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Diophantine approximation is a topic of number theory concerned with rational ap-
proximations of real, typically irrational, numbers. In other words, we seek q ∈ Z for
a given α ∈ R such that ||qα|| (the distance from qα to the nearest integer) is small.
This thesis serves as a primer on many of the famous results in this field. First, the
fundamental result of Diophantine approximation, Dirichlet’s theorem, is presented
along with several methods of proof. Other theorems involving limits of accuracy are
given before moving into inhomogeneous approximations (of the form ||qα − β|| for
some β ∈ R). Finally, recent results in the inhomogeneous case are used to prove a
theorem on irrational circle rotations with connections to ergodic theory.
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CHAPTER ONE

Dirichlet’s Theorem

A major area in the field of Diophantine approximation involves how well we can

approximate a real number by rational numbers. A classic first result in this subject

is Dirichlet’s Approximation Theorem.

Theorem (Dirichlet). For each α ∈ R and Q ∈ N \ {1}, there exists p, q ∈ Z with

1 ≤ q < Q such that
∣

∣

∣

∣

α− p

q

∣

∣

∣

∣

≤ 1

qQ
. (1)

Furthermore, with α irrational, there exist infinitely many solutions p

q
to the inequality

∣

∣

∣

∣

α− p

q

∣

∣

∣

∣

<
1

q2
. (2)

Pigeonhole Principle Proof

We multiply both sides of (1) by q to arrive at the inequality |qα− p| ≤ 1

Q
. Now

consider numbers of the form sα − ⌊sα⌋. Letting s range from 1 to Q − 1, we get a

list of Q − 1 numbers, and then add to our list 0 and 1. All of these can be written

in the form mα − n for some m,n ∈ Z with m = s, n = ⌊sα⌋ for 1 ≤ s ≤ Q − 1

and 0 = 0α − 0 and 1 = 0α − (−1). Furthermore, all fall in the interval [0, 1].

Divide this interval into Q segments each of length 1

Q
. By the Pigeonhole Principle,

at least two of the Q+1 numbers created above must fall in one of the intervals. Call

m1, n1,m2, n2 the corresponding integers. Note that m1 6= m2 by our choice of the
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m,n. Let m1 > m2 without loss of generality. Then we have

|(m1α− n1)− (m2α− n2)| = |(m1 −m2)α− (n1 − n2)| ≤
1

Q
.

Taking p = m1 −m2 and q = n1 − n2, we have the first part of the theorem.

Now take α irrational. Let’s say we have some number of solutions to (2): p1
q1
, . . . , pn

qn
.

Then take Q big enough so that 1

Q
<

∣

∣

∣
α− pi

qi

∣

∣

∣
for all i ∈ {1, . . . , n}. Note that if we

have no solutions yet we can take Q to be anything. By the first part of the theorem,

there exists a solution p

q
(with 1 ≤ q < Q) such that

∣

∣

∣

∣

α− p

q

∣

∣

∣

∣

≤ 1

qQ
<

1

q2
.

Note that this solution is distinct from all of the previous ones (since 1

qQ
≤ 1

Q
). Using

this method, we can obtain infinitely many solutions.

Farey Fractions

A useful tool in the study of Diophantine approximation is that of Farey fractions,

named after the British geologist John Farey, Sr. The Farey fractions Fn of order n

consist of all fractions p

q
∈ [0, 1] with denominator less than or equal to n, reduced to

lowest terms. For example:

F1 = {0
1
,
1

1
}, F2 = {0

1
,
1

2
,
1

1
}, F3 = {0

1
,
1

3
,
1

2
,
2

3
,
1

1
}, F4 = {0

1
,
1

4
,
1

3
,
1

2
,
2

3
,
3

4
,
1

1
} .
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When put in increasing order as above, these fractions are also referred to as Farey

sequences. These easily defined sequences turn out to have useful properties which

will allow for a second proof of the second part of Dirichlet’s theorem as well as a

proof of Hurwitz’s Theorem (cf. Chapter 2). This latter result deals with tightening

the bound given by Dirichlet and shows that there is a limit to how far we can restrict

our bound before we lose the guarantee of infinitely many integers with the desired

property.

For any two fractions p

q
, r
s
with p

q
< r

s
, it is clear that qr− ps > 0, i.e. qr− ps ≥ 1.

We can also write this as r
s
− p

q
≥ 1

qs
. The equality case in both expressions signifies

that two fractions are as close as possible. As it turns out, any two consecutive Farey

fractions are as close as possible, a conjecture originally stated and proved by Cauchy,

the proof of which we demonstrate now. As a historical note, an immediate corollary

of this theorem is that given any three consecutive Farey fractions, a
b
< c

d
< e

f
, the

middle fraction is the mediant of its neighbors (i.e. c
d
= a+e

b+f
). This was actually the

original conjecture of John Farey. We take the theorem in its following form from

Klazar [7].

Theorem (Cauchy-Farey). If p

q
, r
s
with p

q
< r

s
are consecutive Farey numbers in Fn,

then they are as close as possible and thus qr − ps = 1.

Proof. We seek to show that the pair r, s is a solution to the Diophantine equation

qx − py = 1 where x, y ∈ Z are the unknowns. The equation has a solution, since

gcd(p, q) = 1, and thus there are any number of solutions formed by x−pa, y− qa for

any a ∈ Z. So there exist x1, y1 with the constraint that 0 ≤ n − q < y1 ≤ n, where
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n is the order of our Farey sequence Fn.

We know qx1 − py1 = 1, and thus

x1

y1
=

1

qy1
+

p

q
.

Note that x1

y1
∈ Fn: gcd(x1, y1) = 1 from the fact that x1, y1 solves the Diophantine

equation above, 0 < y1 ≤ n by how we defined y1 and finally 0 < x1 ≤ y1 (since

qx1 − py1 = 1 and 0 < p < q).

From above, x1

y1
> p

q
and thus x1

y1
≥ r

s
. We show that equality must be the case,

and thus prove the theorem, by showing that a strict inequality (x1

y1
> r

s
) leads to a

contradiction.

We know, based on the ordering of the fractions, that:

r

s
− p

q
≥ 1

qs
and

x1

y1
− r

s
≥ 1

sy1
.

Adding the two together, we arrive at

x1

y1
− p

q
≥ q + y1

qsy1
.

Furthermore, using the equation from earlier, we know the left hand side is equal to

1

qy1
. Thus we have

1

qy1
≥ q + y1

qsy1
.

But this then implies that s ≥ q+ y1, which from the earlier restriction on y1, implies
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s > n. This is a contradiction (since r
s
∈ Fn). Thus

x1

y1
= r

s
and the result follows.

Using this knowledge that consecutive Farey fractions are as close as possible, we

can construct a simple proof of the second part of Dirichlet’s Theorem.

Let α ∈ (0, 1) be an irrational number. We find the Farey fractions closest to

α: p

q
, r
s
∈ Fn for some fixed n with p

q
< α < r

s
. Since the two Farey fractions are

consecutive, the theorem above tells us that r
s
− p

q
= 1

qs
. We have two cases.

Case 1: q ≤ s

α− p

q
<

r

s
− p

q
=

1

qs
≤ 1

q2

Case 2: q > s

∣

∣

∣
α− r

s

∣

∣

∣
<

∣

∣

∣

∣

r

s
− p

q

∣

∣

∣

∣

=
1

qs
<

1

s2

So it is clear we have at least one solution. From here we refine our bounding of

α by looking at Farey fractions of a higher order (∈ Fm). We use m large enough so

that 1

m
< min(α− p

q
, r
s
− α). Note that 1

m
is the maximum distance between any two

consecutive fractions in Fm. From here we start the process anew, finding consecutive

a
b
, c
d
∈ Fm such that a

b
< α < c

d
. Our definition of m guarantees that a

b
6= p

q
and that

c
d
6= r

s
. Thus we can find a new approximation as we did above. Since we can always

find a higher m that gives us a closer approximation, we can obtain infinitely many

solutions p

q
to the inequality

∣

∣

∣
α− p

q

∣

∣

∣
< 1

q2
.
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CHAPTER TWO

Limits of Accuracy

In addition to providing an alternative proof of Dirichlet’s Theorem, Farey frac-

tions are key in the proof of Hurwitz’s Theorem, a result which improves upon the

upper bound laid out by Dirichlet.

Theorem (Hurwitz). For every irrational α, there exist infinitely many solutions p

q

to the inequality
∣

∣

∣

∣

α− p

q

∣

∣

∣

∣

<
1√
5q2

. (1)

Furthermore, with φ = 1+
√
5

2
and for every constant C >

√
5, the inequality

∣

∣

∣

∣

φ− p

q

∣

∣

∣

∣

<
1

Cq2
(2)

has only finitely many solutions p

q
.

Proof. To prove the first part of this theorem, let α ∈ (0, 1) without loss of generality.

Given two consecutive members p

q
, r
s
∈ Fn for some n such that p

q
< α < r

s
, we wish

to show that either

p

q
,
r

s
, or their mediant

a

b
=

p+ r

q + s

satisfies (1). If this can be shown, the theorem follows simply by employing the same

refining argument used in the Farey fraction proof of Dirichlet’s theorem.

For the purpose of arriving at a contradiction, we first assume that none of the
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fractions satisfy (1). Furthermore, we assume a
b
> α (the proof given a

b
< α is

similar). We thus know:

α− p

q
≥ 1√

5q2
,

a

b
− α ≥ 1√

5b2
, and

r

s
− α ≥ 1√

5s2
.

We then add the first and second inequalities along with the first and third in-

equalities, obtaining:

a

b
− p

q
≥ 1√

5

(

1

b2
+

1

q2

)

and
r

s
− p

q
≥ 1√

5

(

1

s2
+

1

q2

)

.

From the Cauchy-Farey theorem, we have the equalities a
b
− p

q
= 1

bq
and r

s
− p

q
= 1

sq
.

We multiply the first inequality by
√
5b2q2 and the second one by

√
5s2q2 to obtain

√
5bq ≥ b2 + q2 and

√
5sq ≥ s2 + q2 .

Adding them together and substituting in b = q + s gives

√
5q(q + 2s) ≥ 2s2 + 3q2 + 2sq

or equivalently

(3−
√
5)q2 + 2s2 + (2− 2

√
5)sq ≤ 0

which can finally be rewritten as

1

2

(

(1−
√
5)q + 2s

)2

≤ 0 .
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Since a square can’t be negative, this implies (1 −
√
5)q + 2s = 0, and thus

√
5 =

1 + 2s
q
∈ Q, which is clearly not true. Therefore, we have arrived at a contradiction

and our assumption that none of the fractions satisfy (1) must be false. This proves

the first part of the theorem.

To prove the second part of the theorem, we once again assume, for the sake of

arriving at a contradiction, that there are infinitely many solutions p

q
to (2) for some

fixed C >
√
5. If we let δ ∈ R be such that |δ| < 1

C
, then our assumption above is

the same as saying there are infinitely many p

q
solving

φ =
p

q
+

δ

q2
.

We rearrange this as δ
q
= qφ − p. Then inserting the numerical value for φ and

subtracting q
√
5

2
, we get

δ

q
− q

√
5

2
=

q

2
− p .

We then square both sides and subtract off 5q2

4
to get

δ2

q2
− δ

√
5 = −q2 − pq + p2 .

Since p, q ∈ Z, the left-hand side of this equation must also be an integer. Fur-

thermore, for large enough q (which we know exists given our assumption of infinite

solutions),

∣

∣

∣

∣

δ2

q2
− δ

√
5

∣

∣

∣

∣

< 1 since lim
q→∞

δ2

q2
= 0 and

∣

∣

∣
δ
√
5
∣

∣

∣
<

√
5

C
< 1 .
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Thus, −q2 − pq + p2 = 0 must have a solution and consequently we can write q2 −

4pq + 4p2 = 5q2, i.e., (2p− q)2 = (q
√
5)2. As in the proof of the first part, this leads

to
√
5 = 2p

q
− 1 ∈ Q, which is once again a contradiction.

Hurwitz’s Theorem provides, in some sense, a best bound on infinite rational

approximations, but really only deals with a very specific type of approximation

function. To make this more clear, we use the notation: ||qα|| = min
n∈Z

|qα− n|. Thus,

we can say the theorems of Dirichlet and Hurwitz only consider approximations of

the form ||qα|| < 1

Cq
. But what if we want to discuss other approximating sequences

for the right-hand side of this inequality and the results obtained? This question is

the very basis of a field called metric Diophantine approximation, of which Khinchin’s

(or Khintchine’s) Theorem is a central result.

Theorem (Khinchin). Let (Ψq) be a non-increasing sequence of positive real numbers.

(a) If
∑

q Ψq diverges, then for almost every α ∈ R there exist infinitely many

integers q > 0 with ||qα|| < Ψq.

(b) If
∑

q Ψq converges, then for almost every α ∈ R there exist only finitely many

integers q > 0 with ||qα|| < Ψq.

The proof of part (a) involves complex methods beyond the scope of this paper.

Interested readers can consult [3, p. 324] for more details. The proof of part (b),

however, uses only basic ideas from measure theory and will be provided in Chapter 3.

The earlier result of Hurwitz tells us that for Ψq =
1

Cq
, C >

√
5, the set of excep-

tional reals α ∈ R is nonempty of measure zero. Beresnevich, Ramirez, and Velani

9



give a full characterization of this set of exceptional reals using continued fractions

[2]. Members of this set are referred to as badly approximable numbers. It is believed

that the only badly approximable algebraic irrationals are quadratic irrationals, such

as the golden ratio φ, but this conjecture (referred to in [2] as the Folklore Conjecture)

remains unproven.
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CHAPTER THREE

Inhomogeneous Approximations

Up to this point, we have been looking at bounds on ||qα||, which essentially

corresponds to irrational rotation on a unit circle with start value 0 (cf. Chapter

4). A natural extension to the theory, then, might involve a shifting of that start

value. In other words, for given β ∈ R, what is the behavior of ||qα − β||? This

type of approximation is referred to as inhomogeneous and has also been the subject

of considerable study. As Kleinbock notes in [8], it seems natural to think that this

is a simple translation of the homogeneous case, but the change in problem is actu-

ally deeper. Nevertheless, very similar results can be shown for the inhomogeneous

case, which once again use a variety of methods in their proofs. The first result we

demonstrate is improved from a theorem of Hua [5, p. 266], originally by Chebyshev.

Theorem (Improved Chebyshev). Let α be irrational and β ∈ R. Then for every

ǫ > 0 there exist infinitely many q ∈ Z with q > 0 such that

||qα− β|| < 3(1 + ǫ)

2q
.

Proof. By Dirichlet’s Theorem, we know there exist infinitely many x, y ∈ Z with

y > 0 and gcd(x, y) = 1 such that |yα − x| = y
∣

∣

∣
α− x

y

∣

∣

∣
< 1

y
. We can rewrite this in

terms of α:

α =
x

y
+

δ

y2
with |δ| < 1 .
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For a fixed y, we now choose t ∈ Z so that |yβ − t| ≤ 1

2
. We then have:

β =
t

y
+

δ′

2y
with |δ′| < 1 .

Next, we choose some ǫ′ > 0 with

(1 + ǫ′)2 +
1 + ǫ′

2
<

3

2
(1 + ǫ) .

Such a choice is possible as the left-hand side of this inequality tends toward 3

2
for

ǫ′ → 0. Due to the coprimeness of x and y, we know there exist p, q such that

ǫ′y ≤ q ≤ (ǫ′ + 1)y and qx− py = t .

With all these facts in mind, we return to our original inequality,

||qα− β|| = |qα− p− β| =
∣

∣

∣

∣

qx

y
+

qδ

y2
− p− t

y
− δ′

2y

∣

∣

∣

∣

=

∣

∣

∣

∣

qδ

y2
− δ′

2y

∣

∣

∣

∣

<
q

y2
+

1

2y
.

From our earlier restriction on q, we have y ≥ q

1+ǫ′
and thus 1

y
≤ 1+ǫ′

q
. Therefore,

||qα− β|| < q

y2
+

1

2y
< q

(1 + ǫ′)2

q2
+

1 + ǫ′

2q
=

1

q

(

(1 + ǫ′)2 +
1 + ǫ′

2

)

<
3(1 + ǫ)

2q
.

Since the start value for y can be arbitrarily large, we get the result.

This initial result serves as a good starting place for limits of accuracy in the

inhomogeneous case. However, there exist better upper bounds.
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Theorem (Minkowski). For every α, β ∈ R with α irrational and β 6= mα + n for

any m,n ∈ Z, there exist infinitely many integers q with ||qα− β|| < 1

4|q| .

The original proof of this theorem, given by Minkowski in [9], is geometric in

nature. An alternative proof can be seen in [4, p. 48], which relies largely on a

different theorem of Minkowski on linear forms.

Note the fact that q is no longer strictly positive, but rather is allowed to range

over all the integers. This differs from Hurwitz’s Theorem in the homogeneous case.

However, there does exist a true inhomogeneous analogue, first demonstrated by

Khinchin.

Theorem (Inhomogeneous Hurwitz). For every α, β ∈ R with α irrational and ǫ > 0,

there exist infinitely many integers q > 0 with ||qα− β|| < 1+ǫ√
5q
.

A proof of this theorem can be found in [5, p. 267]. There exists also an inhomo-

geneous version of Khinchin’s Theorem.

Theorem (Inhomogeneous Khinchin). Let (Ψq) be a non-increasing sequence of pos-

itive real numbers and β ∈ R.

(a) If
∑

q Ψq diverges, then for almost every α ∈ R there exist infinitely many

integers q > 0 with ||qα− β|| < Ψq.

(b) If
∑

q Ψq converges, then for almost every α ∈ R there exist only finitely many

integers q > 0 with ||qα− β|| < Ψq.

Once again, the proof of (a) proves much more difficult. Consult [1, p. 67] for

details. We present the proof of part (b) below. This then implies the homogeneous

13



case presented earlier as well (simply take β = 0). Note also that the proof of part

(b) does not require Ψq to be non-increasing.

Proof. Without loss of generality, we take α ∈ [0, 1) and 0 ≤ Ψq ≤ 1

2
. Let

B = {α ∈ [0, 1) | ||qα− β|| < Ψq for infinitely many q}. We wish to show that B has

measure zero.

Now fix q and look at Bq = {α ∈ [0, 1) | ||qα−β|| < Ψq}. Note that ||qα−β|| < Ψq

means that |qα− β − p| < Ψq for some p ∈ Z. So we have

β + p−Ψq

q
< α <

β + p+Ψq

q
.

This creates intervals of width 2Ψq

q
with centers 1/q apart from each other. Thus we

know that Bq has measure 2Ψq.

Recall that
∑

q Ψq converges, and thus, for given ǫ > 0, there exists Q ∈ N such

that
∑

q≥Q Ψq <
ǫ
2
. Note also that if a number α ∈ B, then α ∈ Bq for some q ≥ Q.

Therefore

B ⊆
⋃

q≥Q

Bq with

∣

∣

∣

∣

∣

⋃

q≥Q

Bq

∣

∣

∣

∣

∣

≤
∑

q≥Q

|Bq| ≤ 2
∑

q≥Q

Ψq < ǫ .

This holds for every ǫ > 0 and thus implies that B is a set with measure zero.

The theorems presented in Chapters 2 and 3 stand alone as strong results in the

field of Diophantine approximation, but also prove useful in other areas of mathe-

matics, such as ergodic theory. Indeed, the initial impetus for this thesis was an

exploration into a certain type of ergodic transformation. We take up this topic in

depth in the following chapter.
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CHAPTER FOUR

Irrational Circle Rotations

As discussed in Chapter 3, inhomogeneous Diophantine approximations can be

viewed in the paradigm of an irrational rotation on [0,1) (identified with the unit

circle T). In [6], Kim explores this idea and proves a rather stunning result on what

he calls the shrinking target property.

Theorem (Kim). Let α be an irrational number. Then for almost every β ∈ R,

lim inf
q→∞

q||qα− β|| = 0 .

Kim’s discovery shows how the result of Hurwitz presented in Chapter 2 is actually

an outlier in some sense. From this new viewpoint of the limit inferior, we see that

for the irrational φ,

lim inf
q→∞

q||qφ|| = 1√
5
.

To see this, note that the first part of Hurwitz implies that lim inf
q→∞

q||qα|| ≤ 1√
5

for any irrational α. The second part of Hurwitz’s theorem implies that, for α = φ,

no subsequence of (q||qφ||) exists which converges to a value less than 1

C
for C >

√
5.

More precisely,

lim inf
q→∞

q||qφ|| ≥ 1

C
for all C >

√
5 =⇒ lim inf

q→∞
q||qφ|| ≥ 1√

5
.
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Thus β = 0 belongs to the set of all β for which Kim’s result does not hold (a set of

measure zero).

Kim’s theorem can be used in the proof of a result related to ergodic theory, the

field which first led us to the study of Diophantine approximation. The original issue

at hand was a conjecture dealing with the maximal operator of ergodic theory, stated

as follows:

Conjecture 1. Let T be a measure preserving transformation on the nonatomic prob-

ability space (X,Σ, µ) and let f be a µ-measurable function on that space. If T ∗f(x)

is finite µ-almost everywhere, where T ∗f is defined by

T ∗f(x) = sup
N≥1

1

N

∣

∣

∣

∣

∣

N−1
∑

j=0

f(T jx)

∣

∣

∣

∣

∣

,

then the limit

lim
N→∞

1

N

N−1
∑

j=0

f(T jx)

exists µ-almost everywhere.

The initial idea was that certain properties (e.g. a natural cancellation) of the

ergodic transformation associated to an irrational rotation on [0,1) might make it an

excellent candidate for a possible counterexample. For this reason, we sought to use

Diophantine results, like the theorem of Hurwitz, to show that the conjecture was

wrong. As it turns out, Kim’s theorem makes it clear that the irrational rotation

transformation provides no trivial counterexamples and is by no means an easy to

handle ergodic transformation itself. Theorem 1 summarizes the results discovered.
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Before presenting its statement and proof, we first prove several lemmas recalling

pertinent results in analysis. Recall that for a sequence (an) of real numbers we have

the definition

lim sup
n→∞

an = lim
N→∞

(sup
n≥N

an) .

Both lim sup
n→∞

an = ∞ and lim sup
n→∞

an = −∞ are possible.

Lemma 1. If (an) and (bn) are real sequences, then

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

(an) + lim sup
n→∞

(bn) ,

provided the right side of this inequality is defined (i.e. not ∞−∞ or −∞+∞).

Proof. For every N ≥ 1 and i ≥ N , we know that

ai + bi ≤ sup
n≥N

an + sup
n≥N

bn .

Thus sup
n≥N

(an + bn) ≤ sup
n≥N

an + sup
n≥N

bn. Taking N → ∞, we get the result.

Lemma 2. If (an) and (bn) are real sequences and bn → b ∈ R, then

lim sup
n→∞

(an + bn) = lim sup
n→∞

(an) + b = lim sup
n→∞

(an + b) .

Proof. By Lemma 1, we know lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

(an) + b. Now rewrite an as

an+bn−bn. Applying Lemma 1 again, we see that lim sup
n→∞

(an+bn−bn) ≤ lim sup
n→∞

(an+

bn)−b (since −bn → −b). Thus we have the equality lim sup
n→∞

(an+bn) = lim sup
n→∞

(an)+b.
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The equality lim sup
n→∞

(an + b) = lim sup
n→∞

(an) + b follows from considering the constant

sequence bn → b.

Recall that lim sup
n→∞

an can also be defined as the maximal limit (possibly −∞ or

∞) of a subsequence (ank
) of (an).

Lemma 3. If (an) and (bn) are real sequences and bn → b ∈ R with b > 0, then

lim sup
n→∞

(anbn) = b lim sup
n→∞

(an) = lim sup
n→∞

(anb) .

Proof. Note that convergent subsequences (ank
bnk

) of (anbn) correspond to conver-

gent subsequences (ank
) of (an), and that lim

k→∞
ank

bnk
= b lim

k→∞
ank

. Furthermore, for

b > 0, maximal limits of subsequences of (anbn) correspond to maximal limits of sub-

sequences of (an), and lim sup
n→∞

(anbn) = b lim sup
n→∞

(an). For the second equality simply

consider a constant sequence bn = b.

Lemma 4. If (an) is a real sequence, then

lim sup
n→∞

|an| = max{lim sup
n→∞

an, lim sup
n→∞

(−an)} .

Proof. Let lim sup
n→∞

|an| = c and let (ank
) be a subsequence of (an) with ank

→ c.

There will either exist infinitely many k with ank
≥ 0 or infinitely many k with

ank
≤ 0. The first case results in a subsequence (an′

k
) of (ank

) with |an′

k
| = an′

k
→ c,

and thus c ≤ lim sup
n→∞

an. The latter case results in a subsequence (an′

k
) of (ank

) with
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|an′

k
| = −an′

k
→ c, and thus c ≤ lim sup

n→∞
(−an). In both cases,

c ≤ max{lim sup
n→∞

an, lim sup
n→∞

(−an)} .

Note however that we also have ±an ≤ |an| for all n, hence lim sup
n→∞

an, lim sup
n→∞

(−an) ≤

c and thus

max{lim sup
n→∞

an, lim sup
n→∞

(−an)} ≤ c .

Lemma 5. If (an) is a sequence converging to a finite limit L, then

lim sup
n→∞

|an+1 − an| = 0 .

Proof. As an → L, we have an+1 → L and an+1−an → L−L = 0. Hence, |an+1−an| →

0. In particular,

lim sup
n→∞

|an+1 − an| = lim
n→∞

|an+1 − an| = 0 .

These lemmas will be used in the proof of the main theorem, stated below.

Theorem 1. Let α be an irrational number, and define the measure preserving trans-

formation T on [0, 1) by

Tx = (x+ α) mod 1 .

Define the function f on [0, 1) by

f(x) =
1

x− 1

2

.
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If x ∈ [0, 1), the limit

lim
N→∞

1

N

N−1
∑

j=0

f(T jx)

fails to converge to a finite number. Moreover for almost every x ∈ [0, 1) we have

T ∗f(x) = sup
N≥1

1

N

∣

∣

∣

∣

∣

N−1
∑

j=0

f(T jx)

∣

∣

∣

∣

∣

= ∞ .

Proof. We first show that at no point x ∈ [0, 1) does

lim
N→∞

1

N

N−1
∑

j=0

f(T jx)

converge to a finite value. We proceed by contradiction. Suppose for a given x ∈ [0, 1)

that

lim
N→∞

1

N

N−1
∑

j=0

f(T jx) = L < ∞ .

Since α is an irrational number, by the Inhomogeneous Hurwitz Theorem (using

β = 1

2
− x and ǫ =

√
5− 1), we can write

∥

∥

∥

∥

qα + x− 1

2

∥

∥

∥

∥

<
1

q
,

and thus

|f(T qx)| = |f((qα + x) mod 1)| > q

for infinitely many positive integers q.
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Keeping this fact in mind, note that

lim sup
q→∞

∣

∣

∣

∣

∣

1

q + 1

q
∑

j=0

f(T jx)− 1

q

q−1
∑

j=0

f(T jx)

∣

∣

∣

∣

∣

= lim sup
q→∞

∣

∣

∣

∣

∣

q

q + 1
· 1
q
f(T qx)− 1

q + 1
· 1
q

q−1
∑

j=0

f(T jx)

∣

∣

∣

∣

∣

,

which, applying Lemmas 2, 3 and 4,

= lim sup
q→∞

∣

∣

∣

∣

1

q
f(T qx)− 1

q + 1
L

∣

∣

∣

∣

,

and applying Lemmas 2 and 4 again,

= lim sup
q→∞

1

q
|f(T qx)| > 1 .

The contrapositive of Lemma 5 thus implies that limN→∞
∑N−1

j=0
f(T jx) does not

converge to a finite limit L, which contradicts our supposition and proves the first

part of the theorem.

We now show that for almost every x ∈ [0, 1), we have

T ∗f(x) = sup
N≥1

1

N

∣

∣

∣

∣

∣

N−1
∑

j=0

f(T jx)

∣

∣

∣

∣

∣

= ∞ .

To accomplish this, we utilize Kim’s result with β = 1

2
− x, i.e. that

lim inf
q→∞

q

∥

∥

∥

∥

qα + x− 1

2

∥

∥

∥

∥

= 0

21



for almost every x ∈ [0, 1). Therefore

lim sup
q→∞

1

q
|f(T qx)| = ∞

for almost every x ∈ [0, 1). Now let x ∈ [0, 1) be such that the limit above is infinite.

We show that T ∗f(x) = ∞, again proceeding by contradiction. Suppose that

sup
N≥1

1

N

∣

∣

∣

∣

∣

N−1
∑

j=0

f(T jx)

∣

∣

∣

∣

∣

= M < ∞ .

Then the triangle inequality gives

∣

∣

∣

∣

∣

1

q + 1

q
∑

j=0

f(T jx)− 1

q

q−1
∑

j=0

f(T jx)

∣

∣

∣

∣

∣

≤ 1

q + 1

∣

∣

∣

∣

∣

q
∑

j=0

f(T jx)

∣

∣

∣

∣

∣

+
1

q

∣

∣

∣

∣

∣

q−1
∑

j=0

f(T jx)

∣

∣

∣

∣

∣

≤ 2M

for all q ≥ 0. Thus,

lim sup
q→∞

∣

∣

∣

∣

∣

1

q + 1

q
∑

j=0

f(T jx)− 1

q

q−1
∑

j=0

f(T jx)

∣

∣

∣

∣

∣

≤ 2M .

But this is a contradiction, since by the earlier calculation

lim sup
q→∞

∣

∣

∣

∣

∣

1

q + 1

q
∑

j=0

f(T jx)− 1

q

q−1
∑

j=0

f(T jx)

∣

∣

∣

∣

∣

= lim sup
q→∞

1

q
|f(T qx)| = ∞ .

The result of Theorem 1 raises almost as many questions as it answers. For
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example, we proved that for almost every x ∈ [0, 1) the limit

lim
N→∞

1

N

N−1
∑

j=0

f(T jx)

fails to converge to a finite number. However, this gives no information as to its man-

ner of divergence. Our intuition tells us that the ergodic averages would not converge

to either +∞ or −∞ (at least almost everywhere), but this has yet to be proven.

Additionally, Conjecture 1 remains an open problem. Thus, there are still plenty

of topics of ongoing research, and it appears that developments in inhomogeneous

Diophantine approximation will be key to further progress.
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