
ABSTRACT

Flexible Spatial Interpolation and Uncertainty Quantification: With Applications in 

Radar Rainfall Estimation

RJ Waken, Ph.D.

Chairperson: Joon J. Song, Ph.D.

In quantitative precipitation estimation, prediction and uncertainty quantifi-

cation are difficult due to the errors in the available data sources. Weather radars are

used to predict precipitation with high spatial and temporal resolution, but do not

measure ground level rainfall intensity, which is the quantity of interest. To account

for the error resulting from the use of a proxy variable, predictions are calibrated

to ground level measurements of the rainfall intensity rate with spatial prediction

methods. For prediction at a specific location, kriging is a simple and popular spatial

prediction method, but suffers from several shortcomings. In particular, prediction

is quite unstable and fails when sample sizes are small and the error normality as-

sumption necessary for uncertainty quantification with kriging predictors may not

hold in real data sets. In this dissertation, we propose two flexible and efficient de-

terministic spatial predictors, with several advantages over kriging. We then further

propose a robust data fusion uncertainty quantification scheme to produce gridded

prediction output with stochastic errors. These methods are illustrated with radar

rainfall data.



Flexible Spatial Interpolation and Uncertainty Quantification: With Applications in 

Radar Rainfall Estimation

by

RJ Waken, B.S.

A Dissertation

Approved by the Department of Statistical Science

Jack D. Tubbs, Ph.D., Chairperson

Submitted to the Graduate Faculty of
Baylor University in Partial Fulfillment of the

Requirements for the Degree
of

Doctor of Philosophy

Approved by the Dissertation Committee

Joon J. Song, Ph.D., Chairperson

James D. Stamey, Ph.D.

Jack D. Tubbs, Ph.D.

Dean M. Young, Ph.D.

Joe C. Yelderman, Ph.D.

Accepted by the Graduate School
December 2016

J. Larry Lyon, Ph.D., Dean

Page bearing signatures is kept on file in the Graduate School.



Copyright c© 2016 by RJ Waken

All rights reserved



TABLE OF CONTENTS

LIST OF FIGURES vii

LIST OF TABLES ix

DEDICATION x

1 Introduction 1

1.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Plan of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review 4

2.1 Current Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Inverse Distance Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Regression-based Inverse Distance Weighting (RIDW) . . . . . . . . 8

3 RIDW for Spatial Interpolation with Spatio-temporal Data 11

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 stRIDW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Distance Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.2 Uncertainty and Interval Estimate . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Application to Radar Rainfall Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

iv



3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 RIDW for Anisotropic Spatial Interpolation 24

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Anisotropy in Kriging Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.2 Anisotropic Weight Function for IDW . . . . . . . . . . . . . . . . . . . . . . 26

4.2.3 Point Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.4 Uncertainty and Interval Estimate . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.5 Anisotropy Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Application to Rainfall Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Stochastic Uncertainty Attachment for Gridded Deterministic Estimates 37

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 An Approach to Uncertainty Quantification for Deterministic Outputs 40

5.2.1 Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.2 Modeling Semi-continuous Processes . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.3 Prior Parameterization for the Degrees of Freedom Parameter . 44

5.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Conclusion 51

A Cross Validation through Variance Estimators for RIDW, stRIDW, and
dRIDW 54

v



B Hourly Prediction Maps for RIDW and stRIDW 56

C Full Conditional Distributions 65

C.1 Full Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1.1 Degrees of Freedom Parameter ν· . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1.2 NN Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1.3 NT Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1.4 TN Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1.5 TT Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

D Uncertainty Quantification Maps 70

BIBLIOGRAPHY 75

vi



LIST OF FIGURES

1.1 Location of the 185 rain gauges in the Mount Bisl Region, South Korea,
produced using the ggmap (Kahle and Wickham, 2013) package for the
R programming language. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 A visual representation of an empirical semivariogram (denoted by
points), and parametric variogram fit (denoted by the solid line). . . . . 8

3.1 A scatter plot of rain gauge and radar rainfall measurements, pooled
across all hours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Boxplots of hourly rain gauge and radar data, one rain gauge
observation (84mm) omitted in hour 23. . . . . . . . . . . . . . . . . . . 17

3.3 Histogram of pooled residuals resulting from a simple linear regression. . 17

3.4 Empirical variogram (points) and parametric variogram fit (lines) by hour. 18

3.5 Residual errors for KED, RIDW, and stRIDW by hour. . . . . . . . . . . 20

3.6 Boxplots of CV estimated coverage probabilities by estimator. . . . . . . 21

4.1 Rain gauge locations reporting, hour 20 2012-07-14, created with ggmap

(Kahle and Wickham, 2013). . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Rain gauge measurements by radar estimates. . . . . . . . . . . . . . . . 31

4.3 Residuals resulting from simple linear regression between the rainfall
measurements and radar estimates. . . . . . . . . . . . . . . . . . . . . . 31

4.4 Directional empirical variogram. . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Box plots of CV SEi (on square root scale) plotted by estimator. An
“X” indicates that this prediction was not captured in the prediction
interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6
√
CV SEi at each location for RIDW, dRIDW, and KED. . . . . . . . . . 34

4.7 Rain gauge measurements captured in prediction intervals, by site. . . . . 35

4.8 95% PIL for RIDW and dRIDW. . . . . . . . . . . . . . . . . . . . . . . 35

vii



5.1 Validation data (black points) and RIDW grid cell rainfall predictions
across study area, hour 12 2012-07-06. . . . . . . . . . . . . . . . . . . . 46

5.2 Residual error resulting from deterministic prediction of rainfall in grid
cells with validation sites, 2012-07-06. Data from hour 12 is highlighted
in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Histogram of errors resulting from deterministic prediction of rainfall in
grid cells with validation sites, hour 12 2012-07-06. . . . . . . . . . . . . 47

5.4 Boxplots of the validation site error V (sj)− Ṽ (sj). . . . . . . . . . . . . 48
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CHAPTER ONE

Introduction

In this dissertation, we consider two deterministic spatial predictors and a ro-

bust spatial fully Bayesian data fusion model. The deterministic predictors combine

mean modeling and flexible spatial interpolation, and are used for prediction in spa-

tial analyses. The Bayesian robust data fusion model incorporates a validation data

set as well as a set of areal deterministic predictions, and produces areal predictions

with stochastic uncertainty. We begin with a motivating example.

1.1 Motivating Example

In radar rainfall estimation, radar-based rainfall intensity rates need to be

calibrated to ground level rainfall intensity rates to insure accurate precipitation

prediction. Further, uncertainty quantification is desired, but is not produced by

the deterministic algorithm that generates the radar-based rainfall intensity rates.

The study area is covered by the radar circle centered at Mount Bisl located near

Daegu in the southeastern region of South Korea. The rain gauge network (map of

all locations given in Figure 1.1) consists of 185 tipping bucket rain gauges, which

record rainfall intensity in 0.5 mm/hour resolution and measure zero rainfall for

any amount less than 0.5 mm. Chapters Three and Five of this dissertation will

focus on the case of 2012-07-06, in which 1514 total rain gauge rainfall intensity

measurements are recorded across 24 hours with hourly sample sizes ranging from 4

to 168. Specific focus is put on hour 12 in Chapter Five. Chapter Four covers the

case of hour 20, 2012-07-14.
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Figure 1.1: Location of the 185 rain gauges in the Mount Bisl Region, South Korea,
produced using the ggmap (Kahle and Wickham, 2013) package for the R program-
ming language.
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The radar data are collected from S-band dual polarization radar over the

150 km range with a gate spacing of 125 m, a 1◦ resolution beam, and 6 elevation

angles from −0.5◦ to 1.6◦ every 2.5 minutes. The radar rainfall intensity rates are

calculated by using the measured reflectivity from the lowest elevation that is not

affected by beam blockage and non-meteorological echo. The radar rainfall intensity

rates from reflectivity are estimated with the following equation,

R(ZH) = 0.017Z0.71
H , (1.1)

where ZH is radar reflectivity. The calculated radar-based rainfall intensity rates, in

mm/hour, are converted to 1 × 1 km resolution.

1.2 Plan of the Dissertation

A brief literature review is given in Chapter Two. In Chapter Three, we dis-

cuss incorporating previous time information into spatial interpolation with mean

modeling for the radar calibration problem described. In Chapter Four, we pro-

pose a deterministic predictor for anisotropic spatial interpolation combined with

mean modeling for the radar calibration problem. In Chapter Five, we implement

a robust Bayesian data fusion model to attach uncertainty to gridded deterministic

predictions. Chapter Six follows with a conclusion and discussion.
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CHAPTER TWO

Literature Review

Quantitative precipitation estimation (QPE) is applicable in a wide array of

fields, including agriculture, hydrology, and atmospheric sciences. Rain gauges and

weather radar are two common instruments used to measure precipitation. Rain

gauges measure proximate surface precipitation at a sparse set of locations, while

weather radar provides less accurate precipitation estimates at a high temporal and

spatial resolution.

Radar estimated rainfall rates are computed from radar reflectivity data using

a radar reflectivity-rainfall rate relationship, which, in the present case, is given by

(1.1). Radar measurements can be generated in real-time from either a single radar

or a network of radars. This, combined with the high spatial resolution of predictions

provided by radar measurement, makes radar based prediction more convenient than

rainfall gauge measurement. However, purely radar-based rainfall prediction suffers

from several types of errors such as radar mis-calibration (Vivekanandan et al.,

2003), (Ryzhkov et al., 2005), (Kwon et al., 2015), non-meteorological echo (Cho

et al., 2006), variation of drop size distribution (Lee, 2006), and radar data quality

issues (Fulton et al., 1998), (Maddox et al., 2002). Neural network methods (Xia

and Chandrasekar, 1997), Bayesian methods (Seo and Smith, 1991), and merging

methods with rain gauges (Goudenhooft and Delobbe, 2009) have been used to

overcome these problems. It has been shown that, even in the presence of a dense

grid of rain gauges in the area of interest, incorporation of radar and rain gauge

information in predicting rainfall values is more effective than simply interpolating

4



between rainfall measurements from rain gauges (Song et al., 2015), (Sun et al.,

2000), (Sempere-Torres et al., 1999).

Given the geospatial nature of rain gauge measurement data, spatial interpo-

lation methods are often used in QPE. Inverse distance weighting (IDW) and kriging

are commonly employed for the purpose. IDW is a popular interpolator due to its

simple and fast implementation, but suffers from poor prediction performance and

does not allow stochastic uncertainty quantification. Kriging is able to quantify

uncertainty as a stochastic predictor and create interval estimates, but requires a

restrictive set of assumptions. It is expected to quantify uncertainty poorly and

produce inaccurate interval estimates when those assumptions are not met (Cressie,

1993), or in cases where small sample sizes are present (Pebesma, 2000). Further,

kriging methods require that the spatial structure of the underlying spatial pro-

cess is presumed known, which is quite susceptible to misspecification. Joseph and

Kang (2012) introduced regression-based inverse distance weighting (RIDW) as an

alternative to kriging that combines mean modeling through regression and residual

adjustment through IDW.

2.1 Current Methodology

IDW and kriging (Cressie, 1993) are commonly applied to rainfall prediction

in order to account for the spatial structure assumed in the data. Kriging methods

are stochastic in nature, while IDW is deterministic (Isaaks and Srivastava, 1989).

Variants of kriging methods include ordinary kriging, kriging with external drift,

and others (Pebesma, 2000). Here, we provide a brief review of IDW, kriging, and

RIDW.
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2.1.1 Inverse Distance Weighting

The IDW predictor for a quantity yi′ at a new location i′ is given by

ŷi′ = vTi′y, (2.1)

where

vi′ = v1, v2, . . . , vn, (2.2)

vi = wi/
∑n

i=1wi, y is the vector of observations, and wi is a function of the inverse

distance between locations i and i′ that weights the information contributed by each

location. It is common to use wi = 1/(di)
p, where di denotes the distance between

locations i and point i′ and p > 0. Larger values of p give less weight to distant

observations, and p = 1 gives a “cone-like” surface. As a deterministic method, IDW

requires no assumptions and is distribution-free.

2.1.2 Kriging

Variogram estimation is an integral aspect of kriging because it characterizes

the spatial structure of the underlying spatial process through the semivariance γ(h),

given by

2γ(h) = V ar(µ(yi)− µ(yi+h)),

where h is the spatial lag and µ(yi) denotes the process mean at location i. As

distances are continuous in nature, multiple point pairs exactly h units apart are

not possible. Instead, the variogram is typically estimated by averaging over the Nk

point pairs in the kth binned distance interval hk created across a set of distance

intervals,

2γ̂(hk) =
1

Nk

Nk∑
j=1

(µ(yi)− µ(yi+hk))
2, (2.3)

for all distance intervals hk, where yi+hk ∈ hk with respect to the location of yi. This

is the empirical variogram. If the number of point pairs Nk in some interval hk is

small, the empirical variogram is less reliable in that region.
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After computing the empirical variogram, a theoretical variogram model is fit

to (2.3), typically through least squares or maximum likelihood procedures, along

with “eye-balling” fitting methods through plotting. For further information on

variogram analysis, see (Cressie, 1993). In this paper, variogram models are fit

through weighted least squares estimation. A typical empirical variogram with a

parametric variogram fit is given in Figure 2.1.

Kriging is the best linear unbiased predictor (BLUP) when error normality

and second order stationarity are assumed. In addition, the stochastic nature of this

predictor enables kriging to quantify uncertainty and construct prediction intervals

under error normality.

For all kriging methods, including ordinary kriging and kriging with external

drift, a variogram model needs to be explicitly specified, and a single variogram

model may not be appropriate for all hours of a rainfall event. Further, when

the sample size is small, the variogram modeling procedures tend to be unstable

and lead to poor uncertainty and interval estimates as well as spatial structure

misspecification.

The ordinary kriging (OK) predictor is a stochastic linear interpolator,

ŷi′ =
n∑
i=1

λiyi,

where the λi are chosen to minimize the mean squared prediction error, E(yi′− ŷi′)2,

subject to the restriction
∑n

i=1 λi = 1.

Kriging with external drift (KED) is a variant of kriging that models a non-

spatial trend as well as a spatial trend through

ŷi′ = xTi′β +
n∑
i=1

λi(yi − xTi β),

where x and β are p×1 vectors of covariates and regression coefficients, respectively.

λi and β are chosen to minimize E(yi′− ŷi′)2 among all λi such that
∑n

i=1 λixij = xi′j

for j = 0, · · · , p.

7



Figure 2.1: A visual representation of an empirical semivariogram (denoted by
points), and parametric variogram fit (denoted by the solid line).

In the radar rainfall prediction analysis, the radar reflectivity rate is used

as the covariate. This estimator is also the BLUP for yi′ , and stochastic interval

estimates can be obtained under the assumptions of error normality and second

order stationarity (Cressie, 1993). Similar to OK, the variogram estimator tends to

be unstable for small n, which causes issues with uncertainty and interval estimation.

2.1.3 Regression-based Inverse Distance Weighting (RIDW)

RIDW models the global trend through a mean function µ(xi;β) in a regres-

sion setting

yi = µ(xi;β) + ei

= xTi β + ei,

where xi is the covariate vector, yi is the response measurement, and ei is the residual

error. The RIDW predictor for a new location i′ is given by

ŷi′(xi′) = µ(xi′ ; β̂) + vTi′e

= xTi′ β̂ + vTi′e, (2.4)

8



where e = (e1, · · · , en), ei = yi − µ(xi; β̂) = y − xT β̂, µ(xi′ ; β̂) = xTi′ β̂ is the mean

function at location i′ with least squares estimator β̂, and vi′ is the vector of weights

whose ith element is a function of the inverse distance between station i′ and station

i. This formulation accounts for global trends through µ(xi′ ; β̂) and local spatial

trends through the IDW-based residual adjustment, vTi′e.

2.1.3.1 Uncertainty estimate. Joseph and Kang (2012) proposed a heuristic

method to assess uncertainty in the RIDW predictions. The local variance estimator

of the RIDW prediction at the i′th location is

s2i′ =
n∑
i=1

vi(ei − vTi′e)2, (2.5)

where vi is the ith element of vi′ . As noted in the paper, this estimator fails to take

the uncertainty in the estimation of β into account. LetX be the n×b design matrix,

ci′(x) = xi′ −XTvi′ , and di(x) = xi −XTvi′ . To incorporate the uncertainty in

the regression estimates, the following estimator was proposed

s2i′ =
n∑
i=1

vi(ei − vTi′e)2

+ σ2

n∑
i=1

vidi(x)′(XTX)−1di(x)

+ σ2ci′(x)′(XTX)−1ci′(x). (2.6)

When applied, the estimator σ̂2 =
∑n

i=1 e
2
i /(n− b− 1) is used in place of σ2.

2.1.3.2 Interval estimate. As distributional assumptions have not been made,

stochastic prediction intervals cannot be created. Instead Joseph and Kang (2012)

proposed the prediction interval estimate

ŷi′(xi′)± καsi′ . (2.7)

9



Define

ŷ(−i) = µ(x(−i); β̂) + vTi e(−i),

CVi = yi − ŷ(−i), (2.8)

where µ(x(−i); β̂) and e(−i) are found by cross validation of the least squares regres-

sion estimates. Then, κα is set as the upper α sample quantile of

|CVi|
s−i

, i = 1, . . . , n,

where s−i is found through cross validation of (2.6) (see (A.1) for a full formulation).
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CHAPTER THREE

RIDW for Spatial Interpolation with Spatio-temporal Data

3.1 Introduction

As previously stated, QPE algorithms solely based on radar measurements are

known to be error prone. Radar measurement prediction accuracy can be bolstered

through adjustment based on integration of surface level rain gauge validation data.

Because rainfall data are geospatial in nature, an adjustment algorithm with a spatial

interpolation component is necessary. A popular approach to problems concerning

spatial interpolation in tandem with regression is kriging (Cressie, 1993).

As rainfall events are dynamic, and each event requires tuning for accurate

radar based rainfall estimation, an automatic approach is desired. Further, with the

nature of errors that exist in radar observations, prediction intervals for QPE are

desired to aid in understanding the uncertainty associated with predictions.

When data are collected across time and space, incorporation of previous time

information may bolster spatial structure specification, leading to more accurate pre-

dictions. Using past information is especially beneficial when current information is

insufficient for spatial structure specification and temporal correlation is significant.

Spatio-temporal kriging methods are computationally costly and require more ex-

tensive tuning than spatial kriging (Pebesma, 2004). Spatio-temporal data analysis

commonly aims at prediction across time and space, but this paper focuses on only

current time spatial prediction while borrowing previous time information, which is

more appropriate to the motivating problem concerning radar calibration for QPE.

However, it would be straightforward to include temporal prediction by adding a

temporal component to the mean function in the proposed method.

11



The objective of the study is to propose a flexible, automatic, and efficient

spatial predictor, called spatio-temporal regression-based inverse distance weighting

(stRIDW). This extension of RIDW (Joseph and Kang, 2012) incorporates previous

time error interpolation into current time spatial structure estimation. This method

gives several advantages over other predictors, in that it requires no stochastic as-

sumptions, tunes the necessary weight parameter automatically, provides efficient

computation, and allows us to borrow information from previous time steps.

The remainder of this chapter is organized as follows: Section 3.2 introduces

stRIDW for incorporating current and previous time information in spatial inter-

polation. Section 3.3 gives a discussion of the data analyzed, and follows with an

application and comparison of stRIDW, RIDW, and KED. Conclusions and a dis-

cussion are given in Section 3.4.

3.2 stRIDW

In cases where current time information is sparse, it may be beneficial to bor-

row information from previous time steps when making predictions at the current

time step to bolster spatial structure specification. Because distance in time and

space are not on the same scale, the inverse distance weights chosen must appro-

priately reflect the relationship between observations (or residuals) over time and

space. The inverse distance weight between a new location i′ in time t and observed

location i in time k is given by

vi,k =
wi,k∑

k∈W
∑nk

j=1wj,k
(3.1)

where W denotes the window length of time steps in consideration, t is the current

time, wi,k is determined by some function of the inverse distance, and nk is the

number of observations in time step k.

12



The stRIDW predictor proposed in this paper is similar to (2.4), but uses

current and past time residuals, giving

ŷi′ = µ(xi′,t;βt) +
∑
k∈W

nk∑
i=1

ei,kvi,k, (3.2)

where ei,k = yi,k − µ(xi,k;βk) and vi,k is the weight in (3.1).

3.2.1 Distance Function

As addressed previously, it is essential to find a reasonable way to scale distance

between the time and space domain. In this paper, we propose a new distance

function between (i′, t) and (i, k)

di,k =
∑
k∈W

nk∑
i=1

√
θ(li′ − li) + (1− θ)(t− k),

where (li′ − li) is the Euclidean distance between i′ and i, t− k is the temporal lag,

and θ ∈ [0, 1] calibrates the relative importance of spatial and temporal distance for

the residual adjustment in (3.2). θ is determined by minimizing the mean squared

cross validation error (MSCV)

MSCV =
nt∑
i=1

(ei,t − êi,t)2,

where

êi,t =
nt∑
j 6=i

e
(−i)
j,t vj,t +

∑
k∈W,k 6=t

nk∑
i=1

ei,kvi,k,

and e
(−i)
j,t is the residual at location j for time t obtained through leave one out cross

validation for the ith observation. This distance can be used to determine the weight

in (3.1), which depends on the nature of data in question. We consider wi,t = 1/d2i,k

in the application later.
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3.2.2 Uncertainty and Interval Estimate

The variance estimator for the residual error adjustment for stRIDW is given

by

s2i′ =
∑
k∈W

nk∑
i=1

vi,k(ei,k −
∑
k∈W

nk∑
i=1

vi,kei,k)
2,

but, just as with (2.5), this estimator fails to account for uncertainty in mean mod-

eling. The following variance estimate for stRIDW is proposed, which, in the case

of linear regression for mean modeling, accounts for the uncertainty in µ(xi′,t;βt)

through

s2i′ =
∑
k∈W

nk∑
i=1

vi,k(ei,k −
∑
k∈W

nk∑
i=1

vi,kei,k)
2

+
∑
k∈W

nk∑
i=1

σ2
kvi,kdi(xi,k, k)′(XT

kXk)
−1di(xi,k, k)

+
∑
k∈W

σ2
kci′(x)′(XT

kXk)
−1ci′(x), (3.3)

where xi,k is the covariate vector at i at time k, ci′(x) = xi′ −
∑

k∈W
∑nk

i=1 xi,kvi,k,

and di(xi,k, k) = xi,k −
∑

k∈W
∑nk

i=1 xi,kvi,k. When applied, σ2
k is replaced with its

estimate σ̂2
k =

∑
k∈W

∑
i=1 e

2
i,k/(n− b− 1).

Similar to RIDW, distributional assumptions have not been made, so stochas-

tic interval estimates cannot be created. A variant of (2.7) is used, but the cross

validation formulation is adjusted to include information borrowed from previous

time steps by the spatio-temporal residual adjustment. Recall, however, that the

stRIDW predictor is only concerned with spatial prediction in current time, so cross

validation through the previous time steps is not necessary. Let

ŷ(−i) = µ(xi,t;βt) +
nt∑
j 6=i

ej,tvj,t +
∑

k∈W,k 6=t

nk∑
j=1

ej,kvj,k,

CVi = yi − ŷ(−i), and s2−i be the cross validation realization of (3.3) (see (A.2) for a
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full formulation). Then, we set κα as the upper α quantile of

|CVi|
s−i

, i = 1, 2, . . . , n.

The stRIDW prediction interval estimate for new location i′ is then created through

ŷi′ ± καsi′ .

3.3 Application to Radar Rainfall Estimation

Recall the radar rainfall intensity rate, taken from the relationship in (1.1),

and rainfall intensity gauge data described in the motivating example. Figure 3.1

shows rain gauge and radar observation pairs pooled across all time steps. It is clear

that there is a strong linear relationship between the gauge and radar measurements,

which indicates that a simple linear regression model may be appropriate to account

for the radar information in rainfall estimation. Boxplots for hourly rain gauge and

radar data are given in Figure 3.2, which indicate similar empirical distributional

attributes across all hours for these two variables. Given the clear linear relationship

between radar and rain gauge measurements of rainfall, it is more appropriate to ex-

amine the properties of the residuals resulting from simple linear regression between

gauge and radar measurements when analyzing error distribution properties.

Figure 3.3 displays the histogram of pooled hourly simple linear regression

residuals, which are clearly non-normal and heavily positively skewed. The his-

togram appears to be heavy tailed, and there are some highly extreme residual val-

ues, suggesting that the errors are leptokurtic. The residuals resulting from hourly

simple linear regression between gauge observations and radar estimates data are

summarized in Table 3.1. The summary statistics in Table 3.1 show that the hourly

residuals tend to be right skewed, indicating that there may be some extreme pos-

itive residuals, as well as leptokurtic, with all but three hours showing a sample

kurtosis larger than three. The Shapiro-Wilk test (Shapiro and Wilk, 1965) is used

to test normality in the residuals, and the small p-values in Table 3.1 indicate that
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Figure 3.1: A scatter plot of rain gauge and radar rainfall measurements, pooled
across all hours.

they may be non-normal except in a few time steps. All of these properties tend to

occur regardless of sample size, which varies from n3 = 4 to n12 = 168.

All empirical variograms and parametric variogram fits, which are of the expo-

nential (hours 18 and 21), spherical (hours 3, 5, 6, 8, 10, 11, 14, 15, 19, 20, and 23),

Gaussian (hours 4, 7, 13, 17, and 24), or Matern (hours 1, 2, 9, and 12) family, for

the KED predictor are plotted in Figure 3.4. It is apparent that a single parametric

variogram model fit across all hours is inappropriate. In particular, the heterogen-

ity of variogram fit is prominent when sample size is small, such as in hours 2, 3,

and 4. The variogram typically increases as a function of the distance under posi-

tive spatial autocorrelation, but some cases, including hours 2, 7, 8, and 22, show

problematically large empirical semivariances for smaller distance pairs indicating

that the variance may not be increasing as a function of distance. In each case, the

parametric variogram fit was chosen from the aforementioned families such that the

sum of weighted squared errors was minimized.
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Figure 3.2: Boxplots of hourly rain gauge and radar data, one rain gauge observation
(84mm) omitted in hour 23.

Figure 3.3: Histogram of pooled residuals resulting from a simple linear regression.
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Figure 3.4: Empirical variogram (points) and parametric variogram fit (lines) by
hour.
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Table 3.1: Descriptive statistics of the simple linear regression residuals by hour.

Hour n Skewness Kurtosis SW p-value
1 16 2.7398 10.0402 <0.0001
2 8 0.6714 1.9216 0.0986
3 4 0.8479 2.0356 0.1785
4 9 0.8971 3.2753 0.4755
5 14 1.4440 4.0968 0.0025
6 47 2.0699 11.2603 <0.0001
7 71 0.9298 4.0546 0.0028
8 88 1.2559 10.3020 <0.0001
9 96 0.6853 4.7698 0.0001
10 106 -0.0116 4.4936 0.0185
11 150 0.5474 6.7343 <0.0001
12 168 0.8012 8.6911 <0.0001
13 151 1.9740 9.8583 <0.0001
14 107 0.8139 4.1735 <0.0001
15 88 0.1447 8.0373 <0.0001
16 76 1.7668 7.0435 <0.0001
17 51 1.2135 4.6640 <0.0001
18 20 0.9071 2.9105 0.0300
19 30 1.8066 6.6041 0.0002
20 36 -0.8612 6.2664 0.0005
21 37 1.7565 9.7791 <0.0001
22 32 1.4249 4.9746 0.0001
23 47 5.9402 38.9284 <0.0001
24 62 0.3760 4.9648 0.0001

3.3.1 Results

Given the strong linear relationship apparent between radar and gauge obser-

vations in Figure 3.1, simple linear regression is used to model the mean function in

both RIDW and stRIDW. The performance of these predictors are compared with

KED predictions through leave-one-out cross validation (CV).

Figure 3.5 gives boxplots of the residual errors for each of the three predictors

(one extreme residual from hour 23 is omitted for each estimator). As we can see,

there are a large number of outliers for all of the predictors. The errors for all three

predictors appear to be centered about zero, indicating no obvious bias. The mean
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Figure 3.5: Residual errors for KED, RIDW, and stRIDW by hour.

square prediction error achieved by the KED estimator is marginally smaller than

that of the RIDW/stRIDW estimators.

The efficacy of the prediction interval estimates obtained for RIDW, stRIDW,

and KED is compared on two criteria: CV estimated coverage probability and pre-

diction interval length. For all cases, α = 0.05 was used to create 95% prediction

intervals. Figure 3.6 shows the estimated coverage probability for the three methods.

It is found that the probabilities for RIDW and stRIDW were equal in every hour.

The medians of estimated coverage probabilities for RIDW and stRIDW were closer

to the targeted 95% value, and the variation of the probabilities for the methods

is much smaller than that of KED. RIDW and stRIDW also avoided overcoverage,

which can result in interval lengths that are too large. Note that KED has an

estimated coverage probability of 100% in three time steps out of 24 hours, and

seven time steps have estimated coverage probabilities larger than 95%. In three

time steps, RIDW and stRIDW exhibited lower than typically acceptable estimated

coverage probabilities, however, sample sizes were very small, with n = 8, 4 and

9. Appendix B gives a series of prediction maps for the full radar grid for RIDW

(Figures B.1 - B.4) and stRIDW (Figures B.5 - B.8).
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Figure 3.6: Boxplots of CV estimated coverage probabilities by estimator.
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Although the estimated coverage probabilities for stRIDW and RIDW were

equal for each hour, the lengths of the prediction intervals were different. Both of

the median and mean of all prediction interval lengths for stRIDW were smaller

than those for RIDW and KED, as seen in Table 3.2. The 25th and 75th percentiles

for the interval lengths are given as well. This shows that, not only are the coverage

probability properties for stRIDW and RIDW more optimal, the prediction interval

estimators are more efficient at allocating uncertainty.

3.4 Discussion

In this paper, we have proposed a spatial prediction method that a) combines

global mean modeling with local residual spatial adjustment, b) tunes the necessary

weight parameter automatically, c) avoids problematic assumptions often required

in common stochastic interpolations, and d) incorporates previous spatial informa-

tion into current spatial interpolation. The method was applied to the motivating

problem, radar based rainfall prediction, and outperformed KED in uncertainty

quantification as expected because KED requires error normality for uncertainty

quantification, which is not typically valid in rainfall data.

We found that KED often fails to estimate the spatial structure and perform

prediction when sample size is too small (< 50), whereas RIDW and stRIDW succeed

in estimating the predicted value and its uncertainty. It is of utmost important to

perform radar rainfall estimation continuously for the purpose of operational use,

which is easily actionable with the automatic RIDW and stRIDW estimators.

Although RIDW and stRIDW outperform KED in uncertainty quantification

in terms of coverage probability and prediction interval length, one important issue

still remains: the intervals created by KED are stochastic in nature, while those cre-

ated by RIDW and stRIDW, which are free from problematic distributional assump-

tions, are heuristic. Heuristic estimates, by definition, rely solely on the observed
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Table 3.2: Summary of CV estimated prediction interval lengths for KED, RIDW,
and stRIDW.

Estimator Mean 25% Median 75%
stRIDW 11.13201 6.507291 9.756801 14.193878
RIDW 11.44977 6.463644 10.123043 14.782826
KED 12.07792 5.959374 10.309028 14.958806

data, and are valid when the observed data gives an accurate representation of real-

ity. This may not be the case when extreme outliers exist, which is typical in rainfall

estimation. Further, when small sample sizes are present, the cross-validation based

prediction variance is often very large, resulting in overly conservative estimates

(Efron, 1983). Hence, it would be promising to study a sophisticated method for

quantifying uncertainty for the proposed spatial predictor.

A linear model for mean modeling is only considered in this paper, but it may

be too restrictive. We envision flexible mean modeling to enhance global trend fitting

using a more general class of models including non-linear models. It is expected to

increase the model flexibility and improve prediction.
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CHAPTER FOUR

RIDW for Anisotropic Spatial Interpolation

4.1 Introduction

In spatial prediction, an isotropy assumption simplifies the analysis by allowing

the spatial dependence to be modeled uniformly in all directions. When necessary,

anisotropy, the opposite of isotropy, can be modeled as zonal, geometric, or both.

Modeling zonal anisotropy concerns adjusting the range of the spatial dependence fit

based on direction, while modeling geometric anisotropy allows the degree of spatial

dependence fit to differ depending on direction.

While an isotropy assumption is convenient, modeling anisotropy may be bene-

ficial, and is common in atmospheric science applications. Analysis of measurements

affected by wind may be benefited by dropping the isotropy assumption, as wind

blown elements may vary less and show greater continuity when more information is

borrowed in the direction of the prevailing wind (Houlding, 2000). Measurements of

wind speed can also be better modeled with an anisotropic process (Tomczak, 1998).

Flood estimation studies that incorporate both radar and rain gauge based rainfall

data have been found to be better modeled with anisotropic spatial interpolation

processes (Sun et al., 2000).

Kriging predictors are often employed for spatial prediction, but may not be

flexible enough to accommodate rainfall data, as observed in Chapter Three. We

propose directional regression-based inverse distance weighting (dRIDW), a flexible

spatial predictor that incorporates mean modeling and residual interpolation using

an anisotropic IDW method.
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This chapter is organized as follows: in Section 4.2, we introduce the anisotropic

IDW-based predictor, dRIDW. Section 4.3 gives a comparison of dRIDW, RIDW,

and an anisotropic kriging predictor. Section 4.4 follows with a conclusion and

discussion.

4.2 Methodology

Anisotropic kriging is often used in spatial analyses where an isotropy as-

sumption is unreasonable and linear modeling is used to model the mean, as in the

regression case. Anisotropic IDW predictors (Tomczak, 1998) are more flexible than

anisotropic kriging predictors in spatial prediction, but do not incorporate mean

modeling, which is also desired. In this section, we present the dRIDW predictor to

incorporate mean modeling and anisotropic residual spatial interpolation.

4.2.1 Anisotropy in Kriging Estimators

When an isotropy assumption is unreasonable, fitting a single theoretical var-

iogram to all directions of the data may lead to prediction variance misspecification

in kriging estimators (Maity and Sherman, 2012). Let θ denote the relative direction

between locations i and i′ in radians. For some tolerance w, let θ′ be the observed

relative direction between i and i′ such that several directional empirical variograms

are created similar to (2.3) through

2γ̂(hk, θ
′) =

1

Nk,θ′

Nk,θ′∑
j=1

I(θ′)(µ(yi)− µ(yi+hk))
2,

I(θ′) =


1 if θ′ ∈ θ ± w,

0 otherwise,

where Nk,θ′ is the number of point pairs in the kth binned distance interval where

θ′ ∈ θ±w. Just as with isotropic variogram modeling, when Nk,θ′ is small, variogram

estimates in bin k for direction θ′ may be a poor representation of the spatial process.
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For parametric anisotropic variogram fitting, a parameter is added that controls the

relative weight between the major axis, or direction of least variability, and minor

axis, which is perpendicular to the major axis. Note that, all anisotropic kriging

estimators enforce symmetry, such that, for variogram fit f (·) and two locations si

and sj, f (||si − sj||) ≡ f (||sj − si||). The angle θ ∈ (0, π) describes the angle of the

major axis. Parametric anisotropic variograms are fit through the same methods as

their isotropic counterparts.

4.2.2 Anisotropic Weight Function for IDW

Although the data may indicate that spatial dependence tends to be stronger

in some principal direction, it is not beneficial to ignore spatial dependence in other

directions. Let wi be the weight between location i and new prediction location i′,

wi = f(mi,mi′ , qi, qi′ , θ, γ)−p, (4.1)

where θ is the direction of the dependence chosen, γ represents the magnitude of

anisotropy, m is the location along a horizontal axis, q is the location along a vertical

axis, and p > 0. In the application presented, p = 2 is considered. Tomczak (1998)

specified

f(mi,mi′ , qi, qi′ , θ, γ) =

√
Amm (∆m)2 + Amq∆m∆q + Aqq (∆q)2, where

Amm =

(
cos (θ)

γ

)2

+ (− sin (θ))2 ,

Amq = 2

(
cos (θ) sin (θ)

γ2
− sin (θ) cos (θ)

)
,

Aqq =

(
sin (θ)

γ

)2

+ (cos (θ))2 ,

∆m = mi′ −mi,

∆q = qi′ − qi,
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for γ ≥ 1 and θ ∈ (0, 2π) to create (4.1) for an anisotropic IDW predictor. Intuitively

speaking, increasing γ “shrinks” the distance in the direction θ, such that values in

the direction θ are more heavily weighted than their equidistant counterparts in other

directions. At γ = 1, these weights are equal to those created for isotropic IDW.

The vector of directionally adjusted inverse distance weights vi′(θ, γ) is calculated

through (2.2). The anisotropic IDW predictor at a new location i′ has the form

ŷi′ = vi′(θ, γ)Ty.

4.2.3 Point Estimate

To create the dRIDW point estimate, the same mean function and residual

adjustment scheme in (2.4) is used, but the weights for the IDW vector in (2.2) are

created through (4.1). Let e = y − µ(x;β). The dRIDW point estimate is

ŷi′(xi′) = µ(xi′ ;β) + vi′(θ, γ)Te. (4.2)

For the purposes of this chapter, µ(x;β) is estimated with simple linear regression.

4.2.4 Uncertainty and Interval Estimate

The local variance estimator of the dRIDW prediction at the i′th location is

s2i′ =
n∑
i=1

vi(ei − vi′(θ, γ)Te)2, (4.3)

where vi(θ, γ) is the ith element of vi′(θ, γ).

The variance estimator in (4.3) fails to take the uncertainty in the estimation of

β into account. Let X be the n× b design matrix, where ci′(x) = xi′−XTvi′(θ, γ),

and di(x) = xi − XTvi′(θ, γ). To incorporate the uncertainty in the regression
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estimates,

s2i′ =
n∑
i=1

vi(θ, γ)(ei − vi′(θ, γ)Te)2

+ σ2

n∑
i=1

vi(θ, γ)di(x)′(XTX)−1di(x)

+ σ2ci′(x)′(XTX)−1ci′(x). (4.4)

When applied, the estimator σ̂2 =
∑n

i=1 e
2
i /(n− b− 1) is used in place of σ2.

As distributional assumptions have not been made, we cannot create interval

estimates based on known error structures. Instead, we use a cross validation based

approach. Let

ŷ(−i) = µ(x(−i); β̂) + vi(θ, γ)Te(−i), (4.5)

CVi = yi − ŷ(−i), and s2−i be the cross validation realization of (4.4) (see (A.1) for a

full formulation). Then, we set κα as the upper α quantile of

|CVi|
s−i

, i = 1, 2, . . . , n.

The dRIDW prediction interval estimate for new location i′ is then created through

ŷi′(xi′)± καsi′ .

4.2.5 Anisotropy Parameter Selection

In some cases, the angle of dependence is a “known” value, such as the case

in estimation of storm cell properties when wind direction is observed. In other

cases, these values are unknown, and must also be estimated. In both cases, it is

recommended that the weight function is tuned to the strength of the anisotropic

dependence. The parameters in the weight function (4.1) are estimated by minimiz-

ing

MSCV(θ, γ) =
n∑
i=1

(ei − êi)2, (4.6)
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where

êi =
∑
j 6=i

e
(−i)
j vj(θ, γ),

e
(−i)
j is the residual error resulting from reestimating the regression coefficients with-

out information from location i, and ei is the residual error resulting from regression

at location i. In cases where θ is known, we only minimize (4.6) with respect to γ.

4.3 Application to Rainfall Data

This chapter will focus on the case of hour 20 2012-07-14. The radar rainfall

intensity is calculated through (1.1) over the same study area described in Chapter

One. The ground level measurements of rainfall intensity are observed at 168 tipping

bucket rain gauges in the study area. Figure 4.1 presents a map of locations for the

rain gauges active in this data set.

As seen in Figure 4.2, the relationship between radar and rain gauge measure-

ments appears to be linear. This suggests that, for rainfall estimation, the radar data

could be used to model the mean rainfall intensity through simple linear regression.

As previously mentioned, uncertainty quantification for kriging predictors re-

quires an error normality assumption. Figure 4.3 gives a histogram of the residual

errors arising from mean modeling through simple linear regression. From this his-

togram, it is apparent that a normality assumption may not be reasonable for this

analysis. A Shapiro-Wilk test (Shapiro and Wilk, 1965) for normality yields a p-

value < 0.0001, suggesting that an error normality assumption is inappropriate.

The RIDW predictor assumes isotropy when adjusting for the spatial effect.

Figure 4.4 gives directional and omnidirectional variograms, which shows that the

semivariance tends to differ depending on direction. Assuming isotropy may yield

estimates that use information inefficiently.
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Figure 4.1: Rain gauge locations reporting, hour 20 2012-07-14, created with ggmap

(Kahle and Wickham, 2013).
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Figure 4.2: Rain gauge measurements by radar estimates.

Figure 4.3: Residuals resulting from simple linear regression between the rainfall
measurements and radar estimates.
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Figure 4.4: Directional empirical variogram.

4.3.1 Results

We evaluate the performance of RIDW, dRIDW, and anisotropic KED us-

ing three cross validation based criteria: cross validation estimated squared error

(CVSE), 95% prediction interval length (PIL), and estimated coverage probability

(ECP). CVSE is calculated by

CV SEi =
(
yi − ŷ(−i)

)2
,

where ŷ(−i) is calculated through (2.8) and (4.5) for the RIDW and dRIDW pre-

dictions respectively. The PIL is defined as the difference in the upper and lower

bounds of the cross validation 95% prediction intervals. ECP describes the pro-

portion of instances the 95% prediction intervals capture the observed ground level

rainfall intensity measurements. The PIL is a more meaningful metric than predic-

tion variance for our heuristic estimator, since values of κα can differ by estimator.

Because rainfall is a non-negative process, we create point mass confidence intervals

with a mass at zero; that is, if the lower or upper prediction interval bound for one

of our estimators falls below zero, we set the value for the quantity at zero.

32



Summary information for CV SEi, including boxplots, the mean, and quartiles

are given in Figure 4.5 and Table 4.1. When compared to RIDW and KED, dRIDW

produces a similar median CV SEi, but also the largest mean CV SEi value, which

is 25% and 21% larger than the KED and RIDW mean CV SEi respectively. Figure

4.6 gives a map of
√
CV SEi for all three predictors. Edge effects aside, there does

not appear to be a distinct spatial pattern in these values, indicating that the three

predictors effectively accounted for the spatial effect.

Because the heuristic interval estimate is created to capture ≈ 95% of all

values, estimators using this cross validation approach with different weight functions

often share an ECP when implemented on the same data. However, they do not

necessarily capture values at the same locations, as seen in Figure 4.7. In this case,

both RIDW and dRIDW captured 159 of 168 sites for an estimated 94.6% coverage,

while KED only captured 154 sites for an estimated 91.7% coverage.

The 95% PILs are summarized in Table 4.2. As we can see, the Q1 and median

summary values for the PILs favor dRIDW. When these values are compared at each

location, 100% and 65.5% of the PILs created by dRIDW are smaller than their

RIDW and KED counterparts respectively. A map comparing the size of the PILs is

given in Figure 4.8. We can see a similar pattern for the three predictors, but again,

dRIDW is able to borrow information more effectively while retaining the flexibility

of IDW-based spatial interpolation.

Table 4.1: Comparison of CV SEi error mean and quantiles for RIDW, dRIDW,
and KED.

Estimator Mean 25% Median 75%
RIDW 2.0252 0.0406 0.2703 1.0805
dRIDW 2.4422 0.0694 0.2516 0.8952
KED 1.9551 0.0671 0.2389 0.9355
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Figure 4.5: Box plots of CV SEi (on square root scale) plotted by estimator. An “X”
indicates that this prediction was not captured in the prediction interval.

Figure 4.6:
√
CV SEi at each location for RIDW, dRIDW, and KED.
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Figure 4.7: Rain gauge measurements captured in prediction intervals, by site.

Figure 4.8: 95% PIL for RIDW and dRIDW.
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Table 4.2: Comparison of PIL mean and quantiles for RIDW, dRIDW, and KED.

Estimator Mean 25% Median 75%
RIDW 4.302 3.075 3.815 4.941
dRIDW 4.013 2.660 3.545 4.702
KED 3.992 3.507 4.143 4.437

4.4 Conclusion

In this chapter, we have proposed a flexible spatial prediction scheme that

combines mean modeling through regression and spatial interpolation of the residuals

through anisotropic IDW. Using three cross validation based criterion, we compared

the predictions and interval estimates resulting from dRIDW to those obtained by

RIDW and KED using radar rainfall data. We found that the flexible dRIDW

predictor outperforms KED in attaining the targeted coverage probability, while

creating tighter prediction interval estimates than RIDW by using an anisotropic

IDW scheme.

Similar to the stRIDW predictor proposed in Chapter Three, dRIDW is deter-

ministic rather than stochastic in nature. In part, the dRIDW predictor’s ability to

effectively achieve the targeted coverage probability is a function of the cross valida-

tion approach to uncertainty quantification. It may be of interest to develop a robust

stochastic uncertainty quantification scheme that retains the necessary flexibility.

A simple linear model was considered for mean modeling in this proposal. A

more sophisticated model would likely be of great benefit to the problem at hand,

although prudence would be warranted to avoid overfitting.
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CHAPTER FIVE

Stochastic Uncertainty Attachment for Gridded Deterministic Estimates

5.1 Introduction

Deterministic computer models, such as the radar rainfall prediction algo-

rithm WSR-88D Precipitation Processing Subsystem, give a network wide approach

to QPE (Hunter, 1996). Other closely related weather applications for determinis-

tic models are wind forecasting (Tomczak, 1998), isolated storm cell tracking, and

tornadic event identification (Johnson et al., 1998). Although deterministic predic-

tions are popular for these applications due to their speed and ability to incorporate

a vast amount of information, these algorithms often give no notion of uncertainty

about the predictions made. Popular deterministic estimators in statistics commonly

employ interval estimation procedures based on cross validation, which can result

in overly conservative and larger than necessary interval estimates (Efron, 1983).

Rather than rely on inefficient cross validation procedures to estimate uncertainty,

we propose a robust Bayesian data fusion model that incorporates deterministic pre-

diction model output and validation site data to produce gridded spatial estimates

with stochastic uncertainty.

A general Bayesian approach, named Bayesian synthesis, to map stochastic

uncertainty to deterministic model outputs was given by Raferty et al. (1995), and

applied to baleen whale population dynamics. Bayesian melding, which alleviated in-

stabilities in the Bayesian synthesis approach, was applied to the same problem later

(Poole and Raferty, 2000). These approaches specified and attached error structures

to aspects of the model inputs and outputs through systematic creation of likelihood

and prior structures, yielding stochastic uncertainty in an otherwise deterministic

model. Ignoring spatial correlation can result in poor variance estimates (Cressie,
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1993). Ghosh et al. (2012) proposed a stochastic uncertainty attachment structure

that accounts for spatial correlation, and allows for the incorporation of external

validation data in a nearly fully conjugate model that facilitates efficient Bayesian

sampling. Further, this model accounts for measurement error in the validation data.

Paci et al. (2015) modified this model specification, but argue that, in situations

where the desired predictions are in a lattice or areal spatial structure, a conditional

autoregressive model (Besag, 1974), shortened to CAR, is more appropriate. While

these specifications account for spatial correlation amongst the predictions, they

employ a normal error structure, which may be insufficient. Modeling uncertainty

involving rainfall extremes is a prevalent topic in the QPE literature (Ghosh et al.,

2011, Wang et al., 2015).

We must also address the change of support problem (Gelfand et al., 2001),

shortened to COSP. Our validation site data are geospatial, while our deterministic

model output and desired predictions have a lattice structure. To facilitate this, we

implement the same downscaling approach used by Paci et al. (2015).

In QPE, the random variable of interest is nonnegative. As most applications

of the CAR model involve strictly positive or full real line continuous processes,

this is somewhat problematic as zeroes are possible and should not be disallowed in

modeling. The Tobit model (Tobin, 1958) can be applied to this task at the cost of

a normality assumption on the errors. The parameters in this model are commonly

chosen via Newton-Raphson, which struggles when the underlying errors are non-

normal (Min and Agresti, 2002). Jørgensen (1987) proposed use of a compound

Poisson construction, but parameter estimation is a computationally costly process.

In this method, we instead propose to model semi-continuous processes through

point mass methods, similar to the approach proposed in Ghosh et al. (2012).

In fully Bayesian linear modeling with the student’s t distribution, prior spec-

ification for the degrees of freedom parameter ν is nontrivial. In many analyses, ν is
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treated as a fixed and known quantity, which is typically unrealistic. As the support

of ν exists in the interval (0,∞), ν may be modeled as a continuous parameter,

but could also be restricted to the set of integers (or any other discrete enumera-

tion scheme) in this interval. In discrete and continuous modeling, several authors

advocate for setting some upper bound, forcing ν < c in sampling (Jacquier et al.,

2004, Villa and Walker, 2014, Zellner, 1976). These priors preclude the possibility

that ν approaches infinity, as in the normal case. For normal hierarchical models

that give a marginal student’s t distribution, there is a lower bound m, such that

for ν < m, the variance term drives to zero, which drives the likelihood to infinity

(Berger et al., 2005, Fernandez and Steel, 1999). In specific model structures, m is

tractable. Both Anscombe (1967) and Gelman and Hill (2007) seek to avoid issues

with the lower bound m by imposing a uniform prior over the interval (0, 0.5) on

the inverse of ν. This parameterization is also popular as it is valid in WinBUGS

(Speigelhalter et al., 1999), which restricts ν > 2 for the student’s t distribution. Al-

though this parameterization is convenient in terms of computation, it is somewhat

informative, and tends to give more posterior mass to small values of ν, which can

lead to overfitting (Simpson et al., 2014). In an attempt to create a less subjective

prior distribution that still fostered posterior propriety, Geweke (1993) specified an

exponential prior on ν with a user specified hyperparameter g. However, it can be

shown that a poor choice for g has disastrous modeling consequences (Fonseca et

al., 2008), and even in large sample situations, the choice of g has an immense influ-

ence on the resulting posterior distribution of ν (Simpson et al., 2014). Martins and

Rue (2013) and Simpson et al. (2014) advocate for a weakly informative “penalized

complexity” prior, which gives more prior mass to areas that represent a simpler

model, which, in this case, is a model with a normal error structure. This prior is

focused on prediction with the student’s t distribution, and will be implemented in

this analysis.
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This chapter is organized as follows: in Section 5.2, we give our strategy for

attaching uncertainty to both the deterministic model and our validation data. In

Section 5.3, we explore the data fusion model inputs. In Section 5.4, we compare

the results between our robust specification and the model specification from Paci

et al. (2015). Section 5.5 follows with a conclusion and discussion.

5.2 An Approach to Uncertainty Quantification for Deterministic Outputs

Let R(Ai) be the deterministic prediction in grid cell Ai, i = 1, . . . , ni. This

quantity is interpreted as the average deterministic prediction throughout Ai. Let

V (sj) denote the observed value of the validation data at locations sj, j = 1, . . . , nj.

For Ai where sj ∈ Ai, or the grid cells that contain a validation site, we can compute

a set of observed residuals through R(Ai) − V (sj). Recall that, due to the COSP,

V (sj) is not the “true” value of interest in the grid cell Ai. Additionally, due to the

tip-bucket rain gauge measurement error issues presented by González et al. (2015),

V (sj) is not the “true” value of the rainfall process exactly at location sj. Further,

these observed residuals do not exist for grid cells that do not contain a validation

site, while we need to quantify uncertainty in all grid cells of interest.

Now, let the “true” average value in grid cell Ai be R̃(Ai). To attach uncer-

tainty in all grid cells of interest, we focus on the realized residuals (Zellner, 1975),

εR(Ai) = R(Ai)−R̃(Ai). If [·] denotes a probability distribution, inference is focused

on modeling the posterior distribution [εR(Ai)|Data] within the Bayesian framework.

5.2.1 Model Specification

Using the formulation from (Paci et al., 2015), the “true” average value R̃(Ai)

in grid cell Ai is

R(Ai) = R̃(Ai) + εR(Ai), where (5.1)

εR(Ai) ∼ Normal(0, σ2
R(Ai)).
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This is an error-in-variables measurement error model, which has been chosen for its

simplicity in this application. A measurement error model that incorporates bias,

such as R(Ai) = βR0 + βR1R̃(Ai) + εR(Ai) could be employed. In cases that involve

modeling of extra-normal errors, like those often observed in weather events, the

normality assumption on the errors in (5.1) may prove problematic. Instead, we

propose modeling these errors with a t distribution,

εR(Ai) ∼ T(νR, 0, σ
2
R(Ai)). (5.2)

We can also account for error heteroskedasticity based on the magnitude of R̃(Ai)

in (5.1) and (5.2). From Ghosh et al. (2012), we specify

σ2
R(Ai) ∼ Lognormal(α0 + α1R̃(Ai), 1) (5.3)

for the variance term in both (5.1) and (5.2). In order to enable a Gibbs/Metropolis

sampling algorithm, the t distribution in (5.2) is

εR(Ai) ∼ Normal(0, ω2
R(Ai)),

1

ω2
R(Ai)

∼ Gamma

(
νR
2
,
νRσ

2
R(Ai)

2

)
,

νR ∼ π(νR),

where π(νR) is a prior density for the degrees of freedom parameter νR.

Given the areal nature of the prediction grid, a CAR model is appropriate

to model the relationship between the R̃(Ai). Let i′ ∼ i designate that i′ and i

are neighbors in a rook neighborhood structure, and let the number of neighbors to

grid cell Ai be wi. Similar to Paci et al. (2015), we implement this as an intrinsic

conditional autoregressive model (Besag et al., 1991), shortened to ICAR, where,

R̃(Ai)|R̃(Ai′) ∼ Normal

(∑
i′∼i

R̃(Ai′)

wi
,
τ 2

wi

)
, (5.4)

τ 2 ∼ Inverse Gamma(a, b).
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In an investigation into several scaled hyperpriors for variance terms in intrinsic

Gaussian Markov random fields, Sørbye and Rue (2014) found no difference be-

tween using scaled and unscaled diffuse gamma distributions as a hyperprior on the

precision term for an ICAR modeled spatial effect, so we set a = 2 and b = 1.

Recall that V (sj) denotes the observed value of the validation data at locations

sj, j = 1, . . . , nj. The measurement error for the validation data is modeled through

V (sj) = Ṽ (sj) + εv(sj), where (5.5)

εv ∼ Normal(0, σ2
vH(φv)),

σ2
v ∼ Inverse Gamma(ασ, βσ),

H(φv)jj′ = exp (−φv ||sj − sj′||) ,

where ||sj − sj′ || is the Euclidean distance between validation sites j and j′. We set

βσ
ασ − 1

=
MSE

2
and

β2
σ

(ασ − 1)2(ασ − 2)
= 100

to center the diffuse prior for σ2
v at half of the MSE arising from simple linear

regression of the V (sj) on the corresponding R(Ai). As before, a normal distribution

may be insufficient to properly model the errors. Instead, we propose

εv ∼ T(νv,0, σ
2
vH(φv)), (5.6)

σ2
v ∝

1

σ2
v

, 0 < σ2
v <∞,

H(φv)jj′ = exp (−φv ||sj − sj′ ||)

Similar to Paci et al. (2015) and Ghosh et al. (2011), φv is set at 60% of max ||sj − sj′ ||

for (5.5) and (5.6). Both of (5.5) and (5.6) force a spatial relationship on the mea-

surement error for the validation data. Because the covariance matrix in (5.6) is

the result of multiplying a scalar parameter by a matrix, we impose a multivariate
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t distribution by specifying

εv ∼ Normal(0, ω2
vH(φv)),

1

ω2
v

∼ Gamma

(
νv
2
,
νvσ

2
v

2

)
,

νv ∼ π(νv),

where π(νv) is a prior density for the degrees of freedom parameter νv

Because the validation data are geospatial and the R̃(Ai) are areal, we need

to specify error to account for the COSP between point measurement and grid cell

estimate. For sj ∈ Ai, we set

Ṽ (sj) = R̃(Ai) + εṽ(sj), where (5.7)

εṽ(sj)
iid∼ Normal(0, σ2

ṽ),

σ2
ṽ ∼ Inverse Gamma(ασ, βσ).

The specifications above can be thought of as components in a larger model,

where we use either a normal (5.1) or robust (5.2) deterministic error proposal, and

either a normal (5.5) or robust (5.6) validation site error proposal. These separate

error specifications can be combined to create four distinct modeling schemes: NN,

where the errors on the validation set and deterministic predictions are both normal,

NT, where the validation set errors are normal and the errors on the deterministic

predictions have a t distribution, TN, where the validation set errors have a t dis-

tribution and the errors on the deterministic prediction are normal, and TT, where

both the validation set errors and errors on the deterministic predictions have a t

distribution.

5.2.2 Modeling Semi-continuous Processes

Let the R̃(Ai) be a representation of a non-negative semi-continuous process,

with a point mass at 0. After all MCMC draws are complete, for any R̃(Ai) < 0,
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we set R̃(Ai) = 0. As a result, all inferences performed on the uncertainty terms of

interest will be achieved through analysis of the posterior samples drawn.

5.2.3 Prior Parameterization for the Degrees of Freedom Parameter

Martins and Rue (2013) and Simpson et al. (2014) implement a “penalized

complexity” prior for the degrees of freedom parameter ν to discourage overfitting

by giving more prior mass to values closer to the “base model,” which is the normal

error structure. Using the Kullback-Liebler distance (Kullback and Liebler, 1951),

shortened to KLD, to represent the degree of similarity between a t and normal

distribution, more prior mass is allocated to areas where the KLD is smaller. The

resulting prior is

ξ =
1

ν
,

π (ξ) = λ exp [−λd (ξ)]

∣∣∣∣δd (ξ)

δξ

∣∣∣∣ , (5.8)

where d (ξ) = d (1/ν) =
√

(2KLD(p(1/ν), q)) for a standard unit student t density

with ν degrees of freedom p(ν) and standard normal density q,
∣∣∣ δd(ξ)δξ

∣∣∣ is the Jacobian

of the transformation, and λ = − log(α)/d(1/U), where the user specifies some

prior belief regarding Prob(ν < U) = α. Although the specification of λ involves

subjectivity, Simpson et al. (2014) show that inference is robust to poor choices for

U and α, even for moderate sample sizes. For the purposes of this analysis, we set

U = 10 and α = 0.5.

The KLD, as given by van Zyl (2015), between p(ν) and q is

KLD(p(ν), q) = log

(
Γ((ν + 1)/2)

Γ(ν + 1)
√
ν

)
−
(
ν + 1

2

)(
ψ

(
ν + 1

2

)
− ψ

(ν
2

))
+

1

2

(
log

(
ν

ν − 2

)
+ 1

)
for ν > 2, where ψ(·) is the digamma function. (5.8) is a proper prior after normal-

ization by a constant and has support for 2 < ν <∞.
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5.3 Data Analysis

The data fit are arranged in grid cells 12 km× 12 km in size across the Mount

Bisl region centered near Daegu in South Korea. In the data set of interest, we

observe nj = 168 rain gauge measurements, and deterministic predictions in ni = 726

distinct grid cells. The R(Ai) are created through the deterministic RIDW predictor

given in (2.4). A map of the validation sites and deterministic RIDW predictions is

given in Figure 5.1.

The heteroscedastic error specification in (5.3) accounts for increasing error

relative to magnitude of R̃(Ai). Figure 5.2 is a plot of the residual error between

the validation data and deterministic predictions for all hours of 2012-07-06. The

magnitude of the error resulting from estimating the validation data with the de-

terministic predictions clearly increases as the deterministic prediction increases.

Although there appears to be a trend indicating that error slightly decreases overall

as R(Ai) increases, this pattern does not appear to be prevalent in the hour 12 data.

A histogram of the residual error arising from predicting the V (sj) with the

deterministic R(Ai) is given in Figure 5.3. The errors appear to be symmetric about

zero, but are clearly leptokurtic and non-normal.

5.3.1 Results

All four models detailed above were fit with Gibbs/Metropolis sampling using

the C++ programming language with the GSL (Gallasi et al., 2015) and Eigen

(Guennebaud et al., 2010) libraries. An overview of the full conditional distributions

is given in Appendix C. A burnin of 10000 was followed by 100000 draws from the

posterior, which was thinned to every tenth iteration such that a total of 10000

posterior samples remained. Posterior parameter summaries are given in Table 5.1.

The TN and TT models yield smaller values of σ2
v and νv, suggesting that these

models attribute much of the variability due to validation measurement error, given
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Figure 5.1: Validation data (black points) and RIDW grid cell rainfall predictions
across study area, hour 12 2012-07-06.

Figure 5.2: Residual error resulting from deterministic prediction of rainfall in grid
cells with validation sites, 2012-07-06. Data from hour 12 is highlighted in blue.
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Figure 5.3: Histogram of errors resulting from deterministic prediction of rainfall in
grid cells with validation sites, hour 12 2012-07-06.

by Vsj− Ṽsj , to the tails of the t distribution. Using the posterior means to represent

the Ṽsj , Figure 5.4 presents boxplots by model for Vsj − Ṽsj .
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Figure 5.4: Boxplots of the validation site error V (sj)− Ṽ (sj).

Table 5.1: Posterior parameter mean and 95% credible intervals, by model.

Parameter NN NT TN TT

α0
0.0654 2.9992 -2.9341 3.0107

(-0.0652, 0.1938) (2.2297, 3.9609) (-3.5378, -2.3494) (2.2225, 4.0537)

α1
-0.0079 0.0779 0.4568 0.1098

(-0.0364, 0.0203) (-0.0799, 0.2768) (0.3554, 0.5635) (-0.0673, 0.3769)

σ2
v

16.7570 5.0820 0.0001 0.0001
(10.5411, 24.2628) (0.0982, 11.1087) (<0.0001, 0.0004) (<0.0001, 0.0003)

σ2
ṽ

0.9993 1.6390 3.0407 7.7984
(0.5825, 1.5586) (1.1037, 2.2908) (1.5048, 5.74685) (4.0493, 14.4046)

τ 2
15.1432 12.7161 6.5013 12.6673

(12.9884, 17.5351) (11.3377, 14.2655) (5.4412, 7.7591) (11.3113, 14.2091)

νR
- 5.0556 - 5.2310
- (2.1014, 9.5899) - (2.1222, 9.5651)

νv
- - 3.6074 5.3567
- - (2.0373, 7.5573) (2.1461, 9.6140)
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The fits are assessed based on the balanced loss criterion (Gelfand and Ghosh,

1998), given by

1

ni

ni∑
i=1

var [εr(Ai)] +
c

nj

nj∑
j=1

E

[(
R̃(Ai)− V (sj)

)2]
, (5.9)

where c weights the relative regret of the two losses. Because the choice of c is

subjective, we use c = 1 to describe a total for (5.9), but also report the components

as

(5.9− P ) =
1

ni

ni∑
i=1

var [εr(Ai)] , and

(5.9−G) =
1

nj

nj∑
j=1

E

[(
R̃(Ai)− V (sj)

)2]
.

Additionally, in the point mass interval estimation scheme used, using the mean of

R̃(Ai) may be inappropriate to compute (5.9-G). As such, the median is used for the

typical value for R̃(Ai). The mean 95% prediction interval length, as measured by

the average distance between the 2.5th and 97.5th quantiles of the posterior R̃(Ai)

draws, is included as well as it lends a meaningful notion of uncertainty in the point

mass interval application at hand. The values for (5.9-P), (5.9-G), and the average

95% prediction interval lengths are given in Table 5.2.

Table 5.2: Comparison of (5.9)

Model (5.9-P) + (5.9-G) = (5.9) Mean 95% PI Length
NN 0.7903 + 2.3414 = 3.1317 3.4245
NT 0.1066 + 2.1568 = 2.2634 1.3214
TN 0.3585 + 4.7520 = 5.1106 2.0926
TT 0.1004 + 2.1985 = 2.2988 1.2780

As we can see, the NT and TT models produce similar values for (5.9-G), with

the NN model producing a slightly larger value. The NT and TT models also have

similar (5.9-P) terms, while the TT model produced marginally smaller prediction
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interval lengths on average. Strictly speaking, there is no value of the relative regret

constant c in (5.9) that would indicate the NN or TN models outperformed the

NT or TT models. Appendix D gives a series of maps (created with ggmap (Kahle

and Wickham, 2013)) that show model predictions (Figure D.1), prediction interval

lengths (Figure D.2),
∣∣∣R(Ai)− R̃(Ai)

∣∣∣ (Figure D.3), and proportion of R̃(Ai) = 0 in

the point mass interval scheme (Figure D.4).

5.4 Conclusion

In this chapter, we have proposed a robust hierarchical data fusion model,

and implemented it with radar rainfall data and the deterministic RIDW predictor.

Using composition sampling for posterior inference, we showed that two of the robust

models, the NT and TT model, outperform the strictly normal model in both the

standard balanced loss criterion (5.9) and produced smaller average 95% prediction

interval lengths for the radar-rainfall data in question.

Given that most weather related data are spatio-temporal in nature, extending

the models given above to incorporate a time element could be of great interest. In

many radar-rainfall systems, radar and gauge data are updated at different time

intervals, which complicates the model. Previous time information could be used to

bolster error prediction in (5.2) and (5.6). If we assume separability of the temporal

and spatial effects, (5.4) could be rewritten as a latent model, and extended to

include a temporal effect.

In this analysis, RIDW prediction was used as the deterministic model output.

Although the literature is saturated with suggestions to calibrate radar with rainfall

amounts for greater accuracy (Song et al., 2015), (Sun et al., 2000), (Sempere-Torres

et al., 1999), it may be of interest to use the radar rainfall intensity rate from (1.1)

as our deterministic model output, which could allow for faster uncertainty quantifi-

cation, especially in areas where the radar information is already well calibrated.
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CHAPTER SIX

Conclusion

In this dissertation, we considered several spatially adjusted modeling schemes

and applied them to radar based rainfall prediction. Chapters Three and Four

focused on flexible deterministic prediction combining mean modeling and spatial

interpolation, while Chapter Five gave a fully Bayesian data fusion model that could

be used in tandem with the deterministic predictions given in Chapters Three and

Four.

In Chapter Three, we introduced stRIDW, which incorporates mean modeling

and spatial residual adjustment to create deterministic spatial predictions. Specif-

ically, stRIDW incorporates current and previous time information into the spatial

adjustment. The stRIDW estimator automatically tunes the parameter necessary for

controlling the influence of the previous time aspect of the spatial adjustment, and

creates ad hoc interval estimates based on cross validation. We compared stRIDW

to KED, and showed that stRIDW gave more desirable estimated coverage proba-

bilities in interval estimation than KED over 24 hours of radar rainfall data. This is

due to the lack of distributional assumptions necessary for stRIDW, which results in

more flexible interval estimates for extreme data. We compared prediction interval

length for stRIDW, RIDW, and KED, and showed that, by incorporating previous

time information, stRIDW creates smaller prediction interval estimates than both

RIDW and KED.

In Chapter Four, we introduced dRIDW, which also provides mean modeling

and spatial residual adjustment, but allows for anisotropic spatial interpolation.

The dRIDW predictor weights the spatial adjustment aspect more heavily in the

direction θ by some magnitude parameter γ. This predictor also tunes θ and γ
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automatically through simulated annealling, or, in the case where θ is known, γ

can be tuned through most bounded optimization methods. We compared dRIDW

to KED, and showed that dRIDW was able to attain the desired level of estimated

coverage probability, again due to the lack of distributional assumptions necessary for

interval estimation. When dRIDW and RIDW were compared, the mean and median

prediction interval lengths for dRIDW were smaller than its RIDW counterpart.

In Chapter Five, we gave a fully Bayesian robust data fusion scheme for de-

terministic spatial predictions and validation data. This model incorporates a grid

of deterministic predictions and a geospatial set of validation measurements in a

data fusion approach that accounts for errors in both data sources. In particular, we

introduce three modeling schemes that allow for departures from normality in the

deterministic error, the validation measurement error, or both. This work is com-

pared to the model presented by Paci et al. (2015), which assumes error normality

from both the deterministic predictions and validation measurements. We show that

two of our robust models outperform the model given in Paci et al. (2015) for any

choice of the constant c in (5.9).

Given that storm systems travel in a specific direction over time, it may be

interesting to combine the attributes in the estimators in Chapters Three and Four

to create a spatial adjustment scheme that borrows information more heavily from

the same part of the storm cell over the course of a few hours. This may create a

more efficient spatial adjustment based prediction. The models presented in Chapter

Five could be extended to the spatio-temporal case, which could use a state space

representation for many of the sources of error deemed of interest.
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APPENDIX A

Cross Validation through Variance Estimators for RIDW, stRIDW, and dRIDW
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For RIDW and dRIDW, recomputing (2.6) in the case of leave-one-out cross

validation for location i gives

s2−i =
∑
j 6=i

vj(ej − vTi e(−i))2

+ σ̂2

n∑
j 6=i

vjdj(x)′(XT
(−i)X(−i))

−1dj(x)

+ σ̂2ci(x)′(XT
(−i)X(−i))

−1ci(x), (A.1)

where X(−i) is the covariate matrix with the ith row removed, ci(x) = xi−XT
(−i)vi,

dj(x) = xj −XT
(−i)vi, and σ̂2 = eT(−i)e(−i)/((n− 1)− 2).

For stRIDW, recomputing (3.3) in the case of leave-one-out cross validation

at location i for time t is

s2(−i) =
nt∑
j 6=i

vj,t(ej,t −
nt∑
j 6=i

vj,tej,t)
2

+ σ̂2
t,(−i)

nt∑
j 6=i

vj,tdj(x(−i),t, t)
′(XT

t,(−i)X t,(−i))
−1dj(x(−i),t, t)

+ σ̂2
t,(−i)ci(x(−i))

′(XT
t,(−i)X t,(−i))

−1ci(x(−i))

+
∑

k∈W,k 6=t

nk∑
i=1

σ2
kvi,kdi(xi,k, k)′(XT

kXk)
−1di(xi,k, k)

+
∑

k∈W,k 6=t

σ2
kci(x)′(XT

kXk)
−1ci(x), (A.2)

where Xk,(−i) is the covariate matrix at time k with the ith row removed.
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APPENDIX B

Hourly Prediction Maps for RIDW and stRIDW
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Figure B.1: RIDW predictions, hours 1-6.
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Figure B.2: RIDW predictions, hours 7-12.
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Figure B.3: RIDW predictions, hours 13-18.
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Figure B.4: RIDW predictions, hours 19-24.

60



Figure B.5: stRIDW predictions, hours 1-6.
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Figure B.6: stRIDW predictions, hours 7-12.
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Figure B.7: stRIDW predictions, hours 13-18.
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Figure B.8: stRIDW predictions, hours 19-24.
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APPENDIX C

Full Conditional Distributions
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For all models, let R̃
(1)

denote the vector of predictions made for grid cells

where Vj ∈ Ai, and let R̃
(2)

denote the vector of predictions made for grid cells

where Vj 6∈ Ai.

C.1 Full Conditionals

The posterior conditional distribution for σ2
ṽ and τ 2 are

1

σ2
ṽ

| . . . ∼ Gamma

(
ασ +

n

2
, βσ +

1

2

(
V − R̃(1)

)T (
V − R̃(1)

))
,

1

τ 2
| . . . ∼ Gamma

(
2 +

I

2
, 1 +

1

2
R̃
T

(Dw −W ) R̃

)
,

where W is the neighborhood matrix with rook structure and Dw is the diagonal

matrix whose ith entry describes the number of grid cell neighbors to grid cell Ai.

The posterior conditional distribution for α = (α0, α1) is multivariate normal

with mean vector λαχα and covariance χα, where

χ−1α = GT
αGα + I2,

λα = GT
α log(σ2

R),

Gα = (1, R̃).

In all proposed models, the σ2
R(Ai) must be generated via a Metropolis-Hastings

algorithm from the lognormal specification in (5.3).

3.1.1 Degrees of Freedom Parameter ν·

Both degrees of freedom parameters νR and νv must be generated through

a Metropolis-Hastings scheme. Let ν ′· be the value resulting from the previously

accepted draw of ν·, let k be a realization from a N(0,
√

3) draw, and let c be

a realization from a truncated N(2,∞)(0,
√

3) draw. In order to facilitate proper
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exploration of the parameter space, we suggest the proposal scheme for ν·

ν· =


ν ′· + k if ν ′· + k > 2,

c otherwise.

(C.1)

3.1.2 NN Model

For the NN model, whose errors take on the forms given in (5.1) and (5.5), the

remainder of the parameters can be drawn from their full conditional distributions

as shown below. The posterior conditional distribution for σ2
v is

1

σ2
v

| . . . ∼ Gamma

(
ασ +

n

2
, βσ +

1

2

(
V − Ṽ

)T
H (−φv)−1

(
V − Ṽ

))
. (C.2)

The posterior conditional distribution for Ṽ is a multivariate normal with

mean vector Dṽdṽ and covariance Dṽ, where

D−1ṽ =
1

σ2
v

H (−φv)−1 + In
1

σ2
ṽ

, (C.3)

dṽ =
1

σ2
v

H (−φv)−1 V +
1

σ2
ṽ

R̃
(1)
.

We sample the elements of R̃ with the following univariate scheme: if R̃(Ai) ∈

R̃
(1)

, the full conditional distribution for R̃(Ai) is Normal(DR1dR1, DR1), where

D−1R1 =
1

σ2
R(Ai)

+
1

σ2
ṽ

+
wi
τ 2
, (C.4)

dR1 =
R(Ai)

σ2
R(Ai)

+
Ṽ (Ai)

σ2
ṽ

+
1

τ 2

∑
i′∼i

R̃(Ai′).

For R̃(Ai) ∈ R̃
(2)

, the full conditional distribution for R̃(Ai) is Normal(DR2dR1, DR2),

where

D−1R2 =
1

σ2
R(Ai)

+
wi
τ 2
, (C.5)

dR2 =
R(Ai)

σ2
R(Ai)

+
1

τ 2

∑
i′∼i

R̃(Ai′).
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3.1.3 NT Model

We can again generate all remaining parameters from their full conditional

distributions for the NT model, whose error structures are given in (5.2) and (5.5).

The conditional posterior distribution for σ2
v is given in (C.2), and the condi-

tional posterior distribution for ω2
R(Ai) is

1

ω2
R(Ai)

| . . . ∼ Gamma

(
νR
2
,
νRσ

2
R(Ai)

2

)
. (C.6)

The posterior conditional distribution for Ṽ is a multivariate normal with

mean vector Dṽdṽ and covariance Dṽ using the elements from (C.3).

We sample the elements of R̃ with the following univariate scheme: if R̃(Ai) ∈

R̃
(1)

, the full conditional distribution for R̃(Ai) is Normal(DR1dR1, DR1), where

D−1R1 =
1

ω2
R(Ai)

+
1

σ2
ṽ

+
wi
τ 2
, (C.7)

dR1 =
R(Ai)

ω2
R(Ai)

+
Ṽ (Ai)

σ2
ṽ

+
1

τ 2

∑
i′∼i

R̃(Ai′).

For R̃(Ai) ∈ R̃
(2)

, the full conditional distribution for R̃(Ai) is Normal(DR2dR1, DR2),

where

D−1R2 =
1

ω2
R(Ai)

+
wi
τ 2
, (C.8)

dR2 =
R(Ai)

ω2
R(Ai)

+
1

τ 2

∑
i′∼i

R̃(Ai′).

3.1.4 TN Model

In the TN model case, whose error structures are given in (5.1) and (5.6), we

can no longer gain conjugacy by implementing the σ2
v ∼ IG(·) prior parameteriza-

tion suggested by Paci et al. (2015). Instead, we use the improper uniform prior

parameterization given in (5.6), and borrow from (Zellner, 1976), which gives the
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posterior conditional distribution for σ2
v is

σ2
v

s2v
∼ F (νV , n), (C.9)

s2v =
(
V − Ṽ

)T
H (−φv)−1

(
V − Ṽ

)
.

The conditional posterior distribution of ω2
v is then

1

ω2
v

| . . . ∼ Gamma

(
νV
2
,
νV σ

2
v

2

)
. (C.10)

The posterior conditional distribution for Ṽ is a multivariate normal with

mean vector Dṽdṽ and covariance Dṽ, where

D−1ṽ =
1

ω2
v

H (−φv)−1 + In
1

σ2
ṽ

, (C.11)

dṽ =
1

ω2
v

H (−φv)−1 V +
1

σ2
ṽ

R̃
(1)
.

If R̃(Ai) ∈ R̃
(1)

, the full conditional distribution for R̃(Ai) is Normal(DR1dR1, DR1),

and if R̃(Ai) ∈ R̃
(2)

, the full conditional distribution for R̃(Ai) is Normal(DR2dR1, DR2),

where the elements are taken from (C.4) and (C.5) respectively.

3.1.5 TT Model

The TT model, whose error structures are given in (5.2) and (5.6), combines

both of the robust proposals given. νV and νR are given the proposal distributions

described in (C.1). Just as with the TN model, the posterior conditional distribution

for σ2
v is given by (C.9). The conditional posterior distributions for ω2

R(Ai) and ω2
v

are given in (C.6) and (C.10) respectively.

The posterior conditional distribution for Ṽ is a multivariate normal with

mean vector Dṽdṽ and covariance Dṽ, dṽ are taken from (C.11). If R̃(Ai) ∈ R̃
(1)

,

the full conditional distribution for R̃(Ai) is Normal(DR1dR1, DR1), and if R̃(Ai) ∈

R̃
(2)

, the full conditional distribution for R̃(Ai) is Normal(DR2dR1, DR2), where the

elements are taken from (C.7) and (C.8) respectively.
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APPENDIX D

Uncertainty Quantification Maps
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Figure D.1: Predictions in grid cells by model.
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Figure D.2: Predictions interval width in grid cells, by model.
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Figure D.3:
∣∣∣R(Ai)− R̃(Ai)

∣∣∣ in grid cells, by model.
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Figure D.4: Proportion of zeros resulting from point mass scheme in grid cells, by
model.
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