
ABSTRACT

Surface Magnetism of Ni(001), Co(001), and Fe(001):
An Embedding Green Function Approach

Roger P. Dooley, Ph.D.

Mentor: Gregory A. Benesh, Ph.D.

Self-consistent spin-polarized surface embedded Green function (SEGF) calcula-

tions have been performed for the Ni(001), Co(001), and Fe(001) surfaces. Results are

reported for three-layer slabs embedded onto the bulk crystals. The work functions,

surface magnetic moments, and other electronic properties are compared with exper-

iment and other theoretical work. The calculated Fe(001) work function is in good

agreement with experiment and slab calculations, while the Ni(001) and Co(001) work

functions are in fair agreement. Enhanced magnetic moments are obtained for the top

layer of atoms, in agreement with experiment. Calculated surface states and surface

resonance bands for each surface have been analyzed and compared with theoretical

and experimental results.



Surface Magnetism of Ni(001), Co(001), and Fe(001):
An Embedding Green Function Approach

by

Roger P. Dooley, M.S.

A Dissertation

Approved by the Department of Physics

___________________________________
Gregory A. Benesh, Ph.D., Chairperson

Submitted to the Graduate Faculty of 
Baylor University in Partial Fulfillment of the 

Requirements for the Degree
of

Doctor of Philosophy

Approved by the Dissertation Committee

___________________________________
Gregory A. Benesh, Ph.D., Chairperson

___________________________________
Kenneth T. Park, Ph.D.

___________________________________
Dwight P. Russell, Ph.D.

___________________________________
Jay R. Dittmann, Ph.D.

___________________________________
John A. Olson, Ph.D.

Accepted by the Graduate School
May 2007

___________________________________
J. Larry Lyon, Ph.D., Dean

Page bearing signatures is kept on file in the Graduate School.



Copyright c© 2007 by Roger P. Dooley

All rights reserved



TABLE OF CONTENTS

LIST OF FIGURES vi

LIST OF TABLES viii

ACKNOWLEDGMENTS ix

DEDICATION x

1 Introduction 1

2 The SEGF Method 7

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Surface Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 SEGF Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Muffin-Tin Spheres . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.2 Interstitial Region . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.3 Vacuum Region . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Embedding Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Surface Brillouin Zone . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Self Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8 Charge Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.9 Work Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 The Surface Magnetism of Ni(001) 26

3.1 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Work Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Charge and Spin Density . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Surface Electronic Structure . . . . . . . . . . . . . . . . . . . . . . . 32

iii



3.4.1 Surface States and Resonances . . . . . . . . . . . . . . . . . . 32

3.4.2 ∆̄ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
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CHAPTER ONE

Introduction

God made solids, but surfaces were the work of the Devil

—Wolfang Pauli

After the discovery of the electron in 1897, P. Drude developed a theory concerning

metallic conduction based on the kinetic theory of gases. This model, although gener-

ally successful, failed to account for quantum mechanical effects. With the advent of

quantum mechanics in the 1920s, physicists had the tools to accurately describe many

microscopic condensed matter systems. During the 1930s, a time of rapid innovation

in surface physics, Tamm, Goodwin, and Shockley theorized the existence of local-

ized electron states at surfaces.1 Other strides were made by Bardeen, Lennard-Jones,

Mott, and Schottky.2–5

Because the many-body Schrödinger equation for a solid cannot be solved ana-

lytically, properties of solids were initially computed from the simplest of models.

However, advances in engineering, chemistry, physics, and technology ushered in the

computing age, which allowed scientists to adopt modeling techniques of greater and

greater sophistication. A history of the major algorithms that provided the basis for

the modeling techniques are discussed within this chapter.

The time-independent Schrödinger equation for a crystal may be written as:

ĤΨ =
n∑
i=1

(
− h̄2

2m
∇2
iΨ− Ze2

∑
R

1

|ri −R|
Ψ

)

+
1

2

∑
i6=j

e2

|ri − rj|
Ψ = EΨ, (1.1)

where Ψ is the many-electron wavefunction. This N-body problem is intractable

for real crystals, which possess on the order of 1023 electrons and nuclei; present

mathematical techniques and modern supercomputers are simply not up to the task.

1
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A simplification of the physical problem was necessary to improve the predictive

capability of various methods and to advance scientific knowledge.

Hartree formulated an algorithm that allowed a great advance in modeling crys-

tals by approximating the many-electron wavefunction as a product of one-electron

functions. He also assumed that the effects of the otherN−1 electrons on a single elec-

tron could be approximated by the electrostatic action of the average charge density.6

Using these assumptions, the many-body equation reduced to a set of one-electron

equations known as the Hartree equations:

− h̄2

2m
∇2
iψi(r) + U ion(r)ψi(r)

+

e2∑
j 6=i

∫
dr′|ψj(r′)|2

1

|r− r′|

ψi(r) = εiψi(r). (1.2)

Although these Hartree equations are computationally complicated, certain electron-

electron interactions, such as exchange and correlation effects, are still not included.

One shortcoming of the Hartree approach is that the product wavefunction is not

antisymmetric with respect to electron interchange. Fock and Slater independently

improved upon the Hartree method by using an antisymmeterized wavefunction Ψ in

the form of a Slater determinant to account for the Pauli exclusion principle.7,8 By

minimizing the ground state energy with respect to the one-particle wavefunctions

ψi, the Hartree-Fock (H-F) equations were obtained:

− h̄2

2m
∇2
iψi(r) + U ion(r)ψi(r) + U el(r)ψi(r)

− e2
∑
j

∫
dr′ψ∗j (r

′)ψi(r
′)ψj(r)

δsisj

|r− r′|
= εiψi(r). (1.3)

The last term on the left hand side of the H-F equations is known as the exchange

term and is non-zero only for parallel electron spins. This is a nonlocal operator

whereby electrons of like spin avoid each other. The effect of the operator is to exclude

electronic charge of like spin from a region surrounding each electron. The exclusion of

negative charge appears as an attractive interaction in the Hamiltonian. This region of
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excluded charge is known as the exchange hole. As a result, the exchange interaction

among electrons of equal spin is taken into account; however, the exchange interaction

for electrons of opposite spin is omitted.9 The Hartree and Hartree-Fock formulations

work well for isolated atoms, but neither approach is adequate for crystals because of

the way the exchange-correlation potential is approximated.6

These methods were succeeded by the jellium model in which the solid is approx-

imated by a system of interacting electrons and a smeared out positively-charged

background. The jellium model improves upon the physics of electron correlation ef-

fects, but it omits the binding of electrons by the ionic cores and can give qualitatively

wrong results (e.g., negative surface energies).9

The next major development in electronic structure methods for solids was the

development of pseudopotential techniques. The pseudopotential is an effective po-

tential containing both the lattice potential and a repulsive term simulating the effect

of the Pauli exclusion principle.9 Pseudopotential methods have proved to be very

reliable in the study of metals with free electron Fermi surfaces.10

Density functional theory (DFT) was the next development that sought to incor-

porate a periodic lattice potential with accurate electron-electron interactions.9 Based

on a theorem of Pierre Hohenberg and Walter Kohn, DFT assumes that all proper-

ties of the many-body system are determined by the ground-state charge density.11

In particular, the many-body ground state energy can be written as

E[ρ(r)] = T [ρ(r)]−
∑
R

Ze
∫
dr′

ρ(r′)

|R− r′|

+
1

2

∫ ∫
dr dr′

ρ(r)ρ(r′)

|r− r′|
+ Exc[ρ(r)], (1.4)

where ρ(r) is the ground state charge density, T [ρ(r)] is the kinetic energy of a non-

interacting electron gas, and Exc[ρ(r)] is the exchange-correlation energy.1
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This many-body problem can be reduced to a set of one-electron Schrödinger-like

equations written in atomic units (e = 1,m = 1, h̄ = 1) as

−1

2
∇2ψi(r) + Veff (r)ψi(r) = εiψi(r).

1 (1.5)

The effective potential, Veff , includes all the interaction terms: the Coulomb potential,

exchange (Pauli exclusion), and correlation (the potential due to the effect of a given

electron on the overall charge distribution).9

If an infinitesimal volume element of a real crystal is sampled, the electron den-

sity within the sampled volume is most likely inhomogeneous. The exact exchange-

correlation energy for such an element is unknown; however, the exchange-correlation

energy for a homogeneous gas is known. One approximation would be to take the

exchange-correlation energy due to an infinitesimal volume of the inhomogeneous

electron gas and approximate it by that of a homogeneous electron gas of the same

average density. This approximation is easily inserted into the DFT equations be-

cause the energy densities of homogeneous electron gases have been calculated for

all densities of interest.12 This approximation is known as the local density approx-

imation (LDA). Spin effects have also been incorporated into the LDA, which allow

spin-dependent properties such as surface magnetic moments to be calculated.

FIG. 1.1. Geometry of a three-layer slab lattice. Vacuum regions bound the top and
bottom of the slab.
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Creating a surface breaks the three-dimensional periodicity of a crystal, causing the

task of finding solutions to the LDA Schrödinger equation to become more difficult.

Most successful methods use either a slab or a slab-superlattice geometry (Figs. 1.1

and 1.2) to calculate the surface electronic structure. For these geometries, the LDA

Schrödinger equation is solved self-consistently for a slab of up to about nine atomic

layers thickness. When a slab calculation has reached self-consistency, the center

layer is usually compared with bulk properties found experimentally.

FIG. 1.2. Geometry of a slab-superlattice. Vacuum is between layers.

Unlike a true semi-infinite system, these geometries allow surfaces to interact with

one another. Therefore, although slab methods are usually satisfactory in predict-

ing aggregate properties, such as the work function and charge density, they poorly

describe most individual properties, such as surface state energies. Because the band-
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structure from slab calculations is discrete instead of continuous, identifying surface

states is rather arbitrary because bulk bands and band gaps are absent.

The Surface Embedded Green Function (SEGF) method, developed in 1983 by

Benesh and Inglesfield, overcomes the deficiencies of slab-based calculations.13 Using

this theoretical method, many material surfaces have been studied with remarkable

success when compared with experimental results.13–15 Until now, only two studies

of the magnetic properties of iron have been performed using the SEGF method.16,17

This dissertation will address the problems with earlier calculations and will provide a

detailed study of the surface electronic and magnetic properties of Ni(001), Co(001),

and Fe(001).



CHAPTER TWO

The SEGF Method

Calculating the electronic properties of complicated systems requires great com-

puting effort even with the latest advances in computing and physical modeling. As

the computational capabilities of CPUs have increased, numerical models developed

to study physical phenomena have also increased in complexity. Improved physical

understanding has led to better models and improved algorithms that facilitate those

computations. Although slab and slab-superlattices are the favored methods for mod-

eling surfaces, neither model represents a true physical surface. This chapter outlines

a methodology in which a true surface is modeled while conserving computational

resources.

2.1 Motivation

Although modeling a three-dimensional crystal is difficult, it is far less challenging

than accurately representing a surface. No closed-form solution exists for many-

body problems with more than two bodies. The many-body problem for a crystal

contains more than 1023 electrons and nuclei. Additionally, a surface creates further

complications due to the loss of three-dimensional periodicity. Because a surface atom

has fewer near neighbors than its bulk crystal counterpart, the electronic structure at

the surface is expected to differ from the bulk. Therefore, it is expected that physical

properties which depend upon the electronic structure will also be different at the

surface.

Surfaces often exhibit reconstruction, in which atoms positioned at the surface

crystal rearrange, forming different lattice structures from the underlying crystal (e.g.,

W(100) which reconstructs to
√

2×
√

2−R45o pattern). Vertical relaxations can also

occur due to the reduced coordination of the surface atoms, thereby altering the

7
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surface charge density and affecting the work function. Forces that bind surface

atoms together differ from those in the substrate. Magnetic properties may also

change at the surface. A surface may acquire a net magnetization while the bulk

remains magnetically neutral, as is the case for the (001) face of vanadium.

The problems and limitations associated with slab methods are well known. When

slab methods were developed, computing technology was not as advanced as today and

the model needed to be computationally feasible. Another algorithmic approach is

described below that is computationally compact and accurate without the limitations

of slab-only methods. By grafting a thin slab onto a bulk crystal, a method is derived

that models a true surface.

2.2 Surface Embedding

The Surface Embedding Green Function (SEGF) method separates the semi-

infinite system (Fig. 2.1) into a surface region (I) and a substrate region (II). The

substrate is the perfect three-dimensional bulk crystal. Because the bulk crystal is

included in the calculation through the embedding potential, there is no need to use a

thick slab to mimic the bulk crystal. Therefore, the number of computed crystal layers

can be greatly reduced as compared with slab methods. The SEGF method conserves

computer resources, allowing for the study of more complicated structures. By being

less computationally intensive, the SEGF method is able to iterate to self-consistency

faster than slab methods. The goal of the SEGF method is to allow an accurate cal-

culation of the surface electronic structure without making the compromises of slab

methods.

By obtaining the ground state energy of a system, other properties of physical

interest can be determined. For all but the simplest of systems, the exact many-body

system wavefunction (Ψ) is unknown. To find the ground state energy, generally the

best approach has been to guess a form for Ψ that approximates the exact wavefunc-
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Region I

Region II

FIG. 2.1. Side view of SEGF crystal representation. The undulating solid black line
represents the boundary between the surface and bulk regions.

tion. If Ψ is not known, as is the case for a crystal, the ground state energy (E) is

bound by:

E ≤ 〈Φ(r)|Ĥ|Φ(r)〉
〈Φ(r)|Φ(r)〉

, (2.1)

where Ĥ is the Hamiltonian and Φ(r) is the approximate wavefunction for the entire

system. Eq. 2.1 is often used when encountering systems where iterative methods

are employed to find the ground state energy. A variational method will be used to

calculate the ground state energy for the SEGF method.

Although Ψ is unknown, the energy computed by guessing the form of the ground

state wavefunction can provide a good estimate of the ground state energy. For good

choices of Φ, the estimated ground state energy will differ only slightly from the

true ground state energy. In fact, a decent choice of wavefunction with error ε will

introduce an error in the true ground state energy on the order of ε2.18
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2.3 SEGF Formalism

The SEGF method defines a trial function φ(r) in the surface region and matches

it along an embedding surface onto the substrate wavefunction ψ(r), which is an exact

solution to the bulk Schrödinger equation.

Using Eq. 2.1 and the following definition for Ψ:

Ψ(r) =


φ(r), in Region I

ψ(r), in Region II
, (2.2)

the expectation value for the Hamiltonian is (using atomic units, where e = h̄ = m = 1

and ε is the bulk energy eigenvalue):

E =

∫
I drφ

∗Hφ+ ε
∫
II dr|ψ|2 + 1

2

∫
S drφ

∗(rS)
∂φ
∂ns

− 1
2

∫
S drφ

∗(rS)
∂ψ
∂ns∫

I dr|φ|2 +
∫
II dr|ψ|2

, (2.3)

where the normal derivative points into the substrate. Because the trial function is

permitted to have a discontinuous derivative at the interface, the two surface integrals

in the previous equation are required. These integrals express the discontinuity in

∂Ψ/∂nS arising from the kinetic energy operator.19

An expression is desired that explicitly solves for the ground state energy in terms

of only the trial function in the surface region. Eliminating the integrals through the

substrate is accomplished by using the bulk Green function (G0). The Green function

for the perfect crystal is required to satisfy a Neumann boundary condition on the

embedding surface:

∂G0(rS, r
′)

∂nS
= 0 . (2.4)

The surface-inverse of the Green function is defined by:∫
S
dr′S G

−1
0 (rS, r

′
S)G0(r

′
S, r

′′
S) = δ(rS − r′′S) . (2.5)

Utilizing this definition and the continuity of the trial function on the embedding

interface, an equation relating the substrate function derivative to the amplitude can

be found:

∂ψ(rS)

∂nS
= −2

∫
S
dr′SG

−1
0 (rS, r

′
S)φ(r′S) . (2.6)
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An expression for the volume integral in terms of the trial function is also required.

Inglesfield has shown that:

∫
II
dr|ψ|2 = −

∫
S
drS

∫
S
dr′S φ

∗(rS)
∂G−1

0 (rS, r
′
S)

∂ε
φ(r′S) .

20 (2.7)

The expectation value for the energy can now be expressed entirely in terms of the

trial function φ and the bulk Green Function G0; thus, a true variational expression

for E has been found. In terms of the trial function φ and G0, Eq. 2.3 becomes:

E =

∫
I drφ

∗Hφ+
∫
S drS

∫
S dr

′
Sφ

∗(rS)
(
G−1

0 − ε
∂G−1

0

∂E

)
φ(r′S)∫

I dr|φ|2 −
∫
S drS

∫
S dr

′
Sφ

∗(rS)
∂G−1

0

∂E
φ(r′S)

. (2.8)

The trial function, φ, is expanded as:

φ(r) =
∑
i

aiχi(r) , (2.9)

where χi(r) are the basis functions. E is then minimized with respect to small changes

in φ, resulting in the following equation:

∑
j

(
Hij + (G−1

0 )ij + (E − ε)
∂(G−1

0 )ij
∂E

)
aj = E

∑
j

Oijaj , (2.10)

where:

Hij =
∫
I
drχ∗i (r)Hχj(r) +

∫
S
drχ∗i (rS)

∂χj(r
′
S)

∂nS
,

(G−1
0 )ij =

∫
S
drS

∫
S
dr′S χ

∗
i (rS)G

−1
0 (rS, r

′
S)χj(r

′
S) ,

and

Oij =
∫
I
drχ∗i (r)χj(r) . (2.11)

G−1
0 now appears in Eq. 2.10 in the form of an extra potential added to the surface

Hamiltonian. Matrix elements for G−1
0 (the embedding potential) provide all the

substrate information for the surface calculation. The formulation for this calculation

is now entirely in terms of φ and G−1
0 . No approximations have been made, and this

method is exact. Eq. 2.10 is evaluated at E = ε to further simplify the problem.
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By calculating the Green function for the surface instead of the individual wave-

functions, the ground state surface properties are obtained without carrying around

the excess baggage of the numerous φ’s needed. The Green function, G, may be

represented by a basis function expansion:

G(r, r′;E) =
∑
i,j

gij(E)χi(r)χ
∗
j(r

′) . (2.12)

The related Green function equation for the surface is obtained by the variational

method. A matrix equation is then computed, similar to Eq. 2.10. If we choose to

evaluate G at energy E = ε, we obtain

∑
k

[Hik + (G−1
0 )ik − EOik]gkj(E) = δij . (2.13)

Once the gkjs are computed, the Schrödinger equation is solved and the physical

properties of interest, such as the charge density, the local density of states, and work

function, are found.

2.4 Basis Functions

Basis functions are chosen to resemble the spatial behavior of φ andG in the surface

region. Since φ and G are expected to vary when traversing the surface region, a

wise choice of basis will minimize the number of functions required for a given level of

accuracy, thus minimizing the time required to complete the calculation. Constructing

a basis with one type of function for the surface region is difficult because the number

of coefficients needed to represent the surface would be very large. Instead, linearized

augmented plane waves (LAPWs) are chosen as basis functions.21 In accordance with

the LAPW method, the surface layer is broken up into three regions: the muffin-tin

(MT) region, the interstitial region, and the vacuum region. This choice of basis has

certain advantages over other expansions, namely, the functions are continuous and

differentiable everywhere, and are sufficiently flexible to produce matrix elements that

are nearly independent of energy.
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2.4.1 Muffin-Tin Spheres

The muffin-tin (MT) region is defined by a sphere centered around an atomic site

and extending out until touching nearest neighbor spheres. MT basis functions for

G and φ are composed of spherical harmonics times a radial function and its energy

derivative:

χ+
m,n(r)

χ−m,n(r)

=
∑
L



A+
L,α(k)

A−L,α(k)

×ul,α +


B+
L,α(k)

B−
Lα(k)

×u̇l,α
YL(Ω)×


il

il−1
, (2.14)

where the ± solutions match onto odd(−)/even(+) interstitial plane waves (with

respect to reflection in the z = 0 plane) at the MT-interstitial boundary. ul and u̇l

are radial and energy derivative solutions to the scalar-relativistic Dirac equations

with no spin-orbit coupling.22 The A and B coefficients are determined by matching

χ and ∂χ/∂r across the MT boundary. The energy derivative is used because ul,α is

approximately linear over an energy range centered on the energy parameter El for

each atom(α): ul(E) = ul(El) + (E − El)u̇l(El).
23 Values for El are chosen so that

the energy lies in the center of the band with that l character, although the use of u̇l

ensures that band eigenvalues are relatively insensitive to the choice of El. The basis

functions for each spin state are calculated individually, and thus the spin indices are

missing in Eq. 2.14.

The usual practice has been to include terms up to l = 8 for the MT expansions.

However, for this study, terms in the MT expansion were increased to l = 12. When

terms up to l = 12 are used instead of l = 8, the error at the MT-interstitial interface

was reduced by an order of magnitude. Because spin-polarized calculations have an

extra degree of freedom, it was felt that the extra digit of accuracy was needed.
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2.4.2 Interstitial Region

In the interstitial region, where the charge density and potential are expected to

be slowly-varying, the LAPWs are plane waves of the form:

χ+
m,n(r)

χ−m,n(r)

 =

√
2

Ω
eikm·R ×


cos(knz), n even,

sin(knz), n odd,
(2.15)

where,

kn =
nπ

D̃
. (2.16)

Ω is the volume of the slab unit cell, and D̃ is chosen to be slightly larger than D, the

slab thickness. D̃ is used rather than D in order to allow greater freedom in derivative

at the boundary of the interstitial region. Because the interstitial χs are used in a

finite Fourier expansion, it is expected that discontinuities at the vacuum-interstitial

boundary and the MT-interstitial boundary will always exist. Finite Fourier expan-

sions tend to overshoot at the discontinuity and lead to an uneven distribution of

error (see Fig. 2.2). If the basis functions were not allowed to extend beyond ±D/2,

minor errors may occur with matching at the boundary. Allowing the expansion to

extend out past the interstitial region adds greater accuracy in matching by allowing

a greater range in matching conditions.

2.4.3 Vacuum Region

In the vacuum region, the wavefunctions are expected to exponentially decay away

from the surface. The vacuum basis functions are expressed as:

χ+
m,n(r)

χ−m,n(r)

 =



α+
m,n(k)

α−m,n(k)

× vm(z) +


β+
m,n(k)

β−m,n(k)

× v̇m(z)

 eikm·R . (2.17)

The Schrödinger equation is solved in the vacuum region at an energy Ev with the

planar-averaged potential in order to find vm and the energy derivative v̇m. α and

β are chosen in order to preserve the continuity of χ and ∂χ/∂z at the vacuum-slab

boundary.
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Approximation 4 Approximation 5 Approximation 6

Approximation 1 Approximation 2 Approximation 3

FIG. 2.2. The first six approximations of a step function using a finite Fourier series
expansion. Note the overshoots at the discontinuities.24

2.5 Embedding Potential

Because the potential and charge density are slowly-varying in the interstitial re-

gion, the logical choice is to embed there; however, the resulting interface is very

complicated (see Fig. 2.3). Computing the matrix elements along this undulating

surface is difficult; however, calculating the matrix elements along a planar surface

is relatively simple. Therefore, it is desirable to transfer the embedding surface from

the complicated surface to a flat one (see Fig. 2.4). Thus, the computational diffi-

culties arising from the undulating surface are circumvented. Provided this shift is

performed correctly, the bulk crystalline properties will still have the same influence

on the surface.13

The embedding potential may be thought of as a pseudopotential that replaces

the exact physical potential in such a way as to preserve the physical influence of

the core and valence electrons. Pseudopotentials may be created using different ap-

proaches provided they accurately model the influence of the original potential. The

embedding potential is analogous to the method of images used in electrostatics, in
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FIG. 2.3. A BCC(001) embedding surface.

which imaginary charges are placed in the excluded region in such a way as to give

the correct physics in the region of interest.

The embedding potential is generated by employing a scattering method and using

previously tabulated values for the bulk atomic potentials. The bulk crystal is as-

sumed to have a muffin-tin form and the potentials inside the muffin-tins are assumed

to be spherically symmetric. Scattering phase shifts are then used to determine the

reflection properties of the perfect crystal lattice from which the embedding potential

can be computed.
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FIG. 2.4. The transferred embedding surface is represented by the flat line between
the surface slab (blue circles) and the substrate (red circles).

To show how the reflection properties can be calculated, consider a plane wave

ei[k+G]·Reikzz incident on the surface, where k is any wavevector, kz is the z-component

of k, G is a surface reciprocal lattice vector, and R is the x-y planar component of

r. When the plane wave scatters, the wavefunction can be written as (z < 0):

ψ(r) = ei[k+G]·Reikzz +
∑
G′
RG′,G ei[k+G′]·R eγG′z , (2.18)

where RG′,G is the reflection matrix and k2
G′ − γ2

G′ = k2
G − k2

z . At the flat boundary

surface, the Fourier components are given by:

ψG′ = δG′,G +RG′,G ,

ψ′G′ = γG′(−δG′,G +RG′,G) . (2.19)

By inverting Eq. 2.6, an expression for G−1
0 can be obtained in terms of the reflection

matrix:

G−1
0 = γ

(1−R)

(1 +R)
. (2.20)
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Using the layer-doubling method,25 the reflection matrix is calculated using the

muffin-tin substrate potential. In spin-polarized calculations, separate spin-up and

spin-down embedding potentials are calculated for use in the SEGF program.

2.6 Surface Brillouin Zone

The goal of this work is to determine the electronic structure of materials within

certain design limits. Even by using the Green function, calculating the electronic

properties for even the simplest of materials is computationally difficult. A simplifica-

tion to the problem may be introduced by limiting the choices of materials to periodic

ones. Computational difficulties will also be eased through symmetry considerations.

The periodic arrangement of potentials in a crystal lattice allows the use of Born

von-Karman (periodic) boundary conditions when solving the Schrödinger equation.

The resulting solutions are of Bloch form and are labeled by their wavevector (k) and

their band index (n). Because the electrons are labeled by wavevectors, reciprocal

space is used when calculations are made.

With computational efficiency as a design goal, the calculations are performed in

the smallest region of reciprocal space possible, the irreducible portion of the Brillouin

Zone, to ensure that computer resources are conserved. Because the introduction of

the surface breaks vertical symmetry, the component of k perpendicular to the surface

is no longer a good quantum number, and the bulk Brillouin Zone transforms into the

surface Brillouin Zone (see Fig. 2.5). Therefore, the surface Brillouin Zone (SBZ) is

used when calculating relevant physical quantities. Having established the geometry,

the next step is to define the grid for the SBZ over which aggregate quantities can be

integrated.

Cunningham has provided a method to generate efficient sets of points and weight-

ing factors over the SBZ that give accurate representations of periodic functions.26

The points are referred to as special k-points. Choosing the number of points used
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FIG. 2.5. Projection of the bulk Brillouin Zone (bottom) onto the surface Brillouin
Zone (top) for a bcc lattice.

in a calculation is left to the individual performing the calculation. Small point sets

are chosen to keep computational time and resources to a minimum, yet large enough

to represent the crystal accurately. Metals with partially-filled bands, like the 3d

transition metals considered in this study, or those that possess significant structure

close to the Fermi level require a larger numbers of special k-points because the oc-

cupations of bands may differ significantly at adjacent k-points. A 36 special k-point

set in the irreducible portion of the SBZ was used for all materials in this study (see

Fig. 2.6).
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FIG. 2.6. Surface Brillouin Zone for three and thirty-six special k-point sets (filled
circles) within the irreducible portion of a square surface Brillouin Zone

2.7 Self Consistency

Many methods for performing electronic structure calculations have been devel-

oped. These methods usually involve solving a set of one-electron equations. In these

methods, trial wavefunctions for each electron are used to establish an interaction

potential, which is then used to find the individual wavefunctions. When this iter-

ative process yields no change between the input and output potentials (or charge

densities), self-consistency is said to have been reached. This procedure is known

as the self-consistent field approximation. A self-consistent calculation is necessary

because the electron states must be known in order to compute the potential, which

must be known to compute the states.27

The SEGF method is no different in this respect: a set of one-electron equations

are used to find the ground state energy. The SEGF potential depends on the charge

density which depends on the Green function. Instead of attempting to solve the

whole problem in a single calculation, the ground state energy is reached using an

iterative approach.

A separate computer program is used to calculate a starting charge density or

potential that is either paramagnetic or spin-polarized. For this study, the charge
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density was used for the input. A third computer program was used to calculate

the energy-dependent embedding potential. Once these steps were completed, the

self-consistent iterative process began. The Coulomb potential was obtained from

the input charge density by solving Poisson’s equation in the surface layer using a

method developed by Weinert.28 The exchange-correlation potential (spin-dependent)

is then added to the Coulomb potential and the total potential (Vin = VCoulomb+VXC )

is complete. Vin is used in the scalar-relativistic Dirac equation for the surface Green

function to determine a new charge density ρout, which is then used to compute an

output potential (Vout).

For most initial guesses of ρin, the ρout will not match coefficient for coefficient.

If this were the case, there would be no need to iterate because ρin would be the

ground state charge density. In general, this is not the case and the output charge

density could be used as the new input, creating a feedback loop that iterates to the

ground state charge density. However, an unattenuated feedback loop with the SEGF

method is not stable due to the strength of the Coulomb potential in the surface

region. A large Coulomb potential tends to attract too much charge on one cycle

and overcompensate on the next cycle by depleting the surface of charge because the

SEGF method does not require charge conservation. Large charge density oscillations

drive the calculation away from convergence. To overcome this, attenuated feedback

or mixing may be used to iterate to the ground state without driving large charge

density oscillations.

Two mixing schemes are generally used to aid convergence: simple mixing and

Broyden’s method. Simple mixing attenuates feedback linearly, adding a small amount

of ρout to ρin:

ρm+1
in = (1− β)ρmin + βρmout , (2.21)

where m is the current iteration and β is a mixing factor. β can range from 0 to 1

but is normally very small. For this study, β ranged between 0.0001 and 0.02.
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Another convergence technique is the Broyden method, which is a non-linear

method for finding the minimum of a multivariate function in which previous cycles

are used to help locate the ground state. In theory, because of the greater number

of degrees of freedom, the Broyden method should reduce the number of iterations

needed to find the ground state charge density.

2.8 Charge Density

Once the ground state energy of the system has been found, physical quantities

which describe the system can be extracted, providing information about the elec-

tronic structure. Usually this can be accomplished by using the local density of states

(LDOS) for the system. The LDOS describes the distribution of electron energy levels

throughout the surface. The LDOS is defined as:

σk(r, E) =
∑
n

|ψk,n|2 δ(E − En) , (2.22)

when the energy states are discrete, and

σk(r, E) =
∫ EF

−∞
dE ′ |ψk(r, E

′)|2 δ(E − E ′) , (2.23)

when the states lie in the bulk continuum.

The LDOS is used rather than the density of states because experimental efforts to

study surfaces probe electronic properties at particular positions rather than aggre-

gate properties. For example, scanning tunneling microscopy measures energy levels

of electron states on a plane. Of interest are surface states which are electronic states

that exist in bulk band gaps, which can be identified from the LDOS.

In metals, valence electrons are not bound to their parent nuclei and their wave-

functions extend throughout the crystal. Because of the enormously large number

(1023) of valence electrons in a metal, their wavefunctions form an almost continuous

energy spectrum. Their spatial extent makes calculating individual wavefunctions

difficult. Even with state-of-the-art computers, calculating an enormously large num-
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ber of wavefunctions is impossible. Models that use wavefunctions store only enough

of them for an adequate physical description.

Alternatively, the LDOS may be calculated by use of a Green function. The

Green function contains all of the information about the physics of the surface and

substrate. To understand how the LDOS is calculated, consider the bilinear formula

for the Green function:

Gk(r, r
′, E) =

∑
n

ψ∗k,n(r
′)ψk,n(r)

E − En ± iα
, for α > 0 . (2.24)

Using the formal identity,

lim
α→0

1

x± iα
= P

(
1

x

)
∓ iπδ(x) , (2.25)

(where P stands for the principal part), the LDOS may be written in terms of Gk:

σk(r, E) =
1

π
ImGk(r, r;E + iε) . (2.26)

To compute the charge density at a given k-point, the following integral is used:

ρ(r) =
∫ EF

−∞
dE σk(r, E) , (2.27)

where the integration is computed just above the real axis to avoid any poles. A total

density of states or total charge density is computed by performing a weighted sum

of contributions from the LDOS throughout the SBZ using the scheme outlined in

Fig. 2.6.

With the Green function, and by extension the LDOS, the valence charge density

can be constructed in the different LAPW regions using the expansions:

ρ(r) =



∑
m,n

ρmne
iGm·R ×


cos(knz)

sin(knz)

 ,with r in the interstitial region,

∑
L
ρL(r)YL(θ, φ) ,with r in the MT spheres,

∑
m
ρm(z)eiGm·R ,with r in the vacuum.

(2.28)
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Electrons that comprise the core charge reside in the inner shells of each crystalline

atom and are relatively inert. The energy bands occupied by core electrons are the

very low energy, narrow bands in the solid which have nearly the same character as

isolated atoms. Unlike valence electrons, the wavefunctions for the core electrons are

appreciable only near a particular atom.

The core electrons states are found by calculating wavefunctions for the fully

relativistic Dirac equation using a spherical potential. The SEGF formulation as-

sumes that the core charge is negligible past the MT boundary; however for small

muffin-tin radii, this is not strictly true. For the surfaces studied herein, a non-

negligible (albeit small) amount of core charge was found to extend into the in-

terstitial region. A method to add the core charge to the other regions was im-

plemented (see Appendix A). Once these contributions are computed, the total

charge density is determined by adding the valence and core charge contributions:

ρ(r) = ρ(r)core + ρ(r)valence.

2.9 Work Function

To remove an electron from a solid, energy must be expended to transport the

electron from the bulk lattice, through the surface, and into the vacuum. The min-

imum amount of energy required to do this at absolute zero is known as the work

function. An accurate measurement of the work function should be performed on a

crystal with an infinite surface, but in practice, measurements like this are made such

that the electron is extracted far enough from the edges of the crystal to avoid stray

fields and edge effects.

At the surface, the configuration of electrons differs from the bulk crystal. In fact,

valence electrons at the surface spill out into the vacuum region, resulting in a surface

layer total charge that shifts from neutral to slightly positive. The resulting dipole

layer produces an electric field that works against the removal of electrons from the
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crystal. Therefore, to remove an electron from a surface, the electron must have

enough energy to traverse the dipole layer (D). Quantitatively, the work function (φ)

is defined as:

φ = D − EF . (2.29)

Because the Fermi level and the surface distribution of charge are both properties

of the material, the work function provides a characteristic value that is likely to

be unique. Other factors that influence φ include the arrangement of surface atoms

and the natural repulsion of nearby electrons. The accuracy of the calculated work

function is often taken to be a standard measure of the accuracy of an electronic

structure calculation.



CHAPTER THREE

The Surface Magnetism of Ni(001)

Hund’s rules elegantly explain how electrons are arranged in an isolated atom or

ion. The essential feature is that electrons organize themselves such that partially-

filled shells maximize their spin, achieving the lowest energy state possible for a given

electron count. In the absence of external E and B fields, a net spin imbalance occurs

if the valence shell is unfilled, giving rise to magnetic moments in free atoms. However,

aggregations of atoms or ions (e.g., atomic gases) are not generally spontaneously

magnetic due to the random alignment of individual magnetic moments.

Solids with unfilled valence shells are generally paramagnetic. The individual

atoms within the solid may possess non-zero magnetic moments, but these moments

fail to interact in such a way as to produce a net macroscopic moment. However, when

certain solids are cooled below their critical temperatures, the individual moments

align and the crystal spontaneously magnetizes. Modeling cooperative behavior such

as magnetism from first principles remains a difficult problem.

Magnetic solids are generally classified in two crystalline orderings: ferromagnetic

or antiferromagnetic. Ferromagnetic crystals, such as the 3d transition metals in this

study, favor alignment of the local magnetic moments (see Fig. 3.1(a)). Ferromagnetic

solids have a net magnetization in the absence of applied fields. A subtype of the

ferromagnetic crystal, ferrimagnets have antiparallel but unequal magnetic moments

in each sublattice, thus retaining a net magnetization. In an antiferromagnetic crystal

(see Fig. 3.1(b)), the magnetic moments are ordered, but the ordering is antiparallel

such that atomic moments produce a total macroscopic moment of zero.

Advances in physical understanding have led to improved methods for describing

magnetic behavior in solids. From these, one major fact is clear: the Coulombic

26
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(a) (b)

FIG. 3.1. Ferromagnetic and antiferromagnetic bcc crystals. Arrows show the mag-
netic moment for each atom.

and intra-atomic exchange interactions are the causes behind magnetic ordering in

solids. Other physical interactions like dipole-dipole and spin-orbit coupling, while

important, are not sufficiently energetic to explain spontaneous magnetization. By

introducing spin polarization into physical models, electrons are allowed to populate

different spin states. This single improvement allows magnetic behavior to be studied

computationally.

For the 3d transition metals in the present study (iron, nickel, and cobalt), it is

generally accepted that their ferromagnetic order is due to the narrowing of the d

bands. When the crystals of these materials have temperatures below their Curie

temperatures, the band of majority-spin states lies below the Fermi energy, while

the minority-spin band lies partially above the Fermi energy. As a result, the valence

electrons preferentially populate the spin-up bands at the expense of spin-down states.

For each material, the spin-state populations differ; thus, variations in the strength

of their magnetic moments are expected. Of the elements studied here, iron possesses

the largest bulk magnetic moment.

From the earliest of times, some solids were known to possess macroscopic mag-

netizations. However, until fairly recently, the surfaces of solids were thought to be



28

non-magnetic because early theoretical studies of spin-polarized iron and nickel found

the surfaces to be magnetically dead.29 This is now known to be incorrect, and the

origin of surface magnetism can be easily explained using a simple model developed

by E.C. Stoner and J.C. Slater, which combines the molecular field concept with

Fermi statistics.30

For the bulk, the Coulomb interaction and any small applied external magnetic

field can be shown to split the band eigenstates into spin-up and spin-down com-

ponents.1 Unequal populations give rise to a magnetic moment which can then be

computed. The magnetic susceptibility (χ = ∂M/∂H) is given by:

χ =
µ2

0 ρ(EF )

1− Uρ(EF )
, (3.1)

where U is the Coulomb interaction and ρ(E) is the density of electronic states. When

the Stoner criterion is satisfied (Uρ(EF ) > 1), the crystal is ferromagnetic.1

Surface magnetism can be predicted by modifying the Stoner model for a surface,

and using the surface density of states combined with an intra-atomic exchange pa-

rameter which gives the correct bulk magnetic moments.1 The surface Stoner model

predicts that the 3d transition metals iron, nickel, and cobalt, along with paramag-

netic vanadium and anti-ferromagnetic chromium, will order ferromagnetically at the

surface. These predictions are confirmed by other theoretical methods and experi-

ment which have shown that iron, nickel, and cobalt have magnetic order at their

surfaces.31–35

3.1 Computational Details

A self-consistent calculation of the electronic structure of the Ni(001) surface was

performed using the spin-polarized SEGF method. With a face centered cubic (fcc)

crystal structure, the lattice vectors describing the surface mesh were rotated by 45o

from the bulk axes to construct the smallest possible unit cell (see Fig. 3.2). As a
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(a) (b)

FIG. 3.2. To the left is a there-layer representation of an fcc crystal structure. The
figure to the right is a simplified view of the top layer of an fcc(001) crystal. The
black arrows show the conventional bulk lattice vectors, while the red arrows are the
primitive surface vectors.

result, the rotated lattice spacing is 4.63 a.u. rather than the bulk lattice spacing of

6.55 a.u.

Using the tabulated bulk potentials of Moruzzi, Janak, and Williams,36 the major-

ity and minority-spin embedding potentials were constructed. A total of 180 LAPWs

were used for the variational calculation. Basis functions in the MT region contained

angular momentum components up to l = 12. For the expansion of the intersti-

tial charge density, 2000 plane waves were used. In the irreducible portion of the

surface Brillouin Zone, 36 special k-points were employed. The von Barth-Hedin

parametrization for the exchange-correlation potential was used.37 The potential and

charge density in the vacuum region were expanded at 100 grid points up to 10 a.u.

from the surface. Self consistency was defined when the maximum difference between

the input and output potentials was less than 0.1 eV.

Previous paramagnetic SEGF surface studies used one- or two-layer embedded

slabs with great success. However, with the magnetic crystals for this study, a three-
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layer slab was used because bulk spin-densities appear to be restored at the third

interior layer.

3.2 Work Function

The resulting work function as calculated by the SEGF method is 5.76 eV, which

is in fair agreement with the experimentally measured work function of 5.2 eV.38

Another Green function method33 calculated a work function of 5.75 eV, while a

seven-layer slab FLAPW calculation39 obtained a value of 5.37 eV. Jepsen et al. used

a five-layer slab LAPW method and a von Barth-Hedin approximation for exchange

and correlation resulting in a work function of 5.35 eV.40 A thin-slab LAPW cal-

culation found a work function of 5.5 eV for a five-layer slab.41 Because of the fair

agreement of the calculated SEGF work function with the experimental value, there

is confidence that the rest of the computed quantities are likely to compare favorably

with experimental results. Worthy of note is that the spin-polarized SEGF method

has computed a work function near the experimental value while only using a three-

layer slab. The other computational work cited all used much thicker slabs without

embedding; thus, they do not model the semi-infinite problem correctly because such

slabs have vacuum regions on both sides. A comparison of work functions and surface

magnetic moments is found in Table 3.1.

3.3 Charge and Spin Density

Nickel was one of the first magnetic surfaces to be studied using self-consistent

methods to determine its surface magnetic moment. Early studies errantly found

magnetically dead surface layers42,43 while the bulk crystal remained ferromagneti-

cally ordered. Feder et al.44 studied the surface magnetic structure of Ni(001) using

polarized electron diffraction, finding an enhancement of the surface magnetic mo-

ment by five percent with respect to the bulk.
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Theory and experiment have now established that narrowed 3d bands are the

primary reason for an enhancement of the magnetic moment at the surface. In the

present work, we have obtained a spin moment at the surface of 0.69 µB in good

agreement with experiment.44 This represents about a seven percent enhancement of

the surface moment over that in the sub-subsurface layer.

Table 3.1. Ni(001) magnetic moments for the surface (S), subsurface (S − 1), and
(S − 2) sub-subsurface layers and work function.

Calculation Method S S − 1 S − 2 Work Function (eV)
Three-layer SEGF 0.69 0.61 0.64 5.76
Seven-layer FLAPW39 0.68 0.60 0.59 5.37
Four-layer TB-LMTO33 0.69 0.64 0.66 5.75
Five-layer LMTO method32 0.59 0.58 0.57 5.02
Five-layer LAPW method40 0.65 0.59 0.62 5.35
Five-layer LAPW41 0.73 0.68 0.69 5.5

Our SEGF calculated spin densities compare favorably with other theoretical and

experimental studies (see Table 3.1). As seen in several other calculations,33,40,41

there is a Friedel-type oscillation in the magnetic moments between surface layers.

The spin-polarized SEGF method performed very well with a three-layer slab as

compared with other calculations that used much thicker slabs for their results.

For the bulk, the magnetic moment is 0.56 µB, as found experimentally,45 and

0.58 µB via theoretical methods.46 Without performing a four-layer calculation, we

are unable to determine the magnetic moment for the fourth layer (S− 3), but based

on the results presented, it would likely be closer to the bulk moment.

In a study of Ni(001), Krakauer et al.41 argue that independent of size effects and k-

point sampling, the charge density, except at the surface layer, will be charge neutral

throughout the other layers, and the surface magnetic moment will be enhanced.

Krakauer et al.41 found that the d orbital contribution to the charge density was the
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Table 3.2. Surface, subsurface, and sub-subsurface layer valence charge for Ni(001).

Calculation Method S S − 1 S − 2
Three-layer SEGF 9.10 9.29 9.26
Five-layer LAPW film method41 9.01 9.17 9.17
Five-layer LAPW40 9.08 9.24 9.25
Nine-layer TB-LMTO47 9.70 10.10 9.99

same from layer to layer, but the s and p orbital contributions at the surface layer

were less than in the subsurface layers. Therefore, it was concluded that the s and

p orbitals were responsible for the vacuum spill out of charge, and thus, responsible

for determining the work function of the material. For the present work, an orbital

charge decomposition was not performed; however, the valence charge was computed

and compared with that of the Krakauer et al. total valence charge to evaluate

their claim. Our SEGF calculated results have 9.10 electrons in the surface layer

MTs, while the subsurface and sub-subsurface layers have 9.29 and 9.26 electrons,

respectively (Table 3.2). A recent nine-layer tight-binding LMTO47 calculation did

not find charge neutrality throughout the layers. The results from Chakraborty et

al.47 indicate that the two topmost surface layers differ from the other layers, and

that the magnetic moment for Ni(001) has a larger Friedel-type oscillation in the top

three surface layers as seen in Table 3.1.

3.4 Surface Electronic Structure

3.4.1 Surface States and Resonances

3.4.1.1 Physical Description. When the symmetry of a three-dimensional infinite

lattice is broken, as is the case for a surface, solutions to the Schrödinger equation no

longer occur in 3D Bloch form. For the bulk, all components of k are good quantum
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numbers, but at the surface, k⊥ can no longer be used because of the loss of periodicity

perpendicular to the surface. Therefore, the bulk wavefunction at a surface can be

written in the following form:

ψ(r) = u(r‖)e
ik‖·r‖e−κr⊥ . (3.2)

At the slab-vacuum boundary, electronic wavefunctions should be continuous; how-

ever, real values for κ would cause ψ(r) to grow exponentially in amplitude in a

direction perpendicular to the surface. If an eigenfunction of the Hamiltonian could

be found in the vacuum region that decays away from the crystal, and that simulta-

neously matches to a bulk solution to the Schrödinger equation along the embedding

surface, then this function would be a valid one-particle wavefunction. An important

feature of this type of wavefunction is that the electronic state is not required to exist

in a bulk energy band. Provided ψ(r) and its logarithmic derivative can be matched

onto any solution to the Schrödinger bulk equation (even a solution in a band gap), a

localized electronic state will exist. States of this nature are confined to a short range

near the surface because they exist in bulk band gaps or symmetry gaps. Electronic

states of this type are known as surface states.

Another type of state that can exist at the vacuum boundary is a surface resonance.

Such states lie within the bulk bands, but have amplitudes that are enhanced at

the surface. In photoemission studies, surface resonances appear as peaks in the

spectra, similar to the appearance of true surface states. Thus, the results from bulk

bandstructure calculations must be used to discriminate between surface resonances

and surface states.

3.4.1.2 Local Density of States. From the self-consistent charge density, the lo-

cal densities of states (LDOS) were computed and plotted along the lines of high

symmetry in the surface Brillouin Zone (SBZ). From these LDOS plots, the surface
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states and resonances were found for both majority- and minority-spin states and

further characterized by parity. Peaks in the LDOS are candidate surface states or
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FIG. 3.3. The LDOS for the surface layer of Ni(001) at Γ̄. The vertical red line
denotes the Fermi Level.

resonances. An example LDOS plot for the surface layer is shown in Fig. 3.3. In

order to categorize each state, some criteria for identifying a surface state or reso-

nance must be established. Any peak in the LDOS that lies in an absolute gap in the

surface bandstructure is a surface state by definition. Also, any state that lies in a

relative gap of the same symmetry is also a surface state. For states that lie within

the projected surface bandstructure, those peaks with high amplitude were included

in the analysis.

Bulk energy bands along the lines of high-symmetry were projected onto the two-

dimensional Brillouin Zone (see Fig. 2.5 for the 2D Brillouin zone for Ni(001)). De-

tailed analyses of the electronic structure along these lines of high symmetry are

included in the following sections. Both the ∆̄ line (connecting Γ̄ to X̄) and the Σ̄
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FIG. 3.4. (a) A charge density contour plot at Γ̄, -1.6 eV below the Fermi level.
(b) Graphical representation of a 3dz2 orbital. (c) Contour plot of a 3dz2 orbital.

line (connecting M̄ to Γ̄) allow even and odd symmetry for the projected bands and

surface states. This is not the case for the Ȳ line that extends from X̄ to M̄ , as

there is no reflection symmetry in the 3D Brillouin Zone along this line. Therefore,

a delineation between the even- and odd-symmetry bulk bands is not possible along

Ȳ , but the surface states and resonances can still be classified as having either even

or odd parity. The symmetries of the projected bandstructures, surface states, and

surface resonances are provided in the graphs.

For each peak in the LDOS, the valence charge density was plotted using a small

energy range centered around the peak. In order to analyze these charge densities, sev-

eral contour plots were made so that the symmetry of each state could be determined.

Previously, this plotting would have been very laborious as each computer-generated

plot had its inputs altered via a text editor and human; but over the course of this

study, software was developed (see Appendix B.3) to allow systematic plotting of all

peaks in the LDOS.

By analyzing the charge density profiles, information about the symmetry of the

state can be determined and plotted. An example is shown in Fig. 3.4(a), in which

charge density contours are plotted for a peak in the LDOS at Γ̄ at 1.6 eV below the
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FIG. 3.5. Majority-spin bandstructure for Ni(001) that includes surface states and
resonances along the two-dimensional lines of high symmetry. Vertical shading rep-
resents even-symmetry projected bulk bands while the horizontal shading indicates
odd-symmetry bulk bands. Solid lines represent even-symmetry and dashed lines are
odd-symmetry surface states and resonances.

Fermi level. The contour closely resembles a 3dz2 orbital (Figs. 3.4(b) and 3.4(c)).

Using the charge density contours of a given state together with with the character

table for the point group, the state’s symmetry can be deduced. The results for

Ni(001) are plotted in Figs. 3.5 and 3.6.

3.4.2 ∆̄

The high-symmetry line on the square surface Brillouin Zone traversing from Γ̄ to

X̄ is labeled as the ∆̄ line (see Fig. 2.6). Eleven evenly spaced k-points were used

to analyze the surface electronic structure along ∆̄. At each k-point, the LDOS was

computed for energies well below the Fermi level to almost 3 eV above. For each of
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FIG. 3.6. Minority-spin bandstructure for Ni(001) that includes surface states and
resonances along the two-dimensional lines of high symmetry. Vertical shading rep-
resents even-symmetry projected bulk bands while the horizontal shading indicates
odd-symmetry bulk bands. Solid lines represent even-symmetry and dashed lines are
odd-symmetry surface states and resonances.

the eleven discrete points sampled along ∆̄, over four hundred discrete LDOS values

were calculated so as to not miss any peaks in the LDOS. If a peak in the LDOS was

identified as a surface state or resonance, the charge density profile was plotted for

the k-point and energy.

As seen in Figs. 3.7(a) and 3.7(b), there is an absolute band gap that traverses the

entire ∆̄ line for both spin states. At Γ̄ the majority gap is centered at -4.78 eV and

has a width of 0.38 eV. For about three-quarters of the way along the line, the center

of the gap rises as the width of the gap narrows. By X̄ the gap is centered at -3.9 eV

and is 0.65 eV wide. The ∆̄ minority band gap is very similar to the majority case.

For minority spin along ∆̄, the gap is −4.35 ± 0.45 eV at Γ̄ and is 3.51 ± 0.70 eV
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FIG. 3.7. Even-symmetry surface bands, resonances, and bulk band projections
for Ni(001) majority and minority spin along ∆̄. Vertical shading represents even-
symmetry projected bulk bands. Solid lines represent even-symmetry surface states
and resonances.

by X̄. Both spin states also have a narrow gap that begins near Γ̄ and continues to

over sixty percent of the distance to X̄.

For ∆̄ majority spin, several surface states are found in the gap that traverses the

∆̄ line (see Fig. 3.7(a)). There is also a short surface state band about one quarter of

the distance from Γ̄. Two surface resonance bands are found starting at Γ̄ at 1.6 eV

and 1.3 eV below the Fermi level. These bands are similar to those found by Krakauer

et al.; however, each of their bands were about 0.5 eV higher than the ones found

using the SEGF method.21 There is a ∆̄1 band starting at X̄ that is about 2.28 eV

below the Fermi level. This band runs about a quarter of the distance toward Γ̄.

A five-layer LAPW calculation found a similar band near X̄ around 2 eV below the

Fermi level.40

Photoemission experiments by Plummer and Eberhardt show a surface band that

runs from X̄ back one-third along ∆̄ that is 0.1 eV below the Fermi level.48 Although
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previous calculations have failed to obtain this surface band,40 the present results

show two individual states in the vicinity of the band observed experimentally.

In Fig. 3.7(b), there are several individual surface resonance states near EF that

appear one-tenth to three-tenths of the way along ∆̄ from Γ̄. Jepsen et al.40 obtained

an even-symmetry minority-spin band from Γ̄ to less than half the distance to X̄ near

the Fermi level that is very similar to the states identified in this study. A nine-layer

FLAPW39 calculation identified a surface band running all along ∆̄ near the Fermi

level.
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FIG. 3.8. Odd-symmetry surface bands, resonances, and bulk band projections for
Ni(001) majority and minority spin along ∆̄. Horizontal shading indicates odd-
symmetry projected bulk bands. Dashed lines are odd-symmetry surface states and
resonances.

The graphs in Fig. 3.8 possess no absolute gaps along ∆̄, but both odd-symmetry

majority and minority spins have relative gaps that open around four-fifths of the

way to X̄. For the majority-spin case (Fig. 3.8(a)), the gap starts 1.45 eV below the

Fermi level at X̄ and is 0.53 eV wide. The gap for minority spin in Fig. 3.8(b) is

0.79 eV wide and starts 0.84 eV below the Fermi level for Ni(001).
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There is a ∆̄2 surface resonance band near Γ̄ that is 1.8 eV below EF (see Fig. 3.8(a)).

Otherwise, there are several surface states and surface bands. The most prominent

surface state is found two-tenths of the ∆̄ distance. This state lies 0.45 eV below

EF and is of ∆̄2 character. This resonance band was not identified in any previous

theoretical work. Jepsen et al. found several low-lying resonance bands near X̄ and

another one near the Fermi level that stretches through most of ∆̄.40

3.4.3 Ȳ

As seen in Fig. 2.6, the Ȳ line traverses from X̄ to M̄ . Of the three lines of

symmetry analyzed in this chapter, Ȳ in the only one whose projected bulk bands

cannot be broken down into even and odd states due to the lack of reflection symmetry

along this line. Although the projected bands lack parity, the surface states can still

be divided into even and odd states. Because the projected bulk bands lack symmetry,

X
���

-Y
���

- M
���

-8

-6

-4

-2

0

2

E
N

E
R

G
Y
He

V
L

(a)

-Y
���

-

-8

-6

-4

-2

0

2

H
L

(b)

FIG. 3.9. Even-symmetry surface bands, resonances, and bulk band projections for
Ni(001) majority and minority spin along Ȳ . Vertical shading represents projected
bulk bands. Solid lines represent even-symmetry surface states and resonances.
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all band gaps along Ȳ are absolute gaps. Therefore, any states found in these gaps

are surface states.

Fig. 3.9(a) shows several surface states and bands along Ȳ . There are surface states

along the edge of the bulk band below the Fermi level across most of Ȳ . Several of

these states are some of the most prominent states found in our results. There is a very

short Ȳ1 band starting at X̄ approximately 2.3 eV below the Fermi level. A band of

the same character lies just below where the previous band ends and continues farther

along Ȳ . Wang and Freeman found a band approximately 4 eV below the Fermi level

running about halfway along Ȳ starting from X̄, and another band near the Fermi

level for most of Ȳ .39
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FIG. 3.10. Odd-symmetry surface bands, resonances, and bulk band projections for
Ni(001) majority and minority spin along Ȳ . Vertical shading represents projected
bulk bands. Dashed lines represent odd-symmetry surface states and resonances.

For the minority-spin states, Fig. 3.9(b) shows several short surface bands along

Ȳ . Several of these bands are consistent with those found by Wang and Freeman.39
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Another study found a surface band near the Fermi level, with the band connecting

across X̄ to ∆̄, and extending about halfway along Ȳ .40

There are two Ȳ2 majority-spin surface bands of interest. The first band starts

4.45 eV below the Fermi level and is of X̄1′ character (Fig. 3.10(a)). The other band

starts about 1.13 eV above the Fermi level and rises to 1.7 eV. Both bands have

relatively low amplitude. The lower-lying surface band compares well with the band

found using the FLAPW method.39,40

There is an odd-symmetry band around 1.7 eV below EF that is a continuation

of a band that originated along ∆̄ (Fig. 3.10(b)). There is a lower-lying band in an

absolute gap past the midpoint of the Ȳ line that has a relatively low amplitude at

the surface. There are also many single surface states and resonances that are not

banded together throughout this line. A band was found near this energy by Jepsen

et al.; however their band dispersed much farther along Ȳ .40 They also found a band

that peaked about 1 eV above the Fermi level near M̄ .40 The latter band starts at

M̄ and continues about thirty percent of the way to X̄. It is similar to a band found

by Wang and Freeman.39

3.4.4 Σ̄

Σ̄ is defined as the line from M̄ to Γ̄ (see Fig. 2.6). The bandstructure plots in

Figs. 3.5 and 3.6 show that both spin states have several absolute gaps along this

symmetry line. The largest of these for either spin state is the even-symmetry gap

that opens at Γ̄ and continues over half way along Σ̄. While the even-symmetry

energy gap widths at Γ̄ for both spins are about the same (Fig. 3.11), the absolute

gap for majority spin is not as large. This is because the odd-symmetry majority

band is about 0.5 eV lower than the same band for minority spin.

A plot of the surface states and resonances along with the projected bulk band-

structure can be found in Fig. 3.11. There are two surface bands of Σ̄1 symmetry near
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M̄ that are close to the Fermi level. The lower of the two skirts along the bottom of

the gap and is relatively weak. However, the upper one, which eventually becomes

a resonance band and dies out midway along Σ̄, is very prominent. This is consis-

tent with Plummer and Eberhardt’s experimental findings that the more prominent

states were located away from Γ̄. Similar bands were found by Jepsen, et al., but

their LAPW study also found several surface bands40 dispersing along Σ̄ that were

not found in this SEGF study. Also, a nine-layer FLAPW study obtained a surface

band starting around 5 eV below the Fermi level at Γ̄ and rising by more than 1 eV

about halfway along Σ̄.39 This is similar to a very short band obtained by the spin-

polarized SEGF calculation. Similar to the majority-spin state case, a prominent
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FIG. 3.11. Even-symmetry surface bands, resonances, and bulk band projections
for Ni(001) majority and minority spin along Σ̄. Vertical shading represents even-
symmetry projected bulk bands. Solid lines represent even-symmetry surface states
and resonances.

surface state band was found 0.55 eV below the Fermi level about one-quarter of the

way to Γ̄ (Fig. 3.11(b)).
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There are several weak states that connect across M̄ to a Ȳ band about 0.1 eV

above EF . Several lone resonances are found throughout Σ̄. A photoemission exper-

iment conducted by Erskine found a surface band starting at Γ̄ near the Fermi level

that dispersed two-thirds of the way to M̄ .49 The present resonance band near the

Fermi level compares well with the experimental band.
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FIG. 3.12. Odd-symmetry surface bands, resonances, and bulk band projections
for Ni(001) majority and minority spin along Σ̄. Horizontal shading indicates odd-
symmetry projected bulk bands. Dashed lines are odd-symmetry surface states and
resonances.

As for the odd states (Fig. 3.12), the SEGF method obtained two surface bands

in the gap along Σ̄. There are many surface and resonance states along this line,

in agreement with earlier calculations. The LAPW study found more states which

were classified as surface states/resonances, especially close to M̄—although without

the bulk states present, their identification is not certain. In the Wang and Freeman

study, a majority-spin surface band was found at M̄ near EF that is similar to the one

found with the SEGF method.39 A photoemission experiment found a surface band

near the Fermi level starting near the middle of Σ̄ and continuing to Γ̄.48 The band
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was identified as a majority-spin state according to criteria laid out by Plummer and

Eberhardt.48 The present calculations did not reveal such a band. A minority-spin

resonance band was found 3 eV below the Fermi level at M̄ that disperses upward

by 1.09 eV near the mid-point of Σ̄. At that point the band breaks away from the

underlying bulk bands and projects into the relative gap (Fig. 3.12(b)). Surface

states/resonances at this energy were found in an LAPW study,40 but the curvature

of the band found by the SEGF method is opposite to their results. Another minority-

spin resonance band is found near the Fermi level close to Γ̄. Wang and Freeman’s

calculation found a band that follows the relative gap along Σ̄ and mirrors the SEGF

calculated odd-symmetry, majority-spin surface band.39

The spin-polarized SEGF calculation for the Ni(001) surface has produced a work

function that is in good agreement with experiment. An enhancement of the surface

magnetic moment of seven percent was found to be in excellent agreement with ex-

periment. Many of the surface state and resonance bands agreed with the locations

found by experimental means. Because the SEGF method treats the semi-infinite

problem correctly, fewer layers were needed when compared with slab methods to

compute the electronic properties of the (001) surface of ferromagnetic nickel.



CHAPTER FOUR

The Surface Magnetism of Co(001)

4.1 Computational Details

The crystal structure of naturally occurring cobalt is hexagonal close-packed, but

when heated to around 750oC, a phase transition occurs that alters the crystal struc-

ture to fcc. Under the right conditions, the fcc structure remains intact when cooled.

The fcc crystal structure was chosen for this study due to the availability of tabulated

values which allowed for the generation of an embedding potential.

The electronic structure of Co(001) was computed using the spin-polarized SEGF

method. The embedding potential was constructed from tabulated values for bulk

ferromagnetic cobalt.36 Lattice vectors describing the Co(001) surface were rotated

by 45o so the smallest unit cell could be chosen. The rotated lattice vectors and

muffin-tin radius are 4.62 a.u. and 2.31 a.u., respectively.

Choosing a surface slab with too many layers wastes computational resources for

an SEGF calculation because the extra layers provide less information than the em-

bedding potential. A slab that is too thin fails to provide an adequate physical

description of the surface environment. Paramagnetic SEGF studies have found that

one- or two-layer slabs are usually thick enough for results that compare favorably

with experiment. One or two layers are likely to be inadequate for spin-polarized

Co(001) because previous calculations have found that spin densities are not restored

to bulk values by the third interior layer. Therefore, a three-layer embedded slab was

chosen to model the Co(001) surface.

A total of 180 LAPWs were used for the expansion of the surface Green func-

tion. The charge density and potential expansions in the interstitial region employed

2000 plane waves. To sample the irreducible portion of the surface Brillouin Zone,

46
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36 special k-points were employed. For the exchange-correlation potential, the von

Barth-Hedin parametrization37 was used. In the MT region, radial functions and

energy-derivative functions were expanded with angular momenta up to l = 12. The

core electrons were calculated fully relativistically and the valence electrons scalar-

relativistically. Convergence was considered achieved when the input and output

potentials differed by less than 0.1 eV.

4.2 Work Function

The work function was previously described in Section 2.9. Calculated work func-

tions are often viewed as a measure of a calculation’s accuracy, because the work

function is specific to the particular material and the electronic configuration at the

surface. For the self consistent spin-polarized SEGF calculation, a work function

of 5.48±0.02 eV resulted for the (001) face of cobalt as compared with an experimen-

tal value of 5.0 eV.50 Other studies33,51 have calculated work function values ranging

from 5.05 eV to 5.52 eV.

4.3 Charge and Spin Density

As stated in Section 4.1, cobalt in an fcc crystalline form is not naturally occurring

and not easily manufactured. This is the main reason there are very few electronic

structure studies of this surface. Nonetheless, there are many theoretical treatments

that compute the work function and spin densities without providing details of the

bandstructure at the surface. These studies have all found an enhanced magnetic

moment for Co(001) at its surface.

Using the values obtained from the converged SEGF calculation, a magnetic mo-

ment of 1.81µB resulted. This represents an eleven percent surface enhancement over

the accepted bulk value of 1.64 µB. As seen in Table 4.1, the spin density at the

surface is in agreement with those computed using slab and Green function methods.
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Table 4.1. Co(001) magnetic moments for the surface (S), subsurface (S − 1), and
(S − 2) sub-subsurface layers and work function.

Calculation Method S S − 1 S − 2 Work Function (eV)
Three layer SEGF 1.81 1.52 1.74 5.48
Five-layer FLAPW51 1.85 1.65 1.66 5.05
Nine-layer FLAPW51 1.86 1.64 1.65 5.17
Four-layer TB-LMTO33 1.84 1.63 1.66 5.52
Nine-layer TB-LMTO47 1.76 1.46 1.58

Other theoretical studies have found a surface enhancement over the bulk moment

ranging from seven to thirteen percent,33,51 while a nine-layer tight-binding linearized

muffin-tin orbitals method (TB-LMTO) found an enhancement of seven percent47 as

compared with the accepted bulk value. All of the referenced studies exhibit some

Friedel oscillation in the magnetic moments near the surface. Table 4.1 clearly shows

that the spin-polarized SEGF results are in excellent agreement with the other cited

surface magnetic moment calculations.

Table 4.2. Surface, subsurface, and sub-subsurface layer valence charge for Co(001).

Calculation Method S S − 1 S − 2
Three layer SEGF 8.01 8.27 8.18
Five-layer FLAPW51 8.05 8.27 8.27
Nine-layer FLAPW51 8.04 8.27 8.27
Four-layer TB-LMTOprotect33 8.66 9.01 9.00
Nine-layer TB-LMTO47 8.66 9.14 9.00

As stated in the previous chapter, except at the surface, the total valence charge

within a layer is expected to be the same even though the magnetic moments might

differ. The spin-polarized SEGF method calculated the valence charge to be 8.27

electrons per MT for the subsurface layer and 8.18 electrons MT for the sub-subsurface

layer respectively (see Table 4.2). The SEGF computed values for the valence charge
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in the surface and subsurface layers are very close to those obtained in the five-layer

and nine-layer FLAPW calculations.51 However, the total muffin-tin charge found

in the sub-subsurface layer is somewhat lower than that obtained in the FLAPW

studies. A further comparison with the FLAPW results for the layered charge broken

into spin components shows that the FLAPW results had relatively constant values

(4.96 for majority spin and 3.31 for minority spin) from the subsurface layer inward.51

The SEGF results do not follow this pattern and neither does the TB-LMTO study.47

A possible explanation for the apparent charge shift could be the embedding po-

tential, which is constructed from pretabulated values. If the underlying bulk bands

are not accurate, the minority-spin bulk bands could be wider or have a greater per-

centage below the Fermi level. This would allow more minority-spin electrons to

populate and would reduce the magnetic moment at the embedding layer. Electron

screening will reduce this error away from the embedding surface. It is likely that an

excess of minority-spin charge in the subsurface layer has influenced the positioning

of surface states and the surface charge distribution; thus, affecting the calculated

work function. Further investigation is warranted.

4.4 Electronic Structure

4.4.1 Surface States and Resonances

Section 3.4.1 describes the origin of surface states and surface resonances. Once

the SEGF charge density has converged, it may be used to analyze the electronic

structure of the surface.

The Co(001) local densities of states along the lines of symmetry (Fig. 2.5) were

computed and plotted. Each plotted peak corresponds to a state with high amplitude

in the top few surface layers. Deciding how to classify the plotted surface state/reso-

nance peaks has been discussed previously (see Section 3.4.1.2). Peaks in the LDOS

that are in absolute or relative gaps are surface states by definition. Surface reso-
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nances which are strongly peaked states in the projected bulk bands are harder to

classify. Charge density plots have been used to determine the parity of each state.

These criteria resulted in the surface states and resonances plotted in Figs. 4.1 and 4.2.
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FIG. 4.1. Majority-spin bandstructure for Co(001) that includes surface states and
resonances along the two-dimensional lines of high symmetry. Vertical shading rep-
resents even-symmetry projected bulk bands while the horizontal shading indicates
odd-symmetry bulk bands. Solid lines represent even-symmetry and dashed lines are
odd-symmetry surface states and resonances.

4.4.2 ∆̄

Beginning with the ∆̄ line, which runs from Γ̄ to X̄ (Fig. 2.6), eleven evenly spaced

points were used to analyze the surface electronic structure. Bulk band states were

projected onto the two dimensional surface with vertical shading representing even-
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FIG. 4.2. Minority-spin bandstructure for Co(001) that includes surface states and
resonances along the two-dimensional lines of high symmetry. Vertical shading rep-
resents even-symmetry projected bulk bands while the horizontal shading indicates
odd-symmetry bulk bands. Solid lines represent even-symmetry and dashed lines are
odd-symmetry surface states and resonances.

symmetry bulk bands, while odd-symmetry bulk bands are indicated by horizontal

shading (e.g., Fig. 4.1). Graphs of this type are seen throughout this section. Indi-

vidual surface states and resonances were plotted as points, and surface bands are

indicated by lines that connect surface states sampled along the ∆̄ line.

These graphical representations are used to compare other theoretical studies and,

more importantly, experimental results that may provide researchers with other av-

enues of inquiry. By comparing the theoretical with the experimental results, a

model’s accuracy may be evaluated. Also, any discrepancies between the model and

reality should result in further investigation of possible physics or computational error
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that may be in the model. It is also possible upon further analysis to find that the

experiment erred in some way.
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FIG. 4.3. Even-symmetry surface bands, resonances, and bulk band projections
for Co(001) majority and minority spin along ∆̄. Vertical shading represents even-
symmetry projected bulk bands. Solid lines represent even-symmetry surface states
and resonances.

Beginning with the even-symmetry states along the ∆̄ line, there is an absolute

gap that runs across all of the ∆̄ line. For the majority-spin case, this gap is located

at EF −5.16± 0.38 eV, as seen in Fig. 4.3(a), while the minority-spin gap, Fig. 4.3(b)

is located at EF − 4.87± 0.52 eV. For both spin states, the gaps then rise in energy

along the whole ∆̄ line. In both cases, the gaps begin to pinch off near X̄, but then

widen into a larger gap at X̄ than at Γ̄.

For majority spin, there are a few surface state bands within this absolute gap

near the central portion of the ∆̄ line as seen in Fig. 4.3(a). At Γ̄, there are two

resonance bands at 2.2 eV and 1.25 eV below the Fermi level. The one closer to

EF extends over halfway along ∆̄ and is relatively flat. At X̄, there is a resonance

band 2.76 eV below EF which is similar to a FLAPW-predicted resonance band near
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3 eV below EF .51 For the FLAPW study, these resonance band states were the only

concentration of majority-spin states along the ∆̄ line. Also of interest, is that the

bulk energy levels included through the embedding potential are shifted about 1 eV

downward compared with the FLAPW lowest plotted electron energy states.

For the minority-spin case, as seen in Fig. 4.3(b), the surface states and resonances

are mainly located near EF in the relative gap and span from X̄ halfway back to Γ̄.

This is very similar to the two bands identified in the FLAPW study.51 Otherwise,

the SEGF method mainly found a few prominent surface states near Γ̄.
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FIG. 4.4. Odd-symmetry surface bands, resonances, and bulk band projections for
Co(001) majority and minority spin along ∆̄. Horizontal shading indicates odd-
symmetry projected bulk bands. Dashed lines are odd-symmetry surface states and
resonances.

For the odd-symmetry case, only a single majority state was found according to the

surface state/resonance criteria (Fig. 4.4(a)). This finding is similar to the FLAPW

study, which did not identify any surface states or resonances along ∆̄. For the

minority-spin case (Fig. 4.4(b)), several surface resonances were found, with the most

prominent one stretching from X̄ more than half the distance to Γ̄ along the bottom



54

of the projected bandstructure. There are also bands located from 0.5 eV to 0.9 eV

below EF at or near Γ̄ that disperse less than halfway along ∆̄ before dying out. At

X̄, there are two bands located above EF . The FLAPW study found a single, short

resonance band located less than 1 eV above EF .

4.4.3 Ȳ

As seen in Fig. 2.6, the Ȳ line traverses from X̄ to M̄ . Of the three lines of symme-

try analyzed, Ȳ is the only one whose projected bulk bands cannot be broken down

into even and odd states due to the lack of reflection symmetry in the 3D Brillouin

Zone along this line. Although the projected bulk bands have mixed symmetry, the

Ȳ line is a reflection line for the 2D reciprocal lattice; thus, the surface states can be

divided into even and odd states according to their symmetry. The even-symmetry

surface bands, surface states, and surface resonances are shown in Fig. 4.5.
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FIG. 4.5. Even-symmetry surface bands, resonances, and bulk band projections for
Co(001) majority and minority spin along Ȳ . Vertical shading represents projected
bulk bands. Solid lines represent even-symmetry surface states and resonances.
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Beginning with the majority-spin even states along Ȳ (see Fig. 4.5(a)), there are

two resonance bands starting at X̄ that are 2.93 and 2.76 eV below EF . The lowest-

lying band has a larger amplitude in the LDOS. One-tenth of the way from X̄ to Ȳ is a

very prominent surface state that is 0.69 eV below EF . At the bottom of the absolute

gap that is positioned nearest to EF in Fig. 4.5(a) there are many surface states that

extend along Ȳ up to three-fifths of the way to M̄ . In an FLAPW study, Li et al.

found an extended band near M̄ located approximately 2 eV below the Fermi level.51

This even-symmetry majority-spin band is similarly placed as the short resonance

band we find 1.42 eV below EF .

In contrast, the even-symmetry, minority-spin plot (Fig. 4.5(b)) contains only a

few surface states and resonances. There is a low-lying surface band in an absolute

gap in the middle of Ȳ and a resonance band near EF . The latter band is somewhat

similar to a band in the FLAPW study,51 although that band was slightly closer to

M̄ .
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FIG. 4.6. Odd-symmetry surface bands, resonances, and bulk band projections for
Co(001) majority and minority spin along Ȳ . Vertical shading represents projected
bulk bands. Dashed lines represent odd-symmetry surface states and resonances.
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As for the odd-symmetry surface states along Ȳ (see Fig. 4.6(a) and Fig. 4.6(b)),

both spin states have a single resonance state below the Fermi level at 2.83 eV and

1.23 eV, respectively. No majority-spin surface states or resonances appear at M̄ ,

while a single minority-spin surface state above EF is observed there. Both spin types

have a few resonance and surface bands along Ȳ . This contrasts with the FLAPW

results where short bands were found at M̄ for both spin states. For majority spin, the

band near M̄ was below EF , but was above for the minority-spin case. The minority

surface state/resonance band near the center of Ȳ is very similar to one found in the

FLAPW paper.51

4.4.4 Σ̄

Fig. 2.6 describes the Σ̄ line between Γ̄ and M̄ . Σ̄ is a factor of
√

2 longer than

the others because it is along the diagonal of the square Brillouin Zone. While there
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FIG. 4.7. Even-symmetry surface bands, resonances, and bulk band projections
for Co(001) majority and minority spin along Σ̄. Vertical shading represents even-
symmetry projected bulk bands. Solid lines represent even-symmetry surface states
and resonances.
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is an absolute gap for both spin states along Σ̄, the even bands possess larger gaps

that are partially overlapped by odd-symmetry bands as seen in Figs. 4.1 and 4.2.

Based on the criterion for choosing surface states, the SEGF method yielded the

states plotted in Fig. 4.7(a) for even-symmetry majority-spin states and Fig. 4.7(b)

for minority-spin states. There are a number of even-symmetry majority-spin surface

states and resonance bands along Σ̄. Many of these bands exist below EF , starting

at Γ̄ and dispersing toward M̄ . The lowest-lying band at Γ̄ is not very pronounced,

having a minor LDOS peak. Nonetheless, it is included in the graph because it lies

in a band gap, and is thus a surface state band by definition. This contrasts with the

FLAPW study which found a greater concentration of surface bands and resonances

below the Fermi level at M̄ , but nothing at Γ̄.51 With the minority-spin states, only

two resonance states are found throughout the Σ̄ line. The previously-cited FLAPW

study did find surface states and resonances near both ends of the Σ̄ line.
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FIG. 4.8. Odd-symmetry surface bands, resonances, and bulk band projections for
Co(001) majority and minority spin along Σ̄. Horizontal shading indicates odd-
symmetry projected bulk bands. Dashed lines are odd-symmetry surface states and
resonances.



58

For the odd-symmetry states, there are few majority-spin surface states and res-

onances (Fig. 4.8(a)), and no surface states or resonances at either Γ̄ or M̄ . This

contrasts with the FLAPW results in which there are two bands that are below EF

dispersing downward along Σ̄.51 Similar results can be seen in the FLAPW minority-

spin results.51 No similar bands are observed in the present study (see Fig. 4.8(b)).

There are several resonance and surface state bands near and above EF between M̄

and Γ̄. There is also a weak surface band slightly above the highest projected bulk

band starting at Γ̄ and traversing most of Σ̄.

Unfortunately, there are not many theoretical electronic structure studies of this

surface with which to compare. While the exact locations of the surface states and

resonances did not always agree with the FLAPW calculation by Li et al., there was

general agreement regarding the concentration of these states. Both studies found

a greater concentration of even-symmetry states for majority spin. Odd-symmetry

minority-spin states have their greatest concentration along Σ̄ for both calculations.

Finally, Li et al. argue that the novel surface properties of Co(001) are due to the con-

centration of minority-spin surface states near EF as compared with the lower-lying

majority-spin states.51 The present spin-polarized SEGF results are in substantial

agreement regarding this observation.



CHAPTER FIVE

The Surface Magnetism of Fe(001)

5.1 Computational Details

Of the three surfaces studied, iron is the only one in a body-centered-cubic (bcc)

configuration. As seen in Fig. 5.1, the bcc(001) surface is more open compared with

the (001) surface of an fcc crystal. The bcc surface atoms, such as Fe(001), have fewer

nearest neighbors than atoms on fcc(001) surfaces such as Ni(001) and Co(001). The

bcc(001) geometry is thought to enhance the surface magnetic moment in iron by

thirty percent52 over the bulk value of 2.216 µB.53

(a) (b)

FIG. 5.1. Comparison between the openness of the bcc and fcc 001 crystal faces.

To determine how many atomic layers were needed to accurately model the surface,

other studies were examined. Several theoretical treatments31–34 have found that the

magnetic moment for Fe heals to its bulk value by the fourth layer. Because of this,

a three-layer slab embedded onto bulk iron was used for this study.

The bulk muffin-tin potentials of Moruzzi, Janak, and Williams36 were used to

calculate the Fe(001) embedding potential for both spin states. A lattice spacing of

59
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5.27 a.u. and a muffin-tin radius of 2.282 a.u. were used. Each of the (001) atomic

layers forms a square lattice. The unit cell thickness was 9.834 a.u. The irreducible

portion of the surface Brillouin Zone was discretized using 36 special k-points.

The vacuum region was defined from the top of the surface layer muffin-tin sphere

and extended away from the surface in a linear grid of 100 points that were spaced

0.1 a.u. apart. The vacuum layer was chosen to be of sufficient thickness that the

charge density was negligible farther away from the slab.

Wavefunctions were expanded using 180 LAPWs. The von Barth-Hedin37 param-

etrization for exchange and correlation was used. Lastly, self consistency was defined

when the maximum difference between the input and output potential at geometric

boundaries was less than 0.1 eV.

5.2 Work Function

Because the work function is a general indicator of the quality of the calculation, it

is one of the first physical properties extracted and compared with other results. For

Fe(001), our spin-polarized SEGF calculated work function was 4.70 ±0.14 eV. This

compares favorably with the experimental value of 4.5 eV.54 Using a seven-layer slab

and the same von Barth-Hedin parametrization for the exchange-correlation potential,

Ohnishi et al.31 obtained a calculated work function of 4.29 eV using a seven-layer

slab (see Table 5.1). A tight-binding, linearized muffin-tin orbital slab calculation

(TB-LMTO) by Aldén et al.33 resulted in a calculated work function in agreement

with experiment.

An earlier master’s thesis presented the results of a spin-polarized SEGF calcula-

tion for a single-layer slab of Fe(001).16 For the single-layer slab, the work function

was calculated to be 5.18 eV. By using a three-layer slab and by extending the core

charge (see Appendix A), a significant improvement for the work function was ob-

tained. By improving the treatment of the semi-infinite problem, quantities like the
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work function can be computed using a thinner embedded slab than in slab-only cal-

culations. As a result, fewer computer resources are used and the system is able to

iterate toward a self-consistent solution more quickly.

5.3 Spin Density

For the three-layer SEGF calculation, a net spin moment of 2.65 µB was found for

the surface layer, which represents a twenty percent increase over the experimental

bulk value 2.216 µB.53 A comparison of the spin moments and work functions for

various calculations is provided in Table 5.1. The trend for the majority of the

results is the absence of Friedel-like oscillations in the magnetic moment from layer

to layer. However, a more recent calculation by Chakraborty et al.47 does reveal a

small oscillation that is more consistent with the SEGF results.

The SEGF calculated values for the magnetic moments for the subsurface and sub-

subsurface layer are puzzling because the computed values for the work function and

surface magnetic moment are in good agreement with experiment. The results from

nickel and cobalt agree well with experiment and with other computational methods.

It is not known why the layer adjacent to the embedding surface is paramagnetic

while the surface layer is ferromagnetic. It is worth noting that none of the studies

referenced in Table 5.1 have calculated values for the bulk magnetic moment that are

in agreement with the experimental value of 2.216 µB.53

Table 5.1. Fe(001) magnetic moments for the surface (S), subsurface (S − 1), and
(S − 2) sub-subsurface layers and work function.

Calculation Method S S − 1 S − 2 Work Function (eV)
Three-layer SEGF 2.65 1.86 0.05 4.70
Single-layer SEGF 2.62 5.18
Seven-layer FLAPW31 2.98 2.35 2.39 4.29
Five-layer TB-LMTO33 2.97 2.30 2.37 4.50
Seven-layer LMTO32 2.87 2.34 2.33 4.30
Nine-layer TB-LMTO47 2.95 2.2 2.39
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In order to explain for the low spin density in the layer adjacent to the embedding

surface, the valence charge was analyzed for the three top surface layers and com-

pared with other theoretical results. Since the SEGF method does not require charge

neutrality, the valence charge analysis may shed light on the current issue because

the valence charge determines the magnetic moments.

The converged spin-polarized SEGF results show that, at the surface, a valence

charge of 6.74 electrons for the surface MT. The SEGF value compares well to the

6.78 electrons calculated using a seven-layer FLAPW method.31 A more recent nine-

layer TB-LMTO47 study computed a surface layer charge of 7.50 electrons per unit

cell, with 6.51 electrons attributed to d electron states.

In the layer adjacent to the embedding surface, the results are somewhat dif-

ferent. The sub-subsurface layer has 6.97 electrons per MT as computed with the

SEGF method. This compares favorably with the 7.05 electrons calculated using

a seven-layer FLAPW slab;31 however, a TB-LMTO calculation obtained 8.01 elec-

trons. Thus, the paramagnetic SEGF result at the sub-subsurface layer of Fe(001)

is not due to a deficit in the number of valence electrons. It may point to a flaw in

converging the embedding potential for such an open surface.

5.4 Surface Electronic Structure

5.4.1 Surface States and Resonances

Surface states and resonances were plotted along the lines of high symmetry over

the surface Brillouin Zone for both majority and minority spin. Fig. 2.5 shows the

bulk energy bands along the lines of high symmetry that were projected onto the

two-dimensional Brillouin Zone. The composite graphs can be seen in Figs. 5.2 and

5.3. For each surface state in an absolute or relative band gap, the charge density

profile was plotted and the symmetry was determined by consulting the appropriate

character table. The same analysis was performed for surface resonance states. Each
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FIG. 5.2. Majority-spin bandstructure for Fe(001) that includes surface states and
resonances along the two-dimensional lines of high symmetry. Vertical shading rep-
resents even-symmetry projected bulk bands while the horizontal shading indicates
odd-symmetry bulk bands. Solid lines represent even-symmetry and dashed lines are
odd-symmetry surface states and resonances.

line was divided into ten evenly spaced intervals using eleven k-points. At each

of these k-points, the LDOS was calculated in order to locate surface states and

resonances. Analysis of the spin-polarized SEGF results for Fe(001) along each line

of high symmetry are presented in the following subsections.

5.4.2 ∆̄

Fig. 5.4 shows the projected bandstructure and surface states of even symmetry

along ∆̄ for both majority- and minority-spin states. At X̄, both spin states have two

even-symmetry gaps. The lowest energy majority gap is centered at EF -4.37 eV and

is 1.25 eV wide, while the second gap is centered at EF -0.315 eV and is 0.625 eV wide.
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FIG. 5.3. Minority-spin bandstructure for Fe(001) that includes surface states and
resonances along the two-dimensional lines of high symmetry. Vertical shading rep-
resents even-symmetry projected bulk bands while the horizontal shading indicates
odd-symmetry bulk bands. Solid lines represent even-symmetry and dashed lines are
odd-symmetry surface states and resonances.

The projected bulk bands are in excellent agreement with other calculations31,35,55,56

in regards to their shape and placement of band gaps along ∆̄.

For majority spin (Fig. 5.4(a)) at Γ̄, two surface resonances are present. There is

a Γ̄1 surface state band predicted at 2.3 eV below EF that disperses into the relative

gap and is present until the gap closes about halfway along ∆̄. This state is very

close to a Γ̄ state found in photoemission studies about 2.2 eV below EF .35 A seven-

layer FLAPW calculation31 also identified an even-symmetry, majority-spin surface

resonance near the calculated band. In their photoemission experiment, Turner and

Erskine35 found an Fe(001) surface resonance at Γ̄ that was 3.2 eV below EF . This

state has not been identified in either the present SEGF calculation or any other
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FIG. 5.4. Even-symmetry surface bands, resonances, and bulk band projections
for Fe(001) majority and minority spin along ∆̄. Vertical shading represents even-
symmetry projected bulk bands. Solid lines represent even-symmetry surface states
and resonances.

theoretical treatment.31,55 Both Wang and Freeman55 and Ohnishi et al.31 identified

a surface resonance between 4 eV and 4.5 eV below EF that is not seen in the present

results. The spin-polarized SEGF method found a peak in the LDOS at nearly the

same energy as the one found using slab methods; however, the peak amplitude

of this state was not strong enough for a positive identification to be made. Slab

methods usually identify surface states based on how much charge a particular state

has near the surface of the slab. The layer-by-layer charge contribution is usually

added and then a cutoff percentage is chosen to identify states as being surface states

or resonances. There is really no true determination of a surface state by this method

because of the absence of the bulk states and band gaps.

At X̄, a majority-spin surface state was found at 4.7 eV below EF near the bottom

of an absolute gap. This surface state is very similar to a surface state observed in

photoemission experiments.35 Slab calculations have also identified a surface state

that is positioned similarly to our results.31,55 Slightly higher in energy at 2.75 and
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2.5 eV below EF , two surface resonance states are identified via the SEGF method.

The lower-lying resonance state is found to split in two, and each of the resulting

bands disperse toward Γ̄.

The LDOS calculations for Fe(001) indicate a minority-spin surface state band just

below the Fermi level in the relative gap along ∆̄ (see Fig. 5.4(b)). This is in excellent

agreement with photoemission data35 and slab calculations.31,55 In our SEGF results

the band disperses from Γ̄ to over halfway to X̄; however, the Turner and Erskine35

photoemission results show the band running throughout ∆̄. Wang and Freeman’s

seven-layer slab55 results identify this band at roughly EF -1 eV. The positioning of

this band from the present SEGF calculation is remarkable considering the inaccuracy

in the sub-subsurface magnetic moment. It is clear that the iron valence electrons

screen off imperfections with a very short healing length.
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FIG. 5.5. Odd-symmetry surface bands, resonances, and bulk band projections for
Fe(001) majority and minority spin along ∆̄. Horizontal shading indicates odd-
symmetry projected bulk bands. Dashed lines are odd-symmetry surface states and
resonances.
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While the FLAPW method55 fails to identify any surface states or resonances for

the odd-symmetry states of either spin, the SEGF calculation has positively identified

surface resonance bands for odd-symmetry states for both majority and minority spin

(see Fig. 5.5). A photoemission experiment found a majority-spin surface state band

below the projected bulk bandstructure at Γ̄. By X̄ this band evolves into a majority-

spin resonance band. For minority spin, experiments show a resonance band below

EF all along ∆̄. This is in contrast to Fig. 5.5(b) which shows the resonance band

above EF starting at Γ̄ and dispersing halfway to X̄.

A general trend for all of the majority-spin results presented here is a greater

concentration of surface states and resonances below the Fermi level. For minority

spin, the surface states and resonance bands are concentrated near or above the Fermi

level. These concentrations result in an enhanced magnetic moment at the surface

since more majority-spin electronic levels are occupied because they fall below the

Fermi energy.

5.4.3 Ȳ

Ȳ is a line of high-symmetry in the two-dimensional Brillouin zone that traverses

from X̄ to M̄ (Fig. 2.6). The projected surface bands, surface states, and surface

resonances are shown in Figs. 5.6 and 5.7. Due to the absence of bulk reflection

symmetry, the projected bulk bands cannot be characterized having even or odd

symmetry, which is reflected in the graphs in this section.

An analysis of the projected bands reveals several absolute gaps for both spins

along the ∆̄ line as shown in Fig 5.6. For the majority-spin case, the first gap is

1.25 eV wide centered at 4.37 eV below EF . For the minority-spin case, a gap opens

at X̄ as well. This gap is centered around 2.97 eV below EF and is 2.84 eV wide.

Previous studies31,35,55 have produced gaps in agreement with our results.
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FIG. 5.6. Even-symmetry surface bands, resonances, and bulk band projections for
Fe(001) majority and minority spin along Ȳ . Vertical shading represents projected
bulk bands. Solid lines represent even-symmetry surface states and resonances.

Starting at X̄, there are two even-symmetry majority-spin resonance bands 2.5

and 2.75 eV below EF and a third one positioned just above EF . All disperse along

Ȳ (Fig. 5.6(a)). Turner and Erskine’s photoemission analysis35 for the Ȳ line failed

to discriminate the symmetry of their experimental surface states and resonances,

so direct comparison with experiment is difficult. Photoemission found a surface

state approximately 4 eV below EF , which is slightly higher than the EF -4.7 eV

state computed using the spin-polarized SEGF method. However, the seven-layer

FLAPW results31 are in agreement with our results. At X̄, the lowest-lying surface

state is located at EF -2.99 eV. This state has been identified as an even-symmetry

minority-spin state and is in excellent agreement with the photoemission findings.35

At M̄ there is a surface band 3.5 eV below EF that disperses in an absolute band

gap toward X̄ with little change in energy (Fig. 5.6(a)). This result contrasts with

photoemission data of Turner and Erskine,35 in which a band was observed between

3 and 4 eV below EF that also dispersed toward X̄. However, their M̄ state starts as
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a resonance band before crossing into the gap closer to X̄. This band is also seen in

the FLAPW results.31
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FIG. 5.7. Odd-symmetry surface bands, resonances, and bulk band projections for
Fe(001) majority and minority spin along Ȳ . Vertical shading represents projected
bulk bands. Dashed lines represent odd-symmetry surface states and resonances.

Odd-symmetry majority- and minority-spin surface bandstructure is displayed in

Fig. 5.7. For X̄ (Fig.5.7(a)), there is an odd-symmetry state 0.78 eV below EF .

Turner and Erskine’s photoemission results35 show a majority-spin state 0.5 eV be-

low EF that disperses downward in energy toward M̄ , which is very similar to the

present SEGF results. In contrast, the seven-layer FLAPW calculation has this state

positioned about 1 eV below EF . For odd-symmetry minority-spin states, only a few

surface resonances have been identified, which contrasts with photoemission results

that showed two bands dispersing all along Ȳ .35

5.4.4 Σ̄

The Σ̄ line is the longest of the three high-symmetry lines under consideration, as

it is half the diagonal of the square Brillouin Zone. Projected bulk bands along this
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line have absolute gaps for both majority- and minority-spin states. At Γ̄, both spins

have band gaps that open below the Fermi level and extend over halfway through the

zone (see Fig 5.8).
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FIG. 5.8. Even-symmetry surface bands, resonances, and bulk band projections
for Fe(001) majority and minority spin along Σ̄. Vertical shading represents even-
symmetry projected bulk bands. Solid lines represent even-symmetry surface states
and resonances.

There are a pair of relatively large projected bulk band gaps at M̄ for both majority

and minority spin. As seen in Fig. 5.8, the center of each majority-spin band gap is

below the corresponding minority-spin gap. For majority spin, we find three even-

symmetry bands in the lower band gap. The lower two bands are between 3 and

4 eV below EF , while the highest band is located at EF -1.41 eV. All disappear

before traversing halfway along Σ̄. The photoemission results of Turner and Erskine35

indicate a surface state 1.2 eV below EF , which compares favorably to the highest

SEGF computed state in the band gap at M̄ . Turner and Erskine also found a

surface resonance 3.2 eV below EF , which is in close agreement with the current

results. The FLAPW calculation31 has positioned a similar state 4 eV below EF
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which disperses sharply downward in energy. This is in sharp contrast to both the

SEGF and photoemission results. For minority spin at Γ̄, there is a single calculated

surface resonance band 2.75 eV below EF . Both photoemission results35 and the

seven-layer FLAPW calculation31 position this state at approximately EF -2 eV.

Close to Γ̄ there is an even-symmetry surface state band that begins at EF -4.38 eV

and disperses along the bottom of the band gap to two-thirds of the way to M̄

before the gap closes (Fig. 5.8(a)). This band is in excellent agreement with the

photoemission results of Turner and Erskine.35 Higher in energy at Γ̄, these results

show several resonance bands dispersing toward M̄ (Fig. 5.8(a)). The topmost band

occurs at 0.85 eV below EF . The photoemission study places a resonance band

between EF and EF -1 eV, but the dispersion is upward in energy.35 However, a

seven-layer FLAPW calculation31 found the same downward dispersion as the present

results.
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FIG. 5.9. Odd-symmetry surface bands, resonances, and bulk band projections for
Fe(001) majority and minority spin along Σ̄. Horizontal shading indicates odd-
symmetry projected bulk bands. Dashed lines are odd-symmetry surface states and
resonances.
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For the odd-symmetry states along Σ̄, there is a short surface band in the middle

of Σ̄ (Fig. 5.9(a)), that disperses upward from M̄ to Γ̄. This is in contrast to the

photoemission data35 and the seven-layer FLAPW calculation31 which both show a

surface band running the whole length of Σ̄ and dispersing downward. However, the

odd-symmetry minority-spin state found right below EF at Γ̄ dispersing upward in the

relative bulk symmetry gap, is in good agreement the photoemission results.35 There

is a slight difference in where the surface state band crosses EF . The SEGF results

show the crossing closer to Γ̄ than the experimental results of Turner and Erskine.35

The SEGF results are also in agreement with the seven-layer FLAPW calculation.31

This study has found good agreement when comparing the experimental value for

the work function with the SEGF calculated result. There is an enhancement of the

surface magnetic moment in line with that established by experiment. Positioning

of surface state bands and surface resonance bands are quite impressive considering

the spin density issue with the sub-subsurface layer. By treating the semi-infinite

problem correctly, we have found remarkable agreement with experiment and other

calculations despite a problem with the sub-subsurface magnetic moment.



CHAPTER SIX

Summary

Spin-polarized SEGF calculations were performed for the Ni(001), Co(001), and

Fe(001) surfaces with a correction to the computer code that allowed the core charge to

extend past the muffin-tin boundary. By correctly treating the semi-infinite problem,

the identification of surface states is trivial compared with slab methods where the

usual identification of surface states is performed by choosing states that have charge

localized in the top two or three layers. Our calculations also do not suffer from the

problem of interactions between states on opposing surfaces. In a previous paper,

Benesh and Inglesfield demonstrated how a surface state arising on the two surfaces

of a seven-layer Al(001) slab was split into two hybridized states (split by nearly 1 eV)

due to the interaction across the finite width of the slab.57

Our calculated work function for Ni(001) was in fair agreement with experiment.

This disagreement could be due the fact that natural nickel has a lattice expansion

at the surface of about four percent. The surface magnetic moment was in excellent

agreement with experiment and other calculations. We found a Friedel-type oscilla-

tion in the layer-by-layer spin moments that was seen in several other calculations. It

would be interesting to perform another SEGF calculation with four or more layers

to determine when the oscillations die off and compare the lowest surface layer with

the experimental value for the bulk moment. Our identification of surface states and

resonances were in agreement with experiment and other calculations.

The computed work function for the metastable fcc(001) face of cobalt was im-

proved compared with our computed value for nickel. The calculated spin density was

in excellent agreement with other calculations and the layer-by-layer spin moments

had Friedel-type oscillations seen in other theoretical results. We were not able to

73
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compare our surface electronic structure with experiment. There was general agree-

ment with an FLAPW slab calculation regarding the concentration of surface states

and resonances along the high-symmetry lines in the surface Brillouin Zone.

The results for Fe(001) were mixed. Our calculated work function was in good

agreement with experiment, even though the calculated magnetism in the third layer

was almost paramagnetic rather than ferromagnetic. The good results for the surface

layer was almost certainly due to the electron screening of the imperfections with a

short healing length. The calculated surface electronic structure was in very good

agreement with experiment and surpassed other calculations for several surface state

and resonance bands.

The poor magnetic moment in the third layer of Fe(001) is cause of some con-

cern. The corresponding magnetic moments for Ni(001) and Co(001) were in good

agreement with other studies. Iron was the only bcc crystal in this study, and pos-

sesses the largest fraction of interstitial volume (Fig. 5.1). We have assumed that

if the bulk bandstructure compared well with other published bulk bandstructures,

then the embedding potential was a good representation of the bulk. It is possible

that the expansion used for the embedding potential is inadequate for such an open

surface. Also, the electrostatic boundary condition imposed along the embedding

surface (where the potential is set to zero), may not be appropriate for such an open

surface. One way to check would be to perform a calculation for the Ni(110) surface

to determine if the third layer has a magnetic moment that deviates greatly from

experiment or other calculations.
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APPENDIX A

Core Charge

An initial spin-polarized study of Fe(001) for a one-layer slab16 yielded results

uncharacteristic of previous paramagnetic SEGF studies.13–15 Fe(001) is known to

possess a bulk magnetic moment of 2.216 µB and has a surface moment that is

enhanced by thirty percent over the bulk value. The spin polarized SEGF calculation

resulted in a spin moment of 2.62 µB and a work function of 5.18 eV, in poor agreement

with the experimental value of 4.4 eV. Other self consistent calculations using slab

methods found that the spin density healed close to the bulk Fe value by the fourth

interior layer. Thus, it was thought that a three-layer calculation using the spin

polarized SEGF method would provide better results. Unfortunately, this was not

the case, and poor spin densities resulted upon convergence; however, the calculated

work function was in good agreement with experiment.

An analysis of the SEGF output files showed that the charge densities and po-

tentials at the MT-interstitial boundaries were mismatched. A difference of less than

1.5×10−3 a.u. was observed in each of the majority and minority-spin charge densities

at the MT-interstitial boundary. In addition, the MT charge density was found to be

consistently greater than the interstitial charge density, and even larger differences

occurred in the total potential. Because of small differences in the charge density and

larger differences in the potential, the potential routines were considered the source

of the error.

The exchange-correlation potential, which scales as ρ1/3, was checked to determine

if any error existed in the routine. Thorough testing showed the exchange-correlation

potential gave excellent results for a wide range of charge densities, and more im-

portantly, gave consistent results for the inputs that were fed in from the MT and
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FIG. A.1. Radial variation in the core charge for Fe(001) near the MT edge.

interstitial regions. The Coulomb potential was then checked for continuity, resulting

in a small error (1× 10−4 Hartree), which was not enough to explain the larger error

in the output.

The charge density components were then examined. The basis functions were

checked at the MT-interstitial boundary and no continuity errors were detected that

were large enough to explain the mismatch. By raising the MT expansion from l = 8

to l = 12, the basis function matching error decreased and led to better continuity

in the charge density and potential. However, the matching of the total potential

improved by less than 1× 10−4 Hartree.

The core charge density was then excluded from the calculation, isolating the

valence charge in order to observe matching at the boundary. By removing the core

charge, the matching accuracy improved by two orders of magnitude. Therefore, the

matching error was found to result from non-negligible core charge extending past
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Table A.1. MT radii variation for the 001 crystal faces for different elements.

Element Lattice Lattice Constant (a.u.) MT radius (a.u.)
Aluminum fcc 7.60 2.687
Platinum fcc 7.42 2.622
Nickel fcc 6.55 2.316
Cobalt fcc 6.54 2.312
Iron bcc 5.27 2.282

the MT boundary. In fact, the core charge density was found to match the missing

difference at the MT-interstitial boundary, which was not apparent in previous SEGF

calculations.13–15

Most of the previous SEGF studies used crystals with larger MT radii than the

elements in this study, which is likely the reason the core charge mismatch was not

apparent. The 3d transition metals used for this study possessed MT radii that were

thirteen to eighteen percent smaller than aluminum or platinum MT radii (see Table

A.1) used in previous studies. Also, the amount of core charge at the MT boundary

depends sensitively on the MT radius and number of core electrons. While a charge

mismatch may have been negligible for Pt or Al, it should have greater significance

in the case of paramagnetic nickel (see Fig. A.2).13
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FIG. A.2. Core charge density for (a) Fe and (b) Al near their respective MT bound-
aries. The vertical red line is the MT radius for each element.
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A method to solve this problem was developed: add the leaky MT charge to the

interstitial and vacuum region. First, the exponential decay of the extended core

charge density profile was confirmed by graphing the ρcore from a SEGF calculation

(Fig. A.3). By confirming the exponential decay, the core charge extending past the
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FIG. A.3. Radial core charge density of Fe(001) as calculated by SEGF (solid line)
and calculated by the model (dashed line). The model charge density is used only
outside the muffin-tin radius (red line).

MT sphere can be modeled in the following form:

ρn(r) = βne
−αnr , (A.1)

where βn and αn are constants determined by fitting the core charge at the MT surface

and a point in the interstitial region where the charge has decayed to a threshold

level (≈ 10−6 a.u.). Once the coefficients were determined, the charge density was

recomputed by adding the spin-dependent core charge contribution in the interstitial

and vacuum regions. Coefficients for the total charge were then recalculated in these

regions. While this solution is not perfect, the matching at the different interfaces has
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been greatly improved. One remaining problem with this correction is that charge

from touching MTs are not added to each other. This includes charge coming from

substrate MTs which touch surface MTs. Nevertheless, the errors in both charge

density and potential have been lowered dramatically and provide confidence that

the resulting output for all computational cycles is accurate.
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APPENDIX B

Data Analysis Software

The sample programs in this appendix were developed to automate data analysis

tasks associated with this SEGF study. The programs have been developed for the

Linux R© operating system, but should work with little or no modification within any

UNIX R©-like operating system. The graphics were mostly generated with Wolfram

Mathematica R©, but gnuplot was used as well.
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B.1 Bandstructure Plotting

The following program generates bulk band graphs from the embedding program

along the lines of high symmetry for a square SBZ. Gnuplot is required and the

graphics are in encapsulated postscript format.

#!/usr/bin/perl -w

##################################################################################
# band_structure is a Perl script designed to generate graphs of the bulk
# band structure along varied points in a 2D surface BZ
# Interactive, but one could just as well use a configuration file and read it in.
# Requires the gnuplot plotting program
##################################################################################

use strict;
use diagnostics;
use File::Copy;

######################## Scalar Variables ########################################

my $embed; # embedding executable name
my $embd_file; # name of input files
my $bulk_file; # bulk input file
my $fermi_level; # Fermi level
my $crystal; # name of crystal and part of graph title
my $spin; #
my $spin_label; #
my $division; # Number of points sampled along high symmetry lines
my $start; #
my $final; #
my $output; # output from embedding program to be plotted
my $dir; # directory to put the graphs and data
my $x; # coordinate
my $y; # coordinate
my $x_step; # step size
my $y_step; # step size
my $xhigh; # max value
my $garbage; # temporary value
my $energy; # plotted energy
my $k; #
my $run; #
my $LINE; #

my $flag = 0;

######################## Arrarys ################################################

my @lines;

######################## Hash Tables ############################################
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my %symmetry_point = (
1 => [ "Gamma_Bar", 0.0, 0.0 ],
2 => [ "X_Bar", 0.5, 0.0 ],
3 => [ "M_Bar", 0.5, 0.5 ],

);

######################## Main Program ###########################################

print "Enter the name of the embedding program:\n";
chomp( $embed = <STDIN> );

print "Enter the name of the embedding input file:\n";
chop( $embd_file = <STDIN> );

print "Enter the name of the bulk input file:\n";
chomp( $bulk_file = <STDIN> );

print "Enter the fermi-level in Hatrees:\n";
chop( $fermi_level = <STDIN> );

print "Enter the element and crystal face:\n";
chop( $crystal = <STDIN> );

print
"Enter 0 for paramagnetic, 1 for majority spin or 2 for minority spin:\n";

chop( $spin = <STDIN> );

if ( $spin == 0 ) {
$spin_label = "Paramagnetic";

}
elsif ( $spin == 1 ) {

$spin_label = "Majority";
}
else {

$spin_label = "Minority";
}

if ( -e $embd_file ) {

#file exists
}
else {

print "$embd_file: File not found:$!\n" && die;
}

if ( -e $bulk_file ) {
copy( $bulk_file, "fort.7" );

}
else {

print "$bulk_file: File not found:$!\n" && die;
}

while ( $flag == 0 ) {
print
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"Enter the starting point (1 - Gamma Bar, 2 - X Bar, 3 - M Bar):\n";
chomp( $start = <STDIN> );

if ( $symmetry_point{$start} ) {
print "$symmetry_point{$start}[0] choosen as the starting point.\n";
$flag = 1;

}
else {

print "$start is not the correct value. Please try again.\n";
}

}

$flag = 0;

while ( $flag == 0 ) {

print
"Enter the ending point (1 - Gamma Bar, 2 - X Bar, 3 - M Bar):\n";

chop( $final = <STDIN> );

if ( $final == $start ) {
print "Starting and ending points are the same.

Please try again.\n";
}
elsif ( $symmetry_point{$final} ) {

print "$symmetry_point{$final}[0] choosen as the end point.\n";
$flag = 1;

}
else {

print
"Entered value $final has been entered incorrectly.

Please try again.\n";
}

}

print "Enter the number of steps between the first and the last points.\n";
chop( $division = <STDIN> );

$x_step
= ( $symmetry_point{$final}[1] - $symmetry_point{$start}[1] ) / $division;

$y_step
= ( $symmetry_point{$final}[2] - $symmetry_point{$start}[2] ) / $division;

$x = $symmetry_point{$start}[1];
$y = $symmetry_point{$start}[2];

$dir = $symmetry_point{$start}[0] . ’-’
. $symmetry_point{$final}[0] . ’-’
. $spin_label;

mkdir $dir;



85

open( EMBED_FILE, "+<$embd_file" );

@lines = <EMBED_FILE>;

$run = 0;

while ( $run <= $division ) {

open( TEMP, ">temp" );

$LINE = 0;
while ( $LINE < 20 ) {

print TEMP "$lines[$LINE]";
$LINE++;

}

printf TEMP ( " %1.6fD+00 %1.6fD+00 1.000000D+00\n", $x, $y );

close(TEMP);
open( TEMP, "-temp" );
‘$embed < temp > embed_log‘;

$output = "$dir/band_test" . "$run";

open( BAND, "fort.3" );

open( OUTPUT, "+>$output" );

$xhigh = 0;

while (<BAND>) {
( $garbage, $energy, $k ) = split(/\s+/);
$energy = ( $energy - $fermi_level ) * 27.212; # 1 Hartree = 27.212 eV
print OUTPUT "$k $energy\n";
if ( $xhigh < $k ) {

$xhigh = $k;
}

}
close OUTPUT;
open( PLOT, ">band_plot.gnu" );

print PLOT
"set term postscript landscape enhanced color ’Times-Roman’ 14\n";

print PLOT "load ’plot.gnu’\n";
print PLOT "set output ’$output.eps’\n";
print PLOT "set xrange [0:$xhigh]\n";
print PLOT "set yrange [-12:3]\n";

if ( $spin == 0 ) {
print PLOT

"set title \"Band Structure of $crystal at $x, $y\"
font \"Times-Roman,14\"\n";

}
else {
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print PLOT
"set title \"Band Structure of $crystal ($spin_label spin)

at $x, $y\" font \"Times-Roman,14\"\n";
}
print PLOT "plot ’$output’ with points pointtype 7 pointsize 1\n";

close PLOT;
‘gnuplot band_plot.gnu‘;

$x = $x + $x_step;
$y = $y + $y_step;
$run++;

}
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B.2 Local Density of States

#!/usr/bin/perl

################################### Description #############################
# Determines the LDOS and generates graphs for points between 2 points
# on the SBZ.
# An input file fixes the parameters.
# Depending on the setup of the OS, some of this may need modification
# Graphics are generated using Mathematica, but additional subroutines could
# expand this to Gnuplot, etc...
# Note: The input data file is not currenlty checked for errors.
# Script now has the ability to increment energy ranges in order to have more
# points in the LDOS.
#############################################################################

################################# Load Modules ##############################

use warnings;
use strict;
use diagnostics;
use Cwd;
use File::Copy;

################################# Scalar Variables ##########################

my $sbz_type; # SBZ type (currently only square geometry available)
my $segf_exe; # Name of SEGF executable
my $segf_in5; # Name of Stream 5 SEGF input file
my $embd_exe; # Name of precompiled embedding executable
my $embd_in5; # Stream 5 input file for embedding program
my $embd_in7; # Stream 7 file for embedding program
my $embd_estart; # Starting energy level for bands
my $embd_estop; # Highest energy level for band construction
my $fermi_level; # Fermi Level in Hartrees
my $bzdivisions; # Number of divisions along a line in the SBZ
my $spin_type; # Paramagnetic, majority, or minority
my $plot_var; # y or n (plot generated using gnuplot)
my $plot_times

; # for a full plot of the ldos, the embedding energy range is divided
# plotted when $embd_stop is reached

my $plot_prog; # Plotting program (mathematica or gnuplot)
my $dir;
my $spin_state;
my $key;
my $sbz_start;
my $sbz_stop;
my $bz_x;
my $bz_xstart;
my $bz_xstop;
my $bz_xstep;
my $bz_y;
my $bz_ystart;
my $bz_ystop;
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my $bz_ystep;
my $newdir;
my $embfile;
my $embd_estep;
my $embd_e1;
my $embd_e2;
my $run;
my $istep;
my $file_num;
my $segf_emb;
my $garbage;
my $iotyp;
my $icrtyp;
my $imix;
my $mtiop;
my $nspin;
my $log_flag;
my $mt;
my $mtfile;
my $hartree_energy;
my $im;
my $dos;
my $energy;
my $vacfile;
my $ch_int_dos;
my $intdos;
my $dos_emb;
my $LINE;

################################# Array Variables ###########################

my @embd5;
my @segf5;

my @spin = ( ’majority’, ’minority’ );

########################## Hash #############################################

my %sbz = (
square => {

lines_of_symmetry => {
delta => [ ’gamma_bar’, ’x_bar’ ],
y => [ ’x_bar’, ’m_bar’ ],
sigma => [ ’m_bar’, ’gamma_bar’ ],

},
gamma_bar => [ 0.0, 0.0 ],
x_bar => [ 0.5, 0.0 ],
m_bar => [ 0.5, 0.5 ],

},
);
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################################# Main Program ##############################

open( DATA, "segf_data" );

chop( $sbz_type = <DATA> );
chop( $segf_exe = <DATA> );
chop( $segf_in5 = <DATA> );
chop( $embd_exe = <DATA> );
chop( $embd_in5 = <DATA> );
chop( $embd_in7 = <DATA> );
chop( $embd_estart = <DATA> );
chop( $embd_estop = <DATA> );
chop( $fermi_level = <DATA> ); # Fermi level in Hartrees
chop( $bzdivisions = <DATA> );
chop( $spin_type = <DATA> ); # $spin_type = paramagnetic, majority, minority
chop( $plot_var = <DATA> )

; # $plot_var = y or n (plot generated using gnuplot)
chop( $plot_times = <DATA> )

; # for a full plot of the ldos, the embedding energy range
# is devided into pieces and plotted at the end

chop( $plot_prog = <DATA> ); # mathematica or gnuplot

close DATA;

$dir = cwd();

foreach $spin_state (@spin) {

# loop over each line of high symmetry in the Surface BZ
foreach $key ( sort keys %{ $sbz{$sbz_type}->{lines_of_symmetry} } ) {

$sbz_start = @{ $sbz{$sbz_type}->{lines_of_symmetry}->{$key} }[0];
$bz_xstart = $sbz{$sbz_type}->{$sbz_start}->[0];
$bz_ystart = $sbz{$sbz_type}->{$sbz_start}->[1];

$sbz_stop = @{ $sbz{$sbz_type}->{lines_of_symmetry}->{$key} }[1];
$bz_xstop = $sbz{$sbz_type}->{$sbz_stop}->[0];
$bz_ystop = $sbz{$sbz_type}->{$sbz_stop}->[1];

# make the directory to store the dos values

$newdir = "$sbz_start" . "_to_" . "$sbz_stop" . "_" . "$spin_state";
mkdir( $newdir, 0775 );

$newdir = "$dir" . "/" . "$newdir";

open( EMBED, "$embd_in5-$spin_state" );
@embd5 = <EMBED>;
close EMBED;

open( SEGF5, "$segf_in5-$spin_state" );
@segf5 = <SEGF5>;
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close SEGF5;

$embd_estep = ( $embd_estop - $embd_estart ) / $plot_times;
$embd_e1 = $embd_estart;
$embd_e2 = $embd_estart + $embd_estep;

$bz_xstep = ( $bz_xstop - $bz_xstart ) / $bzdivisions;
$bz_ystep = ( $bz_ystop - $bz_ystart ) / $bzdivisions;

$bz_x = $bz_xstart;
$bz_y = $bz_ystart;

$run = 0;
$istep = 1;

copy( "$embd_in7-$spin_state", "fort.7" );

while ( $run <= $bzdivisions ) {

if ( $run < 10 ) {
$file_num = "0" . "$run";

}
else {

$file_num = $run;
}

print "$bz_x $bz_y\n";
while ( $istep <= $plot_times ) {

open( ETEMP, ">etemp" );
$LINE = 4;

print ETEMP "$embd5[0]";
print ETEMP "$embd5[1]";
print ETEMP "$embd5[2]";

if ( $embd_e1 < 0 && $embd_e2 > 0 ) {
printf ETEMP (

" %1.6fD+00 %1.6fD+00 1.000000D-06\n",
$embd_e1, $embd_e2

);
}
elsif ( $embd_e1 < 0 && $embd_e2 < 0 ) {

printf ETEMP (
" %1.6fD+00 %1.6fD+00 1.000000D-06\n",
$embd_e1, $embd_e2

);
}
else {

printf ETEMP (
" %1.6fD+00 %1.6fD+00 1.000000D-06\n",
$embd_e1, $embd_e2

);
}
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while ( $LINE < 20 ) {
print ETEMP "$embd5[$LINE]";
$LINE++;

}

printf ETEMP ( " %1.6fD+00 %1.6fD+00 1.000000D+00\n", $bz_x,
$bz_y );

close ETEMP;

‘$embd_exe < etemp > embd_log‘; # runs the embedding code
$segf_emb = $segf5[6];
chop($segf_emb);
move( "fort.4", "$segf_emb" );

# b4 running the dos calculation, need to check if the bz point is at m-bar
if ( $bz_x == 0.5 && $bz_y == 0.5 )
{ # at m-bar and set imix=5

$_ = $segf5[0];
chop($_);
( $garbage, $iotyp, $icrtyp, $imix, $mtiop, $nspin )

= split(/\s+/);
$segf5[0] = " $iotyp $icrtyp 5 $mtiop $nspin\n";

}
if ( $bz_x == 0.5 && $bz_y == 0.0 )
{ # at x-bar and set imix=6

$_ = $segf5[0];
chop($_);
( $garbage, $iotyp, $icrtyp, $imix, $mtiop, $nspin )

= split(/\s+/);
$segf5[0] = " $iotyp $icrtyp 6 $mtiop $nspin\n";

}
else {

$_ = $segf5[0];
chop($_);
( $garbage, $iotyp, $icrtyp, $imix, $mtiop, $nspin )

= split(/\s+/);
$segf5[0] = " $iotyp $icrtyp -1 $mtiop $nspin\n";

}

open( STEMP, ">stemp" );
print STEMP @segf5;
close STEMP;
system "$segf_exe < stemp > segf_log";

unlink "out12"; # deletes the output chden file

# the ldos values can now be extracted from segf_log
open( LOG, "segf_log" );
$log_flag = 0;

while (<LOG>)
{ # this loop goes through the log file to extract
# the ldos info
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chop($_);
if (/DENSITY OF STATES IN MUFFIN TINS/) {

$mt = substr( $_, 69, 1 ); # determines the mt number
$mtfile = "$newdir" . "/" . "bzrun"

. "$file_num" . "mt_" . "$mt";
open( MTFILE, ">>$mtfile" );

while () {
chop( $_ = <LOG> );
if (/^$/)
{ # after the data is read in, a blank line follows.

last
; # this kicks control out of the while loop

}
s/D/E/g

; # perl doesn’t understand DP formatted numbers
( $hartree_energy, $im, $dos )

= /(\S+)\s+(\S+)\s+(\S+)/;
$energy = ( $hartree_energy - $fermi_level )

* 27.212; # Zeroing the Fermilevel(eV)
$dos = $dos / 27.212;

print MTFILE "$energy $dos\n";
}

# use the subroutine plot to provide graphs for
# data analysis
close MTFILE;

if ( $istep == $plot_times ) {
if ( $plot_prog eq "mathematica" ) {

plot_mathematica( $mtfile, $newdir );
}
else {

plot_gnuplot($mtfile);
}

}
}
elsif (/AVERAGE DOS OVER PLANE AT/) {

$_ = <LOG>;
$vacfile = "$newdir" . "/" . "bzrun"

. "$file_num" . "_vac";
open( VACFILE, ">>$vacfile" );

while () {
$_ = <LOG>;
if (/^$/) {

last;
}
s/D/E/g;
( $hartree_energy, $im, $dos )

= /(\S+)\s+(\S+)\s+(\S+)/;
$energy
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= ( $hartree_energy - $fermi_level ) * 27.212;
$dos = $dos / 27.212;

print VACFILE "$energy $dos\n";
}
close VACFILE;
if ( $istep == $plot_times ) {

if ( $plot_prog eq "mathematica" ) {
plot_mathematica( $vacfile, $newdir );

}
else {

plot_gnuplot($vacfile);
}

}
}
elsif (/DOS IN EMBEDDED REGION/) {

$log_flag = 1;
$embfile = "$newdir" . "/" . "bzrun"

. "$file_num" . "_emb";
$intdos = "$newdir" . "/" . "bzrun"

. "$file_num"

. "_delta_int";
open( EMBFILE, ">>$embfile" );
open( INTDOS, ">>$intdos" );

while () {
chop( $_ = <LOG> );
if (/^$/) {

last;
}
s/D/E/g;
( $hartree_energy, $im, $dos_emb, $ch_int_dos )

= /(\S+)\s+(\S+)\s+(\S+)\s+(\S+)/;
$energy

= ( $hartree_energy - $fermi_level ) * 27.212;
$dos_emb = $dos_emb / 27.212;
$ch_int_dos = $ch_int_dos / 27.212;

print EMBFILE "$energy $dos_emb\n";
print INTDOS "$energy $ch_int_dos\n";

}
close EMBFILE;
close INTDOS;
if ( $istep == $plot_times ) {

if ( $plot_prog eq "mathematica" ) {
plot_mathematica( $embfile, $newdir );
plot_mathematica( $intdos, $newdir );

}
else {

plot_gnuplot($embfile);
plot_gnuplot($intdos);

}
}

}
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if ( $log_flag == 1 )
{ # finished reading the ldos and go to the next point

last;
}

}

close LOG;
$embd_e1 = $embd_e2;
$embd_e2 = $embd_e2 + $embd_estep;
$istep++;

}

$run++;
$bz_x = $bz_xstart + $run * $bz_xstep;
$bz_y = $bz_ystart + $run * $bz_ystep;
$istep = 1;
$embd_e1 = $embd_estart;
$embd_e2 = $embd_estart + $embd_estep;

}

}

}

############################# Subroutines #####################################

sub plot_gnuplot {

my $output;

open( PLOT, ">dos.gnu" );
$output = "$_[0]" . ".eps";
print PLOT

"set term postscript landscape enhanced color ’Times-Roman’ 14\n";
print PLOT "load ’dosplot.gnu’\n";
print PLOT "set output ’$output’\n";

if ( $_[1] != 0 ) {
print PLOT "set xrange [-13:3]\n";
print PLOT "set yrange [0:*]\n";

}

print PLOT "set title \"$_[0] at ($bz_x, $bz_y)\" \"Times-Roman,14\"\n";
print PLOT "set xlabel \"Energy (eV)\" \"Times-Roman,14\"\n";
print PLOT "set ylabel \"DOS (# states/eV)\" \"Times-Roman,14\"\n";
print PLOT "plot ’$_[0]’ with lines\n";
close PLOT;
system "gnuplot dos.gnu";
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}

sub plot_mathematica {

my $e_low;
my $e_high;
my $ldos;
my $ldos_low;
my $ldos_high;
my $math_plot;

my @hartree_energy;
my @ldos;

open( LDOS, "$_[0]" );

while (<LDOS>) {
( $hartree_energy, $ldos ) = split(/\s+/);
push( @hartree_energy, $hartree_energy );
push( @ldos, $ldos );

}

@ldos = sort { $a <=> $b } @ldos;
$e_low = int( $hartree_energy[0] ) + 1.0;
$e_high = int( pop(@hartree_energy) ) + 1.0;
$ldos_high = int( pop(@ldos) ) + 1.0;
$ldos_low = $ldos[0];

if ( $ldos_low >= 0 || $ldos > -1.0e-03 )
{ # Sometimes a low ldos is computed

$ldos_low = 0.0;
}
else {

$ldos_low = int($ldos_low) - 1;
}

$math_plot = "$_[0]" . "mathematica";

open( MPLOT, ">$math_plot" );

print MPLOT "ldos = ReadList[\"$_[0]\",{Number,Number}];\n";
print MPLOT "ldosplot = ListPlot[ldos,PlotJoined->True,Frame->True,\n";
print MPLOT "ImageSize->{600,450},\n";
print MPLOT "AspectRatio->0.65,Axes->False,PlotStyle->RGBColor[1,0,0],\n";
print MPLOT "PlotRegion->{{0.05,0.97},{0.05,0.90}},\n";
print MPLOT

"FrameStyle->{{Automatic},{Automatic},{Automatic},{Automatic}},\n";
print MPLOT "FrameTicks -> {Automatic, Automatic, None, None},\n";
print MPLOT

"PlotRange -> {{$e_low, $e_high}, {$ldos_low, $ldos_high}},\n";
print MPLOT "Axes->False,\n";
print MPLOT "PlotLabel->\"LDOS at point ($bz_x, $bz_y)\",\n";
print MPLOT "FrameLabel->{\"Energy (eV)\",\"DOS (# states/eV)\"},\n";



96

print MPLOT "DisplayFunction->Identity];\n";
print MPLOT "Export[\"$math_plot.eps\",ldosplot,\"EPS\"];\n";

close MPLOT;

system "/usr/local/bin/math < $math_plot > test_log";

}
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B.3 Charge Density Contour Plots

#!/usr/bin/perl

# Extracts peaks in the LDOS, generates charge density and potential
# output, and finally plots them in Mathematica using a modified
# version of the newplot.f plotting program.

########################## Load Modules ######################################

use warnings;
use strict;
use diagnostics;
use Cwd;
use File::Copy;

########################## Scalar Variables ##################################

my $sbz_type; # 2D geometry of the Surface BZ (e.g. square)
my $fermi_level; # Fermi level in Hartrees
my $ldos_directory_top_level; # Directory where the LDOS data is stored
my $data_file_name_prefix; # Prefix for the LDOS data files
my $bz_start; # Surface Brillouin starting point
my $bz_stop; # Surface Brillouin stopping point
my $segf_executable; # SEGF executable to run
my $segf_input_file; # Stream 5 file for SEGF exe
my $embd_executable; # Embedding executable to run
my $embd_input_file

; # Embedding input file for majority spin/paramagnetic calc
my $embd_bulk; # Embedding bulk input file
my $spin_type; # 1 = Paramagnetic 2 = Spin-polarized
my $embd_input_file2; # Minority spin embedding input file
my $embd_bulk2; # Minority spin embedding bulk file
my $newplot_executable; # Program to generate charge density plotting points
my $newplot_in1; # Newplot input file (point of view for cd plotting)
my $newplot_in2; # Newplot input file
my $newplot_in1_minority;
my $newplot_in2_minority;
my $sbz_x_start; # SBZ starting point on x-axis
my $sbz_x_stop; # SBZ stopping point on x-axis
my $sbz_y_start; # SBZ starting point on y-axis
my $sbz_y_stop; # SBZ stopping point on y-axis
my $segf_emb; # Name for Paramagnetic/Majority spin embedding potential
my $segf_emb2; # Name for Minority spin embedding potential
my $newdir; # Directory to store data
my $dir; # Directory (cwd)
my $sbz_x; # See $x_start
my $sbz_y; # See $y_start
my $sbz_xstep; # Delta step along x-axis (10 points)
my $sbz_ystep; # Delta step along y-axis (10 points)
my $file_num; # Names files according to delta point
my $file; # File name
my $file_full; # Full path to LDOS input file
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my $peak_count; # Number of peaks in an LDOS file
my $chden_dir; # Directory path for plots
my $ldos_data_file; # Path + file for LDOS
my $hartree_energy; # Energy of a point in LDOS
my $ldos; # LDOS value
my $he_minus; # Energy on left side of analayzed LDOS value
my $he_plus; # Energy on right side of analayzed LDOS value
my $ldos_minus; # LDOS on left side of analayzed LDOS value
my $ldos_plus; # LDOS on right side of analayzed LDOS value
my $count2; # Counting variable
my $newplot_file; # File name for newplot output
my $newplot_file2;
my $i; # Counting variable
my $spin_state;
my $key;
my $sbz_start;
my $sbz_stop;
my $ldos_directory;
my $embd_delta;
my $k;

########################## Arrays ###########################################

my @segf5; # Stream 5 input file for SEGF
my @ldos_file; # Stores each line of LDOS input file
my @chden_file;

my @spin = ( ’majority’, ’minority’ );

########################## Hash #############################################

my %sbz = (
square => {

lines_of_symmetry => {
delta => [ ’gamma_bar’, ’x_bar’ ],
y => [ ’x_bar’, ’m_bar’ ],
sigma => [ ’m_bar’, ’gamma_bar’ ],

},
gamma_bar => [ 0.0, 0.0 ],
x_bar => [ 0.5, 0.0 ],
m_bar => [ 0.5, 0.5 ],

},
);

########################## Main #############################################

open( DATA, "chden_plotting_data" );
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chop( $sbz_type = <DATA> );
chop( $spin_type = <DATA> );
chop( $fermi_level = <DATA> );
chop( $ldos_directory_top_level = <DATA> );
chop( $data_file_name_prefix = <DATA> );
chop( $segf_executable = <DATA> );
chop( $segf_input_file = <DATA> );
chop( $embd_executable = <DATA> );
chop( $embd_input_file = <DATA> );
chop( $embd_bulk = <DATA> );

if ( $spin_type == 2 ) {
chop( $embd_input_file2 = <DATA> );
chop( $embd_bulk2 = <DATA> );

}

chop( $newplot_executable = <DATA> );
chop( $newplot_in1 = <DATA> ); # sets view point 1
chop( $newplot_in2 = <DATA> ); # sets view point 2

if ( $spin_type == 2 ) {
chop( $newplot_in1_minority = <DATA> );
chop( $newplot_in2_minority = <DATA> );

}

open( SEGF5, "$segf_input_file" );
@segf5 = <SEGF5>;
close SEGF5;
$segf_emb = $segf5[6];
chop($segf_emb);

if ( $spin_type == 2 ) {
$segf_emb2 = $segf5[7];
chop($segf_emb2);

}

$dir = cwd();

foreach $spin_state (@spin) {

# loop over each line of high symmetry in the Surface BZ
foreach $key ( sort keys %{ $sbz{$sbz_type}->{lines_of_symmetry} } ) {

$sbz_start = @{ $sbz{$sbz_type}->{lines_of_symmetry}->{$key} }[0];
$sbz_x_start = $sbz{$sbz_type}->{$sbz_start}->[0];
$sbz_y_start = $sbz{$sbz_type}->{$sbz_start}->[1];

$sbz_stop = @{ $sbz{$sbz_type}->{lines_of_symmetry}->{$key} }[1];
$sbz_x_stop = $sbz{$sbz_type}->{$sbz_stop}->[0];
$sbz_y_stop = $sbz{$sbz_type}->{$sbz_stop}->[1];

$sbz_x = $sbz_x_start;
$sbz_y = $sbz_y_start;
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$sbz_xstep = ( $sbz_x_stop - $sbz_x_start ) / 10;
$sbz_ystep = ( $sbz_y_stop - $sbz_y_start ) / 10;

$newdir = "$sbz_start" . "_to_" . "$sbz_stop" . "_" . "$spin_state";
mkdir( $newdir, 0775 );
$newdir = "$dir" . "/" . "$newdir";

for ( $file_num = 0; $file_num <= 10; $file_num++ ) {

$ldos_directory = "$ldos_directory_top_level" . "/"
. "$sbz_start" . "_to_"
. "$sbz_stop" . "_"
. "$spin_state";

if ( !-d $ldos_directory ) {
die "Cannot find $ldos_directory: $!\n";

}

$file = $file_num * 2;
if ( $file < 10 ) {

$file = "0" . "$file";
}
$file_full = "$ldos_directory/" . "bzrun" . "$file" . "mt_1";
$peak_count = 0;

$chden_dir = "$newdir/" . "bzrun" . "$file" . "mt_1";
mkdir( $chden_dir, 0777 );

open( FILE, "$file_full" );

# $ldos_count = ‘wc -l < $file_full‘;
@ldos_file = <FILE>;
close FILE;

$ldos_data_file = "$chden_dir" . "_data_file";
open( LDOS_DATA, ">$ldos_data_file" );

# Loop over the LDOS file and find peaks in the LDOS
for ( $i = 2; $i < ( $#ldos_file + 1 ); $i++ ) {

( $hartree_energy, $ldos ) = split( /\s+/, $ldos_file[$i] );
( $he_minus, $ldos_minus )

= split( /\s+/, $ldos_file[ $i - 1 ] );
( $he_plus, $ldos_plus )

= split( /\s+/, $ldos_file[ $i + 1 ] );

if ( $ldos > 0.2
&& $ldos > $ldos_minus
&& $ldos > $ldos_plus )

{

print LDOS_DATA "$hartree_energy $ldos\n";

if ( $peak_count < 10 ) {
$newplot_file = "chden_math_peak_0"
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. "$peak_count"

. "_view1"

. "_bzrun" . "$file";
}
else {

$newplot_file = "chden_math_peak_"
. "$peak_count"
. "_view1"
. "_bzrun" . "$file";

}

if ( $peak_count < 10 ) {
$newplot_file2 = "chden_math_peak_0"

. "$peak_count"

. "_view2"

. "_bzrun" . "$file";
}
else {

$newplot_file2 = "chden_math_peak_"
. "$peak_count"
. "_view2"
. "_bzrun" . "$file";

}

if ( $spin_state eq ’minority’ ) {
$embd_delta = 0.001;

}
else {

$embd_delta = 0.00001;
}

$k = 0;

while ( !-e "$chden_dir/$newplot_file" . ’.eps’
|| ( stat("$chden_dir/$newplot_file.eps") )[7]
< 100000 )

{

# run embd and generate embedding potential around the ldos
embed_run(

$sbz_x, $sbz_y,
$hartree_energy, $fermi_level,
$embd_executable, $embd_input_file,
$embd_bulk, $segf_emb,
$embd_delta

);

if ( $spin_type == 2 ) {
embed_run(

$sbz_x, $sbz_y,
$hartree_energy, $fermi_level,
$embd_executable, $embd_input_file2,
$embd_bulk2, $segf_emb2,
$embd_delta
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);
}

# run segf to generate charge density data
‘$segf_executable < $segf_input_file > segf_log‘;
unlink ’out12’;

# $count = ‘wc -l < fort.20‘;
open( CHDEN, ’fort.20’ );
@chden_file = <CHDEN>;
close CHDEN;

if ( $spin_type == 2 ) {

open( CHDEN2, ’>fort.2’ );

for (
$count2 = ( $#chden_file + 1 ) / 2;
$count2 < ( $#chden_file + 1 );
$count2++
)

{
print CHDEN2 $chden_file[$count2];

}

close CHDEN2;

}

if ( $spin_state eq ’minority’ ) {
move ’fort.2’, ’fort.1’;

}
else {

move ’fort.20’, ’fort.1’;
}

# run newplot to generate charge density points

if ( $spin_state eq ’majority’ ) {
newplot_run(

$newplot_in1, $newplot_executable,
$newplot_file, $chden_dir,
$sbz_x, $sbz_y,
$hartree_energy, $embd_delta

);

newplot_run(
$newplot_in2, $newplot_executable,
$newplot_file2, $chden_dir,
$sbz_x, $sbz_y,
$hartree_energy, $embd_delta

);
}
else {
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newplot_run(
$newplot_in1_minority, $newplot_executable,
$newplot_file, $chden_dir,
$sbz_x, $sbz_y,
$hartree_energy, $embd_delta

);

newplot_run(
$newplot_in2_minority, $newplot_executable,
$newplot_file2, $chden_dir,
$sbz_x, $sbz_y,
$hartree_energy, $embd_delta

);
}

$k++;
if ( $spin_state eq ’minority’ ) {

$embd_delta = 0.002 * $k;
}
else {

$embd_delta = 0.0005 * $k;
}

print "$k $embd_delta\n";

if ( $k > 50 ) {
last;

}

}

$peak_count++;

}

}

close LDOS_DATA;
$sbz_x = $sbz_x + $sbz_xstep;
$sbz_y = $sbz_y + $sbz_ystep;

}

}

}

#################### Subroutines ############################################

sub embed_run {
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my $e1;
my $e2;
my $LINE;

my $sbx = shift;
my $sby = shift;
my $energy = shift;
my $fe = shift;
my $exe = shift;
my $input = shift;
my $bulk_file = shift;
my $emb = shift;
my $delta = shift;

my $embed_energy = ( $energy / 27.212 ) + $fe;

my @embd5;

$e1 = $embed_energy - $delta;
$e2 = $embed_energy + $delta;

copy $bulk_file , "$dir/fort.7";
open( EMBED, "$input" );
@embd5 = <EMBED>;
close EMBED;

open( ETEMP, ">etemp" );
$LINE = 4;

print ETEMP "$embd5[0]";
print ETEMP "$embd5[1]";
print ETEMP "$embd5[2]";

printf ETEMP ( " %1.6fD+00 %1.6fD+00 1.000000D-05\n", $e1, $e2 );

while ( $LINE < 20 ) {
print ETEMP "$embd5[$LINE]";
$LINE++;

}

printf ETEMP ( " %1.6fD+00 %1.6fD+00 1.000000D+00\n", $sbx, $sby );
close ETEMP;

‘$exe < etemp > embd_log‘; # runs the embedding executable
move "fort.4", "$emb";
unlink "$dir/fort.7";

}

sub newplot_run {

my $garbage;
my $x1;
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my $x2;
my $y1;
my $y2;
my $xlow;
my $xhigh;
my $ylow;
my $yhigh;

my $input = shift;
my $exe = shift;
my $output = shift;
my $directory = shift;
my $x = shift;
my $y = shift;
my $energy = shift;
my $delta = shift;

‘$exe < $input > newplot_log‘;

open( CHDEN_FILE, "fort.7" );
open( CHDEN_MATH, ">$directory/$output" );

print CHDEN_MATH "Needs[\"Graphics‘MultipleListPlot‘\"];\n";
print CHDEN_MATH "chdengraph = MultipleListPlot[\n";

$_ = <CHDEN_FILE>;
chop($_);
( $garbage, $x1, $y1, $x2, $y2 ) = split(/\s+/);
print CHDEN_MATH "{{$x1,$y1},{$x2,$y2}},\n";
$xlow = $x1;
$ylow = $y1;
$xhigh = $x2;
$yhigh = $y2;

# reads points to plot
while (<CHDEN_FILE>) {

chomp;
( $garbage, $x1, $y1, $x2, $y2 ) = split(/\s+/);
print CHDEN_MATH "{{$x1,$y1},{$x2,$y2}},\n";

if ( $xlow > $x1 ) {
$xlow = $x1;

}
if ( $xlow > $x2 ) {

$xlow = $x2;
}

if ( $ylow > $y1 ) {
$ylow = $y1;

}
if ( $ylow > $y2 ) {

$ylow = $y2;
}
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if ( $xhigh < $x1 ) {
$xhigh = $x1;

}
if ( $xhigh < $x2 ) {

$xhigh = $x2;
}

if ( $yhigh < $y1 ) {
$yhigh = $y1;

}
if ( $yhigh < $y2 ) {

$yhigh = $y2;
}

}

print CHDEN_MATH "PlotStyle->{{Thickness[0.001]}},\n";
print CHDEN_MATH

"FrameLabel->{\"X Distance (AU)\", \"Y Distance (AU)\"}\n";
print CHDEN_MATH ",SymbolShape->None\n";
print CHDEN_MATH ",PlotJoined->True";
print CHDEN_MATH

",PlotLabel->\"Charge Density Plot ($x,$y)\\n for
Energy $energy\\n (Energy Delta = $delta)\"\n";

print CHDEN_MATH
",Frame->True,\nPlotRange->{{$xlow,$xhigh},{$ylow,$yhigh}}\n";

print CHDEN_MATH ",AspectRatio->1\n";
print CHDEN_MATH ",ImageSize->{500,500},DisplayFunction->Identity];\n";
print CHDEN_MATH

"Export[\"$directory/$output.eps\",chdengraph,\"EPS\"];\n";

close CHDEN_FILE;
close CHDEN_MATH;

‘/usr/local/bin/math < $directory/$output > test_log‘;

}
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