
ABSTRACT

Poisson Regression Models for Interval Censored Count Data

Sydeaka P. Watson, Ph.D.

Chairpersons: John W. Seaman, Jr., and James D. Stamey

In this dissertation, we develop Bayesian models for interval censored Poisson

counts in the presence of zero inflation and missing data. As a motivating example,

we consider data arising from a Human Immunodeficiency Virus (HIV) vaccine trial

featuring imprecise counts, missing data, and an abundance of values which are either

exactly observed to be zero or are left censored. We compare frequentist and Bayesian

generalized linear mixed models of the lower limits of the intervals when the data

contain no missing values. We then propose a likelihood which models the lower and

upper limits of the observed intervals and accomodates zero inflation. Next, we present

a simulation study comparing models of the intervals or lower limits to the precise count

models. Finally, we apply the model of interval-censored Poisson counts to the HIV

data and discuss the conclusions that are drawn from each analysis.
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CHAPTER ONE

Introduction

1.1 Introduction

In this dissertation, we develop Bayesian models for interval censored Poisson

counts in the presence of zero inflation and missing data. As a motivating example,

we consider data arising from a Human Immunodeficiency Virus (HIV) vaccine trial

featuring imprecise counts, missing data, and an abundance of values which are either

exactly observed to be zero or are left censored. We compare frequentist and Bayesian

generalized linear mixed models of the lower limits of the intervals when the data con-

tain no missing values. We then propose a likelihood which incorporates the lower

and upper limits of the observed intervals and accomodates zero inflation. Next, we

present a simulation study comparing models of the intervals or lower limits to the

precise count models. Finally, we apply the model of interval-censored Poisson counts

to the HIV data and discuss the conclusions that are drawn from each analysis.

In Chapters 1 and 2, we examine the frequentist generalized linear mixed model

of the lower limits of the HIV immune response counts as presented in Santra et al.

(2010). This analysis did not include cases with incomplete observations. We graphi-

cally demonstrate the potential selection bias introduced when analyzing the data using

only the complete cases. We build an analogous Bayesian model of the lower limits

and compare the parameter estimates and inference to those obtained via maximum

likelihood estimation.

In Chapter 3, we present a model introduced in Pruszynski (2010) for a single

inverval censored Poisson count. We then extend this model to a collection of indepen-

dent and identically distributed intervals around Poisson counts. We further extend

1



this model to a regression in which the Poisson count in each interval has a rate pa-

rameter that depends on a covariate vector and a set of regression coefficients.

In Chapter 4, we conduct a simulation study of the interval censored Poisson

regression models. The data generation method is designed to produce data of similar

form to the HIV example dataset. Given binary covariate values and known regression

coefficients, our algorithm converts them to Poisson rates according to a log linear

model, generates Poisson counts, and generates an interval around each count. The

generated data have varying maximum interval widths and proportions of left censored

observations. N = 500 datasets generated in this fashion are simultaneously analyzed

according to four Bayesian models characterized by the type of response used: (i) lower

limit of the interval censored observation, (ii) precisely measured count, (iii) interval

censored count, and (iv) interval censored count in a mixture model to accommodate

zero inflation.

In the simulation study, we find that our proposed models of interval censored

data give more accurate and precise estimates of the regression coefficients in both

fixed and mixed effect models. Both interval censoring models give parameter esti-

mates with bias that more closely resembles the bias observed in the precise count

models. Accounting for zero-inflation in the interval censoring model appears to effec-

tively decrease bias. In the latter part of Chapter 4, we revisit the HIV example data

and investigate whether modeling the intervals has any effect on inference regarding

vaccine effects.

We finish the present chapter with a detailed look at various features of the HIV

vaccine studies used to illustrate methods in the rest of the dissertation. We consider

the experimental design, method of data collection, nature of interval censoring, and

missing T cell data. We graphically demonstrate the potential selection bias intro-

duced when analyzing the data using only the complete cases. We also present results

from Barouch et al. (2010), another study comparing the same vaccines under similar

2



experimental conditions, including two of the same vaccines and one of the proteins

studied in Santra et al. (2010). The data in this study were interval censored counts

and featured no missing data. A priori, we expect to arrive at the same conclusions

regarding vaccine effects in in Santra et al. (2010) as we obtain in Barouch et al. (2010):

the mosaic vaccine produces a higher immune response than the CON-S vaccine, and

this enhanced effect is more prominent among CD8+ T cell responses than CD4+ T

cell responses.

The study in Santra et al. (2010) compares two HIV vaccine strategies addressing

genetic diversity: HIV-1 global CON-S envelope sequence (CON-S) (Santra et al., 2008)

and polyvalent vaccine antigens (mosaics) (Fischer et al., 2007). Construction of the

CON-S vaccine begins with an alignment of available M-group HIV-1 gene sequences

and forms a new sequence containing the most prevalent amino acid at each position.

Mosaic proteins are assembled using a computational method that creates a vaccine

optimized to cover the largest possible number of T cell epitopes for a given population

of HIV-1 strains. The appendix includes a detailed description of the vaccine designs.

Fischer et al. (2007) compared mosaic and CON-S vaccines to all known HIV-1

strains and counted the number of epitopes recognized by each vaccine. Their study

predicted a higher degree of epitope recognition for the mosaic group. Separate exper-

imental studies of mosaics in mice (Kong et al., 2009) and CON-S in monkeys (Santra

et al., 2008) showed that each vaccine produced higher immune responses than control

groups vaccinated with a single HIV strain.

Two recent studies were designed to compare the relative number of immune re-

sponses elicited when cells harvested from vaccinated animals were exposed to various

HIV-1 strains. Specifically, the goal of each study was to determine if animals given

the mosaic vaccine have an advantage over those given the CON-S vaccine. The data

in Barouch et al. (2010) and Santra et al. (2010) were analyzed using generalized lin-

ear mixed models for Poisson counts, controlling for vaccine type (mosaic or CON-S),

3



protein type (Gag, Env, Pol in Barouch et al. and Gag, Nef in Santra et al.), T cell

type (CD4 or CD8), and random animal effect.

The method of data collection used in Santra et al. (2010) yields counts that

are imprecisely measured. In an ELISPOT assay (Miyahira et al., 1995), cells from

vaccinated subjects are exposed to fragments of a given HIV-1 strain, or peptides. The

level of the subject’s immune response is measured by the number of the subject’s T

cells which recognize the stimulus and signal other cells to attack the intruder. Due to

cost and time constraints and a limited number of cells available for testing from each

animal, it is not possible to consider all relevant peptides. Instead of testing all peptide

sequences of length 9 (or 9-mers) as in the ideal case, Figure 1.1 illustrates an HIV-1

strain (top) which is segmented into smaller peptide sequences of length 15 overlap-

ping by 10 amino acids. Testing this collection of 15-mers may not yield precise counts

of the the numbers of peptides producing positive immune responses. It is not clear

whether two consecutive positively responding peptides react independently or if the

two reactions correspond to a single 9-mer in their overlap. The true count is greater

than or equal to a conservative score which counts consecutive positively responding

peptides as a single positive. The count is also less than or equal to the maximum

possible count which is realized if no positive reactions occured in the overlaps. Thus,

the data are interval censored. Santra et al. modeled the minimum number of posi-

tively reacting epitopes in a generalized linear mixed Poisson model. As we shall see in

Chapter 4, this is generally a conservative approach, and can be improved by modeling

the interval censoring.

The bar graphs in Figure 1.2 show the minimum number of positively reacting

epitopes per strain per animal for all subjects in the Santra et al. study. Animals whose

IDs are marked with an asterisk did not have a sufficient number of cells available for

testing whether the responses should be classified as CD4 or CD8 T cells. While the

total number of positive responses per strain is known for all subjects, the number
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Figure 1.1: Overlapping peptides: This figure illustrates a fragmentation of an HIV-1
strain (top) into peptides 15 amino acids long, overlapping by 10.

Figure 1.2: Minimum number of positively reacting epitopes for each of ten strains from
clades A (A1, A2), B (B1, B2), C (C1, C2, C3, C4), and G (G1, G2) for all subjects,
ordered by decreasing median number of positives per animal. Information regarding
T cell type is not available for animals whose IDs are marked with an asterisk.

of CD4 (or CD8) responses is missing for seven animals. Preliminary results in both

studies suggest that vaccine effect is confounded by T cell type: mosaic outperforms

CON-S among CD8 T cells, with the opposite effect observed for CD4 T cells. In the

next section, we detail a generalized linear model for the complete cases which controls

for T cell effect.
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1.2 A Generalized Linear Model for Complete Cases

We now consider a generalized linear model controlling for T cell effect, analyzing

a restricted data set which includes the 14 complete cases from the sample of 21 animals.

Using only the complete cases, we model the number of immune responses as Poisson

counts in a generalized linear mixed model. Let response Yi,t be the minimum number

of positive T cell responses observed for subject i ∈ {1, 2, ..., n} and covariate level

t ∈ {1, 2, 3, 4}. Binary variables are used to describe the three main fixed effects:

x2i,t = Vaccine type (=1 for mosaic or 0 for CON-S), x3i,t = T-cell type (=1 for

CD8 or 0 for CD4), and x4i,t = region of the HIV-1 genome where the response was

elicited (= 1 for Gag or 0 Nef). Combinations of T cell and protein type determine

four covariate levels: CD4 and Gag (t = 1 : x3i,1 ≡ 0, x2i,1 ≡ 0), CD4 and Nef

(t = 2 : x3i,2 ≡ 0, x2i,2 ≡ 1), CD8 and Gag (t = 3 : x3i,3 ≡ 1, x2i,3 ≡ 0),

and CD8 and Nef (t = 4 : x3i,4 ≡ 1, x2i,4 ≡ 1). Two- and three-way interactions

(x5i,t = x2i,t ∗ x3i,t, x6i,t = x3i,t ∗ x4i,t, x7i,t = x2i,t ∗ x4i,t, x8i,t = x2i,t ∗ x3i,t ∗ x4i,t),

a random animal effect νi, and an overall intercept term (x1i,t ≡ 1) are also included

in the model. Let xi,t = (x1i,t, x2i,t, x3i,t, x4i,t, x5i,t, x6i,t, x7i,t, x8i,t)
′ denote the covariate

vector for subject i covariate level t, and let β = (β1, β2, β3, β4, β5, β6, β7, β8)
′ be the

corresponding vector of regression coefficients. Our primary interest is in the magnitude

and statistical significance of β2, the coefficient summarizing vaccine effect. The model

components are summarized in Table 1.1.

The data model is a log-linear fit of the Poisson rate with random animal effect;

that is,

Yi,t ∼ Poisson [λ (xi,t, νi)] , (1.1)

where

log [λi,t] = log [λ (xi,t, νi)] = x′i,tβ + νi (1.2)
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and

νi ∼ N(0, σ2
ν). (1.3)

Table 1.1: Binary covariates in equation (1.2)

Coefficients Covariates Terms
β1 x1 Intercept
β2 x2 Vaccine
β3 x3 T cell
β4 x4 Protein
β5 x2 ∗ x3 Vaccine ∗ T cell
β6 x3 ∗ x4 T cell ∗ Protein
β7 x2 ∗ x4 Vaccine ∗ Protein
β8 x2 ∗ x3 ∗ x4 Vaccine ∗ T cell ∗ Protein

Parameters in the log-linear model outlined in equations (1.1), (1.2), and (1.3) are

estimated through maximum likelihood estimation (Table 1.2) with the glmer function

as implemented in the lme4 package in R (R Development Core Team, 2010). Since the

interaction among vaccine, T cell, and protein types is likely to be nonzero (p =0.0174),

interpretation of the vaccine coefficient is problematic.

We continue our exploration of the vaccine effect by stratifying the data according

to T cell type, fitting either CD4 or CD8 T cell data in reduced models that include

Table 1.2: Parameter estimates in the full model.

Term Coeff. Estimate Std. Err. Pr(>|z|) lower.95 upper.95
(Intercept) β1 0.365 0.187 0.0515 -0.00239 0.732

Vacc β2 -0.148 0.268 0.581 -0.672 0.377
Tcell β3 -2.42 0.33 2.07e-13 -3.07 -1.78
Prot β4 0.0348 0.132 0.792 -0.224 0.293

Vacc:Tcell β5 1.36 0.389 0.000476 0.596 2.12
Vacc:Prot β6 0.817 0.181 6.37e-06 0.462 1.17
Tcell:Prot β7 1.47 0.374 8.52e-05 0.736 2.2

Vacc:Tcell:Prot β8 -1.05 0.442 0.0174 -1.92 -0.185
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only vaccine and protein effects. Let response Y4i,t and Y8i,t be the minimum numbers

of positive CD4 or CD8 responses observed for subject i ∈ {1, 2, ..., n} and covariate

level t ∈ {1, 2, 3, 4}, where

Y4i,t ∼ Poisson(λ4i,t) (1.4)

and

Y8i,t ∼ Poisson(λ8i,t). (1.5)

Then the corresponding log-linear models are

log [λ4i,t] = x1i,tβ41 + x2i,tβ42 + x4i,tβ43 + x7i,tβ44 + νi (1.6)

and

log [λ8i,t] = x1i,tβ81 + x2i,tβ82 + x4i,tβ83 + x7i,tβ84 + νi. (1.7)

Results of the fits to the separated CD4 and CD8 data are given in Table 1.3. The

vaccine and protein interaction is insignificant among CD8 counts (p =0.564), and the

vaccine effect is directly interpretable. Subjects treated with the mosaic vaccine have a

higher predicted CD8 immune response than those in the CON-S group (p =0.00503),

with e1.16 = 3.19 times as many positive responses expected for mosaics. Interpreting

the vaccine effect for CD4 responses is again complicated by the significant interaction

between vaccine and protein effects (p =6.36e-06).

We again stratify the data according to Protein type and analyze the resulting

subsets. Let response Y4gi,t and Y4ni,t be the minimum numbers of positive CD4 Gag

or Nef responses observed for subject i ∈ {1, 2, ..., n} and covariate level t ∈ {1, 2, 3, 4},

and let Y8gi,t and Y8ni,t be the analogous counts for CD8 T cell responses. The data

models are

Y4gi,t ∼ Poisson(λ4gi,t), (1.8)

Y4ni,t ∼ Poisson(λ4ni,t), (1.9)

Y8gi,t ∼ Poisson(λ8gi,t), (1.10)
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and

Y8ni,t ∼ Poisson(λ8ni,t). (1.11)

Then the corresponding log-linear models are

log [λ4gi,t] = x1i,tβ4g1 + x2i,tβ4g2 + νi, (1.12)

log [λ4ni,t] = x1i,tβ4n1 + x2i,tβ4n2 + νi, (1.13)

log [λ8gi,t] = x1i,tβ8g1 + x2i,tβ8g2 + νi, (1.14)

and

log [λ8ni,t] = x1i,tβ8n1 + x2i,tβ8n2 + νi. (1.15)

Results are given in Table 1.4. The intercept terms in these models represent

the effect of the reference vaccine group (CON-S), or x2i,t = 0. The coefficient of x2i,t

gives the increase or decrease in effect for the mosaic vaccine relative to the CON-S

group. Analyses of the CD4 Gag and Nef counts do not find evidence of significant

CON-S effect or difference between mosaic and CON-S response levels. While both

CD8 Gag and Nef lower limit analyses identify a CON-S vaccine effect, mosaic and

CON-S groups only significantly differ among CD4 Gag responses.

Findings of the lower limit analysis do not support the conclusions of prior

Table 1.3: Parameter estimates in mixed effect CD4 and CD8 models.

Subset Term Coeff. Estimate Std. Err. Pr(>|z|) lower.95 upper.95
CD4 (Intercept) β41 0.272 0.277 0.327 -0.272 0.816

Vacc β42 -0.212 0.395 0.591 -0.986 0.562
Prot β43 0.0348 0.132 0.792 -0.224 0.293

Vacc:Prot β44 0.817 0.181 6.36e-06 0.462 1.17

CD8 (Intercept) β81 -2.01 0.348 7.38e-09 -2.69 -1.33
Vacc β82 1.16 0.414 0.00503 0.35 1.97
Prot β83 1.5 0.352 1.97e-05 0.813 2.19

Vacc:Prot β84 -0.234 0.405 0.564 -1.03 0.561
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theoretical and experimenal studies of the mosaic and CON-S vaccines. For example,

Barouch et al. reported evidence of nonzero CON-S effect and higher response levels

for the mosaic vaccine group among CD4 T cells. Various factors may have contributed

to the conflicting conclusions. First, the method used to introduce the vaccines into

the animals in the Barouch’s study tends to elicit more CD8 T cell responses, while

more CD4 responses are produced in the Santra’s study. The analysis in Santra et al.

(2010) also does not take full advantage of the fact that the total number of responses

(i.e., the sum of the numbers of CD4 and CD8 responses) is known, resulting in a waste

of data and experimental resources.

Another important difference was in the samples. Barouch included 7 subjects in

each vaccine group. Santra assigned 11 subjects to each vaccine group, but exclusion

of incomplete cases reduced the sample size to 7 subjects per vaccine group. Although

the reduced study has the same sample size as Barouch, excluding these cases may

have introduced selection bias. The magnitudes of the signals for the excluded subjects

(Figure 2.4) are among the highest in the mosaic group and lowest in the CON-S group.

As indicated in Figure 1.2, the subjects with missing data had the highest median

number of positive reactives per animal. Thus, the model’s power to detect differences

between the vaccine groups is reduced substantially when these cases are excluded.

Table 1.4: Parameter estimates in mixed effect CD4/Gag model.

Subset Term Coeff. Estimate Std. Err. Pr(>|z|) lower.95 upper.95

CD4/Gag (Intercept) β4g,1 0.192 0.375 0.608 -0.543 0.927
Vacc β4g,2 0.554 0.526 0.293 -0.478 1.59

CD4/Nef (Intercept) β4n,1 0.336 0.197 0.0879 -0.0499 0.722
Vacc β4n,2 -0.115 0.28 0.682 -0.664 0.434

CD8/Gag (Intercept) β8g,1 -0.559 0.241 0.0203 -1.03 -0.0868
Vacc β8g,2 0.919 0.319 0.00398 0.293 1.54

CD8/Nef (Intercept) β8n,1 -2.26 0.483 2.91e-06 -3.2 -1.31
Vacc β8n,2 1.1 0.624 0.0767 -0.119 2.33
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Figure 1.3: The median number of spot forming cells (SFC) per strain per animal.

In Chapter 2, we examine the selection bias potentially introduced by excluding the

complete cases. Finally, all immune response counts in Barouch et al. (2010) and

Santra et al. (2010) were interval censored. In Chapter 4, we apply interval censored

Poisson regression models to the complete cases consider the impact these analyses

have on determination of vaccine effects.
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CHAPTER TWO

Bayesian Model for the Sum of Two Poissons with Missing Data

In Santra et al. (2010), immune system reaction to HIV-1 exposure may be clas-

sified as either a CD4 or CD8 T cell response. Although the total numbers of positive

responses are known for all subjects, researchers were not able to count the numbers

of each type of T cell response for some subjects. The animals with missing counts of

CD4 and CD8 responses were excluded from the non-Bayesian analysis, resulting in a

reduction in sample size and the model’s power to detect vaccine differences.

In this chapter, the responses are the lower limits of the interval-censored ob-

servations. The remaining sections of this chapter will proceed as follows. First, we

provide experimental details for two studies of the mosaic and CON-S vaccines. Sec-

ond, we compare results from the frequentist analysis in Chapter 1 to inference in an

analogous Bayesian model. Finally, we discuss the distribution of the magnitudes of

the responses, motivating the importance of modeling data for the entire collection of

subjects.

2.1 Studies

In the following subsections, we present preliminary results from Barouch et al.

(2010) and Santra et al. (2010) and discuss model considerations for the two studies.

Experimental details for both studies are provided in subsection 2.1.2.

2.1.1 Barouch et al. (2010) Study

Barouch et al. (2010) compared three vaccines: mosaic vaccine, CON-S vaccine,

and another vaccine which was optimized to protect primarily against HIV-1 strains in
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Figure 2.1: Barouch Study Results (Used with permission)

clade C. Primary focus was on eliciting T cell responses from the Gag, Pol, and Env

regions of HIV-1. The response, numbers of positively reacting peptides, were interval

censored counts. The lower limits of these intervals were modeled as Poisson counts

analyzed via a generalized linear mixed model with a random animal effect. The data

are summarized in Figure 2.1.

The responses are stratified according to T cell type, and the stacked bars

indicate the numbers of immune responses for the Gag, Env, or Pol regions for each

animal. Although the mosaic seems to yield more responses for each T cell type, the

advantage is enhanced among CD8 groups both overall and within the set of counts

corresponding to the Gag protein. The difference between overall counts for mosaic

and CON-S groups was detected by the Wilcoxon rank sum test among CD8 (p =

0.001) and CD4 (p = 0.003) counts.
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2.1.2 Santra et al. (2010) Study

The vaccines in Santra et al. (2010) were designed to promote peripheral blood T lym-

phocyte recognition of HIV-1 Gag and Nef genes. The study investigated the breadth

and depth of the immune response (co-authors Watson and Muldoon were the sta-

tistical analysts for this study). Breadth measures the number of 9-mers (peptides

9 amino acids long) of HIV-1 that are recognized by the immune system. A vaccine

with increased depth corresponds to elicitation of immune responses to more variants

(strains) of HIV-1.

To investigate, Santra et al. studied 15-mer peptides (overlapping by 11 amino

acids) that completely spanned the HIV-1 Gag and Nef genes. They synthesized 10

sets of HIV-1 Gag and Nef peptides from four clades (2 each from A, B, and G, and

4 from C). These variants were selected based on criteria that considered diversity of

the isolates and nation of origin within each clade, availability of the full length of

the sequence, how recently these isolates were found relative to the time of the study

design (all were sampled after 1999), and prevalence among recently sampled isolates.

Thirty rhesus monkeys were separated into three groups: 12 monkeys received the

mosaic vaccine, 12 received the consensus vaccine, and the remaining 6 monkeys were

given a placebo. The researchers chose a vaccine delivery mechanism which was appro-

priate for a vaccine known to produce both CD4+ and CD8+ T lymphocyte responses.

After the vaccine regimen, they measured the amount of Anti-Gag and Anti-Nef an-

tibody present at 2 and 4 weeks after the final boost using ELISA (enzyme-linked

immunosorbent assay) studies.

Next, they measured the breadth of the cellular immune response using a peptide-

stimulated interferon-γ (IFN-γ) enzyme-linked immunospot (ELISPOT) assay. This is

a popular technique in which the immune response to HIV-1 exposure is measured

ex-vivo (i.e., outside of the animal). Cells responding positively to the stimulus release
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cytokines which send a signal to other cells to encourage proliferation of T cells spe-

cific to the invader. Each well of the ELISPOT assay is coated with antibodies that

specifically attract the cytokine of interest in the study. After cells harvested from the

vaccinated subjects are added to the wells in the presence of small pools of (or single)

peptides from the HIV-1 Gag or Nef genes, they are left to incubate overnight. Dur-

ing this time, the cells release cytokines which are captured by the antibodies coating

the wells. When the cells and peptides are removed from the wells, other substances

(including another antibody specific for the same cytokineand a dye) are added. The

dye marks spots where the cytokine was released by each T cell. Thus, the number

of spot-forming cells (SFC) is a measure of the number of T cells which produced an

immune response. This number is a measure of the magnitude of the response for

a particular peptide stimulus. A positive response is defined as at least 55 SFC per

million cells and at least four times the background SFC response (i.e., in the absence

of a stimulus). The number of positive responses per strain per animal is a measure

of breadth. As discussed in Section 1.2, the counts are interval censored. A discussion

of the background measurements and the criteria for positivity is included in the ap-

pendix.

One animal in the Mosaic vaccine group (monkey ID #185) did not present an

immune response to any of the 10 HIV-1 strains it was exposed to. The biologists

deemed this a particularly peculiar outcome since they expected that, even in the ab-

sence of a vaccine, the animal’s immune system should have produced at least some

type of response. Therefore, data for this animal was excluded from the analysis until

further review.

For the remaining animals, we modeled the minimum number of immune re-

sponses as Poisson counts in a generalized linear mixed model and estimated the regres-

sion coefficients using maximum likelihood estimation. This model included Vaccine

type (Mosaic or CON-S), Protein type (Gag or Nef), and Vaccine/Protein interaction
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term as fixed effects with a random animal effect. The model was plagued with overdis-

persion, as the estimate of the dispersion parameter in the quasibinomial model was

much larger than 1 (McCullagh and Nelder, 1989). The overdispersion vanished when

the effect of T cell type (CD4 or CD8) and interactions of T cell type with Vaccine and

Protein effects were incoporated into the model. Controlling for T cell effect, however,

is only possible for the 14 animals having enough cells for the researchers to make this

T cell distinction.

In our approach, we develop an analagous Bayesian model for the complete cases

and confirm that the results are similar to those obtained in the frequentist analysis in

Santra et al. (2010). The bar graphs in Figure 2.4 illustrate immune response counts

per strain per monkey for all animals, with identification numbers for complete cases

marked with an asterisk. Mosaic appears to have an advantage over CON-S, but sta-

tistical significance of the vaccine effect will be formally investigated in our Bayesian

model.

2.2 Models

The data model outlined in equations (1.1), (1.2), and (1.3) was the basis of

the frequentist analysis of the HIV data. To estimate the parameters in a Bayesian

framework, we employ diffuse normal prior distributions on the regression parame-

ters, assuming a priori independence. The random effect is also assumed normally

distributed with mean 0. That is,

β ∼ MVN(0, σ2
β · I) and (2.1)

σν ∼ Uniform(0, Bν). (2.2)

We follow Gelman (2006) in our use of uniform priors on the scale parameter of the

random effect. The initial choices of upper bound Bν and prior normal variance σ2
β

are arbitrary. We fit the posterior using Markov chain Monte Carlo methods (MCMC)
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implented in WinBUGS. Code for this model is in Appendix A.4. A posterior sensitivity

analysis (see Appendix A.2) finds Markov chain convergence and minimal effect on

posterior quantities of interest for σ2
β = 100 and Bν = 1. Here, we use the bugs

function (as implemented in the R2WinBUGS package in R). The analysis involves two

Markov chains, a thinning rate of 25 to counter the effects of observed autocorrelation,

a burn-in of 25,000 iterations (1,000 iterations retained after thinning) and 125,000

iterations (5,000 iterations retained after thinning).

2.3 Results: Complete Cases

The estimates of the regression coefficients and standard deviation of the random

effect term for both saturated models are presented in Table 2.1. The marginal poste-

rior densities of the model parameters for the Bayesian model are displayed in Figure

2.2. As expected, the posterior means and medians closely resemble the maximum

likelihood estimates.

The 95% confidence intervals and credible sets from the two models are given

for the regression parameters in Table 2.2. Intervals marked with an asterisk contain

0 as an indicator of significance under frequentist criteria. Figure 2.3 graphically il-

lustrates the intervals compared in Table 2.2. The interval estimates are very similar

Table 2.1: Maximum likelihood estimates, posterior means, and posterior medians

MLE MLE Std Err Post Mean Post Median Post Std Dev
Intercept 0.365 0.187 0.41 0.412 0.107

Vacc –0.148 0.268 –0.187 –0.186 0.154
Tcell –2.425 0.33 –2.454 –2.441 0.342
Prot 0.035 0.132 0.038 0.038 0.148

Vaccine:Tcell 1.358 0.389 1.369 1.361 0.404
Vacc:Prot 0.817 0.181 0.808 0.807 0.203
Tcell:Prot 1.469 0.374 1.492 1.483 0.39

Vacc:Tcell:Prot –1.051 0.442 –1.052 –1.047 0.464
sigma 0.423 0.346 0.35 0.073
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Table 2.2: Interval Estimates of model parameters for the complete cases

predictor 95% Conf Interval 95% Cred Set
x0i = Intercept ( –0.01 , 0.73 ) * (0.2,0.61)
x1i = Vaccine type ( –0.68 , 0.38 ) * (–0.49,0.11) *
x2i = T-cell type ( –3.05 , –1.75 ) (–3.17,–1.84)
x3i = Protein type ( –0.22 , 0.29 ) * (–0.24,0.32) *
x4i = x1i × x2i ( 0.64 , 2.16 ) (0.63,2.19)
x5i = x2i × x3i ( 0.47 , 1.17 ) (0.78,2.28)
x6i = x1i × x3i ( 0.77 , 2.23 ) (0.42,1.2)
x7i = x1i × x2i × x3i ( –1.96 , –0.24 ) (–1.99,–0.18)
νi = Animal (0.21,0.48)

for all parameters except the intercept. The interval estimate of the intercept in the

frequentist model is considerably wider, and its lower limit is approximately equal to

zero.

Before assessing the magnitude of the vaccine effect, i.e., β1, we investigate

whether the 3-way interaction (Vaccine/Protein/T cell) is significant. Zero falls outside

of the intervals in both models, indicating that the interaction is statistically significant.

Both models produced similar point estimates of the standard deviation of the random

effect, and the associated credible set is centered near 0.42, the estimate obtained from

the frequentist analysis.

2.4 Magnitude of Responses

Next, we compare the magnitudes of the responses for the vaccine groups. The

bar graphs in Figure 2.4 summarizes the strength of the immune responses with the

median numbers of spot-forming cells (SFC) for all subjects for the 10 strains tested.

Excluding the incomplete cases (with IDs marked with asterisks) removes the strongest

mosaic responses and weakest CON-S responses. These animals also produced the high-

est number of responses among mosaics and lowest numbers of responses in the CON-S

group. This suggests that excluding these animals may have introduced selection bias.
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Figure 2.4: Median SFC measurements per strain for all subjects

We proceed with the data at hand, but are continuing to develop a model that will

allow us to incorporate the animals with incomplete data into the analysis.
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CHAPTER THREE

Interval Censored Poisson Regression

3.1 Introduction

Many studies feature an outcome of interest which is summarized by a single

count observation. Popular models for such data include the Poisson, binomial, and

negative binomial distributions as appropriate. When it is not possible to precisely

measure these counts, we may alternatively observe that the true count lies within an

interval with probability 1. These imprecise measurements are known as censored data.

A count is left-censored if the true value y is known to lie below a given value. For

example, we may observe that 0 ≤ y ≤ c, where c is known. If the count is known to lie

above a given value c, for example, c ≤ y ≤ n (or < ∞, as appropriate), the data are

right-censored. These types of censoring intervals are bounded on on one side by the

extrema of the support of the respective distribution. If the true count is known with

probability 1 to lie between two values that do not necessarily coincide with the mini-

mum or maximum of the support (e.g., c1 ≤ y ≤ c2), the data are interval-censored.

Models of left or right censored Poisson regression models have been extensively

studied. For example, see Famoye and Wang (2004) and Terza (1985). Although liter-

ature concerning interval censored count data regression models is sparse, researchers

have analyzed data of this type in many ways. One method involves dichotomization of

left or right censored data into positive and negative categories (Ekanem et al., 1983).

Others estimate the true count using one of the conventional imputation methods such

as the EM algorithm or multiple imputation (Rubin, 1987). The statistical software

package Stata offers the intreg function (Long and Freese, 2006) which models inter-
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val censored responses in a regression context. The technique samples from a normal

distribution which is truncated to the censoring limits, and it assumes normal errors.

A simple approach to handling this type of data is to use the lower or upper

limit of the interval censored count as a substitute for the true count and proceed with

standard univariate count data methods implemented in statistical software. However,

this method (and the others discussed above) discards valuable information about the

data and reduce the power of the model’s ability to detect significant effects. In an

HIV-1 vaccine study, for example, analyses of lower limits may conclude a lack of a

significant vaccine effect when, in fact, there is one.

Pruszynski (2010) provides a full development of a likelihood for θ given a sin-

gle interval censored count observation arising from a Poisson(θ) process. Pruszynski

introduced the likelihood and posterior distribution under a gamma prior for θ. Al-

though not considered in Pruszynski (2010), the extension of this model to a collection

of n independent intervals from the same process is immediate: the likelihood given the

n intervals is the product of the individual likelihoods, and the posterior distribution

for θ given the collection of intervals is of similar form. This model can be further

extended to interval-censored Poisson regression. That is, we can model n interval

censoring limits of independent counts arising from Poisson processes with mean pa-

rameters θi ≡ θ(xi,β) that depend on a q × 1 vector of regression coefficients β and

individual q × 1 covariate vectors xi, i = 1, ..., n. For a one-to-one, differentiable link

function g(·), the linear fixed effect model of the data is described by g(θi) = x′iβ.

In this chapter, we provide a full development of various interval-censored Poisson

likelihoods. First, we present the interval-censored Poisson single observation likelihood

introduced in Pruszynski (2010). We discuss an extension of this model to accomodate

multiple independent observations from the same underlying Poisson process. Third,

we propose a Bayesian model for interval censored fixed effect regression. Feasibility

of parameter estimation and proposed restrictions on the amount of censoring are dis-
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cussed. We further extend the regression model to include mixed effects. Finally, we

revisit the HIV vaccine example and apply the proposed models of the interval-censored

counts.

3.2 Likelihood Given a Single Observed Interval

In this section, we consider properties of the interval-censored Poisson likelihood

for Poisson rate θ given a single observed interval. In the frequentist paradigm, we

derive maximum likelihood estimates and likelihood-based interval estimates. Bayesian

properties of the likelihood derived in Pruszynski (2010) are reviewed.

3.2.1 Interval-Censored Poisson Distribution

Let Y ∼ Poisson(θ) be a count with unknown true value. Suppose that it is

interval-censored, so that the true value of Y is observed to lie between positive integers

j and k, j ≤ k, with probability 1. The probability distribution function and cumulative

distribution function of the exactly observed data are, respectively

f(y|θ) = P (Y = y|θ) =
θye−θ

y!

and

F (y|θ) = P (Y ≤ y) =

y∑
t=0

e−θθt

t!
=

Γ(y + 1, θ)

y!
,

where Γ(a, θ) =
∫∞
θ
ta−1e−tdt is the incomplete gamma function. Writing the proba-

bility that Y ∈ [j, k] as a function of θ produces the interval-censored data likelihood

function for θ, or

L(θ|j ≤ y ≤ k) =
k∑
y=j

θye−θ

y!
.
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Figure 3.1: Plot of the likelihood given (j, k) pairs (0,3), (3,5), (4,6), and (1,7). Maxi-
mum likelihood estimates are shown when they exist.

3.2.2 Regularity of the Interval-Censored Likelihood

Regularity of the likelihood is directly related to the type of interval observed.

For example, consider interval censored observations from a Poisson(θ) process. Figure

3.1 below gives four example plots of the likelihood function for (j, k) pairs (0,3), (3,5),

(4,6), and (1,7). The black points on the curves, if present, show where the likelihoods

are maximized. The graph of the likelihood function is irregular with undefined maxi-

mum likelihood estimate for the left-censored case of j = 0, k = 3. That is, the form of

the likelihood does not feature the approximately quadratic shape desired for maximum

likelihood estimation and use of asymptotic results typically needed for construction

of 95% confidence intervals. Other curves in Figure 3.1 represent the likelihoods for θ

given observed intervals (3, 5), (4, 6), or (1, 7), respectively. Maximum likelihood esti-

mates exist for these regular likelihoods and are shown. For example, given that the

unknown count is observed to lie in interval (3, 5), the MLE for theta is 3.91.
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3.2.3 Statistical Inference in the Frequentist Paradigm

The probability characterizing the likelihood can be written as a difference of two

cumulative probabilities: P (j ≤ Y ≤ k) = P (0 ≤ Y ≤ k) − P (0 ≤ Y ≤ j − 1). This

suggests the following alternative formulation of the likelihood:

L(θ|j ≤ y ≤ k) =
k∑
y=j

θye−θ

y!

=
k∑
y=0

e−θθy

y!
−

j−1∑
y=0

e−θθy

y!

=
Γ(k + 1, θ)

k!
− Γ(j, θ)

(j − 1)!
.

This formulation facilitates differentiation of the likelihood for the purposes of max-

imum likelihood estimation. The derivative of the incomplete gamma function with

respect to its second argument is

∂Γ(a, θ)

∂θ
= −e−θθa−1.

The first derivative of the likelihood with respect to θ is

dL(θ|j ≤ y ≤ k)

dθ
= −e−θ

(
θk

k!
− θj−1

(j − 1)!

)
= −e−θ

(
(j − 1)!θk − k!θj−1

k!(j − 1)!

)
.

Then the MLE for θ given a single observed interval (j, k) is derived as follows. The

likelihood equation is

−e−θ̂
(

(j − 1)!θ̂k − k!θ̂j−1

k!(j − 1)!

)
= 0,

which may be written as

(j − 1)!θ̂k − k!θ̂j−1 = 0

or

(j − 1)!θ̂k = k!θ̂j−1.
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Taking logs, we have

log[(j − 1)!] + k log
[
θ̂
]

= log[k!] + (j − 1) log
[
θ̂
]

or

log
[
θ̂
]

(k − j + 1) = log[k!]− log[(j − 1)!]

which implies

log
[
θ̂
]

=
log[k!/(j − 1)!]

(k − j + 1)
.

Solving for θ̂ yields

θ̂ =

[
k!

(j − 1)!

]1/(k−j+1)

. (3.1)

The second derivative of the likelihood is

d2L(θ|j ≤ y ≤ k)

dθ2
= e−θ θj−2

[
j − 1− θ
(j − 1)!

+
θk−j+1(θ − k)

k!

]
.

The second derivative evaluated at θ̂ is

d2L(θ|j ≤ y ≤ k)

dθ2

∣∣∣∣
θ=θ̂

= e−θ̂ θ̂j−2

[
j − 1− θ̂
(j − 1)!

+ θ̂k−j+1 θ̂ − k
k!

]

= e−θ̂ θ̂j−2

j − 1− θ̂
(j − 1)!

+

{[
k!

(j − 1)!

]1/(k−j+1)
}k−j+1

θ̂ − k
k!


= e−θ̂ θ̂j−2

[
j − 1− θ̂
(j − 1)!

+
θ̂ − k

(j − 1)!

]

= e−θ̂ θ̂j−2

[
j − 1− θ̂ + θ̂ − k

(j − 1)!

]

= e−θ̂ θ̂j−2
[
j − 1− k
(j − 1)!

]
,

which is negative since j − 1 < k. Thus, equation (3.1) yields a maximum. This MLE

is not defined given a left-censored interval (i.e., for j = 0).
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3.2.4 Statistical Inference in the Bayesian Paradigm

Pruszynski (2010) proposed a Gamma(α, β) prior distribution for θ. The resulting

posterior distribution for θ given the interval censored observations is

π(θ|j ≤ y ≤ k) =

[
k∑
y=j

θye−θ

y!

][
βα

Γ(α)
θα−1e−βθ

] [
1

m(j, k)

]

=

[
1

m(j, k)

]
βα

Γ(α)

k∑
y=j

θy+α−1e−θ(β+1)

y!
,

where

m(j, k) =

∫ ∞
0

[
k∑
y=j

θye−θ

y!

][
βα

Γ(α)
θα−1e−βθ

]
dθ

=
βα

Γ(α)

k∑
y=j

Γ(y + α)

(β + 1)y+αy!
.

Because this posterior is available in closed form, we may directly sample from this

distribution.

3.3 Likelihood Given Multiple Observed Intervals

Let {Yi}, i = 1, ..., n, be a collection of independent Poisson-distributed random

variables with mean θ, such that Yi ∈ [ji, ki] with probability 1, where ji and ki are

positive integers and ji < ki. Then the interval-censored data likelihood function for θ

is

L(θ|{ji ≤ yi ≤ ki}ni=1) =
n∏
i=1

ki∑
yi=ji

θyie−θ

yi!

= e−nθ
n∏
i=1

ki∑
yi=ji

θyi

yi!
.
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3.3.1 Regularity of the Interval-Censored Likelihood

As in the single observation case, regularity is directly related to the nature

of censoring observed. The likelihood plots in Figure 3.2 illustrate this relationship.

For example, given 2 pairs of left censored intervals (0,3) and (0,4), the likelihood is

irregular, with a shape similar to that seen in the case of a single observed left censored

interval. Maximum likelihood estimation is not defined for θ given a set of intervals

which are all left censored. Another likelihood graph for a pair of intervals including

one left censored (0, 3) and one interval censored observation (3, 5) is shown. This

curve features a regular likelihood and a unique maximum likelihood estimate.

A third likelihood plot is given for four pairs: three left-censored [(0,3), (0,4)

Figure 3.2: Likelihood plots for θ given multiple observations.

(0,5)], and one interval censored, (3,5). The likelihood is still regular, even when there

is only one interval which is not left-censored. A fourth graph of three non-left censored

observations is also shown, also featuring a regularlikelihood. Although we have not
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proven this mathematically, this illustration suggests conditions under which maximum

likelihood estimation is possible in this extension of Pruszynski’s model.

3.3.2 Statistical Inference in the Frequentist Paradigm

The log-likelihood function is

l(θ|{ji ≤ yi ≤ ki}ni=1) = −nθ +
n∑
i=1

log

{
ki∑

yi=ji

θyi

yi!

}
.

The first derivative of the log-likelihood function with respect to θ is

dl(θ|{ji ≤ yi ≤ ki}ni=1)

dθ
= −n+

n∑
i=1

∑ki
yi=ji

yiθ
yi−1

yi!∑ki
yi=ji

θyi
yi!

.

Differentiating the log likelihood yields a rational polynomial expression. A closed-form

solution of the resulting likelihood equation is not apparent, even given an alternative

formulation with the incomplete gamma function as in the single observation case. In

the absence of a closed form solution, we use numerical optimization procedures to

obtain parameter estimates.

3.3.3 Statistical Inference in the Bayesian Paradigm

If we again specify a Gamma(α, β) prior distribution for θ, the posterior distri-

bution for θ given n interval censored observations is

π(θ|{ji ≤ yi ≤ ki}ni=1) ∝

[
n∏
i=1

ki∑
yi=ji

θyie−θ

yi!

] [
βα

Γ(α)
θα−1e−βθ

]

=
βα

Γ(α)

n∏
i=1

ki∑
yi=ji

θyi+(α−1)/ne−θ(β/n+1)

yi!
.

Unlike the single observation case, the posterior for θ given multiple observations is

not available in closed form. We use MCMC methods to study the features of this

posterior distribution.
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3.4 Fixed Effect Regression Given Multiple Observed Intervals

Let Y1, ..., Yn be a collection of n independent count observations from Poisson

processes with mean parameters θi = θi|xi,β, where θi is a function of a vector of

covariates xi and regression coefficients β = (β1, ..., βq)
′. Suppose that the counts are

interval censored such that Yi ∈ [ji, ki] with probability 1, where ji and ki are positive

integers and ji < ki, i = 1, ..., n. Let g(·) be a one-to-one, differentiable link function,

such that g (θi) = x′iβ. Then θi = g−1 (x′iβ). The probability distribution functions of

the exactly observed data are

f (yi|xi,β) = P (Yi = yi|xi,β) =
θi
yie−θi

yi!
. (3.2)

The interval-censored Poisson (ICP) regression likelihood function for β is

L (β |{ji ≤ yi ≤ ki}ni=1 , {xi}) =
n∏
i=1

ki∑
yi=ji

[g−1 (x′iβ)] yie−[g−1(x′iβ)]

yi!
. (3.3)

Given a multivariate normal prior structure on the regression coefficients, i.e.,

π(β) =
1

(2π)q/2|Σ|1/2
e−

1
2
(β−µ)′Σ−1(β−µ), (3.4)

the posterior distribution for β given the n interval censored observations is

π(β|{ji ≤ yi ≤ ki}ni=1) ∝

[
n∏
i=1

ki∑
yi=ji

[g−1 (x′iβ)] yie−[g−1(x′iβ)]

yi!

]

×
[

1

(2π)q/2|Σ|1/2
e−

1
2
(β−µ)′Σ−1(β−µ)

]
=

1

(2π)q/2|Σ|1/2
n∏
i=1

ki∑
yi=ji

Ui(yi) Vi, (3.5)

where

Ui(yi) =
[g−1 (x′iβ)]

yi

yi!
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and

Vi = e−g
−1(x′iβ)+ 1

2
(β−µ)′Σ−1(β−µ).

It may be difficult to accurately estimate the parameters when there is an abun-

dance of left censored observations (i.e., j = 0). We propose a modification to the

interval-censored regression likelihood which accomodates zero inflation. Each compo-

nent of the likelihood is a mixture of a point mass at zero and the interval-censored Pois-

son regression likelihood. For mixture probabilities p01, ..., p0n, 0 ≤ p0i ≤ 1, i = 1, ..., n,

and fixed effects regression likelihood contribution L(β|ji ≤ yi ≤ ki) for subject i, the

interval-censored Poisson regression likelihood with adjustment for zero-inflation (ICP

ZIP) is

LZIP (β |{ji ≤ yi ≤ ki} , {xi}) =
n∏
i=1

[p0i I(ji = 0) + (1− p0i) L(β|ji ≤ yi ≤ ki)] ,

(3.6)

where

L(β|ji ≤ yi ≤ ki) =

ki∑
yi=ji

[g−1 (x′iβ)] yie−[g−1(x′iβ)]

yi!
.

3.5 Mixed Effect Regression Given Multiple Observed Intervals

Let Y1, ...,Yn be a collection of n independent data vectors, where each vector

Yi = (Yi,1, ..., Yi,R)′ is a set of Poisson(θi) counts measured on subject i, i = 1, ..., n.

Suppose that the rate parameters can be represented by the generalized linear mixed

model

g(θi) ≡ g(θi|xi, zi,β,νi) = x′iβ + z′iνi, (3.7)

i.e., as functions of fixed effect covariates xi with coefficient vector β = (β1, ..., βq)
′, and

random effect covariates zi with coefficient vector νi = (νi1, ..., νi,v)
′. Further suppose
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that the counts are interval censored, such that Yi,r ∈ [ji,r, ki,r] with probability 1,

where ji,r and ki are positive integers and ji,r < ki,r, r = 1, ..., R. If g(·) is a one-to-

one, differentiable link function, then θi = g−1 (x′iβ + z′iνi). Hence the mixed effects

interval-censored Poisson (ICP) regression likelihood function for β is

L
(
β
∣∣∣{{ji,r ≤ yi,r ≤ ki,r; xi; zi}ni=1

}R
r=1

)
=

n∏
i=1

R∏
r=1

ki,r∑
yi,r=ji,r

U(yi,r) Vi, (3.8)

where

U(yi,r) =
[g−1 (x′iβ + z′iνi)]

yi,r

yi,r!

and

Vi = e−{[g−1(x′iβ+z′iνi)]+ 1
2
(β−µ)′Σ−1(β−µ)}.

If we again specify a multivariate normal prior as in (3.4), the posterior distribution

for β given the n interval censored observations is

π(β|{{ji,r ≤ yi,r ≤ ki,r; xi; zi}ni=1}Rr=1) ∝ L
(
β
∣∣{{ji,r ≤ yi,r ≤ ki,r; xi; zi}ni=1}

R
r=1

)
π(β)

=
1

(2π)q/2|Σ|1/2
n∏
i=1

R∏
r=1

ki,r∑
yi,r=ji,r

U(yi,r) Vi. (3.9)

Given mixture probabilities p01, ..., p0n, we control for zero inflation in the mixed

effect regression model according to the following mixture model. The mixed effects

interval-censored Poisson regression likelihood with adjustment for zero-inflation (ICP

ZIP) is

LZIP
(
β
∣∣{{ji,r ≤ yi,r ≤ ki,r; xi; zi}ni=1}

R
r=1

)
=

n∏
i=1

R∏
r=1

[p0i I(ji,r = 0) + (1− p0i) Q(yi,r)] ,

(3.10)

where

Q(yi.r) =

ki,r∑
yi,r=ji,r

U(yi,r) Vi.
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3.6 HIV Example Data with Interval-Censored Poisson Regression

In this section, we revisit the HIV example dataset and apply our interval cen-

soring likelihoods to the complete cases. For all models, the data are analyzed via the

MCMC methods implemented in OpenBUGS. Code for this implementation is provided

in Appendix A.4. We discard the first 15,000 iterations, run the algorithm for 15,000

iterations after the burn-in period, and keep every tenth iteration to address autocorre-

lation issues. Other convergence diagnostics, including history plots and Gelman-Rubin

statistics presented no evidence that the chains failed to converge.

The saturated model, including the intercept, main effects, and all two-way and

three-way interactions, was introduced in equations (1.1), (1.2), and (1.3). Posterior

densities for the regression coefficients and random effect standard deviation are given

in Figure 3.3. The data appear to have updated the diffuse normal priors on the re-

gression coefficients. Most densities coincide, featuring similar shapes, variance, and

location. ICP ZIP densities of the intercept (β1), vaccine (β2), and vaccine/T cell in-

teraction (β4) terms are shifted right. The ICP ZIP model also gives smaller estimates

of the random effect standard deviation.

In Figure 3.4, we present 95% confidence intervals of the lower limit frequentist

model (black) and and credible intervals of the Bayesian lower limit, ICP, and ICP ZIP

models (red, green, and orange, respectively) are presented. Intervals for the lower limit

models approximately coincide for all coefficients. The maximum likelihood estimate

(0.42) of the random effect standard deviation is near the center of all credible intervals

for this parameter. Because the models agree that a significant vaccine, protein, T cell

interaction is present, we may only interpret the intercept term of this model. Here,

the intercept represents the effect at baseline levels of the three binary covariates, i.e.,

the effect of CONS vaccine for CD4 counts and Nef protein. Although the lower limit

models indicate that β1 is not significant, ICP and ICP ZIP suggest marginal sigifi-

cance.
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Estimated Poisson rates (Table 3.1 and Figure 3.5) are highest for ICP ZIP

for most vaccine, T cell, and protein combinations. Rates estimated in the simulation

study (Figures 4.3 and 4.8) are biased when all binary covariates are equal to 1. This

corresponds to the case of CD8 Gag counts in the Mosaic group, so interpretation of

this effect is problematic. On average, the estimated response rates of subjects treated

in the Mosaic vaccine tend to be slightly higher than the CONS vaccine groups.

We separate CD4 and CD8 T cell data and analyze them under the data

models introduced in equations (1.6) and (1.7), respectively. Each model includes an

intercept (β4,1, β8,1), vaccine (β4,2, β8,2) and protein (β4,3, β8,3) effects, and interac-

tion terms (β4,4, β8,4). Posterior densities (Figure 3.6) approximately coincide for all

regression coefficients except β4,1 where ICP and ICP ZIP densities are shifted right.

Credible intervals (Figure 3.7) for all models find that the interaction between vaccine

and protein effects is significant for CD4 and insignificant for CD8. All models agree

that the CD8 intercept, associated with Nef counts in the CONS group, is also signifi-

cant. Only the ICP ZIP model finds that the CD4 intercept is marginally significant.

Poisson rates estimated from the separate CD4 and CD8 models (Figure 3.8 and Table

3.1) are similar to the rate estimates in the saturated model.

Finally, we separate the data according to T cell and protein types as in equa-

tions (1.12), (1.13), (1.14), and (1.15). Intercepts (β4g,1, β4n,1, β8g,1, β8n,1) represent

CONS vaccine effect, and a single main effect (β4g,2, β4n,2, β8g,2, β8n,2) is the predicted

increase or decrease in effect for the Mosaic group relative to CONS. Curves in the

posterior density plots (Figure 3.9) feature more separation than the saturated and

CD4/CD8 models. ICP ZIP posteriors tend to be narrower and have modes located

at higher densities and shifted right of the other curves. For the CD4 Gag group, ICP

interval estimates (Figure 3.10) give stronger evidence of a significant intercept and

vaccine effects, suggesting nonzero CONS effect and non-trivial advantage for Mosaics

over CONS. Although the models suggest no vaccine group differences for the CD4 Nef
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group, the ICP ZIP is the only model indicating a nonzero CONS effect. All Bayesian

models find a significant advantage of Mosaics over CONS among CD8 Gag or Nef

groups and nonzero CD8 Nef CONS effect. Lower limit models suggest a marginally

significant effect for CD8 Gag group, while ICP and ICP ZIP models indicate that this

effect is zero.
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Table 3.1: Estimated Poisson rates for Santra et al. (2010) data

Model Vaccine Tcell Protein lower.lim.freq lower.limit ICP ICP.ZIP
Saturated CONS CD4 Gag 1.49 1.47 1.68 1.89

CONS CD4 Nef 1.44 1.43 1.61 1.70
CONS CD8 Gag 0.58 0.56 0.67 0.76
CONS CD8 Nef 0.13 0.12 0.13 0.15
Mosaic CD4 Gag 2.91 2.89 3.23 4.12
Mosaic CD4 Nef 1.24 1.24 1.33 1.63
Mosaic CD8 Gag 1.54 1.50 1.52 1.84
Mosaic CD8 Nef 0.43 0.43 0.41 0.52

CD4/CD8 CONS CD4 Gag 1.36 1.46 1.69 1.68
CONS CD4 Nef 1.31 1.41 1.62 1.61
CONS CD8 Gag 0.60 0.56 0.66 0.66
CONS CD8 Nef 0.13 0.12 0.13 0.13
Mosaic CD4 Gag 2.49 2.96 3.48 3.67
Mosaic CD4 Nef 1.06 1.26 1.41 1.50
Mosaic CD8 Gag 1.52 1.52 1.69 1.81
Mosaic CD8 Nef 0.43 0.43 0.44 0.48

Gag/Nef CONS CD4 Gag 1.21 1.49 1.69 1.91
CONS CD4 Nef 1.40 1.44 1.60 1.76
CONS CD8 Gag 0.57 0.57 0.66 0.76
CONS CD8 Nef 0.10 0.12 0.13 0.14
Mosaic CD4 Gag 2.11 2.87 3.47 4.17
Mosaic CD4 Nef 1.25 1.23 1.39 1.67
Mosaic CD8 Gag 1.43 1.52 1.67 1.87
Mosaic CD8 Nef 0.31 0.42 0.44 0.53
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3.6.1 HIV Example Summary

In our analysis of the interval censored HIV example data, conclusions from the

ICP ZIP model more closely resemble the results in the Barouch et al. (2010) study of

Mosaic and CONS vaccines and the theoretical comparison of these vaccines in Fischer

et al. (2007) than the results from the lower limit analysis in Santra et al. (2010). As

in those studies, we find that most CONS effects are nonzero, and the Mosaic vaccine

group generally gives a significantly higher response than CONS. In using this model,

however, we were forced to discard data associated with any subjects missing CD4/CD8

distinction. Selection bias is still a concern. We have also not addressed the fact that

we disregarded the total (CD4 + CD8) T cell counts which are known for all subjects.

Given the current parameterization of the model, these totals are sums of dependent

Poissons variates. Future analyses of this dataset will incorporate this dependence into

the likelihood. The Gibbs sampler in OpenBUGS does not allow distribution parameters

to depend on missing data, so we are not able to incorporate missing data into the ICP

or ICP ZIP model. We plan to use the full conditionals of the parameters to implement

a Gibbs sampler for ICP and ICP ZIP models and apply them to the HIV example

data.
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CHAPTER FOUR

Interval Censored Poisson Regression: Simulation Study

The purpose of this simulation study is to compare three candidate Poisson re-

gression models of imprecise measurements with a model of the precise counts. The

Bayesian model of the lower limits of the intervals was introduced in Santra et al.

(2010) and presented in Section 2.2. In Chapter 3, we proposed two Poisson regression

models of interval censored count data, one including an adjustment for zero inflation

in the lower limit (ICP ZIP), and one without (ICP). In the study, we demonstrate

that the lower limit model gives imprecise and inaccurate parameter estimates for the

design points tested. We also discuss whether adjusting for zero inflation improves

performance of the interval models. Datasets generated in the study include either

low, moderate, or extreme censoring widths, allowing us to investigate the impact that

observed interval widths have on model performance.

This chapter is organized as follows. In Section 4.1, we describe a simulation

study which formally compares models of the lower limits of interval-censored observa-

tions to the interval censored Poisson regression models developed in Chapter 3. Next,

in Section 4.2, we describe criteria under which we evaluate the models of interest.

Finally, in Section 4.3, we present results from the fixed and mixed effect models.

4.1 Simulation Design and Implementation

We begin this section with a description of the method used to simulate interval-

censored Poisson data for our simulation study. We also introduce the criteria used to

evaluate and compare the proposed interval censoring models with the model of the

lower limits. The structure of the data in the simulation study is, by design, similar to
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the HIV example data presented in the introduction. Let Yi be a precise count arising

from a Poisson(θi) process with binary covariates x1i, x2i ∈ {0, 1}, where i = 1, ..., n

index the n subjects in the study. Then the log-linear fixed effects model of the data is

log θi = β1 + β2x1i + β3x2i + β4x1ix2i. (4.1)

We evaluate the models in the context of small sample size (n = 30), as small samples

are common in HIV vaccine studies.

In a mixed effect model, precise counts Yij ∼ Poisson(θi) are associated with

subject i and replication j, where j = 1, ..., R, and R is the number of replications per

subject. Introducing the random effect νi ∼ N(0, σ2
ν) to (4.1), as in Section 1.1, yields

the following log-linear mixed effect model.

log θi = β1 + β2x1i + β3x2i + β4x1ix2i + νi. (4.2)

We set R = 10 in the simulated data sets.

The set of covariate vectors and the true value of the regression coefficient vector

completely specify the collection of expectations, θi, for all subjects. These θi are used

to simulate data according to the underlying Poisson process. Data are simulated using

regression vectors that feature (a) only insignificant (zero) effects or (b) all significant

positive or negative effects of various sizes. Table 4.6 gives the collection of regression

coefficient vectors considered in our study. In this chapter, we present results for

simulated data with β = (0.5, 0.5, 0.5, 0.5)′. Results for other coefficient vectors were

similar, with a few exceptions noted in Section 4.3.3. Summary plots for the remaining

coefficients are presented in the appendix. Mixed effect model data were generated

with random effect standard deviation σν = 0.5.

The mean of the simulated process must be considered in the selection of possible

interval widths for censoring. For example, an interval of width 9 (e.g., j = 1, k = 10)

for a process with mean 5 would render the censored datum useless. By contrast,

observing an interval of the same width, wtih j = 81 and k = 90 for a process with
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mean 85 may still be informative. Therefore, in our simulations, we varied the censoring

interval width according to the size of the true value of θ. Specifically, let w denote

the maximum amount of interval censoring allowed, computed as

w = dm ·mini {θi}e = dm ·mini {x′iβ}e, (4.3)

where m is a scalar multiple of the mean parameter in {0.5, 1.5, 2.5} and d·e denotes

the ceiling function. These three values define low, moderate, and extreme censoring

widths, respectively.

Our interval censored data mimic those that arise from an underlying Poisson

process. We simulate intervals given maximum allowable interval width w and mean

parameter θ as follows. First, generate a random variate x ∼ Poisson(θ). Next, gener-

ate a pair (h1, h2) of positive integers such that 0 ≤ h1+h2 ≤ w, h1 ∈ {0, ...,min(w, x)},

and h2 ∈ {0, ..., (w− h1)}. Then the simulated interval censoring limits are j = x− h1

and k = x+ h2.

Recall that the interval-censored Poisson likelihoods introduced in Pruszynski

(2010) exclude left-censoring (j = 0) due to irregularity. Poisson counts which are

exactly observed at x = 0 are not possible in such a construction and are excluded.

Sampling according to an algorithm which excludes left censored intervals generates

values from a zero-truncated Poisson process. We graphically illustrated (Figure 3.2)

regularity of the likelihood for θ given a set of censored intervals including at least

one observation which is not left-censored. Since approximately 61% of the observed

intervals in the HIV example data are left-censored (or exactly equal to zero), our fo-

cus is on the models’ relative performance in the presence of left-censoring. Thus, our

simulated datasets may include left censored intervals and/or values exactly observed

to be zero, but these cases may comprise no more than 70% of any dataset.
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4.2 Model Comparison

To ensure that the distributions of parameter estimates are directly comparable,

we model the same datasets using the four models. Posterior means serve as point

estimates for the parameters, and we also record 95% credible intervals and posterior

standard deviations for each parameter. The models are analyzed using MCMC meth-

ods as implemented in the OpenBUGS software. The code is provided in Appendix A.4.

We discard 1000 thinned burn-in iterations and save 5000 thinned samples after burn-

in with a thinning rate of 25. The prior distributions for the regression coefficients

were independent normal distributions centered at 0 with reasonably diffuse variances

(100).

Model selection is complicated by the different representations of the data in the

models we consider. In particular, we compare four models with different dependent

variables (i.e., lower limits, precise count, and two models of the observed intervals).

Most model selection criteria, including Akaike Information Criteria (AIC), Bayesian

Information Criteria (BIC), Deviance Information Criteria (BIC), and Bayes factors,

require that the compared models are used to analyze the same set of numeric values.

Although our two proposed ICP models are comparable using any of these criteria, this

limitation motivates our need to explore other ways to compare and contrast various

features of the four models simultaneously.

Point estimates are compared using smoothed kernel densities of the N = 500

recorded posterior medians under each model for each regression coefficient estimated.

In these graphs, approximately symmetric, unimodal curves with small variance sug-

gest more precise measurement. Distribution centers which are closer to the true value

used to simulate the data are consistent with higher accuracy.

Bias is another feature considered in our assessment of model accuracy. For any

given model and regression coefficient βk, the bias is βk − β̂k, where β̂k is the posterior

median associated with βk under the model. We illustrate the distribution of biases
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using boxplots. Boxplots that are centered near zero and with low interquartile differ-

ence are associated with more accurate measurement. Another measure of accuracy is

the expected bias which we estimate using the simulation average bias. Average bias is

summarized by error bars which are centered at the simulation mean bias and extend

to 1 average standard deviation of the bias in either direction.

Coverage of the 95% credible intervals is graphically summarized with shaded

error bars. These bars are centered at the simulation means of the posterior medians

and extend to the simulation means of the lower and upper 95% credible intervals.

Shaded boxes around the average posterior means and interval limits extend to 1 stan-

dard deviation of these averages in either direction.

We also compare the significance of the terms in the log-linear model. Signif-

icance is a frequentist concept which is adapted to test the hypothesis of a nonzero

regression coefficient in Bayesian models. In this manuscript, we use the term signif-

icant to refer to effects that are more likely to be nonzero given the model and data.

To assess significance of a given term, we record the proportion of times that zero is

included in 95% credible intervals corresponding to that term.

4.3 Simulation Study Results

In this section, we discuss the relative performance of lower limit, precise count,

and two interval censoring models. We analyze data generated according to the log-

linear fixed or mixed effect models in equations (4.1) and (4.2), respectively.

4.3.1 Fixed Effect Model Results

In Figures 4.1 - 4.5, we graphically summarize analyses of data generated from

the fixed effect model in equation (4.1). The first row of plots are the smoothed kernel

densities of N = 500 posterior medians estimating regression coefficients β1, β2, β3,
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and β4 respectively for data simulated from β = (0.5, 0.5, 0.5, 0.5)′. The curves corre-

spond to the lower limit (red), interval-censored (green), zero-inflated interval-censored

(orange), and precise (blue) models. Plots on this row are associated with data that

feature the lowest amount of interval censoring in our study. The maximum interval

width computed according to equation (4.3) with m = 0.5 is w = 1, so intervals in

the simulated datasets are allowed to have widths of 0 (i.e., precise measurement) or

1. Vertical solid lines mark the true value of the coefficient used to simulate the data.

Because the model features only binary covariates, the values of the coefficients

are interpreted relative to baseline levels of the two pairs of covariate groups. For ex-

ample, the intercept, β1, measures the baseline effect when covariate values associated

with β2 and β3 are zero. Of the four models, the mode of the density of simulation

posterior medians in the lower limit model of β1 is furthest away from the true value of

0.5. The closer proximity of the ICP mode to the truth indicates that this parameter

tends to be more accurately estimated under that model. The distribution of estimates

from the ICP ZIP model approximately coincide with the estimates from the model of

precise counts. This suggests that the ICP-ZIP estimates for the baseline treatment

group closely resemble those we would have obtained had we precisely measured the

counts. The distributions of estimates in the interval model are tighter around their

modes, indicating more precise estimation.

Posterior median distributions of main effect coefficients β2 and β3 and inter-

action coefficient β4 are given in the second, third, and fourth plots in the first row,

respectively. The curves do not feature the separation that we observe in distributions

of β1 esttimates. Modes of these distributions are located at the true value of 0.5.

Each set of curves appears to exhibit a similar degree of variability, although the lower

limit distribution appears to have slightly heavier tails. For this case of low interval

censoring, these plots suggest that imprecise measurement does not have a significant

impact on estimation of the main effects and interactions.
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Tables in the upper left corners of each plot give the percentage of replications

in the simulation in which a given coefficient is found to be significant in any of the

four models. Recall that significance of an effect is determined by the the exclusion

of 0 from 95% credible intervals. Intercepts were significant in 100% of the simulated

datasets under the precise and interval models, while only 86.2% were significant in

the lower limit model. The distributions of β2, β3, and β4 estimates are similar, so it

is not surprising that the four models tend to agree on significance (99.8% - 100%) for

these terms.

Rows 2 and 3 of Figure 4.1 display the posterior median distributions under the

four models given moderate (m = 1.5) and extreme (m = 2.5) amounts of censoring

in the simulated data, with maximum interval widths of w = 3 or w = 5, respec-

tively. Because the precise counts include no censoring (and, hence, no consideration

of increased interval width), the blue curves are identical for m = 0.5, 1.5, and 2.5.

Increasing interval widths in the simulated data appears to increase the variability in

the estimates in the interval and lower limit models. The effect is most substantial

for the lower limit model; the estimates are considerably less precise and less accurate,

and the distribution appears to be skewed left. The interval censoring model estimates

appear to be relatively stable when the intervals are wider.

The likelihood of significance is also affected by widening the interval widths in

the simulated data. The significance proportions for β1 decrease from 86.2% to 66%

and 62.4%, while 98.4% - 100% of the main effects and interaction term were found to

be significant under the precise and interval models. Again, we see that the ICP-ZIP

estimates are more consistent with the precise model estimates than those from the

lower limit and ICP models.

Bias of parameter estimates for data generated with β = (0.5, 0.5, 0.5, 0.5)′ is

graphically summarized by the plots in Figure 4.2 for low (left column), moderate

(middle), and extreme censoring (right). Above each parameter on the horizontal axis,
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we plot a group of error bars of the average bias (top row) or boxplots of raw bias

scores (bottom row) observed in the four models. The error bars are centered at the

arithmetic means of the N = 500 bias scores and extend in either direction to one sam-

ple standard deviation of the average biases. As in the posterior median distribution

curves, graphs associated with the precise count model are identical for all amounts

of censoring. Means and medians of bias for all coefficients in the precise models are

approximately zero. For the smallest interval widths, bias for β1 is mostly negative

and highly variable. Intercept bias is smallest in the ICP and ICP-ZIP models. The

model controlling for zero inflation appears to have a slight advantage in accuracy over

the ICP model and has a distribution that more closely resembles precise count model

bias. Bias distrbutions for β2, β3, and β4 are similar in the four models, with centers

near zero and exhibiting high variability. Increasing interval widths has more of an

effect on bias for the intercept term in the lower limit model than all others terms and

models; bias becomes more negative as widths become larger.

Using equation (4.1), we calculate four possible Poisson rates given four bi-

nary covariate pairs and true β = (0.5, 0.5, 0.5, 0.5)′ (Table 4.1). We also use posterior

medians β̂ = (β̂1, β̂2, β̂3, β̂4)
′ from each model to compute the rates estimated in each

run. Boxplots of the N = 500 results (Figure 4.3) are grouped by covariate value

(x1 = 0, x2 = 0), (x1 = 0, x2 = 1), (x1 = 1, x2 = 0), (x1 = 1, x2 = 1) for low, moderate,

and extreme censoring. Bias in the estimated Poisson rates exhibit similar behavior

as observed in the bias of the estimated intercept terms. The horizonal line marking

the true Poisson rate passes through the center of the rates estimated by the precise

count model. Most rates estimated from the lower limit model are negatively biased,

and increasing interval widths appears to introduce more bias in the rate estimates.

Estimated rates in the interval censoring models are closer to the precise count model.

The ICP ZIP rates most closely resemble the precise model rates for all pairs except for

(x1 = 1, x2 = 1) where they approximately coincide. Increasing interval widths appears
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Table 4.1: True poisson rates for β = (0.5, 0.5, 0.5, 0.5)′ in fixed effect model

X1 X2 θ|X1, X2,β
0 0 1.65
0 1 2.72
1 0 2.72
1 1 7.39

to have no significant effect in the ICP and ICP ZIP estimated rates: estimates are

similar for low, moderate, and extreme levels of censoring.

Bias boxplots and posterior median densities are used to compare the overall

behavior of the distributions of these quantities. In contrast, a scatterplot of posterior

medians of the precise model against those computed from the lower limit and inter-

val models (Figure 4.4) directly compares the estimates of the models from the same

simulated dataset. For any given model, an exact linear relationship (blue line) in

these plots indicates exact agreement with the corresponding estimate from the precise

count model. Overall, posterior medians in the lower limit and interval models appear

to linearly increase with those in the precise model, yet estimates from all models vary

considerably around the true value of 0.5. Three fairly distinct clusters of points ap-

pear in the intercept plots (left) for all interval censoring widths. As the interval widths

increase, correspondence between precise and lower limit posterior medians decreases.

Although most ICP and ICP ZIP intercept posterior medians are close to the identity

line, the disparity between the estimates and the precise model estimates increases

with wider interval censoring widths. For non-intercept terms, the plots do not reveal

any difference in predictive correspondence to the precise count model in the lower and

interval models.

Each group of shaded error bars in Figure 4.5 summarizes coverage of the

N = 500 95% posterior credible intervals for the regression coefficient indicated on

the horizontal axis and the four models in our study. These bars are centered at the
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simulation means of the posterior medians and extend to the simulation means of the

lower and upper 95% credible intervals. Shaded boxes around the average posterior

medians and interval limits extend to 1 standard deviation of these averages in either

direction. Most error boxes for the credible interval limits overlap with the error boxes

of the posterior medians, indicating a considerable amount of variability in the interval

estimates. On average, the true coefficient value is within 1 standard deviation of the

average posterior median for non-intercept terms. Precise and ICP ZIP posterior me-

dians are closer to the true value. The true intercept is higher than most of the upper

95% credible limits in the lower limit model, indicating poor coverage. ICP and ICP

ZIP models appear to have greater coverage, but this may be attributed to the wider

credible interval widths.

We also summarize 95% credible interval coverage and credible interval widths

in Tables 4.2 and A.2. Credible intervals from the precise model have the lowest aver-

age widths and provide approximately 93-95% coverage for all terms. Average credible

interval widths increase as count intervals in the simulated datasets incease in width

for the lower and ICP models, especially for the intercept term. Although the lower

limit credible intervals are wide, coverage is still very poor, decreasing from 39% with

low censoring to 15 or 13% for wider censoring widths. Coverage is very high (97-99%)

in the ICP ZIP models for all censoring widths, but this may be attributed to wider

credible interval widths.

4.3.2 Mixed Effects Model Results

Analyses of data generated from the mixed effects model (4.2) are summarized

in Figures 4.6 - 4.7 via plots of the posterior medians and biases observed under the

four models. For β = (0.5, 0.5, 0.5, 0.5)′, posterior median and bias distributions for

all coefficients (Figures 4.6 and 4.7) feature less dispersion than the analogous fixed

effects models (Figures 4.1 and 4.2). All distributions of precise count point estimates
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are centered at their true value and exhibit least variability. Estimates of β1 under the

lower limit model are negatively biased and are furthest away from the model of true

counts for all interval widths. Although the ICP model is consistently less biased than

the lower limit model, the ICP intercept biases are centered near zero. Controlling for

zero inflation appears to be effective in yielding estimates which are more consistent

with the precise count model. Estimates of β2, β3, and β4 are fairly accurate under

each of the four models. Surprisingly, the ICP estimates tend to be the least precise.

Increasing interval widths does not appear to have much of an affect on precision or

accuracy in any of the models. Nearly 100% of the estimates for each parameter under

the precise and interval models are significant. Wider interval widths were associated

with lower significance proportions in the lower limit model.

The estimated Poisson rates (Figure 4.8) for (x1 = 0, x2 = 0), (x1 = 0, x2 = 1),

and (x1 = 1, x2 = 0) behave similarly for mixed and fixed effects. Precise and ICP

model rates are centered at their true value, while the ICP and lower limit model

rates are negatively biased. However, for (x1 = 1, x2 = 1), even for the precise

model, estimated rates appear to be biased. This result is surprising due to the

low bias in the estimation of the coefficients in all models. We suspect that this

discrepancy may be attributed to induced priors. Specifying the multivariate nor-

mal for β in (2.2) induces a univariate normal prior on the log rate including only

fixed effects, as log θi|σ2
B ∼ Nq(x

′
iβ, σ

2
ν). Addition of the normally distributed ran-

dom effect similarly induces a univariate normal prior with larger variance, as in

log θi|σ2
B, σ

2
ν ∼ Nq(x

′
iβ, σ

2
B + σ2

ν), and the uniform prior on the random effect stan-

dard deviation introduces even more uncertainty.

Pairwise scatterplots of the posterior medians of the precise mixed model against

those in the lower limit and interval models for mixed effects are given in Figure 4.9.

Lower limit point estimates appear to linearly increase with precise estimates for all

terms and all simulated interval widths. The lower limit scatterplot of intercept es-
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timates is parallel to the identity line, suggesting that intercept estimates under this

model are biased by approximately the same amount. We observe this relationship

across all censoring widths. The linear relationship between the precise count model

and ICP or ICP ZIP model estimates is weak; their scatterplots have elliptictal shapes

approximately centered near the intersection of the reference lines at 0.5. This suggests

that although ICP and ICP ZIP model estimates are approximately centered at the

true values, parameters in these models are not precisely estimated.

In the plots summarizing average coverage of the N = 500 simulated 95%

credible intervals (Figure 4.10), most β2, β3, and β4 intervals appear to cover their

true values on average. The true value is within 1 standard deviation of the average

posterior medians of the precise and interval models for these terms, while only the

β4 interval in the lower limit model is near the truth. ICP and lower limit estimates

are negatively biased, with the true value located inside or above the upper limit error

box, respectively, with more negative bias in the lower limit model as censoring inter-

val widths increase. As in the fixed effects model, the ICP and ICP ZIP error boxes

overlap.

Tables 4.4 and 4.5 also summarize the coverage of the mixed effects models.

Credible intervals in the precise count model are narrowest and cover the true value

aproximately 100% of the time. Lower limit credible intervals are widest, and cover-

age is good (94-100%) for non-intercept terms and poor (0-4%) for the intercept. ICP

coverage for non-intercept terms range from 75% to 93%, but intercept coverage drops

to 58-75%. ICP ZIP coverage is higher for non-intercepts (89-95%) and intercepts (94-

95%). These tables do not suggest any systematic decrease in coverage as censoring

interval widths increase.
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4.3.3 Discussion

In the simulation study, we analyze simulated interval censored Poisson count

datasets with fixed or mixed regression models of either the precise counts, lower lim-

its, or the intervals. The results of this chapter correspond to data simulated from

true β = (0.5, 0.5, 0.5, 0.5)′ and estimate regression coefficients with medians of their

respective posterior distributions. For main effects β2 and β3 and interaction term β4,

average bias is approximately zero with high variance for all fixed effects models and

very low variance for mixed effects. ICP and ICP ZIP estimates of the intercept term

β1 feature less bias and more precision than the lower limit estimates. Using a mixture

ICP model to control for zero inflation appears to effectively pull estimates away from

0 and closer to the true value. Estimates from the interval models appear to be more

precise than lower limit models. Coverage is highest in the ICP ZIP models, but this

may be attributed to wider interval widths. Average estimated Poisson rates in the

ICP and ICP ZIP fixed effects models are closer to the true value than the lower limit

model, but these estimates tend to be negatively biased. We find similar results in the

mixed model for (x1 = 0, x2 = 0), (x1 = 0, x2 = 1), and (x1 = 1, x2 = 0). However, for

(x1 = 1, x2 = 1), estimated rates appear to be biased, even given the precise counts.

We arrive at the same conclusions regarding bias, precision, and coverage for most

of the other design points in our simulation study (Table 4.6). One notable exception

is the fixed effects model for data generated from β = (−0.5, 0.5, 0.5, 0.5)′. Results for

fixed and mixed effects models for this β are given in Appendix Section A.5. Posterior

median densities are very flat, suggesting that there was little updating from the dif-

fuse multivariate normal prior on β even when counts are precisely measured. Poisson

rates do not appear to be affected by the extreme variation in the posterior medians.

Here, 95% credible interval coverage is low despite the extremely wide credible interval

widths. We do not find similar issues in the analogous mixed effects models. This

may indicate that the log-linear fixed effects model is not a good fit to data having a
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negative baseline effect. To avoid the problems associated with a negative intercept,

we may consider coding the binary variables so that the hypothesized baseline is posi-

tive. We will continue to investigate the properties of the intercept term and develop a

modification to the ICP models which address the issues that arise when the baseline

effect is negative.
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Table 4.2: Coverage for lower limit and precise count fixed effects models and true β =
(0.5, 0.5, 0.5, 0.5)′

Model Term m Truth Avg.width SD.width Coverage
Lower limit β1 0.50 0.50 1.60 0.49 0.39

β2 0.50 0.50 1.97 0.46 0.81
β3 0.50 0.50 2.01 0.45 0.87
β4 0.50 0.50 2.36 0.43 0.87

β1 1.50 0.50 2.12 1.29 0.15
β2 1.50 0.50 2.58 1.37 0.78
β3 1.50 0.50 2.57 1.27 0.81
β4 1.50 0.50 3.02 1.34 0.84

β1 2.50 0.50 2.20 1.39 0.13
β2 2.50 0.50 2.71 1.49 0.81
β3 2.50 0.50 2.72 1.47 0.84
β4 2.50 0.50 3.21 1.55 0.86

Precise count β1 0.50 0.50 1.05 0.16 0.93
β2 0.50 0.50 1.35 0.14 0.94
β3 0.50 0.50 1.41 0.15 0.95
β4 0.50 0.50 1.72 0.14 0.95

β1 1.50 0.50 1.05 0.16 0.93
β2 1.50 0.50 1.35 0.14 0.93
β3 1.50 0.50 1.41 0.15 0.95
β4 1.50 0.50 1.72 0.13 0.95

β1 2.50 0.50 1.05 0.16 0.93
β2 2.50 0.50 1.35 0.14 0.93
β3 2.50 0.50 1.41 0.15 0.95
β4 2.50 0.50 1.72 0.13 0.95
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Table 4.3: Coverage for ICP fixed effects models and true β = (0.5, 0.5, 0.5, 0.5)′

Model Term m Truth Avg.width SD.width Coverage
ICP β1 0.50 -0.50 6.13 4.03 0.53

β2 0.50 0.50 7.53 4.48 0.68
β3 0.50 0.50 7.91 4.66 0.69
β4 0.50 0.50 9.13 4.88 0.73

β1 1.50 -0.50 6.13 4.03 0.53
β2 1.50 0.50 7.53 4.48 0.68
β3 1.50 0.50 7.91 4.66 0.69
β4 1.50 0.50 9.13 4.88 0.73

β1 2.50 -0.50 6.50 4.03 0.46
β2 2.50 0.50 7.96 4.35 0.61
β3 2.50 0.50 8.61 4.73 0.60
β4 2.50 0.50 9.85 4.80 0.62

ICP ZIP β1 0.50 0.50 1.72 0.57 0.99
β2 0.50 0.50 2.06 0.52 0.99
β3 0.50 0.50 2.11 0.56 0.98
β4 0.50 0.50 2.46 0.51 0.99

β1 1.50 0.50 2.25 1.50 0.97
β2 1.50 0.50 2.68 1.55 0.97
β3 1.50 0.50 2.71 1.44 0.98
β4 1.50 0.50 3.12 1.50 0.99

β1 2.50 0.50 2.32 1.54 0.98
β2 2.50 0.50 2.77 1.56 0.98
β3 2.50 0.50 2.85 1.60 0.98
β4 2.50 0.50 3.28 1.61 0.98
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Table 4.4: Coverage for lower limit and precise count mixed effect models and true β =
(0.5, 0.5, 0.5, 0.5)′

Model Term m Truth Avg.width SD.width Coverage
Lower limit β1 0.50 0.50 1.10 0.12 0.04

β2 0.50 0.50 1.49 0.17 0.96
β3 0.50 0.50 1.55 0.18 0.97
β4 0.50 0.50 2.11 0.26 1.00

β1 1.50 0.50 1.23 0.14 0.00
β2 1.50 0.50 1.66 0.19 0.94
β3 1.50 0.50 1.72 0.21 0.95
β4 1.50 0.50 2.34 0.31 1.00

β1 2.50 0.50 1.22 0.14 0.00
β2 2.50 0.50 1.65 0.20 0.96
β3 2.50 0.50 1.71 0.21 0.95
β4 2.50 0.50 2.31 0.30 1.00

Precise count β1 0.50 0.50 0.76 0.07 1.00
β2 0.50 0.50 1.05 0.10 1.00
β3 0.50 0.50 1.09 0.10 1.00
β4 0.50 0.50 1.50 0.14 1.00

β1 1.50 0.50 0.76 0.07 1.00
β2 1.50 0.50 1.05 0.10 1.00
β3 1.50 0.50 1.09 0.10 1.00
β4 1.50 0.50 1.50 0.14 1.00

β1 2.50 0.50 0.76 0.07 1.00
β2 2.50 0.50 1.05 0.10 1.00
β3 2.50 0.50 1.09 0.10 1.00
β4 2.50 0.50 1.50 0.14 1.00
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Table 4.5: Coverage for ICP mixed effects models and true β = (0.5, 0.5, 0.5, 0.5)′

Model Term m Truth Avg.width SD.width Coverage
ICP β1 0.50 0.50 0.86 0.31 0.58

β2 0.50 0.50 1.14 0.42 0.82
β3 0.50 0.50 1.20 0.47 0.86
β4 0.50 0.50 1.48 0.65 0.79

β1 1.50 0.50 0.88 0.28 0.60
β2 1.50 0.50 1.16 0.43 0.87
β3 1.50 0.50 1.21 0.43 0.87
β4 1.50 0.50 1.54 0.66 0.87

β1 2.50 0.50 0.82 0.26 0.75
β2 2.50 0.50 1.08 0.36 0.90
β3 2.50 0.50 1.15 0.41 0.93
β4 2.50 0.50 1.43 0.57 0.90

ICP ZIP β1 0.50 0.50 0.67 0.18 0.94
β2 0.50 0.50 0.83 0.23 0.92
β3 0.50 0.50 0.87 0.25 0.92
β4 0.50 0.50 1.08 0.36 0.89

β1 1.50 0.50 0.71 0.18 0.94
β2 1.50 0.50 0.89 0.24 0.95
β3 1.50 0.50 0.92 0.26 0.94
β4 1.50 0.50 1.14 0.34 0.92

β1 2.50 0.50 0.70 0.18 0.95
β2 2.50 0.50 0.86 0.23 0.94
β3 2.50 0.50 0.90 0.24 0.95
β4 2.50 0.50 1.12 0.34 0.94
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Table 4.6: Vectors β used in the simulation study

(0, 0, 0, 0)′

(1, 1, 1, 1)′

(−1, 1, 1, 1)′; (1,−1, 1, 1)′; (1, 1,−1, 1)′; (1, 1, 1,−1)′

(0.5, 1, 1, 1)′; (1, 0.5, 1, 1)′; (1, 1, 0.5, 1)′; (1, 1, 1, 0.5)′

(0.5, 0.5, 0.5, 0.5)′

(−0.5, 0.5, 0.5, 0.5)′; (0.5,−0.5, 0.5, 0.5)′; (0.5, 0.5,−0.5, 0.5)′; (0.5, 0.5, 0.5,−0.5)′

(0.25, 0.5, 0.5, 0.5)′; (0.5, 0.25, 0.5, 0.5)′; (0.5, 0.5, 0.25, 0.5)′; (0.5, 0.5, 0.5, 0.25)′

We use the log link function because it is the canonical link function for Poisson

generalized linear mixed models, and the log-linear Poisson regression has been exten-

sively studied. In future work, we will investigate whether other link functions may

be more appropriate for the interval censored Poisson models. We will also determine

how sensitive these results are to sample sizes different from n = 30. Also, in contrast

to the single maximum interval width assigned per dataset in the current study, later

studies will consider varying maximum interval widths across subjects.
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APPENDIX A

Appendices

A.1 Vaccine Designs

Human immunodeficiency virus (HIV) is a retrovirus that attacks the immune

system. When it enters the body, it begins to disable the body’s immune system by

using the body’s aggressive immune responses to the virus to infect, replicate and kill

immune system cells. Gradual deterioration of immune function is what leads to ac-

quired immunodeficiency syndrome (AIDS).

The problem of HIV vaccine development is complicated due to extreme geno-

typic variability of the virus. The two main types of HIV are HIV-1 and HIV-2. HIV-1

is divided into three main groups: M (the dominating group), N (extremely rare),

and O (restricted to central/west Africa). There are 9 subtypes, called clades, within

Group M (A, B, C, D, F, G, H, J, K). The clades are further divided into subtypes (A1

- A3, etc). In the HIV replication process, various genetic mutations can occur. In the

process of copying the virus, mistakes often occur, resulting in insertions or deletions

in the HIV sequences. Two different HIV strains can also combine to form a new strain

in a process known as recombination. All of these contribute to the extreme genetic

diversity of HIV. As a consequence, amino acids can diverge by 15% or more in the

same clade and 30% or more in different clades.

Vaccines stimulate the body’s immune system to provide protection against in-

fection or disease. Many types of HIV vaccines are being developed and are under

study in various clinical trials. Simek et al. (2009) report results of a trial involving

more than 16,000 adults in Thailand and a vaccine which combined two other vaccines

that had previously failed. The report indicated that their proposed vaccine regimen
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is safe and reduces by 31% the chance of infection with HIV. However, this vaccine

was only tested against strains of HIV that are common in Thailand, so it is unclear

whether this vaccine will be effective for other strains. A successful HIV vaccine design

must address this global diversity.

Two vaccine strategies addressing genetic diversity have been investigated: HIV-

1 global consensus envelope sequence (CON-S) and Polyvalent vaccine antigens (Mo-

saic). The consensus and mosaic strategies both create immunogens (i.e., substances

that prompt the generation of antibodies and can cause an immune response) that re-

semble natural proteins resembling what the body would process in natural infections.

The body cannot tell the difference between these synthetic proteins and those found

in nature. We now consider the two vaccine strategies in detail and discuss how each

addresses HIV genotypic diversity.

Construction of the M-group consensus (CON-S) vaccine begins with an align-

ment of all available HIV-1 gene sequences from group M. Usually only 2-3 genes of

interest are chosen and aligned. The sequence assembled using the most prevalent

amino acid at each position is the immunogen used in the CON-S vaccine. As illus-

trated in Figure A.1, the M-group consensus sequence is half the genetic distance from

any two cross-clade sequences than they are from each other.

Fischer et al. (2007) showed that the mosaic vaccine design recognizes a higher

number of epitopes than the consensus vaccine. This approach assembles proteins us-

ing a computational method that creates a vaccine which is optimized to cover the

largest possible number of T-cell epitopes for a given population of HIV strains. Con-

struction of the mosaic vaccine also begins with an alignment of a few select regions of

all available HIV-1 gene sequences from group M. We artificially form a population of

recombinant strains by randomly selecting pairs of strains from the original population

and taking bits from the two to form a new strain, mimicking the natural recombination

process. In this manner, k of these populations of recombinants are formed. Figure A.2
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Figure A.1: A phylogenetic tree derived using a maximum likelihood approach (Olsen
et al., 1994) is used to display the evolutionary behavior of HIV-1 strains diverging
from a common ancestral strain, or ”root”. Genetic distances (or branch lengths in
the tree) represent the amount of evolution (i.e., the percentage of difference between
sequences) between the two nodes they connect. Longer branch lengths correspond to
more highly evolved strains. In the figure, the M-group consensus sequence is the root
of the tree and is half the genetic distance between sequences in different clades. Used
with permission from Santra et al. (2008).

illustrates a mosaic design with k = 4 populations. A mosaic cocktail is assembled from

the random selection of one sequence from each of the k populations. This cocktail is

scored to determine the number of epitopes in the original population of strains which

are covered (or recognized). An iterative process then randomly replaces sequences in

the cocktail with other sequences until some maximal amount of coverage of epitopes

is attained.
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A.2 Convergence

In equation (2.2), we specified a uniform prior on random effect standard devia-

tion σν for the mixed effects model introduced in equation (1.3). An extreme amount of

autocorrelation for τ = 1/σ2
ν was observed when using a less informative prior (Bν = 5),

requiring a thinning rate of 40 to achieve convergence. It was proposed that decreasing

Bν from 5 to 1 may improve convergence. Also, because the posterior density of β3

was centered at approximately 0, we questioned whether the convergence rate could

also be improved by making the prior on β3 more informative (i.e., centered at 0 with

higher precision).

The plots of the posterior densities, traces, and autocorrelations of 5 models are

shown in the following graphs. First, we considered the original model as previously

specified with a thinning rate of 40 (Figures A.3 - A.5) or 25 (Figures A.6 - A.8). The

next three models featured a thinning rate of 25 and

• prior σν ∼ U(0.01, Bν = 1) (Figures A.9 - A.11),

• prior β3 ∼ N(0, τ3 = 0.1442), where τ3 is the prior precision of β3 (Figures A.12

- A.14), or

• priors σν ∼ U(0.01, Bν = 1) and prior β3 ∼ N(0, τ3 = 0.1442) (Figures A.15 -

A.17).

The model featuring higher precision for β3 (Figure A.14) does not appear to decrease

the amount of autocorrelation from what we observed in the original model at thinning

rate 25 (Figure A.8). However, the models including a smaller upper bound on the

prior for σν (Figures A.11 and A.17) both seem to significantly improve convergence.
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A.3 Criteria for Positivity

Recall that the magnitude of the immune response is measured using an ELISPOT

assay (Miyahira et al., 1995). In this procedure, cells extracted from vaccinated animals

are exposed to HIV-1 fragments (peptides). The magnitude of the response is charac-

terized by the number of cells releasing cytokines which encourage immune response.

The number of cells in each well of the assay is preferably a million, but, since cells are

at a premium in these studies, the number is typically around 100,000-200,000. The

number of reactive cells is rescaled and reported as the number of spot-forming cells

(SFC) per million.

For each animal, we obtain a collection of cells with no peptide stimulus and count

the number of cells releasing cytokines. This background measurement is recorded

twice, and the average of these two scores is reported as the background signal for this

animal. Next, for each collection of cells, a single peptide stimulus is introduced, and

the number of SFC is again recorded. This procedure is repeated for every peptide

in the Gag and Nef genes. A collection of cells reacted positively to a peptide if the

number of SFC observed after exposure to the peptide is at least 55 and at least four

times the background for the animal whose cells are being tested.

Because each animal has a different background measurement, the peptides are

judged according to different crtieria for positivity within each animal. The researchers

prefer this method because it is standard in the field and is very conservative. Critics

argue that this is too conservative, and that using individual backgrounds results in

a loss of many positive reactives. That is, many peptides are misclassified as having

a negative reaction when they should be counted as positive. One might consider de-

veloping a more uniform method of modeling the background. This could be done by

constructing some overall summary background measure (for example, the mean or

median plus 2 standard deviations of the individual background measurements).
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A.4 OpenBUGS Models

1.4.1 Precise Count Model

model{

for(i in 1:n){

log(lambda[i])<- beta[1] + beta[2]*x1[i] + beta[3]*x2[i] +

beta[4]*x1x2[i]

x[i]~dpois(lambda[i])

}

## Normal priors on regression coefficients

for (g in 1:4) beta[g] ~ dnorm(0, 0.01)

}

1.4.2 Lower Limit Model

model{

for(i in 1:n){

log(lambda[i])<- beta[1] + beta[2]*x1[i] + beta[3]*x2[i] +

beta[4]*x1x2[i]

j[i]~dpois(lambda[i])

}

## Normal priors on regression coefficients

for (g in 1:4) beta[g] ~ dnorm(0, 0.01)

}
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1.4.3 Interval Censored Poisson (ICP) Model

model{

C <- 1000000

for (i in 1:n) {

zeros[i] <- 0

zeros[i] ~ dpois( phi[i] )

phi[i] <- -log(Lsum[i]) + C

theta[i] <- exp( beta[1] + beta[2]*x1[i] + beta[3]*x2[i] +

beta[4]*x1x2[i] )

for (t in 1:(w+1)) {

L[i,t] <- step(k[i] - (j[i]+t-1)) *

exp(-theta[i])*pow(theta[i], j[i]+t-1)/

exp(loggam( j[i]+t-1+1))

}

Lsum[i] <- sum(L[i,])

}

## Normal priors on regression coefficients

for (g in 1:4) beta[g] ~ dnorm(0, 0.01)

}
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1.4.4 Interval Censored Poisson with Zero Inflation Adjustment (ICP ZIP) Model

model{

C <- 1000000

for (i in 1:n) {

zeros[i] <- 0

zeros[i] ~ dpois( phi[i] )

phi[i] <- -log(Lz[i]) + C

theta[i] <- exp( beta[1] + beta[2]*x1[i] + beta[3]*x2[i] +

beta[4]*x1x2[i] )

for (t in 1:(w+1)) {

## Likelihood

L[i,t] <- step(k[i] - (j[i]+t-1)) *

exp(-theta[i])*pow(theta[i], j[i]+t-1)/

exp(loggam( j[i]+t-1+1))

}

Lsum[i] <- sum(L[i,])

Lz[i] <- p0[i] * equals( j[i], 0 ) + (1-p0[i]) * Lsum[i]

p0[i] ~ dbeta(1, 1) # Independent uniform priors for p0

}

## Normal priors on regression coefficients

for (g in 1:4) beta[g] ~ dnorm(0, 0.01)

}
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A.5 ICP Regression Results for β = (−0.5, 0.5, 0.5, 0.5)′

In the following section, we present the fixed and mixed effect model results for

data generated from β = (−0.5, 0.5, 0.5, 0.5)′.
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Table A.1: Coverage for lower limit and precise count fixed effects models and true β =
(−0.5, 0.5, 0.5, 0.5)′

Model term m truth avg.width sd.width coverage
Lower limit β1 0.50 -0.50 6.31 4.11 0.28

β2 0.50 0.50 7.77 4.42 0.67
β3 0.50 0.50 7.99 4.60 0.68
β4 0.50 0.50 9.34 4.68 0.69

β1 1.50 -0.50 6.31 4.11 0.28
β2 1.50 0.50 7.77 4.42 0.67
β3 1.50 0.50 7.99 4.60 0.68
β4 1.50 0.50 9.34 4.68 0.69

β1 2.50 -0.50 6.70 4.15 0.22
β2 2.50 0.50 8.19 4.26 0.58
β3 2.50 0.50 8.65 4.62 0.55
β4 2.50 0.50 9.96 4.51 0.58

Precise count β1 0.50 -0.50 2.03 1.10 0.79
β2 0.50 0.50 2.57 1.04 0.76
β3 0.50 0.50 2.58 1.11 0.77
β4 0.50 0.50 3.20 1.02 0.74

β1 1.50 -0.50 2.03 1.10 0.79
β2 1.50 0.50 2.57 1.04 0.76
β3 1.50 0.50 2.58 1.11 0.77
β4 1.50 0.50 3.20 1.02 0.74

β1 2.50 -0.50 1.91 0.76 0.67
β2 2.50 0.50 2.43 0.72 0.68
β3 2.50 0.50 2.43 0.80 0.64
β4 2.50 0.50 3.03 0.75 0.67
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Table A.2: Coverage for ICP fixed effects models and true β = (−0.5, 0.5, 0.5, 0.5)′

Model term m truth avg.width sd.width coverage
ICP β1 0.50 -0.50 6.13 4.03 0.53

β2 0.50 0.50 7.53 4.48 0.68
β3 0.50 0.50 7.91 4.66 0.69
β4 0.50 0.50 9.13 4.88 0.73

β1 1.50 -0.50 6.13 4.03 0.53
β2 1.50 0.50 7.53 4.48 0.68
β3 1.50 0.50 7.91 4.66 0.69
β4 1.50 0.50 9.13 4.88 0.73

β1 2.50 -0.50 6.50 4.03 0.46
β2 2.50 0.50 7.96 4.35 0.61
β3 2.50 0.50 8.61 4.73 0.60
β4 2.50 0.50 9.85 4.80 0.62

ICP ZIP β1 0.50 -0.50 6.57 4.11 0.76
β2 0.50 0.50 7.99 4.49 0.75
β3 0.50 0.50 8.26 4.67 0.77
β4 0.50 0.50 9.56 4.82 0.78

β1 1.50 -0.50 6.57 4.11 0.76
β2 1.50 0.50 7.99 4.49 0.75
β3 1.50 0.50 8.26 4.67 0.77
β4 1.50 0.50 9.56 4.82 0.78

β1 2.50 -0.50 6.97 4.13 0.68
β2 2.50 0.50 8.41 4.33 0.67
β3 2.50 0.50 9.02 4.74 0.66
β4 2.50 0.50 10.28 4.70 0.66
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Table A.3: Coverage for lower limit and precise count mixed effects model and true β =
(−0.5, 0.5, 0.5, 0.5)′

Model Term m Truth Avg.width SD.width Coverage
Lower limit β1 0.50 -0.50 1.68 0.26 0.00

β2 0.50 0.50 2.13 0.30 0.93
β3 0.50 0.50 2.19 0.30 0.89
β4 0.50 0.50 2.84 0.41 0.99

β1 1.50 -0.50 1.68 0.26 0.00
β2 1.50 0.50 2.13 0.30 0.93
β3 1.50 0.50 2.19 0.30 0.89
β4 1.50 0.50 2.84 0.41 0.99

β1 2.50 -0.50 1.95 0.39 0.00
β2 2.50 0.50 2.43 0.41 0.90
β3 2.50 0.50 2.48 0.42 0.86
β4 2.50 0.50 3.18 0.52 0.98

Precise count β1 0.50 -0.50 0.89 0.10 0.99
β2 0.50 0.50 1.19 0.13 1.00
β3 0.50 0.50 1.23 0.13 0.99
β4 0.50 0.50 1.65 0.20 1.00

β1 1.50 -0.50 0.89 0.10 0.99
β2 1.50 0.50 1.19 0.13 1.00
β3 1.50 0.50 1.23 0.13 0.99
β4 1.50 0.50 1.65 0.20 1.00

β1 2.50 -0.50 0.88 0.09 0.99
β2 2.50 0.50 1.18 0.13 1.00
β3 2.50 0.50 1.22 0.13 1.00
β4 2.50 0.50 1.63 0.18 1.00
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Table A.4: Coverage for ICP mixed effects models and true β = (−0.5, 0.5, 0.5, 0.5)′

Model Term m Truth Avg.width SD.width Coverage
ICP β1 0.50 -0.50 1.41 0.31 0.23

β2 0.50 0.50 1.74 0.38 0.94
β3 0.50 0.50 1.85 0.43 0.95
β4 0.50 0.50 2.27 0.53 0.98

β1 1.50 -0.50 1.41 0.31 0.23
β2 1.50 0.50 1.74 0.38 0.94
β3 1.50 0.50 1.85 0.43 0.95
β4 1.50 0.50 2.27 0.53 0.98

β1 2.50 -0.50 1.59 0.38 0.21
β2 2.50 0.50 1.91 0.41 0.94
β3 2.50 0.50 2.04 0.50 0.95
β4 2.50 0.50 2.43 0.55 0.98

ICP ZIP β1 0.50 -0.50 1.36 0.25 0.97
β2 0.50 0.50 1.63 0.27 0.99
β3 0.50 0.50 1.67 0.29 0.96
β4 0.50 0.50 1.99 0.33 0.99

β1 1.50 -0.50 1.36 0.25 0.97
β2 1.50 0.50 1.63 0.27 0.99
β3 1.50 0.50 1.67 0.29 0.96
β4 1.50 0.50 1.99 0.33 0.99

β1 2.50 -0.50 1.52 0.34 0.96
β2 2.50 0.50 1.80 0.35 0.98
β3 2.50 0.50 1.83 0.36 0.96
β4 2.50 0.50 2.17 0.39 0.99
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