0009 +0.0526 +0.0292 +0.0041
Repeated Gabor (∆) +0.0111 -0.0038 -0.0106 +0.0173 +0.0705 +0.0448 +0.0568

64×64
Traditional CNN (Base) 0.8211 0.8046 0.7911 0.7815 0.7713 0.7255 0.7472
Random Gabor (∆) -0.0173 -0.0063 +0.0018 +0.0030 -0.0056 +0.0358 +0.0146
Repeated Gabor (∆) -0.0150 -0.0046 +0.0154 +0.0165 +0.0045 +0.0528 +0.0388

128×128
Traditional CNN (Base) 0.8736 0.8831 0.8723 0.8808 0.8369 0.8344 0.8811
Random Gabor (∆) +0.0020 +0.0020 +0.0180 +0.0033 +0.0455 +0.0458 +0.0032
Repeated Gabor (∆) +0.0063 +0.0017 +0.0028 +0.0030 +0.0515 +0.0278 +0.0035

Table 4.26. Improvement in minimum loss on stanford cars dataset with different
kernel size and image size

Image size Gabor configuration
Kernel size

3×3 5×5 7×7 9×9 11×11 13×13 15×15

32×32
Traditional CNN (Base) 7.3203 47.5599 8.8750 9.2702 22.8231 7.1648 9.1182
Random Gabor (∆) +12.3424 -37.8715 +3.6937 +3.4808 -15.7108 +0.3171 +0.4810
Repeated Gabor (∆) +7.1468 -37.3148 -2.6179 +6.2107 -4.7338 +5.3186 +7.1548

64×64
Traditional CNN (Base) 24.1874 7.3460 14.2081 10.4780 16.0974 17.0614 20.6991
Random Gabor (∆) -13.0682 +1.0896 -6.3144 +1.3075 -3.0181 -4.1803 -0.5565
Repeated Gabor (∆) -16.0293 +13.3526 +13.5375 +2.7611 -1.1857 -0.2307 -3.6890

128×128
Traditional CNN (Base) 18.8136 36.2230 18.1727 6.6971 6.5915 73.8066 6.7081
Random Gabor (∆) -1.3699 -26.1808 -9.9487 +9.0980 +4.3474 -66.8044 +7.0920
Repeated Gabor (∆) -4.3315 -23.0504 -9.2398 +4.6752 +34.7256 -62.0934 +4.2712

filter size is increased, it begins to positively impact the CNN even more, exceeding

the performance of a traditional CNN.

In terms of minimum loss, traditional CNN was not predictable. However,

it can be noticed in Table 4.26 that on average Gabor configured models tended to

improve the minimum loss, and they did so even when the traditional model was not

performing as well as usual. Although the experiment was a single run, the presence

of evidence in multiple cases suggest that with a Gabor filter CNN is able to perform

better.

65

4.3.6 Tiny Imagenet

The Tiny Imagenet dataset is comprised of a diverse range of complex objects,

which becomes challenging for a particular set of Gabor filters to capture the features

from all the images. This can be seen from the results in Table 4.27 and 4.28. With

image sizes of 32 × 32 and 64 × 64, most of the time the Gabor configured models

did not perform well, especially the repeated Gabor configured model. However,

on 128 × 128 image size, the random Gabor configured model was able to improve

performance on average. Looking at all these results, it is evident that smaller image

size doesn’t work well for the Gabor filter and even traditional CNN. Furthermore,

performance of models begins to wind down on smaller image size, when kernel size

is increased linearly and the Gabor filter is also not able to impact the CNN. But

when the image size is increased, the Gabor filter tends to bring improvement. While

this is not true for every kernel size, it does tend to follow when the kernel size is

comparatively larger. Performance is not predictable for complex datasets, but such

cases with injection of Gabor filters brought a great deal of improvement. The results

in Table 4.26 and 4.23 show that when the traditional CNN performed poorly in

terms of loss, Gabor filters pushed the model to learn even more, thus bringing some

sort of consistency in terms of loss, as the loss decreased significantly under same

configuration for Gabor filter configured models.

Table 4.27. Improvement in maximum accuracy on Tiny Imagenet dataset with
different kernel size and image size

Image size Gabor configuration
Kernel size

3×3 5×5 7×7 9×9 11×11 13×13 15×15

32×32
Traditional CNN (Base) 0.3921 0.3950 0.3832 0.3712 0.3671 0.3649 0.3543
Random Gabor (∆) -0.0077 -0.0029 -0.0419 -0.0223 -0.0294 -0.0340 -0.0083
Repeated Gabor (∆) -0.0050 -0.0465 -0.0462 -0.0453 -0.0401 -0.0612 -0.0410

64×64
Traditional CNN (Base) 0.4806 0.4824 0.4739 0.4699 0.4659 0.4662 0.4562
Random Gabor (∆) +0.0102 -0.0021 -0.0041 -0.0072 -0.0102 +0.0002 +0.0152
Repeated Gabor (∆) -0.0037 -0.0390 -0.0186 +0.0004 -0.0244 -0.0229 -0.0021

128×128
Traditional CNN (Base) 0.5199 0.5233 0.5241 0.5216 0.5229 0.5218 0.5104
Random Gabor (∆) +0.0113 +0.0056 +0.0081 -0.0031 -0.0018 +0.0056 +0.0170
Repeated Gabor (∆) -0.0066 -0.0153 -0.0411 -0.0126 -0.0142 -0.0099 +0.0060

66

Table 4.28. Improvement in AUC at maximum accuracy on Tiny Imagenet dataset
with different kernel size and image size

Image size Gabor configuration
Kernel size

3×3 5×5 7×7 9×9 11×11 13×13 15×15

32×32
Traditional CNN (Base) 0.9109 0.9113 0.9062 0.9056 0.9011 0.8991 0.8979
Random Gabor (∆) -0.0002 -0.0054 -0.0118 -0.0109 -0.0079 -0.0098 -0.0006
Repeated Gabor (∆) -0.0038 -0.0181 -0.0082 -0.0163 -0.0103 -0.0172 -0.0175

64×64
Traditional CNN (Base) 0.9361 0.9319 0.9333 0.9312 0.9308 0.9294 0.9262
Random Gabor (∆) -0.0031 +0.0008 -0.0026 +0.0002 -0.0033 -0.0006 +0.0037
Repeated Gabor (∆) -0.0093 -0.0050 -0.0094 -0.0021 -0.0039 -0.0078 -0.0018

128×128
Traditional CNN (Base) 0.9435 0.9418 0.9438 0.9432 0.9439 0.9428 0.9427
Random Gabor (∆) -0.0006 +0.0011 -0.0013 -0.0017 -0.0014 -0.0009 +0.0013
Repeated Gabor (∆) -0.0065 -0.0068 -0.0091 -0.0089 -0.0061 -0.0056 -0.0023

Table 4.29. Improvement in minimum loss on Tiny Imagenet dataset with different
kernel size and image size

Image size Gabor configuration
Kernel size

3×3 5×5 7×7 9×9 11×11 13×13 15×15

32×32
Traditional CNN (Base) 5.2912 5.2273 5.2322 5.1488 5.1689 5.2050 5.1729
Random Gabor (∆) -0.2901 -0.2618 -0.2595 -0.2248 -0.1753 -0.1808 -0.1660
Repeated Gabor (∆) -0.0636 -0.0202 -0.0505 -0.0025 -0.0429 -0.0107 -0.0384

64×64
Traditional CNN (Base) 5.1014 5.1428 5.1198 5.1246 5.0847 5.1234 5.0616
Random Gabor (∆) -0.2692 -0.2719 -0.2538 -0.2102 -0.2546 -0.1730 -0.1027
Repeated Gabor (∆) +0.1317 +0.0625 -0.0146 -0.0464 +0.0509 -0.0955 -0.0103

128×128
Traditional CNN (Base) 5.0659 5.0616 5.0584 5.0257 5.0092 5.0673 5.2985
Random Gabor (∆) -0.2046 -0.2492 -0.3288 -0.1116 +0.0950 -0.0409 -0.5205
Repeated Gabor (∆) +0.1017 +0.0927 +0.0865 +0.0545 +0.0739 -0.0492 -0.3941

67

CHAPTER FIVE

Conclusion

Over the decade, CNN has emerged in popularity, which has led to significant

strides in image processing. Being a specialized type of Neural Network, CNN works

with the receptive layer by extracting features from the provided image, and builds

upon those features to narrow down the classification. This particular process of CNN

takes a significant amount of time because it has to learn through backpropagation

algorithms. Therefore, the model’s accuracy depends on how well it can learn from the

training images and the initial state of the CNN’s simulation. One popular technique

for initializing CNN layers is randomization, where random numbers are generated

and assigned as the weights for the neural network. While this is undoubtedly a

good technique given the uncertainty in the nature of the image the CNN will be

processing, it can take a toll upon the performance of CNN.

In image processing, people have also been increasingly working with a special

filter called a Gabor filter for several years. Past studies have shown it to be an

excellent feature extractor. Given this nature of a Gabor filter, it can be hypothesized

that it could act as a suitable receptive filter for CNN because previous research has

found that the receptive filters of CNN tend to resemble Gabor filters. Compared to

previous studies (Luan, Chen, Zhang, Han, and Liu 2018; Alekseev and Bobe 2019;

Molaei, Shiri, Horan, Kahrobaei, Nallamothu, and Najarian 2017), an extensive range

of analysis was done with a wide variety of general object datasets, but with a rather

simplistic approach of unrestricted Gabor filter initialization in receptive layer. Tables

4.1, 4.2 and 4.3 show that with the presence of Gabor filters in receptive layers, there is

improvement in the performance of CNN as it is able to obtain higher accuracy, higher

AUC and lower loss for different datasets. From this, we can conclude that it brings

68

significant improvement in the case of general object classification. Furthermore,

under restriction upon training epoch, it was also found that when CNN is trained

in the same number of epochs on the training datasets, the CNN can achieve higher

performance with Gabor filters in a shorter amount of time, on average.

Different types of Gabor filters can be generated with varying hyper-parameters

like the orientation, wavelength, etc., which corresponds to different features in im-

ages. While there is no universal Gabor filter bank capable of extracting all features

from the image, building a bank of different Gabor filters ranging over the different

hyper-parameters is necessary. The configuration of the Gabor filters in the recep-

tive convolutional layer also impacted the performance. It was found that repeated

Gabor filter configuration performed better when the dataset was less complex, be-

cause similar filters in all channels were capable of extracting features without any

modification from CNN itself. But, as the complexity of the dataset grew, the prob-

ability of the presence of such capable filters decreased compared to random Gabor

filter configuration. Thus comparatively, the random Gabor filter configuration per-

formed better. To increase the performance, it is ideally recommended to design

the Gabor filter manually, which would extract all sorts of features from an image

so that the CNN could build upon it. But, since such manual expertise is hard to

gain, it is recommended instead to generate random Gabor filters and assign either of

the configuration types based upon the complexity of the datasets, and let the CNN

train/alter the Gabor filters as needed. It was found that CNN does play a vital

role because when restricting the change in the structure of the Gabor filters during

training period, the performance decreased comparatively and got even worse than

traditional CNN as the complexity of the dataset increased.

The size of Gabor filters can also have a significant impact on the performance

of CNNs. CNNs, with or without Gabor filters, perform worse than expected on

smaller images because minute details get blurred out. In the case of larger images,

69

the size of the Gabor filter also needs to be considered. It was discovered that most

of the time smaller Gabor filters performed worse than their larger counterparts,

irrespective of datasets, because smaller Gabor filters do not have a distinguished

shape and structure compared to their larger counterparts. While this does not

suggest using very large Gabor filters because it could potentially miss out on smaller

details, the size should not be small like 3× 3 or 5× 5 as well. The size of the Gabor

filter should be optimal, which allows to extract necessary features. Since a single

experiment was performed for each case, more research could likely help discover the

range of the size within which the positive impact of Gabor filters can be seen.

5.1 Future Work

Much research could be extended from this research. The hyper-parameters

of Gabor filters can be tuned as per necessary for the low performing CNN to see

how much Gabor filters could affect the performance of CNN. Also, while it may be

suitable for some specific datasets to tune manually, when considering general object

recognition it is certainly desirable to find a range for the hyper-parameters which

could produce high-performing Gabor filters. There have not been many explorations

of the hyper-parameter space of Gabor filters, which is certainly research to look

forward to. Also, for all the experiments only the receptive convolutional layers were

initialized with Gabor filters. So, it might be interesting to see how it fares when

multiple deeper convolutional layers were initialized in a similar manner.

Similar to Gabor filters, there are other filters like Log-Gabor filters, Gaussian

filters, etc. which researchers have been using for image processing. Multiple studies

could be conducted to see their impact on the CNN in multiple fashions, such as

using those filters solely or combining them together. Finally, in this research, the

traditional CNN was kept as a base model, which is a simple CNN without any

modification to the convolutional layers structure. With the popularity of CNN, a lot

70

of variants have emerged. In similar manner to traditional CNN, experiments could

be conducted with all the different variants.

As the complexity of datasets grew, the early stopping impacted CNN even

more. When analysing the trained filters in traditional CNN, the resemblance between

Gabor filters and trained filters decreased significantly when compared to the trained

filters in the traditional CNN, trained upon simpler datasets. So, to address this issue,

the patience in early stopping could be increased to the degree where trained CNN’s

filters bear some resemblance to Gabor-like filters, if present, and see how the CNN

performed with Gabor filters that were given a long training time. If resources are

limited, then if possible parallelization programs, e.g., (Sanjel 2020), could certainly

be explored to expedite the process.

71

APPENDICES

72

APPENDIX A

Code

A.1 Gabor Filters Generation

import math

import numpy as np

def get gabor filters(inchannels, outchannels, kernel size = (3,3)):

delta = 1e−4

freqs = (math.pi/2)∗(math.sqrt(2)∗∗(−np.random.randint(0,5, (outchannels, inchannels))))

thetas = (math.pi/8)∗np.random.randint(0,8, (outchannels, inchannels))

sigmas = math.pi/(freqs)

psis = math.pi ∗ np.random.rand(outchannels, inchannels)

x0, y0 = np.ceil(np.array(kernel size)/2)

y, x = np.meshgrid(

np.linspace(−x0 + 1, x0 + 0, kernel size[0]),

np.linspace(−y0 + 1, y0 + 0, kernel size[1]),

)

filterbank = []

for i in range(outchannels):

for j in range(inchannels):

freq = freqs[i][j]

theta = thetas[i][j]

sigma = sigmas[i][j]

psi = psis[i][j]

rotx = x ∗ np.cos(theta) + y ∗ np.sin(theta)

roty = −x ∗ np.sin(theta) + y ∗ np.cos(theta)

g = np.exp(

73

−0.5 ∗ ((rotx ∗∗ 2 + roty ∗∗ 2) / (sigma + delta) ∗∗ 2)

)

g = g ∗ np.cos(freq ∗ rotx + psi)

filterbank.append(g)

return filterbank

filterbank = get gabor filters(3, NUM RECEPTIVE FILTERS, GABOR SIZE)

A.2 Visualization of Gabor Filters

import matplotlib.pyplot as plt

filterbank = get gabor filters(3, NUM RECEPTIVE FILTERS, GABOR SIZE)

fig = plt.subplots(8, len(filterbank)//8, figsize=(22,22))

for i,gf in enumerate(filterbank):

plt.subplot(8, len(filterbank)//8, i+1)

plt.imshow(gf, cmap=’gray’)

plt.axis(’off’)

A.3 Random Gabor Filter on All Channels of Receptive Convolutional Layer

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Activation

from tensorflow.keras.layers import Input, Dense, Dropout, BatchNormalization

from tensorflow.keras.models import Model

from tensorflow.keras.optimizers import RMSprop, Adam

from tensorflow.keras.models import Sequential

from tensorflow.keras import layers

from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau

classifier = Sequential([

layers.Conv2D(NUM RECEPTIVE FILTERS, kernel size=GABOR SIZE, strides=(1,1),

↪→ name=”GaborLayer”, input shape=train generator.image shape, padding=’same’),

layers.BatchNormalization(),

layers.Activation(’relu’),

74

layers.MaxPooling2D(pool size=(2,2)),

Dropout(0.5),

layers.Conv2D(64, kernel size=(3,3), strides=(2,2), padding=’same’),

layers.BatchNormalization(),

layers.Activation(’relu’),

layers.MaxPooling2D(pool size=(2,2)),

Dropout(0.5),

layers.Conv2D(128, kernel size=(3,3), strides=(2,2), padding=’same’),

layers.BatchNormalization(),

layers.Activation(’relu’),

layers.MaxPooling2D(pool size=(2,2)),

Dropout(0.5),

layers.Flatten(),

layers.Dense(256),

layers.BatchNormalization(),

layers.Activation(’relu’),

Dropout(0.5),

layers.Dense(NUM CLASSES, activation=’softmax’)

])

cnnl1 = classifier.layers[GABOR LAYER INDEX].name # get the name of the first conv layer

W = classifier.get layer(name=cnnl1).get weights()[0] #get the filters

wshape = W.shape #save the original shape

gabor filters = W

for kernel index in range(wshape[3]):

for channel index in range(3):

gabor filters[:,:,channel index, kernel index] = filterbank[kernel index+channel index]

//Placing the randomly generated Gabor filters randomly in the channels

classifier.get layer(name=cnnl1).set weights([gabor filters, classifier.get layer(name=cnnl1).

↪→ get weights()[1]])

reduce lr = ReduceLROnPlateau(monitor=’val loss’, factor=0.5, patience=10,

min delta=1e−4, mode=’min’, verbose=1)

stop alg = EarlyStopping(monitor=’val loss’, patience=35,

75

restore best weights=True, verbose=1)

callbacks = [stop alg, reduce lr]

opt = Adam(learning rate=0.001)

classifier.compile(loss=’categorical crossentropy’, optimizer=opt, metrics=[’accuracy’, ’AUC’])

hist = classifier.fit(

train generator,

epochs=EPOCHS,

validation data=validation generator,

validation steps=total validate//BATCH SIZE,

steps per epoch=total train//BATCH SIZE,

callbacks=callbacks

)

A.4 Repeated Gabor Filter on the 3 Channels of Receptive Convolutional Layer

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Activation

from tensorflow.keras.layers import Input, Dense, Dropout, BatchNormalization

from tensorflow.keras.models import Model

from tensorflow.keras.optimizers import RMSprop, Adam

from tensorflow.keras.models import Sequential

from tensorflow.keras import layers

from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau

classifier = Sequential([

layers.Conv2D(NUM RECEPTIVE FILTERS, kernel size=GABOR SIZE, strides=(1,1),

↪→ name=”GaborLayer”, input shape=train generator.image shape, padding=’same’),

layers.BatchNormalization(),

layers.Activation(’relu’),

layers.MaxPooling2D(pool size=(2,2)),

Dropout(0.5),

layers.Conv2D(64, kernel size=(3,3), strides=(2,2), padding=’same’),

layers.BatchNormalization(),

76

layers.Activation(’relu’),

layers.MaxPooling2D(pool size=(2,2)),

Dropout(0.5),

layers.Conv2D(128, kernel size=(3,3), strides=(2,2), padding=’same’),

layers.BatchNormalization(),

layers.Activation(’relu’),

layers.MaxPooling2D(pool size=(2,2)),

Dropout(0.5),

layers.Flatten(),

layers.Dense(256),

layers.BatchNormalization(),

layers.Activation(’relu’),

Dropout(0.5),

layers.Dense(NUM CLASSES, activation=’softmax’)

])

cnnl1 = classifier.layers[GABOR LAYER INDEX].name # get the name of the first conv layer

W = classifier.get layer(name=cnnl1).get weights()[0] #get the filters

wshape = W.shape #save the original shape

gabor filters = W

for kernel index in range(wshape[3]):

for channel index in range(3):

gabor filters[:,:,channel index, kernel index] = filterbank[kernel index]

//Placing the same randomly generated Gabor filters on all three channels

classifier.get layer(name=cnnl1).set weights([gabor filters, classifier.get layer(name=cnnl1).

↪→ get weights()[1]])

reduce lr = ReduceLROnPlateau(monitor=’val loss’, factor=0.5, patience=10,

min delta=1e−4, mode=’min’, verbose=1)

stop alg = EarlyStopping(monitor=’val loss’, patience=35,

restore best weights=True, verbose=1)

callbacks = [stop alg, reduce lr]

opt = Adam(learning rate=0.001)

classifier.compile(loss=’categorical crossentropy’, optimizer=opt, metrics=[’accuracy’, ’AUC’])

77

hist = classifier.fit(

train generator,

epochs=EPOCHS,

validation data=validation generator,

validation steps=total validate//BATCH SIZE,

steps per epoch=total train//BATCH SIZE,

callbacks=callbacks

)

78

BIBLIOGRAPHY

Ahn, B. (2015). Real-time video object recognition using convolutional neural
network. In 2015 International Joint Conference on Neural Networks (IJCNN),
pp. 1–7.

Alekseev, A. and A. Bobe (2019). Gabornet: Gabor filters with learnable param-
eters in deep convolutional neural network. In 2019 International Conference
on Engineering and Telecommunication (EnT), pp. 1–4.

Anwar, S., K. Hwang, and W. Sung (2015). Fixed point optimization of deep
convolutional neural networks for object recognition. In 2015 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
1131–1135.

Avinash, S., K. Manjunath, and S. S. Kumar (2016). An improved image process-
ing analysis for the detection of lung cancer using gabor filters and watershed
segmentation technique. In 2016 International Conference on Inventive Com-
putation Technologies (ICICT), Volume 3, pp. 1–6.

Cao, Y., Y. Chen, and D. Khosla (2015). Spiking deep convolutional neural net-
works for energy-efficient object recognition. International Journal of Computer
Vision 113, 54–66.

Chacon, M. and P. Rivas (2009). Face recognition based on human visual percep-
tion theories and unsupervised ann. In State of the Art in Face Recognition.
IntechOpen.

Chen, Z., O. Lam, A. Jacobson, and M. Milford (2014). Convolutional neural
network-based place recognition.

Ciresan, D. C., U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber (2011).
Flexible, high performance convolutional neural networks for image classifica-
tion. In Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence.

Daamouche, A., D. Fares, I. Maalem, and K. Zemmouri (2016). Unsupervised
method for building detection using gabor filters. In Special issue of the 2nd
International Conference on Computational and Experimental Science and En-
gineering (ICCESEN 2015), Volume 130.

Daugman, J. (1985). Uncertainty relation for resolution in space, spatial frequency
and orientation optimized by two-dimensional visual cortical filters. J. Opt.
Soc. Amer. A. 2.

79

Dosovitskiy, A., J. T. Springenberg, M. Riedmiller, and T. Brox (2014). Discrim-
inative unsupervised feature learning with convolutional neural networks. In
Advances in Neural Information Processing Systems 27, pp. 766–774. Curran
Associates, Inc.

Du, Y.-C., M. Muslikhin, T.-H. Hsieh, and M.-S. Wang (2020). Stereo vision-
based object recognition and manipulation by regions with convolutional neural
network. Electronics 2020 9.

Dunn, D. and W. E. Higgins (1995). Optimal gabor filters for texture segmentation.
IEEE Transactions on Image Processing 4 (7), 947–964.

Dunn, D., W. E. Higgins, and J. Wakeley (1994). Texture segmentation using
2-d gabor elementary functions. IEEE Transactions on Pattern Analysis and
Machine Intelligence 16 (2), 130–149.

El-Sayed, M. A., M. Hassaballah, and M. A. Abdel-Latif (2016). Identity verifica-
tion of individuals based on retinal features using gabor filters and svm. Journal
of Signal and Information Processing 7.

Elson, J., J. J. Douceur, J. Howell, and J. Saul (2007, October). Asirra: A captcha
that exploits interest-aligned manual image categorization. In Proceedings of
14th ACM Conference on Computer and Communications Security (CCS) (Pro-
ceedings of 14th ACM Conference on Computer and Communications Security
(CCS) ed.). Association for Computing Machinery, Inc.

Fan, Z., S. Zhang, J. Mei, and M. Liu (2017). Recognition of woven fabric based
on image processing and gabor filters. In 2017 IEEE 7th Annual International
Conference on CYBER Technology in Automation, Control, and Intelligent Sys-
tems (CYBER), pp. 996–1000.

Fang, W., L. Ding, B. Zhong, P. E. Love, and H. Luo (2018). Automated detection
of workers and heavy equipment on construction sites: A convolutional neural
network approach. Advanced Engineering Informatics 37, 139 – 149.

Gabor, D. (1946). Theory of communication. J. Inst. Elec. Eng. (London) 93,
429–457.

Gao, Z., D. Wang, Y. Xue, G. Xu, H. Zhang, and Y. Wang (2018). 3d object recog-
nition based on pairwise multi-view convolutional neural networks. Journal of
Visual Communication and Image Representation 56, 305 – 315.

Garcia-Garcia, A., F. Gomez-Donoso, J. Garcia-Rodriguez, S. Orts-Escolano,
M. Cazorla, and J. Azorin-Lopez (2016). Pointnet: A 3d convolutional neu-
ral network for real-time object class recognition. In 2016 International Joint
Conference on Neural Networks (IJCNN), pp. 1578–1584.

80

Glorot, X. and Y. Bengio (2010, 13–15 May). Understanding the difficulty of
training deep feedforward neural networks. In Y. W. Teh and M. Titterington
(Eds.), Proceedings of the Thirteenth International Conference on Artificial In-
telligence and Statistics, Volume 9 of Proceedings of Machine Learning Research,
Chia Laguna Resort, Sardinia, Italy, pp. 249–256. PMLR.

Gornale, S., A. Patil, and V. C. (2016). Fingerprint based gender identification
using discrete wavelet transform and gabor filters. International Journal of
Computer Applications 152 (4).

Griffin, G., A. Holub, and P. Perona (2007, 03). Caltech-256 object category
dataset. CalTech Report .

Hayat, S., S. Kun, Z. Tengtao, Y. Yu, T. Tu, and Y. Du (2018). A deep learning
framework using convolutional neural network for multi-class object recognition.
In 2018 IEEE 3rd International Conference on Image, Vision and Computing
(ICIVC), pp. 194–198.

He, K., X. Zhang, S. Ren, and J. Sun (2016, June). Deep residual learning for
image recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Hemalatha, G. and C. P. Sumathi (2016). Preprocessing techniques of facial image
with median and gabor filters. In 2016 International Conference on Information
Communication and Embedded Systems (ICICES), pp. 1–6.

Hosseini, S., S. H. Lee, H. J. Kwon, H. I. Koo, and N. I. Cho (2018). Age and
gender classification using wide convolutional neural network and gabor filter.
In 2018 International Workshop on Advanced Image Technology (IWAIT), pp.
1–3.

Hubel, D. H. and T. N. Wiesel (1962). Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex. The Journal of physiol-
ogy 160 (1), 106–154.

Ioffe, S. and C. Szegedy (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift.

Ishii, T., R. Nakamura, H. Nakada, Y. Mochizuki, and H. Ishikawa (2015). Surface
object recognition with cnn and svm in landsat 8 images. In 2015 14th IAPR
International Conference on Machine Vision Applications (MVA), pp. 341–344.

Jain, A. K., N. K. Ratha, and S. Lakshmanan (1997). Object detection using gabor
filters. Pattern Recognition 30 (2), 295 – 309.

Jia, Y., E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell (2014). Caffe: Convolutional architecture for fast feature
embedding. In Proceedings of the 22nd ACM International Conference on Mul-
timedia, MM ’14, New York, NY, USA, pp. 675–678. Association for Computing
Machinery.

81

Jiang, C. and J. Su (2018). Gabor binary layer in convolutional neural networks.
In 2018 25th IEEE International Conference on Image Processing (ICIP), pp.
3408–3412.

Jing, J., X. Fang, and P. Li (2016). Automated fabric defect detection based
on multiple gabor filters and kpca. International Journal of Multimedia and
Ubiquitous Engineering 11 (6), 93–106.

Jing Huang and Suya You (2016). Point cloud labeling using 3d convolutional
neural network. In 2016 23rd International Conference on Pattern Recognition
(ICPR), pp. 2670–2675.

Kataoka, H., K. Iwata, and Y. Satoh (2015). Feature evaluation of deep convolu-
tional neural networks for object recognition and detection.

Kawano, Y. and K. Yanai (2014). Food image recognition with deep convolutional
features. In Proceedings of the 2014 ACM International Joint Conference on
Pervasive and Ubiquitous Computing: Adjunct Publication, UbiComp ’14 Ad-
junct, New York, NY, USA, pp. 589–593. Association for Computing Machinery.

Khaleefah, S. H., S. A. Mostafa, A. Mustapha, and M. F. Nasrudin (2019). The
ideal effect of gabor filters and uniform local binary pattern combinations on
deformed scanned paper images. Journal of King Saud University - Computer
and Information Sciences .

Kingma, D. P. and J. Ba (2017). Adam: A method for stochastic optimization.

Krause, J., M. Stark, J. Deng, and L. Fei-Fei (2013). 3d object representations
for fine-grained categorization. In 4th International IEEE Workshop on 3D
Representation and Recognition (3dRR-13), Sydney, Australia.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Tech-
nical report.

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger (Eds.), Advances in Neural Information Processing Sys-
tems 25, pp. 1097–1105. Curran Associates, Inc.

Kumar, A. and G. K. H. Pang (2002). Defect detection in textured materials using
gabor filters. IEEE Transactions on Industry Applications 38 (2), 425–440.

Kumar, A. S. and E. Sherly (2017). A convolutional neural network for visual
object recognition in marine sector. In 2017 2nd International Conference for
Convergence in Technology (I2CT), pp. 304–307.

Lawrence, S., C. L. Giles, Ah Chung Tsoi, and A. D. Back (1997). Face recogni-
tion: a convolutional neural-network approach. IEEE Transactions on Neural
Networks 8 (1), 98–113.

82

Le Cun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel (1990). Handwritten digit recognition with a back-propagation
network. In Advances in Neural Information Processing Systems, pp. 396–404.
Morgan Kaufmann.

Lefkovits, S., L. Lefkovits, and S. Emerich (2017). Detecting the eye and its open-
ness with gabor filters. In 2017 5th International Symposium on Digital Forensic
and Security (ISDFS), pp. 1–5.

Lei, Z., M. Pietikäinen, and S. Z. Li (2014). Learning discriminant face descriptor.
IEEE Transactions on Pattern Analysis and Machine Intelligence 36 (2), 289–
302.

Li, Z., H. Ma, and Z. Liu (2016). Road lane detection with gabor filters. In
2016 International Conference on Information System and Artificial Intelli-
gence (ISAI), pp. 436–440.

Liu, C., W. Ding, X. Wang, and B. Zhang (2018). Hybrid gabor convolutional
networks. Pattern Recognition Letters 116, 164 – 169.

Liu, X., J. B. Lao, and J. S. Pang (2019). Feature point matching based on dis-
tinct wavelength phase congruency and log-gabor filters in infrared and visible
images. Sensors 19.

Low, C., A. B. Teoh, and C. Ng (2016). Multi-fold gabor filter convolution descrip-
tor for face recognition. In 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 2094–2098.

Lu, J., V. E. Liong, X. Zhou, and J. Zhou (2015). Learning compact binary face
descriptor for face recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence 37 (10), 2041–2056.

Luan, S., C. Chen, B. Zhang, J. Han, and J. Liu (2018). Gabor convolutional
networks. IEEE Transactions on Image Processing 27 (9), 4357–4366.

Mahmood, M., A. Jalal, and H. A. Evans (2018). Facial expression recognition
in image sequences using 1d transform and gabor wavelet transform. In 2018
International Conference on Applied and Engineering Mathematics (ICAEM),
pp. 1–6.

Maturana, D. and S. Scherer (2015). Voxnet: A 3d convolutional neural network
for real-time object recognition. In 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 922–928.

Meshgini, S., A. Aghagolzadeh, and H. Seyedarabi (2012). Face recognition us-
ing gabor filter bank, kernel principle component analysis and support vector
machine. International Journal of Computer Theory and Engineering , 767–771.

83

Molaei, S., M. Shiri, K. Horan, D. Kahrobaei, B. Nallamothu, and K. Najarian
(2017). Deep convolutional neural networks for left ventricle segmentation.
In 2017 39th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), pp. 668–671.

Molaei, S. and M. E. Shiri Ahmad Abadi (2020). Maintaining filter structure:
A gabor-based convolutional neural network for image analysis. Applied Soft
Computing 88, 105960.

Nava, R., B. Escalante-Ramirez, and G. Cristobal (2012). Texture image retrieval
based on log-gabor features. In Progress in Pattern Recognition, Image Analy-
sis, Computer Vision, and Appplications, Volume 7441, pp. 414–421.

Nunes, C. F. G. and F. L. C. Pádua (2017). A local feature descriptor based on log-
gabor filters for keypoint matching in multispectral images. IEEE Geoscience
and Remote Sensing Letters 14 (10), 1850–1854.

Premana, A., A. P. Wijaya, and M. A. Soeleman (2017). Image segmentation using
gabor filter and k-means clustering method. In 2017 International Seminar on
Application for Technology of Information and Communication (iSemantic),
pp. 95–99.

Pumlumchiak, T. and S. Vittayakorn (2017). Facial expression recognition using
local gabor filters and pca plus lda. In 2017 9th International Conference on
Information Technology and Electrical Engineering (ICITEE), pp. 1–6.

Radovic, M., O. Adarkwa, and Q. Wang (2017). Object recognition in aerial images
using convolutional neural networks. Journal of Imaging 3.

Rai, M. and P. Rivas (2020). A review of convolutional neural networks and gabor
filters in object recognition1. In 2020 International Conference on Computa-
tional Science and Computational Intelligence (CSCI), pp. 1560–1567.

Rizvi, S. T. H., G. Cabodi, P. Gusmao, and G. Francini (2016). Gabor filter based
image representation for object classification. In 2016 International Conference
on Control, Decision and Information Technologies (CoDIT), pp. 628–632.

Ruder, S. (2017). An overview of gradient descent optimization algorithms.

Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei (2015). Im-
ageNet Large Scale Visual Recognition Challenge. International Journal of
Computer Vision (IJCV) 115 (3), 211–252.

1© 2020 IEEE. Reprinted, with permission, from [Mehang Rai, Pablo Rivas, A Review of
Convolutional Neural Networks and Gabor Filters in Object Recognition, IEEE publication title,
and 23 June, 2021.]

84

Sanjel, A. (2020). Tyro: A First Step Towards Automatically Generating Paral-
lel Programs from Sequential Programs. Ph. D. thesis. Copyright - Database
copyright ProQuest LLC; ProQuest does not claim copyright in the individual
underlying works; Last updated - 2021-05-11.

Schwarz, M., H. Schulz, and S. Behnke (2015). Rgb-d object recognition and
pose estimation based on pre-trained convolutional neural network features. In
2015 IEEE International Conference on Robotics and Automation (ICRA), pp.
1329–1335.

Simonyan, K. and A. Zisserman (2015). Very deep convolutional networks for
large-scale image recognition.

Srivastava, G. and R. Srivastava (2019). Salient object detection using background
subtraction, gabor filters, objectness and minimum directional backgroundness.
Journal of Visual Communication and Image Representation 62, 330 – 339.

Sudharshan, D. P. and S. Raj (2018). Object recognition in images using convo-
lutional neural network. In 2018 2nd International Conference on Inventive
Systems and Control (ICISC), pp. 718–722.

Sutskever, I., J. Martens, G. Dahl, and G. Hinton (2013, 17–19 Jun). On the
importance of initialization and momentum in deep learning. In S. Dasgupta
and D. McAllester (Eds.), Proceedings of the 30th International Conference on
Machine Learning, Volume 28 of Proceedings of Machine Learning Research,
Atlanta, Georgia, USA, pp. 1139–1147. PMLR.

Szarvas, M., A. Yoshizawa, M. Yamamoto, and J. Ogata (2005). Pedestrian de-
tection with convolutional neural networks. In IEEE Proceedings. Intelligent
Vehicles Symposium, 2005., pp. 224–229.

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich (2015, June). Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

Taghi Zadeh, M. M., M. Imani, and B. Majidi (2019). Fast facial emotion recogni-
tion using convolutional neural networks and gabor filters. In 2019 5th Confer-
ence on Knowledge Based Engineering and Innovation (KBEI), pp. 577–581.

Viola, P. and M. Jones (2001). Rapid object detection using a boosted cascade of
simple features. In Proceedings of the 2001 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. CVPR 2001, Volume 1, pp. I–I.

Wang, J., J. Lu, W. Chen, and X. Wu (2015). Convolutional neural network for
3d object recognition based on rgb-d dataset. In 2015 IEEE 10th Conference
on Industrial Electronics and Applications (ICIEA), pp. 34–39.

85

Wu, K., E. Wu, and G. Kreiman (2018). Learning scene gist with convolutional
neural networks to improve object recognition. In 2018 52nd Annual Conference
on Information Sciences and Systems (CISS), pp. 1–6.

Xu, X., A. Dehghani, D. Corrigan, S. Caulfield, and D. Moloney (2016). Convolu-
tional neural network for 3d object recognition using volumetric representation.
In 2016 First International Workshop on Sensing, Processing and Learning for
Intelligent Machines (SPLINE), pp. 1–5.

Yao, H., L. Chuyi, H. Dan, and Y. Weiyu (2016). Gabor feature based convolutional
neural network for object recognition in natural scene. In 2016 3rd International
Conference on Information Science and Control Engineering (ICISCE), pp.
386–390.

Zhi, S., Y. Liu, X. Li, and Y. Guo (2017). Lightnet: A lightweight 3d convolutional
neural network for real-time 3d object recognition. In Proceedings of the Work-
shop on 3D Object Retrieval, 3Dor ’17, Goslar, DEU, pp. 9–16. Eurographics
Association.

Zulkeflie, S. A., F. A. Fammy, Z. Ibrahim, and N. Sabri (2019). Evaluation of
basic convolutional neural network, alexnet and bag of features for indoor object
recognition. International Journal of Machine Learning and Computing 9.

86

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	DEDICATION
	CONTENT
	Introduction
	Literature Review on CNNs and Gabor Filters
	Gabor Filter
	Convolutional Neural Network
	Gabor and CNN

	Methodology
	Gabor Initialization and Control Group
	Random Weight Initialization
	Random Initialization with a Gabor Filter on Each Channel
	Repeated Gabor Filter on All Channels

	Datasets
	Cats Vs Dogs Version-1.0
	CIFAR-10 Version-3.0.2
	CIFAR-100 Version-3.0.2
	Caltech 256 Version-2.0
	Stanford Cars Version-2.0
	Tiny Imagenet

	Architectures
	Cats vs Dogs
	CIFAR-10
	CIFAR-100
	Caltech 256
	Stanford Cars
	Tiny Imagenet

	Loss Functions
	Cats vs Dogs
	CIFAR-10
	CIFAR-100
	Caltech 256
	Stanford Cars
	Tiny Imagenet

	Success Metrics
	Accuracy
	AUC
	Loss
	Epoch

	Experiments
	Multiple Experiments with Same Gabor Size and Same Image Size
	Rigid/Static Gabor Filters vs Trainable Gabor Filters
	Different Gabor Size

	Results and Discussion
	Multiple Experiments With Same Gabor Size and Same Image Size
	Fully-trained Models
	Gabor Initialized CNN Constrained to Maximum Accuracy Epoch
	Gabor Initialized CNN Constrained to Minimum Loss Epoch

	Rigid/Static Gabor Filters vs Trainable Gabor Filters
	Effect of Different Kernel Size and Image Size
	Cats vs Dogs
	CIFAR-10
	CIFAR-100
	Caltech 256
	Stanford Cars
	Tiny Imagenet

	Conclusion
	Future Work

	APPENDICES
	APPENDIX Code
	Gabor Filters Generation
	Visualization of Gabor Filters
	Random Gabor Filter on All Channels of Receptive Convolutional Layer
	Repeated Gabor Filter on the 3 Channels of Receptive Convolutional Layer

	BIBLIOGRAPHY

