
 

 

 

 

 

 

 

 

ABSTRACT 

 

Three Dimensional Topology Optimization with Orthotropic Material Orientation Design 

for Additive Manufacturing Structures  

 

Delin Jiang, M.S.M.E 

 

Mentor: Douglas E. Smith, Ph.D. 

 

 

Products produced with Additive Manufacturing often have anisotropic 

microstructures that form material layers are added during processing. Carbon fiber filled 

polymer deposited in beads with the Fused Filament Fabrication (FFF) process, for 

example, has been shown to have a highly anisotropic material response. This thesis 

considers the anisotropic behavior of FFF structures and presents a three dimensional 

topology optimization method that computes the best anisotropic material distribution and 

direction for minimum compliance of statically loaded AM structure. The optimization 

method is applied to single loaded problem, multiple loaded problem, and structures with 

regions of prescribed solid or void. Results show that printing the structures in different 

planes yields different minimum compliance, and that the lowest overall compliance is 

achieved when the applied load vector is parallel to the plane of material orientation. 

Furthermore, the preferred material orientation generally follows the outer contour of the 

dense material region for each layer. 
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 CHAPTER ONE 

 

Introduction 

 

 

1.1. Fused Filament Fabrication and Topology Optimization 

 

  Fused filament fabrication (FFF) is one of the most popular Additive 

Manufacturing (AM) techniques in the market. This polymer extrution deposition 

technique gives FFF the advantage to produce parts with intricate geometry and save raw 

material at the same time. The market value of FFF has been growing exponentially [1], 

with increasingly more desktop 3D printers being sold annually for the past decade. A 

typical desktop 3D printer has 3 axes of motion; the extruder can move freely in a plane to 

deposit material onto a flat platform, and that same platform can be move up and down. In 

the printing process, a layer of material is deposited by the extruder, and thenafter the 

completion of the first layer, the platform moves down and the second layer is deposited 

on top of the first layer. Through this layer-by-layer printing process, a 3D object is made. 

While the thermoplastic-based feedstock used in FFF printing does not have sufficient 

mechanical properties for parts used in many industrial applications, the development of 

short carbon fiber filled (CFF) polymer feedstocks has shown promising results for 

producing parts with enhanced mechanical performance. In some cases the printed parts 

yielded higher specific strength than alloyed Aluminum [2]. More recently, the emergence 

of large scale 3D printing shows great prospect to be used for industrial manufacturing [3], 

such as printing car chassis, wind turbine blade molds and more. 
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 For both small scale FFF and large scale polymer extrusion deposition 3D printing, 

the application of CFF polymer feedstock offers unique advantages since the fiber 

orientation can be defined based on the prescribed printing direction, making it possible to 

predict the mechanical properties of the parts before printing begins [2]. Unfortunately, 

computational approaches for determining the preferred bead direction that gives the 

stiffest or strongest parts have not been well addressed in the literature (see e.g., [4,5]). 

Topology optimization is a computational tool for computing the optimum material 

distribution of a structure for optimum properties. It has been applied in industry and in 

numerous research fields, including several AM techniques ( see e.g. [6]). It is theorized in 

this thesis that it may also be a viable tool for designing the structure of FFF parts composed 

of carbon fiber filled polymer, if the method can incorporate anisotropic material properties 

in the optimization algorithm. 

 

1.2. Brief Summary of Thesis Contents 

 

This thesis presents a topology optimization scheme that designs specifically for 

parts produced by additive manufacturing methods having anisotropic material behavior, 

by determining the optimum material distribution and orthotropic material orientations. It 

has six chapters in total. Chapter Two provides a background for the thesis research by 

discussing the development of FFF technology, the drawbacks of the thermoplastic 

polymer feedstocks, the potential of CFF polymer stocks with FFF and the expansion of 

FFF to large 3D printing. Chapter Two also presents several popular topology optimization 

methods and optimization algorithms are introduced. The preferred method, the Solid 

Isotropic Material Penalization (SIMP) then chosen, and its drawback as well as mitigation 

schemes are addressed. Finally, the research objective is stated. 
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In Chapter Three, the anisotropy of FFF processing is demonstrated through 

mechanical testing and material evaluations. Four different types of the thermoplastic 

material blended with short carbon fibers (CFs) are tested along with their neat 

thermoplastic counterparts. Test coupons are printed at different orientations, and tensile 

strength and tensile modulus are analyzed and compared. The details of how print 

orientation affects the tensile properties are discussed in detail. To measure how fiber 

length change before and after the extrusion, fiber length measurement on test coupons 

before and after the printing are analyzed. Furthermore, fractography is performed under 

the scanning electron microscope. 

In Chapter Four, the discussion starts by presenting the general optimization 

mathematical problem statement. It is worthy to note that the problem of optimization can 

be involved in various academic fields (see e.g., [7]), but for all considerations they can be 

represented into one set of mathematical formula [7]. After the generali optimization 

problem is established, the Solid Isotropic Material Penalization (SIMP) method is 

formulated, and the extension of the SIMP method to accommodate fiber orientation is 

presented. The linear elastic static three dimensional Finite Element Analysis (FEA) is 

discussed in detail, including the derivation from the Strong to the Weak form, the selection 

of three dimensional isoparametric element and the choice of constitutive material model. 

Afterward, the design sensitivity with respect to each type of design variable is also 

derived. The chapter finishes the discussion by presenting the optimization solver 

developed by Matlab and explains how it can be integrated with extended SIMP method to 

solve for the minimum compliance as the objective function. 
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 In Chapter Five, the design sensitivities obtained from analytical method are first 

verified by the finite difference method, an easy-to-implement numerical approximation. 

Then, several numerical examples are shown to demonstrate the capability of the extended 

SIMP method in three dimension to optimizing material and anisotropic material 

orientation distribution. In chapter six, we make some conclusion about some of the 

significant findings in our research, and we present several ideas about what can be done 

in the future based on this work. 

 

1.3. Research Objective 

 

The goal of this thesis is to develop a three dimensional optimization approach 

specifically for orthotropic materials produced with the layer-by-layer FFF process. The 

approach pursued hereis based on the SIMP and CFAO methods, where the material 

orientation can only rotate in their respective printed layer. We are particularly interested 

in processing material with CFF polymer feedstocks; therefore, the constitutive matrix 

should include the material anisotropy where there is a preferred direction having the 

highest stiffness. An important assumption to make is that since the FFF printed parts are 

made through a layer-by-layer process, the orientation of the fibers are constrained in the 

print plane. This assumption is valid from the fact that fibers align along the print direction; 

therefore, it reduces the complexity of design problem.  

The design tool will provide insight on the optimal topology and the best bead 

pattern of the printed part, therefore making the FFF process more efficient and competitive 

in the market. We will demonstrate the effectiveness of our method on structural problems 

that involve a cantilever beam in different print planes, a multiply loaded structure, an L-

shape structure and a structure with prescribed outline. Before solving these problems, we 
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first show how the print direction affects the mechanical properties of the printed samples. 

As will be shown in Chapter 3, experimental results of the printed coupons at different 

print orientations are discussed. Several different kinds of thermoplastic materials blended 

with CFs are tested, along with their pure polymer counterparts. In the Chapter, some 

literature background regarding CFF FFF material testing and topology optimization are 

discussed. 
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 CHAPTER TWO 

 

Literature Review 

 

 

Additive Manufacturing (AM) builds a part by adding material to the desired space 

on the platform, in a layer by layer fashion. As opposed to subtractive manufacturing, such 

as machining or CNC, AM saves raw material and can reduce production time and tooling 

cost. Furthermore, AM can be used to build very intricate geometry that is deemed 

impossible with conventional manufacturing techniques. The extra complexity and 

flexibility the AM technology attracts attention from many industries. The first Additive 

Manufacturing commercial machine was introduced in 1987, when a stereolithography 

system was invented to solidify liquid polymer using laser to form the parts [8]. From then, 

numerous techniques were commercialized. In general, AM can be categorized into seven 

processes: binder jetting, direct energy deposition, material extrusion, material jetting, 

powder bed fusion, sheet lamination and vat photopolymerization [9]. The market for AM 

technology has grown significantly over the past two decades. According to the 2016 

Wohlers Report [1], the AM industry exceeded $5.1 billion in 2015, revealing a $1 billion 

increase for the second consecutive year. The report further shows more companies are 

adopting the AM technology. In 2015, 62 manufacturers sold industrial-graded AM 

systems, compared to 49 in 2014 which was twice as many as in 2011. Government sectors 

such as National Science Foundation and Department of Defense have provided significant 

funding to support research in AM; industries such as aerospace and automotive have also 

invested heavily in AM to improve their manufactured parts. The current trend reveals that 
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the AM technology will continue to expand and play a more prominent role in the future 

society.  

The focus of this research is particularly the Fused Filament Fabrication (FFF) 

process, a popular AM technique. Throughout the last two decades, the market for FFF has 

been gradually expanding [1]. The CFF polymer feedstocks are expected to further push 

FFF technology to be more widely used in industry. In Section 2.1, we discuss the 

popularity, the market values and the drawbacks of FFF; also, the potential of blending 

short carbon fibers (CF) with polymer feedstock will be discussed. In Section 2.2 and 

Section 2.3, topology optimization is considered as a valuable tool for designing CFF FFF 

processed products where different design methods and auxiliary tools are also discussed. 

In Section 2.4 and Section 2.5, some historical studies regarding the application of topology 

optimization with AM are described using different material models in two dimension. In 

Section 2.6, we discuss the historical studies of topology optimization in three dimensions. 

Lastly, in Section 1.3 we give the research objective for this thesis. 

 

2.1. Fused Filament Fabrication with Carbon Fiber Filled Polymer 

 

2.1.1. Fused Filament Fabrication 

 

 FFF is an AM technique that takes the polymer feedstock in the form of a filament 

through a heated nozzle. The molten material is then deposited onto a platform moving 

relative to the nozzle to print a part through a layer-by-layer fashion. A schematic taken 

from [10] of the FFF process is shown in Figure 2.1. Note that multiple materials can be 

printed in the same part by utilizing multiple nozzles. The cost of the FFF machine varies, 

ranging from a couple hundred to tens of thousands of dollars depending on the build 
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precisions, build volume and other features. Therefore, it is very affordable for hobbyists 

who just want print objects for fun; it also attracts academic researchers who want to build 

models for experimental testing. Figure 2.2, taken from [1], shows the number of desktop 

3D printers sold annually, from 2007 to 2015. Sales of the desktop 3D printers are shown 

to increase in an exponential meaner, and it is likely to continue for the next several years. 

 

 
 

Figure 2.1.  Fused filament  fabrication Process [10] 

 

 Despite its advantages over conventional manufacturing process, FFF printed parts 

often have inferior mechanical properties (see e.g, [11,12]). The base materials used for 

printing are mostly thermoplastic polymers, which are typically weaker than metals 

[11,12]. In addition, print orientations lead to anisotropic material properties of the printed 

parts (see e.g., [11–14]), and the layer-by-layer print deposition process can produce voids 

in the printed samples, resulting in lower tensile strength than that found in the injection 

molded samples [11]. These inferior mechanical properties are illustrated in Figure 2.3. In 

order to print parts that give mechanical properties applicable for industrial applications 

and end use, the mechanical properties (tensile strength, tensile modulus and such) of the 

print materials need to be enhanced. 
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Figure 2.2. Volume of desktop 3D printers sold each year [1] 

 

2.1.2. Carbon Fiber Filled Filaments 

 

 Many researchers have attempted to include various types of fillers within the 

polymer matrix to improve mechanical properties. These fillers include Titanium Dioxide 

[15], Jute Fibers [15], metal [16], glass fibers [17], thermotropic liquid crystalline polymer 

fibrils [18], vapor-grown carbon fiber [19] and graphene nanoplatelets [20]. Another viable 

candidate is short CFs [2,14,21]. CFs have superior tensile strength along the fiber direction 

as compared to thermoplastics that are typically used in FFF filament. It has a higher 

thermal conductivity and lower coefficient of thermal expansion (CTE) as compared to the 

thermoplastic polymers, therefore it has the potential to improve mechanical and thermal 

properties of FFF printed parts. 
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Figure 2.3. Anisotropic tensile properties using FFF process; all the FFF test sample have 

lower tensile strength than injection molded parts [11] 

 

 Studies have been conducted to blend short CF with Acrylonitrile Butadiene 

Styrene (ABS) for FFF applications. Love, et al. [22] showed CFF ABS polymer filament 

can significantly increases the strength and stiffness of FFF parts. In work presented by 

Love, et al. [15], CFF ABS dog bone samples had a tensile strength of 70.69MPa and a 

stiffness of 8.91GPa, comparing, respectively to 29.31MPa and 2.05GPa in the best 

scenarios for the pure ABS. They also demonstrated that the addition of CF decreased the 

distortion of the printed CFF ABS part which was due to an increase in thermal 

conductivity of 124%, as well as a decrease in CTE of 89% as compared to unfilled ABS, 

when the parameters are measured parallel to the deposition direction. Love, et al. [22] 

show two FFF printed bars. Figure 2.4 shows two FFF printed bars; the bottom bar is filled 

with short CF, and the top bar is made of pure ABS polymer. After the bars are cooled 

down, the deflection is very obvious for the unfilled ABS bar, whereas the CFF ABS bar 

has visually no deflection. 
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Figure 2.4. Deflection comparison for CFF and unfilled ABS FFF printed bars [22] 

 

Ning, et al. [21] investigated the material properties of various CF weight fractions 

(from 0% to 15%) blended with ABS polymer matrix; an average fiber length of 150 um 

were supplied before the blending process with a common diameter of 7.2m. They 

concluded that the effect of the CF increases the printed samples’ tensile strength (by 

approximately +22%), Young’s modulus (+31.6%) and bending strength (+11.8%), in the 

best cases. They also found that longer fiber length resulted in a higher tensile strength 

(about 7%) and modulus (about 20%), as expected. Furthermore, Tekinalp, et al. [2] 

conducted tensile tests with CFF ABS filament at various fiber weight fractions. The CFF 

ABS yielded an improved tensile strength and tensile modulus by as much as 115% and 

700%, respectively. The reason why Tekinalp, et al. are able to get much better tensile 

improvement compared to the work done by Ning, et al. [23] is likely due to the longer 

fibers in the printed testing samples. Ning, et al. [23] used average fiber length of 150m 

to prepare the testing samples, whereas there are many fibers that are longer than 400m 

in the testing samples prepared by Tekinalp, et al. [2]. Figure 2.5 shows that as the fiber 
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content increased, the tensile strength and tensile modulus increased as well, even though 

the values are in general slightly lower than compression molded counterparts. They further 

discovered that the FFF process produced high fiber alignment along the print path. This 

implies the orientation of fibers in the printed part can be controlled within a part by 

specifying the deposition direction. 

 

 
 

Figure 2.5. Tensile strength and tensile modulus at different fiber weight loading, for FFF 

processed and compression molded dog bone samples [2] 

 

 The aforementioned experimental results reveal the potential of CFF filament in 

FFF, and quite a few suppliers have commercialized this composite filament in the market. 

Several current vendors are 3DXTECH (Grand Rapids, West Michigan, USA), Triptech 

Plastics (Youngstown, Ohio, USA), Protoplant (Vancouver, Washington, USA), Colorfabb 

(Noorderpoort, Venlo, Netherlands) and Formfutura (Groenestraat, Nijmegenn, 

Netherlands). Unfortunately, little is known about the mechanical performance of parts 

produced with these commercially available CFF filaments. It is crucial to understand how 

well these filaments perform and what improvements are realized when CFs are added to 

the unfilled polymer. To the authors’ knowledge, there are no publications investigating 

the mechanical properties of the commercially available CFF polymer filament. Therefore, 

Several CFF polymer filaments are purchased from one of the vendors and then the tested 
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for their mechanical properties in this research as described in Chapter Three. In addition 

to tensile tests, other important properties such as fiber length distribution, fiber weight 

fraction and fractographies will also be investigated. 

 

2.1.3. Large Scale 3D Printing 

 

 Large scale 3D printing is a more recent innovation, and it aims to print parts having 

a  large volume, using an FFF system. Perhaps the most prominent example is the Big Area 

Additive Manufacturing (BAAM) system [24] developed by Oak Ridge National 

Laboratory. The BAAM process is uses a mini-extruder mounted to the moving head of a 

precision gantry system. Its design concept is similar to that of a desktop 3D printer, except 

for a couple of key features. First, the size of the nozzle for BAAM is on the order of 0.2 

inches, comparing to 0.4 to 0.6 mm diameter for a typical desktop 3D printer. Secondly, 

instead of using filament, CFF polymer pellets are supplied to feed the extruder system for 

printing, which eliminates the need for buying premade filament. BAAM extruders can 

deliver up to 100 lbs. of material per hour to the deposition platform, and the gantry system 

is capable of moving up to 200 inches per second with a position accuracy of 0.002 inches 

[25]. The system can drastically reduce manufacturing cost and energy input from many 

comparable manufacturing methods (see e.g. [25]). Figure 2.6 compares the energy input 

for different manufacturing processes, and the BAAM stands out as the second most 

efficient production technique. It has accomplished several remarkable achievements, 

including the 3D printed Shelby Cobra in 2015 [3]. The printed model is shown in Figure 

2.7. Besides the BAAM system, other institutions have created similar large 3D printers 

and print objects with CFF polymer pellets [26]. The emergence of large scale 3D printing 

is gradually shifting the application of FFF from hobbyist and academic research use to 
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industrial application, and the desire for lighter and stronger products will continue to drive 

this polymer composite manufacturing method to be more competitive in the market.  

 

 
 

Figure 2.6. Manufacturing energy input required per kg for different manufacturing 

techniques [25] 

 

  For FFF processing, having a computational tool to design the optimal material 

distribution of a printed part would greatly enhance the competitiveness of this AM 

technique. Especially for industrial 3D printing, time of operation and raw material can be 

further reduced, while not compromising the mechanical integrity of the final product. 

Such a tool needs to take the print orientation from the FFF process into consideration, as 

bead pattern direction greatly affects the mechanical properties of a printed part. The 

degree of anisotropy is increased when CF is added to the base polymer material. One 

viable method for taking advantage of the orthotropic nature of FFF parts is topology 
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optimization which can be used to generate the optimal topology and fiber orientation for 

the printed part.  

 

 
 

Figure 2.7. 3D printed Shelby Cobra [3] 

 

2.2. Topology Optimization Methods 

 

Topology optimization is a numerical approach that computes an optimal 

distribution of material given a design domain, an objective function, constraints and 

boundary conditions. It has been applied in the fields of aerospace [27], architecture [28] 

and automotive [29]. In structural optimization, topology optimization is commonly used 

to solve for the minimum compliance of a structure, given constraints on the amount of 

allowable material. There are numerous optimization schemes developed by the 

researchers, and a few of the popular methods are discussed in this section. 

 

2.2.1. Homogenization Method 

 

Bendsoe and Kikuchi [30] where among the first to study topology optimization 

and proposed the Homogenization Method for linear elastic structure design which is based 
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on adjusting the size of microscale voids in each cell. The optimization consists of the 

following steps: First, the design domain is determined and constrained by boundary 

conditions and design constraints. The design domain is then discretized into many finite 

elements, and each finite element in the discretized domain is then assigned homogenous 

and isotropic material properties. Secondly, the design space is discretized into unit cells, 

and each unit cell has a one or more voids. For each unit cell, the effective material property 

is calculated using the method of homogenization, a method that constitutes a numerical 

relationship between the solid region of the cell and the elastic properties of the cell. 

Thirdly, the parameters that define the shape and the orientation of the porous region in 

each cell are the design variables to be optimized by the selected algorithm. The objective 

of this method is to transform the original shape optimization problem (i.e., one where the 

design domain itself changes shape) into a sizing optimization problem (i.e., one where the 

design domain is fixed and element or material properties within the design domain are 

adjusted). As a result, the use of the finite element method within the optimization problem 

is greatly simplified as the need for remeshing is eliminated.  

Suzuki and Kikuchi [31] applied the Homogenization method to several structural 

problems. To illustrate the method, the design domain, shown in Figure 2.8a, is discretized 

into multiple unit square cells. For each cell, one rectangular void is assigned with length 

variables a and b, shown in Figure 2.8b. Furthermore, the cell can rotate, so the stiffness 

tensor (material property) of each cell depends on the length variables, a and b, as well as 

the rotational angle θ. The numerical relationship is demonstrated in equation (2.1).  

 Eijkl
H = Eijkl

H (a, b, θ) (2.1) 
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This implies the number of design variables is three times the number of elements in the 

design domain, which is not desirable when the number of elements is large. The issue can 

be mitigated, in part, by using alternate types of voids, such as a circular shape defined by 

one parameter. This approach has been used to design cellular structures, which will be 

discussed in more detail below. 

 

 
 

Figure 2.8. a: Design domain discretized with multiple cells; b: A single cell element with 

a rectangular void [31] 

 

The Homogenization method has been further developed and applied in many 

papers. Unfortunately, the process of optimizing microscale voids can be cumbersome, 

especially in solving for cell orientation. In addition, the optimized void sizes can be so 

small that is not practical to fabricate, even with precise AM techniques. Therefore, the 

Homogenization method would not be considered for this research. 

 

2.2.2. Evolutionary Structural Optimization 

 

 Inspired by the nature, Xie, et al. [32] proposed the Evolutionary Structural 

Optimization (ESO) method. The design process is simple. First, the design domain is 

discretized into elements. Second, finite element analysis (FEA) is performed to calculate 
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the stress distribution in the design domain where von Mises stress is often used to quantify 

the stress distribution. A stress threshold is calculated by multiplying a user-defined 

rejection ratio (RR) by the maximum stress in design domain, and any element with stress 

less than the threshold value is eliminated from the design domain. The FEA analysis and 

element elimination is repeated using the same RR until the steady state is reached. 

Afterward, an evolutionary ratio (ER), used to increase the value of RR, is then added to 

the RR and previous analysis and element elimination process is repeated again to reach 

steady state, until the final optimum criterion is reached. A typical convergence criteria is 

that stress values within all element within the design domain are within 25% of the 

maximum. Despite the simplicity of the method, it has been proven to be robust and has 

been applied to numerous structural problems. One issue with the ESO method is it only 

eliminates elements during the iteration. It is very possible that after the elimination of 

some elements, their neighboring elements experience high stresses and need the 

previously eliminated elements to return, which the ESO method prohibits. 

 An improvement on the ESO method is Bidirectional Evolutionary Structural 

Optimization (BESO) method, proposed by Querin, et al.[33]. The BESO algorithm 

searches in both directions, allowing not only removing the material with low stress but 

also adding extra material to the region with high stress. This method offers a more 

thorough search in the design domain and therefore is more likely to avoid local minimum 

solution. The ESO and BESO methods are simple to implement, but the stress based 

schemes do not take the directionality of the material property into account. Therefore, 

these approaches are not to be considered for the current AM orthotropic material 

optimization. 
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2.2.3. Solid Isotropic Material Penalization 

 

 Solid Isotropic Material Penalization (SIMP) method, also refers to as the “Power-

Law Approach”, is another popular structural topology optimization scheme. Compared to 

the Homogenization method, the SIMP method reduces the number of design variables in 

each element by assuming that the isotropic material properties are constant, each being 

multiplied by a single element density design variable raised to a predefined power [34–

36]. The typical relationship used to define the material properties in the SIMP method is  

 Eijkl = ρ
pEijkl

0  (2.2) 

 

Where ρ is the density variable from 0 to 1, and that Eijkl
0  is the stiffness tensor for the 

particular element. The exponent p serves the role of penalization that tends to drive the 

density variable to either solid or void (1 or 0) during the optimization process. To 

demonstrate how the method works, Sigmund [37] presented the 99 line topology 

optimization code based on SIMP method. The problem aims to solve for the minimum 

compliance structure where the topology optimization problem is stated as 

 

min: c(𝛒) = 𝐔(𝛒)T𝐊(𝛒)𝐔(𝛒) =∑(ρe)
p𝐮𝐞

T𝐤𝟎𝐮𝐞

N

e=1

 

Subject to: 

{
 

 
V(𝛒)

V0
= f

𝐊(𝛒)𝐔(𝛒) = 𝐅
0 < ρmin ≤ 𝛒 ≤ 1

 

(2.3) 

 

The total compliance c is the objective function to be minimized, which is calculated by 

assembling all of the element level compliances together. 𝐊, 𝐔 and 𝐅 are the global stiffness 

matrix, displacement vector and applied load vector of the finite element model, 

respectively. The variables 𝐤𝟎 and 𝐮𝐞 respectively represent the stiffness matrix and 

displacement vector at the elemental level [37]. There are a total number of N elements, 
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and ρe is a design variable in one particular element. The variable p is the penalization 

power. Since the material property is modeled as isotropic, the element stiffness matrix 

becomes 𝐤𝐞 = (ρe)
p𝐤𝟎, where 𝐤𝟎 is a constant matrix that is defined in terms of the 

mechanical properties (elastic modulus E and Poisson’s ratio υ) of the underlying material 

in the usual manner [38]. The objective function is subjected to three constraints. First, it 

is constrained by a volume constraint. This volume constraint limits the amount of material 

to fill the space, and it is conveniently considered as the total design volume multiplied by 

a fraction value f, which ranges from 0 to 1. The second constraint, 𝐊𝐔 = 𝐅, states that 

each optimization iteration has to obey the static equilibrium state. The last constraint limits 

the allowable value of each design variable. 

There are numerous optimization algorithms that may be applied to solve Equation 

(2.3). These include algorithms such as Optimality Criteria (OC) [39], Sequential Linear 

Programming (SLP) [40], and Method of Moving Asymptotes (MMA) [41]. MMA is well 

suited to solve smooth and non-linear optimization problems. In each step of the iteration, 

MMA generates a convex sub-problem which is subsequently optimized. The generation 

of the sub-problems are strictly controlled by the “moving asymptotes”, the design 

sensitivity and the iteration history. The asymptotes are updated every iteration to stabilize 

and speed up the convergence. In the case when the two asymptotes jump to negative and 

positive infinity respectively, the approximation function becomes identical to SLP. 

Therefore, the MMA and SLP essentially belong to the same family of algorithm. The OC 

method is another popular optimization algorithm, based on the condition of optimality. 

The algorithm takes the Lagrange Multipliers into the formulation and updates them 

iteratively to satisfy the constraints. One unique feature for the OC method is that it updates 
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each design variables independently, therefore making the method very efficient. In the 

paper by Sigmund [37], the OC method is used where the design variables are updated as  

 

ρe
new = 

 

{

𝑖𝑓 ρeBe
η
≤ max(ρmin, ρe −m) :          max(ρmin, ρe −m)

𝑖𝑓 max(ρmin, ρe −m) < ρeBe
η
< min(1, ρe +m): ρeBe

η

𝑖𝑓 min(1, ρe +m) ≤ ρeBe
η
,                         min(1, ρe +m)

 

(2.4) 

 

In the above, m is a positive move-limit, η is a numerical damping coefficient, and Be is 

found from Equation (2.5). A local optimum is found when Be = 1, which satisfies the 

Karush-Kuhn-Tucker optimality condition [7]. The update scheme adds material to where 

Be > 1 and removes material to where Be < 1, as long as the density variable does not 

violate the bounds. The derivative 
∂c

∂ρe
 is the design sensitivity of the objective function at 

the local elemental level, 
∂V

∂ρe
 is the derivative of the volume with respect to each elemental 

density variable, and λ is a Lagrange Multiplier which is adjusted in an inner iteration loop 

in order to satisfy the volume constraint. 

 Be = −

∂c
∂ρe

λ
∂V
∂ρe

 (2.5) 

 Sigmund [37] demonstrated that the SIMP method could solve various structural 

optimization problems including single load to multiple-load problems The program can 

further solve geometry with prescribed elemental density values. The SIMP method has 

been proven to be a robust iteration scheme, and it has been extended and modified to 

handle problems with different physics and multiple materials. Its formulation can further 

be modified to include anisotropic materials in the topology optimization, making it 
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applicable to AM processes like FFF. Hoglund, et al. [4,42] have demonstrated such work 

by integrating SIMP method with orthotropic material orientation to solve structural 

problem for FFF. Therefore, the SIMP method is chosen as the method in this research. 

The implementation of SIMP method is not without concern; a couple of major problems 

exist for the method involve checkerboarding of the resulting optimized material system 

and mesh-dependency. These two issues have been studied extensively and are discussed 

in the next section. 

 

2.3. Checkerboard, Mesh-dependency and Filtering 

 

 Checkerboarding [43,44] in topology optimization refers to pattern that evolves in 

the design domain that appears in alternating solid-void manner such as that shown in 

Figure 2.9. Checkerboarding occurs in both the Homogenization and the SIMP methods. 

Diaz, et al. [43] suggested the reason of occurrence is because numerical analysis 

approximates that checkerboard pattern to yield higher stiffness than any other layout 

arrangement. However, such discrete pattern is impractical to be fabricated by any 

manufacturing method, including AM. Checkboard patterns can be mitigated by using 

higher order finite elements in the optimization [45,46], but this would add significant 

computational time if the number if elements stay the same.  

 

 
 

Figure 2.9. Optimized topology with checkerboard issue [44] 
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Mesh-dependency appears when the different qualitative solutions are obtained 

when larger or smaller elements are used in the finite element model. The issue is 

demonstrated in Figure 2.10, and it is due to the non-existence or the non-uniqueness of 

the solution of the given optimization problem. Perimeter control [47,48] and local gradient 

constraint [49] are the two possible schemes to obtain a mesh independent solution. 

Perimeter control introduces an upper bound for the perimeter of structure, therefore 

reducing black-white formation. However, different design problems can have different 

perimeter bounds, and it takes many tries to determine the proper value. Local gradient 

constraint prevents drastic density value jumps in gradient between local neighboring 

elements, but the scheme introduces two times the number of elements and more linear 

constraints into the problem for two dimensional problem, making it extremely 

computational intensive with fine mesh. 

 

 
 

Figure 2.10. Optimized topology changes as the mesh becomes finer, from top (600 

elements) to bottom (5400 elements) [44] 

 

 Sigmund [50] demonstrates that a filter technique that is based on image processing 

can mitigate both checkerboard and mesh-dependence. Discretized elements, like image 

pixels, can be filtered based on the surrounding elemental density values, and this 

modification leads to smoother transition among the elements. One big advantage of the 
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filter technique is that it does not impose any extra constraint to the problem, therefore the 

process is computational efficient. In addition, the implementation is relatively straight-

forward, avoiding the need of complicated algorithms. 

 There are two common kinds of filters commonly used in topology optimization. 

The first type is the density filter, introduced by Bruns, et al. [51]. The elemental density 

value is filtered by taking the weighted average of itself and its neighboring density values, 

before performing a finite element analysis on the structure. The sensitivities are then 

calculated using the filtered densities. The numerical relationship between the surrounding 

elements and the filtered element can have various interpretations. One popular option is 

to use the linear decaying weighting function. This means the closer the element is to the 

filtered element, the more emphasis of its value will be imposed on that filtered element. 

Other weighting function such as Gaussian distribution [51] and constant weighting value 

[52] have been used. The other commonly used filter is the sensitivity filter [50,53]. In this 

approach, instead of modifying the density values, the design sensitivities are modified 

through weight average calculation similar to the density filter technique. Sigmund [52] 

points out that the sensitivity filter is a risky approach, as the modified sensitivities may 

not represent the actual descent direction of the function. However, numerous practical 

applications have shown it is very robust and efficient. Alternatively, design variables can 

be implicitly presented as solution of a Helmholtz type partial different equation (PDE) 

[54–56] with homogenous Neumann boundary conditions. 

 One common problem with both the density and sensitivity filters is that the 

optimized topology shows grey transition area along the edge of the members. To achieve 

a strict black-white solution, Pratt [57] introduced morphology operators called Erode and 



25 

Dilate operators. Depending on which one is used, the filtered element takes the minimum 

(Erode) or the maximum value (Dilate) of the neighboring elements. These operators can 

also be converted to continuous functions to suit for the gradient based optimization [58]. 

Furthermore, Guest, et al. [59] proposed a continuous Heaviside function to eliminate the 

grey transition boundary. In this case, any element with a density value larger than zero 

(100% void) turns to one (100% solid), and the result of the optimal solution is strictly a 

black-white solution. One caution to note is that the morphological operators and Heaviside 

functions described here are not volume preserving, which means the total volume of the 

design variables multiplied by their respective finite element volume before and after the 

filtering are not equal. Therefore, the volume constraint needs to be imposed on the filtered 

design variables. To establish a volume preserving technique for the morphological 

operators, the Erode and Dilate techniques can be combined [52], but this operation can 

add significant computational time on the filtering process. 

 Considering all the available filtering options available, we selected the sensitivity 

filter [44] for this research. The sensitivity filter requires a minimum amount of 

modification on the optimization code, and it has been used extensively by other 

researchers [4,42,60]. To apply the sensitivity filter to SIMP method, the modified 

sensitivity for each element compliance sensitivity is  

 ∂ĉ

∂ρe
=
∑ ω(xi)ρi

∂c
∂ρi

i∈Ne

ρe ∑ ω(xi)i∈Ne

 (2.6) 

 

where ω(xi) is a linear weight function given as 

 ω(xi) = max (rmin − dist(e, i) ,0) (2.7) 
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In the above, rmin is a distance that is used to identify the number of elements  surrounding 

ρe that are to be considered for filtering. Outside the radius of rmin, the weight value equals 

to zero. Also, dist(e, i) is the center distance of element ρe to ρi. From the linear weight 

function, the sensitivity value of 
∂c

∂ρe
 itself has the highest influence on the filtered 

sensitivity 
∂ĉ

∂ρe
, and the effect decreases linearly as dist(e, i) increases. After selecting the 

appropriate material interpretation scheme, we will discuss several historical studies that 

involve topology optimization for additive manufacturing, where various material models 

are used. 

 

2.4. Orthotropic Material Property with Additive Manufacturing and Topology 

Optimization 

 

Topology optimization has seen application in several additive manufacturing 

process that are used to realize the potential of AM. The homogenization method is a 

popular method among the researchers who are interested in variable cellular structures. 

For example, Sundararajan [61] applied the homogenization method with a smoothing 

scheme to optimize the MBB and a cantilever beam. The optimized shape is assembled 

using mesostructures through elements with square void such as that shown in Figure 2.11. 

The elastic constants of the element are correlated with the size of the void in the element. 

Sundararajan fabricated the optimized cantilever beam with selective laser sintering. The 

experimentally tested three point bend tests are compared with the numerical model 

displacement values, resulting in overall deviation less than 10%. A fabricated MBB beam 

under three point bend test from [52] is shown in Figure 2.12. The fabricated cantilever 

beam is tested under a three-point bending test, and the test is conducted in the elastic range 

of the fabricated structure. 
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Figure 2.11. A mesostructure element [61] 

 

 

 
 

Figure 2.12. Selective laser sintering fabricated MBB tested with three point bend test 

[61] 

 

Zhang, et al. [62] also employed the homogenization method to relate the 

constitutive material matrix to the microstructure characterizing parameter (MCP), using a 

second order polynomial function. The MCP in this case is the density variable in each 

element. After the homogenization, optimization is performed on the design domain. An 

example taken from [62] is shown in Figure 2.13a for a rectangular grid. The grid is 

discretized into square elements, and each element contains a design variable ρe. In 

addition, the design domain is covered by an array of lattice points, represented by the red 

dots. Each lattice point is located at the center of a hexagonal cell. The size of the circular 

void in each cell depends on the density value of the element. An example of the cellular 

structure taken from [62] constructed by the hexagonal cells is shown in Figure 2.13b. 
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Zhang, et al. [62] applied the SIMP method to obtain the optimum distribution of the 

density values over the design domain. The cellular structure is then constructed by 

assigning the lattice points the same values as their overlapping elemental density values. 

The model is then fabricated by stereolithography in Figure 2.14. The numerical analysis 

and experimental test further reveals that the optimized cellular structure yields a 37% 

higher flexural stiffness than non-optimized (uniform) cellular structure, for least 37%. 

 

 
 

Figure 2.13: a: Discretized design domain covered by lattice points; b: An array of 

hexagonal cells with uniformly distributed circular voids [62] 

 

 
 

Figure 2.14. Variable cellular structure fabricated with SLA [62] 

 

 Burblies, et al. [63] performed a topology optimization on a bone structure based 

on the homogenization method. The problem first solves for the optimum distribution of 

the density with a volume constraint. The optimization process of the bone is shown in 

Figure 2.15, and the bottom picture shows the optimum density distribution. The density 
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values are then translated to corresponding pore sizes, and the multi-phase bone structure 

is shown in Figure 2.16.  

 

 
 

Figure 2.15. Optimization of density distribution in the bone. Blue color indicates low 

density value and red color indicates high density value [63] 

 

 
 

Figure 2.16. Final bone structure after mapping of the optimized density values [63] 

 

Besides the application of the homogenization method, the SIMP method has also 

been applied to design cellular structures. Brackett, et al. [64] used the un-penalized SIMP 

method to solve a simply loaded cantilever beam , shown in Figure 2.17a. Again, the 

density values are mapped to a lattice structure, such as that shown in Figure 2.17c. 

Similarly, Rezaie, et al. [65] optimized a MBB beam using the SIMP method, and the 

model was reconstructed with cells filled with square holes. The part is fabricated with a 

desktop 3D printer. Rezaie’s fabricated sample is shown in Figure 2.18. Furthermore, 
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Gaynor, et al. [66] designed a compliant mechanism with original, combinatory and 

multiphase SIMP approaches, and the designed force inverters were fabricated with multi-

material Polyjet printing process. Two fabricated force inverters appear in Figure 2.19. 

 

 
 

Figure 2.17. a: Un-penalized optimum density distribution for cantilever plate with SIMP 

method; b: relative density values to lattice structure; c: reconstruction of the lattice 

structure with corresponding density values [64] 

 

 

 
 

Figure 2.18. Optimized MBB beam fabricated with FFF machine [65] 
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Figure 2.19. Two force invertors fabricated with Polyjet print; left part contains one 

material; right part contains two materials [66] 

 

All the constitutive material models described in the works give above are isotropic. 

However, in FFF, many experimental tests have shown that the mechanical properties 

fabricated by FFF greatly depends on the print orientation [11–14]. Therefore, the 

directionality of the material property needs to be taken into account for the optimized 

topology to be valid. To accommodate anisotropic properties the SIMP material model may 

be modified to include orthotropic material model, which has been named the Solid 

Orthotropic Material Penalization (SOMP) method.  

Lee, et al. [67] and Hoglund and Smith [42] studied compliance minimization by 

modifying the optimization code provided by Sigmund [37] to accommodate the 

orthotropic material matrix. They both concluded that by changing the ratios of stiffness 

along the orthogonal directions, the resultant optimal topologies are significantly different. 

An example taken from [42] of optimized MBB beams with different stiffness ratios in the 

x- and y- directions is shown in Figure 2.20. The differences of the optimized topology can 

be clearly observed. The differences of the optimized topology can be clearly distinguished 

in their papers. When the vertical stiffness is higher, the truss-like structure aligns more in 

the vertical direction, and vice versa when the horizontal stiffness is higher. 



32 

 
 

Figure 2.20. Optimized. MBB beams with SOMP method with different stiffness ratios 

[42] 

 

 Alamo and Silva [60] also applied the SOMP method in the field of biomechanics 

where the object was to understand the process of femoral bone tissue generation when a 

metallic implant is adopted. Organic structure such as human bone is sensitive to external 

environment, and its structure will change to best accommodate the outside stimulus. This 

process of adaption lends itself well to structural optimization. Also, the SOMP method is 

used here to include a more realistic constitutive model for the natural anisotropic material 

in the bone. Figure 2.21a taken from [60] shows the design domain and the boundary 

conditions, and Figure 2.21b shows the optimized density distribution. 

 

 
 

Figure 2.21. a: Design domain with along forces; b: optimized density distribution, with 

darker area indicating more material [60] 
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 The SOMP method provides a means for incorporating material anisotropy into the 

topology optimization, however, the SOMP method is limited to design with predefined 

material orientation. In FFF, the nozzle has full range of freedom in the print plane. 

Therefore, the orientation of a deposited bead, and thus the primary direction of the carbon 

fibers within a bead, should also to be variable function of the design variables in the 

optimization. This requires that the optimization algorithm is capable of optimizing both 

the material distribution and material (or print) orientation. In the next section, material 

distribution and material orientation optimization will be discussed. 

 

2.5. Continuous Fiber Angle Optimization 

 

 Fiber orientation optimization becomes important as the application of fiber 

reinforced composites become popular, and the optimal layout design with a high specific 

strength material such as carbon fiber lamina is especially popular in the aerospace industry 

[68–73]. Some analytical approaches have been developed to address the orientation 

optimization problem. Gibiansky, et al. [74] and Suzuki, et al. [31] notes that the optimal 

orientation aligns with the major principal stress direction, in case for the “shear” weak 

type material; this is known as the stress based method. Pederson [75–77] proposed a strain 

based method that the optimum orientation can be calculated based on the principal strains. 

The stress and strain methods eliminate the need for iteration during the design process. 

However, Gea, et al. [78] identify that if the “repeated global minimum” (more than one 

set of design variables has the same minimum value) occurs, both methods would fail. 

Therefore, a new method is needed to improve the aforementioned limitations,. 

One design method to account for full range of fiber orientation design is the 

Continuous Fiber Angle Optimization (CFAO). The CFAO has been used in designing the 
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optimum thickness and fiber orientation of orthotropic material [79,80], the maximum 

buckling load of composite structure [81], as well as the optimum shape and material layout 

of shell structure [82]. One concern for the CFAO is that because the angle variable has 2𝜋 

period, the problem is nonconvex. The non-convex complexity can potentially increase the 

solving time significantly and care is needed to avoid over-constraining the design space. 

The Free Material Optimization (FMO) method [83–87] is another  effective 

approach to optimize structure. The method relaxes the design space by treating the 

stiffness tensor components at each point in the discretized domain as design variables, so 

the material properties are varied point-by-point. Though the method provides more degree 

of freedom in the design space, the optimized material properties may not represent the 

actual material properties processed by FFF machine. Therefore, this method is not 

practical for FFF process design. 

In contrast to continuum variable design, Discrete Material Optimization (DMO) is 

an alternative approach for determining material distributions. In DMO, the design 

candidates are defined in advance; the candidates can be predefined sets of angle 

orientations of the composite lamina or predefined sets of thicknesses of the material. The 

optimization algorithm then selects the best option to optimize the objective function. The 

discrete variables can be material thickness, material type and fiber orientation. Stegmann 

and Lund [88] used DMO to optimize fiber angles in a discretized cantilever beam, shown 

in Figure 2.22. Here, each discretized element composes a constitutive matrix that is the 

sum of several matrices, each configured with different fiber orientation and multiplied by 

a weight value. In the optimization process, the algorithm pushes every weight value to 

zero except one in each element, and the fiber angle with the non-zero weight value is the 
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best option for the element. In DMO, the number of design variables equals to the number 

of discretized elements times the number of predefined candidates in each element, and 

some new parametrization schemes [89,90] are introduced to reduce the total number of 

design variables for large-scale design problem. Since the DMO method optimizes the 

problem with predefined sets of design candidates, it is not suitable for FFF processing 

since the fiber orientation can be adjusted continuously. Nonetheless, it is worthy to 

mention such method, as it is a well-established technique for optimizing composite 

laminate layout. 

 

 
 

Figure 2.22. Optimal fiber distribution in cantilever beam with uniformly distributed top 

load; fiber angle are selected from [90,±75,±60,±45,±30,±15, 0] degrees. [88] 

 

Nomura, et al. [5] proposed a general topology optimization method that is capable 

of simultaneously optimizing both fiber orientation and material distribution. The method 

can further cope with discrete angle sets. To avoid local minimum due to the periodic nature 

of fiber orientation, the orientation variables are represented by Cartesian components, 

along with relaxation of the orientation design space. Both the density values and Cartesian 

coordinates are regularized through Helmholtz PDE filter along with Heaviside functions. 

Furthermore, isoparametric functions are used to transform the regularized Cartesian 
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coordinates from a box bounds to circular bounds. Figure 2.23 taken from [5] shows the 

optimization results with isotropic and anisotropic material properties. To establish discrete 

angle sets for optimization, penalization is enforced on the even elemental numbers of the 

parametrized element, and this leads the optimization to prefer the unpenalized angle sets. 

One characteristic of using penalization for discrete angle sets design is that the number of 

options is changed by using different elements, while the design variables in each element 

stays the same. 

 Even though CFAO has its potential issue of local minimum, it is a very convenient 

tool for simultaneously optimizing topology and fiber orientation. Furthermore, the 

problem formulation can be very easy by integrating the orientation optimization with 

SIMP method. The continuum-based topology optimization solving both material 

distribution and fiber orientation has not attracted many researchers. Jia, et al. [91] 

implemented SIMP method with CFAO to design fiber reinforced composite for minimum 

compliance. The design sensitivities with respect to both density and fiber angle are 

calculated, and the optimization algorithm simultaneously solves for the optimal topology 

and fiber orientation. An example of solved cantilever geometry is shown in Figure 2.24. 

Due to the lack of filtering, some minor checkerboard pattern can be observed in the 

solution field. For the same type of problem, Setoodeh et al. [92] utilizes stress based 

approach with SIMP method to solve for minimum compliance, combined with cellular 

automata. They further extended the method to cope problem with multiple loads, though 

the fiber angle update scheme is based on random search style. The optimized cantilever 

beam and structure with multiple loads are illustrated in Figure 2.25. 
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Figure 2.23. Optimization for short cantilever beam. Top row: optimization with isotropic 

material. Bottom row: optimization with anisotropic material (50% fiber volume fraction) 

[5] 

 

 Recently, Hoglund and Smith  [4,93] proposed the CFAO method with SIMP 

scheme similar to [91] to optimize topology and fiber orientation, specifically for CFF FFF 

process. A sensitivity filter is implemented with respect to the density variables. The 

problem formulation is implemented into Matlab optimization solver fmincon. An 

optimized MBB beam is shown in Figure 2.26 where the optimal fibers align with axis of 

the truss members, as also can be perceived in the aforementioned research results. The 

optimized model can also be fabricated with desktop 3D printer by converting the model 

to a STL file using a Matlab code [94]. To show the effectiveness of CFAO with SIMP 

method, three point bending test was conducted with the fabricated MBB beams optimized 

from CFAO, and the results are compared to the printed MBB beams with fixed angle 

optimization [42]. They found that the CFAO beam is 29.9% stiffer than the vertical 
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optimized and printed beam; it is also 12.4% stiffer than the horizontally optimized and 

printed beam.  

 

 
 

Figure 2.24. Optimized geometry and fiber orientation for a cantilever beam problem. 

Darker color represents higher distribution of material [91]. 

 

 It has been shown that SIMP method combined with CFAO is a plausible tool to 

design for FFF processed parts, as the two dimensional optimization research demonstrated 

by Hoglund and Smith [4,93]. There are a few studies that can be further explored using 

this method. One of them is to design a full three dimensional model for optimal material 

distribution and material orientation, to simulate the layer-by-layer FFF process, where 

each the material orientation is constrained in its respective layer plane. To author’s 

knowledge, this topic has yet to be addressed in the literature.  
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Figure 2.25. Optimization for topology and fiber orientation for single and multiple 

loaded structures. Design with cellular automata [92]. 

 

 
 

Figure 2.26. CFAO optimization with SIMP in Matlab for a MBB beam. 180 by 30 

discretized elements [93]. 

 

2.6. Three Dimensional Topology Optimization 

 

 Three dimensional topology optimization has been presented by Olhoff, et al. [95], 

Jacobsen, et al. [96] and Fernandes, et al. [97] who used three dimensional microstructures 

to design optimal structures. Diaz, et al. [98] presented a full relaxation scheme to solve 

for minimum compliance using eight node isoperimetric elements. Beckers [99] introduced 

a dual method to give a discrete (0 or 1) solution layout in three dimensions. Lastly, 

Langelaar recently [100] introduced a scheme to design for three dimensional self-
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supporting structure for AM. The scheme can eliminate the need to add support structure 

during the fabrication process. 

However, topology optimization studies in three dimensions using the SIMP 

method in AM are limited. The software OptiStruct [6] from Alair is a commercial code 

that is available for solving complex 3D structural optimization problems, but little has 

been published where Optistruct is applied to AM structures. Liu, et al. [101] proposed a 

three dimensional Matlab code for topology optimization based on SIMP method. The 

study is an extension of the 99 line Matlab optimization code provided by Sigmund [37]. 

The interpretation scheme is slightly changed according to the modification suggested by 

Andreassen, et al. [102], and the density filter [51] is adopted. Their Matlab code utilizes 

the OC algorithm [39] and can solve structure for minimum compliance, compliant 

mechanism and heat conduction. An optimized three dimensional cantilever bean is shown 

in Figure 2.27. The proposed algorithm can solve medium-size problem relatively quickly 

which is made possible since the stiffness matrix is the same for all the discretized 

elements. The Matlab based code for three dimensional SIMP topology optimization 

provides a starting point to design for FFF process in our work. In addition to the code 

written in Matlab, Zuo, et al. [103] provided a python code for three dimensional topology 

optimization, using BESO method [33] for compliance minimization. 
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Figure 2.27. Optimized 3D cantilever beam [101] 
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CHAPTER THREE 

 

Mechanical Behavior of carbon Fiber Composites in Fused Filament Fabrication 

 

 

The chapter investigates CFF FFF parts produced on common desktop 3D printers, 

in this case Makerbot Replicator 2 and Replicator 2X, using commercially available 

filament. Tensile test samples fabricated with CFF polymer composite and unfilled 

polymer were printed and then tested following ASTM D3039M. Test bars were printed 

with FFF bead orientations aligned with the direction of the applied load at 0 degree, and 

also at 45 degrees, ±45 degrees, and normal to the loading axis at 90 degrees. The filament 

considered here was purchased from filament suppliers and included both CFF and unfilled 

PLA, ABS, PETG and Amphora. Additionally, CFF samples are evaluated for fiber length 

distribution (FLD) and fiber weight fraction, fracture surfaces are evaluated under SEM. 

 

3.1. Experimental Setup 

 

 

3.1.1. Filament Processing 

 

This study considers four different filament materials: Polyactic Acid (PLA), 

Acrylonitrile Butadiene Styrene (ABS), Polyethylene Terephthalate (PETG) and Amphora, 

a proprietary co-polymer produced by Eastman. PLA, ABS, and PETG filament were 

purchased from 3DXTECH (Grand Rapids, Michigan, USA), and Amphora was acquired 

from Triptech Plastics (Youngstown, Ohio, USA). Filament for each material was 

purchased as the unfilled polymer and the same with carbon fiber filler. In summary, testing 

was performed with commercially available filament made of PLA, CFF PLA, ABS, CFF 
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ABS, PETG, CFF PETG, Amphora, and CFF Amphora. Prior to use, each filament was 

stored in a sealed bag containing silica gel desiccant to avoid moisture absorption. A 

Makerbot Replicator 2X was used to print the ABS, PETG and Amphora filaments, and a 

Makerbot Replicator 2 was employed to print the PLA filaments. Bead directions of 0 

degree, 45 degrees, ±45 degrees and 90 degrees with respect to the axis of the test bar were 

investigated, as shown in Figure 3.1.  

 

 

Figure 3.1. Definition of print orientation angle in the test coupon with respect to the 

direction of the tensile load 

 

A nozzle diameter of 0.6mm made with hardened steel was used for printing all test 

samples. This choice of nozzle reduces clogging and wearing of the nozzle when carbon 

fiber filament is used. Printing process parameters appear in Table 3.1. 

 

Table 3.1. Printer information, processing temperatures, layer infill information, printing 

surface, nozzle size and printing speed for each material filament. 

 

Experimental 

Parameters 

PLA  

CFF PLA 

ABS 

CFF 

ABS 

PETG 

CFF PETG 

Amphora 

CFF 

Amphora 

Printer Makerbot Replicator 2 Makerbot Replicator 2X 

Extruder temperature 220˚ C 
230˚ 

C 
255˚C 250˚C 

Heat bed temperature Not required 
110˚ 

C 
80˚ C 70˚ C 

layer infill 0.2mm height \ 100% infill 

Heat bed surface Blue painter's tape Kapton tape 

Nozzle 0.6mm hardened steel 

infill print speed 

(mm/s) 

45 for base layer and outline 

105 for the rest of the infills 

45 for 

each layer 
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3.1.2. Testing and Measurement 

 

The ASTM D638 procedure [104] (similar to ISO 527 [105]) was initially followed 

using a Type I dog bone test bar geometry. However, tensile tests at on samples with certain 

print orientations resulted in undesirable test data and premature failures at neck transition  

section of the dog-bone test sample, similar to issues described by Forster [106]. To resolve 

this issue, the ASTM 3039M procedure [107] designed specifically for polymer composites 

was adopted. The dimensions of our test coupons were 177.8mm×12.7mm×2.54mm as 

defined by ASTM 3039M. Machined 6061 Aluminum tapered tabs were bonded at the ends 

of the test samples with Loctite Super Glue Ultra Gel [108]. Five test samples were 

prepared for each filament and print orientation combination. The Test Resources, Inc 

(Shakopee, Minnesota, USA) 100 Series Single Column Test Machine [109] was employed 

for the tensile test. Samples were fitted with a 25mm extensometer [110] prior to testing 

for strain measurement. Tensile test parameters used in our study appear in Table 3.2.  

 

Table 3.2. Testing parameters 

 

Crosshead speed 2mm/min 

Load cell capacity 4 kN 

Sampling rate 25 Hz 

Extensometer travel capacity 6.25mm 

 

The average axial stress 𝜎 = 𝐹 𝐴⁄  in the test samples was calculated for each tensile 

test in the usual manner where F is the force measured by the load cell and A is the sample 

cross sectional area. The test bar area A used in the calculation was obtained by averaging 

values measured at three places (one towards each end and a third in the middle) in the 

gage section along each sample. The width of the rectangular test bar was measured with 

a digital caliper and the thickness was measured with a micrometer. The variation of the 
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three measured values at each dimension in all of the test coupons is very small; mostly at 

maximum of 0.001inches. No effort was made to account for surface roughness or voids 

that may have resulted during printing. Strain 𝜀 was measured directly from the 

extensometer. The modulus of elasticity 𝐸 =  𝛥𝜎 𝛥𝜀⁄  was computed as the slope of a 

straight segment obtained by linear regression using data from 𝜀 = 0.001  to 𝜀 = 0.003, 

as recommended in the ASTM standard. 

Following the tensile testing, fracture surface images were obtained using a JEOL 

JSM - 6610 LV Scanning Electron Microscope [111]. A TA-Q50 Series 

Thermogravimetric Analyzer [112] was employed to burn off the polymer resin for all CFF 

samples to measure the carbon fiber content and length distribution in each test sample. 

For the CFF materials, three specimens were extracted from CFF filament and 0 degree 

printed CFF test coupons. The customized burn-off procedure shown in Table 3.3 was 

developed to obtain carbon fiber weight percentage. For each sample, the specimen is 

heated at 10˚C per minute to reach 500˚C; then the temperature is set at that constant for 

an hour; After one hour, the test is finished and the data recording stops. During the burn-

off test, nitrogen gas was purged into the chamber to prevent the fibers from oxidizing. We 

would expect the thermoplastic filament should burn off, while the fibers will not since the 

fibers have much higher breakdown temperature. 

 

Table 3.3. TGA burn off procedure 

 

step 1 3 samples / material 

step 2 10˚C/min to 500˚C  

step 3  Isothermal for 1 hour  

step 4 test finished and cool down 
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The residual material from each CFF burn-off process was collected in sealed 

plastic tubes. Small particles with irregular shapes were identified under SEM inspection, 

indicating that all non-carbon fiber material did not completely burn off. To get the actual 

fiber weight fraction, the related unfilled polymer filament sample from each material was 

subjected to the same burn-off procedure, and its residual weight fraction was used as a 

reference to approximate the actual polymer weight fraction and fiber weight fraction in 

the CFF samples. To measure fiber length distribution, residuals from the burn-off 

procedure were distributed on copper tape for inspection and measurement under SEM. 

For each CFF filament and printed CFF test coupon, a minimum of 10 images were taken 

at 100X magnification. A custom Matlab (The Mathworks, Natick, Massachusetts, USA) 

program was written to calibrate the pixel width first based on the scale bar shown in Figure 

3.2, and then to select the two ends of the fiber in a manual operation to compute fiber 

length. The images were taken under high vacuum at Secondary Electron Imaging (SEI) 

mode, with 12mm distance between the specimen and lens; the voltage is set at about 10kV. 

For the calibration bar shown in Figure 3.2, it occupies 100 pixel width of length, which 

means each pixel in the image has a width of 1µm. Since 100X magnification is applied to 

all the images, the uncertainty of the measurement from the pixel size or from the SEM 

machine itself should be same for all the length measurement. Approximately 1000 fibers 

were measured for each material type, and any fiber with clear two ends are picked out in 

the image. The weight average fiber length and weight average fiber aspect ratio were 

evaluated for each. Weight average values were calculated by dividing the data into a user-

defined number of equally spaced intervals. The number of samples in each interval was 

then multiplied by the center value of its own interval. The sum of the values from each 



47 

interval was divided by the total number of fibers measured to obtain weight average fiber 

data.   

A schematic of the complete experimental process is shown in Figure 3.3. There 

are three tests conducted in this study: Test 1) The first one is the tensile test, Test 2) the 

second one is the fracture surface analysis, and Test 3) the third one is the fiber length 

distribution. The tests are visually described and follow in the order indicated by the 

direction of the arrows. 

 

 
 

Figure 3.2. Fiber Length Measurement image 
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Figure 3.3. Experimental procedure schematic 

 

3.2. Results and Discussions 

 

3.2.1. CFF ABS vs. ABS 

 

The measured fiber weight fraction is 16.8% for the CFF ABS filament, and the 

weight average aspect ratio for CFF ABS testing sample is 6.5. Tensile test curves of 

applied stress versus strain at different print orientation appear in  

Figure 3.4. Each line is a representative curve for the tensile test of the kind of 

material printed at that direction. The high initial slope of CFF ABS coupons indicates 

higher modulus when compared to the unfilled samples, however, CFF ABS coupons 

exhibit lower ductility than the unfilled ABS coupons. The trend follows for all the samples 

with four print orientations. Note that ‘alt 45’ indicates samples with alternating beads at 

45 degrees. 
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Figure 3.4. Typical test curves, ABS vs CFF ABS 



50 

The statistical average tensile strength and tensile modulus for unfilled ABS and 

CFF ABS test bars fabricated with the FFF process described above appear in Figure 3.5 

and Figure 3.6, respectively. Error bars represent ±1 standard deviation over five samples. 

CFF test coupons at 0 degree print orientation are seen to have tensile strength and tensile 

modulus that is 33.2% and 212.2%, respectively, above their unfilled counterpart. 

However, the CFF ABS coupons exhibit inferior performance in tensile strength at other 

print orientations. Tensile strength was found to decrease by 13.5%, 15.9% and 15.7% at 

45 degrees, ±45 degrees, and 90 degrees, respectively, when CF is added. Alternatively, 

the tensile modulus shows a small improvement with CF, increasing by 44.0%, 45.8% and 

47.1% at 45 degrees, ±45 degrees, and 90 degrees, respectively. 

 

 
 

Figure 3.5. Tensile Strength ABS vs CFF ABS 
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Figure 3.6. Tensile Modulus ABS vs CFF ABS 

 

3.2.2. CFF PLA vs. PLA 

 

The measured fiber weight fraction is 12.6% for the CFF PLA filament, and the 

weight average aspect ratio for CFF PLA testing sample is 8.0. Figure 3.7 shows tensile 

test curves of applied stress versus strain for unfilled PLA and CFF PLA. Note that CFF 

PLA is the least ductile material among all the test materials in this study. Testing of CFF 

PLA required that tabs with smaller tapered angle for 0 degree and 90 degree print 

orientations to avoid premature sample failure at the edge of the tabs. PLA coupons overall 

show slightly higher elongation than CFF PLA test coupons. 
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Figure 3.7. Typical tensile curves, PLA vs CFF PLA 
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A summary of PLA and CFF PLA tensile test results appear in Figure 3.8 and 

Figure 3.9. Note that tensile strength and tensile modulus is found to increase by 14.0% 

and 162.9%, respectively, for CFF PLA, at 0 degree print direction once CF is added. At 

45 degrees, ±45 degrees, and 90 degrees print orientations, tensile strength improves by 

2.2%, 4.6% and -4.0%, respectively, and tensile modulus increase by 50.7%, 59.5% and 

44.5%, respectively. 

 

 
 

Figure 3.8. Tensile Strength PLA vs CFF PLA 

 

 
 

Figure 3.9. Tensile Modulus PLA vs CFF PLA 
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3.2.3. CFF PETG vs. PETG 

 

The measured fiber weight fraction is 17.7% for the CFF PETG filament, and the 

weight average aspect ratio for CFF PETG testing sample is 9.4. The tensile test results for 

applied stress versus strain for PETG based filament appear in Figure 3.10. Note that 

unfilled PETG curves exhibit a decrease in strain during the tensile test. This decrease in 

the measured strain resulted from necking that occurred outside the gage section. The 

resulting extension in the necking region outside of the gage section caused the remainder 

of the test coupon to contract under the reduced load. This should not cause a problem with 

the tensile strength measurement since the maximum stress is recorded before the necking 

occurs. PETG typically has a relatively high ductility, and the test coupon at all print 

orientations did not fail before the test machine reached its data recording limit. This 

phenomenon made it difficult to capture the stress-strain behavior at high strain. 
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Figure 3.10. Typical tensile test curves, PETG vs CFF PETG 
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A summary of the tensile test results for PETG and CFF PETG appear in Figure 

3.11 and Figure 3.12. The tensile strength and tensile modulus is found to increase by 

48.2% and 313.2%, respectively, at 0 degree print direction. At 45 degrees, ±45 degrees, 

and 90 degrees print orientations, tensile strength improves by 7.9%, 23.2% and 2.9%, 

respectively, and tensile modulus increase by 83.7%, 121.5% and 68.8%, respectively.  

 

 

Figure 3.11. Tensile Strength PETG vs CFF PETG 

 

 

Figure 3.12. Tensile Modulus PETG vs CFF PETG 
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3.2.4. CFF Amphora vs. Amphora 

 

The measured fiber weight fraction is 11.0% for the CFF Amphora filament, and 

the weight average aspect ratio for CFF Amphora testing sample is 5.8. Tensile test applied 

stress versus strain curves of for Amphora based filament appear in Figure 3.13. Note that 

measured results at 0 degree and 45 degree print orientation in Figure 3.13 also exhibit the 

strain reduction described for PETG tensile test curves. Amphora also exhibits high 

ductility, and the test coupon at 0 degree and 45 degrees print orientation did not fail. 

 
 

Figure 3.13. Typical tensile curves, Amphora vs CFF Amphora 
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A summary of tensile test results for Amphora and CFF Amphora appear in Figure 

3.14 and Figure 3.15. The tensile strength (defined here as the maximum stress applied to 

the test sample during the test) and tensile modulus is shown to increase by 5.1% and 

95.5%, respectively, at 0 degree print direction. At 45 degrees, ±45 degrees, and 90 degrees 

print orientations, tensile strength decreased by 6.2%, 5.4% and 8.4% for CFF Amphora, 

respectively. Results from the same experiments show that tensile modulus increases by 

29.8%, 34.2% and 28.9%, respectively, when CF was used in the Amphora polymer.  

 

 
 

Figure 3.14. Tensile Strength Amphora vs CFF Amphora 

 

 

 
 

Figure 3.15. Tensile Modulus Amphora vs CFF Amphora 
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3.2.5. Effect of Carbon Fiber on Tensile Properties 

 

The addition of carbon fibers significantly increases tensile modulus at 0 degree 

print orientation for PLA, ABS, PETG and Amphora test coupons. In general, the addition 

of carbon fiber improves tensile modulus of the test coupons for all print orientations 

considered here. When the print orientation aligns with the axis of the test bar, mechanical 

properties show the most improvement with the addition of carbon fiber. In this case, the 

high tensile strength of the carbon fiber greatly contributes to the increase in the mechanical 

properties of the CFF polymer test coupons. 

CFF PLA at 0 degree print orientation have the greatest strength and modulus 

values, and CFF PETG at 0 degree print orientation yields the greatest strength and 

modulus improvement. In general, CFF test samples at the 0 degree print orientation gives 

the greatest strength and modulus improvement relative to their unfilled counterparts, for 

all the test materials. CFF polymer test samples at 90 degrees print orientation gives the 

least improvement, for all the test materials. Lastly, the addition of CF reduces the ductility 

of the printed samples compared to their unfilled test samples, dropping over 50% in most 

cases. 

 

3.3. Fractography 

 

Figure 3.16 to Figure 3.19 show SEM images typical of the fracture surfaces for 

each material considered in this study. The CFF fractured coupons were subjected to high 

vacuum chamber with SEM mode; the height between the sample mount and lens was at 

around 45mm, and voltage was set at around 5kV. For the unfilled fractured coupons, the 

machine setting was the same except the chamber was in low vacuum at Backscattered 

Electron Shadow (BES) mode). In each figure, the first column represents the unfilled 
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fractured surfaces, and second column represents CFF fractured surfaces. From the first to 

third row in order, fractured images at 0 degree, ±45 degrees and 90 degrees print 

orientations are shown. Features of interest are labeled in the SEM images with lower case 

letters. 

 

 
 

Figure 3.16. SEM Images for ABS and CFF ABS Fracture Surfaces 
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Type (a) voids appearing in Figure 16 that formed between print layers are easily 

identified inside the unfilled polymer test coupons at the 0 and ±45 degrees print 

orientations. The remainder of the fracture surface appeared to be free of voids. Type (a) 

voids are less prominent in CFF test coupon surfaces. This is likely a result of the CFF 

polymer being more thermally conductive than the unfilled polymer, thus altering the flow 

of heat and improving the fusion between layers during the deposition process [2]. Other 

defects, however, are more pronounced. For example, images D and E in the Figure 3.16 

to Figure 3.19 have numerous small type (b) circular voids which appear to be sites where 

fibers pulled out of the polymer during the tensile test. There are also fibers exposed on the 

fracture surface, identified as type (c) feature. More interestingly, there seems to be pore 

enlargement around the type (c) feature at several sites. In addition, a type (d) pore has 

circular dented shape, and which appears to have occurred when the fiber pulled away from 

the polymer. Considering image F in Figure 3.16 to Figure 3.19, a large number of fibers 

are exposed on the fracture surfaces. Instead of sharing the tensile force between the CFF 

and the polymer matrix, the weak interfacial bond appears to have failed resulting in tensile 

strength that is lower than that of the unfilled polymer test coupon. This is confirmed by 

the tensile test results in Figure 3.5, Figure 3.8, Figure 3.11 and Figure 3.14. Finally, note 

that the fibers align well with the print orientation in each image, further agreeing with  the 

observation made by Tekinalp, et al. [2]. 
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Figure 3.17. SEM Images for PLA and CFF PLA fracture surfaces 
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Figure 3.18. SEM Images for PETG and CFF PETG fracture surfaces 
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Figure 3.19. SEM Images for Amphora and CFF Amphora fracture surfaces 

 

3.4. Fiber Weight Fractions and Fiber Length Distribution 

 

Carbon fiber weight fraction for each CFF polymer material tested in this study 

appears in Table 3.4. FLD comparisons before and after the print appear in Figure 3.20, 

and weight average fiber length, weight average fiber aspect ratio and number of fibers 

evaluated for each CFF polymer material are shown in Table 3.5. For material purchased 

from 3DXTECH, fiber diameter measured on fifteen individual fibers yielded an average 

value of 7.77μm. Five measurements of fiber diameter on CFF Amphora filament resulted 
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in an average fiber diameter of 7.68μm. We found that the CFF Amphora had shorter fibers 

than the other CFF materials. This could likely be the cause of CFF Amphora exhibiting 

less improvement over Amphora than that seen in the other CFF materials. 

Results appearing in Figure 3.20 show that FLD for printed CFF samples shift 

downward slightly as compared to the CFF filament FLD, suggesting that the printing 

process caused a slight reduction in fiber length overall. Furthermore, the differences 

between weight average aspect ratios before and after the print are less than 1.5. These 

results show that the fiber length remains mostly unaffected during deposition as the CFF 

filament travels throughout the nozzle. 

 

Table 3.4. Carbon fiber weight fraction for each CFF polymer material 

 

CFF ABS filament 16.8% 

CFF PLA filament 12.6% 

CFF PETG filament 17.7% 

CFF Amphora filament 11.0% 

 

 

 
 

Figure 3.20. Fiber length distributions plots for each CFF material filament 



66 

Table 3.5. Fiber length and aspect ratio information for each CFF material 

 

 Results 

CFF 

ABS 

filament 

CFF 

ABS 

print 

CFF 

PLA  

filament 

CFF 

PLA 

print 

CFF 

PETG 

filament 

CFF 

PETG 

print 

CFF 

Amphora 

filament 

CFF 

Amphora 

print 

weight 

average  

fiber length 

51.4 μm 
50.8 

μm 
72.8 μm 

62.3 

μm 
74.9 μm 

73.1 

μm 
48.5 μm 44.9 μm 

weight 

average  

aspect ratio 

6.6 6.5 9.4 8.0 9.6 9.4 6.3 5.8 

# of fibers 

evaluated 
1391 1391 1064 1064 1123 1123 1015 1015 

 

This chapter investigated the tensile properties and fiber length distributions for 

four commercially available CFF filaments, and results were compared against their 

unfilled polymer counterparts. Fracture surfaces of filled and unfilled samples were 

inspected under the SEM. The addition of carbon fiber to the polymer was shown to 

increase the modulus of elasticity for all materials and all print orientations considered 

here, where the greatest improvement of 313.2% occurred at 0 degree print orientation of 

PETG. PETG printed at 0 degree also showed the highest increase in tensile strength of 

48.2%. All samples printed at 0 degree showed an increase in tensile strength with the CFF 

PETG having the greatest overall tensile property improvement among the four selected 

CFF filaments. Results with print orientations other than 0 showed much less improvement 

with the addition of CFF, with ABS and Amphora showing a decrease in tensile strength 

for all print orientations other than zero degree. The FFF process results in small fiber 

breakage when processing CFF filled filament; however, all the samples have weight 

average of fiber length less than 100μm. Finally, improving interfacial bonding strength 

between fiber and polymer matrix is needed to fully realize the potential of CFF FFF parts. 

Particularly from the tensile test, it is obvious that the fiber orientation is crucial to the 
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mechanical properties of the printed the parts, which justifies the need for a design tools 

that takes the fiber orientation into account. In the next chapter, the formulation of the three 

dimensional optimization will be discussed in detail, based on SIMP method and CFAO. 
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 CHAPTER FOUR 

 

Three Dimensional Topology Optimization Scheme with SIMP Method and CFAO 

 

 

 In this chapter, we discuss the topology optimization process developed here for 

structures produced by the FFF process. In Section 4.1, a general form of the design 

optimization problem is presented which is followed in Section 4.2 with the traditional 

SIMP method. The SIMP method is extended in Section 4.3 to include the design variables 

of material orientation. Next, the FEA procedure for linear elastic static analysis is derived 

in Section 4.4. The type of finite element and the integration of the elemental stiffness 

matrix are presented in Section 4.5. Section 4.6 considers the constitutive material model 

we use in the topology optimization, and Section 0 derives the design sensitivities of the 

compliance objective function with respect to the density and material orientation 

variables. The optimization algorithm and a flow chart of the optimization process is 

discussed in Section 4.8. Lastly, fiber orientation modelling is briefly described in Section 

4.9. The correlation between the fiber orientation state and predicted elastic constants are 

also included. 

 

4.1. General Formulation of Design Optimization 

 

 Design optimization involves problems across wide areas of discipline and enjoys 

application in many industries. It is applied to the fields of computer science, operational 

research, transportation, telecommunication and more. Despite the diversity of the fields 

that are involved, it is common to write the general design optimization problem statement 

in a standard form as  
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 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝒙) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) (4.1) 

 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ℎ𝑗(𝒙) = ℎ𝑗(𝑥1, 𝑥2, … , 𝑥𝑛) = 0;  𝑗 = 1 𝑡𝑜 𝑝 (4.2) 

 

 𝑎𝑛𝑑 𝑔𝑗(𝒙) = 𝑔𝑗(𝑥1, 𝑥2, … , 𝑥𝑛) ≤ 0;  𝑖 = 1 𝑡𝑜 𝑚 (4.3) 

 

 𝑥𝑖𝐿 < 𝑥𝑖 < 𝑥𝑖𝑈 (4.4) 

 

Where 𝑓(𝒙) is the objective function to be solved, ℎ𝑗(𝒙) represents the equality constraints, 

and 𝑔𝑗(𝒙) represents the inequality constraint. The design is parameterized by n design 

variables which are form the n-dimensional design variable vector 𝒙 which are adjusted in 

the optimization solution to solve Equations (4.1) – (4.4). While the form given in Equation 

(4.1) designates a minimization problem, we note that maximization may be performed by 

multiply the objective function f(x) by -1. Equation (4.2) defines the 𝑝 equality constraints 

ℎ𝑗(𝒙) in the design problem. It is important to keep in mind that the number of independent 

equality constraints cannot exceed the number of design variables. Otherwise, the design 

problem becomes overdetermined.. Also, in the case when  p = n, the solution is simply the 

roots of the equality constraints; therefore, no optimization is necessary. Equation (4.3) 

defines the m inequality constraints 𝑔𝑗(𝒙). There are no restrictions on how many 

inequality constraints can be imposed. All of the design variables have upper or lower or 

both bounds that may be imposed for design considerations. The topology optimization 

problem used in this thesis is in the form of the standard design optimization model given 

in Equations (4.1) – (4.4). In the next section we focus on the SIMP method and its 

extension with CFAO to design AM structures produced with anisotropic materials such 

as those obtained in the FFF process with CF polymer composites. In the next section, the 

problem formulation for SIMP method is introduced again, and the objective and the 

constraint functions are to be derived in detail. 
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4.2. Formulation of the SIMP Method 

 

 Sigmund [37] developed a 99 line Matlab code based on the SIMP method, which 

has since been extended in several papers to address more complex topology optimization 

problems. The three dimensional topology optimization code built for the research in this 

thesis is based on the SIMP formulation for structural optimization. Therefore, we begin 

our discussion of topology optimization with the SIMP formulation. Equations (4.5). and 

(4.6). state the objective function and design constraints, respectively, which has become 

the standard SIMP formulation.  

 min: c(𝛒) = 𝐔(𝛒)𝐓𝐅 = 𝐔(𝛒)T𝐊(𝛒)𝐔(𝛒) =∑(ρe)
pue

Tk0ue

N

e=1

 (4.5) 

 

 Subject to: 

{
 

 
V(𝛒)

V0
= f

𝐊(𝛒)𝐔(𝛒) = 𝐅
0 < ρmin ≤ 𝛒 ≤ 1

 (4.6) 

 

The objective function c(𝝆) is the compliance [113] which depends on the density design 

variable vector 𝛒. 𝐊, 𝐔 and 𝐅 are the global stiffness matrix, displacement vector and 

applied load vector of the finite element model, respectively. The variables 𝐤𝟎 and 𝐮𝐞 

respectively represent the stiffness matrix and displacement vector at the elemental level. 

Each design variable ρe is bounded by a lower and upper bounds of 0 and 1, respectively. 

Furthermore, two equality constraints have to be satisfied by the optimization. The first 

equality constraint limits the maximum amount of volume can be filled with material with 

respect to the design domain, and the second constraint is the static equilibrium condition 

which can be achieved by finite element analysis. 

In structural engineering, minimizing the compliance is equivalent to maximizing 

the stiffness of a structure where the stiffness depends on both the material and the 
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geometry of the structure. The compliance is a property that measures the degree of 

deformation of a structure for a given loading condition [113]. For example, consider a 

simple cantilever beam is loaded with a transverse point force F on its free end. The 

resulting tip displacement δ in the direction of F may be used to define the stiffness as 

 k =
F

δ
 (4.7) 

 

In many circumstances, it is very desirable to design products with high stiffness, providing 

reliability and safety for the users. The compliance for this simple problem is calculated as 

the potential energy c =   δF =  kδ^2. The compliance function provides a means for 

including the potential energy from all of the applied loads, making it desirable for use in 

topology optimization.  

The volume equality constraint restricts how much material is allowed to occupy 

the design domain. It is possible to replace equality form in Equation (4.6) with the 

inequality constraint  

 
V(𝛒)

V0
≤ f (4.8) 

 

since it would not affect the result of the topology optimization. This is because more 

material can always give higher stiffness for the structure, therefore the optimization 

algorithm will push the available volume fraction to the limit, resulting inan active 

constraint, which is the same as equality constraint in Equation (4.6). 

The lower and upper bounds (ρmin and 1, respectively) imposed on the components 

of the density design variable vector 𝛒 correspond to void and solid. Lastly, 𝐊(𝛒)𝐔(𝛒) =

𝐅 in Equation (4.6) is to enforce static equilibrium which is implemented through the finite 

element analysis. 
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4.3. Extension of SIMP Method with CFAO 

 

 To optimize the material orientation in the SIMP method, additional material 

orientation variables are introduced by including an orientation angle into each element. 

The resulting modified SIMP are very much the same as the original SIMP formulation, 

except by introducing an additional sets of material orientation variables 𝛉.    

 

min: c(𝛒, 𝛉) = 𝐔(𝛒, 𝛉)𝐓𝐅 = 𝐔(𝛒, 𝛉)T𝐊(𝛒, 𝛉)𝐔(𝛒, 𝛉)

=∑(ρe)
p𝐮𝐞

𝐓𝐤𝐞(θe)𝐮𝐞

N

e=1

 
(4.9) 

 

 Subject to: 

{
 
 

 
 

V(𝛒)

V0
= f

𝐊(𝛒, 𝛉)𝐔(𝛒, 𝛉) = 𝐅
0 < ρmin ≤ 𝛒 ≤ 1
−2π ≤ 𝛉 ≤ 2π

 (4.10) 

 

Again, 𝐊, 𝐔 and 𝐅 are the global stiffness matrix, displacement vector and applied load 

vector of the finite element model, respectively. The variables 𝐤𝐞 and 𝐮𝐞 respectively 

represent the stiffness matrix and displacement vector at the elemental level, with a total 

number of N finite elements. P is the penalization power. Notice in Equation (4.9), the 

elemental stiffness matrix is no longer a constant matrix. Instead, it depends on the fiber 

angle variable θe given as 

 𝐤𝐞 = 𝐤𝐞(ρe, θe) = (ρe)
p𝐤𝐞(θe) (4.11) 

 

In three dimensions, it would seem necessary to use 2 variables in each element to describe 

the directionality of the material. However, in this study, only one material orientation 

variable is needed for each element, due to the assumption made that fibers rotate only in 

the print plane. Each material orientation variable θe are bounded between −2π and 2π, 

as shown in Equation (4.10). where the wide range allows the angle to rotate into its optimal 
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position, avoiding a potential local minimum due to limitations placed on the problem by 

these side constraints. Since we have replaced the isotropic material of SIMP with an 

orthotropic material model, two material constants are needed for matrix construction, 

namely the density  ρ and angle θ. This modification on the elemental stiffness matrices 

potentially adds significant computational time for the optimization, since each of the 

elemental stiffness has to be evaluated independently. For the purpose of this research, the 

penalization power is set to 3, as it is commonly used in the literature [37,101,102]. The 

lower bound of density variable is set to 𝜌𝑚𝑖𝑛  = 10−6. In the next section, the finite 

element analysis used to define 𝐊𝐔 = 𝐅 in this research is derived. 

 

4.4. Finite Element Analysis in Three Dimension 

 

 To evaluate the compliance function in the minimization problem of Equation (4.9), 

a Finite Element Analysis (FEA) is performed which is based on the theory of linear 

elasticity. FEA is a popular method used to compute an approximate solution of the partial 

differential equations (PDE) defined over the domain of interest. To solve the PDE 

analytically in many cases can be impossible. Alternatively, an approximate solution can 

be computed on the domain by discretizing it into elements, connected by the nodes where 

an approximate solution variables are solved at the nodes. In this approach, the solution is 

interpolated over the element using shape functions. The theory of elasticity forms a vector 

field problem, which is based on four assumptions [114]: First, the deformation of the 

structure is small; second, the behavior of the material is linear; third, the dynamic effect 

is neglected; and fourth, there is no gaps or overlaps during the deformation of the solid. 

To derive the finite element form for linear elastic structure domain, the general Strong 

Form for the static problem is introduced first as 
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 (𝑎)    𝛁𝐒
T𝛔 + 𝐛 = 𝟎 on Ω 

(𝑏)                   𝛔 = 𝐂𝛁𝐒𝐮 

 (𝑐)               𝛕𝐧 = 𝐭  on Γt 

 (𝑑)               𝐮⃗⃗ = 𝐮⃗⃗   on Γu 

(4.12) 

 

where σ is the stress matrix component from the second order stress tensor 𝛕, and 𝛁𝐒  is the 

symmetric gradient matrix operator [114]. The vectors 𝐛 and 𝐭 are the body force and 

traction force vectors, respectively, and 𝐂 is the constitutive material matrix, and 𝐮 is the 

displacement vector. Lastly, 𝐧 is the unit normal with respect to the boundary surface. 

Equation (4.12) a is the equilibrium condition, stating the sum of the forces in the solid at 

any point must vanish. The superscript T indicates transposition. The stress matrix 𝛔 occurs 

due to the deformation of the body, and the vector 𝐛 represents the body force, which can 

be used to model loads such as gravity or magnetic force. Equation (4.12)b contains two 

relationships. The first one is the implicit strain-displacement relations, between the strain 

matrix 𝛜 and the displacement matrix 𝐮 given as the kinematic equation 

 𝛜 = 𝛁𝐬𝐮 (4.13) 

The Constitutive Equation 

 

 𝛔 = 𝐂𝛜 (4.14) 

 

describes the relationship between stress and strain matrix. The constitutive matrix 𝐂 

contains the material elastic constants, such as elastic modulus, shear modulus and 

Poisson’s ratio. Two interesting properties for the constitutive matrix  𝐂 is that it is always 

symmetric and positive-definite. 

 Equation (4.12)c describes the prescribed external tractions 𝐭 on the boundaries of 

the domain. This condition is also referred as natural boundary (Γ𝑡) condition. Equation 

(4.12)d represents a different kind of boundary condition, known as the prescribed 
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boundary (Γ𝑢) condition. Here, the prescribed displacements are imposed on the 

boundaries. There are a couple of important rules on defining boundary conditions. First, 

the displacement and traction cannot be both imposed on the same portion of the boundary; 

which is stated as  

  Γ𝑡  ∩  Γ𝑢 = 0 (4.15) 

 

Second, on any portion of the boundary, either prescribed or natural boundaries must be 

prescribed, given as 

 Γ𝑡  ∪  Γ𝑢 = Γ (4.16) 

 

To transform the Strong Form in Equation (4.12) to the Weak Form, a weight 

function 𝐰 is introduced. One requirement for the admissible weight function is that it has 

to vanish on the domain boundary where u is prescribed, written as 

𝐰 = 𝟎 on Γu (4.17) 

 

In the method of weighted residuals, the weight function w is multiplied by Equation 

(4.12)a and (4.12)c and then both products are individually integrated over the domain . 

Applying Green’s theorem and after some algebraic manipulation, the Weak Form is 

obtained as 

 ∫ (𝛁𝐬𝐰)
T𝐂𝛁𝐬𝐮dΩ

Ω

= ∫ 𝐰T𝐭dΓ
Γt

+∫ 𝐰T𝐛dΩ
Ω

 (4.18) 

 

 At this point, the dimension of the domain has not been specified so that the 

aforementioned derivation from Strong to Weak Form can be applied to either two or three 

dimensions. The next step is to discretize the domain with finite elements. Since this thesis 

involves structural optimization in three dimensions, the corresponding displacement 

matrix 𝐝 is defined as 
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 𝐝 = [ux1 uy1 uz1 ux2 uy2 uz2  … uxnnp  uynnp  uznnp]
T

 (4.19) 

 

where nnp stands for the number of nodes in the finite element model. The shape function 

matrix 𝐍𝐞 is defined for each element as  

 𝐍𝐞


















e

enn
e
2

e
1

e

enn
e
2

e
1

e

enn
e
2

e
1

N00...N00N00

0N0...0N00N0

00N...00N00N

 (4.20) 

 

where Nn
e
en

represents the shape function for the corresponding node in the element, where 

its purpose is to approximate a smooth solution field in each element. The subscript nen 

defines the number of node in each element. The resulting elemental displacement matrix 

and weight function matrix are, respectively, approximated by the shape function on each 

element domain Ωe as  

 𝐮(x, y, z) ≈ 𝐮𝐞(x, y, z) = 𝐍𝐞(x, y, z)𝐝𝐞 
𝐰T(x, y, z) ≈ 𝐰eT(x, y, z) = 𝐰eT𝐍𝐞(x, y, z)T 

(4.21) 

 

where 𝐝𝐞 and 𝐰e represent the displacement and weight function matrices at the element 

level, respectively. Following discretization, Equation (4.18) is evaluated by summing all 

the elemental integrals as 

 ∑{∫ (𝛁𝐬𝐰
𝐞)T𝐂𝐞𝛁𝐬𝐮

𝐞dΩ
Ωe

−∫ 𝐰eT𝐭dΓ
Γt
e

−∫ 𝐰eT𝐛dΩ
Ωe

}

𝑛𝑒𝑙

𝑒=1

= 0 (4.22) 

 

In the above, 𝑛𝑒𝑙 is the number of finite elements that is used for discretization, and 𝐂𝐞 is 

the material property matrix in the corresponding element. The approximation of strain 

matrix in (4.21) can be written in terms of the nodal displacements using Equation (4.13) 

as  
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 𝛜 =

[
 
 
 
 
 
ϵxx
ϵyy
ϵzz
ϵyz
ϵxz
ϵxy]
 
 
 
 
 

≈ 𝛜𝐞 = 𝛁𝐬𝐮
𝐞 = 𝛁𝐬𝐍

𝐞𝐝𝐞 = 𝐁𝐞𝐝𝐞 (4.23) 

 

where the matrix 𝐁𝐞 is the strain-displacement matrix. The 𝐁𝐞 matrix is also used to obtain 

derivatives of the weight function as  

 (𝛁𝐬𝐰
𝐞)T = (𝐁𝐞𝐰𝐞)T = 𝐰eT𝐁eT (4.24) 

 

Recalling the symmetric gradient operator 𝛁𝐬 in three dimension is written as 
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(4.25) 

 

the strain-displacement matrix is therefore written as 
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Equations (4.21), (4.23) and (4.24) are substituted into Equation (4.22), and then 

following some algebraic manipulation, we obtain 

 𝐊𝐔 = 𝐅 (4.27) 
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Note that Equation (4.27) is one of the design constraints in SIMP method in Equation 

(4.10). The global stiffens matrix 𝐊 and global force vector 𝐅 are assembled through 

summation of the elemental matrices, respectively written as 

 𝐤𝐞 = 𝐊
𝐞 = ∫ 𝐁𝐞T𝐂𝐞𝐁𝐞dΩ

Ωe

 (4.28) 

and 

 𝐅𝐞 = ∫ 𝐍𝐞T𝐛dΩ

Ωe

+ ∫ 𝐍𝐞T𝐭dΓ

Γt
e

 (4.29) 

 

To solve for the unknown nodal values and reaction forces, Equation (4.27) is partitioned 

as  

 [
𝐊𝐅𝐅 𝐊𝐄𝐅

𝐓

𝐊𝐄𝐅 𝐊𝐄𝐄
] [
𝐔𝐅
𝐔𝐄
] = [

𝐅𝐅
𝐅𝐄
] (4.30) 

 

where subscript 𝐄 represents the nodes that are prescribed an essential boundary condition, 

and subscript 𝐅 represents the free degrees of freedom. The unknown displacement vector 

𝐔𝐅 is solved first, and then the reaction forces 𝐅𝐄 are solved using the second row of the 

matrix equation. 

 

4.5. Three Dimensional Isoparametric Element 

 

Isoparametric elements are widely used in FEA primarily since they are capable of 

representing irregular shaped domains and curved boundaries. In an isoparametric element, 

the spatial location within the element is mapped to a master or reference element where 

integrations over the element are more easily performed. To integrate terms in the weak 

form over the reference domain, the numerical integration method of Gauss Quadrature is 

commonly employed. Gauss Quadrature evaluates the integrand at predefined Gauss points 

in the master element [115] to perform the integration. For the three dimensional FEA in 
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this research, the 8-node hexahedral isoparametric element is selected for domain 

discretization. The geometry of the element is shown in  

Figure 4.1, where each coordinate that defines the master element takes on values 

from -1 to 1, which is the domain of integration in Gauss Quadrature. Typical shape 

functions for the element are given as 

 𝐍𝐞 =
1

8

{
 
 
 
 

 
 
 
 
(1 − ξ)(1 − η)(1 − ζ)
(1 + ξ)(1 − η)(1 − ζ)
(1 + ξ)(1 + η)(1 − ζ)
(1 − ξ)(1 + η)(1 − ζ)
(1 − ξ)(1 − η)(1 + ζ)
(1 + ξ)(1 − η)(1 + ζ)
(1 + ξ)(1 + η)(1 + ζ)
(1 − ξ)(1 + η)(1 + ζ)}

 
 
 
 

 
 
 
 

 (4.31) 

 

The shape functions interpolate nodal values within the element and thus provide an 

approximate solution field over the master elemental domain. Shape functions must satisfy 

the partition of unity requirement given as  

 ∑𝐍i
𝐞(𝚵)

n

i

= 1 , (4.32) 

And 

 

 𝐍i
𝐞(𝚵j) = δij = {

1 if i = j
0 if i ≠ j

 (4.33) 

 

which states that the sum of the shape function values at any point in the domain has to 

equal to one, and the shape function value at their corresponding node equals to one and 

zero at any other nodes. The vector 𝚵 in Equation (4.32) and (4.33) contains the coordinate 

vectors such that 𝚵 = {ξ, η, ζ}. 
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Figure 4.1. 8-node isoparametric element, with elemental node numbers and master 

coordinates axes 

 

 

 To integrate the elemental stiffness matrix 𝐤𝐞, we approximate the analytical form 

using Gauss Quadrature integration as 

 

𝐤𝐞(θe) =∭𝐁𝐞T𝐂𝐞′(θe)𝐁
𝐞dΩ

1

−1

≈∑∑∑(WiWjWk𝐁
𝐞(ξi, ηj, ζk)

T
𝐂𝐞′(θe)𝐁

𝐞(ξi, ηj, ζk)|𝐉(ξi, ηj, ζk)|)

ngp

k=1

ngp

j=1

ngp

i=1

 

(4.34) 

 

where Wi, Wj and Wk are the Gauss Quadrature weights, one for each coordinate direction. 

Since the stiffness matrix is integrated in three dimensions, we need a Gauss weight for 

each coordinate i, j, k to integrate over the master element domain. The value of the Gauss 

weight depends on the number of integration point ngp that is used (Note that we have 

assumed the same number of Gauss points in all three directions). The matrix 𝐁𝐞 is the 

strain-displacement matrix and 𝐉 is the Jacobian matrix for the transformation from the 

reference element to the actual element. The dimensions of the matrices in the above 

equations are as follows: 𝐁𝐞 is 6x24, 𝐂𝐞 is 6x6, and the elemental stiffens matrix 𝐤𝐞 is 

24x24. Table 4.1 shows the Gauss point coordinates and weight values for various numbers 
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of Gauss quadrature points. The research performed here uses ngp = 2 point Gauss 

quadrature in all three master element coordinate directions.  

The Jacobian matrix 𝐉(ξi, ηj, ζk) in Equation (4.35) is evaluated as 

 

[𝐉] =

[
 
 
 
 
 
 
∂𝐱

∂ξ

∂𝐲

∂ξ

∂𝐳

∂ξ
∂𝐱

∂η

∂𝐲

∂η

∂𝐳

∂η
∂𝐱

∂ζ

∂𝐲

∂ζ
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∂ζ]
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(4.35) 

 

The first matrix in Equation (4.35) represent the derivatives of the physical coordinates 

with respect to the master element coordinates. In the final expression in Equation (4.35), 

the first matrix contains the derivatives of the shape function with respect to the master 

elemental coordinates, and the matrix on the right side contains the coordinates of the 

element nodes in three dimensions. 

 

Table 4.1. Weight values and evaluation points for different number of Gauss Quadrature 

 

Number of Gauss Points Wi Evaluation base points 

1 2 0 

2 1 
1

√3
, −

1

√3
 

3 
5

9
,
8

9
,
5

9
 

√3

5
, 0, −

√3

5
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4.6. Constitutive Material Model 

 

To evaluate the stiffness matrix in Equation (4.34), we must compute the material 

property matrix 𝐂𝐞′ which includes the constitutive model for the material in the structure. 

The matrix 𝐂𝐞′ is the constitutive material matrix after the rotation, and this second order 

tensor contains the original constitutive material tensor and the transformational matrix. 

Because of the rotation of the material orientation in each finite element, a matrix 

transformation is needed to calculate the material properties with respect to the global 

coordinate.  

 Here we only consider a single rotation θ about the z-axis when defining material 

properties. To derive the transformed material model 𝐂𝐞′, a coordinate transformation is 

defined that relates the three dimensional Cartesian system (xyz) to the coordinate system 

(x′y′z′), offset counterclockwise by an angle value θ about the 𝑧 axis as shown in Figure 

4.2. As shown, the coordinate location P positioned in the (𝑥𝑦) (or (𝑥′𝑦′)) plane, with 

coordinates (u, v, w) or (u′v′w′) which are related through 

 

 [
u′
v′
w′

] = [
cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1

] [
u
v
w
] (4.36) 

 

or similarly 

 

 [
x′
y′

z′

] = [
cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1

] [
𝑥
y
z
] (4.37) 
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Figure 4.2. Three dimensional coordinate transformation according to z axis 

 

In three dimensions, there are six components of strains in both the original and 

rotated coordinate systems, three normal strains and three shear strains each. The strains of 

vector OP in the original coordinate system are.  

 
ϵx =

∂u

∂x
, ϵy =

∂v

∂y
 , ϵz =

∂w

∂z
 

γyz = 2ϵyz =
∂v

∂z
+
∂w

∂y
, γxz = 2ϵxz =

∂w

∂x
+
∂u

∂z
, γxy = 2ϵxy =

∂u

∂y
+
∂v

∂x
  

(4.38) 

and similarly, for rotated coordinate system we write 

 

 
ϵ′x =

∂u′

∂x′
, ϵ′y =

∂v′

∂y′
 , ϵ′z =

∂w′

∂z′
 

γ′yz = 2ϵ′yz =
∂v′

∂z′
+
∂w′

∂y′
, γ′xz = 2ϵ′xz =

∂w′

∂x′
+
∂u′

∂z′
, γ′xy = 2ϵ′xy =

∂u′

∂y′
+
∂v′

∂x′
 

(4.39) 

 

When transforming the shear strain, the tensor strain ϵij or ϵ′ij is used instead of the 

engineering shear strain γij or γ′ij. To write the strains in xyz in terms of the strains in 

x’y’z’, the chain rule is used to establish the relationship. For example, for the normal strain 

along the x-coordinate  written in terms of the x′𝑦′𝑧′ axes is  
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 ϵx =
∂u

∂x′

∂x′

∂x
+
∂u

∂y′

∂y′

∂x
+
∂u

∂z′

∂z′

∂x
 (4.40) 

 

Rewriting Equation (4.36) gives  

 [
u
v
w
] = [

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

] [
u′
v′
w′

] (4.41) 

 

where it follows that 

 

Furthermore, from Equation (4.37), the derivative of the rotated coordinate axes with 

respect to the original coordinate axes can be written as, 

 

∂x′

∂x
= cos(θ)

∂x′

∂y
= sin(θ)

∂x′

∂z
= 0

∂y′

∂x
= −sin(θ)

∂y′

∂y
= cos(θ)

∂y′

∂z
= 0

∂z′

∂x
= 0

∂z′

∂y
= 0

∂z′

∂z
= 1

 (4.43) 

 

From Equation (4.39), (4.42) and (4.43), Equation (4.40) becomes 

 ϵx = cos(θ)
2ϵ′x − 2cos(θ)sin(θ)ϵxy + sin(θ)

2ϵy (4.44) 

 

Expression for ϵy, ϵz, ϵyz, ϵxz, and ϵxy can be derived in a similar manner, where the 

resulting strain transformation is  
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(4.45) 

 

 

∂u

∂i′
=
∂u′

∂i′
cos(θ) −

∂v′

∂i′
sin(θ)

∂v

∂i′
=
∂u′

∂i′
sin(θ) +

∂v′

∂i′
cos(θ)

∂w

∂i′
=
∂w′

∂i′ }
 
 

 
 

 i = x, y, z (4.42) 
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Here we the transformational matrix 𝐓(θ) such that it’s inverse is given as  

 

𝐓−𝟏(θ) =





































22

22

22

)sin()cos(000)sin()cos()sin()cos(

0)cos()sin(000

0)sin()cos(000

000100

)cos()sin(2000)cos()sin(

)cos()sin(2000)sin()cos(

 (4.46) 

 

to give 𝛜 = 𝐓−𝟏(𝛉)𝛜′. 

 Once the transformation matrix 𝐓(θ) is defined, the stress-strain relationship in the 

rotated coordinate system can evaluated from 

 

[
 
 
 
 
 
 
σ′x
σ′y
σ′z
σ′yz
σ′xz
σ′xy]

 
 
 
 
 
 

= 𝐂

[
 
 
 
 
 
 
ϵ′x
ϵ′y
ϵ′z
2ϵ′yz
2ϵ′xz
2ϵ′xy]

 
 
 
 
 
 

= 𝐂

[
 
 
 
 
 
 
ϵ′x
ϵ′y
ϵ′z
γ′yz

γ′xz

γ′xy]
 
 
 
 
 
 

= (4.47) 

 

To accommodate the engineering shear strains for transformation, a matrix 𝐑 containing 

diagonal terms is employed which is defined as 

 𝐑 =



























200000

020000

002000

000100

000010

000001

 (4.48) 

 

Applying the transformational matrix and matrix 𝐑 into Equation (4.48), we obtain, 

 𝐓(θ)

[
 
 
 
 
 
𝜎𝑥
𝜎𝑦
𝜎𝑧
𝜎𝑦𝑧
𝜎𝑥𝑧
𝜎𝑥𝑦]

 
 
 
 
 

= 𝐂𝐑𝐓(θ)

[
 
 
 
 
 
𝜖𝑥
𝜖𝑦
𝜖𝑧
𝜖𝑦𝑧
𝜖𝑥𝑧
𝜖𝑥𝑦]

 
 
 
 
 

 (4.49) 
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Pre-multiply Equation 4.48 by 𝐓−𝟏(θ) and substituting 𝐑−𝟏 as needed, Equation (4.49) is 

becomes 

 

[
 
 
 
 
 
𝜎𝑥
𝜎𝑦
𝜎𝑧
𝜎𝑦𝑧
𝜎𝑥𝑧
𝜎𝑥𝑦]

 
 
 
 
 

= 𝐓−𝟏(θ)𝐂𝐑𝐓(θ)𝐑−𝟏

[
 
 
 
 
 
𝜖𝑥
𝜖𝑦
𝜖𝑧
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦]

 
 
 
 
 

 (4.50) 

 

Furthermore, it can be shown that  

 𝐓−T(θ) = 𝐑𝐓(θ)𝐑−𝟏 (4.51) 

 

Eventually, the stress and strain vectors in the original coordinate system can be written as 

shown in Equation (4.52).  

 

[
 
 
 
 
 
σx
σy
σz
σyz
σxz
σxy]

 
 
 
 
 

= 𝐓−𝟏(θ)𝐂𝐓−T(θ)

[
 
 
 
 
 
ϵx
ϵy
ϵz
γyz
γxz
γxy]
 
 
 
 
 

→ 𝛔 = 𝐂′(θ)𝛜 (4.52) 

 

The matrix 𝐂′(θ) is therefore the transformed constitutive material matrix that is used in 

Equation (4.34), in terms of the elemental material equations.  

 The last piece of information that is needed to execute the FEA in this thesis is the 

material elastic constants for defining the original constitutive material matrix 𝐂. Here we 

model each discretized element as a unidirectional fiber composite with a transverse 

isotropic property [116]. Therefore, five material constants are needed, namely Ex (elastic 

stiffness along the fiber axis), Ey (transverse elastic stiffness of the fiber), Gxy (shear 

modulus of the fiber in the x-y plane)), υxy (Poisson’s ratio of the fiber in the x-y plane) 

and υyz (Poisson’s ratio of the fiber in the y-z plane)  [117] which compose the constitutive 

material matrix 𝐂 written as 
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(4.53) 

 

 

4.7. Design Sensitivity and Filtering 

 

 Design sensitivity analysis is required for the solution of the topology optimization 

problem. Design sensitivities quantify the relationship between changes in the design 

variables and changes in the objective and constraint functions. In this research, 

sensitivities with respect to both the elemental densities and material orientation angle 

design variables are needed for the gradient-based optimization algorithm. There are 

various methods employed for obtaining design sensitivities which are considered in the 

text to follow. Sensitivity filtering techniques discussed in Chapter Two is also discussed 

below.  

A common method for evaluating design sensitivities is the Finite Difference 

method which is easily derived from a Taylor series expansion [115]. Considering a small 

perturbation ∆𝐱i in a function F(x), the derivative ∇iF(𝐱) may be approximated using the 

first-order Taylor Expansion 

 F(𝐱 + Δ𝐱i) = F(𝐱) + ∇iF(𝐱) ∗ ∆𝐱i + o(∆xi
2) (4.54) 

 

where ∇iF(𝐱) is the i-th component of the gradient ∇F(𝐱). The term o(∆𝐱i
2) is the 

truncation error of approximation where the square superscript indicates by taking half of 
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the original step Δxi, the error will be approximately quartered. The vector ∆𝐱i is defined 

in terms of a perturbation ∆xi of the i-th component written as 

 ∆𝐱i = [0,0,0, … , ,0,0, ∆xi, 0,0, … ,0,0,0, ] (4.55) 

 

There are many finite difference schemes that can be used where it is common to use the 

forward finite difference, which it is obtained by rearranging Equation (4.45) as 

 ∇iF(𝐱) =
F(𝐱 + Δ𝐱i) − F(𝐱)

∆xi
+ o(∆xi) (4.56) 

 

When the Taylor series is expanded with a backward perturbation, Equation (4.57) then 

becomes  

 F(𝐱 − Δ𝐱i) = F(𝐱) − ∇iF(𝐱) ∗ ∆𝐱i + o(∆xi
2) (4.57) 

 

which yields the backward finite difference,  

 ∇iF(𝐱) =
F(𝐱) − F(𝐱 − Δ𝐱i)

∆xi
+ o(∆xi) (4.58) 

 

There is also the central finite difference formula, which is derived by averaging the 

backward and forward finite difference formulas yielding  

 ∇iF(𝐱) =
F(𝐱 + Δ𝐱i) − F(𝐱 − Δ𝐱i)

2∆xi
+ o(∆xi

2) (4.59) 

 

Note that o(∆xi) in each Equation (4.56) and (4.58) represent the order of accuracy if the 

step size is changed. The finite difference method is relatively easy to implement; however, 

errors are introduced depending on the size of the perturbation ∆𝐱i. More importantly, 

finite difference method requires an additional FEA solution for each design variable which 

can be computationally prohibitive in case of large number of design variables. Therefore, 

faster and more accurate method will be adopted using analytical derivation. 

 There are two analytical methods developed to calculate the design sensitivities 

which are commonly implemented with the finite element method: the Direct 
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Differentiation Method and the Adjoint Variable Method [118]. The Direct Differention 

method calculates the sensitivity by directly taking the derivative of the finite element 

equations with respect to the function’s implicit and explicit design variables. The Adjoint 

Variable method employs a Lagrange multiplier to solve for the design sensitivity. 

Comparing the two methods, if the number of design variables is greater than the number 

of performance measures (i.e., objective function plus implicit constraints), the Adjoint 

Variable Method is preferred, and vice versa. For this research, there is only one implicit 

objective function, no implicit constraints, and we expect many design variables, so the 

Adjoint Variable Method is justified for our design sensitivities. 

 To derive the design sensitivity with respect to the density design variable, the 

material orientation variable is assumed to be constant. We consider the objective function 

defined in Equation (4.60) defined in terms of the design variable vector 𝛟 = (𝛒, 𝛉) where 

𝛒 and 𝛉 are as defined in Equation (4.9) above. Both c̅(𝛒) and c(𝐔(𝛟),𝛟) are equivalent 

expressions for the objective function. The latter expression recognizes the implicit 

dependence of c on the design variable through the displacement vector. In the Adjoint 

Variable Method, the objective function is added to the product of an arbitrary Lagrange 

Multiplier 𝛌 and the static equilibrium equation to obtain the augmented function c̅ as 

 c̅(𝛟) = c(𝐔(𝛟),𝛟) − 𝛌(𝛟) ∗ (𝐊(𝛟)𝐔(𝛟) − 𝐅(𝛟)) (4.60) 

 

Taking the derivative of Equation (4.60) with respect to the density design variable ρe  

yields 

 
Dc̅

Dρe
=
∂c

∂ρe
+
∂c

∂𝐔

∂𝐔

∂ρe
 −

Dλ

Dρe
∗ (𝐊𝐔 − 𝐅) − 𝛌 ∗ (

D𝐊

Dρe
𝐔 + 𝐊

D𝐔

Dρe
−
D𝐅

Dρe
) (4.61) 
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where the arguments have been omitted for conciseness. Since the static equilibrium is 

assumed to be satisfied, the derivative term 
Dλ

Dρe
 may be eliminated by first rearranging 

Equation (4.61) as 

 
Dc̅

Dρe
=
∂c

∂ρe
+
∂𝐔

∂ρe
(
∂c

∂𝐔
− 𝐊λ) − 𝛌 ∗ (

D𝐊

Dρe
𝐔 −

D𝐅

Dρe
) (4.62) 

 

Since 𝛌 is arbitrary, it can be defined to eliminate the term 
∂𝐔

∂𝜌𝑒
 by setting its coefficient to 

zero to obtain  

 
∂c

∂𝐔
− 𝐊𝛌 = 0 (4.63) 

 

The compliance objective function given above can be expressed in terms of the global 

displacement 𝐔 and global force vector 𝐅 as  

 c = 𝐔𝐓𝐅 (4.64) 

 

The Adjoint Variable evaluation process is summarized as 

 
∂c

∂𝐔
− 𝐊𝛌 = 0 →

∂𝐔𝐅

∂𝐔
− 𝐊𝛌 = 0 → 𝐅 = 𝐊𝛌 → 𝛌 = 𝐔 (4.65) 

 

where we have assumed that the load F is not a function of design. In the above, the 

Lagrange Multiplier vector is simply the global displacement vector U for the compliance 

objective function. Substituting 𝛌 = 𝐔 into Equation (4.62) yields the desired design 

sensitivity. Note that since there is no explicit relationship between the objective function 

and a density variable (
∂c

∂ρe
= 0), as well as between global force vector and density 

variable (
D𝐅

Dρe
= 0), the design sensitivity of the compliance with respect to a density design 

variable becomes, 

 
Dc̅

Dρe
= −𝐔T

D𝐊

Dρe
𝐔 (4.66) 



91 

The foregoing expression can be conveniently translated into the FEA procedure. In the 

discretized domain, the derivative of the elemental compliance and stiffness with respect 

to the all the density variables are zero, except the single ρe that is associated with the 

element e. Therefore, using the expression of elemental stiffness in Equation (4.66), the 

design sensitivity of compliance c with respect to the density variable ρe is evaluated at the 

elemental level as 

 
∂c

∂ρe
= −p(ρe)

p−1𝐮𝐞
T𝐤𝐞(θ)𝐮𝐞 (4.67) 

 

 The design sensitivity for material orientation design variables can also be obtained 

with Adjoint Variable Method at the element level. Similar to Equation (4.67), the 

compliance sensitivity with respect to material orientation variable θe is given as 

 
∂c

∂θe
= −(ρe)

p𝐮𝐞
T
∂𝐤𝐞(θe)

𝜕θe
𝐮𝐞 (4.68) 

 

Unlike density design variables, the elemental stiffness matrix 𝐤𝐞 depends on the material 

orientation variable θe  Recalling Equations (4.34) and (4.52), the elemental stiffness 

matrix in Equation (4.6) is written for Gauss Quadrature evaluations as  

 𝐤𝐞(θe) ≈∑∑∑(WiWjWk𝐁
𝐞(ξi, ηj, ζk)

T
𝐓−𝟏(θe)𝐂𝐓

−T(θ)𝐁𝐞(ξi, ηj, ζk)|𝐉(ξi, ηj, ζk)|)

ngp

k=1

ngp

j=1

ngp

i=1

 (4.69) 

 

where we note the dependence of 𝐓(θe) on θe.Taking the derivative of Equation (4.69) with 

respect to material orientation variable in the usual manner yields 

 

∂𝐤𝐞(θ)

∂θe
=∑∑∑{WiWjWk𝐁(ξi, ηj, ζk)

T
(
∂𝐓(θe)

−1

∂θe
𝐂𝐓(θe)

−T

ngp

k=1

ngp

j=1

ngp

i=1

+ 𝐓(θe)
−1𝐂

∂𝐓(θe)
−T

∂θe
)𝐁(ξi, ηj, ζk)|𝐉(ξi, ηj, ζk)|} 

(4.70) 
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By combining Equations (4.68) and(4.70), the design sensitivity for a material orientation 

design variable is  

 

∂c

∂θe
= ρe

p
𝐮𝐞
T {∑∑∑{WiWjWk𝐁(ξi, ηj, ζk)

T
(
∂𝐓(θe)

−1

∂θe
𝐂𝐓(θe)

−T

ngp

k=1

ngp

j=1

ngp

i=1

+ 𝐓(θe)
−1𝐂

∂𝐓(θe)
−T

∂θe
)𝐁(ξi, ηj, ζk)|𝐉(ξi, ηj, ζk)|}}𝐮𝐞 

(4.71) 

 

A common issue with the SIMP method is the checker board effect resulting from a 

numerical issue in the topology optimization solution process [44]. To eliminate checker 

board patterns, design sensitivities of the objective function taken with respect to density 

variable are filtered using the linear weight average of neighboring element values as 

described in Equation (2.6) and (2.7), which is rewritten here as   

 ∂ĉ

∂ρe
=
∑ ω(xi)ρi

∂c
∂ρi

i∈Ne

ρe ∑ ω(xi)i∈Ne

, ω(xi) = rmin − dist(e, i)  
(4.72) 

 

The variable dist(e, i) is the center distance between the filtered element and the 

surrounding element. The value of rmin is set to 1.5 for all the computational examples in 

this thesis where we use a regular grid of cube element having sides with a length of 1 unit. 

The higher the value of rmin, the more surrounding elements are involved in the filtering 

process, and vice versa. As long as the radius us bigger than one in our work, the filtering 

process will take in effect. Otherwise, a radius value of less than one is equivalent to no 

filtering at all, and checkerboarding is likely to occur.  

 

4.8. Optimization Solver 

 

 To solve the compliance minimization problem in Equation (4.8) in this thesis, the 

Matlab optimization solver fmincon [119] is applied. The Matlab function fmincon is a 
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nonlinear, constraint-based solver which may be used to solve the general optimization 

problem stated in Equation (4.73). The design variable vector 𝐱 contains parameters in the 

FE model that can be changed to obtain a better design as defined by the objective function 

and constraints. The constraints c(𝐱) ≤ 0 and ceq(𝐱) = 0 represent the nonlinear 

inequality and equality constraints, respectively. In addition, linear inequality and equality 

constraints written respectively as 𝐀 ∙ 𝐱 ≤ b and 𝐀𝐞𝐪 ∙ 𝐱 = beq may be specified in the 

optimization problem. The general nonlinear constrained problem solved with fmincon 

may be written as 

 
min
x
f(𝐱)

{
 
 

 
 

c(𝐱) ≤ 0
ceq(𝐱) = 0
𝐀 ∙ 𝐱 ≤ 𝐛

𝐀𝐞𝐪 ∙ 𝐱 = 𝐛𝐞𝐪
𝐱𝐥𝐛 ≤ 𝐱 ≤ 𝐱𝐮𝐛

 (4.73) 

 

where f(𝐱) is the objective function to be minimized. The vectors 𝐱𝐥𝐛 and 𝐱𝐮𝐛 are the lower 

and upper bounds for the design variables, respectively. 

The syntax for running fmincon in Matlab is 

 

where the output vector x of length n (n being the number of design variables) is the  design 

variable vector that is the solution to the optimization problem in Equation (4.73). The 

output fval is optimized objective value. There are more outputs available for the 

fmincon solver, and the readers can visit the website [119] for more information. In this 

research, the first n/2 components of the design variable vector x contains the density 

variables, and the remainder contains the material angle variables. The first input entry 

fun is a Matlab function or function M-file that evaluates the objective function and its 

 
[x,fval]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,o

ptions) 
(4.74) 
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design sensitivities with respect to all of the design variables. The second input vector x0 

contains the initial guesses for the design variables, and it is the same dimension as the 

array x. The third input A and fourth input b define the linear inequality constraints. These 

two inputs are replaced with empty brackets when there are no linear inequality constraints 

such as in the optimization problems solved in this research.  

The next two inputs Aeq,beq define the linear equality constraints, which we use 

for volume constraint in Equation (4.10). These volume constraints are defined with 

components of the vector Aeq taking values of 1 for the n/2 components and 0 for the 

remainder of the array; beq is the volume constraint scalar that is user-defined fraction 

ranges from 0 to 1. lb and ub are the lower and upper bound vectors for each design 

variable, respectively. The entry identified as nonlcon is also user-defined Matlab function 

or function M-file that calculates four outputs: the nonlinear inequality vector 𝐜, the 

nonlinear equality vector 𝐜𝐞𝐪, the gradients of the nonlinear inequality vector 𝐆𝐜, and the 

gradients of the nonlinear equality vector 𝐆𝐞𝐪. The nonlcon willl be used for two of the 

examples we are demonstrating.  

Finally, the options variable allows the user to specify parameters for the 

optimization solver in order to replace default values. Example parameters include the type 

of method for optimization, the tolerance for convergence criteria, the option to plot the 

iteration history, the option to include design sensitivities and more.  

Note that fmincon has several optimization algorithms available to the user, and 

the interior-point method is selected for the purpose of this research. The interior-point 

method solves the constrained nonlinear problem by introducing extra barrier functions 

into the objective function, and in each iteration the algorithm uses either the direct step, 
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based on Karush-Kuhn-Tucker condition, or the conjugate gradient step, based on a radius 

of trust region, to solve for the optimum. For more specific information, the reader can visit 

the Matlab website [119]. 

 Here we summarize the topology optimization process that includes orthotropic 

materials for modeling parts produced with the FFF process. For the discussion to follow, 

refer to Figure 4.3 which shows a flow chart of the optimization process. First, the design 

domain and boundary conditions are defined, and the domain is discretized into three 

dimensional hexagonal finite elements. Second, the FEA procedure is performed to 

calculate the displacement vector of nodal displacements in the x-, y-, and z-directions. 

Third, the objective function compliance and its design sensitivities are evaluated on an 

element-by-element basis. Fourth, the design sensitivity with respect to the density design 

variables are filtered using a linear weight average function. Fifth, the objective function 

and the design sensitivities serve as input the optimization solver fmincon which 

determines a new set of design variable values. If the relative changes of design variables 

and objective function values between two iterations are smaller than 0.1%, the algorithm 

stops the iteration process and the outputs the solution; otherwise, the iteration continues 

until the convergence criteria is met. The computer used for the example optimizations in 

the next chapter has a i7-4790 CPU processor at 3.60GHz, with a RAM of 32.0GB. 

During the iteration process, the elements that have density value larger than 0.5 

are plotted to illustrate the evolution of the topology, and the corresponding material 

orientation is also plotted inside each element to show their orientation states. Darker color 

of the element indicates that that element has a higher density. In addition, the 

computational time, the number of iterations and the computed compliance are recorded. 
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Figure 4.3. Flow chart demonstrating the process of minimizing the compliance 

 

4.9. Fiber Orientation and Elastic Constants calculation 

 

In this section, the relationship between fiber orientation and material elastic 

constants are presented. The intent here is not to develop a fiber orientation modeling 

approach, or to provide a comprehensive review of the topic. Instead, this section simply 

gives a brief background on how fiber orientation is modeled in a flow field, such as the 

extrusion flow in the FFF process, and a procedure that has been used to obtain realistic 

elastic constants for an extrudate formed during the FFF process It is important to note here 

that Heller, et al. [120,121] provides a detailed study of FFF nozzle flow, extrudate swell, 

and the resulting fiber orientation. This section only to gives a brief overview of Heller’s 

work and is limited to material related to this thesis, namely, the calculation of elastic 

constants in an FFF bead which we use for optimization. When a CFF composite is being 



97 

extruded out of the nozzle, the CFs will rotate due to their interaction with the polymer, the 

other fibers and the boundary wall of the nozzle. It is very important to understand the 

fibers’ motion in the polymer during the extrusion process. As we have shown in the tensile 

test from Chapter Three, the orientation beads, and thus that of the CFs, greatly affect the  

mechanical properties of the FFF printed structure.  

Fiber orientation modeling has been studied extensively over the last three decades 

due to its important application in injection modeling, compression modeling and other 

extrusion process of fiber filled composites. The work by Jeffery [122] on periodic motion 

of a single ellipsoidal fiber suspended within a viscous, incompressible shear flow is the 

basis for most fiber orientation work. The motion of a single fiber can be described as [122] 

 
D𝐩

Dt
= 𝛀 ∙ 𝐩 + λ(𝚪 ∙ 𝐩 − 𝚪: 𝐩𝐩𝐩)   (4.75) 

 

where 𝐩 is the unit vector along the axis of an ellipsoid as, and 𝛀 is the vorticity tensor 

given as 

 𝛀 =
1

2
[(∇𝐯) − (∇𝐯)T]  (4.76) 

 

and 𝚪 is the rate of deformation tensor 

 𝚪 =
1

2
[(∇𝐯) + (∇𝐯)T]  (4.77) 

 

In the above, ∇𝐯 represents the velocity gradient in the viscous fluid and λ is defined as 

 λ =
re
2 − 1

re2 + 1
  (4.78) 

 

Here re is the equivalent or hydrodynamic aspect ratio [123] of the fiber. Equation (4.74) 

is applicable to only one fiber, rendering it ineffective for modeling groups of interacting 

fibers.  
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 To determine the fiber orientation of multiple fibers and fiber-fiber interaction in a 

fluid, Advani and Tucker [124] proposed the fiber orientation tensor evolution equation 

 
D𝐀

Dt
= −(𝛀 ∙ 𝐀 − 𝐀 ∙ 𝛀) + λ(𝚪 ∙ 𝐀 + 𝐀 ∙ 𝚪 − 𝟐𝔸: 𝚪) + 𝐃𝐫 (4.79) 

 

where 𝐃𝐫 is the isotropic rotary diffusivity (IRD) 

 𝐃𝐫 = 2CIγ̇(𝐈 − 3𝐀) (4.80) 

 

which is written as a function of the empirically derived interaction coefficient CI, the 

scalar magnitude of the rate of deformation tensor γ̇, and the identity tensor 𝐈 . 

 In the above, 𝐀 and 𝔸 are the second and fourth order orientation tensors, 

respectively, given as [122] 

 𝐀 = ∮ PiPjψ(𝐩)d𝐩
s

 (4.81) 

 

 𝔸 = ∮ PiPjPkPlψ(𝐩)d𝐩
s

 (4.82) 

 

Here the region s represents the surface of the unit sphere and Pi, Pj, Pk and Pl each 

represents the component of the unit vector 𝐩, and ψ(𝐩) stands for the probability density 

function for fiber orientation. Also, in order to solve for Equation (4.78), 𝔸ijkl which is a 

higher order tensor has to be known in advance. The closures [125–127] are then needed 

to approximate this higher order tensor using the second order tensor 𝐀. 

 Heller, et al. [121] used the Equation (4.78) and Orthotropic Fitted Closure [127] 

to model fiber orientation in a typical extrusion nozzle for desktop 3D printer, as shown in 

Figure 4.4. The materials they used were based on 15% carbon fiber by volume, with Ef =

240GPa, vf = 0.2, Em = 2GPa and vm = 0.4. The aspect ratio of the fiber is 15. Since the 

nozzle is in an axisymmetric shape, their work was simplified by using 2D axisymmetric 
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boundary conditions for nozzle. Ten streamlines were used to model the fiber orientation 

from the inlet to outlet of the nozzle. Figure 4.5 shows the values of fiber orientation tensor 

𝐀33, which indicates the degree of alignment along the nozzle axis, in the extrudate just 

outside the nozzle exit. The value of z in Figure 4.5 is the radial coordinate measured from 

the center of the extrudate flow.  

 

 

Figure 4.4. Cross section of FFF nozzle, units in diameter, taken from Heller, et al. [121] 

 

 

Figure 4.5. Steady state fiber alignment values for ten streamlines after nozzle exit, taken 

from Heller, et al. [121] 

 

 Based on the steady state fiber orientations in Figure 4.5, Heller, et al. [120] were 

able to back out the average elastic constants using the orientation homogenization method 
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introduced by Advani and Tucker [124] and was derive by Jack and Smith [128]. Each ten 

fiber orientation is being treated as a unidirectional short fiber composite. Each composite 

is homogenized using a constant mean strain or constant mean stress; and the average 

elastic constants are simply the combined values of ten unidirectional short fiber 

composites using trapezoidal rule. Tandon-Weng [129] is used to calculate the associated 

coefficients for the orientation homogenization method. The average elastic constants 

Heller, et al. [119] solved were taken to construct the traverse isotropic material matrix 

described in Section 4.6. The elastic constants of the polymer composites below the 

extrudate swell region from Heller, et al. [119] that we use in the simulations below appear 

in Table 4.2. Comparing to the experimental work on tensile modulus in Chapter 3, which 

finds that the tensile modulus at 0 degree is higher than 90 degree print orientations for all 

four CFF polymer composites. This difference can also be observed in Table 4.2. The value 

of Ex is about twice as high as Ey, which causes the anisotropy.  

 

Table 4.2. Elastic Properties from the extrudate swell region [119]. Units in Pa for the 

modulus constants 

 

Ex Ey Gxy υxy υyz  

7.34 3.43 1.39 0.42 0.47 
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 CHAPTER FIVE 

 

 Design Sensitivity Validation and Computational Examples 

 

 

In this chapter, we show how the topology optimization approach in Chapter 4  can 

be applied to models having different print directions, various loading cases, and user 

defined geometry constraints. In Section 5.1, the design sensitivities of objective function 

are verified with the finite difference method. In Section 5.2, a simple cantilever beam 

example is optimized, and two different print directions are studied and compared to 

explore the influence of print orientation on optimal material layout. In Section 5.3, a 

multiple load case is optimized and in Section 5.4, an L-shape geometry is optimized where 

a nonlinear constraint file is applied to prescribe elements with minimum allowable density 

values. In Section 5.5, a topology optimization is presented which considers that the outline 

of the structure is defined in advance, and the infill pattern is the primary interest of the 

study to minimize the compliance. 

 

5.1. Design Sensitivity Validation 

 

In this section we use the forward finite difference method to validate the design 

sensitivities computed with the Adjoint Variable Method described in Chapter 4. Recalling 

from Section 0, the design sensitivities with respect to the density and material orientation 

variables using forward finite difference method are respectively written as  

 

∂c

∂ρi
=
c(𝛒 + 𝚫𝛒𝒊) − c(𝛒)

∆ρi
 

∂c

∂θi
=
c(𝛉 + 𝚫𝛉𝐢) − c(𝛉)

∆θi
 

(0.1) 
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Recall that Equations (4.67) and (4.71) are the analytical sensitivities using Adjoint 

Variable Method. It is important to note that the weight filter is not and should not be used 

for sensitivity validation, as it would distort the original sensitivities. For the material 

constants, Heller, et al. [121] presented a computational method for predicting material 

orientation in a FFF nozzle, modeled with Newtonian fluid and isotropic fibers as described 

in Section 4.7 above. Based on the fiber orientation state, they were able to calculate the 

elastic constants of a short fiber polymer composite extruded from a FFF nozzle, which are 

needed for this research. The elastic constants of the polymer composites in Table 4.2 are 

used for sensitivity validation and optimization. 

The model used for sensitivity validation is the three-dimensional cantilever beam 

shown in Figure 5.1. The displacements in the three Cartesian directions are fixed at the 

base, and one single load is applied in the negative y-direction at the bottom-center of the 

tip. A finite element model with elements as uniform cubes was defined as 5 element in x  

by 3 element sin y by 2 elements in z  to be used for sensitivity analysis validation, and the 

elemental arrangement is shown in Figure 5.2. Finite difference perturbation steps of 10−4, 

10−6, 10−8 and 10−10 are used for both density and orientation design variables in the 

finite difference derivative evaluations. The design sensitivity verification runs were 

performed for density and material orientation variables at 0.4 and 0 radians, respectively. 

In these simulations, the x-y coordinate plane is treated as the plane of layer extrusion.  

 



103 

 
 

Figure 5.1. Cantilever beam with one single load 

 

 
 

Figure 5.2. Elemental assignment for the cantilever beam as viewed looking at the front 

face of the domain; the top and bottom grids indicate the back and front layer of the 

domain, respectively. 

 

 Table 5.1 displays the largest absolute relative difference between the sensitivities 

computed with the Adjoint Variable Method and the finite difference method. The absolute 

relative difference is calculated as below 

 |Δ| =

∂c
∂ϕanalytical

−
∂c

∂ϕfinite difference
∂c

∂ϕanalytical

 (0.2) 
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Where ϕ = (ρ, θ). The absolute relative difference yields the smallest values for both 

density and material orientation variables at ∆x = 10−6. At ∆x = 10−8 and ∆x = 10−10 

where x is used here to represent either a density or orientation design variable. Large errors 

in this study occur due to the round-off error for very small perturbation sizes. Furthermore, 

for larger perturbations of ∆x = 10−4, the absolute relative differences are higher than for 

the case with ∆x = 10−6. The increased absolute relative differences occurring due to the 

truncation error of when a larger perturbation step is employed. Overall, absolute relative 

differences are on the order of 10−5 or less, demonstrating that the analytical sensitivities 

derived from the Adjoint Variable Method are correct.  

 

Table 5.1. The largest absolute relative differences between the sensitivities using 

Adjoint method and finite difference method, using different perturbation steps. 

 

Perturbation size ∆x = 10−4 ∆x = 10−6 ∆x = 10−8 ∆x = 10−10 

For ρe 2.048e−4 2.084e−6 2.972e−5 4.578e−3 

For θe 8.090e−3 6.657e−5 4.302e−3 2.155e−1 

 

5.2. Cantilever Beam Printed in Different Planes 

 

The first example considered here that demonstrates the material distribution and 

orientation topology optimization in three dimensions is a cantilever beam with a unit load 

applied to its tip, as shown in Figure 5.3. The optimization is performed assuming the print 

plane is defined as the x-y Cartesian plane Here we consider printing on each of three 

different print plane orientations. The topology optimization is first performed assuming 

that deposition is conducted from the back to the front face (labeled Case 1), then from the 

bottom to the top face (labeled Case 2), and finally from the left to right face (labeled Case 
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3). A finite element model having 20x10x6, 20x6x10 and 10x6x20 elements are used for 

Case 1, Case 2 and Case 3, respectively; this constitutes a total of 2400 design variables 

for the optimization problem. A volume fraction of 
V(𝛒)

V0
= 0.4 in Equation (4.6) is assigned 

as the limit on the volume constraint, and the initial densities and material orientations are 

assigned 0.4 and 0 radians, respectively. 

 

 

Figure 5.3. Cantilever beam with point load, printed in three different cases 

 

Figure 5.4 to Figure 5.12 show the optimized topology and the material orientation 

for each of the 3 print plane directions described above, presented as isometric, top and 

front views. Figure 5.4, Figure 5.7 and Figure 5.10 show the isometric perspectives of the 

optimization result for Case 1, Case 2, and Case 3, respectively. The optimal structures all 

form a shape similar to that of an I beam regardless of the print orientation. In all cases, 

material is distributed to the wider sides of the I-beam shape, as indicated by the darker 

color. This extra material gives the I beam the needed stiffness to support the bending load. 

In addition to the 3D plots, for each loading case we plot the density and material 

orientation for each layer of the structure in the view that is orthogonal to the print plane 

to better illustrate the material distribution and material orientation of the structure.  
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Figure 5.4. Optimal element density values for Case 1 (isometric view). Note that 

element with 𝜌𝑒 ≤ 0.5 are not shown. Darker color means more material. 

 

 

Figure 5.5. Topology Result for Case 1 (top view). Note that element with 𝜌𝑒 ≤ 0.5 are 

not shown. Darker color means more material. 

 

Figure 5.6 shows the each layer of their material distribution and material 

orientation. In Figure 5.5, the material orientation point to the right direction where the 

force is loaded. The optimal result is symmetric about the beam’s mid plane which is 

expected since the load is applied at the center of the right bottom edge, as shown in Figure 

5.6, By the comparing the density and orientation values of layer 1 to lay 6, layer 2 to layer 

5 and layer 3 to layer 4, the layer pairs look visually identical, which confirms our 
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hypothesis. The results in Figure 5.6 show that the optimal material orientation follows the 

outer contour of the structure for each layer where the dense material is distributed, which 

is very similar to results given by Hoglund and Smith [4] and Nomura, et al. [5]. 

 

Figure 5.6. Optimized material distribution and material orientation, layer-by-layer plots 

for Case 1. Layer 1 is corresponds to the back layer, and layer 6 corresponds to the front 

layer. Darker color means more material. 

 

Figure 5.8 shows layer-by-layer plot for the material distribution and material 

orientation. Note that the direction of material orientation tends to point toward the applied 

load. which is as expected in order to support the moment carried by the beam. 
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Figure 5.7. Optimal element density values for Case 2 (isometric view). Note that element 

with 𝜌𝑒 ≤ 0.5 are not shown. Darker color means more material. 

 

 

Figure 5.8. Optimized material distribution and material orientation, layer-by-layer plots 

for Case 2. Layer 1 is corresponds to the bottom layer, and layer 10 corresponds to the top 

layer. Darker color means more material. 
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Figure 5.9. Topology Result for Case 2 (front view). Note that element with 𝜌𝑒 ≤ 0.5 are 

not shown. Darker color means more material. 

 

 

Figure 5.10. Optimal element density values for Case 3 (isometric view). Note that element 

with 𝜌𝑒 ≤ 0.5 are not shown. Darker color means more material. 

 

Figure 5.12 shows the material distribution and material orientation at each layer, 

with layer 1 at the bottom to layer 20 at the top of the optimized structure. Fiber orientation 
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symmetry exists in each layer by comparing the first three layers counting form the top to 

the three layers counting from the bottom. 

 

 

Figure 5.11. Topology Result for Case 3 (front view). Note that element with 𝜌𝑒 ≤ 0.5 are 

not shown. Darker color means more material. 

 

 

Figure 5.12. Optimized material distribution and material orientation, layer-by-layer plots 

for Case 3. Layer 1 is corresponds to the bottom layer, and layer 20 corresponds to the top 

layer. Darker color means more material. 
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5.2.1. Computational Result Comparison 

 

 Table 5.2 compares the CPU time, the number of iterations and the compliance for 

the three topology optimization cases presented above. The amount of CPU time required 

to solve Case 1 was 48.8% and 70.8% more than Case 2 and Case 3, respectively. Similarly, 

Case 1 required24 and 31 more optimization iterations than Cases 2 and 3, respectively. 

Case 1 yields 23% and 63% lower optimal compliance than Case 2 and Case 3, 

respectively. In Case 1,  orientation design variables allow the preferred material direction 

to rotate in a plane  that has a larger effect on the structure’s compliance However, for Case 

2 and Case 3, the plane of  material rotation is normal to the direction of the force resulting 

in an optimization that yields less improvement in terms of the compliance. These results 

show that the relationship between the applied loads and plane of material orientation has 

a significant effect on the outcome of the topology optimization. 

 

Table 5.2 Topology result comparisons between Case 1 and Case 2. 

 

Case study CPU time (sec) Iterations Compliance (N*m) 

Case 1 246.3 78 3.48 

Case 2 165.5 54 4.28 

Case 3 144.2 47 5.66 

 

5.3. Multiple Load Cases – Symmetric Loading 

 

In this section, we demonstrate the capability of our orthotropic topology 

optimization approach on AM structures designed to support multiple load cases, such as 

that shown in Figure 5.13. In this example, a unit force is applied individually to the upper 

right edges and the lower right edge as shown in Figure 5.3.1. To accommodate multiple 

load cases in the topology optimization, the compliance is modified as, 
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c(𝛒, 𝛉) =∑𝐔(𝛒)l
𝐓𝐅l

M

l=1

=∑𝐔(𝛒)l
𝐓𝐊(𝛒)l𝐔(𝛒)l

M

l=1

=∑∑(ρ
le
)
p
ule
T kle(θle)ule

N

e=1

M

l=1

 

(0.3) 

 

where M is the number of load cases.  

In our example, a finite element model with 30 elements by 30 elements by 4 

elements forms the design domain, giving a total of 7200 design variables for the problem. 

A volume fraction of 
V(𝛒)

V0
= 0.5 is assigned to the volume design constraint in Equation 

(4.6), with the initial density values of 0.5 and material orientations of θi = 0,   i =

1…3600. 

 

Figure 5.13. Multiple loaded structure; the upper and lower right edges are imposed with 

a unit force at each node (30x30x4 elements). The red lines mean a unit force is applied to 

each node at the upper and lower right edges. 

 

 The isometric view of the optimized topology with corresponding material 

orientations is shown in Figure 5.14. Again, to illustrate the layer-by-layer material 

distribution and fiber orientation in the print plane, Figure 5.15 shows the plots of the 

optimized design variables for the four layers, from layer 1 of back to layer 4 of the front. 
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Because the forces are at each node on the right-top and right-bottom edges, we would 

expect the optimized layers in the view of the print plane to be much the same, and this is 

very much true by observing all four layers. 

 

Figure 5.14. Optimized topology for multiple loaded case (isometric view). Note that 

element with 𝜌𝑒 ≤ 0.5 are not shown. Darker color means more material. 

 

 

Figure 5.15. Optimized material distribution and material orientation for multiple loaded 

case, layer-layer-plots. Layer 1 is corresponds to the back layer, and layer 4 corresponds 

to the front layer. Darker color means more material. 
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Truss structures are formed and fibers align along the direction of the truss members 

as can be seen in the optimal topology appearing in Figure 5.5. Since there are more design 

variables involved, the amount of iteration and computation time increased as well. The 

computation time for the optimization was 3606sec, which included 143 optimization 

iterations. The optimized compliance decreased from 334.3Nm in the initial design to 49.5 

Nm in the final optimization (a decrease of 575.4%). Fibers in general follow the outline 

of the topology. 

 

5.4. L-shape Problem 

 

In this section, an L-shape structure is studied, as shown in Figure 5.16. To simulate 

the L-shape, a rectangular 3D design domain is defined first and certain elements in the 

domain are forced to be at the lower limits of the density values. A finite element model 

composed of 20 elements by 20 elements by 8 elements is used for the design domain, 

yielding a total of 6400 design variables in the topology optimization. Here, the nonlinear 

constraint file nonlcon can be used to constrain a selected set of element have density 

design variable values at the lower bound of the allowable range, i.e., 1 × 10−6. Nonlinear 

equality constraint vector 𝐜𝐞𝐪 and the corresponding gradient matrix 𝐆𝐞𝐪 are defined to 

set the desired constraint. In the input command options, two structural parameters are 

turned on; GradConstris is selected to include the gradient matrix 𝐆𝐞𝐪 in the optimization 

process, and MaxFunctionEvaluations is selected to allow infinite numbers of evaluation. 

The upper face in Figure 5.16 of the L-shape is fixed in all three directions, and a unit load 

is imposed on the right face. A volume fraction of 
V(𝛒)

V0
= 0.35 is assigned to the volume 
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constraint in Equation (4.6), with the initial density values of 0.35 and initial material 

orientations set at 0 radians. 

 
 

Figure 5.16. L-shape structure (20 elements by 20 elements by 8 elements). The upper right 

square enclosed with dotted lines indicate that for the associated elements, 𝜌𝑒 = 10−6  

 

 The CPU time required to compute the optimized solution was 1320.7 sec, which 

included 50 optimization iterations. The compliance decreased from 58.9Nm in the initial 

design to 15.5Nm in the optimal design, a decrease of 280%. Figure 5.17 shows the 

isometric view of the optimized topology. Darker color in an element indicates a higher 

value of density. Note that the location where the force is applied has relatively higher 

values of material density. Also, the inner surface in Figure 5.17 where the structure turns 

90 degrees has density values approaching unity; this is due to the structure experiences 

bending stress, and more material is needed near the surface of the inside corner region. 

Figure 5.18 shows the layer-by-layer plots of the optimized structure, where the material 

orientation states can be identified. In the lower region of the topology in Figure 5.17, the 

fibers tend to follow the outline of the structure. In the upper region of the structure in 

Figure 5.17, the fiber do not follow the outline of the structure; instead, the fibers lay in a 

horizontal manner to provide highest bending resistance from the load. 
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Figure 5.17. Optimized topology for L-shape structure (isometric view). Note that element 

with 𝜌𝑒 ≤ 0.5 are not shown. Darker color means more material. 

 

In Figure 5.18, the material orientation in each layer generally align toward the right 

side in the top half part of the L-shape until the structure turns 90 degrees. In addition, 

material orientation in the lower half of the structure follow the outer contour of the region 

where the material is dense (shown in black). Since the load is applied at the center node 

in z-direction, the optimal topology exhibits symmetry about the structures x-y mid-plane. 

Figure 5.18 also shows that denser material is distributed to the region where the structure 

takes the 90-degree turn, as well as the outer surfaces at the top half. 
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Figure 5.18. Optimized topology for L-shape structure, layer-by-layer plots of material 

distribution and material orientation. Layer 1 is corresponds to the back layer, and layer 8 

corresponds to the front layer. Darker color means more material. 

 

5.5. Topology Optimization of Infill Pattern 

 

In some cases, the outline of the structure is defined in advance leaving only the 

infill pattern to be determined. Instead of optimizing a structure with certain elements of 

void space, as studied in the previous case study of L-shape structure, here density values 

of selected elements are constrained to be at the upper limit of the density variable value 
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range. In this study the nonlinear constraint file nonlcon is utilized again; GradConstr is 

turned on to include gradient matrix 𝐆𝐞𝐪, and MaxFunctionEvaluations is selected to 

allowable infinite function valuations. The cantilever beam problem from Section 5.2 is 

considered again here for the topology optimization design, as shown in Figure 5.19. 

However, in this case each node at the lower edge of the right side is prescribed with a unit 

force. The red line means a unit force is applied to each node at the lower right edge. 

Furthermore, the elements at the outer surfaces except at the front and back faces are 

prescribed with density values of 0.6. It would be more reasonable to use value of 1 here 

since it completely means solid. However, we want to allow more free density values to 

optimize the inner structure. An elemental set of 30 elements by 16 elements by 8 elements 

is defined as the design space, which translates to a total of 7680 design variables, with a 

volume constraint of 
V(𝛒)

V0
= 0.5. The initial density values are 0.5 and the initial fibers 

orientations are 0 radians. 

 

 

Figure 5.19. Cantilever beam problem; in this case the red line means a unit force is 

applied to each node at the lower right edge, and the outside surface of the beam is 

prescribed with elemental values. 
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 The optimization finished in 1587.9 sec, 53 iterations and improved from 425.1 Nm 

in the initial design to 160.7 Nm in the final design (decrease of 164.5%), an decrease in 

compliance of. Figure 5.20 shows the isometric view of the optimized topology, and the 

prescribed elemental sets at the outer surfaces can be clearly identified.  

 

 

Figure 5.20. Optimized topology of the outline cantilever beam (isometric view). Note that 

element with 𝜌𝑒 ≤ 0.5 are not shown. Darker color means more material. 

 

To better identify the infill region, Figure 5.21 shows the layer-by-layer material 

distribution and material orientation optimal result. Note that there material is distributed 

more towards the back and front layers as evidenced by the higher density values in these 

elements. Layers nearer to the structure’s mid-plane provide little material support as 

indicated by the low density values in layers 3, 4, 5 and 6 which have densities approaching 

zero. Note that the infill pattern in Figure 5.21 is similar to the optimized results for the 

beam example from Section 5.2 that appear in Figure 5.6. Lastly, the symmetry of optimal 
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layout is evident by comparing layer 1 to layer 8, layer 2 to layer 7, layer 3 to layer 6 and 

layer 4 to layer 5. 

 

 

Figure 5.21. Optimized material distribution and material orientation, layer-by-layer plots 

of the outline cantilever beam. Layer 1 is corresponds to the back layer, and layer 8 

corresponds to the front layer. Darker color means more material. 

 

 

5.6. Multiple Load Cases – Non-Symmetric Loading 

 

The final example optimization is for a beam structure with multiple non-symmetric 

load cases. In this example, three separate load cases are imposed on the structure as shown 
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in Figure 5.22. An elemental set of 20 elements by 10 elements by10 elements is applied 

to the design, which translates to a total of 4000 design variables. A volume constraint of 

V(𝛒)

V0
= 0.4 is imposed to the design domain, with initial density values of 0.4 and the initial 

fibers orientations of 0 radians. 

 

 
Figure 5.22. Multi-load cases scenarios with three loads 

 

 Figure 5.23 shows the result of the topology optimization in an isometric view. The 

resulting high density elements tend to form a box-like structure as apparent in the figure.. 

Figure 5.24 shows the layer-by-layer plots from the back (layer 1) to the front (layer 10). 

It can be seen that elements in the back of the structure has higher density values than 

element towards the front, which is likely due to the loads being applied more towards the 

back of the structure. Density distributions towards the front of the structure tends to have 

a similar pattern as that seen in the simply loaded cantilever beam as shown in Figure 5.6 

in Section 5.2. From layer 1 to layer 7 as shown in Figure 5.24, the material orientations in 

the first row of the design domain align with force at the top. Material orientations in layers 

1 to layers 10 have similar pattern as the Case 1 studied in Section 5.2. The topology 

optimization problem required 122 iterations and 922.8 CPU seconds to converge. The 

optimization reduced the compliance by 1051.4% from 118.6Nm in the initial design to 

10.3 Nm in the optimal design. 
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Figure 5.23. Optimized structure (isometric view). Note that element with 𝜌𝑒 ≤ 0.5 are not 

shown. Darker color means more material. 

 

 
 

Figure 5.24. Optimized material distribution and material orientation, layer-by-layer plots 

for non-symmetric load cases. Layer 1 is corresponds to the back layer, and layer 10 

corresponds to the front layer.  
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 CHAPTER SIX 

 Conclusion and Future Work 

 

 

In this chapter some final remarks will be addressed regarding this research. In the 

conclusion section, discussion of several significant findings from the research from both 

material testing and topology optimization will be made. Furthermore, several future 

studies based on the present optimization scheme will be discussed. 

 

6.1. Conclusion  

 

This thesis consists of two major parts. First, CFF polymers composites are tested 

using tensile machine to evaluate their tensile properties and a comparison was made with 

unfilled counter parts. Four different types of polymer materials are selected for printing 

test coupons according ASTM 3039 standard [107], at four different print orientations. 

FLD measurements were also conducted to compare the FLD before and after the extrusion 

process. Lastly, fractured samples were observed under the SEM and failure of the test 

samples were analyzed based on these findings. Important findings that result from the 

CFF testing include: 

 0 degree print orientation results in the highest mechanical property improvement 

compared to pure polymer filament of the same material for all the CFF polymer 

composites. 

 CFF PETG at 0 degree print orientation yields the greatest strength and modulus 

improvement compared to the unfilled PETG among all CFF samples tested, 
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resulting in 313.2% increase in tensile modulus and 48.2% increase in tensile 

strength. 

 CFF polymer test samples at 90 degrees print orientation gives the least 

improvement, for all the test materials. Many circular voids and other irregular 

shaped voids were observed at the 0, 45 and 45 degrees print orientations. For 

CFF fractured test coupons at the 90 degrees print orientation, many fibers were 

exposed on the surface. 

 The FFF deposition process appeared to cause a slight reduction in fiber length. 

However, the weight average fiber length aspect ratio differences are less than 1.5 

before and after the print for all the tested materials. 

In the project for material distribution and material orientation optimization to 

design for FFF process, we have successfully implemented the modified SIMP with CFAO 

and Matlab fmincon optimization tool to solve 3D optimization problem. It is important 

here to note that most of the codes are written in-house, except the optimization algorithm 

and the linear sensitivity filter. The objective value is the compliance of structure that needs 

to be minimized. It is calculated using Finite Element Analysis with linear eight node 

isoparametric element; the fmincon solver requires gradients to be provided for the 

direction search, and sensitivities of the density and the fiber orientation variables are 

calculated using Adjoint Variable Method for each element. The sensitivities were further 

verified with the Finite Difference method. Furthermore, a linear weighted sensitivity filter 

is used on the density variables to prevent the checkerboarding of the material distribution. 

Some of the important points we can make for this project are: 
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 The optimization scheme can solve single loaded structures, multiple loaded 

structures, and structures with regions of solid or void that are prescribed. 

 For the problem involved in printing at multiple planes, the case where fiber 

rotation plane aligns with the force direction gives the lowest compliance; 

Furthermore, printing the structure at different plane direction gives very different 

compliance result, which is important for designers to consider the potential loading 

scenarios. 

 Fiber orientation generally follow the outer contour of the dense material region for 

each layer. 

 For problem with high number of design variables such as the studies shown from 

Section 5.3 to Section 5.5, it can take up to an hour to solve the problem. The 

efficiency of the code can be improved, and we make some comments in the next 

section for some potential future work. 

 

6.2. Future Work 

 

Based on the material testing work and 3D topology optimization code that we have 

developed, there are several recommendations can be stated to further improve researchers’ 

understanding of FFF process. Here we would make some following recommendations: 

 For material testing of CFF polymer composites with FFF process: 

 Fiber orientation in the printed parts are really important. To be able acquire 

empirical data for fiber orientation would further help verifying the simulation work 

in fiber orientation that had been done in the research community.  

 More experimental testing can be carried out on other CFF polymer filaments to 

expand the date set. At the same time, mathematical modeling can also be 
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developed to predict the mechanical properties based on different parameters such 

as fiber weight fraction. 

For topology optimization with FFF process: 

 To improve the efficiency of the optimization algorithm, it would be very desirable 

to design a program specifically for material distribution and fiber orientation 

optimization. This main goal is speed up the convergence of the solving time. The 

extra benefit for having a custom optimization algorithm is that the user can 

implement different filter to get more discrete material distribution and therefore 

better optimized objective value. Sigmund [52] provides a good summary of 

different kinds of filters. 

 The elastic constants obtained from Heller, et al. [120] are based on the study of 

fibers flowing in Newtonian flow. Since most polymers are non-Newtonian, more 

accurate data are needed. 

 The experimental work is essential to verify the optimization results. To do this, a 

custom code that can translate the material distribution and the material orientation 

into a STL file and can subsequently be printed by 3D printer would be very helpful 

to achieve this goal. 

 Cellular structure is a popular topic of study as discussed in the literature review. 

Even though the present code works in three dimension, it can easily be modified 

to do optimization in 2D. The author successfully duplicated work done by 

Zhang,et al.[62]. To expand his work into FFF, the constitutive material model 

needs to be modified into orthotropic states to take the material orientation into 
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account. However, the material orientation variables would not be design variables 

since we would only print the part in a fixed angle of orientation. 

It is the author’s hope that this thesis work would help the 3D printing community to 

better understand the process of FFF. FFF is an exciting technology and much work is 

needed to be done before we prefect the printing process to achieve another industries 

revolution. 
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 APPENDIX 

 

Matlab Codes for Topology Optimization 

 

 
function top_CFAO(nx,ny,nz,rho0,theta0,p,r) 
% This file initiate the optimization 
close all; clc; format compact; 
global nelx nely nelz penal rmin history video c0 Hs H passive_ele phi  
global H1 H_01 
% 
history.iter = []; 
video = VideoWriter(['need_change','.avi']);  
video.FrameRate = 5; open(video); 
% 
nelx = nx; nely = ny; nelz = nz; penal = p; rmin = r; c0 = rho0; 
% precalculate Hs for sesitivity filter 
nele = nelx*nely*nelz; 
iH = ones(nele*(2*(ceil(rmin)-1)+1)^2,1); 
jH = ones(size(iH)); 
sH = zeros(size(iH)); 
k = 0; 
for k1 = 1:nelz 
    for i1 = 1:nelx 
        for j1 = 1:nely 
            e1 = (k1-1)*nelx*nely + (i1-1)*nely+j1; 
            for k2 = max(k1-(ceil(rmin)-1),1):min(k1+(ceil(rmin)-

1),nelz) 
                for i2 = max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-

1),nelx) 
                    for j2 = max(j1-(ceil(rmin)-

1),1):min(j1+(ceil(rmin)-1),nely) 
                        e2 = (k2-1)*nelx*nely + (i2-1)*nely+j2; 
                        k = k+1; 
                        iH(k) = e1; 
                        jH(k) = e2; 
                        sH(k) = max(0,rmin-sqrt((i1-i2)^2+(j1-

j2)^2+(k1-k2)^2));  
                        H_1(k) = 1; 
                    end 
                end 
            end 
        end 
    end 
end 
H = sparse(iH,jH,sH); 
Hs = sum(H,2); 
% for mean sensitivity 
H_01 = sparse(iH,jH,H_1); 
H1 = sum(H_01,2); 
% option for fmincon 
option = optimoptions('fmincon','Algorithm','interior-point',... 
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    'GradObj','on',... 
    'TolX',1E-3,... 
    'TolFun',1E-3,... 
    'PlotFcns',@optimplotfval,... 
    'OutputFcn',@outfun); 
%     'GradConstr','on',... 
%     'MaxFunctionEvaluations',inf); 
% 
rho0 = rho0*ones(nely,nelx,nelz); theta0 = theta0*ones(nely,nelx,nelz); 
%% passive elements (L shape) 
% for i = 1:nelx 
%     for j = 1:nely 
%         if i > floor(nelx/3); 
%             if j < ceil(nely*2/3)+1 
%                 passive(j,i) = 1; 
%             else 
%                 passive(j,i) = 0; 
%             end 
%         else 
%             passive(j,i) = 0; 
%         end 
%     end 
% end 
% passive = repmat(passive,1,1,nelz);  
% rho0(find(passive)) = 1e-6; passive_ele = find(passive);  
%% passive elements (catilever edge forces in y-direc) 
% passive = zeros(nely,nelx,nelz);  
% passive(:,1,:) = 1; passive(1,:,:) = 1; passive(:,end,:) = 1; 

passive(end,:,:) = 1; 
% rho0(find(passive)) = 0.6; passive_ele = find(passive);  
%% 
% define phi (rotation about y axis) 
offset = 0; 
a = -offset/180*pi; b = offset/180*pi; 
phi = a + (b-a)*rand(nele,1); phi = reshape(phi,nely,nelx,nelz); %  
% 
x0 = [rho0(:);theta0(:)]; 
lb = [1E-6*ones(length(rho0(:)),1);-pi*2*ones(length(theta0(:)),1)]; 
ub = [ones(length(rho0(:)),1);pi*2*ones(length(theta0(:)),1)]; 
% 
% equality constraint 
Aeq = [ones(1,length(rho0(:))) zeros(1,length(theta0(:)))]; beq = 

nelx*nely*nelz*c0; 
% fmincon % add @top_nonlcon (only for passive element)              
x = fmincon('top_obj',x0,[],[],Aeq,beq,lb,ub,[],option);  
close(video); 
plot_layer(x) 
end 

 

 

 
function [F,dF] = top_obj(x) 
% This file calls the file to the objective function and its 

sensitivities and 
% filtering 
global ieqn nelx nely penal D Hs H nelz phi  
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% define design variables 
rho = x(1:length(x)/2); theta = x((length(x)/2+1):end); 
rho = reshape(rho,nely,nelx,nelz); theta = 

reshape(theta,nely,nelx,nelz);  

  
% read input file 
D = fea_input(nelx,nely,nelz); D.p = penal; 
% initialize equation numbers for dofs and global matrices 
ieqn = initialize(D); 
% FE analysis 
[utot,ptot] = proc0(D,rho,theta,phi); 
% calculate c & dc 
[F,dcdrho,dcdtheta] = Fcalc(utot,ptot,D,rho,theta,phi); 
% filter 
dcdrho = check(rho,dcdrho,Hs,H,1); 
% design sensitivity 
dF = [dcdrho(:);dcdtheta(:)]; 
end 
%%%%%%%%%% MESH-INDEPENDENCY FILTER for density 

%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [dFn]=check(rho,dcdrho,Hs,H,flag) 
global  nelx nely nelz 
global H1 H_01 
switch flag 
    case 1 
        % original sensitivity filter 
        dcn(:) = H*(rho(:).*dcdrho(:))./Hs./rho(:); 
    case 2 
        % modified sensitivity filter 
        dcn(:) = H*(rho(:).*dcdrho(:))./(H*rho(:)); 
    case 3 
        % mean sensitivity filter 
        dcn(:) = H_01*dcdrho(:)./(H1); 
end 

dFn = reshape(dcn,nely,nelx,nelz); 

end 

 

 
function D = fea_input(nelx,nely,nelz) 

% This file determines which load case to optimize and create the 

element 

% and nodal coordinate sets 

global ielem iprops iforce force idisp disp X 

% read number of nodes, elements, applied forces and prescribed 

displacements, and element type 

D.nnode = (nelx+1)*(nely+1)*(nelz+1);      % no. of nodes in model 
D.nel = nelx*nely*nelz;                    % no. of elements in model 
D.etype = 3;                               % element type (only one per 

model) 
D.nelx = nelx;  
D.nely = nely;  
D.nelz = nelz; 
% 
% D.ndv = D.nel;                             % number of design 

variables 
% 
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% set properties related to element properties 
switch D.etype 
case 3 
    D.elname = 'elemental_3D';  
    D.ndof = 3; D.nenode = 8;  
end 
%% nodal coordinates mesh (standard rectangular) 
[xloc,yloc,zloc] = meshgrid(0:nelx,nely:-1:0,0:nelz); 
X = [xloc(:),yloc(:),zloc(:)]; node_mat = 

reshape((1:D.nnode)',(nely+1),(nelx+1),(nelz+1)); 
%% element data (standard rectangular) 
ielem =  zeros(D.nel,D.nenode); icont = 0; 
for k = 1:nelz 
    for i = 1:nelx 
        for j = 1:nely 
            icont = icont + 1; 
            ielem(icont,1) = (nely+1)*(i-1) + j + 1 + (k-

1)*(nelx+1)*(nely+1); 
            ielem(icont,2) = (nely+1)*i     + j + 1 + (k-

1)*(nelx+1)*(nely+1); 
            ielem(icont,3) = (nely+1)*i     + j     + (k-

1)*(nelx+1)*(nely+1); 
            ielem(icont,4) = (nely+1)*(i-1) + j     + (k-

1)*(nelx+1)*(nely+1); 
            ielem(icont,5) = (nely+1)*(i-1) + j + 1 + 

(k)*(nelx+1)*(nely+1); 
            ielem(icont,6) = (nely+1)*i     + j + 1 + 

(k)*(nelx+1)*(nely+1); 
            ielem(icont,7) = (nely+1)*i     + j     + 

(k)*(nelx+1)*(nely+1); 
            ielem(icont,8) = (nely+1)*(i-1) + j     + 

(k)*(nelx+1)*(nely+1); 

             
        end 
    end 
end 
% 
iprops = ones(length(ielem),1); 
%% L shape mesh (force in y-direc) 
% D.loadcase = 1;                            % no. of loadcases 
% unode = node_mat(1,1:floor(nelx/3),:); 
% fnode = node_mat(end-1,end,floor(nelz/2)+1); 
% D.nforce = length(fnode);                  % no. of applied forces 

per loadcase 
% D.ndisp = length(unode(:))*3; 
% % read applied loads 
% iforce = [fnode(:), 2*ones(length(fnode),1)]; 
% force = -ones(1,D.nforce); 
% % 
% % read applied displacements 
% idisp = [repmat(unode(:),3,1) 

[ones(length(unode(:)),1);2*ones(length(unode(:)),1);3*ones(length(unod

e(:)),1)]]; 
% disp = zeros(1,D.ndisp); 
%% cantilever beam (force in y-direc) edge forces 
% D.loadcase = 1;                            % no. of loadcases 
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% D.nforce = nelz+1;                         % no. of applied forces 

per loadcase 
% D.ndisp = 3*(nely+1)*(nelz+1); 
% % read applied loads 
% fnode = node_mat(end,end,:); 
% iforce = [fnode(:), 2*ones(length(fnode),1)]; 
% force = -ones(1,D.nforce)*1; 
% % 
% % read applied displacements 
% unode = node_mat(:,1,:); 
% idisp = [repmat(unode(:),3,1) 

[ones(length(unode(:)),1);2*ones(length(unode(:)),1);3*ones(length(unod

e(:)),1)]]; 
% disp = zeros(1,D.ndisp); 
%% cantilever beam (force in y-direc) point force 
D.loadcase = 1;                            % no. of loadcases 
D.nforce = 1;                              % no. of applied forces per 

loadcase 
D.ndisp = 3*(nely+1)*(nelz+1); 
% read applied loads 
fnode = node_mat(end,end,floor(nelz/2)+1); 
iforce = [fnode(:), 2*ones(length(fnode),1)]; 
force = -ones(1,D.nforce); 
% 
% read applied displacements 
unode = node_mat(:,1,:); 
idisp = [repmat(unode(:),3,1) 

[ones(length(unode(:)),1);2*ones(length(unode(:)),1);3*ones(length(unod

e(:)),1)]]; 
 disp = zeros(1,D.ndisp); 
%% cantilever beam (force in z-direc) edge forces 
% D.loadcase = 1;                            % no. of loadcases 
% D.nforce = nely+1;                         % no. of applied forces 

per loadcase 
% D.ndisp = 3*(nely+1)*(nelz+1); 
% % read applied loads 
% fnode = node_mat(:,end,1); 
% iforce = [fnode(:), 3*ones(length(fnode),1)]; 
% force = -ones(1,D.nforce); 
% % 
% % read applied displacements 
% unode = node_mat(:,1,:); 
% idisp = [repmat(unode(:),3,1) 

[ones(length(unode(:)),1);2*ones(length(unode(:)),1);3*ones(length(unod

e(:)),1)]]; 
%  disp = zeros(1,D.ndisp);  
%% cantilever beam (force in z-direc) point force 
% D.loadcase = 1;                            % no. of loadcases 
% D.nforce = 1;                              % no. of applied forces 

per loadcase 
% D.ndisp = 3*(nely+1)*(nelz+1); 
% % read applied loads 
% fnode = node_mat(floor(nely/2)+1,end,1); 
% iforce = [fnode(:), 3*ones(length(fnode),1)]; 
% force = -ones(1,D.nforce); 
% % 
% % read applied displacements 
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% unode = node_mat(:,1,:); 
% idisp = [repmat(unode(:),3,1) 

[ones(length(unode(:)),1);2*ones(length(unode(:)),1);3*ones(length(unod

e(:)),1)]]; 
%  disp = zeros(1,D.ndisp); 
%% cantilever beam (force in x-direc) point force 
% D.loadcase = 1;                            % no. of loadcases 
% D.nforce = 1;                              % no. of applied forces 

per loadcase 
% D.ndisp = 3*(nelx+1)*(nely+1); 
% % read applied loads 
% fnode = node_mat(floor(nely/2)+1,end,end); 
% iforce = [fnode(:), 1*ones(length(fnode),1)]; 
% force = ones(1,D.nforce); 
% % 
% % read applied displacements 
% unode = node_mat(:,:,1); 
% idisp = [repmat(unode(:),3,1) 

[ones(length(unode(:)),1);2*ones(length(unode(:)),1);3*ones(length(unod

e(:)),1)]]; 
%  disp = zeros(1,D.ndisp); 
%% MBB point load (force in y direc) 
% D.loadcase = 1;                            % no. of loadcases 
% D.nforce = 1;                              % no. of applied forces 

per loadcase 
% D.ndisp = 2*3 + 2; 
% % read applied loads 
% fnode = [node_mat(1,floor(nelx/2)+1,floor(nelz/2)+1)]; 
% iforce = [fnode(:), 2*ones(length(fnode),1)]; 
% force = -ones(1,D.nforce); 
% % 
% % read applied displacements 
% unode = 

[node_mat(end,1,1),node_mat(end,1,end),node_mat(end,end,1),node_mat(end

,end,end)]'; 
% idisp = [[unode([1 2]);repmat(unode([3 4]),3,1)], 

[2*ones(2,1);ones(2,1);2*ones(2,1);3*ones(2,1)]]; 
% disp = zeros(1,D.ndisp); 
%% MBB point load (force in z direc) 
% D.loadcase = 1;                            % no. of loadcases 
% D.nforce = 1;                              % no. of applied forces 

per loadcase 
% D.ndisp = 2*3 + 2; 
% % read applied loads 
% fnode = node_mat(floor(nely/2)+1,floor(nelx/2)+1,end); 
% iforce = [fnode(:), 3*ones(length(fnode),1)]; 
% force = -ones(1,D.nforce); 
% % 
% % read applied displacements 
% unode = 

[node_mat(1,1,1),node_mat(end,1,1),node_mat(1,end,1),node_mat(end,end,1

)]'; 
% idisp = [[unode([1 2]);repmat(unode([3 4]),3,1)], 

[3*ones(2,1);ones(2,1);2*ones(2,1);3*ones(2,1)]]; 
% disp = zeros(1,D.ndisp); 
%% multiple loads 
% % read applied loads 
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% D.loadcase = 2;                            % no. of loadcases 
% D.nforce = (nelz+1);                         % no. of applied forces 

per loadcase 
% D.ndisp = 3*(nely+1)*(nelz+1);             % no. of prescribed disp 
% % 
% fnode1 = node_mat(end,end,:);  fnode2 = node_mat(1,end,:); 
% iforce = [[fnode1(:);fnode2(:)], 2*ones(D.nforce*D.loadcase,1)]; 
% force = [-ones(1,length(fnode1(:))),ones(1,length(fnode1(:)))]; 
% % 
% % read applied displacements 
% unode = node_mat(:,1,:); 
% idisp = [repmat(unode(:),3,1) 

[ones(length(unode(:)),1);2*ones(length(unode(:)),1);3*ones(length(unod

e(:)),1)]]; 
% disp = zeros(1,D.ndisp); 
%% 
% plot the nodes & elements 
% figure; 
% set(gcf,'Name','ISO display','NumberTitle','off'); 
% for i = 1:D.nel 
%     elemnodes = ielem(i,:); 
%     xx = X(elemnodes,1); yy = X(elemnodes,2); zz = X(elemnodes,3); 
%     v = [xx,yy,zz]; 
%     % flip coordinates 
% %     v(:,[2,3]) = v(:,[3,2]); v(:,2) = -v(:,2); 
%     % 
%     face = [1 2 3 4; 5 6 7 8; 4 3 7 8; 1 2 6 5; 1 5 8 4; 2 6 7 3]; 
%     patch('Faces',face,'Vertices',v,'FaceColor','none');  
%     text(mean(v(:,1)),mean(v(:,2)),mean(v(:,3)),num2str(i));  
%     hold on; 
% end 
% axis equal; view([30,30]); xlabel('\bfx'); ylabel('\bfy');  

zlabel('\bfz'); 
%  
% figure; 
% for i = 1:length(X) 
%     plot3(X(i,1),X(i,2),X(i,3),'x');  
%     text(X(i,1),X(i,2),X(i,3),num2str(i));  
%     hold on; 
% end 
% axis equal; % 

set(gca,'XTickLabel',[],'YTickLabel',[],'ZTickLabel',[]);  
% view([30,30]); xlabel('x'); ylabel('y'); zlabel('z'); keyboard 

 

 
function [F,dcdrho,dcdtheta] = Fcalc(utot,ptot,D,rho,theta,phi) 
% This file calculate the objective function and its sensitivities 
global ielem 
% 
F = 0; dcdrho = zeros(D.nely,D.nelx,D.nelz); dcdtheta = 

zeros(D.nely,D.nelx,D.nelz); 
% 
k = 0; 
for m = 1:D.nelz 
    for i = 1:D.nelx 
        for j = 1:D.nely 
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            k = k+1; 
            elemnodes = ielem(k,:); 
            % get element dof number array 
            ieldof = get_ieldof(elemnodes,D); 
            [c_e,dcdrho_e,dcdtheta_e] = 

feval(D.elname,rho(j,i,m),theta(j,i,m),phi(j,i,m),elemnodes,D,1,utot(ie

ldof,:)); 
            % objective function value 
            F = F + c_e; 
            % derivative w.r.t density 
            dcdrho(j,i,m) = dcdrho(j,i,m) + dcdrho_e; 
            % derivative w.r.t theta for gradient check 
            dcdtheta(j,i,m) = dcdtheta(j,i,m) + dcdtheta_e; 
        end 
    end 
end 

  

  
function [eldat_F,eldat_K,eldat_KK] = 

elemental_3D(eprop,theta,phi,lnodes,D,icode,de) 
% elemental file 
global X 
xloc = [X(lnodes,1) X(lnodes,2) X(lnodes,3)]; 
p = D.p; 
% define element properties 
Ex = 7.34;  
Ey = 3.43; 
Gxy = 1.39; 
vxy = 0.42;  
vyz = 0.47;  
%% Transverse Isotropic  
SS=[     1/Ex,   -vxy/Ex,   -vxy/Ex,             0,       0,     0;... 
      -vxy/Ex,      1/Ey,   -vyz/Ey,             0,       0,     0;... 
      -vxy/Ex,   -vyz/Ey,      1/Ey,             0,       0,     0;... 
            0,         0,         0,  2*(1+vyz)/Ey,       0,     0;... 
            0,         0,         0,              0,  1/Gxy,     0;... 
            0,         0,         0,              0,      0, 1/Gxy]; 
C = inv(SS); 
%% formulate transformative (also its derivative) matrices 
% subscript represents the axis which the coordinate is rotating about 
% transofrmation matrix T 
% inverse T 
Tinv = [cos(theta)^2*cos(phi)^2          sin(theta)^2           

cos(theta)^2*sin(phi)^2          -2*cos(theta)*sin(theta)*sin(phi)   

cos(theta)^2*sin(2*phi)                   -

2*cos(theta)*cos(phi)*sin(theta); 
        cos(phi)^2*sin(theta)^2          cos(theta)^2           

sin(theta)^2*sin(phi)^2          sin(2*theta)*sin(phi)               

sin(theta)^2*sin(2*phi)                   cos(phi)*sin(2*theta); 
        sin(phi)^2                       0                      

cos(phi)^2                       0                                   -

2*cos(phi)*sin(phi)                      0; 
        -cos(phi)*sin(theta)*sin(phi)    0                      

cos(phi)*sin(theta)*sin(phi)     cos(theta)*cos(phi)                 

cos(2*phi)*sin(theta)                     -cos(theta)*sin(phi); 
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        -cos(theta)*cos(phi)*sin(phi)    0                      

cos(theta)*cos(phi)*sin(phi)     -cos(phi)*sin(theta)                

cos(theta)*cos(2*phi)                     sin(theta)*sin(phi); 
        cos(theta)*cos(phi)^2*sin(theta) -cos(theta)*sin(theta) 

cos(theta)*sin(theta)*sin(phi)^2 cos(2*theta)*sin(phi)               

2*cos(theta)*cos(phi)*sin(theta)*sin(phi) cos(2*theta)*cos(phi)]; 
% inverse & transpose T 
Tinvtransp = Tinv'; 
% derivative of inverse T 
DTinv = [-2*cos(phi)^2*cos(theta)*sin(theta),             

2*cos(theta)*sin(theta),    -2*cos(theta)*sin(phi)^2*sin(theta),              

2*sin(phi)*sin(theta)^2-2*cos(theta)^2*sin(phi), -

2*sin(2*phi)*cos(theta)*sin(theta),                               

2*cos(phi)*sin(theta)^2 - 2*cos(phi)*cos(theta)^2; 
         2*cos(phi)^2*cos(theta)*sin(theta),              -

2*cos(theta)*sin(theta),    2*cos(theta)*sin(phi)^2*sin(theta),              

2*cos(2*theta)*sin(phi),                         

2*sin(2*phi)*cos(theta)*sin(theta),                                

2*cos(2*theta)*cos(phi); 
         0,                                               0,                           

0,                                               0,                                               

0,                                                                 0; 
         -cos(phi)*cos(theta)*sin(phi),                   0,                           

cos(phi)*cos(theta)*sin(phi),                    -cos(phi)*sin(theta),                            

cos(2*phi)*cos(theta),                                             

sin(phi)*sin(theta); 
         cos(phi)*sin(phi)*sin(theta),                    0,                           

-cos(phi)*sin(phi)*sin(theta),                   -cos(phi)*cos(theta),                            

-cos(2*phi)*sin(theta),                                            

cos(theta)*sin(phi); 
         cos(phi)^2*cos(theta)^2-cos(phi)^2*sin(theta)^2, sin(theta)^2-

cos(theta)^2,   cos(theta)^2*sin(phi)^2-sin(phi)^2*sin(theta)^2, -

2*sin(2*theta)*sin(phi),                        

2*cos(phi)*cos(theta)^2*sin(phi)-2*cos(phi)*sin(phi)*sin(theta)^2, -

2*sin(2*theta)*cos(phi)]; 
% double derivative of inverse T 
% derivative of inverse & transpose T 
DTinvtransp = DTinv'; 
% double derivative of inverse & transpose T 
%% zero element matrices 
switch icode 
    case -1 
        eldat_F = zeros(D.nenode*D.ndof,1); 
        eldat_K = zeros(D.nenode*D.ndof); 
    case 1 
        eldat_F = 0; 
        eldat_K = 0; 
        eldat_KK = 0; 
    case 2 
        eldat_F = 0; 
        eldat_K = 0; 
end 
%% evaluate element matrices 
% jac = eye(2);     % identity matrix 
% jinv = eye(2);    % inv of identity is identity 
% 
% define weighting factors and gauss points 
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wij = [2 0 0;1 1 0;5/9 8/9 5/9]'; 
xij = [0 0 0;-1/sqrt(3) 1/sqrt(3) 0;-sqrt(3/5) 0 sqrt(3/5)]'; 
% 
ngpt = 2; 
for ii = 1:ngpt; 
    for jj = 1:ngpt; 
        for kk = 1:ngpt 
            w = wij(ii,ngpt)*wij(jj,ngpt)*wij(kk,ngpt); 
            xi = xij(ii,ngpt); eta = xij(jj,ngpt); zeta = xij(kk,ngpt); 
            % define matrix dN 
            dN = 1/8*[-(eta-1)*(zeta-1),(eta-1)*(zeta-1),-

(eta+1)*(zeta-1),(eta+1)*(zeta-1),(eta-1)*(zeta+1),-(eta-

1)*(zeta+1),(eta+1)*(zeta+1),-(eta+1)*(zeta+1); 
                      -(xi-1)*(zeta-1),(xi+1)*(zeta-1),-(xi+1)*(zeta-

1),(xi-1)*(zeta-1),(xi-1)*(zeta+1),-(xi+1)*(zeta+1),(xi+1)*(zeta+1),-

(xi-1)*(zeta+1); 
                      -(eta-1)*(xi-1),(eta-1)*(xi+1),-

(eta+1)*(xi+1),(eta+1)*(xi-1),(eta-1)*(xi-1),-(eta-

1)*(xi+1),(eta+1)*(xi+1),-(eta+1)*(xi-1)];  
            % jacobian, its inverse & determinant 
            J = dN*xloc; 
            detj = det(J); 
            % define strain displacement matrix 
            B = J\dN; 
            B = [B(1,1) 0      0      B(1,2) 0      0      B(1,3) 0      

0      B(1,4) 0      0      B(1,5)  0      0      B(1,6) 0      0      

B(1,7) 0      0      B(1,8) 0      0; 
                 0      B(2,1) 0      0      B(2,2) 0      0      

B(2,3) 0      0      B(2,4) 0      0       B(2,5) 0      0      B(2,6) 

0      0      B(2,7) 0      0      B(2,8) 0; 
                 0      0      B(3,1) 0      0      B(3,2) 0      0      

B(3,3) 0      0      B(3,4) 0      0       B(3,5) 0      0      B(3,6) 

0      0      B(3,7) 0      0      B(3,8); 
                 0      B(3,1) B(2,1) 0      B(3,2) B(2,2) 0      

B(3,3) B(2,3) 0      B(3,4) B(2,4) 0       B(3,5) B(2,5) 0      B(3,6) 

B(2,6) 0      B(3,7) B(2,7) 0      B(3,8) B(2,8); 
                 B(3,1) 0      B(1,1) B(3,2) 0      B(1,2) B(3,3) 0      

B(1,3) B(3,4) 0      B(1,4) B(3,5)  0      B(1,5) B(3,6) 0      B(1,6) 

B(3,7) 0      B(1,7) B(3,8) 0      B(1,8); 
                 B(2,1) B(1,1) 0      B(2,2) B(1,2) 0      B(2,3) 

B(1,3) 0      B(2,4) B(1,4) 0      B(2,5)  B(1,5) 0      B(2,6) B(1,6) 

0      B(2,7) B(1,7) 0      B(2,8) B(1,8) 0]; 
            % 
            ke = B'*Tinv*C*Tinvtransp*B; ke = (ke + ke')/2; 
            switch icode 
                case -1 
                    % compute elemental stiffness matrix 
                    eldat_K = eldat_K + eprop^p*ke*detj*w; 
                case 1 
                    % comopute c at element level 
                    eldat_F = eldat_F + 

trace(eprop^p*de'*ke*de*detj*w); 
                    % compute dc at element level w.r.t density 
                    eldat_K = eldat_K - trace(p*eprop^(p-

1)*de'*ke*de*detj*w); 
                    % 1st deriative w.r.t theta 
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                    eldat_KK = eldat_KK - 

trace(eprop^p*de'*(B'*DTinv*C*Tinvtransp*B + ... 
                                                             

B'*Tinv*C*DTinvtransp*B)*de*detj*w); 
            end 
        end 
    end 
end 

 

 
function [c,ceq,Gc,Geq] = top_nonlcon(x) 
% This file deals only with the passive element 
global passive_ele  
rhop = x(1:length(x)/2);  
c = []; 
ceq = [rhop(passive_ele) - 0.6]; 
if nargout > 2 
    Gc = []; 
    Geq = 

sparse([passive_ele]',[1:length(passive_ele)],ones(1,length(passive_ele

)),length(x),length(ceq)); 
end 

 

 
function stop = outfun(x, optimValues, state) 
stop = false; 
% this file mainly calls the plot command the design variable during 

the iteration 
global  history nelx nely nelz 
% 
switch state 
    case 'init' 
        tic 
    case 'iter' 
        % plot the design variables 
        t = toc; plot_outplot(x,t,optimValues,1); 
        % display 
        disp([' Iter:'   sprintf(' %4i ',optimValues.iteration)... 
              ' Obj:' sprintf(' %6.4f ',optimValues.fval) ... 
              ' Vol:'    sprintf(' %6.4f 

',sum(sum(sum(x(1:length(x)/2))))/(nelx*nely*nelz)) ... 
              'Step:' sprintf(' %6.4f ',optimValues.stepsize) ... 
              'Time Elapsed:' sprintf(' %6.4f ',t)]); 
    case 'done' 
        % record the iteration 
        history.iter = [history.iter; optimValues.iteration]; 
        % 
        t = toc; plot_outplot(x,t,optimValues) 
end 

 

 
function ieldof = get_ieldof(lnodes,D) 
% this mfile gets element equation numbers from global equation number 
% array 
nenode = D.nenode;  % no. of nodes per element 
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ndof = D.ndof;      % no. of dofs per node 
% 
jj = 0; 
for j1 = 1:D.nenode; 
    for j2 = 1:D.ndof; 
        jj = jj + 1; 
        ieldof(jj) = lnodes(j1)*D.ndof + j2 - D.ndof; 
    end 
end 
end 

 

 
function plot_outplot(x,t,optimresult,a) 
% this file does the plot job 
global ielem video X nelx nely nelz phi 
% 
rho = x(1:length(x)/2); theta = x(length(x)/2+1:end); phi0 = phi(:); 
XX = X; 
% 
figure(2); ielem1 = ielem((find(rho>.5)),:);  
% 
xx = XX(:,1); yy = XX(:,2); zz = XX(:,3); 
% 
theta1 = theta(find(rho>.5),:); phi1 = phi0(find(rho>.5),:); 
% define the fiber segmentss 
center_xx = mean(xx(ielem1),2); center_yy = mean(yy(ielem1),2); 

center_zz = mean(zz(ielem1),2); 
tip1x = center_xx + 0.25.*cos(theta1).*cos(phi1); tip1y = center_yy + 

0.25*sin(theta1); tip1z = center_zz - 0.25.*cos(theta1).*sin(phi1); 
tip2x = center_xx - 0.25.*cos(theta1).*cos(phi1); tip2y = center_yy - 

0.25*sin(theta1); tip2z = center_zz + 0.25.*cos(theta1).*sin(phi1); 
% cooridnate transformation 
[row,col] = size(ielem1); 
if nely >= nelz 
    xxx = [center_xx;tip1x;tip2x]; yyy = [center_yy;tip1y;tip2y]; zzz = 

[center_zz;tip1z;tip2z]; 
    XXX = [xxx,yyy,zzz]; XXX(:,[2,3]) = XXX(:,[3,2]); XXX(:,2) = -

XXX(:,2); 
    xxx = reshape(XXX(:,1),row,3); yyy = reshape(XXX(:,2),row,3); zzz = 

reshape(XXX(:,3),row,3); 
    center_xx = xxx(:,1); tip1x = xxx(:,2); tip2x = xxx(:,3); 
    center_yy = yyy(:,1); tip1y = yyy(:,2); tip2y = yyy(:,3); 
    center_zz = zzz(:,1); tip1z = zzz(:,2); tip2z = zzz(:,3); 
end 
% plot fiber orientaiton 
fiber_x = [tip2x';center_xx';tip1x']; fiber_y = 

[tip2y';center_yy';tip1y']; fiber_z = [tip2z';center_zz';tip1z']; 
plot3(fiber_x,fiber_y,fiber_z,'-r','linewidth',2); 
title(['time: ',num2str(t),' sec;',' iter: 

',num2str(optimresult.iteration),';  compilance: 

',num2str(optimresult.fval),'  Mnd(%): ',num2str(sum(4*rho(:).*(1-

rho(:)))/length(rho)*100)]); 
hold on; 
% cooridnate transformation 
if nely >= nelz 
    XX(:,[2,3]) = XX(:,[3,2]); XX(:,2) = -XX(:,2); 
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end 
% plot density 
rho1 = repmat(rho(find(rho>.5),:),6,1); 
faces1 = [ielem1(:,[1 2 3 4]); 
    ielem1(:,[5 6 7 8]); 
    ielem1(:,[4 3 7 8]); 
    ielem1(:,[1 2 6 5]); 
    ielem1(:,[1 5 8 4]); 
    ielem1(:,[2 6 7 3])]; 
% plot the 3D elements with material distribution 
patch('Faces',faces1,'Vertices',XX,'FaceVertexCData',1-

rho1,'FaceColor','flat','FaceAlpha',.5); 
axis equal; axis tight; axis off; colormap gray; hold off; 
view([30 30]) 
drawnow; 
% 
if nargin > 3 
frame = getframe(figure(2)); writeVideo(video,frame); 
end 

 

 
function [utot,ptot] = proc0(D,rho,theta,phi) 
% This file does FEA matrix solving 
global ielem iprops iforce force ieqn 
global Kff Kfe Kee Kffi Kfei Keei Kffj Kfej Keej Uf Ue Ff Fe 
% 
rho = rho(:); theta = theta(:); phi = phi(:); 
% compute and assemble element stiffness matrix and element load vector 
for i = 1:D.nel; 
    elemnodes = ielem(i,:);  
    % get element dof number array 
    ieldof = get_ieldof(elemnodes,D); 
    % cacluate element stiffness matrix and load vector 
    [eldat_F,eldat_K] = 

feval(D.elname,rho(i),theta(i),phi(i),elemnodes,D,-1); 
    % assemble element stiffness matrix and load vector 
    assemkp_sparse(eldat_F,eldat_K,ieqn(ieldof),D); 
end 
% 
% apply nodal forces 
k = 0; 
for j = 1:D.loadcase 
    for i = 1:D.nforce; 
        k = k + 1; 
        num = iforce(k,1)*D.ndof + iforce(k,2) - D.ndof; 
        Ff(ieqn(num),j) = Ff(ieqn(num),j) + force(k); 
    end 
end 
% define sparse matrices 
Kff = sparse(Kffi,Kffj,Kff,D.nnode*D.ndof-D.ndisp,D.nnode*D.ndof-

D.ndisp); 
Kee = sparse(Keei,Keej,Kee,D.ndisp,D.ndisp); 
Kfe = sparse(Kfei,Kfej,Kfe,D.nnode*D.ndof-D.ndisp,D.ndisp); 
% 
% solve system of equations 
Uf = Kff\(Ff - Kfe*Ue); 
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% compute nodal reactions 
Fe = Kee*Ue + Kfe'*Uf; 
% 
% complete global displacement and force vector 
% 
for j = 1:D.loadcase 
    for i = 1:D.nnode*D.ndof; 
        if (ieqn(i) < 0); 
            utot(i,j) = Ue(-ieqn(i),j); 
            ptot(i,j) = Fe(-ieqn(i),j); 
        else 
            utot(i,j) = Uf(ieqn(i),j); 
            ptot(i,j) = Ff(ieqn(i),j); 
        end 
    end 
end 
end 

 

 
function ieqn = initialize(D) 
% 
global idisp disp ielem 
global Kff Kfe Kee Kffi Kfei Keei Kffj Kfej Keej Uf Ue Ff Fe Kindex 
% 
nnode = D.nnode;    % no. of nodes in model 
ndof = D.ndof;      % no. of dofs per node 
% 
%set total degrees of freedom 
ndoftot = D.nnode*D.ndof; 
% 
% initialize ieqn 
ieqn = zeros(1,ndoftot); 
% 
% identify fixed degrees of freedom 
iessential = 0; 
for i = 1:D.ndisp; 
    iessential = iessential + 1; 
    num = idisp(i,1)*D.ndof + idisp(i,2) - D.ndof; 
    ieqn(num) = -iessential; 
end 
% 
% identify free degrees of freedom 
ifree = 0; 
for i = 1:ndoftot; 
    if ieqn(i) == 0; 
        ifree = ifree + 1; 
        ieqn(i) = ifree; 
    end 
end 
% 
% determine number of element free and fixed nodes 
ndofff = 0; ndofee = 0; ndoffe = 0; 
for i = 1:D.nel     
    jj = 0; 
    %idof = zeros(D.nenode*D.ndof,1); 
    for j1 = 1:D.nenode; 
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        for j2 = 1:D.ndof; 
            jj = jj + 1; 
            numj = ielem(i,j1)*D.ndof + j2 - D.ndof; 
            %idof(jj,1) = numj; 
            ieleqn(jj) = ieqn(numj); 
        end 
    end 
    ndofff = ndofff + (sum(ieleqn>0))^2; 
    ndofee = ndofee + (sum(ieleqn<0))^2; 
    ndoffe = ndoffe + (sum(ieleqn>0)*sum(ieleqn<0)); 
end 
% 
% initialize global matrices; 
Kindex = [0 0 0]; 
Kffi = zeros(ndofff,1); Kffj = zeros(ndofff,1); Kff = zeros(ndofff,1); 
Keei = zeros(ndofee,1); Keej = zeros(ndofee,1); Kee = zeros(ndofee,1); 
Kfei = zeros(ndoffe,1); Kfej = zeros(ndoffe,1); Kfe = zeros(ndoffe,1); 
% Kff = zeros(D.nnode*D.ndof-D.ndisp); 
% Kfe = zeros(D.nnode*D.ndof-D.ndisp,D.ndisp); 
% Kee = zeros(D.ndisp,D.ndisp); 
Uf = zeros(D.nnode*D.ndof-D.ndisp,D.loadcase); 
Ue = repmat(disp',1,D.loadcase); 
Ff = zeros(D.nnode*D.ndof-D.ndisp,D.loadcase); 
Fe = zeros(D.ndisp,D.loadcase); 
end 

 

 

 
function plot_layer(x) 
% this file plots layer-by-layer plot in the print plane 
global ielem X nelx nely nelz 
% 
ielem1 = ielem(1:nelx*nely,1:4); 
% 
rho = x(1:length(x)/2); theta = x(length(x)/2+1:end);  
rho = reshape(rho,nely,nelx,nelz); theta = 

reshape(theta,nely,nelx,nelz); 
% ielem1 = ielem((find(rho>.5)),:); rho1 = rho(find(rho>.5),:); theta1 

= theta(find(rho>.5),:); 
% 
XX = X; xx = XX(:,1); yy = XX(:,2); zz = XX(:,3); 

  
keyboard 
figure; 
for i = 1:nelz % change view direciton 
    subplot(nelz,1,i) 
    rho_plot = 1-rho(:,:,i); rho_plot = rho_plot(:); 
    theta_plot = theta(:,:,i); theta_plot = theta_plot(:); 
    % plot density 
    patch(xx(ielem1)',yy(ielem1)',rho_plot,'edgecolor','none'); 
    colormap gray; caxis([0 1]); axis equal; axis tight; axis off; hold 

on; 
    % plot fiber angle 
    center_xx = mean(xx(ielem1),2); center_yy = mean(yy(ielem1),2); 
    tip1x = center_xx + 0.25.*cos(theta_plot); tip1y = center_yy + 

0.25*sin(theta_plot); 
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    tip2x = center_xx - 0.25.*cos(theta_plot); tip2y = center_yy - 

0.25*sin(theta_plot); 
    fiber_x = [tip2x';center_xx';tip1x']; fiber_y = 

[tip2y';center_yy';tip1y']; 
    plot(fiber_x,fiber_y,'-w','linewidth',2); hold on 
end 
% save the solution variables into a file 
%  save('20x10x6_optimized_data.dat','x','-ascii') 

     

 

 
function assemkp_sparse(eldat_F,eldat_K,ieleqn,D) 
% This function assembles the global load vector (case 1) and 
% global stiffness matrices (case 2) from the element data in 
% eldat and ieleqn. Free and essential dofs are accounted for 
% via the sign on m and n. 
% 
global Kff Kffi Kffj Kee Keei Keej Kfe Kfei Kfej Ff Kindex 
% 
neldoftot = D.ndof*D.nenode;    % total no. of dofs per element 
free = find(ieleqn>0);          % element free dofs 
essential = find(ieleqn<0);     % element essential dofs 
% 
% assembly global arrays 
% assemble load vector 
% Ff(ieleqn(free)) = Ff(ieleqn(free))+eldat_F(free); 
% 
% assemble stiffness matrix 
% define index variables 
Lff = length(free); 
Lee = length(essential); 
Lfe = (neldoftot - Lff - Lee)/2; 
eldati = repmat(ieleqn',1,neldoftot); 
eldatj = repmat(ieleqn,neldoftot,1); 
% extract free-free submatrix components 
Eff = reshape(eldat_K(free,free),Lff^2,1); 
Effi = reshape(eldati(free,free),Lff^2,1); 
Effj = reshape(eldatj(free,free),Lff^2,1); 
% extract essential-essential submatrix components 
Eee = reshape(eldat_K(essential,essential),Lee^2,1); 
Eeei = -reshape(eldati(essential,essential),Lee^2,1); 
Eeej = -reshape(eldatj(essential,essential),Lee^2,1); 
% extract assemble free-essential submatrix components 
Efe = reshape(eldat_K(free,essential),Lff*Lee,1); 
Efei = abs(reshape(eldati(free,essential),Lff*Lee,1)); 
Efej = abs(reshape(eldatj(free,essential),Lff*Lee,1)); 
% assemble components and indices into sparse form 
Kff(Kindex(1)+1:(Kindex(1)+Lff^2)) = Eff; 
Kffi(Kindex(1)+1:(Kindex(1)+Lff^2)) = Effi; 
Kffj(Kindex(1)+1:(Kindex(1)+Lff^2)) = Effj; 
Kee(Kindex(2)+1:(Kindex(2)+Lee^2)) = Eee; 
Keei(Kindex(2)+1:(Kindex(2)+Lee^2)) = Eeei; 
Keej(Kindex(2)+1:(Kindex(2)+Lee^2)) = Eeej; 
Kfe(Kindex(3)+1:(Kindex(3)+Lff*Lee)) = Efe; 
Kfei(Kindex(3)+1:(Kindex(3)+Lff*Lee)) = Efei; 
Kfej(Kindex(3)+1:(Kindex(3)+Lff*Lee)) = Efej; 
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% update Kindex 
Kindex = Kindex + [Lff^2 Lee^2 Lff*Lee]; 
end 
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