
ABSTRACT

Bayesian Propensity Score Analysis for Clustered Observational Studies

Qi Zhou, Ph.D.

Chairperson: Joon Jin Song, Ph.D.

There is an increasing demand to investigate questions in observational studies. The

propensity score is a popular confounding adjustment technique to ensure valid causal in-

ference for observational studies. Observational data often have multilevel structure that

would lead to one or more levels of confounding. Multilevel models are employed in

Bayesian propensity score analysis to account for cluster and individual level confounding

in the estimation of both the propensity score and in turn the exposure effect. In an ex-

tensive simulation study, several propensity score analaysis approches with varing degrees

of complexity of multilevel modeling structures are examined in terms of average absolute

bias and mean square error. The Bayesian propensity score analysis for multilevel data is

further developed to accomodate misclassified binary responses. Errors in response can

distort the exposure to response relationship. The true exposure-response surface can be

recovered through two classification probabilities, the sensitivity and specificity. These link

the observed misclassified response and the unobserved true response. Incorpating misclas-

sification greatly reduces bias in exposure effect estimation and yields coverage rate of 95%

credible sets close to the nomial level. Strong ignorability is the fundamental assumption



for propensity score. There is little literature that discusses this important but untestable

assumption. Without the confidence that there are no unmeasured confounders, we assume

the existence of unmeasured confounding and assess the sensitivity of exposure effect esti-

mation to unmeasured confounding through two sensitivity parameters which characterize

the associations of the unmeasured confounder with the exposure status and response vari-

able. The influence of unmeasured confounding can be examined by possible change in

exposure effect estimation with hypothetical values of sensitivity parameters.
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CHAPTER ONE

Introduction

In randomized controlled trials, the subjects are allocated to different groups by ran-

dom chance. The distribution of confounders, measured and unmeasured, are theoretically

balanced among groups. Therefore, the treatment (or exposure to distinguish ’treatment’

effect in non-clinical setting) effect can be directly estimated by comparing the difference

of treatment groups. However, a lot of data do not have the luxury of randomization, for

instance, data collected from medical records and social science studies. Many questions of

interest in observational studies face the difficulty that the direct comparison of treatment

groups may not be reliable due to possible confounding among groups being compared.

For observational studies, subjects have varying probabilities to go in any treatment group

and therefore the confounding factors are not equally distributed among groups.

The propensity score is first proposed to adjust confounding when comparing groups.

The propensity score is the probability of receiving a treatment status conditioned on the

observed covariates. Conditional on the propensity score, the distribution of observed base-

line covariates are similar between comparison groups. Subjects with the same propensity

score have the same covariate distribution. Two quantities are usually inferred from the

propensity score: average treatment effect (ATE) and average treatment effect on treated

units (ATT). Traditionally, propensity score is estimated through logistic regression. There

are four common methods to use the estimated propensity score for inference: matching,

weighting, covariate adjustment using propensity score and stratification. In a frequen-

tist framework, the estimated propensity score is assumed true to make inference thus the

uncertainty in propensity score estimation is not integrated into the treatment effect es-

timation. Bayesian propensity score analysis combines propensity score estimation and

treatment effect inference into a single framework. The marginal distribution of the treat-
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ment effects is obtained by integrating out parameters in the propensity score model and

incorporating uncertainty in propensity score estimation in treatment effect estimation.

Observational data are often collected in the setting with a cluster structure. For ex-

amples: patients are naturally clustered by health system, further by hospital within health

system and by provider within hospital; Subjects are clustered by state and by household

within state. The cluster structure confounds the inference when cluster level confound-

ing is related to treatment assignment or potential outcome. The propensity score analysis

is originally developed for unclustered structure. Multilevel modeling is a well developed

tool to account for a cluster structure in the data. Employing multilevel modeling in propen-

sity score analysis adjusts cluster level confounding and separates variation among clusters

from random error and between-subject variance.

In epidemiology and survey data, outcome or response variables are often subject to

misclassification. Misclassification is typically referred as error in categorical variables.

Including variables contaminated with misclassification in the model can possibly bias es-

timation or reduce the efficiency of the estimates. The classical setting is non-differential

misclassification: the misclassification error in one variable is independent of the other

variables. Usually, the misclassified variable is observed and the true variables is not ob-

servable. For a dichotomous variable, the true variable is linked to the misclassified variable

with false positive and false negative probabilities. Bayesian binomial regression can fa-

cilitate the modeling of misclassified binary response. Relatively informative priors are

taken for misclassification parameters, employing the available information about misclas-

sification parameters and incorporating uncertainty about those parameters in the covariate

effect estimates.

The fundamental assumption for causal inference based on propensity score tech-

niques is the strong ignorable assumption: overlap and unconfoundness. The overlap as-

sumption states that the propensity score of all units must be between 0 and 1 and there is

overlap of the propensity score for treated units and control units, ensuring every treated
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unit has at lease one matching control unit. This assumption can be checked by histograms

of propensity among the comparative groups. If there is no or little overlap of the propensity

score of treated units in comparative groups, valid causal inference can not be made with-

out strong extrapolation. The unconfoundess assumption assumes treatment assignment is

independent of the outcomes condition on the observed covariates. Researchers are rarely

confident of satisfaction of this assumption and usually conduct sensitivity analysis for

unmeasured confounding. Sensitivity analysis assesses the possible change in parameter

estimates assuming the existence of an unmeasured confounder. Two sensitivity parame-

ters control how the unmeasured confounder enters the inferential models to characterize

the associations of the unmeasured confounder with the treatment and the outcomes. The

sensitivity parameters are unknown and there are two ways to deal with sensitivity param-

eters in the Bayesian framework. First, assume the sensitivity parameters are unknown and

informative priors are assigned to avoid non-identifiability. Informative priors of sensitiv-

ity parameters incorporate the expert opinion about unmeasured confounding and provide

a range of estimates in the presence of unmeasured confounding. This may bring in bias

due to mis-specification of priors. Second, sensitivity parameters are taken as fixed. With

a set of hypothetical values of sensitivity parameters, sensitivity analysis produces a table

of estimates. The non-identifiability and mis-specification issue are avoided.

This dissertation consists of three projects. The first project is the study of Bayesian

propensity score analysis for clustered observational data. The method is applied to inves-

tigate the effect of lipid screening on controlling LDL-C level in youth. Medical records

of patients are extracted, including demographic information, vitals and test results, etc.

Patients are clustered by health systems. Employing a multilevel model in propensity score

analysis to adjust for confounding at the individual level and cluster level in both propensity

score estimation and the treatment effect. Through extensive simulations, several propen-

sity score analysis approaches are compared with varying complexity of multilevel model-

ing structures. Fixed effect propensity score model and random intercept outcome model
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turn out to be the best combination with smallest average absolute bias and mean square

error among all candidate combinations.

The second project is motivated by the study of the impact of female employment

on the physical spousal violence towards women for India National Health Survey 2005-6.

The females in the study are clustered by state and females are more similar in demographic

characteristics and social environment within same state. Some women may not answer yes

to the survey question of physical violence even when they truly suffer physical violence.

The response variable is subject to misclassification. Bayesian multilevel propensity score

analysis is extended to accommodate misclassification in the response. The covariate to

misclassified response regression surface is adjusted with sensitivity and specificity to re-

cover the true covariate to response surface. Relatively informative priors for sensitivity

and specificity are extracted from external information. In the simulation, four scenar-

ios of propensity score analysis are compared: ignoring misclassification and multilevel

structure, incorporating misclassification only, incorporating multilevel structure only and

incorporating both misclassification and multilevel structure. The scenario taking into ac-

count misclassification and multilevel structure yields smallest average absolute bias and

closest coverage rate of credible intervals to the nominal level. It is found that correcting

misclassification in response is more crucial to reduce bias and improve coverage rate than

incorporating a multilevel structure. The contributors of this paper are: Dr. Joon Jin Song,

Dr. James D. Stamey and Dr. Yoo-Mi Chin and Qi Zhou. Dr. Song and Qi Zhou did the

literature review and worked on the methodology and simulation studies in this paper. Dr.

Stamey provided prior information on the sensitivity parameters. Dr. Chin worked on data

description and helped interpret empirical results.

The third project proposes Bayesian sensitivity analysis of unmeasured confound-

ing for observational data with misclassified responses. The approach corrects bias from

error in response and examines possible change in exposure effect estimation if a binary

unmeasured confounder exists. We assess the influence of unmeasured confounding on

4



exposure effect estimation through two sensitivity parameters that enter inferential models

as regression coefficients and characterize the associations of the unmeasured confounder

with the exposure status and with the response variable. In the analysis, exposure effect

estimators are produced from a range of hypothetical values of sensitivity parameters. The

proposed approach is illustrated in the study of the effect of female employment status on

the likelihood of domestic violence. An extensive simulation study is conducted to con-

firm the efficacy of the proposed approach. The simulation results indicate accounting for

misclassification in response and unmeasured confounding significantly reduces the bias in

exposure effect estimation.
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CHAPTER TWO

Bayesian Propensity Score Analysis for Multilevel Observational Data

2.1 Introduction

Randomized controlled trials, when properly executed, support causal inference since

random assignment of study subjects to comparison groups is free of confounding. Since

some investigations necessarily require passive observation and nonrandomized group as-

signment, identified statistical associations may be confounded with distributions of con-

founders due to lack of randomization.

The method called propensity score, first proposed by Rosenbaum and Rubin (1983b),

is a popular confounding adjustment technique for approaching causal inference in obser-

vational studies. The propensity score is the conditional probability of obtaining treat-

ment assignment based on observed covariates, typically estimated through logistic regres-

sion. Then the estimated score, which should now account for the differences in measured

confounder distributions among the compared groups, is used in the outcome model for

treatment effect estimation. Since the estimated propensity score is treated as true in the

outcome analysis, the uncertainty in propensity score estimation is ignored, and therefore

variance in treatment effect estimates is underestimated. In the multilevel setting, ignor-

ing uncertainty in propensity score estimation would confound with random effects and

measurement error. The most common propensity score methods include using propensity

score as a covariate, inverse probability weighting, matching and stratification. Propensity

score stratification retains all the subjects in the study and sufficiently takes advantage of

information in the data (Elze et al., 2017).

Several methods have been proposed to adjust the variance of treatment effect es-

timation. Abadie and Imbens (2008, 2009) criticized standard bootstrapping for not pro-

viding valid inference for standard errors, and instead proposed standard error estimators
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of treatment effect for propensity score matching. The weakness of this method is that the

variance estimate can be adjusted downward to be in a negative range. To avoid this issue of

variance adjustment as proposed by Abadie and Imbens (2009), McCandless et al. (2009)

introduced a Bayesian propensity score solution using stratification to handle uncertainty

in the propensity score estimation. Bayesian propensity score analysis treats parameters

in the propensity score as nuisance parameters then incorporated uncertainty in estimat-

ing propensity scores into treatment effect estimation in the outcome model by integrating

out the nuisance parameters. An (2010) proposed Bayesian propensity score matching

and covariate adjustment and an intermediate Bayesian propensity score estimator. An’s

work showed that a Bayesian approach provided improved variance estimates of the treat-

ment effect. When the propensity score and the outcome model are estimated at same

time in the Bayesian framework, a feedback occurs: updated parameters in the outcome

model affect the update of parameters in the propensity score model. To avoid feedback of

the outcome model onto the propensity score model, Kaplan and Chen (2012) proposed a

two-step Bayesian propensity score analysis where the posterior samples of the estimated

propensity scores are used for a Bayesian outcome counterpart by matching, weighting and

stratification. The two-step Bayesian approach may provide overly high coverage rates if

informative priors are used.

Data collected in many studies are clustered naturally, for example, by health systems

or practice groups. Propensity scores have not been well studied in the setting of clustered

data. If cluster-level confounding is associated with treatment assignment and goes unmea-

sured, then the assumption of strong ignorability is violated and treatment effect estimation

might be biased. Multilevel models have been developed for clustered data to deal with

hierarchical structures. Specifically for time-series cross-sectional data, employing multi-

level modeling in both steps of propensity score matching results in less bias and yields

more efficient estimates (Su and Cortina, 2009). Through intensive Monte Carlo simula-

tions, Arpino and Mealli (2011) noted the necessity of addressing the cluster structure in
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propensity score matching. Li et al. (2013) evaluated the performance of different propen-

sity score weighting estimators and concluded that considering the cluster structure in one

stage of propensity score weighting results in less bias, and the treatment effect estimate is

more impacted by the choice of outcome model than by the propensity score model.

The objective of this paper is to propose a Bayesian propensity score analysis for

multilevel, clustered observational data in order to improve treatment effect estimation by

accounting for cluster and individual level confounding. Besides, the Bayesian approach

naturally accounts for uncertainty in propensity score estimation in treatment effect esti-

mates and distinguishes the uncertainty from random effects and measurement error. To

highlight the performance of multilevel modeling applied to Bayesian propensity score

stratification, we examine a scenario of lipid screening on managing LDL-C levels among

all youth within three large integrated healthcare systems. We evaluated different mul-

tilevel models in both propensity score and outcome stages in the simulation study and

applied these models to the case study. Section 2 introduces the motivating case study

of lipid management in youth. In Section 3, a general modeling for propensity score and

treatment effect estimation is proposed with related, simplified candidate models used in

the case study and simulations. Section 4 presents simulation results. The analysis of the

application is discussed in Section 5. The chapter concludes with discussion in Section 6.

2.2 Motivating Case Study

Premature adult atherosclerotic cardiovascular disease has been shown to begin as

early as childhood, especially for youth with markedly elevated total and low density

lipoprotein cholesterol (LDL-C) associated with an inherited condition called familial hy-

percholesterolemia. Lipid management requires blood cholesterol testing, provider recog-

nition (diagnosis) of abnormal values, and proper treatment of the lipid disorders. Primary

determinants of these decision points may occur at the child-parent level, provider level,

geographic level, demographic level, or health system level and may be influenced by a

number of known factors(child, parent, provider preferences and biases, insurance status
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including copays, distance from a clinic and/or laboratory setting, etc.) and unknown vari-

ables. Our methodology is motivated by an observational study investigating lipid man-

agement in youth aged from 2 to 20 years from three health systems located in central

Texas, north-central Pennsylvania and the Detroit metropolitan area in southeastern Michi-

gan. From the total cohort of size 1,211,556, we obtained data from 2,349 youth who

had an LDL-C test result or multiple results between 2001 and 2012. The data is natu-

rally clustered by health systems and within each health system clustered at the clinic level

and within the clinic, at the provider level although there can be and often is flux between

clinics and especially between providers over time giving rise to very heterogeneous en-

counters. We consider the cluster at the health system level in the modeling. The study

cohort is divided into two groups depending on whether they had a lipid screening any time

between 2001 to 2011 – a tested (treatment) group and a control group if no lipid test was

performed. For each patient, demographics information, history of diabetes, hypertension

and dyslipidemia diagnostics, prescription medication claims and laboratory tests are re-

trieved. The number of outpatients in 2012 was obtained as a cluster level covariate.

Table 2.1 summarizes the characteristics of each group. Crudely, average LDL-C

level in 2012 in the tested group is 8.1 mg/dL higher than the control group. The average

age, average percentage of females and average percentage of whites are similar in the two

groups. The average body mass index BMI of the tested group is higher, possibly because

they are older (14 vs 13 years). Systolic and diastolic blood pressures in the test group are

on average higher than those of the control group. The percentage of smoking exposure is

similar in both groups. There are higher percentages of youth diagnosed with diabetes, hy-

pertension or dyslipidemia (i.e., any lipid disorder not just familial hypercholesterolemia)

in the tested group. In addition, relatively more youth are prescribed diabetes or lipid med-

ication in the tested group. Testing occurred in about 50% of youth who came to a health

care provider for a well-child visit as opposed to a visit for an acute illness and/or follow-up

appointment. We employ Bayesian propensity score analysis to adjust individual level and
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health system level observed pretreatment characteristics and to account for uncertainty in

treatment effect estimation. The goal is to infer reliable effect of prior lipid screening in

2001 to 2011 on the LDL-C level in 2012 in the cohort.

Table 2.1: Descriptive statistics of lipid management data.

Variables Lipid screening No Lipid screening
Mean SD Mean SD

a) Outcome
LDL-C level in 2012 93.38 31.38 85.28 27.42
b) Confounding characteristics
b1) Demographics

Age 14 2.35 13 2.48
Gender (Female) 46.6 % 0.50 48.1 % 0.50
Race (White) 63.1 % 0.48 61.8% 0.49
b2) Vitals

BMI 29.27 8.50 25.19 6.83
Systolic 116.40 13.63 111.46 13.22
Diastolic 68.77 9.12 66.41 8.65
b3) Diagnostics

Diabetes 5.1% 0.22 1.2% 0.11
Hypertension 1.7% 0.13 1.1% 0.11
Dyslipidemia 5.3% 0.22 1.6% 0.12
b4) Medication prescription

Lipid Medication 1.2% 0.11 0.4% 0.06
Diabetes Medication 4.9% 0.22 1.4% 0.12
b5) Other

Well Child Visit 50.9% 0.5 52.5% 0.5
Smoke 0.7% 0.09 0.8% 0.09
b6) Site level variable

Outpatient numbers 2.66 0.73 2.62 0.72
No. of observations 946 1404

2.3 Methodology

2.3.1 General Modeling

Consider data consisting of ith subject nested within jth cluster (i = 1, ...nj, j =

1, ...J ). Let Tij denote the dichotomous treatment assignment taking value 1 if subject is

in the treatment group or 0 otherwise, and let Yij denote the corresponding outcome vari-
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able. Let Xij and Cj be subject-level and cluster-level measured covariates. To estimate

treatment effects from observational data, we assume strong ignorable assumptions are

met: first, unconfoundedness assumes no unmeasured confounders exist and, conditional

on measured covariates, treatment assignment is independent of potential outcome; second,

overlap assumes there is common support of propensity scores between treatment group

and control group in the study population. Thus, each treatment unit would have at least

one control counterpart. Last, let zij = P (Tij = 1|Xij,Cj) denote the propensity score,

which is usually estimated by a logistic model. The estimated propensity score can be used

for matching, stratification and covariate adjustment in the outcome model. We focus on

the case with binary treatment and a continuous outcome, such as LDL level. To facilitate

modeling in a Bayesian framework, regression modeling is used in propensity score and

outcome estimation, and the estimated propensity score is used to create subclasses, which

allow the flexibility to estimate stratum-specific and overall treatment effects. According

to Cochran (1968) and Rosenbaum and Rubin (1984), creating five subclasses based on

estimated propensity scores can remove 90% of the bias due to measured confounding.

In this study, we propose a general framework for Bayesian propensity score analysis

for multilevel data using random effects:

logit(zij) = γ0j + (γ1 + uj)
TXij + γ2

TCj,

yij = β0j + (β1 + vj)Tij + ξTg(zij),

where g(zij) is a function of estimated propensity scores zij . Treatment effect β1 is of

primary interest and assumed to be fixed. Random intercept γ0j ∼ N(µγ, σ
2
γ) absorbs

heterogeneity of propensity scores among clusters. If a specific subject-level covariate is

known to have varying influence on propensity scores across clusters, the random compo-

nent uj ∼ N(0, σ2
u) allows cluster-specific effects of subject-level covariates on propensity

scores. In case cluster-specific treatment effect is of interest in the study, we can introduce

the random effect vj ∼ N(0, σ2
v) in our outcome model. To implement the approach us-

ing stratification on estimated propensity scores, g(zij) is specified as a vector of stratum
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membership indicators classified as:

g(zij)
T =



(1, 0, 0, 0) if 0 < zij < q1

(0, 1, 0, 0) if q1 < zij < q2

(0, 0, 1, 0) if q2 < zij < q3

(0, 0, 0, 1) if q3 < zij < q4

where (q1, q2, q3, q4) are the predetermined knots, which are typically based on quintiles of

propensity scores by maximum likelihood estimation. The proposed framework enables us

to propose a class of Bayesian propensity score analyses for multilevel observational data

by varying multilevel modelling complexity.

2.3.2 Models for Propensity Score

In this paper, we consider four models for propensity score estimation. In the pres-

ence of cluster level confounding, propensity score modeling needs to suitably control it

using cluster structure information. The first model is the simplest one including only

subject-level information by fixed effects,

PS1:logit(zij) = γ0 + γ1
TXij.

This model is inappropriate if a cluster-level covariate is associated with treatment assign-

ment. Second, cluster-level information is incorporated into propensity score modeling by

adding cluster-level covariates:

PS2:logit(zij) = γ0 + γ1
TXij + γT 2Cj.

Two alternative models employ a multilevel structure by introducing random effects. A

random intercept is used to control for heterogeneity of propensity scores among clusters

and assumes a normal distribution, N(0, σ2
γ),

PS3:logit(zij) = γ0j + γ1
TXij. (2.1)
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The last model contains both random intercept and fixed effects for cluster-level covariates

in order to remove cluster-level confounding,

PS4:logit(zij) = γ0j + γ1
TXij + γ2Cj.

2.3.3 Models for Outcome Estimation

The basic outcome model regresses the outcome variable on the treatment variable

and indicators of subclass membership based on the estimated propensity scores (ẑij),

Out 1:yij = β0 + δTij + β1
Tg(ẑij).

A random effect outcome model employs the random intercepts to take into account the as-

sociation of outcomes among clusters, which assume a normal distribution, β0j ∼ N(0, σ2
β),

Out 2:yij = β0j + δTij + β1
Tg(ẑij).

2.3.4 Posterior Inference

To complete the Bayesian model, we need to elicit prior distributions for the param-

eters in the propensity score and outcome models. Fixed parameters β1, δ, γ1 and γ2 are

given independent normal priors. For hyperparameters, we consider inverse gamma priors:

σ2
γ ∼ IG(aγ, bγ) and σ2

β ∼ IG(aβ, bβ), where IG refers to an inverse gamma distribution.

We obtain the joint posterior density p(γ, β, δ|data) by multiplying likelihood and priors,

p(γ, β, δ|data) ∝
J∏
j=1

nj∏
i=1

p(Yij|Xij, Cij, Tij, β, δ, γ)p(Tij|Xij, Cij, γ)p(β)p(δ)p(γ).

Since the posterior distributions of interest do not possess closed form, posterior samples

are obtained via Markov chain Monte Carlo (MCMC) simulation. Full conditional distri-

butions are updated successively using the Metropolis-Hastings algorithm from conditional

densities p(γ|Y,T,X,C, β, δ) and p(β, δ|Y,T,X,C, γ). The conditional density of pa-

13



rameters in the propensity score model is given by

p(γ|Y,T,X,C, β, δ) =
J∏
j=1

nj∏
i=1

p(Yij|Xij, Cij, Tij, β, δ, γ)p(Tij|Xij, Cij, γ)p(γ)

=
J∏
j=1

nj∏
i=1

[
exp(Yij(β0j + δTij + β1

Tg(z(γ0j + γ1
TXij + γ2Cij))))

1 + exp(Yij(β0j + δTij + β1
Tg(z(γ0j + γ1TXij + γ2Cij))))

× exp(γ0j + γ1
TXij + γ2Cij)

1 + exp(γ0j + γ1TXij + γ2Cij)

]
× p(γ0j)p(γ1)p(γ2),

where z(γ0j + γ1
TXij + γ2Cij) is the estimated propensity score. Updating parameters

in the propensity score model is related to the updated parameters in the outcome model.

The estimation of parameters in the outcome model assists estimation of parameters in the

propensity score model. To update parameters in the outcome model, the full conditional

is given by

p(β, δ|γ,Y,T,X,C) =
J∏
j=1

nj∏
i=1

p(Yij|Xij, Cij, Tij, β, δ, γ)p(β)p(δ)

=
J∏
j=1

exp(Yij(β0j + δTij + β1
Tg(z(γ0j + γ1

TXij + γ2Cij))))

1 + exp(Yij(β0j + δTij + β1
Tg(z(γ0j + γ1TXij + γ2Cij))))

× p(β0j)p(β1)p(δ).

The marginal distribution of δ incorporates uncertainty in propensity score estimation by

averaging over the uncertainty in posterior samples of γ.

2.4 Simulation

In the simulation, we evaluated the performance of the proposed models, with simu-

lated data for different sample sizes and strengths of association of the cluster-level covari-

ate with treatment assignment and outcome.

2.4.1 Simulation Design

In the simulation, we consider the case where there are two subject-level covariates

(X1 and X2) and one cluster-level covariate (C). 100 data sets are generated for six simu-

lation designs shown in Table 2.2. Data are generated using the following algorithm:
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(1) Generate X1, X2, and C independently from N(0, 1).

(2) For fixed values γ1, γ2 and γ3 , treatment Tij is simulated from a Bernoulli distri-

bution with probability zij generated from the following propensity score model:

logit(zij) = γ0j + γ1X1ij + γ2X2ij + γ3Cj,

where γ0j ∼ N(0, 0.5).

(3) Generate outcome from a random intercept model with simulated T and random

intercept β0j ∼ N(0, 2),

yij = β0j + δTij + β1X1ij + β2X2ij + β3Cj + εij, εij ∼ N(0, 1).

Table 2.2 summarizes the fixed parameters used to generate the synthetic data. Three sce-

narios are considered: moderate number of clusters and moderate cluster size, which is

commonly seen in studies with clustered structures (Scenario A); small number of clusters

and large cluster size as in the case study (Scenario B); large number of clusters but small

sample size within each cluster (Scenario C). For each scenario, we consider strong and

weak associations of cluster-level covariate C with treatment assignment T and outcome

Y .

Table 2.2: True parameters used for generating synthetic data for simulation designs.

Design Number of Cluster Cluster Size δ β γ
A1 20 25 1 (1,1,5) (0.5,0.5,1)
A2 20 25 1 (1,1,1) (0.5,0.5,0.2)
B1 5 100 1 (1,1,5) (0.5,0.5,1)
B2 5 100 1 (1,1,1) (0.5,0.5,0.2)
C1 100 10 1 (1,1,5) (0.5,0.5,1)
C2 100 10 1 (1,1,1) (0.5,0.5,0.2)

2.4.2 Simulation Result

For each synthetic data set, eight models combining four propensity score models

with two outcome models are fitted. Relatively non-informative priors are placed on pa-

rameters: N(0,10) for coefficients and IG(0.001,0.001) for variance component of random
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intercept. In posterior inference using MCMC, two chains are run for 10,000 iterations

with a burn-in of 5,000 samples discarded to ensure the data used are minimally influenced

by the initial values chosen, whenever initial values are over-dispersed. Convergence is

checked if the Gelman and Rubin R-hat statistics reach 1 and effective sample size ex-

ceeds 3,000 (Gelman et al., 2014). To compare the models, we assess the point estimate

of treatment effect δ with average absolute bias (bias) and mean square error (mse). Ta-

bles 2.3-2.5 summarize simulation results of all models for each scenario. The rows and

columns correspond to results of four propensity score models and two outcome models,

respectively.

Table 2.3: Average absolute bias (bias) and mean square error (mse) of treatment effect
estimator δ in simulations with strong and weak association between cluster-level
covariate and treatment effect and outcome, under 20 clusters and cluster size 25.

Design Propensity score model Out1 Out2
Bias mse Bias mse

A1

PS1 3.7495 16.1842 0.1086 0.0153
PS2 0.6663 0.5981 0.0921 0.0102
PS3 0.8543 0.8654 0.1264 0.0189
PS4 0.8335 0.8021 0.1259 0.0178

A2

PS1 0.2855 0.1383 0.0955 0.0111
PS2 0.2214 0.0821 0.0926 0.0099
PS3 0.2717 0.1079 0.1199 0.0171
PS4 0.2719 0.1034 0.1172 0.0162

Ignoring cluster structure in both propensity score model and outcome model (com-

bination of PS1 and Out1) leads to greater average absolute bias and mean square error

of treatment effect estimation than seen in other models which take cluster structure into

account in at least one stage of propensity score analysis. Bias is especially problem-

atic when a cluster-level covariate is strongly associated with treatment assignment and

outcome (scenario A1, B1, and C1). In the scenarios where the cluster-level covariate is

weakly associated with treatment assignment and outcome (A2, B2, and C2), the reduction

of bias by cluster-level adjustment is much less evident. Generally, considering clustering
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Table 2.4: Average absolute bias (bias) and mean square error (mse) of treatment effect
estimator δ in simulations with strong and weak association between cluster-level
covariate and treatment effect and outcome, under 5 clusters and cluster size 100.

Design Propensity score model Out1 Out2
Bias mse Bias mse

B1

PS1 3.6219 18.2079 0.1092 0.0167
PS2 0.5284 0.3654 0.0945 0.0106
PS3 0.4932 0.2923 0.1068 0.0139
PS4 0.4878 0.2846 0.1167 0.0171

B2

PS1 0.4481 0.2971 0.1086 0.0151
PS2 0.2794 0.1062 0.0996 0.0112
PS3 0.1942 0.0520 0.1051 0.0127
PS4 0.2126 0.0604 0.1065 0.0133

Table 2.5: Average absolute bias (bias) and mean square error (mse) of treatment effect
estimator δ in simulations with strong and weak association between cluster-level
covariate and treatment effect and outcome, under 100 clusters and cluster size 10.

Design Propensity score model Out1 Out2
Bias mse Bias mse

C1

PS1 5.0049 25.4614 0.1022 0.0123
PS2 1.5305 2.4079 0.0934 0.0119
PS3 1.0219 1.1619 0.1561 0.0290
PS4 1.0092 1.1075 0.1499 0.0276

C2

PS1 1.3337 1.8151 0.0959 0.0115
PS2 1.1392 1.3185 0.0888 0.0089
PS3 0.3525 0.1467 0.1329 0.0212
PS4 0.3607 0.1507 0.1290 0.0192
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in either propensity score model or outcome model reduces bias and mean square error of

treatment effect estimation.

In the results, we found that the outcome model influences treatment effect estima-

tion more than the propensity score model does. Using the same propensity score model,

comparison between fixed outcome model (Out1) and random intercept outcome model

(Out2) showed the latter greatly reduced the average absolute bias and mean square er-

ror. For example, using random intercept propensity score model (PS3) in Scenario A2

where the cluster-level covariate is weakly associated with treatment assignment and out-

come, the average absolute bias and mean square error of the random intercept outcome

model is reduced from 0.2717 to 0.1199 and from 0.1079 to 0.0171 in the fixed outcome

model. With the random intercept outcome model (Out2), the average absolute bias and

mean square error of the random intercept propensity score model including cluster-level

covariates (PS4) decreases from 0.1199 to 0.1172 and from 0.0171 to 0.0162 in the random

intercept propensity score model (PS3). Incorporating multilevel structure in the outcome

model improves estimation more significantly if only one stage could take into account

cluster-level confounding. The improvement is more significant when cluster-level con-

founding is strongly related to treatment assignment and outcome (Scenario A1, B1 and

C1).

Over all scenarios, the fixed-effect propensity score model (PS2) and random inter-

cept outcome model (Out2) lead to the smallest average absolute bias and mean square

error compared with all other models. For Scenario A with moderate number of clusters

and cluster size, the fixed effect propensity score model (PS2) provides the smallest average

absolute bias and mean square error compared to other propensity score models with the

same outcome model, regardless of the degree of association of cluster-level covariate with

treatment assignment and outcome. Fixed effect propensity score models do not always

perform best with the same outcome model in scenario B and C. The impact of multilevel
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modeling on bias reduction tends to weaken when the number of clusters is large relative

to cluster size (Scenario C) compared to other scenarios (Scenario A and B).

2.5 Case Study

We applied the proposed methods to the lipid management data described in Section

2. The objective of this case study is to investigate the effect of prior lipid testing on the

LDL-C level of children. The continuous outcome Yij is LDL level tested in 2012. The

treatment is the binary indicator of lipid testing from 2001 to 2011 (prior testing), taking the

value 1 (treatment) if the child had lipid testing in the pre-2012 time period, 0 (control) oth-

erwise. During the period in question, children obtained lipid tests according to guidelines

for lipid testing which include personal medical problems (i.e. diabetes, obesity, etc.) and

family history (a family history of high cholesterol or cardiovascular diseases) or if the child

is adopted and family history is unknown. Thus we elected to employ propensity scores in

order to adjust for confounding characteristics before comparing LDL-C levels among the

treatment (tested) and control (untested) groups. The individual level confounders Xij we

accounted for include demographic characteristics, BMI, systolic and diastolic blood pres-

sures, lipid medication prescription claim, well-child visit, smoking status, and physician

coded diagnosis of diabetes, hypertension, and dyslipidemia. The number of outpatient

visits in each health system is used as a cluster-level covariate (Cj).

We consider eight models combining the propensity and outcome models proposed

in Section 3 which cover four situations: first, the single-level propensity score model (PS1)

combined with simple fixed outcome model (Out1) totally ignores cluster-level confound-

ing; second, fixed effect propensity score model (PS2) and other two propensity score mod-

els employing multilevel structures (PS3 and PS4) combining with fixed outcome model

(Out1) only consider data structure in the propensity score stage; third, single level propen-

sity score model (PS1) united with random intercept outcome model (Out2) exploiting

cluster structure only in outcome stage; last, random intercept outcome model (Out2) in-

tegrated with three propensity score models incorporating cluster-level information (PS2,
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PS3, and PS4) takes cluster structure into account in both propensity score and outcome

stage.

We ran three chains with 30,000 iterations and a burn-in of 5,000 for all models

with over-dispersed initial values. Continuous cluster and individual level covariates are

rescaled to have zero mean and unit variance. The quintiles of propensity scores to create

subclasses are obtained by fitting (2.1) with maximum likelihood, and all subjects in the

data are classified into subclasses based on the estimated propensity scores. Therefore, the

probability of receiving lipid screening increases for children from subclass 1 to subclass

5. Table 2.6 and Table 2.7 display the posterior mean and 95% credible sets of parameters

in the single-level outcome model and random intercept outcome model, respectively, with

four propensity score models. Although the point estimates of the effect of lipid screen-

ing on LDL level are slightly different, the general trend is that the children who had lipid

testing prior to 2012 have higher LDL-C levels than those who did not, and the increase

in LDL-C levels is significant since the 95% credible sets exclude 0 for all analyses. The

more likely a child was previously subject to lipid screening, the higher the LDL level in

2012. The amount of increase in LDL-C levels magnifies from subclass 1 to 5. Based on

simulation results of scenarios with small number of clusters and large sample size, the

fixed effect propensity score model and random intercept outcome model outperform other

model combinations. From the result of superior models, the LDL-C level of youth in the

treatment (i.e., previously tested) group is 4.65 mg/dL higher than that of children in the

control group. This difference is significant with the 95% credible sets ranging from 2.15

mg/dL to 7.15 mg/dL. From subclass 1 to 5, children have increasing LDL level as the

probability of receiving lipid screening increases.

2.6 Discussion

Propensity scores are widely applied in observational studies for confounder adjust-

ment. A limited amount of literature investigates the use of propensity scores in multilevel

data. At the same time, considering uncertainty in propensity score estimation has been

20



Table 2.6: Posterior mean and 95% credible sets (in parenthesis) of parameters in fixed
single level outcome model (Out1) with different propensity score models (PS1-PS4).

Propensity score model 1 2 3 4

LDL screening effect δ
4.56 4.62 4.58 4.59

(2.08,7.04) (2.12,7.11) (2.08,7.07) (2.09,7.07)

y-intercept β11
80.15 80.05 80.04 80.02

(77.65,82.58) (77.66,82.33) (77.63,82.33) (77.63,82.32)

Subclass 2 β12
5.66 6.49 6.48 6.66

(1.26,9.70) (2.41,10.23) (2.43,10.24) (2.77,10.33)

Subclass 3 β13
8.37 8.02 7.9 7.91

(3.28,13.44) (3.10,13.27) (3.07,13.23) (2.99,13.10)

Subclass 4 β14
13.30 13.53 13.63 13.70

(8.35,18.06) (8.19,18.40) (8.35,18.52) (8.35,18.50)

Subclass 4 β15
18.38 17.25 17.50 17.28

(11.85,26.16) (11.45,24.79) (11.50,25.40) (11.44,25.06)

Table 2.7: Posterior mean and 95% credible sets (in parenthesis) of parameters in fixed
single level outcome model (Out2) with different propensity score models (PS1-PS4).

Propensity score model 1 2 3 4

LDL screening effect δ
4.59 4.65 4.61 4.63

(2.09,7.09) (2.15,7.15) (2.13,7.12) (2.12,7.15)

y-intercept for site 1
79.38 77.81 78.57 78.20

(72.37,83.00) (67.25,82.93) (69.83,83.15) (68.57,83.20)

y-intercept for site 2
80.39 80.70 80.56 80.67

(77.68,82.94) (78.21,83.21) (77.95,83.11) (78.15,83.21)

y-intercept for site 3
79.76 78.95 79.00 78.83

(76.94,82.40) (75.63,81.80) (75.68,81.88) (75.43,81.89)

Subclass 2 β12
5.83 7.20 6.99 7.28

(1.55,9.79) (3.14,11.15) (2.87,10.93) (3.19,11.20)

Subclass 3 β13
8.23 7.80 8.17 7.98

(3.17,13.46) (3.05,12.94) (3.18,13.38) (3.04,13.20)

Subclass 4 β14
13.36 13.73 13.52 13.63

(8.41,18.14) (8.46,18.41) (8.30,18.34) (8.39,18.37)

Subclass 4 β15
18.25 17.20 17.95 17.54

(11.83,26.19) (11.55,24.72) (11.83,25.84) (11.69,25.15)
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studied only in unstructured data. In this paper, we proposed Bayesian propensity score

stratification analysis for multilevel observational data. We expected multilevel models

would incorporate clustering structure in the data and address cluster-level confounding.

Also, we modeled propensity score and outcome at the same time in a Bayesian framework

to integrate uncertainty in propensity score estimation into treatment effect estimation. Our

application of these methods to youth lipid management provide the estimated effect of

lipid testing with covariate confounding adjustment and clearer clinical picture of youth

undergoing lipid testing.

Totally ignoring cluster-level confounding in both stages of propensity score strati-

fication results in severe bias in treatment effect estimation, especially when cluster-level

confounding is strongly related to treatment assignment and outcome. Employing mul-

tilevel modeling in at least one stage greatly attenuated bias and mean square error. In

circumstances where multilevel modeling can be applied in only one stage, use in the out-

come stage is preferable to use in the propensity score stage.

There is controversy about feedback of the outcome model on the propensity score

model when two stages of propensity score stratification are combined into one in the

Bayesian framework. McCandless et al. (2009) point out that the outcome would assist

propensity score estimation if the outcome depends heavily on the propensity score. In

the view of Rubin (2007), propensity scores should be estimated without information from

outcome data. Three possible ways are available to prevent feedback from the outcome

model to the propensity score model. As described in Kaplan and Chen (2012), two stages

of propensity score stratification are modeled separately in a Bayesian framework and out-

come is modeled based on the posterior samples of the propensity score. Zigler et al. (2013)

suggest cutting feedback by adding covariate adjustment in the outcome stage to recover

true treatment and outcome association space. In McCandless et al. (2010), using a cut

function in WinBUGS can disconnect the feedback from the outcome model to the propen-
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sity score model. We envision some future study of feedback between the outcome stage

and the propensity state in a multilevel setting.

In this paper, balanced cluster size scenarios are studied. It is of interest to look

into the performance of multilevel modeling in Bayesian propensity score stratification

when cluster sizes are unbalanced across clusters. It is worth exploring the effect of the

imbalance on the estimation of treatment effect because the cluster sizes obtained from

observational studies are commonly imbalanced.
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CHAPTER THREE

Bayesian Misclassification and Propensity Score Methods for Clustered Observational
Studies

This chapter published as: Zhou Qi, Yoo-Mi Chin, James D. Stamey, and Joon Jin Song.
2017 “Bayesian Misclassification and Propensity Score Methods for Clustered

Observational Studies." Journal of Applied Statistics 1-14.

3.1 Introduction

Observational data are increasingly being used for causal inference in social science

and public health studies. Reliable causal inference cannot be made directly in observa-

tional studies due to the lack of randomization. Also, errors in response distort the true

association between response and intervention, leading to biased inferences.

Without adjustment, pre-existing differences in characteristics of exposure and non-

exposure groups confound with treatment or intervention effects. The propensity score

adjusting technique was first proposed by Rosenbaum and Rubin (1983b) and has become

an increasingly popular technique for causal analysis in observational studies. The propen-

sity score adjusts exposure effect in the presence of confounding among different groups

and removes bias due to observed covariates if no unmeasured confounding exists. Tradi-

tionally, the propensity score is used for matching, stratification and covariate adjustment.

The propensity score is the probability of receiving treatment or exposure conditional

on the observed covariates and this probability is used as a balancing score to remove con-

founding among exposures groups. Traditional propensity score analysis consists of two

steps: estimating propensity score and applying estimated propensity score. The propen-

sity score is generally estimated by logistic regression, and then the estimated propensity

score is treated as true and used for matching, stratification or covariate adjustment. There

are arguments that traditional two-step propensity score analysis ignores the uncertainty in

the propensity score estimation. By deriving the multivariate normal distribution that ATE
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and parameters in the propensity score model follows, Abadie and Imbens (2009) demon-

strated that the variance of the estimated average treatment effect (ATE) based on matching

on estimated propensity score needs to be adjusted downward except the case observed

covariates and exposure is independent conditional on the propensity score. However, a

drawback of this method is that the adjusted variance can be negative. The Bayesian ap-

proach is a natural way to appropriately accommodate uncertainty in propensity score anal-

ysis and to ensure positive variance of the estimators. McCandless et al. (2009) integrated

two steps of propensity score stratification into one in Bayesian framework and integrated

out propensity score in the treatment effect estimation as a nuisance parameter, incorporat-

ing the uncertainty of the propensity score estimation in treatment effect estimation. An

(2010) proposed full Bayesian propensity score regression and matching and showed that

Bayesian estimators provide correct standard errors of average treatment effect (ATE). An

also came up with an intermediate propensity score approach, which only propensity score

is estimated in Bayesian framework and estimated propensity score is applied in frequentist

framework. Later, Kaplan and Chen (2012) proposed two-step Bayesian propensity score

stratification, weighting, and matching. In their approach, the treatment effect is estimated

with the posterior samples of the estimated propensity score. The performance of two-step

Bayesian approach depends on the precision in the prior of the treatment effect. Compared

with two Bayesian approaches above, higher precision leads to smaller variance and overly

high coverage rates for two-step Bayesian stratification, weighting and matching. With

non-informative prior, only two-step Bayesian propensity score stratification performs as

good as An’s Bayesian propensity score estimators.

Propensity score methods were originally developed in the unstructured data settings.

However, data from a wide range of applications including medical and social sciences have

multilevel structure. Analyses ignoring this structure would lead to inaccurate standard er-

rors and biased estimation due to cluster-level confounding. There have been some studies

on propensity score matching and weighting for the multilevel data from the frequentist
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perspective. Arpino and Mealli (2011) evaluated the benefit of utilizing multilevel models

in propensity score matching when unobserved cluster-level covariates were present. Li

et al. (2013) compared different propensity score weighting estimators for multilevel data

and concluded that employing multilevel structure can considerably reduce bias in causal

estimation. Su and Cortina (2009) suggested that multilevel modeling in both stages of

propensity score analysis is more effective in reducing bias in the estimation of treatment

effect than multilevel modeling in only one stage, using time series cross sectional data.

In observational studies, response may not be reported correctly. For example, a

woman may not answer yes when she truly experiences physical violence from her hus-

band. It is shown in Neuhaus (1999) that ignoring errors in the responses would yield

highly biased estimates of the covariate effects. Paulino et al. (2003) presented a Bayesian

binomial regression approach to model the association between misclassified response and

error-free covariates. Further, Paulino et al. (2005) extended the approach by allowing ran-

dom effects to account for correlated misclassified binary responses.

In this paper, we propose a Bayesian propensity score regression approach for clus-

tered observational studies, which utilizes multilevel modeling for hierarchical structures

and corrects for misclassified responses. The propensity score is estimated through mixed

effects logistic regression model with observed individual and cluster level covariates. The

outcome model regresses on the exposure indicator and a function of estimated propensity

score, which could be stratification membership indicator or covariate adjustment. Random

effects are included in the outcome regression to account for possible correlations among

responses. The true regression relationship between response and exposure is recovered by

adjusting misclassified response with information of sensitivity and specificity.

India National Health Survey (NFHS-3) 2005-6 serves as an appropriate data set

to be used to improve the shortcomings of existing studies. The data contain a rich set of

demographic and socio-economic variables that can be used to control for confounders, ge-

ographic identifiers that can be used to differentiate state-level errors from individual-level
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errors, and dichotomous spousal violence measures that are subject to a misclassification

problem.

The paper is organized as follows. Section 2 presents the proposed approach in de-

tails. Section 3 provides an empirical application as an illustration for the proposed method.

We close with a summary in Section 4.

3.2 Methodology

3.2.1 Assumptions

For the multilevel model we consider here, every individual in clusters receives aex-

posure, T and response Y is recorded. We assume both cluster level and individual level

covariates and refer to these together as U . For the propensity score to be valid we require

the ignorability assumption which consists of the following two assumptions:

Unconfoundness: Y⊥T |U,

Overlap: 0 < P(T=1) < 1.

The unconfoundness assumption states that conditioning on measured covariates

there are no omitted covariates related to potential response, so that exposure assignment is

independent of potential response. The overlap assumption ensures that there is common

support for propensity scores of exposure units and non-exposure units for all observed

covariates values in the study population, meaning an exposure unit always matches with

at least one non-exposure counterpart. In presence of cluster level confounders and mis-

classified responses, model specification ignoring clustered structures or errors in response

violates unconfoundness assumption, causing the estimated propensity score to yield bi-

ased exposure effects.

3.2.2 Model Specification

Suppose data consist of two levels: ith(i = 1, 2, ...,nj) subject nested within jth(j =

1, 2, ..., N) cluster. Let Tij denote a dichotomous exposure indicator taking a value of
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1 when the subject receives exposure, and 0 when not. Let Yij denote a dichotomous

response taking a value of 1 if the answer is yes and 0 if the answer is no. A p × 1 vector

Xij and a q × 1 vector Cj are individual and cluster level covariates, respectively. Let

zij = P(Tij = 1) be the probability of receiving the exposure and πij = P(Yij = 1) be the

probability of truly answering yes to the question.

In observational data, misclassification is very common in response variables. To

account for this, assume we do not observe the true response Yij but rather the misclassified

response Ỹij with the probability π̃ij . We consider a setting in which the misclassified error

in the response variable is independent of the other variables (non-differential) and define

the sensitivity θ and specificity η as

θ = P(Ỹij = 1|Yij = 1)

η = P(Ỹij = 0|Yij = 0)

By the law of total probability, the unconditional probability of the error prone re-

sponse to be ‘1’ is

π̃ij = θπij + (1− η)(1− πij)

The proposed models are the following:

logit(zij) = β0j + β1
TXij + βT

2 Cij (3.1)

logit(πij) = γ0j + γ Tij + ξẑij (3.2)

where β0j ∼ N(µβ0 , σ
2
β0

) and γ0j ∼ N(µγ0 , σ
2
γ0

) are random intercepts. Estimated propen-

sity score ẑij is used as a covariate in the outcome model.

In (3.1), the random intercept β0j absorbs the effect of clustered structure and ac-

counts for heterogeneity of exposure status regardless of clusters. With fixed slopes β1,

same individual characteristics make the same contribution to propensity score regardless

of cluster membership. The distributional assumption on random intercept greatly reduces

the number of parameters to be estimated. The estimated propensity score is used as covari-
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ate adjustment and removes confounding of pre-exposure covariates in outcome regression

model (3.2). Cluster specific intercept γ0j accommodates possible correlation of responses

among clusters. Fixed parameter γ assumes that exposure effect is consistent for all clus-

ters. The estimated propensity score ẑij can be generalized to a function of the estimated

propensity score. An alternative to covariate adjustment would be propensity score strati-

fication, in which the function is defined as subclass membership indicators based on the

percentiles of estimated propensity score. According to Austin (2009), however, covariate

adjustment removes more imbalance in covariates distribution than stratification. There-

fore, we focus on covariate adjustment in this paper.

3.2.3 Prior Specification and Model Inference

For regression coefficients in models (3.1) and (3.2), normal priors are given to

β1,β2, γ, and ξ. Usually the variance of normal priors are set to be large so that priors

are noninformative without available information about regression coefficients.

β1 ∼ MVN(0, σ2
β1
I)

β2 ∼ MVN(0, σ2
β2I)

γ ∼ N(0, σ2
γ)

ξ ∼ N(0, σ2
ξ )

Beta priors are assigned on sensitivity and specificity:

θ ∼ beta(a1, b1),

η ∼ beta(a2, b2).

The hyperparameters are typically determined by expert opinion and validation data.

The posterior distributions of individual parameters are obtained using Markov chain

Monte Carlo (MCMC) algorithm as implemented in the freeware JAGS. Each update of

γ is based on the updated β in propensity score model. The marginal distribution of γ
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incorporates uncertainty in propensity score estimation by averaging over the uncertainty

in posterior samples of β. The code is available from the authors upon request.

3.3 Application

3.3.1 Data Description

The method proposed in this paper is employed to analyze the effect of female em-

ployment on the odds of physical spousal violence. Numerous existing studies have exam-

ined the effect of women’s employment on the likelihood of spousal violence towards them

(Vyas and Watts, 2009), but many of these studies lack rigor in their analyses. Specifically,

some studies do not account for confounding between working females and non-working

females and compare their probability of suffering physical violence directly. Further, the

analyses are often confined to the individual level and ignore a hierarchical structure of the

data. More importantly, underreporting of spousal violence has not been systematically

addressed, although underreporting is a chronic problem in domestic violence research

(Palermo et al., 2013). Most domestic violence surveys measure intimate partner violence

as an indicator variable that takes a value of one if an interviewee has an experience and

zero otherwise. With considerable underreporting, these dichotomous domestic violence

measures suffer from a typical misclassification problem. A recent study by Chin et al.

(2017) addresses misclassification in violence reporting, but their study does not account

for a multilevel structure of the data.

This paper uses demographic and socio-economic data of women from India Na-

tional Health Survey 2005-6 (NFHS-3) and state-wise crime and unemployment data from

National Crime Records Bureau (2005) and Singh and Kumar (2014). The study focuses

on urban women defined as women who reside in mega city, large city, small city, and large

town. Given that the outcome variable is physical spousal violence experience of married

women, the sample is further restricted to currently married women who are included in

the domestic violence module. After dropping the observations with missing variables, the
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final sample is composed of 5,573 non-working women (non-exposure group) and 14,542

working women (exposure group).

Physical spousal violence is measured as an indicator of any of the following acts

committed by a womanâs husband in the past 12 months: 1) slapping; 2) twisting her arm

or pulling her hair; 3) pushing, shaking, or throwing something at her; 4) punching her

with his fist or something harmful; 5) kicking or dragging her; 6) trying to choke or burn

her; 7) threatening or attacking her with a knife/gun or other weapon. Exposure status is

an indicator that takes the value of 1 if a woman worked in the past 12 months and 0 if

not (control group: non-working women, treatment group: working women). Age and ed-

ucation variables are in years. Number of children/adult men/adult women are measured

at the household level. Wealth index is reported by the DHS and represents a wealth status

of a household in the population. It is an index based on household asset ownership and

has a standard normal distribution. Low caste is an indicator for the household head be-

longing to scheduled castes and scheduled tribes. Hindu is an indicator for the household

head being Hindu. Remarriage is an indicator for a woman having been married more than

once. Polygamy is an indicator for a woman being in a polygamous marriage. Crime rate

is state-level total cognizable crime rate per 100,000 population. Unemployment rate is

state-wise unemployment rate per 1000 population.

Table 3.1 reports descriptive statistics of the main variables used in the analysis.

Women and their husbands in the exposure group are older and less educated than their

counterparts. They have more children but fewer adults in the household. Their house-

holds are more likely to be poor, belong to a low caste, and follow Hinduism. Women in

the exposure group are more likely to be married more than once and have a polygamous

marriage. Further, women in exposure group are more likely to reside in states with lower

unemployment rate and crime rate. Given that there is heterogeneity in demographic and

socio-economic characteristics between the exposure group and the non-exposure group, it
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is necessary to obtain a balance in the distribution of pre-exposure characteristics between

the two groups.

Table 3.1: Descriptive statistics. Source: India National Family Health Survey (NFHS-3)
2005-6.

Variables Non-Exposure Exposure
Mean SD Mean SD

a) Response
Physical violence 0.16 0.37 0.21 0.41
b) Pre-exposure characteristics
b1) Demographic variables
Female age 31.86 7.88 33.73 7.10
Female education 7.77 5.22 7.23 6.07
Male age 37.46 8.71 39.00 8.19
Male education 9.52 4.91 8.46 5.50
Number of children 2.16 1.39 2.28 1.43
Number of adult men 1.79 1.08 1.59 0.91
Number of adult women 1.61 0.89 1.53 0.77
b2) Socio-economic variables
Wealth index 0.77 0.80 0.55 0.89
Indicator: low caste 0.49 0.50 0.60 0.49
b3) Cultural variables
Indicator: Hindu 0.74 0.44 0.77 0.42
Indicator: remarriage 0.01 0.11 0.02 0.15
Indicator: polygamy 0.01 0.09 0.02 0.14
c) State level pre-exposure characteristics
Unemployment rate/1000 6.41 4.90 6.13 4.76
Crime rate/100,000 466.99 304.91 501.77 311.39
No. of observations 5573 14542

3.3.2 Empirical Results

This analysis aims at estimating the effect of the female working status on whether

she suffers physical violence from her husband. The data consists of a sample of female

individuals indexed by i from jth state in India. In the analysis, the exposure Tij denotes

employment status of a woman in the previous 12 month and zij is the probability of a

woman working. The true response whether a woman experienced physical violence is the

unobservable outcome denoted by Yij taking values of 1 or 0 (1, suffering physical vio-
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lence in past 12 months, 0 not suffering physical violence) and the observed response Ỹij is

whether the woman reports experiencing physical violence from her husband in the same

period. True physical experience status relates to reported status through sensitivity and

specificity, which are obtained from external data source. For each woman, the individual

level characteristics Xij and state level covariates Cj are observed.

Four scenarios are compared in the data analysis: the first scenario is a Bayesian

propensity score analysis without multilevel modeling and adjusting misclassification er-

rors; the second scenario adjusts misclassified response with single level model in the anal-

ysis; third scenario employs multilevel modeling in propensity score and outcome model

without misclassification error adjustment in response; fourth scenario utilizes both multi-

level models and misclassification error adjustment in the analysis.

No previous information is available for coefficients in regression models so non-

informative priors are placed on the parameters. Variance of 10 yields relatively non-

informative normal priors on fixed coefficients: σ2
β1

= σ2
β2

= σ2
γ = σ2

ξ = 10. For random

parameters, the hyper parameters are meant to result in non-informative priors. The mean

of parameters are allowed to vary around 0 with variance 10 and the variance of parameters

ranges from nearly 0 to 5, yielding relatively wide range for random parameters:

µβ0j ∼ N(0, 10),

σ2
β0j
∼ U(0.001, 5),

µγ0j ∼ N(0, 10),

σ2
γ0j
∼ U(0.001, 5).

We require informative priors for the sensitivity and specificity. Rabin et al. (2009) sum-

marizes the agreement of several approaches in assessing the occurrence of domestic vi-

olence. Using those results we assign priors for the sensitivity and specificity to be θ ∼

beta (5.0,7.6) and η ∼ beta (165.7,9.7). The prior for the specificity is considerably more

informative than the sensitivity. It is also centered considerably higher than the prior for
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the sensitivity. This indicates in these previous studies violence was much more likely to

be not-reported than falsely reported.

We generate two parallel independent MCMC runs of size 5,000 with widely spread

initial values after a burn-in 1000. The convergence of MCMC chains is examined and

monitoring results of exposure effect are reported in Figure 3.3.1 and Figure 3.3.2. The

Gelman-Rubin statistics converge to 1 and the trace of chains mix well. Table 3.2 shows

the posterior results of the exposure effect, odds ratio and DIC of the scenarios. Both sce-

nario 1 with single level models and scenario 3 with multilevel models exclude response

misclassification correction. The magnitudes of the estimated exposure effects in the two

scenarios are very similar. For scenarios with misclassification correction, scenario 2 and 4

also have very similar magnitude of the estimated exposure effect. When the results from

scenarios with and without misclassification component (1 vs 2, 3 vs 4) are compared,

standard deviation of the exposure effect is found to be slightly larger in scenarios with

misclassification component. This result is consistent with Neuhaus (1999)’s study, which

found that errors in response lead to information loss of covariates effects. Comparing sce-

nario 2 and 4 with misclassification component, accounting for multilevel structure reduces

standard deviation of the estimate.

Table 3.2: Posterior results of exposure effect and DIC of the model.

Scenario
Mean of treatment SD 95% Creditable Interval DIC

(odds ratio) (odds ratio) (odds ratio)

1
0.053 0.043 [-0.030,0.134] 40042.4

(1.055) (0.045) ([0.971,1.144])

2
0.078 0.083 [-0.081,0.238] 39933.6

(1.085) (0.091) ([0.922,1.269])

3
0.056 0.046 [-0.033,0.149] 39191.4

(1.058) (0.049) ([0.967,1.161])

4
0.080 0.067 [-0.051,0.213] 39162.5

(1.086) (0.073) ([0.9501,1.238])

In terms of model fitting, scenario 4, the propensity score analysis with multilevel

modeling and misclassification correction, has the smallest DIC among four scenarios, in-
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Figure 3.3.1: Gelman-Rubin convergence diagnostic statistic of exposure effect in four sce-
narios.
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Figure 3.3.2: Trace of exposure effect in four scenarios.
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dicating the best fit for the data. Scenario 2 and 3 have smaller DIC than scenario 1,

suggesting that accounting for either multilevel structure of the data or misclassification of

response improves the model fit. Based on the results of scenario 4, the odds of a work-

ing woman experiencing physical violence from her husband is 1.086 times higher than

the odds of a woman without employment. The sign of the point estimate suggests that

a wife’s employment provokes more physical violence from the husband rather than to

increase her bargaining power within the home and lower the likelihood of violence. In

terms of confidence interval, however, this violence-provoking effect of female employ-

ment is statistically insignificant.

Table 3.3 displays the posterior results of sensitivity and specificity estimated in Sce-

nario 2 and 4. The specificity estimates are very similar in two scenarios. The sensitivity

estimate of scenario 4 with multilevel structure specification is larger than that of scenario

2. About 53% of abused women truly report their experience of physical violence, suggest-

ing a fairly high level of underreporting.

Table 3.3: Estimated sensitivity and specificity in Scenario 2 and 4.

Scenario Sensitivity Specificity
2 0.389 0.983
4 0.531 0.985

3.4 Simulation Study

3.4.1 Simulation Design

We conducted a simulation study which mimics the data structure of empirical ap-

plication to assess the performance of the proposed approach. The simulated data consists

of 10 clusters index by j and 100 individuals index by i in each cluster. We assume two

individual level covariates, C1, C2 and cluster level covariate Z distributed as independent

standard normal distribution. Dichotomous exposure T and Y are generated with following
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models:

logit(P(Tij = 1)) = α0j + γ1C1ij + γ2C2ij + γ3Zj,

logit(P(Yij = 1)) = ϕ0j + β1C1ij + β2C2ij + β3Zj + δTij,

with α0, ϕ0 ∼ N(0, 2), γ = (0.3, 0.4, 0.5), β = (0.3, 0.3, 0.7) and δ = 1. The true re-

sponse Y relates to the observed response Ŷ through sensitivity θ and specificity η and

Ŷ is generated from Bernoulli distribution with probability P (Ŷij = 1) = θP (Yij =

1) + (1 − η)(1 − P (Yij = 1)), where η = 0.98, the estimated specificity in the moti-

vating example.

In the simulation, we consider two propensity score models:

(1) Single level propensity score model ignoring multilevel structure,

logit(P(Tij = 1)) = γ0 + γ1C1ij + γ2C2ij.

(2) Random intercept propensity score model,

logit(P(Tij = 1)) = α0j + γ1C1ij + γ2C2ij + γ3Zj, α0j ∼ N(µα, σ2
α).

The specification of outcome regression models are:

(1) Single level outcome regression model ignoring multilevel structure and misclas-

sification in response:

logit(P(Ŷij = 1)) = β0 + β1P̂ (Tij = 1) + δTij.

(2) Single level outcome regression model with misclassification correction:

logit(P(Yij = 1)) = β0 + β1P̂ (Tij = 1) + δTij,

P(Ŷij = 1) = θP(Yij = 1) + (1− η)(1− P(Yij = 1))

(3) Random intercept outcome model ignoring misclassification in response:

logit(P(Ŷij = 1)) = ϕ0j + β1P̂ (Tij = 1) + δTij, ϕ0j ∼ N(µϕ, σ2
ϕ).
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(4) Random intercept outcome model incorporating misclassification in response:

logit(P(Ŷij = 1)) = ϕ0j + β1P̂ (Tij = 1) + δTij, ϕ0j ∼ N(µϕ, σ2
ϕ)

P(Ŷij = 1) = θP(Yij = 1) + (1− η)(1− P(Yij = 1)).

We compare four scenarios in the simulation: first, single level propensity score model

and outcome regression model ignoring multilevel structure and response misclassification;

second, single level propensity score model and outcome regression model with misclassi-

fication correction; third, random intercept propensity score model and outcome regression

model; fourth, random intercept propensity score model and outcome regression model in-

cluding misclassification correcting component.

We consider three designs listed in Table 3.4 and generate 300 data sets for each sce-

nario. In the design A and B, observed responses are generated with estimated sensitivity

in the India data to validate conclusion in empirical application. The design A uses same

prior for sensitivity in the empirical example and design B takes a slightly more informative

prior for sensitivity. The design C further assesses proposed models with data generated

with sensitivity as 0.7, a commonly seen value in applications.

Table 3.4: Sensitivity parameters used in data generating process and priors for sensitivity
simulation study.

Design Sensitivity to generate data Prior for sensitivity
A 0.53 Beta(5,7.6)
B 0.53 Beta(15,21)
C 0.7 Beta(21,9)

3.4.2 Simulation Results

Table 3.5 includes simulation results of exposure effect estimation under three de-

signs. Throughout three designs, we observed that scenario 4 which utilizes multilevel

modeling and corrects misclassification in response outperforms other scenarios with small-

est average absolute bias and closest coverage rate of 95% credible sets to the nominal level,

for data with small number of clusters and large cluster size. Scenario 1 has smaller average
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absolute bias than scenario 2 and 3 do and this indicates ignoring multilevel structure and

misclassification leads to less biased point estimate of exposure effect than only incorpo-

rating either multilevel structure or misclassification. Comparing scenario 1 versus 2 and

scenario 3 versus 4, incorporating misclassification in response would greatly improve the

coverage rate of 95% credible sets.

Table 3.5: Average absolute bias (bias), mean square error (MSE), and coverage rate of
95% credible sets of exposure effect calculated from 300 simulated data sets under design

A, B and C.

Exposure effect Bias MSE Coverage Rate
Design A:
Scenario 1 0.416 0.201 20%
Scenario 2 0.613 0.468 89.7%
Scenario 3 0.559 0.335 5.3%
Scenario 4 0.395 0.252 95.3%
Design B:
Scenario 1 0.440 0.219 16%
Scenario 2 0.699 0.592 84.3%
Scenario 3 0.580 0.356 4%
Scenario 4 0.389 0.251 96.3%
Design C:
Scenario 1 0.323 0.129 36.7%
Scenario 2 0.378 0.205 92%
Scenario 3 0.469 0.244 15.7%
Scenario 4 0.294 0.150 96%

Design A and B closely replicate the data structure of empirical example. Design B

employs a more informative prior on sensitivity, approximately triple the equivalent sample

size of prior of design A, which reduces the bias of and increases coverage rate in scenario

4. Simulation results of design A and B confirm our approach performs best among candi-

dates for the empirical example.

Design C mimics a more common case in applications of which true sensitivity pa-

rameter is 0.7. With a moderate informative prior on sensitivity, scenario 4 still yields

smallest average absolute bias and closest coverage rate of credible sets to the nominal

level. Higher sensitivity reduces the absolute mean bias and mean square error reduces for
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all 4 scenarios and increases the coverage rate in scenario 1, 2 and 3. Comparing scenario

2 and 3 throughout three designs, incorporating only misclassification reduces more bias in

exposure effect estimation than incorporating only multilevel structure when sensitivity is

higher in design C than that in design A and B.

3.5 Conclusion

In this paper, we address the problem of ignoring clustered structures and misclas-

sified responses in the observational study. Ignoring clustered structures would confound

cluster level characteristic with exposure effects. Furthermore, overlooking the misclassi-

fied responses distorts the true relationship between response and exposure effects. To deal

with these issues, we proposed a Bayesian multilevel propensity score regression analysis

with misclassification in response correction. The results of application in India National

Health Survey 2005 strongly support the importance of misclassification correction com-

ponent and multilevel structure specification in propensity score regression analysis in the

clustered observational data with possible misreported responses. The simulation study

indicates proposed approach yields exposure effect estimation with least average absolute

bias and closest coverage rate to the nominal level.

When implementing the approach, we observe the exposure effect would be overesti-

mated and its credible set tends to be overly wide if overly noninformative priors are placed

on sensitivity, specificity, and regression coefficients of outcome model. Too informative

priors would make coverage rate of creditable set much higher than the nominal level.

In the paper, we only consider random intercept multilevel model. For applications

requiring more general models, β1 can be replaced by random slopes β1j ∼ MVN(µβ1 , σ
2
β1
I),

which allow for varying effects of individual characteristics on propensity score for all

clusters. Propensity score model with random slopes needs additional information about

possible varying effects of individual covariates. Sometimes it is not easy to determine

random slopes for too many covariates. Usually, the main interest is to estimate a universal

exposure effect, not the variation of the exposure effect. In case a cluster-specific exposure
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effect is of interest, the outcome model can accommodate the need by replacing γ with

γj ∼ MVN(µγ, σ2
γI).

The proposed approach is developed under the assumption that no unmeasured con-

founders exist. It would be interest to study the sensitivity of unmeasured confounders for

multilevel observational study with misclassified response.
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CHAPTER FOUR

Bayesian Sensitivity Analysis to Unmeasured Confounding for Misclassified Data

4.1 Introduction

Many questions of interest for observational study face the difficulty that causal in-

ference cannot be made directly due to lack of randomization of exposure status. The

ignorability assumption (Rosenbaum and Rubin, 1983b) ensures valid causal inference in

observational studies but this untestable assumption is often violated. Rather than assume

ignorability is met without testing, we can assume the presence of an unmeasured con-

founder and assess the sensitivity of violations to this assumption. In this approach, we

specify how the unmeasured confounder enters inferential models through sensitivity pa-

rameters which characterize the relationships of the unmeasured confounder with both ex-

posure and response. The study is deemed sensitive to violations of the ignorable assump-

tion if the exposure estimates from models accounting for possible levels of unmeasured

confounding are considerably different from original analysis.

Another common problem in observational data with binary outcomes is that of re-

sponse misclassification. Errors in the response are often due to either an imperfect di-

agnostic test or when a sensitive question is asked in a survey. Adjusting for response

misclassification has been addressed from both the frequentist (Magder and Hughes, 1997)

and the Bayesian approaches (Paulino et al., 2003; McInturff et al., 2004).

Violation of the ignorability assumption for potential confounders and misclassifica-

tion in response are possible sources of bias. Most previous work has dealt with one source

of bias. Greenland (1996; 2005) discusses methods modeling several sources of bias, in-

cluding unmeasured confounding, misclassification error and non-response. The departure

from the true model is measured with the bias factor, an integrated correction from multi-
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ple sources of bias. Besides reducing bias in parameter estimation, multiple bias modeling

incorporates sources of uncertainty in addition to random error.

Motivated by the study of the influence of female employment on the likelihood of

domestic violence, we propose a Bayesian approach to conduct a sensitivity analysis ac-

counting for multiple sources of bias. Specifically, the approach accounts for two sources

of bias, misclassification in response and potential unmeasured confounding. The Bayesian

framework allows for informative priors based on expert opinion and prior data to correct

for the response misclassification. We characterize the unmeasured confounding via its

associations with the exposure status and response with what are referred to as sensitivity

parameters. We evaluate potential change in exposure effect estimation from a grid of hy-

pothetical sensitivity parameters values, which are assumed to be known in the analysis.

The simulation results show our approach yields least average absolute bias and coverage

probability to the nominal level compared with approaches ignoring misclassification, un-

measured confounding, or both. The advantage of this approach is that researchers are able

to study the influence of unmeasured confounding with interested values of sensitivity pa-

rameters, without need of prior information.

The paper is organized as follows. In Section 2 we provide the model and discuss

the overall approach to the bias adjustment and sensitivity analysis. The approach is fur-

ther illustrated with an empirical example in Section 3. In Section 4 we present simulation

results to confirm the efficacy of the method. Section 5 concludes the paper.

4.2 Methodology

4.2.1 Review of Sensitivity Analysis Framework

Sensitivity analysis goes back to at least Cornfield et al. (1959) who discussed whether

the effect of smoking on lung cancer could be zero after adjusting for an unmeasured co-

variate. Sensitivity analysis is often categorized into primal, dual and simultaneous anal-

ysis based on the number of sensitivity parameters, which controls how the unmeasured
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confounder enters the inferential models. Usually one or two sensitivity parameters are

specified. The primal and dual approaches work with a single parameter. The primal ap-

proach specifies the association between the unmeasured confounder and exposure status

and assumes the unmeasured confounder has a nearly perfect correlation with response.

Paralleling to the primal approach, the dual method is obtained with inverse sets of as-

sociations (Gastwirth, 1998). Most sensitivity analyses with one parameter are based on

matched samples and rely on the nonparametric randomization test such as McNemar’s test

for binary response and Wilcoxon sign-rank test for continuous response. The primal and

dual methods can be computationally intensive and sensitive to the choice of test statistic.

The works by Carnegie et al. (2016); Dorie et al. (2016); Gustafson et al. (2010); Lin et al.

(1998); McCandless et al. (2009); Rosenbaum and Rubin (1983a) discuss simultaneous

sensitivity analysis which employs two sensitivity parameters to characterize the associ-

ations of an unmeasured confounder with exposure and response. The advantage of the

simultaneous approach is that matched samples are not required and sensitivity parameters

expressed as regression coefficients or partial correlation are easily interpreted. This ap-

proach also avoids assuming strict relationship between the unmeasured confounder and

exposure or response. The trade-off is that the method relies strongly on parametric as-

sumptions.

Sensitivity analysis in a Bayesian framework has been explored extensively recently.

The sensitivity parameters enter the models for the exposure and covariate relationship and

the response and exposure relationship and are specified as regression coefficients con-

trolling the associations of the unmeasured confounder with the exposure and response.

In the Bayesian sensitivity analysis proposed in McCandless et al. (2009) and Gustafson

et al. (2010), sensitivity parameters are assumed to be unknown and the models become

non-identifiable. Faries et al. (2013) use relatively informative priors obtained from ex-

ternal information for the sensitivity parameters. This provides a range for the exposure

effect estimates based on the likely range of the sensitivity parameters and incorporates
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uncertainty about the unmeasured confounding in the posterior distribution. However, the

posterior results may be biased by misspecification of priors. Also, there might be conver-

gence issues when a diffuse prior is used on sensitivity parameters. In the work of Dorie

et al. (2016), the sensitivity parameters are fixed at some hypothetical values in Bayesian

models, avoiding potential issues of assigning priors on parameters possibly very little is

known about. The drawbacks are that credible intervals do not reflect uncertainty due to

unmeasured confounding and it is hard to interpret results from a variety of sensitivity

parameters combinations. A possible middle ground is Monte Carlo sensitivity analysis

where sensitivity parameters are sampled from specified priors and use those samples in

Bayesian models (Greenland, 2003; Steenland and Greenland, 2004). With modification,

Monte Carlo sensitivity analysis can approximate posterior inference from Bayesian sensi-

tivity analysis. The posterior distribution incorporates both uncertainty about unmeasured

confounding and random error and provides a distribution of exposure effect estimates.

The limitation is that uncertainty of unmeasured confounding may be underestimated if

samples from priors are not large enough.

4.2.2 Model Specification

Suppose we are interested in a binary response, Y , with a binary exposure, Z. For

observational studies of the type we consider, we are only able to identify a causal effect

if the ignorability assumption is satisfied. The ignorable assumption states that all con-

founders are measured and conditioned on the measured confounders X, the outcome Y

and exposure are independent,

Y(1),Y(0)⊥Z|X,

where Y (1) or Y (0) are the response of a person in presence or absence of an exposure

(Rubin, 1978). In reality, researchers rarely have confidence in satisfaction of the ignora-

bility assumption. To assess the sensitivity of this assumption, we assume an unmeasured
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confounder U exists and the ignorable assumption holds if U is included,

Y(1),Y(0)⊥Z |X,U.

Following the complete factorization in Dorie et al. (2016), the joint distribution of the

observed data and the unmeasured confounder is specified,

P(Y,Z,U|X)=P(Y|Z,U,X)P(Z| U,X)P(U|X).

We model the exposure-covariate and response-exposure surfaces incorporating the unmea-

sured confounder through logistic regression models:

logit(P(Y=1|Z,U,X)) = β0 + δZ + β1
TX+ ζyU

logit(P(Z=1|U,X)) = γ0 + γ1
TX+ζzU,

(4.1)

where partial correlations ζz and ζy serve as sensitivity parameters, characterizing the as-

sociation of the unmeasured confounder with the exposure status and the response variable.

In many cases, researchers do not have information about unmeasured confounders. The

sensitivity parameters are set to be hypothetical values of interest so that researchers are

able to explore how results vary with different degrees of unmeasured confounding. We

assume U represents the combination of one or more unmeasured confounders beyond the

observed covariates, so the unmeasured confounder is independent of the observed covari-

ates. To simplify the computation, the unmeasured confounder is specified as binary to

indicate the presence or absence of unmeasured confounding.

For observational data, especially survey data, the response is often reported in er-

ror and we only observe the misreported response Ỹ rather than true response Y . Using

observed misreported response directly in (4.1) distorts the response and exposure relation-

ship. The unobservable, true response Y is linked with misreported response Ỹ through the

sensitivity θ and specificity η, which are defined as

θ = P(Ỹ = 1|Y = 1)

η = P(Ỹ = 0|Y = 0).
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In this paper, we consider non-differential misclassification, that is, we assume the

misclassification error in the response is independent of other variables. By the law of total

probability, the unconditional probability of the misclassified response to be 1 is

P (Ỹ = 1|Z,U,X) = θP (Y = 1|Z,U,X) + (1− η)(1− P (Y = 1|Z,U,X)) (4.2)

The true response and exposure relationship surface can be recovered by linking the mis-

classified response with the true response in (4.2).

4.2.3 Prior Specification and Model Inference

In general, normal priors are assigned for the logistic regression coefficients,

δ ∼ N(0, σ2
δ ),

β0 ∼ N(0,σ2
β0

),

β1 ∼ MVN(0, σ2
β1
I),

γ0 ∼ N(0, σ2
γ0

),

γ1 ∼ MVN(0, σ2
γ1
I),

where σ2
δ , σ

2
β0
, σ2

β1
, σ2

γ0
, and σ2

γ1
are user-specified hyper parameters. With little infor-

mation about regression coefficients, hyper parameters are set to be large to make pri-

ors relatively non-informative. The prior distribution for the unmeasured confounder is

U ∼ Bernoulli(πu) and the hyper parameter πu represents information about the preva-

lence of unmeasured confounder. Beta priors are assigned on sensitivity and specificity

with the hyper parameters determined with a combination of expert opinion and external

data,

θ∼ beta(a1,b1),

η∼ beta(a2,b2).

We use Markov chain Monte Carlo (MCMC) methods to obtain the posterior distribution

of model coefficients. The sampling starts with generating initial values of unmeasured
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confounder U then sample (δ, β0, β1, γ0, γ1, θ, η) from distribution obtained by logistic re-

gression of Ỹ on X,Z and generated U , and Z on X and generated U . The update of U

is then based on updated sample of (δ, β0, β1, γ0, γ1, θ, η). After the burn-in, samples of

(δ, β0, β1, γ0, γ1, θ, η) approximate the target distribution.

4.3 Simulation Study

We conducted an extensive simulation study to assess the performance of the pro-

posed approach with misclassified data under two settings: first where the sensitivity pa-

rameters match the parameters used in the data generation and second, where the sensitivity

parameters are misspecified. Throughout the simulation, we compared the proposed ap-

proach which simultaneously accounts for misclassification and unmeasured confounding

with the naïve model which ignores both and models that account for one type of bias, but

not both.

4.3.1 Simulation Setting

The two sensitivity parameters are set to range from 0 to 0.75 incremented by 0.25,

which yields common parameter values in logistic regression, yielding a total of 16 com-

binations. For each combination, 600 synthetic data sets are generated and the sample size

of each data set is 400. Three observed covariates are generated from the standard nor-

mal distribution and the unmeasured confounder is generated from a Bernoulli distribution

with 0.5 as probability of success. Exposure status and true response are generated from

the following models:

logit(P (Z = 1|U,X)) = 0.25 + 0.25X1 + 0.25X2 + 0.25X3 + ζzU,

logit(P (Y = 1|Z,U,X)) = 0.4 + Z + 0.4X1 + 0.4X2 + 0.4X3 + ζyU.

The values of the sensitivity and specificity are set as 0.7 and 0.9. The misclassified re-

sponse is generated from a Bernoulli distribution with probability P (Ỹ = 1|Z,U,X),
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where

P (Ỹ = 1|Z,U,X) = 0.7P (Y = 1|Z,U,X) + (1− 0.9)(1− P (Y = 1|Z,U,X)).

The models used to analyze the data are as follows: first, no misclassification and

no unmeasured confounding (M1); second, no misclassification but considering unmea-

sured confounding (M2); third, no unmeasured confounding but considering misclassifica-

tion (M3); last, considering both misclassification and unmeasured confounding (M4). We

compare four scenarios above in two simulation settings. First, correct sensitivity param-

eters are plugged in the simulation to assess the performance of four scenarios. Second,

several false sensitivity parameters are used to investigate the effect of misspecification of

sensitivity parameters. The true sensitivity parameters are 0.5 whereas false sensitivity pa-

rameters take values 0, 0.25 and 0.75 to show the cases that underestimate and overestimate

the effect of unmeasured confounding. In the simulation, we specify the prior distribution

for the coefficients in the exposure model to be N(0, 10) and coefficients in the response

model are assigned N(0, 2) priors. The sensitivity and specificity are assigned relatively

informative priors, Beta(70, 30) and Beta(90, 10) .

4.3.2 Simulation Result

Figure 4.3.1 and Figure 4.3.2 display simulation results that compare the four sce-

narios in terms of average absolute bias. Each figure presents four grids of sensitivity

parameters which describe the associations of unmeasured confounder with exposure and

response, in total of 16 combinations. In Figure 4.3.1, the sensitivity parameters are cor-

rectly specified as shown. For Figure 4.3.2, the data are generated with sensitivity parame-

ters as 0.5 and misspecified sensitivity parameters shown in the figure are used in modeling.

For each combination of sensitivity parameters, four boxplots are displayed and each box-

plot corresponds to one scenario. In Figure 4.3.1, the red line indicates the median average

absolute bias of M4 for each combination of sensitivity parameters. In Figure 4.3.2, the red

reference line is the median average absolute bias of M4 with true sensitivity parameters as
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0.5. Tables 4.1 and 4.2 present coverage probabilities of the 95% credible intervals for the

exposure effect.

Figure 4.3.1: Average absolute bias for exposure effect estimation when sensitivity param-
eters are correctly specified in simulations.

In Figure 4.3.1 where the sensitivity parameters are correctly specified in the model,

our approach incorporating misclassification and unmeasured confounding (M4) outper-

forms the other scenarios with the smallest median of average absolute bias when the

sensitivity parameters are nonzero. As the magnitude of sensitivity parameters increase,

incorporating unmeasured confounding reduces more bias than ignoring it. When one of
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Figure 4.3.2: Average absolute bias of exposure effect estimation when true sensitivity
parameters are 0.5. In simulation, sensitivity parameters used range from 0 to 0.75 with
increment of 0.25.
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Table 4.1: Coverage probability (%) of 95% posterior credible sets for exposure effect
estimation when sensitivity parameters are correctly specified in simulations.

ζy ζz 0 0.25 0.5 0.75

0

M1 29.3 33.5 33.8 35.2
M2 28.3 33.0 33.2 34.3
M3 97.7 96.5 96.5 96.0
M4 97.8 96.7 96.7 96.2

0.25

M1 28.2 32.7 29.2 35.0
M2 28.5 30.8 23.8 29.3
M3 97.5 95.3 96.3 96.3
M4 97.2 95.7 97.2 96.7

0.5

M1 21.8 26.8 32.0 32.0
M2 23.5 24.0 23.0 19.3
M3 97.7 97.8 97.0 95.7
M4 97.7 98.5 97.2 96.2

0.75

M1 18.0 23.2 28.3 29.3
M2 22.3 21.3 20.0 15.2
M3 97.2 96.8 96.8 95.2
M4 96.7 97.2 97.5 97.3

Table 4.2: Coverage probability (%) of 95% posterior credible sets for exposure effect
estimation with mis-specified sensitivity parameters in simulations when true sensitivity

parameters are 0.5.

ζy ζz 0 0.25 0.5 0.75

0

M1 25.5 30.7 30.7 26.3
M2 25.0 30.7 30.0 27.7
M3 95.7 96.0 95.7 96.0
M4 95.0 96.0 96.0 95.7

0.25

M1 30.3 26.3 31.3 35.7
M2 29.0 24.7 26.3 30.7
M3 95.7 97.7 95.3 96.3
M4 95.7 97.7 96.0 97.0

0.5

M1 36.7 28.0 28.0 32.0
M2 39.0 26.0 21.3 18.3
M3 92.3 97.0 95.0 94.7
M4 93.3 97.3 96.3 96.0

0.75

M1 27.0 28.0 31.0 33.3
M2 32.0 25.7 22.0 20.7
M3 98.0 95.3 96.0 93.0
M4 98.0 96.0 96.3 96.3
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sensitivity parameters is zero, ignoring the unmeasured confounder in the models does not

inflate the bias for the two scenarios either ignoring or incorporating misclassification at the

same time. Ignoring the misclassification yields considerable bias. Incorporating misclas-

sification into the response model greatly reduces the average absolute bias and improves

coverage probabilities to the nominal level. The reduction of bias by correcting for the

misclassification error is greater than that due to the unmeasured confounding. Compar-

ing scenarios M1 versus M3 and M2 versus M4, most bias in exposure effect estimation

could be reduced by incorporating misclassification. The variability of the average abso-

lute bias increases for scenarios correcting for misclassification errors because the estimate

integrates uncertainty of the classification probabilities. In scenarios M1 and M2, ignoring

misclassification error results in very low coverage probability. Both scenarios M3 and M4

which accommodate misclassification have coverage probability close to the nominal level.

Scenario M3 which only considers misclassification is a very strong competitor to Scenario

M4 which accounts for both misclassification and unmeasured confounding. Scenario M3

has slightly higher bias but closer coverage probability to the nominal level than scenario

M4.

In Figure 4.3.2, we see that scenario leads to the least biased results compared with

the other three scenarios even if one or two sensitivity parameters are misspecified. Inter-

estingly, for the scenarios M3 and M4 which correct for misclassification, overestimating

or underestimating the unmeasured confounding has little influence on bias and coverage

probability.

4.4 Case Study

4.4.1 Data Description

The case study aims at investigating the effect of female employment on the likeli-

hood of physical violence. The data come from the India National Health Survey (NFHS-

3) 2005-6 which covers a range of health-related issues. We focus on currently married
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women who are involved in the domestic violence module in urban areas. After dropping 

observations with missing variables, the sample is refined to 5573 non-working females and 

14542 working females. The data contain a variety of demographic and socio-economic 

variables including the exposure, female employment status and the dichotomous response, 

spousal violence, which is subject to misclassification. The spousal violence indicator takes 

1 if a woman’s husband has harmed or threatened her physically and 0 otherwise. Exposure 

status takes value 1 or 0 to indicate a woman worked or not in the past 12 months. Education 

variables are number of years of education received. Number of children, adult men and 

adult women are measured for each household. Wealth index measures asset ownership at 

the household level. Low caste indicates whether the household head belongs to scheduled 

castes and scheduled tribes. Hindu is an indicator on whether the household head is Hindu. 

Remarriage indicates whether a woman has been married more than once. Polygamy is an 

indicator on whether a woman is in polygamous marriage. Table 4.3 reports the descriptive 

statistics of variables used in the analysis. A higher percentage of working women suffer 

physical violence from their spouse than non-working women. Working women tend to be 

older and have fewer years of education than non-working women. The age and education 

years of husbands for working women and non-working women show the same trend. On 

average, working women have more children and less adults in household. The household 

of working women are more likely to be poor, belong to low caste, and believe in Hindu. 

Higher percentage of working women married more than once and have a polygamous mar-

riage.

In a recent study, Zhou et al. (2017) addresses misclassification in violence expe-

rience reporting and multilevel structure in the data but ignores the potential unmeasured 

confounding. As addressed earlier, it is unfeasible to test the ignorability assumption in ob-

servational studies, which is not often met. In the analysis, we intend to study the sensitivity

55



of the effect of female working status on spousal violence to the presence of misclassifica-

tion and an unmeasured confounder.

Table 4.3: Descriptive statistics. Source: India National Family Health Survey (NFHS-3)
2005-6.

Non-Exposure Exposure
Mean SD Mean SD

a) Response
Physical violence 0.16 0.37 0.21 0.41
b) Pre-exposure characteristics
b1) Demographic variables

Female age 31.86 7.88 33.73 7.10
Female education 7.77 5.22 7.23 6.07
Male age 37.46 8.71 39.00 8.19
Male education 9.52 4.91 8.46 5.50
Number of children 2.16 1.39 2.28 1.43
Number of adult men 1.79 1.08 1.59 0.91
Number of adult women 1.61 0.89 1.53 0.77
b2) Socio-economic variables

Wealth index 0.77 0.80 0.55 0.89
Indicator: low caste 0.49 0.50 0.60 0.49
b3) Cultural variables

Indicator: Hindu 0.74 0.44 0.77 0.42
Indicator: remarriage 0.01 0.11 0.02 0.15
Indicator: polygamy 0.01 0.09 0.02 0.14
No. of observations 5573 14542

4.4.2 Result

Figure 4.4.1 shows the sensitivity analysis for the effect of female employment on

the likelihood of suffering physical violence over different values of the sensitivity param-

eters ranging from -2 to 2 by increments of 0.5. The left panel displays the results obtained

without adjusting for misclassification in the response, while the right panel shows results

of the same combination of sensitivity parameters when correcting for misclassification.

The contour lines show the estimated odds ratio of suffering spousal violence for the work-

ing female to non-working female, for the levels of unmeasured confounding on the axes.
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Red dots on the plots are points where levels of confounding cause the female employment

effect estimates to be insignificant.

The left panel indicates the odds of a working female suffering physical violence

is 1.2 times that of a non-working woman without adjusting for the binary unmeasured

confounder. Across the hypothetical values of the sensitivity parameter, the effect of female

working status changes substantially. For instance, when the sensitivity parameter in the

exposure model is 0.5 and the sensitivity parameter in the response model is greater than

0, the unmeasured confounder can drive the exposure effect to be insignificant. Correcting

for misclassification in the right panel, the odds ratio of experiencing physical violence

for a working woman increases to 1.45, ignoring the unmeasured confounding. The effect

would be insignificant if the unmeasured confounder has positive or negative associations

with both the exposure and response. On the other hand, when the unmeasured confounder

is positively associated with either exposure or response and negatively associated with

the other, the odds ratio of suffering physical violence is elevated. Comparing the two

figures, the odds ratio of suffering spousal violence increases after taking into account

misclassification for the same combination of sensitivity parameter values. When one of

sensitivity parameters is 0, unmeasured confounding does not change the results. Whether

or not misclassification is accounted for, the exposure effect estimation is not robust to the

violation of ignorability assumption.

These two plots demonstrate that the analysis of the influence of female employment

on the likelihood of physical violence could substantially change depending on the levels of

unmeasured confounding. Including misclassification correction in the analysis could also

influence the female employment effect and its sensitivity to unmeasured confounding.

4.5 Discussion

In this paper, we propose a Bayesian sensitivity analysis for two sources of bias,

misclassification and unmeasured confounding, in observational data. Our approach uti-

lizes two sensitivity parameters to model the association of the unmeasured confounder
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with the exposure status and with the response variable subject to misclassification. We

evaluate the change in the exposure effect estimation with hypothetical levels of unmea-

sured confounding.

The proposed approach is illustrated with the study of the influence of female em-

ployment on the likelihood of suffering domestic violence. The results change substantially

after correcting for errors in the response and are sensitive to a binary unmeasured con-

founder. The simulation study confirms the efficacy of the proposed method. Correcting

for misclassification in the response and accounting for unmeasured confounding reduces

bias in exposure effect estimation and the reduction of bias improves as the sensitivity

parameters strengthen. Incorporating misclassification error appears plays to play a more

important role in bias reduction and improving coverage probabilities to the nominal level.

In this study, the sensitivity parameters are set to be fixed. This avoids the issue of

non-identifiability and lack of convergence in MCMC methods, but leads to difficulty in

interpreting results from different combinations of the sensitivity parameters. In the future,

we plan to specify priors on sensitivity parameters to get a possible range of change in es-

timation due to unmeasured confounding and incorporate the uncertainty in the sensitivity

parameters.

The data in the motivating example has a clustered structure. Incorporating this struc-

ture removes cluster level confounding and ensures the validity of causal inference. It is of

interest to extend our approach for cluster structured data. We can consider the cluster level

unmeasured confounding and investigate the influence of multilevel modeling on exposure

effect estimation.
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CHAPTER FIVE

Conclusion

The dissertation proposes Bayesian propensity score analysis for clustered observa-

tional data investigates multiple source of bias: multilevel confounding and misclassifica-

tion. Multilevel models are employed to account for cluster level confounding in propen-

sity score analysis. Also, random coefficients in multilevel models borrow strength from

the study population to improve the precision of estimates. The simulation study shows

employing multilevel models in both propensity score and exposure effect estimation re-

sults in least absolute average bias. The reduction in bias increases as the association of

cluster level confounding with response strengthens. Misclassification in response distort

the exposure-response regression surface. Adjusting misclassified response greatly reduces

the bias in estimates. If only one source of bias can be taken into account, it is better to

incorporate misclassification in modeling. Correcting misclassification reduces more bias

than incorporating multilevel structure and increases coverage rate of credible intervals to

the nominal level.

A big challenge in inference for observational study that the unconfoundness as-

sumption cannot be ensured. Sensitivity analysis envisions how analysis results would

change due to unmeasured confounding. To perform the sensitivity analysis, assume the

existence of an unmeasured confounder and specify the sensitivity parameters as regression

coefficients to enter the inferential models. The sensitivity parameters controls the strength

of associations of the unmeasured confounder with exposure status and response. Incor-

porating both misclassification and unmeasured confounding outputs the estimates with

smallest median of average absolute bias. As the degree of unmeasured confounding gets

stronger, the reduction in bias increases. If unmeasured confounding is only associated

with exposure or response, unmeasured confounding do not interfere the inference.
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For observational data, multilevel structure and misclassification are important source

of bias to be accounted for in order to deliver reliable inference. The case study and sim-

ulations confirm the efficacy of the proposed Bayesian misclassification and propensity

score methods for clustered observational data. The inference from propensity score anal-

ysis should be further investigated with sensitivity analysis to unmeasured confounding. If

the estimates change substantially in existence of unmeasured confounder, the results are

sensible to possible violation of unconfoundess assumption.
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APPENDIX A

R and JAGS code for Bayesian Multilevel Propensity Score Analysis

The code below are used for simulation in Bayesian multilevel propensity score anal-

ysis in chapter two.

###Chapter Two:Simulation for Bayesianl Multilevel ###

### Propensity Score ###

### R Code ###

### # of replications: nr

### # of cluster: nc = 20

### cluster size: ns = 25

### individual level: c1,c2 ~ N(0,1)

### cluster level: z ~ N(0,1)

### treatment assignment: x

### outcome: y

library(rjags)

library(R2jags)

load.module("dic")

nc = 20

ns = 25

n = nc*ns

set.seed(111)

r0 = rep(rnorm(nc,0,0.5), times = ns)

r1 = 0.5

r2 = 0.5
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r3 = 1

b0 = rep(rnorm(nc,0,2), times = ns)

b1 = 1

b2 = 1

b3 = 1

b4 = 3

b5 = 0

###nr = 50

###re1 <- vector("list", nr)

sim <- function(){

c_ind <- rep(1:nc, times = ns)

c1 <- rnorm(n,0,1)

c2 <- rnorm(n,0,1)

### z uncorrelated with c1,c2

z_c <- rnorm(nc,0,1)

z <- rep(z_c, times = ns)

ps <- exp(r0+r1*c1+r2*c2+r3*z)/

(1+exp(r0+r1*c1+r2*c2+r3*z))

quat <- exp(sqrt(0.5^2+r1^2+r2^2+r3^2)*

qnorm(c(0.2,0.4,0.6,0.8)))/(1+exp(sqrt

(0.5^2+r1^2+r2^2+r3^2)*qnorm(c(0.2,0.4,0.6,0.8))))

x <- rbinom(n,1,ps)

y <- b0+b1*x+b2*c1+b3*c2+b4*z+b5*x*z

fit1 <- jags(data = data1, inits = inits1, params1,

n.chain = 2, n.burnin = 5000, n.iter = 10000,n.thin=1,

model.file = m1)

fit2 <- jags(data = data2, inits = inits2, params2,
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n.chain = 2, n.burnin = 5000, n.iter = 10000,n.thin=1,

model.file = m2)

fit3 <- jags(data = data3, inits = inits3, params3,

n.chain = 2, n.burnin = 5000, n.iter = 10000,n.thin=1,

model.file = m3)

fit4 <- jags(data = data4, inits = inits4, params4,

n.chain = 2, n.burnin = 5000, n.iter = 10000,n.thin=1,

model.file = m4)

fit5 <- jags(data = data5, inits = inits5, params5,

n.chain = 2, n.burnin = 5000, n.iter = 10000,n.thin=1,

model.file = m5)

fit6 <- jags(data = data6, inits = inits6, params6,

n.chain = 2, n.burnin = 5000, n.iter = 10000,n.thin=1,

model.file = m6)

fit7 <- jags(data = data7, inits = inits7, params7,

n.chain = 2, n.burnin = 5000, n.iter = 10000,n.thin=1,

model.file = m7)

fit8 <- jags(data = data8, inits = inits8, params8,

n.chain = 2, n.burnin = 5000, n.iter = 10000,n.thin=1,

model.file = m8)

return(list(fit1,fit2,fit3,fit4,fit5,fit6,fit7,fit8))

}

re <- replicate(50, sim())

### JAGS Code ###

### PS0 + Out1

m1 <- function(){
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for (i in 1:n)

{

x[i] ~ dbin(p[i],1)

logit(p[i]) <- r0 + r[1]*c1[i] + r[2]*c2[i]

y[i] ~ dnorm(mu[i], tau.l)

g2[i] <- step(p[i]-quat[1])-step(p[i]-quat[2])

g3[i] <- step(p[i]-quat[2])-step(p[i]-quat[3])

g4[i] <- step(p[i]-quat[3])-step(p[i]-quat[4])

g5[i] <- step(p[i]-quat[4])

mu[i] <- delta*x[i]+eta[1]+eta[2]*g2[i]+

eta[3]*g3[i]+eta[4]*g4[i]+eta[5]*g5[i]

}

r0 ~ dnorm(0, 0.1)

for (j in 1:2)

{

r[j] ~ dnorm(0, 0.1)

}

tau.l ~ dunif(0.01, 100)

sig.l <- 1/tau.l

delta ~ dnorm(0, 0.01)

or.delta <- exp(delta)

for (k in 1:5)

{

eta[k] ~ dnorm(0, 0.01)

}
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}

data1 <- list("x", "c1", "c2", "quat", "y", "n")

inits1 <- function(){

list(r0=rnorm(1),r=rnorm(2),delta=rnorm(1),

eta=rnorm(5),tau.l=dunif(1))}

params1 <- c("r0", "r", "delta", "or.delta", "eta",

"sig.l")

### PS1 + Out1

m2 <- function(){

for (i in 1:n)

{

x[i] ~ dbin(p[i],1)

logit(p[i]) <- r0+r[1]*c1[i]+r[2]*c2[i]+r[3]*z[i]

y[i] ~ dnorm(mu[i], tau.l)

g2[i] <- step(p[i]-quat[1])-step(p[i]-quat[2])

g3[i] <- step(p[i]-quat[2])-step(p[i]-quat[3])

g4[i] <- step(p[i]-quat[3])-step(p[i]-quat[4])

g5[i] <- step(p[i]-quat[4])

mu[i] <- delta*x[i]+eta[1]+eta[2]*g2[i]+

eta[3]*g3[i]+eta[4]*g4[i]+eta[5]*g5[i]

}

r0 ~ dnorm(0, 0.1)

for (j in 1:3)

{

r[j] ~ dnorm(0, 0.1)

}
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tau.l ~ dunif(0.01, 100)

sig.l <- 1/tau.l

delta ~ dnorm(0, 0.01)

or.delta <- exp(delta)

for (k in 1:5)

{

eta[k] ~ dnorm(0, 0.01)

}

}

data2 <- list("x", "c1", "c2", "z", "quat", "y",

"n")

inits2 <- function(){

list(r0=rnorm(1),r=rnorm(3),delta=rnorm(1),

eta=rnorm(5),tau.l=dunif(1))}

params2 <- c("r0", "r", "delta", "or.delta", "eta",

"sig.l")

### PS2 + Out1

m3 <- function(){

for (i in 1:n)

{

x[i] ~ dbin(p[i],1)

logit(p[i])<-r0[c_ind[i]]+r[1]*c1[i]+r[2]*c2[i]

y[i] ~ dnorm(mu[i], tau.l)

g2[i] <- step(p[i]-quat[1])-step(p[i]-quat[2])

g3[i] <- step(p[i]-quat[2])-step(p[i]-quat[3])

g4[i] <- step(p[i]-quat[3])-step(p[i]-quat[4])
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g5[i] <- step(p[i]-quat[4])

mu[i] <- delta*x[i]+eta[1]+eta[2]*g2[i]+

eta[3]*g3[i]+eta[4]*g4[i]+eta[5]*g5[i]

}

for (h in 1:nc)

{

r0[h] ~ dnorm(m1.r, tau.r)

r0.adj[h] <- r0[h] - mean(r0[])

}

m1.r ~ dnorm(0, 0.1)

tau.r ~ dunif(0.1, 10)

sig.r <- 1/tau.r

for (j in 1:2)

{

r[j] ~ dnorm(0, 0.1)

}

tau.l ~ dunif(0.01, 100)

sig.l <- 1/tau.l

delta ~ dnorm(0, 0.01)

or.delta <- exp(delta)

for (k in 1:5)

{

eta[k] ~ dnorm(0, 0.01)

}

}

data3 <- list("x", "c1", "c2", "quat", "y", "n", "nc",

"c_ind")
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inits3 <- function(){

list(r0 = rnorm(nc), r = rnorm(2), delta = rnorm(1),

eta= rnorm(5), tau.l = dunif(1), m1.r = rnorm(1),

tau.r = dunif(1))}

params3 <- c("r0", "r", "delta", "or.delta", "eta",

"m1.r", "sig.r", "sig.l")

### PS3 + Out1

m4 <- function(){

for (i in 1:n)

{

x[i] ~ dbin(p[i],1)

logit(p[i])<-r0[c_ind[i]]+r[1]*c1[i]+r[2]*c2[i]

y[i] ~ dnorm(mu[i], tau.l)

g2[i] <- step(p[i]-quat[1])-step(p[i]-quat[2])

g3[i] <- step(p[i]-quat[2])-step(p[i]-quat[3])

g4[i] <- step(p[i]-quat[3])-step(p[i]-quat[4])

g5[i] <- step(p[i]-quat[4])

mu[i] <- delta*x[i]+eta[1]+eta[2]*g2[i]+

eta[3]*g3[i]+eta[4]*g4[i]+eta[5]*g5[i]

}

for (h in 1:nc)

{

r0[h] ~ dnorm(m[h], tau.r)

m[h] <- b0 + r[3]*z_c[h]

}

b0 ~ dnorm(0, 0.1)

tau.r ~ dunif(0.1, 10)
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sig.r <- 1/tau.r

for (j in 1:3)

{

r[j] ~ dnorm(0, 0.1)

}

tau.l ~ dunif(0.01, 100)

sig.l <- 1/tau.l

delta ~ dnorm(0, 0.01)

for (k in 1:5)

{

eta[k] ~ dnorm(0, 0.01)

}

or.delta <- exp(delta)

}

data4 <- list("x", "c1", "c2", "z_c", "quat", "y", "n",

"nc","c_ind")

inits4 <- function(){

list(r0 = rnorm(nc), b0 = rnorm(1), r = rnorm(3),

delta = rnorm(1), eta= rnorm(5), tau.l = dunif(1),

tau.r = dunif(1))}

params4 <- c("r0", "b0", "r", "delta", "or.delta",

"eta", "sig.r", "sig.l")

### PS0 + Out2

m5 <- function(){

for (i in 1:n)
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{

x[i] ~ dbin(p[i],1)

logit(p[i])<-r0+r[1]*c1[i]+r[2]*c2[i]

y[i] ~ dnorm(mu[i], tau.l)

g2[i] <- step(p[i]-quat[1])-step(p[i]-quat[2])

g3[i] <- step(p[i]-quat[2])-step(p[i]-quat[3])

g4[i] <- step(p[i]-quat[3])-step(p[i]-quat[4])

g5[i] <- step(p[i]-quat[4])

mu[i] <- delta*x[i]+eta0[c_ind[i]]+eta[1]*g2[i]

+eta[2]*g3[i]+eta[3]*g4[i]+eta[4]*g5[i]

}

r0 ~ dnorm(0, 0.1)

for (j in 1:2)

{

r[j] ~ dnorm(0, 0.1)

}

tau.l ~ dunif(0.01, 100)

sig.l <- 1/tau.l

delta ~ dnorm(0, 0.01)

for (h in 1:nc)

{

eta0[h] ~ dnorm(m1.e, tau.e)

eta0.adj[h] <- eta0[h] - mean(eta0[])

}

m1.e ~ dnorm(0, 0.1)

tau.e ~ dunif(0.01, 10)

sig.e <- 1/tau.l
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for (k in 1:4)

{

eta[k] ~ dnorm(0, 0.01)

}

or.delta <- exp(delta)

}

data5 <- list("x", "c1", "c2", "quat", "y", "n",

"nc", "c_ind")

inits5 <- function(){

list(r0 = rnorm(1), r = rnorm(2), delta = rnorm(1),

eta0 = rnorm(nc), eta= rnorm(4), tau.l = dunif(1),

m1.e = rnorm(1), tau.e = dunif(1))}

params5 <- c("r0", "r", "delta", "or.delta", "eta0",

"eta", "m1.e", "sig.e", "sig.l")

### PS1 + Out2

m6 <- function(){

for (i in 1:n)

{

x[i] ~ dbin(p[i],1)

logit(p[i])<-r0+r[1]*c1[i]+r[2]*c2[i]+r[3]*z[i]

y[i] ~ dnorm(mu[i], tau.l)

g2[i]<-step(p[i]-quat[1])-step(p[i]-quat[2])

g3[i]<-step(p[i]-quat[2])-step(p[i]-quat[3])

g4[i]<-step(p[i]-quat[3])-step(p[i]-quat[4])

g5[i]<-step(p[i]-quat[4])

mu[i]<-delta*x[i]+eta0[c_ind[i]]+eta[1]*g2[i]+

eta[2]*g3[i]+eta[3]*g4[i]+eta[4]*g5[i]
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}

r0 ~ dnorm(0, 0.1)

for (j in 1:3)

{

r[j] ~ dnorm(0, 0.1)

}

tau.l ~ dunif(0.01, 100)

sig.l <- 1/tau.l

delta ~ dnorm(0, 0.01)

for (h in 1:nc)

{

eta0[h] ~ dnorm(m1.e, tau.e)

eta0.adj[h] <- eta0[h] - mean(eta0[])

}

m1.e ~ dnorm(0, 0.1)

tau.e ~ dunif(0.01, 10)

sig.e <- 1/tau.l

for (k in 1:4)

{

eta[k] ~ dnorm(0, 0.01)

}

or.delta <- exp(delta)

}

data6 <- list("x", "c1", "c2", "z", "quat", "y", "n",

"nc", "c_ind")

inits6 <- function(){

list(r0 = rnorm(1), r = rnorm(3), delta = rnorm(1),
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eta0 = rnorm(nc), eta= rnorm(4), tau.l = dunif(1),

m1.e = rnorm(1), tau.e = dunif(1))}

params6 <- c("r0", "r", "delta", "or.delta", "eta", "eta0",

"m1.e", "sig.e", "sig.l")

### PS2 + Out2

m7 <- function(){

for (i in 1:n)

{

x[i] ~ dbin(p[i],1)

logit(p[i]) <- r0[c_ind[i]]+r[1]*c1[i]+r[2]*c2[i]

y[i] ~ dnorm(mu[i], tau.l)

g2[i] <- step(p[i]-quat[1])-step(p[i]-quat[2])

g3[i] <- step(p[i]-quat[2])-step(p[i]-quat[3])

g4[i] <- step(p[i]-quat[3])-step(p[i]-quat[4])

g5[i] <- step(p[i]-quat[4])

mu[i] <- delta*x[i]+eta0[c_ind[i]]+eta[1]*g2[i]+

eta[2]*g3[i]+eta[3]*g4[i]+eta[4]*g5[i]

}

for (h in 1:nc)

{

r0[h] ~ dnorm(m1.r, tau.r)

r0.adj[h] <- r0[h] - mean(r0[])

eta0[h] ~ dnorm(m1.e, tau.e)

eta0.adj[h] <- eta0[h] - mean(eta0[])

}

m1.r ~ dnorm(0, 0.1)

75



tau.r ~ dunif(0.1, 10)

sig.r <- 1/tau.r

m1.e ~ dnorm(0, 0.1)

tau.e ~ dunif(0.01, 100)

sig.e <- 1/tau.e

for (j in 1:2)

{

r[j] ~ dnorm(0, 0.1)

}

tau.l ~ dunif(0.01, 100)

sig.l <- 1/tau.l

delta ~ dnorm(0, 0.01)

for (k in 1:4)

{

eta[k] ~ dnorm(0, 0.01)

}

or.delta <- exp(delta)

}

data7 <- list("x", "c1", "c2", "quat", "y", "n", "nc",

"c_ind")

inits7 <- function(){

list(r0 = rnorm(nc), r = rnorm(2), delta = rnorm(1),

eta0 = rnorm(nc), eta= rnorm(4), m1.r = rnorm(1),

tau.r=dunif(1), tau.l = dunif(1), m1.e = rnorm(1),

tau.e = dunif(1))}

params7 <- c("r0", "r", "delta", "or.delta", "eta0",

"eta", "m1.r", "sig.r", "m1.e", "sig.e", "sig.l")
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### PS3 + Out2

m8 <- function(){

for (i in 1:n)

{

x[i] ~ dbin(p[i],1)

logit(p[i]) <- r0[c_ind[i]]+r[1]*c1[i]+r[2]*c2[i]

y[i] ~ dnorm(mu[i], tau.l)

g2[i] <- step(p[i]-quat[1])-step(p[i]-quat[2])

g3[i] <- step(p[i]-quat[2])-step(p[i]-quat[3])

g4[i] <- step(p[i]-quat[3])-step(p[i]-quat[4])

g5[i] <- step(p[i]-quat[4])

mu[i] <- delta*x[i]+eta0[c_ind[i]]+eta[1]*g2[i]

+eta[2]*g3[i]+eta[3]*g4[i]+eta[4]*g5[i]

}

for (h in 1:nc)

{

r0[h] ~ dnorm(m[h], tau.r)

m[h] <- b0 + r[3]*z_c[h]

eta0[h] ~ dnorm(m1.e, tau.e)

eta0.adj[h] <- eta0[h] - mean(eta0[])

}

b0 ~ dnorm(0, 0.1)

tau.r ~ dunif(0.1, 10)

sig.r <- 1/tau.r

m1.e ~ dnorm(0, 0.1)

tau.e ~ dunif(0.01, 10)

sig.e <- 1/tau.e
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for (j in 1:3)

{

r[j] ~ dnorm(0, 0.1)

}

tau.l ~ dunif(0.01, 100)

sig.l <- 1/tau.l

delta ~ dnorm(0, 0.01)

for (k in 1:4)

{

eta[k] ~ dnorm(0, 0.01)

}

or.delta <- exp(delta)

}

data8 <- list("x", "c1", "c2", "z_c", "quat", "y",

"n", "nc", "c_ind")

inits8 <- function(){

list(r0 = rnorm(nc), b0 = rnorm(1), r = rnorm(3),

delta = rnorm(1),eta0 = rnorm(nc), eta= rnorm(4),

tau.r = dunif(1), tau.l = dunif(1),

m1.e = rnorm(1), tau.e = dunif(1))}

params8 <- c("r0", "b0", "r", "delta", "or.delta",

"eta0", "eta", "sig.r", "m1.e", "sig.e", "sig.l")
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APPENDIX B

R and JAGS code for Bayesian Multilevel Propensity Score Analysis with misclassified
response

The code below is for Bayesian multilevel propensity score analysis with misclassi-

fied response in Chapter Three. Data generation is performed in R and models are fitted in

JAGS.

###Chapter Three:Simulation for Bayesianl Multilevel ###

###Propensity Score Analysis with Miclassified Response###

### R Code ###

### multilevel, misclassification simulation

### # of replications: nr

### # of cluster: nc = 10

### cluster size: ns = 100

### individual level: c1,c2 ~ N(0,1)

### cluster level: z ~ N(0,1)

### treatment assignment: x

### outcome: y

### se: sensitivity

### sp: specificity

se = 0.53

sp = 0.98

nr = 100

nc = 10

ns = 100

n = nc*ns
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set.seed(1234)

r0 = rep(rnorm(nc), times = ns)

r1 = 0.3

r2 = 0.4

r3 = 0.5

set.seed(4321)

b0 = rep(rnorm(nc), times = ns)

b1 = 1

b2 = 0.3

b3 = 0.3

b4 = 0.7

b5 = 0

library(rjags)

library(R2jags)

load.module("dic")

sim <- function()

{

c_ind <- rep(1:nc, times = ns)

c1 <- rnorm(n,0,1)

c2 <- rnorm(n,0,1)

### z uncorrelated with c1,c2

z_c <- rnorm(nc,0,1)

z <- rep(z_c, times = ns)

ps <- exp(r0+r1*c1+r2*c2+r3*z)/(1+exp(r0+r1*c1+r2*c2+r3*z))

x <- rbinom(n,1,ps)

tos <- exp(b0+b1*x+b2*c1+b3*c2+b4*z+b5*x*z)/

(1+exp(b0+b1*x+b2*c1+b3*c2+b4*z+b5*x*z))
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os <- tos*se + (1-sp)*(1-tos)

### observed y

y <- rbinom(n,1,os)

fit1 <- jags(data=bugs.data1, inits=bugs.inits1,

bugs.params1, n.chain=2, n.burnin=1000, n.iter=6000,

n.thin=1, model.file=m1)

fit2 <- jags(data=bugs.data2, inits=bugs.inits2,

bugs.params2, n.chain=2, n.burnin=1000, n.iter=6000,

n.thin=1, model.file=m2)

fit3 <- jags(data=bugs.data3, inits=bugs.inits3,

bugs.params3, n.chain=2, n.burnin=1000, n.iter=6000,

n.thin=1, model.file=m3)

fit4 <- jags(data=bugs.data4, inits=bugs.inits4,

bugs.params4, n.chain=2, n.burnin=1000, n.iter=6000,

n.thin=1, model.file=m4)

return(list(fit1$BUGSoutput$summary,fit2$BUGSoutput$summary,

fit3$BUGSoutput$summary,fit4$BUGSoutput$summary))

}

system.time(re1 <- replicate(50,sim()))

### JAGS Code ###

### no misclassification, no multilevel

m1 <- function(){

for (i in 1:n)

{

x[i] ~ dbin(p[i],1)

logit(p[i]) <- r0 + r[1]*c1[i] + r[2]*c2[i]
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y[i] ~ dbin(op[i], 1)

logit(op[i]) <- b0 + b[1] * x[i] + b[2]*p[i]

}

r0 ~ dnorm(0, 0.1)

for (j in 1:2)

{

r[j] ~ dnorm(0, 0.1)

}

b0 ~ dnorm(0, 0.1)

b[1] ~ dnorm(0,0.5)

b[2] ~ dnorm(0,0.1)

or.trt<-exp(b[1])

}

bugs.data1 <- list("x", "c1", "c2", "y", "n")

bugs.params1 <- c("r0", "r", "b0", "b", "or.trt")

bugs.inits1 <- function(){

list(r0 = rnorm(1), r = rnorm(2), b0 = rnorm(1),

b= rnorm(2))

}

### misclassification, no multilevel ###

m2 <- function(){

for (i in 1:n)

{

x[i] ~ dbin(p[i],1)

logit(p[i]) <- r0 + r[1]*c1[i] + r[2]*c2[i]

y[i] ~ dbin(op[i], 1)

logit(tp[i]) <- b0 + b[1] * x[i] + b[2]*p[i]
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op[i]<- se1*tp[i] +(1-sp1)*(1-tp[i])

}

##se1 ~ dbeta(u1+0.5,50.5-u1)

##sp1 ~ dbeta(50.5-u2,u2+0.5)

se1 ~ dbeta(5,7.6)

sp1 ~ dbeta(165.7,9.7)

r0 ~ dnorm(0, 0.1)

for (j in 1:2)

{

r[j] ~ dnorm(0, 0.1)

}

b0 ~ dnorm(0, 0.1)

b[1] ~ dnorm(0,0.5)

b[2] ~ dnorm(0,0.1)

or.trt<-exp(b[1])

}

bugs.data2 <- list("x", "c1", "c2", "y", "n")

bugs.params2 <- c("r0", "r", "b0", "b", "or.trt",

"se1", "sp1")

bugs.inits2_1 <- list(r0 = rnorm(1), r = rnorm(2),

b0 = rnorm(1), b=c(rnorm(1),1), se1 = 0.53, sp1 = 0.98)

bugs.inits2_2 <- list(r0 = rnorm(1), r = rnorm(2),

b0 = rnorm(1),b=c(rnorm(1),0.98), se1 = 0.51, sp1 = 0.99)

bugs.inits2 <- list(bugs.inits2_1,bugs.inits2_2)

### multilevel, no misclassification ###

m3 <- function(){

for (i in 1:n)
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{

x[i] ~ dbin(p[i],1)

logit(p[i]) <- r0[c_ind[i]] + r[1]*c1[i] + r[2]*c2[i]

y[i] ~ dbin(op[i], 1)

logit(op[i]) <- b0[c_ind[i]] + b[1]*x[i] + b[2]*p[i]

}

for (l in 1:nc)

{

r0[l] ~ dnorm(mu1[l], tau1)

mu1[l] <- a[1] + a[2]*z_c[l]

b0[l] ~ dnorm(mu2[l], tau2)

mu2[l] <- d

}

tau1 ~ dgamma(0.001,0.001)

tau2 ~ dgamma(0.001,0.001)

d ~ dnorm(0, 0.1)

for (j in 1:2)

{

r[j] ~ dnorm(0, 0.1)

a[j] ~ dnorm(0, 0.1)

}

b[1] ~ dnorm(0,0.5)

b[2] ~ dnorm(0,0.1)

or.trt<-exp(b[1])

}

bugs.data3 <- list("x", "c1", "c2", "y", "n", "nc",

"z_c", "c_ind")
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bugs.params3 <- c("a", "r", "d", "b","or.trt", "tau1",

"tau2")

bugs.inits3 <- function(){

list(a = rnorm(2), r = rnorm(2), d = rnorm(1),

b= rnorm(2), tau1 = runif(1), tau2 = runif(1))

}

### multilevel, misclassification ###

m4 <- function(){

for (i in 1:n)

{

x[i] ~ dbin(p[i],1)

logit(p[i]) <- r0[c_ind[i]] + r[1]*c1[i] + r[2]*c2[i]

y[i] ~ dbin(op[i], 1)

logit(tp[i]) <- b0[c_ind[i]] + b[1]*x[i] + b[2]*p[i]

op[i] <- se1*tp[i] + (1-sp1)*(1-tp[i])

}

##se1 ~ dbeta(u1+0.5,50.5-u1)

##sp1 ~ dbeta(50.5-u2,u2+0.5)

se1 ~ dbeta(5,7.6)

sp1 ~ dbeta(165.7,9.7)

for (l in 1:nc)

{

r0[l] ~ dnorm(mu1[l], tau1)

mu1[l] <- a[1] + a[2]*z_c[l]

##r0.adj[l] <- r0[l] - mean(r0[])

b0[l] ~ dnorm(mu2[l], tau2)
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mu2[l] <- d

##b0.adj[l] <- b0[l] - mean(b0[])

}

tau1 ~ dgamma(0.001,0.001)

tau2 ~ dgamma(0.001,0.001)

for (j in 1:2)

{

r[j] ~ dnorm(0, 0.1)

a[j] ~ dnorm(0, 0.1)

}

d ~ dnorm(0, 0.1)

b[1] ~ dnorm(0,0.5)

b[2] ~ dnorm(0,0.1)

or.trt<-exp(b[1])

}

bugs.data4 <- list("x", "c1", "c2", "y","n", "nc", "c_ind",

"z_c")

bugs.params4 <- c("a", "r", "b", "d", "or.trt", "se1", "sp1",

"tau1", "tau2")

bugs.inits4_1 <- list(a = rnorm(2), d=rnorm(1), r = rnorm(2),

b=c(rnorm(1),1),

se1 = 0.53, sp1 = 0.98,tau1=0.5, tau2=0.8)

bugs.inits4_2 <- list(a = rnorm(2), d=dnorm(1), r = rnorm(2),

b=c(rnorm(1),0.99),

se1 = 0.52, sp1 = 0.99,tau1=1,tau2=1)

bugs.inits4 <- list(bugs.inits4_1,bugs.inits4_2)
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APPENDIX C

R and JAGS code for Bayesian Sensitivity Analysis with misclassified response

The code below is for Bayesian sensitivity Analysis to unmeasured confounding in

chapter four. In the simulation, R code is for data generation and JAGS code is for model

fitting.

### Chapter Four:Simulation for Bayesianl Sensitivity ###

### Analysis to Unmeasured Confounding ###

### R Code ###

###sensitivity of unmeasured confounding+misclassification

###propensity score model:

###logit(P(z=1))= r0+r1*x1+r2*x2+r3*x3+r*u

###outcome model:logit(P(y=1))= b0+b1*x1+b2*x2+b3*x3+b4*z+b*u

###misclassification:P(y_hat = 1)=se*P(y=1)+(1-sp)*(1-P(y=1))

###pretend U is unknown

### sample size

n = 400

### paramters in outcome model

b0 = 0.4

b1 = 0.4

b2 = 0.4

b3 = 0.4

### trt ###

b4 = 1

### association between y and u

###b
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### paramters in propensity score model

r0 =0.25

r1 = 0.25

r2 = 0.25

r3 = 0.25

### association between z and u

###r

### hyperparamter for u

pu = 0.5

### misclassification sensitivity and specificity

se = 0.7

sp = 0.9

### jags model###

##se.model1:no misclassification,

##no unmeasured confounder U

##se.model:no misclassification,

##with unmeasured confounder U

##with prior U~dbin(pu,1)

##se.mis.model1:with misclassification,

##no unmeasured confounder U

##se.mis.model:with misclassification,

##with unmeasured confounder U

##with prior U~dbin(pu,1)

### no mis no U ###

se.model1 <- function(){

for (i in 1:n)

{
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z[i] ~ dbin(p[i],1)

logit(p[i])<-r[1]+r[2]*x1[i]+r[3]*x2[i]+r[4]*x3[i]

y[i] ~ dbin(tp[i], 1)

logit(tp[i])<-delta*z[i]+b[1]+b[2]*x1[i]+b[3]*x2[i]

+b[4]*x3[i]

}

for (j in 1:4)

{

r[j] ~ dnorm(0, 0.1)

b[j] ~ dnorm(0, 0.5)

}

delta ~ dnorm(0, 0.5)

or.delta<-exp(delta)

}

params.se1 <- c("r", "b", "delta", "or.delta")

inits.se1 <- function(){

list(r=rnorm(4), b=rnorm(4), delta=rnorm(1))

}

### no mis ###

se.model <- function(){

for (i in 1:n)

{

u[i] ~ dbin(pu,1)

z[i] ~ dbin(p[i],1)

logit(p[i])<-r[1]+r[2]*x1[i]+r[3]*x2[i]+r[4]*x3[i]

+rz*u[i]

y[i] ~ dbin(tp[i], 1)
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logit(tp[i])<-delta*z[i]+bu*u[i]+b[1]+b[2]*x1[i]+

b[3]*x2[i]+b[4]*x3[i]

}

for (j in 1:4)

{

r[j] ~ dnorm(0, 0.1)

b[j] ~ dnorm(0, 0.5)

}

delta ~ dnorm(0, 0.5)

or.delta<-exp(delta)

}

params.se <- c("r", "b", "delta", "or.delta")

inits.se <- function(){

list(r=rnorm(4), b=rnorm(4), delta=rnorm(1),

u=rbinom(n,1,0.5))

}

### mis no U ###

se.mis.model1 <- function(){

for (i in 1:n)

{

z[i] ~ dbin(p[i],1)

logit(p[i])<-r[1]+r[2]*x1[i]+r[3]*x2[i]+r[4]*x3[i]

y[i] ~ dbin(op[i], 1)

op[i] <- se1*tp[i] +(1-sp1)*(1-tp[i])

logit(tp[i])<-delta*z[i]+b[1]+b[2]*x1[i]+b[3]*x2[i]
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+b[4]*x3[i]

}

se1 ~ dbeta(70,30)

sp1 ~ dbeta(90,10)

for (j in 1:4)

{

r[j] ~ dnorm(0, 0.1)

b[j] ~ dnorm(0, 0.5)

}

delta ~ dnorm(0, 0.5)

or.delta<-exp(delta)

}

params.se.mis1 <- c("r", "b", "delta", "or.delta","se1","sp1")

inits.se.mis1 <- function(){

list(r=rnorm(4), b=rnorm(4), delta=rnorm(1), se1=runif(1),

sp1=runif(1))

}

### mis ###

se.mis.model <- function(){

for (i in 1:n)

{

u[i] ~ dbin(pu,1)

z[i] ~ dbin(p[i],1)

logit(p[i])<-r[1]+r[2]*x1[i]+r[3]*x2[i]+r[4]*x3[i]
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+rz*u[i]

y[i] ~ dbin(op[i], 1)

op[i] <- se1*tp[i] +(1-sp1)*(1-tp[i])

logit(tp[i])<-delta*z[i]+bu*u[i]+b[1]+b[2]*x1[i]

+b[3]*x2[i]+b[4]*x3[i]

}

se1 ~ dbeta(70,30)

sp1 ~ dbeta(90,10)

for (j in 1:4)

{

r[j] ~ dnorm(0, 0.1)

b[j] ~ dnorm(0, 0.5)

}

delta ~ dnorm(0, 0.5)

or.delta<-exp(delta)

}

params.se.mis <- c("r", "b", "delta", "or.delta","se1","sp1")

inits.se.mis <- function(){

list(r=rnorm(4), b=rnorm(4), delta=rnorm(1), u=rbinom(n,1,0.5),

se1=runif(1),sp1=runif(1))

}

library(R2jags)

library(rjags)

load.module("dic")

### simulation ###

sim <- function(b=1,r=1){
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x1 <- rnorm(n,0,1)

x2 <- rnorm(n,0,1)

x3 <- rnorm(n,0,1)

u <- rbinom(n,1,0.5)

pz <- exp(r0 + r1*x1 + r2*x2 + r3*x3 + r*u)/

(1+exp(r0 + r1*x1 + r2*x2 + r3*x3 + r*u))

z <- rbinom(n,1,pz)

py <- exp(b0 + b1*x1 + b2*x2 + b3*x3 + b*u + b4*z)/

(1+exp(b0 + b1*x1 + b2*x2 + b3*x3 + b*u + b4*z))

op <- py*se + (1-py)*(1-sp)

y <- rbinom(n,1,op)

se.data1 <- list("z", "y", "x1", "x2", "x3", "n")

se.fit1 <- jags(data=se.data1, inits=inits.se1, params.se1,

n.chain=2, n.burnin=1000, n.iter=6000, n.thin=1,

model.file=se.model1)

mis.se.data1 <- list("z", "y", "x1", "x2", "x3", "n")

mis.se.fit1 <- jags(data=mis.se.data1, inits=inits.se.mis1,

params.se.mis1,n.chain=2, n.burnin=1000, n.iter=6000,

n.thin=1, model.file=se.mis.model1)

rz = r

bu = b

se.data2 <- list("z", "y", "x1", "x2", "x3", "n", "rz",

"bu", "pu")

se.fit2 <- jags(data=se.data2, inits=inits.se, params.se,

n.chain=2, n.burnin=1000,n.iter=6000, n.thin=1,

model.file=se.model)

mis.se.data2 <- list("z", "y", "x1", "x2", "x3", "n", "pu",
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"rz", "bu")

mis.se.fit2 <- jags(data=mis.se.data2, inits=inits.se.mis,

params.se.mis, n.chain=2, n.burnin=1000, n.iter=6000,

n.thin=1, model.file=se.mis.model)

return(list(se.fit1$BUGSoutput$summary,

se.fit2$BUGSoutput$summary,mis.se.fit1$BUGSoutput$summary,

mis.se.fit2$BUGSoutput$summary))

}
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