
ABSTRACT

MultiKarma: A Fully Decentralized Virtual Multi-Currency

Jon D. Allen, M.S.

Chairperson: Michael J. Donahoo, Ph.D.

Participant-based technologies enable users to contribute resources to a shared

pool that in the aggregate provides valuable services, such as social networks, massive

multiplayer online games, file exchange, etc. Such systems depend on participant

contribution; however, some peers may be unwilling to contribute at a level on

par with their consumption. Monetary systems incentivize participation through

compensation that allows portability, asynchronous participation, granularity and

misbehavior costs. The use of government-backed currencies for incentive structures

in participant-based systems results in exchange barriers and high transaction costs,

while centralized virtual currencies (e.g., Facebook credits) remove many of the

benefits of currency. Karma proposes the use of peer-to-peer systems to create a

decentralized, consensus-based currency; however, it lacks a complete specification

or implementation. We provide a specification, implementation, and evaluation of

Karma. Next, we extend Karma to create a multi-currency system called MultiKarma

where participants can mint, manage, and distribute their own currency.
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CHAPTER ONE

Introduction

Many of the latest Internet technologies have come into existence to share the

aggregate resources of their participants, including sharing of bandwidth, storage and

computation. Even personal content services, such as contributions to a social network

and intellectual contributions to Wikipedia, are a participant-based technology. These

technologies commonly share dependence for the resources of their participants to

maintain stability, functionality and value. A wide variety of these participant-based

technologies have grown, flourished and fundamentally changed user’s expectations

of Internet services.

One common trait of these participant-based technologies is that the true value

of the technology is only realized in the aggregate. For example, social networks, such

as Facebook, rely on their participants to post updated information on their profiles

and interact with other friends and acquaintances on the site. While a person could

maintain an individual website that allows her to post the same type of information,

the standalone website fails to provide the same value to its visitors. The social

network constitutes a one-stop shop for all new and current information of one’s

friends.

Because of this dependence on participant participation, many systems utilize

incentives/disincentives to ensure participation. We have clearly seen some of these

new technologies, such as Facebook, establish natural incentives through the content

of its millions of users. In reality though, the vast majority of participant-based

technologies struggle daily to draw users and continue to provide value. For example,

the once popular MySpace social network site languished after it was unable to create

incentives to maintain an active user base.
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1.1 Participation Imbalance

Users of participant-based technologies engage in two basic functions: con-

tribution and consumption. Such systems work best when equilibrium between

contribution and consumption value is maintained. A wide variation in the value

of individual contribution may exist (e.g., expert vs. novice advice). This is not

a problem as long as participants understand that is it the value, not volume of

their contribution that matters. That is, the efficiency of the system depends on

minimizing the gap between consumption and contribution value.

An extreme example of imbalance between contributions and consumption

involves Freeloading, the consumption of resources without any contribution of

resources. Researchers have observed on the popular BitTorrent file sharing network

that up to seventy percent of users make no contribution to the network (Adar

and Huberman, 2000). Since participant-based technologies are dependent on the

contribution of resources, freeloading detracts from the functionality and viability of

participant-based technologies.

1.2 Current Solutions

Numerous approaches exist to combat unbalanced contribution. Solutions range

from only allowing consumption with simultaneous contribution to depending on the

feedback of participants to shun freeloaders. A review of the solutions that follows

illustrates that the solutions are incomplete and many are prone to manipulation by

ill-meaning participants.

1.2.1 Synchronous Solutions

Some participant-based technologies employ the rudimentary approach of not

allowing resource consumption without synchronous contribution (Peng et al., 2008).

This approach is typically straightforward to implement but results in curtailing

participation in the technology. BitTorrent’s tit-for-tat is one of the most recognized

2



implementations of such a solution. Other versions of synchronous non-monetary

economies, include bartering and gift economies.

Synchronous systems are similar in function to the non-monetary economies

and experience many of the same issues as non-monetary economies. William Stanley

Jevons explains the issue that occurs in non-monetary economies where two entities

must want a resource from each other in order for a transaction to be negotiated.

Jevons calls this the coincidence of wants (Jevons, 1876). Without an intermediate

escrow resource, it can be difficult to execute transactions. While the online world

allows for a much larger pool of resources and merchants, it does not completely

alleviate coincidence of wants. Synchronous systems have little means to reward a

user for the quality or importance of her contribution to the network. In addition,

by their very nature, synchronous solutions do not allow for the portability of earned

value to another participant-based technology.

Few situations call for equal, synchronous contribution and consumption of

resources; consequently, such systems incentivize users to provide the appearance

of contribution when they need service. This results in users making low quality

contributions just to enable simultaneous consumption. Some systems attempt to

address the quality issue by introducing user quality metrics.

1.2.2 Reputation Systems

Another approach to combating this inequality is the use of a reputation

system (Gupta et al., 2003). Reputation systems track the quality and reliability

of a participant’s resources. Users can then utilize this information to gauge the

likelihood of receiving a quality resource from a user. Some systems also include

level of participation in the calculation of a reputation score. Unfortunately, a

reputation metric does not provide a fine-grained scheme for rewarding the wide

range of transactions found in participant-based technologies.
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Keith Hoffman provides an overview of the possible attacks to reputation

systems. While there are ways to mitigate many of the attacks, the short term gains

from defrauding reputation can be substantial, and it is difficult to fully remove

the incentives to cheat the system (Hoffman et al., 2009). EBay possesses one

of the most well-known online reputations systems. Researchers have found that

EBay’s system has significant value for sellers on the network. Sellers can fetch a

ten to fifteen percent premium on their goods compared with lower rated sellers.

Unfortunately EBay’s reputation system does not illustrate a significant ability to

purge unscrupulous buyers from the auction site (Resnick et al., 2003). As a result,

a more accountable process to control participant-based misuse is required.

1.2.3 Monetary Systems

Monetary systems allow a user to contribute a resource and then retain credit

for the transaction, allowing for asynchronous contribution and consumption. Asyn-

chronous tracking encourages users to provide resources even if they are not currently

consuming (Tamilmani et al., 2004). Users are more likely to contribute resources if

they know they are storing credit for contribution. This solves the coincidence of

wants problem and allows a more robust economy to emerge.

While some solutions have been proposed, currently deployed monetary solu-

tions are unable to address the full scope of the inequality issue, as they are limited in

portability, granularity, and encumbered with transaction fees. Today’s asynchronous

solutions depend on government-backed currencies resulting in transaction fees (e.g.,

PayPal) or are dedicated to a small scope of participant based technologies limiting

their portability (e.g., Facebook, Zynga).

1.3 Digital Monetary Systems

Due to the unique characteristics of participant-based systems, traditional

monetary solutions fail to meet the requirements of an digital monetary system. In
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analyzing potential digital monetary solutions, several attributes must be present.

First, portability allows for currency to seamlessly transition between participant-

based technologies. Second, transactional costs for currency usage must be minimized

and ideally eliminated to allow for affordable usage. Third, the solution must allow

for currency exchange without incurring transaction costs. Additionally, an ideal

monetary system supports micropayments, which involve exchanging currency in

amounts less than the smallest denomination available in many government-backed

currency systems. For example, fair compensation for forwarding a message on a

peer-to-peer network might be a fraction of a penny.

One commonly proposed monetary system for online use leverages existing

government-based currency systems. Paypal provides the most well known of these

solutions and enables storing government-back currency in an e-wallet. While Paypal

experiences wide adoption, most e-wallet or systems that leverage government-

backed currencies struggle to succeed. First, users tend to sense more financial risk

when exchanging a government currency, resulting in decreased likelihood of user

participation. Second, many transactions on participant-based technologies fall in the

category of micropayments. Finally, transaction costs associated with the exchange of

government-backed currencies only compounds the difficulties. A majority of online

transactions leverage third-party credit networks that charge both a fixed transaction

fee and a percentage of the transaction value. The transaction fee may be several

orders of magnitude more expensive than the micropayment value, making such a

system unusable.

1.3.1 Centralized versus Decentralized Solutions

Another solution employs a fully centralized digital monetary system in which

users rely on a single entity for minting of digital currency. Due to the positive

attributes for currency owners, online games, such as Blizzard’s World of Warcraft and
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social gaming publishers, like Zynga, leverage centralized digital monetary systems.

Generally, centralized solutions allow for currency to be earned by contribution of

a resource, such as time or government-backed currency. One could deduce with

1000 Warcraft gold coins selling for almost ten U.S. dollars that there are millions of

dollars in virtual wealth in centralized systems. The main drawback of this approach

is that it only allows users to spend currency in the game in which it was earned

or redeemed. Though Zynga and Blizzard produce numerous games with similar

economic frameworks, portability of currency between games does not exist.

Centralized solutions struggle to meet the desired attributes for participant-

based technologies. A single entity controls the valuation of the currency and sets

the rules for creation, trading and redemption. While this centralization is ideal

for a game publisher or social network owner, it leaves users with a set of rules

favorable to the currency owner and a lack of cohesion in digital currencies. Many

of the centralized entities even forbid in their acceptable use policies the trading or

selling of the virtual currency, thus eliminating the ability to have even rudimentary

portability of value. Furthermore, these solutions fail to account for the natural

economic factors of inflation and deflation of currency. In addition, in the event, a

centralized entity’s business fails users generally lose all value stored in the centralized

system. To mitigate these issues we look to a decentralized approach.

A completely decentralized monetary system eliminates the concentration of

control and enables users to leverage free markets, portability and limitation of

transactional costs. These solutions also protect against common online attacks such

as a denial of service. In addition, the decentralized approach makes it difficult for

an entity (e.g., such as a government) to force the shutdown of the currency system.

Later in this chapter, we discuss Karma, a proposal for a fully decentralized digital

currency. Decentralized solutions do not need to abandon an entity’s ability to have

a separate currency.
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1.3.2 Multiple Currencies

Today’s popular monetary solutions for participant-based technologies limit

themselves to a single currency approach. As with real world economies, there are

several arguments for providing a multicurrency economy. Friedrich Hayek provides

the arguments for currency competition in his work entitled“Denationalisation of

Money” (Hayek, 1978). Hayek challenges the notion that there could be too much

competition in the issuance of currencies by applying traditional economic theory

to currency and showing that competition yields the best outcome for consumers.

His argument hinges on the fact that governments profit by centralized control of

currency through allocative inefficiency, technical inefficiency, and positive economic

profits of monopolistic production of money (Vanhoose, 2011).

For virtual currencies, multiple currencies foster the ability to transition value

among participant-based technologies through currency exchange without having

to endure significant transactional cost. Present methods of moving value between

digital currencies require multiple transactions that include a government-backed

currency. This constraint usually forces users to burden a relatively high transaction

cost for exchange.

1.4 Proposed Solution

In 2003 Vivek Vishnumurthy published the concept of Karma (Vishnumurthy

et al., 2003), a secure decentralized economic framework for currency exchange. In

Karma, a distributed set of peers (called the bank set) maintains each user’s current

balance. Users (and their associated bank set) are identified by a user ID. Given

these IDs, users can perform two basic operations in Karma: query and transfer.

A query allows a user to discover the current balance of another user’s account. A

transfer enables two users to move currency between accounts. Karma uses user ID

generation based on a cryptographic key pair designed to prevent sybil attacks and
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enable persistent user identity. Karma’s distributed P2P approach protects from

traditional denial of services attacks, byzantine attacks, forgery and other attacks

that would put the integrity and reliability of the system at risk.

Vishnumurthy’s proposal includes some profound concepts but is highly the-

oretical and fails to provide many of the details and policies necessary to produce

a functional implementation (Vishnumurthy et al., 2003). Karma’s specification

omits significant policy and implementation details required to successfully develop

the solution. We provide solutions for Karma’s omissions, such as a bank map-

ping algorithm, specification of signed balances and design for bank instances that

prevent transaction collisions. We then apply these solutions to a fully functional

implementation of Karma in Java.

In building on Karma, we propose the creation of MultiKarma, a multicurrency-

based system that allows users to create currencies, control currency circulation

volume, and/or purchase/sell resources on any participant-based technology. Such a

system can be used to reward contributors by providing them with currency to trade

for future consumption while limiting the ability of strict consumers (i.e., unbalanced

participation) through currency deprivation. A new concept that MultiKarma

includes is the ability of any user of the network to create and manage a currency.

This attribute encourages existing and emerging participant-based technologies to

set themselves apart economically while still sharing a common economic framework.

A currency owner can track the key statistics for her currency and influence

the market to balance inflation and deflation. For example, a company like Disney

can create a currency, Disney dollars. Disney is then able to reward participation

for locally caching content on a user’s computer for use by nearly consumers. A

participant may then use those Disney dollars to purchase Disney content or exchange

the dollars for another currency on the network. Disney controls valuation of its

currency through supply and exchange.
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One deterrent of many economic frameworks is their inability to provide

portability across all participant-based technologies. MultiKarma works to overcome

this through multiple currencies that enable currency exchange. While a single

currency solution is simpler for portability, it prevents other attributes we want

to provide. By having multiple currencies, MultiKarma allows currency minters

to maintain control of their currency. This allows for applications utilizing the

framework to service a wide array of participant-based technologies. MultiKarma

natively allows exchange of currencies between users without incurring transactional

costs.

1.5 Overview

The chapters that follow address our implementation of original Karma as

well as the review, implementation and evaluation of MultiKarma. Chapter two

reviews the existing contributions to digital currency frameworks, reputation and

distributed banking infrastructure. Chapter three discusses the implementation

decisions and specific requirements that enable the creation of MultiKarma. Chapter

four evaluates MultiKarma through simulation to evaluate system performance.

Chapter five presents conclusions based on our work and proposes future work in

distributed currency.
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CHAPTER TWO

Related Work

The use of peer-to-peer systems has grown from simple file sharing (e.g.,

Napster) to critical communication infrastructure (e.g., Skype). Unlike the traditional

asymmetric client/server model, peer-to-peer systems assume that end systems

contribute services, where optimally the levels of contribution and consumption are

equal. Consequently, one of the major threats to the success of a peer-to-peer service

involves nodes that consume much more than they contribute. Existing research and

systems propose a wide range of solutions.

2.1 Peer-to-Peer Services

Peer-to-peer technology was the talk of only geeks and hobbyists until the

founding of Napster (Giesler et al., 2003) by Shawn Fanning in June of 1999. Napster’s

music sharing service provided the first glimpse into the power of peer-to-peer. Though

later shuttered for legal reasons, Napster opened the floodgates for the adoption of

peer-to-peer technologies. In 2001 Kazaa (Liang, 2004) followed the path blazed

by Napster to introduce a fully decentralized peer-to-peer file sharing service. The

service expanded file sharing to any file type and was not easily closed due to the

robustness provided by its decentralized structure. During the same year, Freenet

(Clarke et al., 2001) was first specified providing one of the first services to illustrate

the expanded possibilities of peer-to-peer networks. Freenet not only protected the

anonymity of producers and consumers but also allowed users to contribute resources

without an awareness of how the resources would be used. This characteristic brought

significant dialog around the implication of participating in illicit activity. More
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importantly it highlighted the ability of peer-to-peer technologies to stretch the

boundaries of possibilities in networking technology.

As time passed, additional peer-to-peer technologies were defined that added

new classes of service to the landscape. Secure Overlay Services (SOS) (Keromytis

et al., 2002) was developed with a primary goal of creating a reliable distributed

network that applications can leverage for critical communication, such as emer-

gency notification. The solution leveraged a peer-to-peer infrastructure to create

an abstraction from endpoint locations to prevent denial of service attacks. Such

abstraction allowed for the communication between nodes using the overlay layer

rather than through more direct Internet Protocol addressing. Internet Indirection

Infrastructure (Stoica et al., 2002) leveraged the concept of an overlay network to

provide networks services traditionally not supported by the lower layer network.

Solutions like these illustrated the ability to layer new robust services on top of

simple peer-to-peer technologies. Regardless of underlying network support for the

features, overlay solutions were able to support more advanced networking protocols

such as multicast and concast. As a result, newer peer-to-peer applications often to

create virtual network stacks on top of the traditional TCP/IP stack.

One fundamental peer-to-peer advancement that enabled overlay storage and

abstracted routing networks was the Distributed Hash Table (DHT). DHT nodes

are identified by fixed-length hash values, rather than by IP addresses. A properly

implemented DHT enables the ability to support secure overlay routing, which allows

anonymous, secure message transfer. While a node can identify the destination

address for the purpose of routing, the true network identity (i.e., IP address) is not

revealed between endpoints. These characteristics allow for a new generation of peer-

to-peer applications. Content Addressable Network (CAN) highlighted these features

with the statement, “The Distributed Hash Table (DHT) functionality supported by

CAN serves as a useful substrate for a range of large distributed systems; for example,
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Internet-scale facilities such as global file systems, application-layer multicast, event

notification, and chat services can all be layered over a DHT system” (Ratnasamy

et al., 2001).

A similar, but more widely adopted DHT, is Pastry (Rowstron and Druschel,

2001) developed by researchers at Microsoft Research and Rice University. The team

went on to expand the project by layering an abstracted file storage system on top

of Pastry known as Past (Druschel and Rowstron, 2001). An additional service,

Scribe (Castro et al., 2002), runs on Pastry to provide multicast communication

capabilities. Pastry’s goal is to provide application-layer routing and to enable

advanced peer-to-peer applications. Each node in the Pastry overlay connects to a

group of nodes known as its neighbor-set. Each node is assigned a unique 128-bit

fixed-length binary value referred to as a nodeID. Pastry’s overlay is dynamic and

adjusts for nodes both joining and leaving the network. Routing is accomplished by

forwarding packets to a node whose nodeID is numerically closer to the destination

ID. In addition, Pastry accounts for geographic distance and attempts to minimize

routing hops. Pastry and other peer-to-peer overlays provide robust function, but the

untrusted nature of their participants leaves them susceptible to numerous attacks.

Miguel Castro explores the security risks for structured overlay peer-to-peer

networks in “Secure Routing for Structured Peer-To-Peer Overlay Networks” (Castro

et al., 2002). The work concludes that the development of a secure routing overlay

that abstracts network identifiers from application communication mitigates many of

the risks the networks face. The proposal goes further to assert that a proper secure

routing overlay can guarantee message delivery even with a percentage of malicious

nodes. In the end, truly achieving the concept of a secure routing overlay has proven

difficult. While version 2.1 of Pastry has been unable to provide fully secure routing,

it is one of the stated goals for an upcoming release. Due to Java support, wide
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adoption and support for the Common API, we will use Pastry to implement our

proposed solution.

One of the early challenges for developers writing applications for overlay

networks was the inability to easily move applications from one network to another.

In 2003 researchers from MIT, Rice and UC Berkley proposed the Common API

(Dabek et al., 2003) as a solution to enabling application to overlay transparency.

The Common API outlines a set of functions needed to provide key-based routing.

Each overlay network then provides an implementation of the Common API. This

approach limits the ability to implement functionalities unique to a particular DHT

or overlay network. In most cases, the benefit of seamlessly transitioning overlay

networks outweighs such limitations. As the Common API continues to expand

and provide more advanced functions, the disadvantages are also likely to decrease.

Overlay networks and the Common API simplify implementation of peer-to-peer

applications but do not appear to improve their ability to defend against the threats

that challenge them.

2.2 Threats to Peer-to-Peer

Peer-to-peer networks need the contribution of resources to function and

thrive. Unfortunately multiple threats could impede these networks functionality.

As discussed previously, Freeloading is the first and most concerning threat. One

study “Free Riding on Gnuetella” (Adar and Huberman, 2000) shows that seventy

percent of users share no files at all. An additional study found the top one percent

of sharers generates fifty percent of all search responses (Saroiu et al., 2002). On a

related note, such a limited and concentrated set of contributors illustrates another

vulnerability of many peer-to-peer networks to a successful denial of service attack

on only a small percentage of users.
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The popularity of peer-to-peer networks for copyright infringement resulted

in new ideas that threaten to disrupt the networks. One of these is the pollution of

resources, a relatively simple way to disrupt the reliability and quality of peer-to-peer

networks. Malicious users publish resources that appear to be legitimate. Only after

fully consuming the resource does the user realize the resource is unusable. The most

surprising attribute of the network pollution attack is that only a small percentage

of files need to be polluted to significantly impact the perception of the content

available on the network (Christin et al., 2005).

2.3 Early Solution to Contribution Imbalance

Gnutella provides one of the first networks to address the freeloading issue by

implementing a strategy that tracks contribution and consumption. Exchange of

resources must occur at a similar rate or consumption is throttled. This solution

is known as the Tit-for-Tat strategy (Peng et al., 2008). Several deficiencies exist

with this solution. First Tit-for-Tat is limited to only synchronous service exchange.

It does not allow for users to store the value of their contributions and, instead,

requires that redemption of contribution occur immediately. Second it does not

address the issue of network pollution. Even worse, Tit-for-Tat may actually reward

users uploading polluted resources.

Another approach is to account for resource usage through the use of escrow

services where users exchange services through an intermediary. The intermediary,

as well as the owner of the resource, is compensated during the exchange process.

Escrow services as proposed in “Escrow Services and Incentives in Peer-to-Peer

Networks” (Horne et al., 2001) are primarily geared to file sharing content. This escrow

concept could be extended to mitigate network pollution by holding compensation

for contribution until the consumer is satisfied with the quality of the resource.
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As we review the contribution imbalance landscape, solutions vary from metrics

of trust to economic frameworks. Many of the early solutions to peer-to-peer threats

can be classified as reputation systems. Regardless of where solutions land on

the digital currency spectrum, there is clearly an implicit need for reputation in

participant-based technologies.

2.4 Reputation

Reputation is most simply defined as measuring the reliability and trust of an

entity. The Internet, online commerce and participant-based technologies cultivate a

consumer desire to have reputation metrics. There are two fundamental approaches

to calculating the online reputation of an entity. The first is an automatic system,

which uses an algorithmic policy to calculate trust. The second is a manual type

system, which allows the feedback of participants to determine an entity’s reputation.

Manual systems are generally preferred in high risk and/or financial transactions

where the trust and reliability of an entity is not a simple calculation.

Online commerce sites, such as EBay, leverage the attributes of a manual

reputation system. Automatic systems address situations where the relative cost of

user contribution is high. Routing of packets on a peer-to-peer network presents] an

ideal case for an automatic reputation system. Reputation systems have value and

as such are prone to a number of attacks to inflate or devalue an entity’s reputation.

Collusion is one type of attack in which fake transactions can be used to falsely inflate

the reputation of an entity. A second attack is to use false feedback to either positively

or negatively affect an entity’s reputation. A proposed solution to this attack utilizes

Eigentrust (Kamvar et al., 2003). Eigentrust attempts to use a reputation algorithm

to filter out nodes submitting false content to peer-to-peer networks. Like Eigentrust

there are a number of niche solutions that address the need for reputation on particular

participant-based technologies while mitigating reputation attacks. XRep (Damiani

15



et al., 2002) and DCRS/CORC (Gupta et al., 2003)are two such niche solutions that

address freeloading on peer-to-peer networks. Some researchers propose more generic

reputation frameworks. Two such solutions are PeerTrust (Xiong and Liu, 2004) and

TrustGuard (Srivatsa et al., 2005), which provide excellent solutions for reputation

when paired with a generic currency framework.

Thus far, the solutions reviewed to combat the threats facing peer-to-peer

networks are difficult to apply to all participant technologies. A currency solution

provides compensation for the contribution of a resource and certainly lays the

foundation for an asynchronous incentive/disincentive system.

2.5 Digital Currencies

Soon after the broad deployment of the Internet to everyday users, a need for

online currency arose. Several commercial solutions attempt to address this need

in the early days of the Internet. Flooz (Flooz, 1999) was one of the first digital

currency systems and is best described as generic gift certificates. Flooz certificates

could be purchased at the Flooz.com website and then many e-tailers would accept

the digital currency for purchases. The company made a hard push during the 1999

holiday season using Whoopi Goldberg as a spokesperson, but filed for Chapter

11 bankruptcy soon after. Mounting consumer complaints and financial troubles

brought the company to its demise in the summer of 2001. Beenz was another of

the initial digital currency systems. It allowed participants to earn “Beenz” (Beenz,

1999) for activities as a type of reward. The rewards could be gained for as little

participation as visiting a website or making a purchase at an online store. The

“Beenz” could then be redeemed at participating online e-tailers and at the Beenz

online store. Beenz also was forced to close as a result of financial issues only one

week after its competitor Flooz.
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Another online currency approach is to store government-backed currency in

an e-wallet. The wallets typically provide some level of fraud protection and also

limit financial risk by only exposing the funds deposited for expenditure. This results

in a decrease in users perceived risk during online transactions since they are using a

protected wallet. PayPal is the most widely adopted e-wallet solution. It allows users

to hold government-backed currency in an account or withdraw it from a number of

sources for Internet-based transactions. MonCash (Moncash, 2011) is another online

e-wallet solution. The system allows users to populate their wallet and spend the

currency at sites that accept MonCash. These solutions do present several challenges

and shortfalls. E-wallet solutions charge transaction fees. This characteristic tends

to limit the appeal of this type of solution for micropayments. In addition, the

online services and resources that can be exchanged are rarely valued in levels that

equate with government-backed currency denominations. Ideally any online currency

solution should be able to address traditional government-backed currency needs as

well as address the new challenges presented by the participant-base technologies

such as micropayments. Ultimately both electronic currency and e-wallets are for

convenience and risk minimization.

Over the last few years, there has been a resurgence of activity in the area of

digital currency. The exchange of government-backed currency for digital currency

and goods has become commonplace. This demand for digital currency has created

an emerging industry called Gold Farming. “From the start of the 21st century, a

new form of employment has emerged in developing countries. It employs hundreds

of thousands of people and earns hundreds of millions of dollars annually. Yet it

has been almost invisible to both the academic and development communities. It is

the phenomenon of “gold farming”: the production of virtual goods and services for

players of online games” (Heeks, 2008).
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The popularity of massive multiplayer online games (MMOG) and social

networks has accelerated the demand for virtual goods and currency. Some publishers

of games and online content have embraced the idea of exchanging government-backed

currency for digital currency. In 2005, Sony Online Entertainment opened a virtual

goods marketplace that allows gamers to purchase virtual goods using government-

backed currency (Entertainment, 2011). In late 2009, Zynga Games, a publisher of a

number of popular online games for use on the Facebook social network, partnered

with Fast Card to produce game cards that could be purchased for virtual in game

currency (Zynga, 2011). The common theme across these solutions is that they are for

one or a small group of participant-based technologies. Publishers look at the digital

currency and goods marketplace as a revenue stream but are unable to provide the

unity needed to provide a ubiquitous solution. In late 2008, a Facebook application

start-up Jambool attempted to fill the digital currency void. They launched Social

Gold, a social gaming digital currency platform developed by former Amazon.com

employees (Jambool, 2010). Social Gold provides APIs for common web programming

languages to enable the management and purchase of currency. This solution was

developed to eliminate the need for unique solutions and allow for cross-application

currencies. It was also designed to allow micropayments without leveraging crippling

transaction fees. The greatest downside for the Social Gold platform is that it is

squarely designed for one segment of participant-based technologies, social networks.

The platform is also highly centrally controlled and managed giving significant power

and leverage to Jambool. Similar to many of its predecessors, Jambool ceased

operation of Social Gold in May 2011.

System With Incentives For Trading (Tamilmani et al., 2004), (SWIFT) builds

on the Tit-for-Tat system implemented in Gnutella. SWIFT provides a digital

currency network that allows consumers and contributors to negotiate for segments

of files. The authors illustrate that individuals who contribute significantly are able
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to consume at a higher rate. While asynchronous, SWIFT thus far only applies

on trading file segments and not other functions of peer-to-peer networks. With

some adaptation, the concept is extensible to curb network pollution but did not as

originally implemented.

The latest iteration of digital currency garnering significant public interested

as well as concern is BitCoin (Nakamoto, 2009). BitCoin is a cryptographic digital

currency that is created through the contribution of computation cycles. This digital

currency gives greater returns to early adopters as the rate of return decreases as

more Bitcoins are created. Bitcoin also creates a peer-to-peer network for exchange

of the created coins. BitCoins provide measurable value, in that some retailers accept

them in exchange for goods. In addition, some services allow for the exchange of

BitCoins for government-backed currency, and is currently valued at over twenty U.S.

dollars to one Bitcoin (BitCoinCharts, 2011). Even criminals have used these online

anonymous coins for everything from purchasing drugs to fundraising for hackers

(Chen, 2011; LulzSec, 2011). The monolithic currency approach of BitCoin as well as

an overall limited distribution model has made many doubt the long-term viability

of the solution.

2.6 Karma

As discussed in Chapter 1, Vivek Vishnumurthy proposes Karma (Vishnumurthy

et al., 2003) as an economic framework for peer-to-peer networks. We review the

specification of Karma further in Chapter 3. Here we review the various extensions

to Karma.

Flavio Garcia built on Vishnumurthy’s work in 2005 by specifying Off-line

Karma (Garcia and Hoepman, 2005). The goal of Off-line Karma is to use elec-

tronic coins to conduct transactions without the need for contacting the bank set

infrastructure. The off-line coins maintain a signed encrypted history of where the
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coin has been. At the time that the coin exceeds its expiration date, the bank set

infrastructure is contacted to reconcile and mint a new e-coin. Fraud detection is

enabled through blind signature technology that allows for the identity for someone

who double spends the same coin. Off-line Karma greatly reduces the load and

limits the complexity of peer-to-peer currency transactions. Off-line coins present a

challenge in that fraud is only detected after it occurs. Significant fraudulent activity

can occur before the automated detection is able to stop the impact.

In 2007 Sherman Chow built on the previous Karma work by defining Karma+

(Sherman, 2005). Chow’s work addresses several weaknesses in the originally proposed

Off-line Karma. Karma+ does not use coin expiration to trigger reconciliation. Rather

the bank set infrastructure tracks coin ownership. After a transaction is complete,

the new holder of the coin verifies its ownership of the coin using the bank set

infrastructure. Karma+ utilizes the bank set concept but changes its function to

track the ownership of coins rather than the bank balance of entities. Chow goes on

to show the security of the bank set concept as implemented in his solution.

Clearly, there is a well-illustrated need for a secure online currency framework.

To date there is no solution that is decentralized, reliable, applicable across all

participant-based technologies, and secure. A combination of the reviewed technolo-

gies along with the introduction of new concepts enables a solution to meet the

needs.
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CHAPTER THREE

MultiKarma

We begin our solution by developing a public implementations of Karma.

In describing our implementation, we explain the basic Karma protocol, identify

numerous implementation oversights, and provide implemented solutions. Finally,

we extend our solution to MultiKarma, which adds the ability to mint and trade

multiple currencies over the decentralized banking infrastructure.

3.1 Original Implementation of Karma

Our contributions require an understanding of the original Karma proposal.

We provide an overview of the basic structure and protocols to provide context for

our improvements, additions and revisions. The theoretical nature of the proposal

leaves significant work to achieve a functional system.

3.1.1 Banking Infrastructure

Karma uses a crowd-sourced banking infrastructure. Rather than having a

central, trusted entity, Karma establishes trust by quorum. Bank set members are

governed by a majority vote policy requiring consensusresponses > (K/2)+1 where

K is the number of nodes in a node’s bank set. The majority must also represent a

consensus response and not just the most received response once the threshold of

responses is met. For example, if during a transaction a node running on a Karma

network with a K=3 receives only two responses from bank set members, these two

responses meet the majority requirements. The node can consider the response valid

only if the two received responses agree.

The value of K presents important trade offs. Due to the majority consensus

policy, a larger K value makes the ability to poison responses or disable enough
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nodes to impact the network significantly more difficult. On the other hand, a larger

K polynomially increases the number of messages sent on the overlay for transfer

transactions. Query transactions only increase linearly in message count with regard

to K. Chapter Four further tests and analyzes the cost/benefit proposition established

by the value of K.

Every node in Karma must be able to identify the bank set for any given

node. Nodes in Karma use bank set nodeIDs to enable communication to conduct a

query or transfer transaction. This identification is accomplished through a one-way

cryptographic hash known to all members of the network. The global nature of this

function allows any node on the network to map the nodeIDs of bank set members.

As a result, the true identity of a node (i.e., IP address) must be separate from the

nodeID to protect against denial of service attacks and communication interception

attempts. Secure overlay networks, described in Chapter 2, provide the abstraction

necessary to separate a node’s nodeID from its true identity.

The bank set solution provides two key attributes. First the bank set is

completely decentralized, and no single entity can significantly influence the outcome

of a transaction. Second, the solution allows stability through the natural churn that

occurs in any peer-to-peer network. Karma replicates bank information to secondary

nodes so that the data is maintained even if primary bank set nodes leave Karma.

3.1.2 Secure Routing

The robustness of routing in peer-to-peer networks depends on the cooperation

of loosely-coupled untrusted nodes. As a result, peer-to-peer networks risk compromise

if even a small portion of participants become malicious. Secure overlay networks

address this risk by providing secure routing, which helps guarantee delivery of

messages. Furthermore, a secure overlay must securely assign nodeIDs (to prevent

selection of location in the overlay), securely maintain routing tables (to prevent route
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corruption) and securely forward all messages (to guarantee delivery of the message

to the appropriate nodeID) (Castro et al., 2002). The Karma solution runs on a

secure routing overlay network enabled by a DHT, such as Pastry. Utilization of the

overlay network allows Karma to fully implement the abstraction of endpoints from

the underlying transport network. Karma never utilizes IP addresses or endpoint

identifiers other than the nodeID used by the routing overlay.

Overlay networks utilize routing algorithms that deliver messages to the node

with a nodeID numerically closest to the destination nodeID. In the event the original

recipient goes off line, this nearest-match behavior results in the next closest node

receiving a message. Secure routing overlays further leverage closest-match routing

to support a concept of neighbor nodes, which represent nodes logically closest to

the nodeID of another node. The secure routing overlay provides a function call

that returns a specified number of neighbor nodes. This ability allows for redundant

information, such as account balance, to be stored at these neighbor nodes and enables

the neighbors to take over communication in the event the originally responsible

node goes off line. The proper leveraging of the overlay functions facilitates the

implementation of a reliable and redundant banking solution.

3.2 Unaddressed Karma Implementation Issues

The original work on Karma focuses on two core functions: transferring currency

and querying an account’s balance. Significant changes to the original Karma proposal

are necessary to arrive at our functional implementation. Vishnumurthy’s work omits

significant details required by a working implementation of Karma. Here we highlight

the major changes needed to allow MultiKarma to function with the attributes and

characteristics in the proposal.
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The Karma proposal fails to provide an algorithm for mapping bank sets. Our

solution utilizes the following algorithm for bank set mapping:

/∗∗

∗ Create a Vector l i s t i n g the bank s e t nodeIDs f o r a g iven nodeID

∗

∗ @param r i c e . p2p . commonapi . Id

∗ − the nodeID to map a bank s e t f o r

∗ @return Vector<Id>

∗ − a Vector conta in ing the Ids o f the bank s e t

∗/

stat ic public Vector<Id> generateBankset ( r i c e . p2p . commonapi . Id nodeID ) {

Vector<Id> bankSet = new Vector<Id>() ;

MessageDigest md = nu l l ;

try {

md = MessageDigest . g e t In s tance ( ”SHA” ) ;

} catch ( NoSuchAlgorithmException e ) {

throw new RuntimeException ( ”No SHA support ! ” , e ) ;

}

md. update ( nodeID . toByteArray ( ) ) ;

byte [ ] i dD ige s t = md. d i g e s t ( ) ;

// Loop through Common.K to g e t the r i g h t number o f nodeIDs f o r a bank s e t

for ( int i = 0 ; i < common .Common.K; i++) {

bankSet . add ( i , Id . bu i ld ( idD ige s t ) ) ;

i dD ige s t [ ]++;

md. update ( idDige s t ) ;

i dD ige s t = md. d i g e s t ( ) ;

}

return bankSet ;

}

The function computes the K nodeIDs of a node’s bank set by using SHA1 hash of

the given nodeID. The function then adds the resulting nodeID to an array of the

bank set members and increments the nodeID value. The process continues with the
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function hashing the resulting value again to produce the nodeID of the next bank

set member. This process continues for Common.K iterations to populate the bank set

mapping.

While the original proposal requires the use of cryptographic signatures for

balance verification, it fails to provide an implementation specification. MultiKarma

uses the container bankset.SignedBalance class to store a cryptographically signed

bankset.Balance object. The bankset.Balance contains the account balance along

with a sequence number to help prevent replay attacks. Another attribute of the

bankset.SignedBalance object is that it contains a signature verification function.

This allows for simple signature verification by passing the public key stored in the

bank set into the bankset.SignedBalance.verifyBalance(Publickey) function. Each

bank set member stores the bankset.SignedBalance as the current balance in the

account. This makes account fraud difficult as each time the balance value changes

it must be accompanied by a new bankset.SignedBalance signed by the private key

of the account holder.

3.2.1 Update Process

Our solution creates an update process that enables data replication and

redundancy regardless of the number of currencies in an account. As original proposed,

the update process transmits account changes, which are difficult to reconcile with

multiple currencies. When a node joins the MultiKarma network, it must populate its

local bank instance with the accounts for which it is responsible. Initialization of bank

set account information begins by sending a core.message.RequestAccountsMessage

to the neighboring nodes. The new node then assumes responsibility for accounts

previously handled by one of its neighbors. Upon receiving the message, each

neighbor compiles an bankset.Account listing that represents all the accounts in its

bank repository. This method differs from original Karma, which only duplicates
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a few attributes (e.g., current balance) to newly joining nodes. The addition of

multiple currencies causes the sending of a full bankset.Account to be more efficient

and reliable for replication. Upon receiving the neighbor responses, the neighbor

verifies the bankset.Account and adds it to the local bank repository.

A second function of the update process replicates account updates upon

the completion of a currency transfer. When the transfer commits on a bank

set member, the node creates an core.message.UpdateMessage containing the up-

dated bankset.Account. This allows for full replication of the transaction his-

tory as well as the balances for each currency type. Next the node sends the

core.message.UpdateMessage to common.Common.U of its neighbor nodes for account

replication.

3.2.2 Bank Implementation

Several challenges need to be addressed through the bank set implementation.

Karma ignores the implications of nearest-match functionality on bank set functional-

ity. The nearest-match functionality in a secure routing overlay may result in a single

node participating multiples times as a bank set member for the same node. Even

more troublesome, nodes can participate in different roles within one transaction on

the overlay network. Consider the case of nodeA transferring funds to NodeB where

nodes A and B have bank set members with node IDs C and D, respectively. If the

same node is responsible (due to the nearest-match routing) for nodeID C and D in

the overlay, it would be participating as a member of both the sending and receiving

bank set. This results in a need to maintain multiple bank states for a single node

and demux calls to the local banking information.

We solve this issue by introducing an idealID. To help mitigate and simplify

the policy when these situations arise, each node creates a separate bankset.Bank

instance for each idealID received. Due to the bank set mapping algorithm leveraging
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Figure 3.1: An instance diagram to illustrate the use of idealID to create a tiered
banking infrastructure.

the full 140-bit nodeID space, messages can be sent to nodeIDs that are not active

on the network. Because of nearest match behavior, the message receiver node ID

seldom matches the message’s destination node ID. The nodeID that is the intended

destination, for the message, is identified as the idealID in MultiKarma. Each request

to the local bank set member’s bank is then handled by a bankset.BankDispatcher

that maps idealIDs to bankset.Bank instances. This allows for a node to participate

in multiple roles and be in different steps on the same transaction without bank

balance or information conflict. Figure 3.5 illustrates the bankset.BankDispatcher

and the use of idealIDs to create a tiering of banks.

MultiKarma requires replication of data to enable data resilience as nodes enter

and leave the network. To enable efficient replication, a second change distinguishes

between primary and secondary accounts within the bankset.Bank. Primary accounts

are those for which the bank set member is currently responsible during a transaction.
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If a node receives a core.message.UpdateMessage for a primary account, the disregard

policy is enacted, and the message is not processed. Disregarding the updates, though

not a perfect solution, prevents neighboring nodes who are members of the same

bank set from causing primary to secondary churn within their bankset.Bank. Nodes

only process query, transfer and new account transactions out of the set of primary

accounts. If the bank.Account is located in a secondary set but needed to process a

transaction, the account moves to the primary set.

Secondary accounts add an additional safeguard to account corruption by

requiring that a node only accept updates for accounts located in secondary accounts.

In the event a responsible neighbor node fails, the overlay routes messages to the next

closest node. If a bank.Account is a secondary account when that message is received,

it promotes to a primary account. core.message.UpdateMessage are the only type of

messages that are posted to secondary accounts. This helps to prevent poisoning

of a balance. Regardless of update type, the core.message.UpdateMessage contains a

bank.SignedBalance, which contains cryptographic signature of the account owner.

Having the signatures significantly increases the difficulty in creating fraudulent

balances.

Rather than negative acknowledgments proposed in Karma, MultiKarma utilizes

a timeout policy for transactions. The protocols within MultiKarma closely mirror

implementations utilizing the User Datagram Protocol(UDP) for two-way, stateful

communication. When a transaction starts, a timeout associates with the transaction.

The timeout length varies depending on the type of transaction being conducted.

For instance, a transfer transaction requires significantly more steps and messages

to complete and, therefore, needs a different timeout value. If the transaction fails

to complete before the timeout period, a notification removes the transaction from

the list of active transactions within the node. This approach eliminates the need

for acknowledgments and retransmissions; however unreliable networks may suffer
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difficulties in completing transactions. If a node receives a transaction and the

timeout for that transaction has expired, the message is disregarded. As a result,

negative acknowledgments are not required as the other processing nodes also timeout

the transaction if they are unable to meet the majority consensus response policy in

a timely manner. These policies, attributes and API objects create the framework

for transactions to occur on MultiKarma.

3.2.3 Currency Valuation

As illustrated in the previous sections, the successful implementation of Mul-

tiKarma requires updating and revising multiple areas of the Karma specification.

MultiKarma removes the currency valuation adjustment protocol which, as acknowl-

edged in the original paper, uses an extremely network-intensive set of transactions

to attempt to globally alter the value of the currency (Vishnumurthy et al., 2003).

Due to the significant cost, the correction can only rarely be run, resulting in a flawed

system for currency valuation management.

As describe in Chapter two, economists believe that free markets and currency

competition naturally creates an economy that manages inflation and deflation.

MultiKarma leverages its multiple currency framework to naturally control these

factors. In addition, fine-grained control of currency valuation eliminates the need for

entry computational hurdles. The wide adoption of user-generated multicurrencies

reduces the need for a base currency. Users can transition value directly from one

user currency to another without an escrow currency.

3.3 Enabling Multicurrency

Beyond creating a working implementation of Karma, one of the key goals

for MultiKarma is to allow multiple currencies. To take the concept a step further,

MultiKarma allows any user on the network to mint multiple currencies. We prefer

to maintain the simplicity and elegance of the original Karma solution while still
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enabling these advanced features on the economic framework. This requires a number

of core capabilities to enable the minting and trading of multiple currencies. Karma

includes some of these basic requirements, such as transferring currency. Necessary

functions like determining the amount of a given currency in circulation are not

present in Karma. In addition, allowing any user to create a currency requires the

ability to register the new currency into the economic framework. MultiKarma

provides an elegant solution to this range of needs while not bloating the overall API

or bank set requirements.

3.3.1 Function Changes and New Attributes

A user of MultiKarma must be able to identify the currency for each trans-

action; consequently MultiKarma introduces a currency identifier, api.CurrencyID,

which includes two attributes: a nodeID (rice.p2p.commonapi.Id) and a currency sub

ID(short). Inclusion of the currency sub ID allows for demuxing among a single

user’s multiple currencies, with each currency being identified through the unique

nodeID and currency sub ID tuple.

/∗∗

∗ The c o n s t r u c t o r f o r c r e a t i n g a CurrencyID

∗

∗ @param nodeID

∗ − the nodeID of the currency i s s u e r

∗ @param currency

∗ − the s c a l a r i d e n t i f i e r f o r t h i s currency

∗/

public CurrencyID ( Id nodeID , short currency ) {

this . nodeID = nodeID ;

this . currency = currency ;

}

All currencies on the MultiKarma network have an api.CurrencyID associated with

them. A base currency exists on MultiKarma that no single user controls. An

api.CurrencyID with a nodeID value of zero and currency value of zero represents
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the base currency. Using a base currency that is not user minted provides a more

predictable valuation and limits fluctuation. A base currency may also reduce the

complexity of currency exchange rates as only exchange rates between all user-minted

currency to base currency is needed (as opposed to knowing all currencies pair

exchange rates). While one could use government-backed currency for exchange, it

was illustrated as inefficient earlier in Chapter 2.

Once currencies can be identified, the next step enables minting of currency.

Rather than allowing users to mint numerous currencies that are never circulated,

MultiKarma leverages the existing currency transfer process to mint a currency. As

a result, a user who wishes to create a new currency must be willing to transfer some

amount of that new currency to another user. When a transfer initiates with a new

currency, the currency does not exist in the user’s bank set unless the transaction

successfully completes. The transfer function is thus altered to include the additional

api.CurrencyID parameter.

The addition of multiple currencies introduces the need to know how much

of a currency is in circulation. A simple change now allows a user to leverage the

existing query function to determine the amount of a particular user’s currency

that is in circulation. A user may then assess valuation of a currency based on

factors such as the amount of currency in circulation. MultiKarma alters the query

transaction to support multiple currencies by also adding an additional parameter of

a api.CurrencyID. For the transfer transaction, the minter of a currency increments

its balance when sending currency to another user and decrements its balance when

receiving a currency it minted. In effect, the minter’s balance records the total

amount of that particular currency in circulation.

As mentioned in Section 3.2.1, MultiKarma alters the update process to

better accommodate multiple currencies. Rather than attempting to send deltas for

bank.Account updates, MultiKarma sends the completely updated account object.
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Due to multiple currencies, it is more reliable to send the full account object. As

a result, core.handler.UpdateHandler need only handle one update process for both

initial account replication as well as ongoing updates from completed transfers.

Alterations to the core API function calls enable MultiKarma to support multiple

currencies without forcing an entirely new set of functions.

3.4 Implementation Details

MultiKarma makes significant improvements to and defines previously unspec-

ified policies for Karma to allow for a successful implementation of a distributed

banking infrastructure. In addition, MultiKarma provides an implementation of the

original Karma protocol. Here we present some details of implementation.

3.4.1 Common API

Secure routing overlay is a newer technology that continues to evolve. As a

result, writing to the specific capabilities of any one overlay can leave the application

orphaned as newer versions of the underlying network are released or abandoned.

The Common API, discussed in Chapter 2, provides the flexibility MultiKarma needs

to avoid this circumstance. MultiKarma uses only the function calls of the Common

API. If Pastry (the secure overlay network that MultiKarma is currently utilizing)

changes or the underlying implementation is superseded by a more secure overlay

network, the Common API allows for a seamless transition to the newer technology.

Once the Pastry instance is established in the Router class, MultiKarma

uses the objects and function calls of the rice.p2p.commonapi package. This pack-

age includes the rice.p2p.commonapi.Endpoint(Endpoint), which is an abstraction

of a secure overlay node object. The primary use for the Endpoint is to send

messages on the overlay network. The Router class includes the required Pas-

try callback functions deliver(rice.p2p.commonapi.Id, Message), update(NodeHandle,

boolean) and forward(RouteMessage), which are used to receive messages and network
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topology change information from the overlay. The unique characteristics of the se-

cure overlay network, in conjunction with the base functions of sending and receiving

messages from the overlay, enable creating a banking infrastructure.

3.4.2 Continuations

Generally, implementations handle network I/O in one of two ways: blocking

or non-blocking. In blocking I/O, a node waits for a response before continuing with

other tasks and execution of code. While this technique may be acceptable for simple

programs, it does not map well to the complex implementation of MultiKarma. With

non-blocking I/O, execution of other tasks continues, and the program is notified

when I/O can proceed. This method of communication is significantly more appealing

for MultiKarma.

In order to enable the MultiKarma API to provide non-blocking network

communication, the solution leverages the continuation design pattern, Callback.

When a function call requiring a later response is made to the MultiKarma API, the

client includes a Continuation object that contains code to be executed at the time

the network communication completes. Continuation may also include variables for

response information that can be set to provide feedback on the transaction outcome.

The package api.continuation included at the public API level of MultiKarma

allows for the implementation of custom Continuation objects. MultiKarma includes

QueryContinuation and TransferContinuation as two example implementations of

Continuation objects.

3.4.3 Transactions in MultiKarma

MultiKarma enables the transferring of currency from one node to another as

well as the querying of an account to determine its current balance. Prior to a node

participating in these transactions, it needs to complete the fundamental step of

creating an account with the MultiKarma system. First a node must establish an
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identity for use in all transactions. The identity consists of a 140-bit nodeID and

a public/private cryptographic key pair. A new node (nodeA) must generate these

two attributes such that they are linked as follows. NodeA generates and stores

a public/private key pair. Next nodeA begins generating 140-bit nodeID values

randomly until the public key and the nodeID value match in the lower Common.N

digits. Similar to the Common.K, the value of Common.N is a globally defined constant

linking NodeIDs with cryptographic keys that imposes a computational control on

node creation. This is a feature that is implemented but not strongly relied on

for security of the MultiKarma solution, as computational hurdles for entrance are

generally quickly defeated.

After establishing its identity, nodeA must register the identity to MultiKarma.

NodeA creates a core.message.NewAccountMessage and sends it out to the nodes that

map as the bank set for nodeA. The message includes the generated nodeID and

public key as well as a signed initial balance. The MultiKarma API enables this

transaction with the function call:

/∗∗

∗ /∗∗ Constructor f o r MultiKarma ins tance

∗ @param bindpor t

∗ − the l o c a l l i s t e n i n g por t f o r the MultiKarma ins tance

∗ @param InetSocketAddress

∗ − the address o f a b o o t s t r a p node a l ready connected to the network

∗ @param boolean

∗ − only t rue i f t h i s node w i l l be p r o v i d i n g bank s e t

f u n c t i o n a l i t y only

∗ − p r i m a r i l y used f o r t e s t i n g

∗ @param S t r i n g

∗ − the f i l ename of an e x i s t i n g c o n f i g u r a t i o n f i l e

∗ @param S t r i n g

∗ − the name of the node to appear in l o g f i l e s

∗ − h e l p f u l i f m u l t i p l e nodes are running in one JavaVM

∗/

public MultiKarma ( int bindport , InetSocketAddress bootaddress ,

boolean bootstrap , S t r ing f i l ename , S t r ing nodename )

34



Unless specified globally in the Common.INITBALANCE, the expected initial amount

of currency is zero. Each member of the bank set processes the message and attempts

to create an account for nodeA. If a bank set member is successful at creating the

account, it replies to nodeA by updating the NewAccountMessage to reflect successful

account creation. Once nodeA receives a majority consensus of affirmative messages

from its bank set, it is considered registered to the network and able to conduct

additional transactions. Once a bank set member adds a new account, it creates

an core.message.UpdateMessage and sends it to its neighbors for replication and

redundancy. The update process is covered later in this chapter.

3.4.4 Query

Conducting a query of an account is one of the two main functions MultiKarma

provides. A query is a two-step transaction similar to account creation. Figure 3.2

gives a visualization of a query transaction. Consider a querying node (nodeA) and an

account to be queried (nodeB). NodeA creates a core.message.QueryMessage with the

nodeID of nodeB and QueryMessage.type field set to a value of Common.QUERYREQUEST.

NodeA sends the message to the members of the bank set for nodeB. Each member

of the bank set looks up the account balance for nodeB, inserts the value into the

QueryMessage, changes the QueryMessage.type field to a value of Common.QUERYRESPONSE,

and replies with its completed QueryMessage to nodeA. Any bank set members that

do not have a balance for nodeB refrain from responding and query the overlay to

create an account for nodeB in their local bank repository. The transaction completes

upon the receipt of a majority consensus response at nodeA. NodeA then updates

the status fields in the Continuation and calls the Continuation.callback() function

to complete the transaction. In the event that majority consensus is not reached or

a timeout occurs, the same Continuation.callback() is called, but the status fields

are updated to reflect the failure.
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Figure 3.2: Query Transaction: NodeA queries for NodeB’s account balance.

3.4.5 Transfer

Transferring of currency from one node to another constitutes the most complex

transaction in Karma. A transfer transaction’s message count complexity reduces

to O(K2). This computational complexity of a transfer is the main reason there is

a tradeoff consideration with the size of Common.K. Consider nodes A and B where

Figure 3.3 shows the message exchange for the transfer transaction. This transaction

mirrors the transfer protocol of the original Karma proposal.

NodeA begins a transfer transaction by creating a core.message.TransferMessage.

The message includes the nodeID to send funds to as well as a Common.TransID (se-

quence number) and a bankset.SignedBalance, which is the balance following the com-

pleted transaction. In addition NodeA sets the core.message.TransferMessage.type

field to a value of Common.TRANSFER_ONE. NodeA then sends the message to nodeB,

and nodeB verifies the accuracy of the requested funds transfer. NodeB creates a

second core.message.TransferMessage with the same fields as the original message

but with values for nodeB and sets the core.message.TransferMessage.type field to

Common.TRANSFER_TWO. The original core.message.TransferMessage is encapsulated in
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Figure 3.3: An example of the transfer protocol and associated messages.

the new message for reference throughout the transaction. NodeB then forwards the

core.message.TransferMessage to its bank set (bank set nodeB). Each member of the

bank set validates the cryptographic signature on the bank.SignedBalance provided

by nodeB and validates the accuracy of the balance value following completion of

the transaction and the accuracy of the common.TransID. If all the fields are accurate,

the bank set member updates the status fields in the core.message.TransferMessage

to Common.TRANSFER_THREE and forwards the message to each member of the bank set

for nodeA. Each bank set member for nodeA then validates the same fields at the

bank set of nodeB. If the fields are valid and a majority consensus has been received,

the bank set for nodeA commits the transaction to the account of nodeA. Each

bank set member then updates the core.message.TransferMessage with a type of

Common.TRANSFER_FOUR and forwards to each of the bank set members for nodeB. Each

bank set member for nodeA then completes the step of notifying nodeA that the trans-

action is complete. This is done by forwarding the core.message.TransferMessage
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to nodeA with the status field set to Common.TRANSFER_FIVE. Once nodeA receives a

majority consensus, it commits the transaction to its local copy of its account. The re-

ceiving bank set (nodeB) waits for a majority consensus of responses from the bank set

of nodeA and then each member commits the transaction to nodeB’s account. Upon

completion each nodeB bank set member forwards the core.message.TransferMessage

to nodeB with a status field of Common.TRANSFER_SIX. Once nodeB receives a majority

consensus from its bank set, it commits the transaction and completes the transfer

transaction. When the receiving and sending nodes receive majority consensus, they

execute the api.Continuation associated with the transaction. If a node is unable

to verify any of the fields during a step in the transaction, it institutes a disregard

policy and does not send on the core.message.TransferMessage. It is not possible

for transactions to be processed out of order due to the cryptographic signatures on

the account balance. If a bank set member believes it is out of sync, it may query

the other members of the bank set to attain a current balance using the majority

consensus.

3.4.6 Define the MultiKarma API

MultiKarma adds the functionality of multiple currencies without increasing

the API functions. First MultiKarma extends query function call to support multiple

currencies by adding the api.CurrencyID as follows:

/∗∗

∗ /∗∗ Query f o r MultiKarma

∗

∗ @param r i c e . p2p . commonapi . Id

∗ − the Id o f the account f o r query a ba lance f o r

∗ @param CurrencyID

∗ − the currency to query f o r

∗ @param Continuation

∗ − code to be executed once the t r a n s a c t i o n i s completed

∗ − t h i s code w i l l be c a l l e d even i f the t r a n s a c t i o n f a i l s

∗/
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public void queryAccount ( r i c e . p2p . commonapi . Id id , CurrencyID currency ,

Continuat ion cont )

Second MultiKarma updates the transfer function to support multiple currencies.

Like query, transfer now includes an additional parameter, api.CurrencyID, as follows:

/∗∗

∗ /∗∗ Transfer f o r MultiKarma

∗

∗ @param long

∗ − the amount o f currency to t r a n s f e r

∗ @param CurrencyID

∗ − the currency type to t r a n s f e r

∗ @param Continuation

∗ − code to be executed once the t r a n s a c t i o n i s completed

∗ − t h i s code w i l l be c a l l e d even i f the t r a n s a c t i o n f a i l s

∗ @param r i c e . p2p . commonapi . Id

∗ − the Id t h a t the funds w i l l be t r a n s f e r r e d to

∗/

public void send ( long amount , CurrencyID currency , Continuat ion cont ,

r i c e . p2p . commonapi . Id dest )

3.4.7 Dispatchers, Handlers and Messages

Message objects are the fundamental way communication occurs with Mul-

tiKarma. All messages in MultiKarma derive from core.message.TaggedMessage.

Figure 3.4 provides a visualization of the tiered approach implmented in MultiKarma.

This object only contains a single field, core.message.TaggedMessage.tag, which is used

to demultiplex to the variety of sub-typed messages. core.message.TaggedMessage

also extends PastryMessage, which allows for all MultiKarma messages to traverse

the Pastry overlay. In the event that the underlying overylay network needs to

change, core.message.TaggedMessage inheritance can be altered to the appropriate

new overlay message class. Layering the messages allows for them to be treated as

individual envelopes. Each step of the demultiplexing process only needs to check

one attribute to enable a dispatch decision.
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Figure 3.4: A class diagram for the layered message approach in MultiKarma.

The MultiKarma node processes messages in a layered approach. core.Router

hands all messages to core.dispatcher.TypeDispatcher, which evaluates the type

of message received and passes the message to the appropriate type specific dis-

patcher. Each of the type-specific dispatchers (core.dispatcher.QueryDispatcher,

core.dispatcher.TransferDispatcher and core.dispatcher.NewAccountDispatcher) ei-

ther processes the message if the transaction is simple or passes the message along

to a handler. If the message is the start of a new transaction, a new type specific

core.handler.HandlerTemplate instantiates at hand-off. Figure 3.5 illustrates this

layering approach used for this message processing.

The dispatcher hands messages that represent continuations of in progress

transactions via demux to the existing type specific handler. Since update trans-

actions do not require state maintenance, core.dispatcher.TypeDispatcher hands

core.messages.UpdateMessage straight to a core.handler.UpdateHandler. For all other

transactions, handlers maintain state information. Due to the majority consensus

requirement, each transaction must track the number of responses that are in agree-
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Figure 3.5: A class diagram to illustrate the relationships and information flow
between dispatchers and handlers.

ment. When a handler processes a message that meets the majority consensus, the

transaction completes, and the handler removes itself from the list of handlers in its

dispatcher. Handlers also maintain timers for transaction timeouts. Upon instan-

tiation handlers set a timer based on the timeouts available in the common.Common

class. If the timeout is exceeded, the handler wakes up and removes itself from the

list of available handlers, effectively ending the transaction. It also executes any

api.continuation.Continuation code with the appropriate status settings.

Building on the work of Vishnumurthy, MultiKarma creates a fully decentralized

multicurrency framework that allows any user to create a currency. Our solution

provides solutions to the unanswered questions of the original proposal. Chapter 4

evaluates MultiKarma’s ability to scale and message complexity.
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CHAPTER FOUR

MultiKarma Evaluation

Due to the lack of a public implementation, a Karma implementation has not

been evaluated on critical attributes like scaling. MultiKarma provides the first

opportunity to evaluate the ability of a consensus-based banking infrastructure to

provide scalable and reliable service. We establish a simulation-based evaluation,

determine metrics, and analyze the results to determine the scalability of MultiKarma

with respect to our criteria.

4.1 Simulations

We begin our simulation by constructing an overlay network of Pastry nodes. A

special “bootstrap” node is specified to each newly joining node to determine where

to connect in the overlay. After initial connection, the overlay takes responsibility

for improving the physical performance of overlay routing by evolving the mesh such

that proximity in the overly more closely reflects network topology. All mesh nodes

are capable of routing messages to other nodes. All nodes in the mesh are capable of

participating as a bank set member.

To simulate transactions, some subset of the mesh nodes execute simulated

account holders called actors. Actors constitute twenty percent of the total network

size during a simulation. Actor actions and times are randomly selected from a

uniform distribution within a specific range. The script is as follows:

/∗∗ 0 = Query , 1 = Transfer ∗/

while ( continue ) {

// s l e e p f o r a random per iod o f time l e s s than the maximum s l e e p time

// f o r our t e x t i n g max s l e e p i s 30000ms

Thread . s l e e p ( random%maxsleep ) ;

// s e l e c t a t r a n s a c t i o n type

t r an sac t i on type = random%2;
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// s e l e c t a t r a g e t to conduct the t r a n s a c t i o n with

//same node a l lowed f o r query and t r a n s f e r ( no impact on t r a n s f e r )

t a r g e t a c t o r = targetNodeIDs . get ( random%to t a l a c t o r s ) ;

/∗∗ currencytype

A l l users s t a r t with 100 base currency

f o r t r a n s f e r i s base or sender currency

f o r query i s base or t a r g e t node currency

∗/

currencytype = random%2;

// t r a n s f e r s need an amount o f currency to t r a n s f e r

i f ( t r an sac t i on type == 1) {

amount = random%10;

}

conduct ionTransact ion ( ) ;

An actor sleeps and then executes a transaction. The actor then goes back to sleep

for a random period of time between 0 and max sleep time. A simulation ends when

the max execution time is reached. At that time, a flag is set on each actor to notify

them to end the simulation and terminate the MultiKarma instance.

4.2 Evaluation Metrics

We measure several metrics to understand the performance and scalability of

MultiKarma. Users are impatient, and MultiKarma needs to complete transactions

with minimal delay. For instance a transaction time of more than a few seconds results

in a user waiting and possibly not using MultiKarma. In addition, MultiKarma has

broad application and needs to be able to scale with significant usage.

First we evaluate the total time for a transaction to complete to understand

the delay a user may experience. The transaction time is measured from the point

the node instantiates the transaction callback until the point the transaction callback

executes. Second, we evaluate message count for transfer, query and update. Message

count impacts the scalability of MultiKarma through bandwidth utilization and

message processing delay. We evaluate message count in a close form solution since

it does not vary between occurrences. Finally, we measure the size of the messages
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traversing MultiKarma for queries, transfers and updates. During each step of the

transaction, nodes record the size of a message to a log prior to sending it over

the network. Evaluating these metrics allows for an evaluation on the scalability of

MultiKarma.

4.3 Experiments

Our experiments use actors to capture measurements for the metrics we wish

to evaluate. Each simulation has a set K and network size. A simulation executes

for a total of 5 minutes. The simulations run through five iterations. To eliminate

network propagation delay and evaluate only MultiKarma’s transactional complexity,

all nodes for the simulations run on a single computer (may introduce CPU wait).

Each actor also records the total message size in a log before sending the message

onto the network.

As described earlier, the global value K determines the bank set size. The value

of K is a global value that is difficult to change once the MultiKarma instances are

deployed. We vary the size of K and network size as these are the most likely to

impact our metrics. K ranges from five to nine. While this presents a small range

of values, it provides a significant range in transactional complexity. We range the

network size from 20 to 60 nodes. This size range allows for analysis of trends that

may occur as the MultiKarma network grows. The MultiKarmaSimulation program

runs the testing simulations and accepts three variables: network size, max execution

time and max sleep time. The size of K is specified in Common.K and changes for each

testing iteration.

4.4 Results

Our results show the impact of varying K and network size on our metrics trans-

action time, message count and message size. Each K and network size combination

has a minimum of 50 samples for each transaction type (e.g., query and transfer).
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Figure 4.1: Query average execution time with varying K and network size.

Since the number of actors (e.g., actors constitute twenty percent of network size)

varies with network size, samples per transaction type increase to over 200 for each K

at a network size of 60.

4.4.1 Transaction Time

We begin our analysis by evaluating the impact of K and network size on query

time. As a baseline, a query on a network with twenty nodes, four of which are actors,

and a K size of five experiences a mean execution time of 25 milliseconds. All time

measurements are actual elapsed time, not computation or network time.. Referring

to the results in Figure 4.1, one can see that query times for small networks stay

relatively constant, only varying by a few milliseconds and hovering between 20-40

milliseconds. Larger networks with larger K values only experience an increase to

around 60-100 milliseconds for mean execution time. Queries occur in parallel but

messages leaving MultiKarma process serially. As a result a larger K requires more

message transmissions causing sending delay. In turn, message count complexity can
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Table 4.1: Query min and max execution time (in milliseconds) for varying K and
network size.

Network Size

K Size (Min, Max) 20 30 40 50 60

5 (6, 633) (7, 338) (9, 44) (11, 662) (11, 2278)

7 (7, 36) (8, 474) (10, 757) (12,78) (14, 1187)

9 (9, 245) (11,377) (14,808) (15,1824) (19, 1956)

impact transaction time. Network size can also have an impact, due to it increasing

the number of routing hops to reach a destination node. This can be compounded

by Pastry only minimally interconnecting nodes based on geography. As a result as

K increases in size, the probability of encountering a node on the pathological path

increases. Since all tests were conducted on a single four core CPU, it is possible that

larger network sizes require more CPU wait time. Query represents a fast transaction,

and a small amount of CPU wait or delay can skew the graph as represented with a

K=9 and network size of 50.

Table 4.1 displays the minimum and maximum execution times for each of

the test sets. The minimum values illustrate that when an ideal transaction takes

place that results in a minimum execution duration, we see a general upward trend

in time as K and network size increase. The table also illustrates that situations

arise that can greatly delay the completion of a transaction. This could be due to

CPU wait time on the single system being used for testing and appears to generally

increase as the network size increases. In summary, query appears to be a simple

enough transaction that varying network or K sizes has limited impact on transaction

performance.

Next we evaluate execution time for transfers. As discussed earlier with query,

message count complexity can affect transfer times. Transfer is a transaction with

a message count complexity of 2K2 + 3K + 1 or O(K2). Figure 4.2 illustrates that
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Figure 4.2: Transfer average execution duration with varying K and network size
values.

both network size and the size of K impact the duration of transactions. Conducting

transfers on a relatively small network of twenty nodes with a K of 5 experiences a

mean execution duration of 86ms. Evaluating the same size network but increasing

to K of 9 increases the mean execution duration to 183ms. While over a two-fold

increase, this time is well within the range of acceptable for a complex transfer. The

increase does highlight the importance of selecting a reasonable K value. As network

size increases, execution time for transfer increases. MultiKarma’s utilization of a

mesh routing network results in additional routing hops as the network size increases.

Overlay routing tries to minimize this delay, but we clearly see some delay increase

at the same K value. For instance, a K value of seven increases the total transactions

time from 141ms up to 535ms, for network sizes of twenty and sixty, respectively.

Table 4.2 presents the minimum and maximum transfer execution times for

K and network size. Similar to query, transfer minimums, representing the ideal

duration time, have an upward trend as either K or network size increase. While the
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Table 4.2: Transfer min and max execution time (in milliseconds) for varying K and
network size..

Network Size

K Size (Min, Max) 20 30 40 50 60

5 (33, 325) (43, 572) (56, 658) (55, 1518) (59, 802)

7 (38, 540) (55, 1032) (65, 915) (70,1073) (84, 2140)

9 (58, 668) (73,1802) (76,1494) (95,1921) (101, 3273)

upward trend for transfer mean and minimum is not significant, we see significant

outliers with high maximum execution times. At the worst, we see a transfer with a

K=9 and network size of 60 taking over 3 seconds to complete. As described earlier,

a network size of 60 with 12 actors likely plays a role in this increased delay and

burst in maximum transfer times due to CPU wait and routing hops. Regardless of

network size, K appears to have an impact on the completion time of both queries

and transfers.

Given this evaluation, it seems reasonable to select a modest K to increase

performance and allow for the update process to provide replication for redundancy.

The goal of maintaining a total transaction time of less than one second for the most

complex transaction of transfer seems reasonable. Next we evaluate message size and

count to understand additional metrics that may affect performance.

4.4.2 Message Analysis

Our evaluation of messages on MultiKarma concentrates on two metrics: mes-

sage count and message size complexity. We review these metrics in isolation and

then in combination to evaluate their total impact on the network. The evaluation

of these metrics occurs for each transaction type: query, transfer and update.

Queries provide a simple message count complexity of 2K. The querier must

send a message to each bank set member and receive a corresponding response.
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Consider a nodeA who queries the account of nodeB. NodeA sends a request to each

of the K bank set members for nodeB. Each bank set member responds to the request

with a query response sent to nodeA. So for any query, the total number of messages

exchanged is linear with the size of O(K). Messages for a query constitute a set

number of fields that vary little in size. In reviewing query message size from the

data captured during simulation, the mean message size for a query is 720 bytes.

The variation in message size regardless of network size or K is less than 100 bytes.

This stability of size results in query messages having a predictable impact on the

network. Queries and their associated messages do not present a decision metric for

influencing the size of K. However, queries do illustrate a highly efficient algorithm

that minimizes network utilization and transaction time to achieve balance retrieval.

Next we review the message count for transfers. Transfer represents the highest

message count complexity transaction on MultiKarma, O(K2); therefore, transfers

present a significant potential for impact to the network. This count can quickly

result in over seven hundred total messages sent for a reasonable K value of 19. If the

secure overlay network MultiKarma utilizes meets the securing routing specification,

it becomes non-trivial to compromise a majority of the bank set members. Our

assumption of a “secure” overlay network must hold true for MultiKarma to maintain

accurate banking functionality.

Our focus now shifts to the size of transfer messages. Similar to query messages,

transfer messages have a fixed number of fields that vary little in size. In reviewing

the captured simulation data, transfer messages ranged from approximately 1800 to

2400 bytes, with messages typically close in size to the ends of the range. Recall from

the transfer protocol that the second step involves the receiving node encapsulating

the original transfer message into a new transfer message. This account for the size

variation and the two distinct sizes we captured during simulation.
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As we combine the two analyses for transfer messages, we can see a greater

impact to the network. Consider a network with a K value of 9. The total transaction

requires 418 KB of data to traverse the network. If we increase the value of K to 19,

the total bytes of data jumps to 1716 KB. While these numbers are minuscule with

today’s broadband speeds, we may see the day when a bank set size of 50 is realistic

for financial transactions. In this case, MultiKarma would require 5151 messages

with a size totaling 11332KB.

To conclude our message metric analysis, we review update messages. Un-

like the minimal implementation changes to NewAccountMessage, QueryMessage, and

TransferMessage, UpdateMessage alters due to multiple currencies. The original

Karma specification only sent account deltas for each update message when a trans-

action posted. This approach works for only a single currency. MultiKarma, on

the other hand, stores all of a user’s currencies in one account on each bank set

member. While a new node joining the overlay receives account replication from its

neighbors, scenarios exist where the delta solution results in updates being received

for a node and the bank set member not having account information to which to

apply the delta. Consider the case where NodeB is currently a bank set member for

nodeA and has replicated its account information to nodeC who can take over at

nodeB’s failure. Now consider nodeD, a neighbor to nodeC. If nodeC and then nodeB

were to fail, nodeD would be left as the bank set member for nodeA without proper

account information. To help resolve this issue, each time an UpdateMessage occurs,

the message contains the entire contents of the account object. In turn, the situation

of receiving a delta without appropriate account information no longer occurs.

We now review the message count complexity and size for update messages.

Each time a node sends out an update message, it is destined for its Common.U

neighbors. This protocol results in a linear message complexity and is only a one way

communication as the sending node does not get a response for sending the update. As
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a result UpdateMessages message count complexity presents little value as a decision

metric for MultiKarma. UpdateMessage does vary in size based on the number of

currencies contained within an account. As described earlier, MultiKarma sends full

account information with every update. In reviewing our simulation logs, update

messages start at a modest size of 1900 bytes. Towards the end of the simulation as

each node maintains multiple, user-minted currencies, we see the update messages

grow to an approximate size of 10,000 bytes. Fortunately, the update protocol only

sends messages to the Common.U neighbor nodes and not the nodes bank set limiting

the overall impact.

From our analysis, transfers constitute the greatest impact to scalability of

MultiKarma. When the MultiKarma network is established, one must select the

global K value. This decision must be made considering the total execution duration

of a transfer. Message size is not a critical criteria for performance of the MultiKarma

solution. While it is unclear how many currencies the average user will maintain, the

number is likely to be far less than would cause any impact to the network. If users

are regularly maintaining thousands of currencies, the sending of full account objects

needs to be reevaluated to determine if the benefit of guaranteed replications is still

valuable.
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CHAPTER FIVE

Conclusion

Peer-to-peer and other participant-based technologies depend on the quality

contribution of their users to produce appealing resources; consequently such system

must incentivize participation to maintain acceptable levels of quality resources for

survival. Incentive schemes for users to contribute are lacking or problematic in many

systems, resulting in a need to account for consumption and contribution. Solutions

for tracking contribution and consumption vary. They include reputation systems,

which provide a metric of trustworthiness but fall short as they can be exploited for

short-term gain. Synchronous tracking solutions, such Gnutella’s tit-for-tat, which

only allows consumption with simultaneous contribution and lacks quality control.

Asynchronous tracking systems, such as SWIFT, enable contribution credit but are

designed to service one group of participant based technologies. Clearly the ideal solu-

tion is a digital currency system that allows asynchronous contribution/consumption

and portability.

There have been many attempts to create a universal digital currency system.

Generally the most widely known solution is the e-wallet solution from PayPal.

We have also seen niche currency solutions, such as Facebook credits or Warcraft

gold. Sadly these solutions are centralized, lack portability and granularity and

are laden with transaction costs (i.e. primarily due to being tied to government

currency). Current currency solutions only containing one currency is another

limitation. Friedrich Hayek illustrates that economies with multiple currencies allow

for free markets and economic competition. Our solution solves these limitations.
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5.1 MultiKarma

We have created a working MultiKarma implementation that extends the

original Karma proposal by providing 1) solutions to unanswered implementation

specifications and 2) extensions to support multiple user-minted currencies. Our

solution publishes an API that provides the flexibility to leverage the solution on

any participant-based technology, resulting in value portability. The addition of

multiple currencies allows free markets to flourish with currency competition. Finally

MultiKarma frees users to conduct transactions and exchange currencies without

transaction fees.

Our implementation extends the banking infrastructure to account for the

nearest-match routing behavior of a routing overlay. We introduce the concept

of an idealID for bank instance demuxing. MultiKarma provides a function for

mapping bank sets. We redesign the update process to allow for multiple currencies

enabled through the introduction of a currencyID. MultiKarma utilizes Java to

provide platform independence. The solution further enables its resilience by utilizing

the Common API to enable transitioning of the underlying secure overlay routing

solution. MultiKarma’s design allows for it to endure changing technologies and

continue providing a distributed banking infrastructure.

We evaluate MultiKarma’s ability to scale. Our experiments measured the

transaction duration, message count and message size. We vary the size of the

network as well as the size of K to determine their affect on the metrics. While

there is an increase in transaction time as both variables scale up, their impact can

be mitigated. K selection needs to balance transaction time and bank set security.

Network size increase affecting transaction duration is likely a function of the single

system testing environment and not of a larger scaling issue. Message count is directly

functional to the size of K for query and transfer and U for updates. Both query and

transfer messages remain constant in size irrespective of K and network size. However
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update messages linearly increase in size with the number of currencies stored in the

account. We believe that selection of a reasonable size K allows for MultiKarma to

scale to large sizes without increasing the metrics we evaluated to user unacceptable

levels.

5.2 Future Work

While a solid solution for currency exchange and minting, MultiKarma would

benefit from additional features. The original Karma proposal covers the impor-

tance of transaction negotiation but leaves that functionality as well as reputation

metrics to external systems (Vishnumurthy et al., 2003). Like the original Karma

proposal, MultiKarma does not address reputation and transaction negotiation ser-

vices. Reputation services provide trust metrics to judge the reliability and quality

of an entity. Transaction negotiation services allow for the location and pricing of

resources. While we consider these orthogonal issues, they are nonetheless necessary

in a fully functional market system.

Online systems involving value exchange benefit from reputation metrics. Two

areas of MultiKarma provide opportunities for reputation metrics. First, buyers and

sellers in MultiKarma could benefit from a reputation measure. Users of MultiKarma

would utilize reputation to judge the trustworthiness and reliability of another

participant. Second, traders of currency may also benefits from reputation knowledge

of a currency owner. This helps a currency user to evaluate the stability and reliability

of a currency on MultiKarma.

Another improvement to MultiKarma is the addition of a framework for

transaction negotiation. MultiKarma’s design allows adoption across a wide array

of participant-based technologies. Such an extension to MultiKarma could provide

services such as resource location, resource cost, and currency exchange. One challenge
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to development of this service is providing a framework generic enough to address all

negotiation needs.

Another extension to MultiKarma is the ability to withdraw currency from

an account and store the value as a digital coin to enable exchange free of bank set

interaction (so called offline currency). As discussed in Chapter 2, Flavio Garcia

proposed converting Karma to a solution for reconciling offline coins. We prefer to

see a hybrid solution where currency can be stored in banks and then withdrawn for

offline use. In addition to providing bank set free transactions, offline coins allows for

some level of anonymity, by utilizing blind signatures, similar to traditional currency.

MultiKarma introduces the unique concept of allowing any user to mint cur-

rencies. We would like to see this economic concept adapted and explored in existing

digital currency solutions, such as BitCoin. Previously, we highlighted the advantages

of multiple currencies in economic theory and practice. It is only practical that

digital currency systems would experience the same benefits.
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