
ABSTRACT

The Landscape of Free Fermionic Gauge Models

Douglas G. Moore, Ph.D.

Advisor: Gerald B. Cleaver, Ph.D.

A software framework is developed to systematically construct a particular class

of weakly coupled free fermionic heterotic string models, dubbed gauge models. In

their purest form, these models are maximally supersymmetric (N = 4), and thus

only contain superpartners in their matter sector. This feature makes their system-

atic construction particularly efficient, and they are thus useful in their simplicity.

We first provide a brisk introduction to heterotic strings and the spin-structure

construction of free fermionic models. Three systematic surveys are then presented,

and we conjecture that these surveys are exhaustive modulo redundancies. Finally

we present a collection of metaheuristic algorithms for searching the landscape for

models with a user-specified spectrum of phenomenological properties, e.g. gauge

group and number of spacetime supersymmetries. Such algorithms provide the

groundwork for extended generic free fermionic surveys.

Copyright c© 2014 by Douglas G. Moore

All rights reserved

TABLE OF CONTENTS

TABLE OF CONTENTS . iv

LIST OF FIGURES . vii

LIST OF TABLES . ix

PREFACE .xii

ACKNOWLEDGEMENTS .xv

DEDICATION .xviii

1 Introduction to Superstrings . 19

1.1 Superstring Action . 19

1.2 Conformal Invariance and Operator Product Expansions 27

1.2.1 Conformal Group in D = 2 .27

1.2.2 Conformal Dimension . 28

1.2.3 Operator Product Expansions . 28

1.3 Gauge Fixing and the Conformal Anomaly . 29

1.3.1 Reparameterization Ghosts .30

1.3.2 Superghosts .34

1.3.3 The Conformal Anomaly . 36

1.4 Modular Invariance and the Worldsheet . 37

1.5 BRST Quantization . 41

1.5.1 BRST Charge Operator and Cohomology Classes42

1.6 The GSO Projection . 46

1.7 Summary . 48

2 Heterotic Strings and The Free Fermionic Construction . 49

2.1 The Free Fermionic Heterotic Action . 50

2.2 Modular Invariance of the Partition Function . 52

iv

2.2.1 Modular Invariance of Basis Vectors .54

2.2.2 Modular Invariance of Partition Coefficients . 56

2.3 Worldsheet Supersymmetry . 57

2.4 Free Fermionic Model Building . 57

2.5 Spacetime Supersymmetry . 59

2.6 Summary . 60

3 Surveys of Gauge Models . 61

3.1 Gauge Model Building . 62

3.1.1 Uniqueness . 65

3.1.2 Redundancies . 66

3.2 Layer One Survey . 68

3.2.1 Model Generation and Redundancy . 69

3.2.2 Group Distribution Statistics .71

3.2.3 Group Combinations . 73

3.2.4 Extended Layer One Survey .75

3.3 Survey of Layer One in D Dimensions . 76

3.4 Higher Layer Surveys .78

3.4.1 Coprime Orders .79

3.4.2 Generating Sectors .81

3.5 Generalized Gauge Models . 82

3.6 Summary . 83

4 Landscape Surveys Through Metaheuristic Algorithms . 84

4.1 Simulated Annealing . 85

4.1.1 Description and Pseudocode .86

4.1.2 Simulated Annealing as Applied to Gauge Models 88

4.1.3 Random Sampling and Random Search .92

4.1.4 Comparison of Algorithms . 94

v

4.2 Genetic Algorithms . 97

4.3 Summary . 98

APPENDICES

A The Gauge Framework .100

A.1 Philosophy and Influences . 101

A.2 Structure .102

A.2.1 Directory and File Structure .102

A.2.2 Object Structure . 105

A.2.3 Survey Structure . 106

A.3 Usage . 108

B Layer One Statistics . 111

B.1 Layer One Statistics in Four Dimensions . 112

B.2 Layer One Statistics in D Dimensions .115

B.2.1 Maximally Supersymmetric Models . 115

B.2.2 N = 0 Supersymmetric Models . 119

BIBLIOGRAPHY . 125

vi

LIST OF FIGURES

1.4.1 The Fundamental Domain – The shaded region represents the standard
choice for the fundamental domain of the modular group.40

3.2.1 Number of New Models at Each Order – The generation of unique
N = 4 models peaks at order 6 with 18 unique models generated. For
N = 0 this occurs at order 12 with 96 unique models. Note that the
N = 0 curve only has data for even orders because no odd order N = 0
models exist. 71

3.2.2 Number of Additional and Absent Models at Each Order – At each order
we look at the number of models generated in addition to the models
previously created as well as the number of models that are absent at
that order. Note that no non-SUSY models are generated at odd-orders
so, for brevity, those orders are not plotted. 71

3.2.3 Number of Models with Factors of Each Rank – For each rank and class
of gauge group, the number of models with at least one factor of that
type is plotted. The label on each bar is the total number of models
with at least one group of that rank. The plots for the SUSY and
non-SUSY models are provided for comparison. Here the red, green
and blue bars represent the number of A, D and E algebras groups,
respectively. 72

3.2.4 Average Number of Factors of Non-Abelian Groups – For each rank, the
average number of factors for each class of groups is plotted for each set
of statistics, (a) Non-SUSY Models and (b) SUSY Models. Here the
red, green and blue bars represent the number of A, D and E algebras
groups, respectively. 72

4.1.1 Simulated Annealing Algorithm – Written in Julia, it traverses the
input space in search of a global minimum energy solution. 87

4.1.2 Example of neighbor – Randomly generate a basis vector of length 22
and repeat until it is modularly invariant with the original. Return the
sum. .89

4.1.3 Cooling Schedules – We define a closure mktemp for creating some basic
temp functions and create linear, quadratic and square-root cooling
schedules, for example, each with a maximum temperature of 1000.90

4.1.4 Entropic Energy Function – Create a closure that takes the group in
which the user is interested and returns an energy function that takes
the norm of the difference between the entropies of the target and the
newly generated solution. 91

vii

4.1.5 Variance Energy Function – Create a closure that takes the group in
which the user is interested and returns an energy function that takes
the norm of the difference between the variance of the non-abelian ranks
of the target and newly generated solution. .92

4.1.6 Random Sampling – Generate random solutions until you find an
optimal one or you run out of loops. Return the best. 93

4.1.7 Random Search – Generate random neighbors of the best solution found
until you find an optimal one or you run out of loops. Return the best. . . 94

A.2.1 Gauge::Vector – A simplified implementation for the Vector struct.
Note that the basic data members, numerators, denominator and
size are defining characteristics of all phase vectors. For this reason
Gauge::BasisVector, Gauge::Sector and Gauge::State each derive
from Gauge::Vector. .105

A.2.2 Serial Topology – Each gray rectangle represents an operating system
process. Within each we find at least one algorithmic objects, in
rounded rectangles, and lines of data flow marked by the type of the
data. For example, within Process 1, Gauge::GeometryFactory and
Gauge::ModelFactory exchange a Gauge::Geometry. 107

A.2.3 Parallel Topology – Each gray rectangle represents an operating system
process. Within each we find at least one algorithmic objects, in
rounded rectangles, and lines of data flow marked by the type of the
data. 108

A.3.4 Serial Survey – An example demonstrating how to run a gauge survey
in serial. .109

A.3.5 Parallel Survey – An example demonstrating how to run a gauge survey
in parallel. .110

viii

LIST OF TABLES

3.1.1 Maximum Number of Unique Simply-Laced Gauge Models in D
Spacetime Dimensions . 66

3.1.2 Number of L = 1 Models – For each order we list the most models
possible and number of models after the permutation, charge
conjugacy and GSO projection redundancies are accounted for. These
are not necessarily distinct models, in fact the majority are still
redundant. 68

3.2.3 N = 4 GUT Group Statistics – The percentage of all unique N = 4
models with each combination of gauge groups is tabulated. For
example, 4.41% of the 68 unique SUSY models have the combination
FSU5 ⊗ SU5 at least once. 74

3.2.4 N = 0 GUT Group Statistics – The percentage of all unique N = 0
models with each combination of gauge groups is tabulated. Here each
value is calculated against the 502 N = 0 models, i.e. SO10 ⊗ SU5
occurs in 1.00% of these 502 models. 75

3.2.5 Unique Order 24 N = 0 Models – The unique non-supersymmetric
models generated at order 24. .76

3.3.6 Number of Unique Models – Number of unique N = Nmax and N = 0
models for each value of D. Also included is the number of models
that have both N = Nmax and N = 0 realizations. 77

3.4.7 Higher Layer Survey Status . 78

3.4.8 Redundancy of Layer 2 Models – The total number of SUSY and
non-SUSY models at each layer and order is tabulated. For each row,
the unique models generated in the l = 2 survey are precisely the
same as those generated in the l = 1 survey. We see the significant
redundancy of l = 2 with l = 1, e.g building the 7394 order 2 × 3
models is equivalent to building the 362 order 6 models. All models
were built in D = 4. 80

3.4.9 Models Generated by B – Two groups, namely SU12 ⊗ SO10 ⊗E6 and
SU16 ⊗ SO14, have N = 4 and N = 0 realizations from B while the
remaining four groups are produced with N = 0. 81

4.1.1 Comparison of Algorithms (Entropic Energy) – Results for searches
for four gauge groups utilizing three search algorithms are presented.
The algorithms, simulated annealing, random sampling and random
search, are denoted by SA, RSa and RSe, respectively. Note that RSa
outperformed both SA and RSe for group and metric. 95

ix

4.1.2 Comparison of Algorithms (Variance Energy) – Results for searches
for four gauge groups utilizing three search algorithms are presented.
The algorithms, simulated annealing, random sampling and random
search, are denoted by SA, RSa and RSe, respectively. Note that RSa
outperformed both SA and RSe for group and metric. 96

B.0.3 N = 4 Gauge Group Combinations – The percentage of all unique
N = 4 models with each combination of gauge groups is tabulated.
For example, 11.76% of the 68 unique SUSY models have the
combination SU4 ⊗ U1 at least once. .112

B.1.4 N = 0 Gauge Group Combinations – The percentage of all unique
N = 0 models with each combination of gauge groups is tabulated.
Here each value is calculated against the 502 N = 0 models, i.e.
SO10 ⊗ SU5 occurs in 1.00% of these 502 models. 113

B.1.5 Statistics of D = 4, N = 0 Models – The percentage of all unique
N = 0 models with each combination of gauge groups is tabulated.
Here each value is calculated against the 509 N = 0 models, i.e.
SO10 ⊗ SU5 occurs in 0.98% of these 509 models. 114

B.2.6 Statistics of D = 10, N = 1 Models – The percentage of all unique
N = 1 models with each combination of gauge groups is tabulated.
Here each value is calculated against the 2 N = 1 models.115

B.2.7 Statistics of D = 9, N = Nmax Models – The percentage of all
unique N = Nmax models with each combination of gauge groups is
tabulated. Here each value is calculated against the 9 N = Nmax
models, i.e. SU2 ⊗ SU2 occurs in 0.98% of these 9 models. 116

B.2.8 Statistics of D = 8, N = 1 Models – The percentage of all unique
N = Nmax models with each combination of gauge groups is
tabulated. Here each value is calculated against the 13 N = Nmax
models, i.e. 38.46% of these 13 models have at least one EN factor. . . 116

B.2.9 Statistics of D = 7, N = Nmax Models – The percentage of all
unique N = Nmax models with each combination of gauge groups is
tabulated. Here each value is calculated against the 16 N = Nmax
models, i.e. SU2 ⊗ U1 appears in 12.50% of these 16 models. 117

B.2.10 Statistics of D = 6, N = 2 Models – The percentage of all unique
N = 2 models with each combination of gauge groups is tabulated.
Here each value is calculated against the 18 N = 2 models, i.e.
SO8 ⊗ SO8 appears in 5.56% of these 18 models. 117

B.2.11 Statistics of D = 5, N = Nmax Models – The percentage of all
unique N = Nmax models with each combination of gauge groups is
tabulated. Here each value is calculated against the 40 N = Nmax
models, i.e. SO8 ⊗ SO8 appears in 2.50% of these 40 models. 118

B.2.12 Statistics of D = 10, N = 0 Models – The percentage of all unique
N = 0 models with each combination of gauge groups is tabulated.
Here each value is calculated against the 6 N = 0 models, i.e.
SU2 ⊗ SU2 appears in 16.67% of these 6 models. .119

x

B.2.13 Statistics of D = 9, N = 0 Models – The percentage of all unique
N = 0 models with each combination of gauge groups is tabulated.
Here each value is calculated against the 32 N = 0 models, i.e.
SO10 ⊗ SU4 appears in 3.13% of these 32 models. .120

B.2.14 Statistics of D = 8, N = 0 Models – The percentage of all unique
N = 0 models with each combination of gauge groups is tabulated.
Here each value is calculated against the 50 N = 0 models, i.e.
SU4 ⊗ SU4 appears in 4.00% of these 50 models. .121

B.2.15 Statistics of D = 7, N = 0 Models – The percentage of all unique
N = 0 models with each combination of gauge groups is tabulated.
Here each value is calculated against the 85 N = 0 models, i.e.
SO10 ⊗ SU4 appears in 3.53% of these 85 models. .122

B.2.16 Statistics of D = 6, N = 0 Models – The percentage of all unique
N = 0 models with each combination of gauge groups is tabulated.
Here each value is calculated against the 73 N = 0 models, i.e.
SU3 ⊗ SU5 appears in 4.11% of these 73 models. .123

B.2.17 Statistics of D = 5, N = 0 Models – The percentage of all unique
N = 0 models with each combination of gauge groups is tabulated.
Here each value is calculated against the 292 N = 0 models, i.e.
SU3 ⊗ SU2 ⊗ U1 appears in 7.53% of these 292 models. 124

xi

PREFACE

I’ve never really understood the point of a preface, so when I decided to write

one I had to guess as to what the point should be. After looking the word up in the

dictionary (a real, hardcopy version, made of paper and everything), I decided to

deliver this preface in a more relaxed prose. Given that I don’t remember having

ever read a preface, I am not even sure that this will be taken in by too many

people. Subsequent chapters are written more formally, so if you do not like this

style, just skip ahead.

As an undergraduate student, I did a bit of trivial work in the field of string

model building, specifically for intersecting D-brane models in Type II-A strings. I

began my work at Baylor University toward the end of my second semester, building

off of that of Matthew Robinson and a collection of REU1 students that preceded

me. I was tasked with rewriting a small piece of code to construct what Dr. Cleaver,

my esteemed advisor, was calling gauge models. The hodgepodge of source code,

all crammed into a single file, was impenetrable. This is not a shot at the work

of Dr. Robinson or the REU students; even Texas summers are not long enough,

and I don’t think any of them planned for the project to live for long. Well, after

about a week of swimming in a sea of painfully written if-statements and for-loops,

I decided to rewrite the entire thing from scratch. After all, it couldn’t take more

than a month or so.

Just over a year later I finally finished version v0.5 of what had become the

Gauge Framework. It consisted of roughly fifteen classes spread across just as many

files. It was relatively slow (∼100 models/s), bug-laden, and it only built models

in four dimensions. While it did have some parallel capabilities, facilitated by

1 Research Experiences for Undergraduates

xii

the POSIX pthread library, it was just barely able to complete the layer one survey

discussed in Section 3.1. In fact, it couldn’t build order 24 in any reasonable amount

of time! Oh, and there was an infuriating bug that caused it to die intermittently

after several hours of running; I’ve never identified what the source was.

We needed a new framework if we were going to pursue higher layer surveys.

After eighteen months or so, the first full version of the Gauge Framework, v1.0,

was functional. It ran significantly faster, ∼1,000 models/s, and had few known

bugs. We’d switched to MPI from POSIX threads, and most of the strange bugs

had disappeared. We could now do any survey we wanted, within reason.

All along, as I’ve worked on the framework, I’ve been inescapably intrigued by

the massive amounts of redundancy in the free fermionic formalism. Understanding

the nature of that redundancy has been the most difficult problem I’ve worked on,

and one I have yet to crack. I try to discuss the embarrassingly little that I know

about that redundancy herein. Largely, this work is an exposition of the surveys

and searches that I’ve worked on with the Gauge Framework. It is my hope that

more will be done with it, but it seems unlikely.

Around 2011 I became very interested in machine learning, neural networks

and evolutionary algorithms; I have a problem in that I am easily distracted and

like to distract those around me with my diversion. Dr. Tim Renner, though he

hadn’t defended yet, was my unsuspecting victim. We’d discuss the little projects

on which I’d work, and he even started doing the same. One day at lunch he

and I were discussing genetic algorithms when he proposed an idea that I found

irresistible. Could we apply an evolutionary algorithm to string landscape surveys?

To my knowledge he never really followed up, but Chapter 4 has grown out of that

discussion as well as several others that he and I have had. It turns out that, if we

can apply those algorithms, it isn’t a trivial task in the slightest.

xiii

It seems appropriate here to mention a few of the projects that didn’t make it

into this work due to time and my reluctance to write a dissertation that exceeds

100 pages of real work.

First, I’ve looked into the way models change with compactification. In partic-

ular, given a model in D dimension, into what models can it transform in D− 1 di-

mensions? It is a very different approach to the exploration of the string landscape,

and to my knowledge is the only one of its kind. It turns out that certain progres-

sions are significantly more likely, and the most prevalent suggests that standard

model-like groups are more likely in lower dimensions. That said, I don’t believe

that the theory has been developed well enough yet to present here.

Second, there are two frameworks that I’ve tinkered with in my spare time;

each of which is designed to construct free fermionic models, but the algorithms are

different from those used in the Gauge Framework. The first project is designed

to make the most of C++’s compile time capabilities. Why calculate the length of

a basis vector at run time when you can do it at compile time? We can also take

advantage of many of the new C++11 features like the std::array type (like a C

array, but C++’y). This makes writing end-user programs more difficult, but they

seem to run marginally faster. The second project discards the integer encoded

arrays and simply uses floats. The idea is that there are several fantastic libraries,

OpenBLAS and Lapack in particular, that handle linear algebra very efficiently.

Why not use them to do all of the heavy lifting? There are a few difficulties, but I

won’t get into them here. Suffice it to say that, while it is faster, it is less reliable

at higher order. I have a few ideas to improve the situation, but I find it advisable

to invest my time in writing my dissertation instead.

With that I want to thank you for reading and hope that you enjoy the topic

as much as I have over the years.

xiv

ACKNOWLEDGEMENTS

I would like to start by thanking my advisor, Dr. Gerald Cleaver, for all of his

support and guidance throughout my time at Baylor. His knowledge of the field

and ability to balance my exceedingly ambitious ideas against reality are nothing

short of expert. How he has managed to listen to all of my technological rambling

is beyond me, but I thank him for it.

My thanks go out to the members of my defense committee, Drs. Gerald

Cleaver, Jay Dittmann, Lorin Matthews, Anzhong Wang and Brian Raines, for

investing so much time reading and editing this work, a task that I have no doubt

was grueling and painful. I thank the faculty of the Departments of Physics at both

Baylor and Sam Houston State University for the fine education that I’ve received

over the years and ensuring that I can actually pay my rent. I’ve enjoyed every

minute teaching at these institutions.

I’d like to thank Dr. Joel Walker, my undergraduate advisor. Without Joel I

probably would never have made it to graduate school and owe him a great debt. I

am thankful for my time working with him and for his friendship.

To all of the members of the EUCOS group, past and present, thank you for

pretending I was being helpful, even when I wasn’t. Thanks to Dr. Tim Renner for

the countless conversations and endless aid he rendered as I got started. Tim is a

great person and a pleasure to work with, a state I hope to find myself in again in

the future. To Dr. Jared Greenwald, I thank you for the many discussions we’ve

had and for not being too upset after having been led to a dead end by yours truly.

Many thanks to the rest of the members of EUCOS, Dr. Gerald Cleaver, Yanbin

Deng, Brandon Mattingly and Drake Gates. It has been a pleasure working with

each of you.

xv

I would like to acknowledge all of the REU students with whom I’ve had the

pleasure of working: William Hicks, Lesley Vestal, Rachel Elliott, Brandon Mat-

tingly, Kara Merfeld and Caleb Smith. It was a great experience, one that shaped

the course of my work.

While here I’ve had the pleasure of working with V.H. Satheeshkumar on a few

projects. He has been a great conversationalist, and our discussions have driven my

work. I am sincerely grateful for his friendship and hope that we will be able to

work together in years to come.

In the Mathematics Department, I would like to thank Drs. Brian Raines and

Markus Hunziker for keeping my mathematics skills fresh. I thoroughly enjoyed my

time in your classes. The coursework had surprising influences on my research, and

I am grateful for it.

Regarding family, I would like to thank my parents; without their support I

may have never made it here. In fact I know that without them I wouldn’t even be

here. My mother, Kathy, has been nothing but supportive and has never forgotten

to remind me of her confidence in me. My dad, Dee, has always pushed me to do

better and ensured that I knew he was proud. Thank you both for everything you

have done. I wish this could be a more substantial repayment. Of course, I have to

thank by brother, Andrew, for never letting life get dull.

I cannot go on without thanking two of the greatest people I know, Nicole

Lozano and Chet Gassett. So many thanks for all of the ethanol driven, late

night conversations and years of friendship. I am certain that with enough dis-

tilled ethanol we could change the world. You are more family than friends, and I

look forward to a lifetime of ballyhoo. I’d like to also thank Jerry and Carol Lozano,

Reid and Sissi Gassett, and Mark and Liz Speights for the years of support; it is as

though I have four sets of parents.

xvi

Most importantly, I’d like to thank my fiancée, Lindsey. I could never have

done this without you, nor would I ever want to. Your love and support have been

invaluable, and I look forward to spending my life with you by my side.

It is my hope that by the time the sun has expired my readership will have

exceeded what one can count to on two hands. You are helping to make that

possible, and so I thank you.

xvii

DEDICATION

For my friends, family and

my love of Physics.

xviii

CHAPTER ONE

Introduction to Superstrings

In this chapter I discuss the basic construction of closed superstrings. I begin

in Section 1.1 with a review of the superstring action, equations of motion and the

Virasoro mode decomposition of the stress-energy tensor. In Section 1.2 we look at

how the Virasoro algebra, and thus the stress-energy tensor, generates the conformal

symmetry on the worldsheet. I also briefly touch upon operator product expansions.

I move on then to gauge fix the action in Section 1.3. As the gauge-fixing is local, we

turn to the question of global properties of the string. In particular, we introduce

the modular group in Section 1.4. Finally, in Section 1.5 and Section 1.6 we cover

the mechanisms with which we prune our state space down to only the physical

states, namely BRST quantization and the GSO projection.

Remember that this topic has been explored and expounded on extensively by

people much more adept than I. For this reason, I only outline the details necessary

for subsequent chapters and direct the reader to any of the standard texts [1, 2, 3,

4, 5] for a more complete treatment.

1.1 Superstring Action

The problem of expressing an action for the supersymmetric string can be

approached in several ways. Historically it began with the Nambu-Goto action

and subsequently evolved into the Polyakov action, each of which describe bosonic

strings.1 The Ramond-Neveu-Schwarz (RNS) and Green-Schwarz actions were then

constructed to incorporate supersymmetry. As our interest is in the RNS action,

1 Strings with bosonic worldsheet fields only.

19

since it readily adapts to the heterosis to follow, we will not deal with the Green-

Schwarz action herein; see [1, 5] for details.

The RNS action amounts to adding N = 1 worldsheet supersymmetry to the

Polyakov action. In what follows Xµ will represent worldsheet scalars while ψµ are

Majorana spinors. Here µ represents some internal index, and we require that Xµ

and ψµ transform as vectors under SO(D − 1, 1) for some natural D. The value

and interpretation of D will be addressed in Subsection 1.3.3. In general the action

takes the form

S = − 1

2π

∫
d2σ
√
−h
[
hαβ∂αX

µ∂βXµ + ψ̄µραDαψµ

−2eχ̄αρ
βραψµ∂βXµ −

1

2
eψ̄µψ

µχ̄αρ
βραχβ

] (1.1.1)

where ψ̄ = iψ†ρ0, hαβ is the two-dimensional worldsheet metric, ρα are the two-

dimensional Dirac matrices,

ρ0 =

(
0 −1
1 0

)
and ρ1 =

(
0 1
1 0

)
, (1.1.2)

e is the “zweibein” (two-dimensional analog of the familiar vierbein of general rel-

ativity) and Dα is the worldsheet covariant spin derivative,

Dαλ
A
β = ∂αλ

A
β + ωAαBλ

B
β + Γγαβλ

A
γ . (1.1.3)

Throughout this work α, β, . . . = 0, 1 are worldsheet indices, A,B, . . . = 0, 1 are

spinor indices and µ, ν, . . . = 0, 1, . . . , D− 1 represent some internal indexing which

will ultimately be related to the number of spacetime dimensions.

This action is overwhelmed by local symmetries that allow us to make particular

gauge choices. Reparameterization invariance allows us to gauge fix our worldsheet

metric to

hαβ → eφηαβ, (1.1.4)

local supersymmetry transformations allow us to set

χα = 0 (1.1.5)

20

and Weyl symmetry lets us drop the conformal scaling, eφ. In this conformal gauge

we have

S = − 1

2π

∫
d2σ

(
ηαβ∂αX

µ∂βXµ + ψ̄µρα∂αψµ

)
. (1.1.6)

The process of gauge fixing the worldsheet metric and the gravitino will be ap-

proached more systematically in Section 1.3. Until then, we will assume the con-

formal gauge.

Now, our next steps are to carry out two changes of coordinates. The first is a

Wick rotation, σ0 → −iσ0. This euclideanizes the worldsheet so that

ηαβ → δαβ. (1.1.7)

By convention, the action also undergoes a sign change. This Wick rotation will

make our path integrals better behaved because the exponential of our action will

be damped as opposed to oscillatory. After Wick rotating, we move to complex

coordinates

z = e(σ
0+iσ1) and z̄ = e(σ

0−iσ1). (1.1.8)

This is a judicious choice as we could have taken z = σ0 + iσ1, the choice in

many standard texts [1, 3]; however, since they are clearly related by a conformal

transformation, and the former handles the closed string boundary conditions more

intuitively, we prefer it. The action now takes the form

S =
1

4π

∫
dzdz̄

(
4∂zX

µ∂z̄Xµ + ψ̃µ∂zψ̃µ + ψ̆µ∂z̄ψ̆µ

)
(1.1.9)

where

ψ =

(
ψ̃

ψ̆

)
. (1.1.10)

At this point we can vary our action to produce the equations of motion:

∂z∂z̄X
µ = 0, (1.1.11)

for our bosonic fields, and

∂zψ̃
µ = 0 and ∂z̄ψ̆

µ = 0 (1.1.12)

21

for our fermionic fields. From (1.1.12) we see that the spinor components of ψ,

namely ψ̆ and ψ̃, are holomorphic and anti-holomorphic, respectively. Taking note

of the form of (1.1.11), we see that ∂zX
µ and ∂z̄X

µ are also holomorphic/anti-

holomorphic. Consequently we can split our bosonic fields into holomorphic and

anti-holomorphic pieces as well,

Xµ(z, z̄) = X̆µ(z) + X̃µ(z̄). (1.1.13)

Hence forth, we will refer to our holomorphic components, X̆ and ψ̆, as our left-

movers, and our anti-holomorphic components, X̃ and ψ̃, as right-movers.

This brings us now to considerations of the boundary conditions on our world-

sheet fields. There are, in fact, many admissible sets of boundary conditions. Be-

cause we are interested in closed strings, we need to consider how Xµ(z, z̄) and

ψµ(z, z̄) will change as (z, z̄) → (e2πiz, e−2πiz̄). Upon inspection of the boundary

terms of the variation of our action (1.1.9), we note that all boundary terms vanish if

X̆µ(z) = X̆µ(e2πiz), X̃µ(z̄) = X̃µ(e−2πiz̄) (1.1.14)

and

ψ̆µ(z) = ±ψ̆µ(e2πiz), ψ̃µ(z̄) = ±ψ̃µ(e−2πiz̄). (1.1.15)

In this complex coordinate system we see that z → eiαz amounts to traversing the

closed string a distance α in the σ1 direction. Given that σ1 has a periodicity of 2π,

we have that the conditions above amount to either periodic or anti-periodic bound-

ary conditions on the worldsheet fields. One thing to note is that the periodicity of

the bosonic fields is not strictly required; anti-periodicity will also cause our surface

terms to vanish. This possibility is important for the orbifold and spin construction

formalism, and thus the anti-periodicity will be allowed in later analysis.

The most important detail is that the closed string boundary conditions do not

mix left- and right-moving modes: a left-moving mode will never reflect and become

a right-moving mode (nor vice versa). This prompts the question as to whether or

22

not the supersymmetry transformations do the same. They do, in fact, preserve this

distinction which can be seen by inspection of the supersymmetry transformations

δXµ = ε̄ψµ, (1.1.16a)

δψµ = ρα∂αX
µε. (1.1.16b)

Here ε is a global infinitesimal Majorana spinor of the form

ε =

(
ε̃

ε̆

)
. (1.1.17)

Working in this conformal gauge with complex coordinates we can observe the

transformations for the holomorphic and anti-holomorphic components of Xµ and

ψµ:

δX̃µ = ε̆ψ̃µ, δX̆µ = −ε̃ψ̆µ, (1.1.18a)

δψ̃µ = −2∂z̄X̃
µε̆, δψ̆µ = 2∂zX̆

µε̃. (1.1.18b)

As we see, the transformations leave left- and right-moving modes invariant. That is,

left-moving (right-moving) degrees of freedom of one flavor (bosonic or fermionic)

are transformed into left-moving (right-moving) degrees of freedom of the other

flavor.

Altogether this means that we have the freedom to introduce left-moving modes

that have an internal worldsheet supersymmetry, but right-moving modes that do

not. This is the spike of the heterotic string which we will detail in Chapter 2.

Our next topic is solving the equations of motion (1.1.11) and (1.1.12). It is

straightforward to see that (1.1.11) is satisfied by

Xµ(z, z̄) = xµ − i

2
pµ ln(zz̄) +

i

2

∑
n6=0

1

n

(
ᾰµnz

−n + α̃µnz̄
−n) , (1.1.19)

so that Xµ splits into the holomorphic and anti-holomorphic components

X̆µ(z) =
1

2
xµ − i

4
pµ ln(z) +

i

2

∑
n6=0

1

n
ᾰµnz

−n, (1.1.20a)

X̃µ(z) =
1

2
xµ − i

4
pµ ln(z̄) +

i

2

∑
n6=0

1

n
α̃µnz̄

−n. (1.1.20b)

23

We can do the same for ψµ, but this time we have a few choices regarding our

boundary conditions. Because we admit the anti-periodic boundary conditions we

have two possible sectors: the periodic Ramond sector (R) and the anti-periodic

Naveu-Schwarz sector (NS). The Ramond sector expansions are

ψ̆µ =

√
2

2

∞∑
n=−∞

d̆µnz
−n (1.1.21a)

ψ̃µ =

√
2

2

∞∑
n=−∞

d̃µnz̄
−n (1.1.21b)

while the Naveu-Schwarz sector expansions go as

ψ̆µ =

√
2

2

∞∑
n=−∞

b̆µ
(n+1

2)
z−(n+1

2) (1.1.22a)

ψ̃µ =

√
2

2

∞∑
n=−∞

b̃µ
(n+1

2)
z̄−(n+1

2). (1.1.22b)

Of course a closed string has two directions that are independent, each of which

can be either the R or NS sector. Thus the spectrum of the closed string has four

contributing sectors: R-R, NS-NS, R-NS, and NS-R.

In a manner analogous to the construction of the states of the quantum harmonic

oscillator, we can construct the states of our theory using the quantum operators

arising from the modes of the field expansions above. To do this, we impose the

canonical (anti-)commutation relations on the oscillator fields:

[ᾰµm, ᾰ
ν
n] = [α̃µm, α̃

ν
n] = mδm+nη

µν

{b̆µr , b̆νs} = {b̃µr , b̃νs} = δr+sη
µν (1.1.23)

[d̆µm, d̆
ν
n] = [d̃µm, d̃

ν
n] = δm+nη

µν .

These are applied, in all admissible combinations, to the ground state of the re-

spective sector. In this way the spectrum of the theory is constructed up to the

constraints imposed by superconformal invariance. One last thing that will be of

use in subsequent sections is the mass operators. These operators are defined per

24

sector for the holomorphic and anti-holomorphic modes separately.

1

2
M̆2 =

∞∑
m=1

ᾰ−m · ᾰm +

∞∑

r=1/2

rb−r · b̆r − 1
2 , (NS)

∞∑
n=1

nd−n · d̆n. (R)

(1.1.24)

The additional 1
2 contribution to the NS sector mass operator arises as a result of

normal ordering. Consistency requires that this normal ordering constant be 1
2 .

Note that above we only presented the holomorphic operator M̆2. The anti-

holomorphic version can be expressed simply by replacing the holomorphic modes,

ᾰ, etc. . ., with the corresponding anti-holomorphic modes, α̃, etc. . .. For brevity,

we will omit the anti-holomorphic modes for the remainder of this section as the

expressions will become rather redundant if we do not.

Recall that the left- and right-moving modes of the closed string are independent

so they require the application of different mass operators. It makes little sense for

the mass of the left-moveing modes to be different from the mass of the right-movers.

If that were the case, what would be the mass of the string? So, we require that

their masses be equal so the mass of the string is then obvious. This results in

the loosening of the level-matching condition that the left- and right-movers must

have the same number of mode excitations. In the R-R and NS-NS sectors, the

level-matching requirement survives, while in the R-NS and NS-R sectors we can

have differing number of mode excitations for holomorphic and anti-holomorphic

modes due to the normal ordering constant in the NS sector.

Using Noether’s theorem we can calculate the stress-energy tensor which is of

course conserved, as it should be. In the context of the superstring we get two

contributions. The first is the standard bosonic contribution

T̆B = −2 : ∂zX̆
µ∂zX̆µ : −1

2
: ψ̆µ∂zψ̆µ : (1.1.25)

while the second is the fermionic contribution

T̆F = 2iψ̆µ∂zX̆µ (1.1.26)

25

It is a standard step to mode expand the stress-energy tensor. In doing so we

have

T̆B =
∞∑

n=−∞
L̆nz

−(n+2) (1.1.27)

for the bosonic component and

T̆F =

∞∑

n=−∞
Ğnz

−(n+3/2), (NS)

∞∑
n=−∞

F̆nz
−(n+2), (R)

(1.1.28)

for the fermionic components. From the oscillator expansions of Xµ and ψµ we find

Lm = L
(b)
m + L

(f)
m , m ∈ Z (1.1.29a)

Gr =
1

2

∑
n∈Z

: α−n · br+n :, m ∈ Z +
1

2
(1.1.29b)

Fm =
1

2

∑
n∈Z

: α−n · dm+n :, m ∈ Z (1.1.29c)

with

L
(b)
m =

1

2

∑
n∈Z

: α−n · αm+n :, (1.1.30a)

L
(f)
m =

1

2

∑
r∈Z+1/2

(
r +

m

2

)
: b−r · bm+r :, (NS) (1.1.30b)

L
(f)
m =

1

2

∑
r∈Z

(
n+

m

2

)
: d−n · dm+n :, (R) (1.1.30c)

These modes form an algebra in each sector, dubbed the super-Virasoro algebra.

In the Naveu-Schwarz sector we have

[Lm, Ln] = (m− n)Lm+n +
D

8
m(m2 − 1)δm+n, (1.1.31a)

[Lm, Gr] =
(m

2
− r
)
Gm+r, (1.1.31b)

{Gr, Gs} = 2Lr+s
D

2

(
r2 − 1

4

)
δr+s, (1.1.31c)

while in the Ramond sector we have

[Lm, Ln] = (m− n)Lm+n +
D

8
m3δm+n, (1.1.32a)

[Lm, Fn] =
(m

2
− n

)
Fm+n, (1.1.32b)

{Fm, Fn} = 2Lm+n
D

2
m2δm+n. (1.1.32c)

26

These algebras are the symmetry algebras of superconformal invariance. The details

of this symmetry are a bit long-winded for this work, so in the next section we will

focus solely on conformal invariance, the algebra of which is simply the Virasoro

subalgebra,

[L
(b)
m , L

(b)
n] = (m− n)L

(b)
m+n +

D

12
m(m2 − 1)δm+n, (1.1.33)

where L
(b)
m is the contribution to the bosonic stress-energy tensor due solely to the

bosonic worldsheet fields.

This symmetry has far-reaching implications on the state space of the theory.

In particular, we require that physical states be superconformally invariant, i.e. a

state must be annihilated by the super-Virasoro generators, Lm, Gr and Fm.

1.2 Conformal Invariance and Operator Product Expansions

Here we turn our attention to conformal field theory, in particular conformal

invariance. As we have chosen the conformal gauge and the classical theory is

conformally invariant, we hope that this invariance will survive in the quantum

theory. However, as is often the case when quantizing a theory with an infinite-

dimensional symmetry algebra, the (super-)Virasoro algebra picks up an anomaly

term. This anomaly will be dealt with in Section 1.3. Before we get to that,

however, it is important that we relate the conformal symmetry of the theory back

to the Virasoro algebra. In this way, it is the stress-energy tensor that generates

the conformal transformations. We will then round out this section with a brief

discussion of the conformal dimension and operator product expansions.

1.2.1 Conformal Group in D = 2

Let us start with a generic conformal transformation

z → f(z) and z̄ → f̄(z̄). (1.2.1)

Taking an infinitesimal transformation

z → z − εnzn+1 and z̄ → z̄ − ε̄nz̄n+1 (1.2.2)

27

we can read off the infinitesimal generators in the standard way

ln = −zn+1∂z and l̄n = −z̄n+1∂z̄. (1.2.3)

It is simple to check that these generators satisfy the algebra

[lm, ln] = (m− n)lm+n, [l̄m, l̄n] = (m− n)l̄m+n, and [lm, l̄n] = 0. (1.2.4)

This should look familiar as it is the algebra (1.1.33) without the central charge

term, i.e. it is the classical Virasoro algebra. This can readily be verified using

the results from Section 1.1, but skipping the quantization and thus omitting the

normal ordering on the stress-energy tensor.

1.2.2 Conformal Dimension

It is convenient in conformal field theory to distinguish fields in terms of their

conformal dimension, (h, h̄). The components of this pair are referred to as the

holomorphic and anti-holomorphic conformal dimension, respectively. Effectively

this is a generalization of the tensor type of the field in the conformal field theory:

Φ(z, z̄) =

(
∂w

∂z

)h(
∂w

∂z̄

)h̄
Φ(w, w̄). (1.2.5)

Just as for an action to be a Lorentz scalar it must have tensor type (0, 0), the action

must have conformal dimension (0, 0) to be conformally invariant. Thus, to form

conformally invariant actions we must keep track of our conformal dimensions. Note

that when a field is (anti-)holomorphic we simply drop the “(anti-)holomorphic”

qualification. Thus, to restate the above, the action must have conformal dimen-

sion 0.

1.2.3 Operator Product Expansions

In the sections to follow we will be dealing with path integral expectation values

〈A[X]〉 =

∫
DX exp(−S)A[X] (1.2.6)

28

where A[X] is a functional of the field variable X. We could, of course, ask for the

expectation value of a product of local operators, i.e.

〈A1(z1, z̄1) . . . An(zn, z̄n)〉 =

∫
DX exp(−S)A1(z1, z̄1) . . . An(zn, z̄n). (1.2.7)

What would happen as any two operators A1 and A2 approach coincidence? The

tool with which we explore this question is the operator product expansion (OPE):

a product of two local operators can be expressed as the sum of local operators

Ai(x)Aj(y) =
∑
k

ckij(x− y)Ak(y). (1.2.8)

Taking the expectation value, as ckij is independent of the field variable X,

〈Ai(x)Aj(y)〉 =
∑
k

ckij(x− y)〈Ak(y)〉 (1.2.9)

with ckij depending only on the separation x − y and operators Ai, Aj , and Ak.

Typically the OPE is expressed with the most singular terms in the expansion first

and the nonsingular terms denoted with “. . .”.

One OPE that is of particular interest to us is the TT OPE:

T (z)T (0) =
c

2z4
+

2

z2
T (0) +

1

z
∂zT (0) (1.2.10)

From this expression we can see that T is not a tensor since the anomaly term

interferes with the proper transformation laws. In order to recover T as a tensor we

must ensure, in some way, that the conformal anomaly c is zero. It is this venture

that the next section addresses.

1.3 Gauge Fixing and the Conformal Anomaly

In this section we will outline the process of gauge fixing in the path integral con-

text. In particular we will introduce Faddeev-Papov ghosts to handle the excessive

gauge redundancies. We start with the path integral

Z =

∫
DhDχDX Dψ e−S(h,χ,X,ψ) (1.3.1)

29

where S(h,X, ψ) is the euclideanized action with h the worldsheet metric, X the

bosonic degrees of freedom and ψ the fermionic degrees of freedom. The process

of gauge-fixing amounts to separating the path integral into the product of an

integral over the gauge group with an integral over the dynamic fields along a gauge

slice, and dividing out by the volume of the gauge group. Now, in the case of the

supersymmetric string, it is somewhat complicated by the internal supersymmetry.

However, one possible interpretation of the superstring is that the worldsheet is

actually the two-dimensional commuting subspace of a superspace in which the

additional directions are anti-commuting Grassmann numbers. From this point of

view we see that the supersymmetry is on the same footing as the (Weyl × diff)

invariance of the metric. It is clear that supersymmetry must also be considered in

our gauge-fixing.

The full details of this process are elaborate, and have prompted entire disser-

tations on their own. Because of this, we only provide what we need, and eschew

expounding on all but the most trivial details in favor of brevity. Further we only

address the local properties of the theory; global aspects are not discussed until Sec-

tion 1.4. The interested reader can see any of the standard string theory textbooks

for a much more thorough treatment.

We will start first with the reparameterization ghosts in Subsection 1.3.1, move

on to the supersymmetric ghosts in Subsection 1.3.2, and finally use the result to

determine the number of worldsheet bosonic and fermionic fields that our theory

may admit in Subsection 1.3.3.

1.3.1 Reparameterization Ghosts

We begin by fixing our metric, h, which in turn specifies a gauge orbit: the set

of all metrics that can be obtained from our particular metric of choice under action

of the gauge group. Let g be a gauge transformation with g : h→ hg. We can then

consider what happens when we integrate over the volume of the gauge group in

30

question, in our case (Weyl × diff). This will ultimately result in the introduction

of several fields that encode these motions in the gauge space.

We need a measure, ∆(h), along one of these orbits in order to truly perform the

integration. This measure is referred to as the Faddeev-Popov measure. Postponing

the precise specification of ∆(h), we will use the identity

1 = ∆(h)

∫
Dg δ(h− hg) (1.3.2)

Inserting this into our path integral (1.3.1) gives us

Z[h] =

∫
DgDhDχDX Dψ∆(h)δ(h− hg) e−S[h,χ,X,ψ] (1.3.3)

Of course we can now carry out the integration over h leaving us with

Z[h] =

∫
DgDχDX Dψ∆(hg) e−S[hg,χ,X,ψ]. (1.3.4)

Based on the form of (1.3.2) we can see ∆(h) is gauge invariant and since

S[h, χ,X, ψ] is as well

Z[h] =

∫
DgDχDX Dψ∆(h) e−S[h,χ,X,ψ]. (1.3.5)

Since no part of the integrand depends on an element of the gauge group we can

separate out the integral over the group. This contributes an infinite multiplicative

factor equivalent to the volume of the gauge group (Weyl× diff), and so we simply

drop it (or divide by it if you prefer).

Z[h] =

∫
DχDX Dψ∆(h) e−S[h,χ,X,ψ]. (1.3.6)

To proceed we need to work out the form of ∆(h). To do this we consider

how h transforms under infinitesimal coordinate transformations. Generally, as

σα → σα + ξα, the metric varies as

δhαβ = ∇αξβ +∇βξα (1.3.5c)

31

with ξα infinitesimal and ∇α the worldsheet covariant derivative. Using (1.3.2) and

δh = h− hg with g near the identity,

∆(h)−1 =

∫
Dξ δ

(
∇αξβ +∇βξα

)
. (1.3.7)

We can then use the the identity

δ(x) =

∫
Dp exp

[
2πi

∫
d2σ
√
−h (p · x)

]
, (1.3.8)

with · representing the contraction of any indices in p and x required to make the

integrand a worldsheet scalar, to remove the delta function:

∆(h)−1 =

∫
DωDξ exp

[
2πi

∫
d2σ
√
−hωαβ

(
∇αξβ +∇βξα

)]
. (1.3.9)

Here ω is symmetric and traceless. The inverse determinant then takes the final

form

∆(h)−1 =

∫
DωDξ exp

[
4πi

∫
d2σ
√
−hωαβ∇αξβ

]
. (1.3.10)

Following the standard prescription for inverting the path integral we introduce

two anti-commuting “ghost” fields, ξ → c and ω → b. Making the substitution,

twiddling a few indices, and selecting a nice normalization, we have our Faddeev-

Popov determinant

∆(h) =

∫
DbDc exp

(
− 1

2π

∫
d2σ
√
−h bαβ∇αcβ

)
=

∫
DbDc e−S[h,b,c].

(1.3.11)

Our next stop along the road to gauge fixing is to substitute our determinant

into (1.3.6). We are left with

Z[h] =

∫
DχDX DψDbDc e(−S−Sbc) (1.3.12)

where

S + Sbc = − 1

2π

∫
d2σ
√
−h
[
hαβ∂αX

µ∂βXµ + ψ̄µραDαψµ

−2χ̄αρ
βραψµ∂βXµ −

1

2
ψ̄µψ

µχ̄αρ
βραχβ + bαβ∇αcβ

] (1.3.13)

32

We are finally in the position to actually fix our gauge. We choose the complex

conformal gauge presented in Section 1.1. Unfortunately, by doing so our action

becomes rather unruly and horrendous in appearance. Because we have already

presented the bosonic and leading fermionic terms of the action in (1.1.9), and

since the remaining ghost-free terms will simply be discarded in the next section by

a judicious gauge choice, we only express the ghost components here:

Sbc =
1

2π

∫
dzdz̄

(
bzz∂z̄c

z + bz̄z̄∂zc
z̄
)
. (1.3.14)

Varying this action with respect to b and c we are left with the classical equations

of motion

∂z̄c
z = ∂z̄bzz = 0 (1.3.15a)

∂zc
z̄ = ∂zbz̄z̄ = 0. (1.3.15b)

We come to the same conclusion we did for the fields Xµ and ψµ: our ghosts break

up into holomorphic and anti-holomorphic components. Adopting our previous

notation for left- and right-moving fields the ghost action takes the form

Sbc =
1

2π

∫
dzdz̄

(
b̆ ∂z̄ c̆+ b̃ ∂z c̃

)
. (1.3.16)

The conformal dimensions of b and c are easily read to be λ = 2 and (1−λ) = −1,

respectively. That is, the conformal dimension of c̆ is (−1, 0) while that for c̃ is

(0,−1), etc. In this way, we know that they contribute to the stress energy tensor as

T̆ = −2 : b̆ ∂z c̆ : + : c̆ ∂z b̆ : (1.3.17a)

T̃ = −2 : b̃ ∂z c̃ : + : c̃ ∂z b̃ : . (1.3.17b)

Using the OPEs

b̆(z)c̆(w) =
1

z − w + . . . and b̃(z̄)c̃(w̄) =
1

z̄ − w̄ + . . .

33

and the generic form of the TT OPEs presented in (1.2.10), we can see that the

contribution of the b and c ghosts to the left- and right-moving conformal anomalies

are

c̆ = c̃ = −3(2λ− 1)2 + 1 = −26. (1.3.18)

This magical number will be used in Subsection 1.3.3 when we finally discuss

the conformal anomaly cancellation. Until then we are done with our reparameter-

ization ghosts and will now turn to the supersymmetric ghost fields, β and γ.

1.3.2 Superghosts

Having already outlined the process of gauge fixing in Subsection 1.3.1, we can

gauge fix the worldsheet gravitino χ quite rapidly. We first note that the local

supersymmetry transformations go as

δXµ = ε̄ψµ, (1.3.19a)

δψµ = ραε(∂αX
µ − ψ̄µχα), (1.3.19b)

δeAα = iε̄ρAχα, (1.3.19c)

δχα = ∇αε. (1.3.19d)

This is not, in fact, all of the symmetry under which the action is invariant. There is

an additional bosonic symmetry arising from Weyl invariance (after all e is directly

associated with the metric), and a fermionic symmetry that transforms χ as

δχα = ραζ (1.3.20)

where ζ is an arbitrary Majorana spinor. These additional symmetries, while im-

portant in general, are not strong enough to allow us to gauge fix any more than

our one gauge field, χ.

Restricting to our variation (1.3.19d) we expect that our partition function

should look like

Z[h, χ] =

∫
DXDψDbDc∆(χ) e(−S−Sbc). (1.3.21)

34

Following the procedure outlined in Subsection 1.3.1, we have

∆(χ)−1 =

∫
Dε δ (∇αε)

=

∫
DεDς exp

[
2πi

∫
dσ
√
−h ςα∇αε

]
(1.3.22)

Inverting this by replacing ε→ γ and ς → β, and substituting into our path integral

we have

Z[h, χ] =

∫
DXDψDbDcDβDγ e(−S−Sbc−Sβγ). (1.3.23)

with

S + Sbc + Sβγ = − 1

2π

∫
d2σ
√
−h
[
hαβ∂αX

µ∂βXµ + ψ̄µραDαψµ

− 2χ̄αρ
βραψµ∂βXµ −

1

2
ψ̄µψ

µχ̄αρ
βραχβ

+ bαβ∇αcβ + βα∇αγ
] (1.3.24)

As before, β and γ are ghost fields; however, now they are commuting fields.

Additionally, because they are replacing a fermi field they carry an internal spinor

index and thus have half-integer conformal dimensions. Specifically β and γ have

conformal dimensions λ = 3
2 and (1− λ) = −1

2 , respectively.

Gauge fixing our action so that we are in the complex conformal gauge and

exploiting the residual gauge symmetry just described to force the worldsheet grav-

itino to vanish gives us our fully gauge-fixed action:

S =
1

4π

∫
dzdz̄

(
4∂zX

µ∂z̄Xµ + ψ̃µ∂zψ̃µ + ψ̆µ∂z̄ψ̆µ

+b̆ ∂z̄ c̆+ b̃ ∂z c̃+ β̆ ∂z̄γ̆ + β̃ ∂zγ̃
)
.

(1.3.25)

We have the equations of motion giving us left- and right-moving modes

∂z̄γ̆ = ∂z̄β̆ = 0 (1.3.26a)

∂zγ̃ = ∂zβ̃ = 0, (1.3.26b)

and the contribution of β and γ to the stress-energy tensor goes as

T̆B = −3

2
: β̆ ∂zγ̆ : −1

2
: γ̆ ∂zβ̆ : (1.3.27a)

T̆F = −2 : bγ : + : c∂zβ : +
3

2
: β∂zc : (1.3.27b)

35

with similar contributions to the anti-holomorphic components. Note that there is

both a bosonic and a fermionic contribution once we have introduced the super-

symmetry ghosts. Of course we can now use our OPEs for the β and γ ghosts,

β̆(z)γ̆(w) =
1

z − w + . . . and β̃(z̄)γ̃(w̄) =
−1

z̄ − w̄ + . . . ,

to determine their contribution to the conformal anomaly. In particular we have

c̆ = c̃ = 3(2λ− 1)2 − 1 = 11. (1.3.28)

This concludes our somewhat superficial treatment of the Faddeev-Popov

ghosts. We now move on to considerations of the conformal anomaly which culmi-

nates in the conclusion that the number of worldsheet fields is strongly constrained.

1.3.3 The Conformal Anomaly

One of the most astonishing features of the quantum theory of strings is that

it specifies the number of spacetime dimensions in which it exists. That is, it sets

strong constraints on the number of bosonic and fermionic worldsheet fields the

theory can consistently handle through conformal anomaly cancellation. As we

associate the number of bosonic fields with the number of spacetime dimensions,

we are left with the conclusion that bosonic strings require 26 and superstrings

require 10 spacetime dimensions.

To see this, consider the free bosonic string

SB = − 1

2π

∫
dσ
√
−hhαβ∂αXµ∂βXµ. (1.3.29)

In this case the only ghosts that enter the action via gauge-fixing are the reparam-

eterization ghosts, b and c. The gauge-fixed action is then

SB + Sbc = − 1

2π

∫
dσ
√
−hhαβ

(
∂αX

µ∂βXµ + bαγ∇β cγ
)

(1.3.30)

with h the fixed metric. Through the processes outlined in the previous sections

we know that the bosonic fields Xµ each contribute +1 to each of the left- and

36

right-moving central charges, and the b and c ghosts contribute −26 to each. In

this way, we see that the central charge only vanishes if

c̆ = c̃ = D − 26 = 0 ⇒ D = 26 (1.3.31)

We can perform the same process with the gauge-fixed supersymmetric action,

(1.3.24). Recall that each spinorial component of a Majorana fermion contributes

1
2 to the conformal anomaly, and there are D such Majorana fermions as a result

of N = 1 worldsheet supersymmetry. Now, the β and γ supersymmetry ghosts

contribute +11 to the central charge, so we are left with

c̆ = c̃ = D +
D

2
+ 11− 26 = 0 ⇒ D = 10. (1.3.32)

Interpreting each of bosonic fields traditionally as a unique direction in space-

time, we see that bosonic strings require D = 26 and supersymmetric strings require

D = 10 in order to be free of the conformal anomaly! A string theory in which the

conformal anomaly is canceled entirely by the presence of worldsheet fields is re-

ferred to as critical. Most research has been devoted to these critical string theories

as they appear to be the most natural. This type of result is what has driven in-

terest in string theory for years and proves to be one of the most fantastic results

in modern theoretical physics.

Another option, one that has proven to be phenomenologically fruitful, is the

possibility that the left- and right-moving conformal anomaly may be canceled by

differing numbers of ghost fields. This possibility is detailed in Chapter 2.

1.4 Modular Invariance and the Worldsheet

We would be remiss to move on to the physical state selection process, Sec-

tion 1.5, without pointing out a subtlety in the analysis of Section 1.3. In particular

we have only locally gauge fixed; the properties of the topology of the worldsheet

have yet to be addressed.

37

Since we are only dealing with closed strings, the euclidean worldsheet cannot

have a boundary; since we are dealing with orientable strings, the worldsheet cannot

have any “twists”. This leaves only the number of “handles” the surface has to

distinguish between topologies. In this way we see that our worldsheets must be

homeomorphic to a sphere or the connected sum of n tori. The worldsheet is a

sphere, or a torus, or a double torus, etc. The number of handles the surface has,

n, is referred to as the genus.

Due to the Atiyah-Singer index theorem, we know that the metric of the genus 0

worldsheet, i.e. the sphere, can be gauge fixed globally. In a sense, even beyond just

the topological structure, we can consider all genus 0 worldsheets to be equivalent!

This is not generally the case for genus n > 0. It is, in fact, the Weyl parameter ω,

ds2 = e−2ωdx · dx, (1.4.1)

that presents the obstruction. Fortunately, if our worldsheet admits a flat metric

we can always globally gauge choose ω. The choice of ω is referred to as the complex

structure of the manifold in question. Two Riemannian manifolds (of the same

genus, etc. . .) with the same complex structure are conformally equivalent. It is clear

that the conformally equivalent manifolds are grouped into conformal equivalence

classes. In calculating our partition functions we must integrate over all of the

conformally inequivalent manifolds, i.e. over the conformal equivalence classes.

How do we perform such an integration? Since the space of equivalence classes is

parameterized by a moduli space, we can “change parameters” and integrate over

the moduli space instead. It is then important to know all of the inequivalent moduli

of a particular genus manifold.

Let us look at the (genus 1) torus, T 2. Choosing two distinct complex numbers

λ1 and λ2 we can identify points in the complex plane by

x ∼ x+mλ1 + nλ2, m, n ∈ Z. (1.4.2)

38

This specifies the torus

T 2 = C/(∼) = C/〈λ1, λ2〉Z (1.4.3)

where

〈λ1, λ2〉Z ≡ {mλ1 + nλ2 | m,n ∈ Z}. (1.4.4)

Defining the modular parameter

τ =
λ1

λ2
(1.4.5)

we can always ensure that Im(τ) > 0, though that may require us to swap λ1 and

λ2. The complex structure of the torus is specified by τ . Two tori with the same τ

(modulo some isometry of the complex plane) are conformally equivalent, so in our

partition functions we must integrate over all inequivalent values of τ . We now set

out to find the region of the upper half-plane, H, of inequivalent complex structures,

dubbed the fundamental domain F .

A lattice, as described in (1.4.4), is invariant under the action of the group

SL(2,Z). To see this, note that a general element of SL(2,Z) is of the form

A =

(
a b
c d

)
(1.4.6)

with a, b, c, d ∈ Z and det(A) = 1, and define(
λ′1
λ′2

)
=

(
a b
c d

)(
λ1

λ2

)
. (1.4.7)

The lattice 〈λ′1, λ′2〉Z is isomorphic to 〈λ1, λ2〉Z since any given point (m,n) ∈

〈λ1, λ2〉Z defines a point (m′, n′) ∈ 〈λ′1, λ′2〉Z by

(m,n) 7→ (md− nc, na−mb) (1.4.8)

and vice versa. Thus two tori are equivalent if there exists an SL(2,Z) transforma-

tion that relates their complex structures:

τ → τ ′ =
aτ + b

cτ + d
. (1.4.9)

39

One final thing to note is that, under this action of SL(2,Z), A and −A are equiv-

alent transformations, i.e. they map τ to the same τ ′. Removing this redundancy

gives us the modular group, PSL(2,Z) = SL(2,Z)/Z2.

Identifying elements that are equivalent under PSL(2,Z) gives us our moduli

space for the 2-tori

MT2 = H/PSL(2,Z). (1.4.10)

While any choice of fundamental domain, the set of representatives from elements

of MT2 , will work, the standard choice is

|Re(τ)| ≤ 1

2
, Im(τ) > 0, |τ | ≥ 1.

This region is depicted below below.

1−1 1
2− 1

2

i

Re(z)

Im(z)

F

Figure 1.4.1: The Fundamental Domain – The shaded region represents the standard
choice for the fundamental domain of the modular group.

When computing the one-loop partition functions in our theory we must en-

sure that they are invariant under the modular transformations PSL(2,Z). To

understand why, consider a generic one-loop amplitude∫
F

d2τ

Im(τ)2

∫
T2
d2z2 . . . d

2zn µ(τ, z)〈V1(0), V2(z2), . . . , Vn(zn)〉

40

where 〈. . .〉 represents the path integration over the field variables of the theory.

If our integrand were not PSL(2,Z) invariant it would result in a miscounting of

distinct tori. We refer to this PSL(2,Z) invariance as modular invariance and it

has profound and far-reaching effects on our model building in subsequent chapters.

Though to show this is far beyond the scope of this work, we only need to ensure

modular invariance up to two-loop order in the context of free fermionic heterotic

strings. This is because, provided one-loop and two-loop modular invariance, one

can prove the modular invariance is held to all orders in perturbation theory.

This concludes our current treatment of modular invariance, however it is im-

portant to note that the above discussion is wholly inadequate as we have made no

mention of any fermionic moduli nor have we even acknowledged the existence of

choices of spin structure. These will be addressed in Chapter 2 where we can deal

with them more fully. We now move on to selecting out the physical states from

our excessively large state space.

1.5 BRST Quantization

At this point there are two problems2 with the state space of the theory, both

relating to the fact that is much too large. First, we have not ensured that the states

are in fact conformally invariant. A state that is not conformally invariant is thus

unphysical and should be discarded. Within the canonical quantization formalism

this is done by requiring that the states be annihilated by the Virasoro operators. In

principle we could do that here, but this would do nothing for our second problem:

our states may have unphysical spin-statistics. When we expanded our Fock space

of states by including the ghost field excitations, we introduced the possibility that

a state could have the unphysical spin-statistics associated with the ghost fields. It

2 Well, there are really three problems with the state space, but we will deal
with the issue of the GSO projection in the next section.

41

turns out that there is an elegant mechanism for dealing with both of these problems

simultaneously: the Bacchic-Route-Store-Teuton (BRST) quantization.

To carry out this procedure we must begin by introducing an operator that

counts the number of ghost excitations of a state. This is analogous to the standard

number operator of quantum harmonic oscillator fame:

Ŭ =
1

2πi

∮
dz
(

: c̆ b̆ : + : γ̆ β̆ :
)

(1.5.1a)

Ũ =
1

2πi

∮
dz̄
(

: c̃ b̃ : + : γ̃ β̃ :
)

(1.5.1b)

which count the net ghost contributions to left- and right-movers, respectively.

Recalling from Section 1.3, c and γ each have ghost number +1 while b and β have

ghost number −1, i.e. c and γ are ghosts and b and β are anti-ghosts. In this way

our space of states can be separated into disjoint components, C(k,l), in which each

state in C(k,l) has left-moving ghost number k and right-moving ghost number l:

Ŭϕ = kϕ and Ũϕ = lϕ, ⇔ ϕ ∈ C(k,l). (1.5.2)

Using this mechanism for counting our ghost excitations, we can easily pick out

which states have no net ghost contribution!

So, how do we go about handling the conformal invariance? Well, recall that

the stress-energy tensor generates the conformal symmetries (Section 1.2). Could

we construct an operator from T that allows us to pick out the states that are

conformally invariant, but also interacts well with the cochain structure just defined?

As it happens, we can: the BRST charge operator.

1.5.1 BRST Charge Operator and Cohomology Classes

In this subsection we outline the basic BRST charge construction and explain

how it relates to choosing admissibly physical states. To do this we will work with

a generic lie algebra G with generators Ti so that

[Ti, Tj] = fij
kTk. (1.5.3)

42

We then introduce ghost field c and anti-ghost field b which canonically anti-

commute. An important property of these fields is that the anti-ghost must trans-

form under the adjoint representation of G while the ghost transforms under the

dual adjoint representation.

Using the ghost fields, c and b, and the symmetry generators, Ti, we can con-

struct an operator

Q = ci
(
Ti −

1

2
fij

kcjbk

)
(1.5.4)

which is dubbed the BRST charge operator. Notice first that it has ghost charge +1.

Thus, the application of Q to a state in Ck will produce a state in Ck+1. Further

still, with a good bit of work, we can show that

Q2 = 0. (1.5.5)

In this way Q forms a cohomology operator. The interesting question is what do

the cohomology classes under Q represent? The answer: physical states!

Suppose that ϕ is a state of Ck. We say that the state is BRST-invariant if

Qϕ = 0 (1.5.6)

Unapologetically stealing terminology from the de Rahm cohomology of differential

forms on a manifold, we could draw a parallel and say that ϕ is “closed”. Going

further we could consider states of the form ϕ = Qφ which might be termed “ex-

act”. Because Q is nilpotent, i.e. (1.5.5), all exact forms are trivially closed. The

interesting states are the states that are closed but not exact. We can then form

the cohomology classes using the equivalence relation on states

ϕ ∼ χ ⇔ ϕ− χ = Qφ (1.5.7)

with ϕ, χ ∈ Ck and some φ ∈ Ck−1. These equivalence classes of Ck under Q form

the k-th cohomology class of G.

43

What happens when we act on a state of zero ghost charge with the BRST

operator? Since the b modes will annihilate the state, the structure constant term

does not contribute to the result:

Qϕ = ci
(
Ti −

1

2
fij

kcjbk

)
ϕ = ciTiϕ. (1.5.8)

Thus the ghost-zero states that are BRST invariant are precisely those states that

are ghost-zero and G-invariant. That is, a state is admissible if and only if it is

BRST invariant and has ghost number zero.3 In this way we see that the physical

states are the k = 0 cohomology classes!

We can generalize this a bit to the closed string by introducing two BRST

operators, Q̆ and Q̃ which act independently on the left- and right-moving modes

of the string. Since each above condition must be applied to the left- and right-

movers separately, this construction amounts to a tensor product of two independent

systems. We will make this explicit throughout for completeness.

We can now carry out this prescription on the super-Virasoro algebra, though

there are subtleties as the above discussion is purely classical. When we quantize,

and thus impose normal ordering, Q may no longer be nilpotent and U will pick

up a normal ordering constant. The first point is not a problem as long as we

are working in the critical dimension with the proper normal ordering constants on

our Virasoro generators. The latter point simply means that we will no longer be

interested in the k = 0 cohomology classes, but rather the k = −1
2 .

We now introduce our left- and right-moving BRST charge operators in terms

of the stress-energy tensor. Recall that the super-Virasoro generators are just the

Laurent modes of the stress tensor, so we are not doing anything particularly inter-

esting in making this change. Also, we will adopt a “current” representation of Q as

it is pleasing to the eye and has a better physical interpretation (we are interested

3 This final point relies on the fact that there are no ghost number −1 states.

44

in symmetries, after all):

Q̆ =
1

2πi

∮ (
cT̆B + γT̆F + b̆c̆∂z̄ c̆−

1

2
c̆γ̆∂z̄β̆ −

3

2
c̆β̆∂z̄γ̆ − b̆γ̆2

)
, (1.5.8a)

Q̃ =
1

2πi

∮ (
cT̃B + γT̃F + b̃c̃∂z̄ c̃−

1

2
c̃γ̃∂z̄β̃ −

3

2
c̃β̃∂z̄γ̃ − b̃γ̃2

)
(1.5.8b)

with T̆B, T̆F , T̃B and T̃F as in Section 1.1. The less-than-obvious coefficients and

mixed ghost terms arise within this current representation due the to form of the

ghost stress-energy tensors (1.3.17) and (1.3.27).

You can check, after an exhausting computation, that each Q̆ and Q̃ is nilpotent

by using the identity Q2 = 1
2{Q,Q} and the super-Virasoro algebra. For brevity,

we leave that to the adventurous reader. Note that it is through the super-Virasoro

algebra that the potential anomaly arises. It is straightforward to see that if there is

no such anomaly in the super-Virasoro algebra, then there will be no anomaly here

and hence: Q2 is nilpotent in critical string theories (with proper normal ordering

constants).

Unfortunately the ghost number operators (1.5.1) introduce non-trivialities. Let

us focus now only on the left-moving ghost number operator as the analysis is

entirely symmetric. Consider the operator mode expansion form

Ŭ =
1

2
(c̆0b̆0 − b̆0c̆0) +

1

2
(γ̆0β̆0 − β̆0γ̆0)

+
∞∑
n=1

(c̆−nb̆n − b̆−nc̆n + γ̆−nβ̆n − β̆−nγ̆n).
(1.5.9)

The difficulty arises from the zero-modes. The reparameterization ghosts commute

with the Hamiltonian. As a result, the ground state must be doubly degenerate.

Let us denote the degenerate states as |↑〉 and |↓〉 and take

c0|↓〉 = |↑〉, b0|↓〉 = |↓〉, and c0|↑〉 = b0|↓〉 = 0. (1.5.10)

Now, since c0 “raises” the state and adds +1 to the ghost number we know that

U |↑〉 = U |↓〉+ 1. (1.5.11)

45

This of course is not enough to specify the ghost number of both states; in the end,

we have some freedom to choose a nice convention in the form of a normal ordering

constant. Choosing ghost numbers that are symmetric about 0 makes for cleaner

results down the line. So, we take

U |↑〉 = +
1

2
and U |↓〉 = −1

2
. (1.5.12)

We should then be able to force the ghost wave function of a given physical state

into one of the two ground states |↓〉 or |↑〉 by applying the similarity relation (1.5.7)

which defined the cohomology classes, i.e. some state in the cohomology class will

have a ghost wave function in one of these ground states. This then means that our

physical states must carry a ghost charge of either ±1
2 . To see which, we simply

need to apply Q to two states, one with each possible ghost charge. When we

do that we see that in the case of +1
2 , the constraint that the zero-mode of the

stress-energy tensor vanish for physical states is not required; however, it is for −1
2 .

Thus we see that the physical states of our theory should have reparameteri-

zation ghost number of −1
2 . What about the supersymmetry ghosts? The answer

is that in the NS sector, the ground state is doubly degenerate just as in the pre-

ceding discussion. However, the complication comes from the Ramond sector: it

contributes an infinite degeneracy. This is not really a problem, it just introduces

much more freedom into the construction of states. The supersymmetric ghost zero-

mode Fock space introduces infinitely many different pictures of the same physical

state. We can move around in this Fock space using picture changing operators

which are a bit beyond the topic here. This process of picture changing is im-

portant in the construction of superpotential terms and as such is necessary for

considering the detailed phenomenology of the theory.

46

1.6 The GSO Projection

In this final section we address the issue of a tachyonic ground state in the NS

sector of our strings. To see that this is in fact the case requires simply that we

“measure” the mass of our NS ground state using the mass operator defined in

(1.1.24).

The ground state in the NS sector satisfies

αim|0; k〉 = bir|0; k〉 = 0, m, r > 0 (1.6.1)

and

αµ0 |0; k〉 = kµ|0; k〉 (1.6.2)

Applying our NS mass operator we see that the mass-squared of our ground state

is

M2|0; k〉 =

2
∞∑

n=−1

α−n · αn + 2
∞∑

n=1/2

rb−r · br − 1

 |0; k〉

= −|0; k〉,

(1.6.3)

i.e. it is tachyonic! Ironically, this is exactly one of the pathologies of the bosonic

string that made it inviable. However, upon adding worldsheet fermions we have

introduced a mechanism that will allow us to discard “half” of our states, one of

which will be the tachyon. This has the further advantage of allowing us to form

a gauge lattice. Without this mechanism the state space would be too large and

there would not, in general, be a Weyl symmetry between the roots of our gauge

groups [6]; that is, there would be no gauge group!.

This mechanism, first introduced by Gliozzi, Scherk and Olive [7, 8], is called

the GSO projection. It amounts to the specification of an operator to truncate the

spectrum. This operator, called the G-parity operator, is defined differently in each

of the two sectors. In the NS sector we have

G = (−1)F+1, F =
∞∑

r=1/2

bi−rb
i
r (1.6.4)

47

while in the R sector

G = Γ11(−1)F+1, F =
∞∑
n=1

di−nd
i
n (1.6.5)

where Γi, i = 1, . . . , 10 are the typical ten-dimensional Dirac matrices with the

definition Γ11 ≡ Γ1Γ2 . . .Γ10.

We can now use our G-parity operator to project out our states. Since the

tachyon in the NS sector has negative G-parity, we will always project the negative

G-parity states out of the NS sector. However, we have no particular reason to

choose positive or negative G-parity for the R sector. In the closed string theory

we have distinct left- and right-movers, so we could choose one of two possibilities

for the R-R sectors of the closed string: same parity or opposite parity for the left-

and right-movers. The choice is more than arbitrary as in the former case we are

left with the Type IIB theory while the second leads to Type IIA. Neither of these

theories are in our scope, but they are interesting in their own right. In particular

they admit a more non-perturbative approach with the introduction of D-branes.

The GSO projection plays a leading role in the model building to come and has

a resounding impact, as does the modular invariance of Section 1.4, on the spectrum

of the model.

1.7 Summary

By now we have discussed many of the grand points of superstring theory from

the generic action, conformal gauge, and classical equations of motions (Section 1.1),

through conformal invariance (Section 1.2), gauge fixing (Section 1.3) and modular

invariance (Section 1.4), and finally to BRST quantization (Section 1.5) and the

GSO projection (Section 1.6). As has been pointed out several times, this is far

from a complete treatment and should be taken with a grain of salt; many of the

proofs and conclusions drawn here are hand-wavy at best simply for the sake of

brevity.

48

CHAPTER TWO

Heterotic Strings and The Free Fermionic Construction

The heterotic string, first introduced in [9] and developed in [10, 11], has proven

to be a fertile arena for the construction of realistic and semi-realistic low-energy

field theories, particularly via the free fermionic (FF) construction scheme [12, 13,

14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]. My hope for this chapter is to loosely

outline the theory of heterotic strings, and the construction of models within the

FF formalism.

This chapter is deliberately different from most of the resources I have had the

pleasure of finding. Specifically, I do not delve too deeply into the ten-dimensional

heterotic string, nor do I treat the four-dimensional construction as the compact-

ification of the ten-dimensional case. The reason for this is that the term “com-

pactification” has a naturally geometric connotation while the generic models we

will be considering may or may not. That is, within the FF formalism the six ex-

tra dimensions may be viewed as compactified in the topological/geometric sense,

but often this interpretation is not well justified, e.g in the case of left-right paired

complex fermions. In this case, the “extra” worldsheet fields are seen simply as

internal degrees of freedom. The geometric viewpoint is preferred in many contexts

within string model building, e.g. in orbifold, Calabi-Yau and flux compactification

models, and typically in the FF regime as well. In fact, many or most models con-

structed via free fermions can also be realized in the setting of asymmetric orbifolds

[48, 49]. It is the author’s earnest belief that models that accommodate a geometric

interpretation are more natural.

49

In this chapter, we begin by working out the form of the FF heterotic action

(Section 2.1), and outline the procedure of heterotic model building (Section 2.4).

We work out the modular invariance constraints on the worldsheet fermion bound-

ary conditions (Subsection 2.2.1), and on the GSO projection coefficients (Subsec-

tion 2.2.2). Finally, we touch upon the introduction of spacetime supersymmetry

(SUSY) into our models in Section 2.5.

2.1 The Free Fermionic Heterotic Action

As we recall from Chapter 1, conformal invariance requires that the central

charge of the worldsheet fields vanish. In the case of closed strings, the left- and

right-moving fields are independent, and, what’s more, so are the left- and right-

moving central charges. This alludes to the possibility of introducing left- and

right-movers of different types, e.g. supersymmetric left-movers and bosonic right-

movers. This is referred to as heterosis. However, the differing number of left- and

right-moving bosonic fields introduces an interesting question in that the number of

such fields is usually associated with the number of spacetime dimensions. Recalling

the conformal anomalies for all of the worldsheet fields1, we note that there must be

10 bosonic left-moving fields and 26 bosonic right-moving fields. We can consider the

extra 16 right-moving fields as internal degrees of freedom, and they are ultimately

responsible for providing the gauge content of our theory. We can distinguish these

internal degrees of freedom as just that, internal, by fermionizing them using the

Mandelstam operators

λ =: e−iaX : and λ̄ =: eiaX̄ : . (2.1.1)

Then λ is a Majorana-Weyl worldsheet fermion. In this way our action (1.1.9) can

be reexpressed as

1 Such fields are the bosonic, fermionic, reparameterization ghost and super-
symmetry ghost fields.

50

S =
1

4π

∫
dzdz̄

(
4∂zX

µ∂z̄Xµ + ψ̆µ∂z̄ψ̆µ + λ̃I∂zλ̃I

)
(2.1.2)

where µ = 0, . . . , 9 and I = 1, . . . , 32. As we have replaced each of the 16 right-

moving bosons with two right-moving fermions the central charges still cancel en-

tirely.

We can now make another generalization; namely, we could perform this same

process on both our left- and right-movers. This decreases the number of large

spacetime dimensions down to something more physically realistic, e.g. D = 4, and

as long as we exchange a boson for two fermions, the left- and right-moving central

charges will still vanish. In particular, if D is the number of spacetime dimensions,

and d̆ and d̃ are the number of left- and right-moving internal fermionic degrees of

freedom, respectively, we have the central charges

c̆ = D +
D

2
+
d̆

2
+ 11− 26 = 0,

c̃ = D +
d̃

2
− 26 = 0.

(2.1.3)

Solving for d̆ and d̃, we have
d̆ = 3(10−D),

d̃ = 2(26−D).
(2.1.4)

From this we see that we have D + d̆ + d̃ worldsheet fermions and 2D worldsheet

bosons, for a total of 3D + d̆+ d̃ worldsheet fields. Moving to spacetime light-cone

gauge, which mixes the X0 and XD−1 coordinates so that X± = X0 ± XD−1,

allows us to eliminate two bosonic fields (X±) and two fermionic fields (ψ̆±) so that

the final count is D − 2 + d̆+ d̃ worldsheet fermions. In particular, with D = 4 we

must consider 64 worldsheet fermions and 4 worldsheet bosons. The bosonic fields

will give rise to the graviton and gravitino modes, but nothing else. Consequently,

we neglect them and only worry about counting the gravitino states as is necessary;

see Section 2.5

Generically, if we have D spacetime dimensions then we require d̆ internal left-

movers and d̃ internal right-movers, as determined by (2.1.4), so that the action

51

becomes

S =
1

4π

∫
dzdz̄

(
4∂zX

µ∂z̄Xµ + ψ̆µ∂z̄ψ̆µ + λ̆I∂z̄λ̆I + λ̃J∂zλ̃J

)
. (2.1.5)

with µ = 0, . . . , D − 1, I = 0, . . . , d̆− 1 and J = 0, . . . , d̃− 1. This is the heterotic

string action in the complex conformal gauge with fermionic internal degrees of

freedom.

2.2 Modular Invariance of the Partition Function

We could continue our discussion now by solving for equations of motion, etc,

but a much more useful approach is to go directly to the partition function. It

can be proven, though for the sake of brevity we will not do so, that the one-loop

partition function is sufficient to describe all of the physical states of our theory.

What’s more, one- and two-loop modular invariance is sufficient to ensure modular

invariance to all orders [50, 51, 52]. For this reason it is actually easier to handle

the partition function than to worry too much about the action, (2.1.5).

Recall from Section 1.4 that the one-loop partition function is an integration over

all of the inequivalent tori that our closed string worldsheet could trace out. We then

have not just one direction, σ1, for which boundary conditions must be specified, but

rather two. The σ0 direction is also compact, so we must also consider boundary

conditions in this “time” direction as well. To be explicit, the j-th worldsheet

fermion, ψj , will pick up a phase, V ji , so that

ψj → −e−iπV
j
i ψj (2.2.1)

for the i-th boundary condition around σ0 or σ1.2 We only need to consider what

happens to our D− 2 + d̆+ d̃ free fermions since our spacetime bosonic fields must

2 In general, we can admit boundary conditions that allow the j-th fermion to
transform into the k-th fermion, but this is beyond the scope of this work. In the
cases we consider, we assume a similarity transformation has rotated the boundary
conditions into the eigenphases of a set of complex and/or real eigenstate fermions.

52

have periodic boundary conditions. In this way we can express the phases as a

(D − 2 + d̆ + d̃)-vector with components V j representing the phase of the j-th

fermion. These phase vectors are referred to as the sectors of the theory, and form

a group under addition (modulo 2). This group is typically denoted as Ξ, and as a

finite Abelian group can be decomposed into a direct sum of finite cyclic groups

Ξ = ZN1 ⊕ . . .⊕ ZNL. (2.2.2)

We can thus choose a linearly independent basis, {α1, . . . , αL}, for Ξ, i.e.

Vi =
L∑
j=1

mij αj = 0, 0 ≤ mij ≤ Nj (2.2.3)

if and only if mij = 0 for all 1 ≤ j ≤ L. These basis vectors αi are sufficient for

reconstructing our sectors, so to specify a model we need only describe the basis.

One important observation is that, as our worldsheet fermions arise from either

the fermionization of our bosonic “compact” directions or the left-moving worldsheet

SUSY, we require that all of the fermions be “pairable.”3 This means that every

phase occurs at least twice, and we can pair two real fermions with the same phase

into a complex fermion. This pairing process is restricted to left-left and right-

right pairings whenever possible; however, some models actually require left-right

pairings. When this occurs it results in a “rank-cut”, the removal of a U1 charge

from the gauge lattice, thus reducing the rank of the resulting gauge group by one.

Returning to the one-loop partition function, we must consider all combinations

of phases on our fermions; thus, the one-loop partition function can be expressed as

Z1 =
∑
V,W

C

[
V

W

]
Z

[
V

W

]
(2.2.4)

3 This is not, in fact, a requirement. Relaxing it gives rise to chiral Ising models,
but these present additional hurdles that we do not address herein.

53

with V and W the “space” and “time” boundary conditions. We could, in general,

consider the n-loop partition function

Zn =
∑
spin

structures

C

[
V1 . . . Vn
W1 . . . Wn

]
Z

[
V1 . . . Vn
W1 . . . Wn

]
(2.2.5)

where a spin structure is a choice of 2n phase vectors[
V1 . . . Vn
W1 . . . Wn

]
. (2.2.6)

Requiring modular invariance on scattering amplitudes is equivalent to requiring

modular invariance on the partition function. Thus, there must be constraints on the

sets of admissible spin structures, read sectors, so as to ensure that Z
[
V1 ... Vn
W1 ... Wn

]
is modular invariant. Note that modular invariance of Z

[
V1 ... Vn
W1 ... Wn

]
, is not enough

to ensure modular invariance of the Zn; there are also constraints on the coeffi-

cients C
[
V1 ... Vn
W1 ... Wn

]
. These constraints were originally worked out by two groups

in parallel, [50] and [52], and are presented below as they play a crucial role in the

construction of models to come.

2.2.1 Modular Invariance of Basis Vectors

It turns out that modular invariance of the spin structures can be reduced to

modular invariance on the basis. This is not particularly surprising, so we will not

prove it here. In fact, for brevity all of the following results on modular invariance

will be presented, but not proven. We refer the reader to either of the original works

for a more complete and enlightening treatment.

To begin, let A = {αi | 1 ≤ i ≤ L} be the basis for our model. As each element

of the basis vector αi must represent the phase of a fermion under parallel transport,

we expect that it must be either 0 or 1. However, since we require that all of the

fermions of our theory be combined into complex pairs, we can admit arbitrary

rational phases. We can, without loss of generality, restrict the elements of αi to

the range (−1, 1]. What’s more, since all of the values are rational, we can find a

54

common denominator Ni for each αi such that

Niα
j
i ∈ 2Z (2.2.7)

with αji the j-th element of αi and 1 ≤ i ≤ L. We refer to this common denominator

as the order of the basis vector.

As it was proven in [50, 52], modular invariance of the theory requires that the

following be met

Ni αi · αi = 0 (mod 8) (Ni even) (2.2.8a)

and

Nij αi · αj = 0 (mod 4) (2.2.8b)

with Nij ≡ LCM(Ni, Nj). Here “·” represents the Lorentzian dot product, defined

as α · β = αR · βR − αL · βL, with traditional dot products on the right hand side.

The above constraints ensure one-loop modular invariance. Additionally, we require

that each model include the all-periodic sector, 1, i.e.

1 ≡ (

D−2︷ ︸︸ ︷
1 . . . 1

d̆︷ ︸︸ ︷
1 . . . 1 ||

d̃︷ ︸︸ ︷
1 . . . 1) = (1(D−2+d̆) || 1d̃) ∈ A.

This is necessary to ensure that we have a well-defined spin structure. Finally,

as a necessary condition for modular invariance to arbitrary order in perturbation

theory, we require that for any three basis vectors, the number of simultaneous, real

periodic modes is even. In general this requirement is still too weak; in the case of

chiral Ising models, models with unpaired real fermions, any set of four basis vectors

must have an even number of simultaneous, real periodic modes. However, because

our fermions are all complex, if any three have an even number of simultaneous,

real periodic modes, then any four will as well.

Together these four requirements ensure that the individual terms in the par-

tition function, Z
[
V1 ... Vn
W1 ... Wn

]
, are modular invariant. This, of course, does not

ensure modular invariance of the complete partition function. For that, we must

55

ensure that the coefficients C
[
V1 ... Vn
W1 ... Wn

]
are modular invariant as well. This is the

topic of the next subsection.

2.2.2 Modular Invariance of Partition Coefficients

One of the most important requirements for all-order modular invariance is

that the n-th order coefficient C
[
V1 ... Vn
W1 ... Wn

]
can be decomposable into a product

of first-order coefficients:

C

[
V1 . . . Vn
W1 . . . Wn

]
= C

[
V1

W1

]
C

[
V2

W2

]
. . . C

[
Vn
Wn

]
. (2.2.9)

We need only enforce modular invariance on the one-loop coefficients because of

this.

Following the convention set in [52], we reexpress our partition coefficients as

C

[
Vi
Vj

]
= (−1)(V

1
i +V 1

j) exp
(
iπ mjk mil (kkl − αk · αl)

)
where mij are the coefficients in the basis expansion of the sector Vi. Provided the

newly introduced coefficients, kij , satisfy the constraints

Nj kij ∈ 2Z (2.2.10a)

with Nj the order of the j-th basis vector, and

kii + ki1 =
1

4
αi · αi + α1

i (mod 2), (2.2.10b)

kij + kji =
1

2
αi · αj (mod 2), (2.2.10c)

our one-loop coefficients C
[
Vi
Vj

]
will be modular invariant. We refer to the coef-

ficients, kij , as the GSO projection coefficients of the model as they arise in the

application of the GSO projection as discussed in Section 1.6, and detailed in Sec-

tion 2.4. These constraints on kij , together with those discussed in Subsection 2.2.1,

ensure that our partition functions, and hence our models, are modular invariant

to all order in perturbation theory.

56

2.3 Worldsheet Supersymmetry

Before we continue on to construct full models, we must recall that our left-

moving modes have worldsheet SUSY. This requirement reduced the critical di-

mension of the theory down to at most ten, so we must ensure that we haven’t lost

this manifest symmetry after choosing a set of basis vectors. The supercharge for

the worldsheet SUSY is given by

J = ψµ∂zX
µ + fIJKx

IxJxK (2.3.1)

where fIJK are the structure constants of some semi-simple Lie group and xI are

real, internal, left-moving fermion modes [53]. The dimension of this Lie group must

then be d̆.

The traditional choice for this group, and the one assumed herein, is (SU2)d̆/3.4

The major consequence of this is that the phases of our left-moving fermions must

be either periodic or anti-periodic, i.e. the order of our left-movers is 2 and thus

our basis vectors have even order.

2.4 Free Fermionic Model Building

We now turn our attentions to the construction of FF models. The process

begins with the selection of a modular invariant, linearly independent basis vector

set

A = {αi | 1 ≤ i ≤ L}. (2.4.1)

We refer to |A| = L as the layer of the model. Upon selection of a set A, we can

proceed to choose some modular invariant GSO projection coefficients, kij . These

coefficients form a square matrix

k =

 k11 . . . k1L
...

. . .
...

kL1 . . . kLL

 (2.4.2)

4 All other choices have been shown to prohibit N = 1 spacetime supersymme-
try [53, 54]. Since N = 1 is the most “natural” form of SUSY we’d like to admit
it.

57

of which the lower triangle is free to be specified. Upon choosing this lower triangle,

modular invariance will uniquely determine the upper-triangle and diagonal, with

the exception of k11. Fortunately, this element in no way affects the final model,

and is thus arbitrary within the requirement (2.2.10a). Together, the choice {A,k}

specifies the model, up to vacuum expectation values.

Given our selection of A, we can construct the sectors of the model,

Ξ =
{
Vi =

∑
j

mijαj | 0 ≤ mij < Nj

}
. (2.4.3)

Provided that our choice of A is modular invariant, the elements of Ξ will be as

well. Each element, Vi ∈ Ξ, generates a Hilbert space HVi . Abusing notation, the

phases of a state Q ∈ HV , are expressed as

Q =
1

2
Vi + F (2.4.4)

where F ∈ {−1, 0, 1}D−2+d̆+d̃. Applying every possible F to 1
2Vi constructs HVi.

Upon doing so for each sector, we build the full Hilbert spaces H as

H =
⊕
V ∈Ξ

HV . (2.4.5)

This Hilbert space is, of course, much too large. As it stands, most of the states

are massive. Since we are only interested in the low-energy effective field theory

(LEEFT), we select only the massless states, i.e. the states that satisfy

M2
L =

(QL)2

2
− 1

2
= 0 =⇒ (QL)2 = 1 (2.4.6a)

M2
R =

(QR)2

2
− 1 = 0 =⇒ (QR)2 = 2 (2.4.6b)

where QL, and QR are the left- and right-moving phases of the state Q, and

a2 = a · a. Referring to this reduced Hilbert space as, Hmassless, we still have the

problem described in Section 1.6. In fact, until we apply the GSO projection the

gauge states have no Weyl symmetry [6], and hence do not form a gauge lattice.

The matter states will not have a gauge symmetry, and so the model is ill-defined.

58

We now apply our GSO projection to bring our Hilbert space down to the mass-

less, physical states only. In the FF construction the GSO projection is represented

as follows

αi ·Qj = α1
i +

L∑
k=1

kikmjk (mod 2). (2.4.7)

where mjk are the coefficients defining the sector Vk from which Q is constructed,

(2.4.4). If the state Q satisfies the above expression, it survives the projection, and

is thus an element of the physical Hilbert space Hphysical.

Upon applying our GSO projection, we can then begin classifying the states of

Hphysical according to their spacetime spin statistics (i.e. whether they fit into the

matter or gauge sectors), collecting them into supermultiplets, and determine the

number of spacetime supersymmetries, etc. Further consideration of this is left to

the next chapter, in which we can restrict our attention to a very particular type

of model.

2.5 Spacetime Supersymmetry

A main feature of most modern theories of grand unification is the presence

of spacetime SUSY. Consequently, we need to be able to introduce the symmetry

into the spacetime theory. To do this we first require that our basis vector set, A,

include the SUSY sector

S = (1D−2 (1 0 0)d̆/3 || 0d̃) . (2.5.1)

This particular choice is compatible with our choice of worldsheet SUSY, as dis-

cussed in Section 2.3. Explicit inclusion of S is not always required. In particular,

when we can express any of the basis vectors as S + α with α of the form

α = (0D−2+d̆ || αR) (2.5.2)

with NR odd, S is a generated sector, i.e. S = NR(S + α).

The existence of S in Ξ is not sufficient to ensure that the model has space-

time SUSY: the GSO projection can break the symmetry. Particular choices of

59

GSO coefficients will either keep or project out the gravitino states, and hence all

superpartners, from the spectrum. More consideration of this is given in ‘surveys’.

To determine the number of spactime supersymmetries, we simply count the

number of gravitinos in the spectrum. In FF models, gravitinos are of the form

χ = (1
2

D−2 (±1
2 0 0

)d̆/3 || 0d̃) . (2.5.3)

How “strongly” the elements of A overlap with S determines the number of grav-

itinos that can survive. Tailoring the basis vector set can break the number of

supersymmtries down to zero or a power of two bounded above by 2d̆/6. For exam-

ple, in D = 4 we can have N = 0, 1, 2 or 4, while in D = 10 only N = 0 or 1 are

admissible. We will denote the maximum number of spacetime supersymmetries

allowed for a given dimension by Nmax.

At present, little work has been done to understand what happens to the number

of supersymmetries when d̆/6 is non-integral, i.e. when D is odd. It is because of

this that we do not detail the scenario too deeply. However, we do touch upon this

possibility again in the next chapter.

2.6 Summary

We have outlined how to construct a free fermionic heterotic string model up

to vacuum expectation values. In Section 2.1 we heuristically constructed the het-

erotic string action using free worldsheet fermions. Section 2.2 dealt with modular

invariance of the theory in terms of modular invariance of the partition function.

We dealt with the additional constraints imposed by worldsheet supersymmetry in

Section 2.3 and finally outlined the free fermionic construction process, Section 2.4.

We then concluded the chapter with a brief discussion of spacetime supersymmetry.

This concludes our general introductory material. Subsequent chapters will

present the original work done by the author, preceded by a brief introduction to

the topic of gauge models.

60

CHAPTER THREE

Surveys of Gauge Models

Recent work puts the number of possible string derived models on the order

of 10500 [55, 56]. Consequently, any efforts to explore this landscape of string

vacua require the use of high-performance computing and a choice of construction

method. Each construction method has access to different, overlapping regimes

of the landscape; here we will focus on the free fermionic heterotic string (FFHS)

construction formalism [50, 51, 52]. The FFHS formalism has produced some of the

most phenomenologically viable models to date [12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,

43, 44, 45, 46, 47] and is ideal for computer construction. Random examinations

of the landscape, using this formalism, have been performed in the past [57, 58];

however, due to the many-to-one nature of this construction a random survey of the

input parameters has many endemic problems that are non-trivial to address [59].

One way to deal with these problems is to systematically survey the valid input

parameters.

Two software frameworks, currently under development at Baylor University,

are being designed and used specifically for the purpose of performing such system-

atic surveys of the FFHS landscape. One such framework, the Gauge Framework,

focuses on systematically building gauge models in D spacetime dimensions. A de-

tailed explanation of what is meant by a “gauge model” is provided in Section 3.1.

These surveys serve multiple purposes including aiding in attempts at understanding

and reducing the redundancies inherent to the construction method. Furthermore,

we can use the results of these searches to guide slower, more detailed surveys.

61

While originally intended for long-term service, it has grown increasingly ap-

parent that the Gauge Framework has exhaustively surveyed its region of the FFHS

landscape. In its present iteration it can construct just over 1,000 models per second

on a single processing core, and this performance scales linearly with the number

of parallel cores. To date, the Gauge Framework has run on up to 120 processing

cores at a rate of roughly 120,000 models per second. It can construct gauge models

with any number of layers of any order. To the author’s knowledge, this makes it

the fastest software solution of its kind.

This chapter will focus on the surveys and results generated by the Gauge

Framework to date. In Section 3.1 we define and describe the characteristics of

gauge models. Subsection 3.1.2 focuses on the well-known redundancies of the

gauge landscape and addresses methods for removing such redundancies. Section 3.2

presents the results of the first layer 1 survey performed by the Gauge Framework

in D = 4 spacetime dimensions [60]. We then present in Section 3.3 an extended

survey of layer 1 models in D spacetime dimensions [61]. In Section 3.4 we present

the results of several higher layer1 surveys and conjecture that the landscape of

higher layer models is wholly redundant with layer one. Finally, we conclude this

chapter with a brief discussion of a possible generalization of gauge models that

may prove to extend the landscape of interest significantly, Section 3.5.

3.1 Gauge Model Building

The Gauge Framework focuses on the construction of gauge models. Further

discussion requires a more concrete definition of what a “gauge model” is.

Definition (Gauge Model). A model is a gauge model if it can be built from

a set of basis vectors in which every basis vector beyond the all-periodic and

1 By “higher layer” we mean models with more than one additional bosonic
sector. For more information see Section 3.1.

62

SUSY basis vectors is bosonic, that is of the form (~010 || ~α), within the free

fermionic construction [50, 51, 52, 62].

These models are in many ways some of the most simple models that one can

build, and can be thought of as the basis from which more complex models can be

built. This makes them interesting as a starting point for systematic surveys. Using

information gleaned from these surveys, we can guide, improve and devise further

searches of both the gauge and the generic FFHS landscape. An example of this is

provided in Chapter 4.

Recall that within the free fermionic framework two inputs are required, the

set of basis vectors, A, and the GSO projection coefficient matrix, k. In order

to systematically build these models we need to systematically build the input set

{A,k} ensuring that all of the modular invariance constraints are met. This process

is unchanged by restricting ourselves to gauge models. There are, however, a few

useful simplifications that can be made.

First of all, because our additional basis vectors have all anti-periodic2 left-

movers, the left-moving component of our Lorentz dot products must be zero. This

allows us to dispense with that part of the computation; what is the point of ex-

plicitly computing something when you already know the result? This, together

with the factor of two reduction due to moving from a real to a complex basis,3

significantly reduces the number of floating-point operations required to perform

basic vector operations.

Secondly, by having all anti-periodic left-movers, we ensure that the basis vec-

tors have a zero dot product with our gravitinos; recall the form of the gravitino

states (2.5.3). If we then consider the GSO projection operations, (2.4.7), of 1, S

2 Recall that periodic and anti-periodic modes are represented by 1 and 0,
respectively. This can be deduced from (2.2.1)

3 Since all fermions must be pairable we can collect the real fermions into
complex pairs. In this way the phase vectors are shortened by a factor of two.

63

and αi on the gravitino χ,

1 · χ = k12 + 1 (mod 2),

S · χ = k22 + 1 (mod 2),

αi · χ = ki2 (mod 2)

(3.1.1)

we see that, given the form of 1 and S, half of the gravitino states are immediately

projected out. The αi projection will then project out either all of the remaining

gravitinos or none of them depending on the choice of ki2. We thus only admit two

types of spacetime supersymmetry in our models: N = 0 and N = Nmax, with

Nmax defined in Section 2.5.

Finally, because the left-movers have order one,4 the order of the basis vector

as a whole has the same parity as the order of the right-movers, i.e. is even or odd.

This results in no odd-order models with N = 0, [60]. A proof of this is rather brief:

Proof: Consider a basis vector set with an odd-order bosonic sector αi,

i > 2. Since the order of S is NS = 2, ki2 ∈ {0, 1}. The modular invariance

constraint, presented in (2.4.6b), gives us

kij + kji =
1

2
αi · αj (mod 2), (2.4.6b)

ki2 + k2i =
1

2
S · αi (mod 2)

= 0 (mod 2),

so that k2i = ki2 (mod 2). However, together with the constraint

Niα
j
i = 0 (mod 2), (2.4.6a)

the only admissible choice for ki2 is ki2 = 0. Thus, we cannot realize N = 0

in a modular invariant way.

4 Recall that the order of the i-th basis vector is the smallest integer, Ni, such

that Niα
j
i = 0 (mod 2)

64

In these landscape surveys, because the redundancy arises from our represen-

tation of the input space, we should not expect the recurrence of models to be

meaningful. We are only interested in the “unique” models.

3.1.1 Uniqueness

When considering uniqueness of models, both gauge and matter content should

be considered. The nice thing about supersymmetric gauge models is that models

with the same gauge group will always have the same matter spectrum and are thus

identical. However, this is not true for non-SUSY models,5 so to consider uniqueness

in this case we must investigate the matter content of these models. Fortunately,

the exact particle spectrum of these models is not of interest here. We are only

concerned with the gauge content and whether the model is supersymmetric. From

that, we can use additional software to prepend left-movers to our basis vectors

and build models using these gauge models as a starting point. When there is no

left-right pairing, the new models will either keep or break the gauge group of their

base gauge models. So, for our purposes we will define uniqueness as follows:

Definition (Uniqueness). A model is considered unique if no other model

has been previously generated with both the same gauge group and number

of space-time supersymmetries.

As we generate models, any model that has a combination of gauge groups and

number of spacetime supersymmetries that has not yet been created is retained

it. However, any model after that with the same combination of gauge states and

SUSY is discarded.6 This has an impact on the statistics of the non-SUSY models

which will be discussed in more detail in Section 3.2.

5 While not generally true, recent tests of the FF Framework on gauge models
suggest that even the matter of two non-SUSY gauge models are identical. A future
work may expound upon this.

6 This is not strictly true. For some investigations, in particular into redun-
dancies, it is useful to keep track of models that are not unique as well.

65

Before we go on, it is interesting to consider the question of exactly how many

gauge models there could possibly be regardless of modular invariance, etc. We

can easily determine the maximum number of unique models that can be built

by considering that only simply-laced gauge groups can produced and that there

are no rank cuts [6], thus the total rank must be 22 in D = 4. Determining all of

the combinations of simply-laced gauge groups whose rank sums to 22 and doubling

that, for SUSY and non-SUSY, gives us at most 48,952 unique gauge models. These

calculations have been performed for D = 4 through D = 10 and are provided in

Table 3.1.1. Of course, it is unlikely that all of these combinations can exist. In

fact, we find that 5,714 models have the proper form, but it is well known that only

9 models are realized by the D = 10 heterotic landscape [63], even when considering

full matter content. However, because the D = 4 landscape is much more complex,7

we should expect a higher occurrence of unique models than at D = 10.

Table 3.1.1: Maximum Number of Unique Simply-Laced Gauge Models in D
Spacetime Dimensions

D ϑofModels

10 5,714

9 4,140

8 11,988

7 8,576

6 24,508

5 17,341

4 48,952

Note in Table 3.1.1 that there are fewer possible models in D+ 1 than there are

in D spacetime dimensions, with D even. This is a manifestation of the fact that

there are no N = 0 models in odd dimensions, Section 3.1 (p. 64).

7 There are 40 real worldsheet fermions in D = 10 versus 64 in D = 4. This
increased number of fermionic degrees of freedom results in a richer landscape.

66

3.1.2 Redundancies

The free fermionic construction formalism has the inherent problem of redun-

dancy; the mapping from input space to output space is many-to-one. This property

is what condemns random surveys and remains a problem for systematic searches.

Reducing these redundancies will bring systematic surveys within current techno-

logical limits. Both the basis vectors and the GSO projection coefficients present

redundancies that can be accounted for and removed in many cases.

The systematic generation of basis vectors admits redundancy in at least two

ways, permutations and charge conjugacy. Permutations of the elements of a basis

vector leave the mapping invariant as long as the same permutation is applied to

each of the basis vectors in the set, i.e.{
(~010 || 1 1 1 1 0 0 ~018)

(~010 || 1 1 0 0 1 1 ~018)

}
∼=
{

(~010 || 1 1 0 1 0 1 ~018)

(~010 || 1 1 1 0 1 0 ~018)

}
.

Here the third column of the right-movers was switched with the sixth. These two

sets will generate the same output, given that the same GSO projection matrix is

chosen. A scheme for removing these permutation redundancies was developed in

[6]. Additionally, we can always flip the signs of the charges as long as that change

does not remove modular invariance, i.e.
(~010 || 1 1 1 1 0 0 0 0 ~018)

(~010 || 2
3

2
3 −2

3 0 0 0 0 0 ~018)

(~010 || 1
2

1
2

1
2

1
2

1
2

1
2 −1

2 −1
2
~018)

 ∼=

(~010 || 1 1 1 1 0 0 0 0 ~018)

(~010 || 2
3

2
3

2
3 0 0 0 0 0 ~018)

(~010 || 1
2

1
2 −1

2 −1
2

1
2

1
2

1
2

1
2
~018)

 .

This is referred to as charge conjugacy and does not change the gauge group. Mod-

ding out these two redundancies is not sufficient to completely remove the many-

to-one nature of the mapping, and studies are currently under way to find more

sources of basis vector redundancy.

There is also a significant source of redundancy in our selection of GSO projec-

tion matrices, especially in the case of odd-order basis vectors. An account of how

this redundancy presents itself is detailed in [60]. For our purposes it is sufficient to

67

point out that at layer 1 there are only two unique choices of GSO projection matrix

for even-order and only one for odd-order. In the case of even-order the choices of

k are distinguished by whether or not they admit spacetime supersymmetry. As

for the odd-order sets, modular invariance requires that the GSO projection is com-

patible with SUSY (Section 3.1). Because the redundancies are multiplicative, the

overall redundancy grows exponentially with the layer.

Table 3.1.2: Number of L = 1 Models – For each order we list the most models
possible and number of models after the permutation, charge conjugacy and GSO

projection redundancies are accounted for. These are not necessarily distinct
models, in fact the majority are still redundant.

N InitialModels Permutation ChargeConjugacy GSOProjection

2 8.39× 106 20 20 10

3 3.14× 1010 47 7 7

4 3.76× 1013 640 152 76

5 2.38× 1015 873 55 55

6 2.63× 1017 8,292 772 386

7 3.91× 1018 9,352 328 328

8 1.48× 1020 71,724 3,748 1,874

9 9.85× 1020 70,759 1,679 1,679

10 2.00× 1022 463,948 16,172 8,086

11 8.14× 1022 413,948 7,339 7,339

12 1.10× 1024 2,434,404 62,704 31,352

13 3.21× 1024 2,007,773 28,979 28,979

14 3.28× 1025 10,756,336 223,020 111,510

15 7.49× 1025 8,378,335 104,453 104,453

16 6.19× 1026 41,719,604 730,020 365,010

The result of accounting for these redundancies is a significant improvement in

the volume of models that must be built, which is depicted in Table 3.1.2. One

thing to note is that each of these affects even- and odd-orders to differing extents.

However, if we account for all of them the result is that the number of models that

must be built (not the number of unique models) at orders 2N and 2N + 1 are of

the same magnitude.

68

3.2 Layer One Survey

Traditionally, the collection of string derived, low energy effective field theories

(LEEFTs) is referred to as the landscape. However, because we are interested less

in the field theories and more in the mapping from the FFHS input space to this

landscape, we can consider only those LEEFTs that are mapped to by a particular

input sub-space; namely the layer 1, order 2 through 22 gauge input space. We

will refer to this set of inputs as the “layer 1 landscape.” We can then look at the

relationships between the input and output spaces as well as the mapping between

them.

Using the FFHS formalism, we constructed all unique, layer 1 gauge models from

order 2 through 22. This amounted to 68 SUSY and 502 non-SUSY models and

required a total of 31,863,121 models to be built. Of all of the group combinations

found, 50 had both SUSY and non-SUSY realizations. In this section we review the

statistics for these 570 models as well as how we may use these results to improve

further surveys and what LEEFTs are accessible from these types of inputs.

3.2.1 Model Generation and Redundancy

Here we look at relationships between model generation, the basis vector order

and redundancy. Strictly speaking, these relationships have no physical meaning;

however, they are important when creating algorithms for the systematic generation

of FFHS models, particularly for studies into how redundancies manifest themselves

in the gauge input space.

In our model building process, all models of a particular order are generated

before progressing to the next. This allows us to ask how the number of unique

models generated is dependent on the order. There is a subtlety to these questions

in that any model can be, in general, generated at other orders. However, because

we have imposed an ordering on the build process this inherently gives preference

to lower orders. This has the advantage of improving the efficiency of the build

69

process and does not affect statistics beyond the physically meaningless question of

“at what order was this model generated?”

We know from Section 3.1 that there are no odd-order N = 0 models. This

immediately suggests that there is a difference in the way SUSY and non-SUSY

models are generated at each order. This difference can be seen in Figure 3.2.1

where the number of unique models generated is plotted with respect to order for

both SUSY and non-SUSY data sets. We see that a statistical majority of SUSY

models are generated at low order, from order 2 through 12, while a statistically

significant number of non-SUSY models are generated through 22.

One may also be interested in how higher orders subsume lower orders. That

is, because higher orders admit a significantly higher number of potential models,

one might suspect that higher orders may well contain all of the models generated

at lower orders. To verify this we look at the number of unique models generated

at each order as well as the number of models that were generated at lower orders

but are absent from higher orders, Figure 3.2.2.

This information can be used to more efficiently generate models. For example,

even-order SUSY models completely subsume lower orders. This means that we

could simply build SUSY order 22 and we would get everything below it. That re-

duces the number of SUSY models that must be built from approximately 1.82× 107

to 8.4× 106, roughly half. This is not quite as nice for non-SUSY models in that

we would have to build orders 16 through 22. This amounts to 98.89% of the total

number of models. Only SUSY would benefit from this approach. Unfortunately,

there is no known way to predict which orders subsume lower orders.

70

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

#

o
f

N
e
w

M
o
d
e
l
s

Order

N=4

N=0

Figure 3.2.1: Number of New Models at Each Order – The generation of unique
N = 4 models peaks at order 6 with 18 unique models generated. For N = 0 this
occurs at order 12 with 96 unique models. Note that the N = 0 curve only has
data for even orders because no odd order N = 0 models exist.

-20

 0

 20

 40

 60

 80

 100

2 4 6 8 10 12 14 16 18 20 22

N
u
m
b
e
r

o
f

M
o
d
e
l
s

Order

(a) Non-SUSY Statistics

Additional

Absent

-10

-5

 0

 5

 10

 15

 20

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

N
u
m
b
e
r

o
f

M
o
d
e
l
s

Order

(b) SUSY Statistics

Additional

Absent

Figure 3.2.2: Number of Additional and Absent Models at Each Order – At each
order we look at the number of models generated in addition to the models previ-
ously created as well as the number of models that are absent at that order. Note
that no non-SUSY models are generated at odd-orders so, for brevity, those orders
are not plotted.

3.2.2 Group Distribution Statistics

We now focus on specific properties of the LEEFTs, in particular how group

factors of each rank manifest themselves across the layer 1 landscape. We begin by

considering the number of models with a group factor of a particular rank, Mn, for

each, SUSY and non-SUSY, data set, Figure 3.2.3. SU2 is highly prevalent in both

71

datasets because it is relatively simple to generate. It amounts to a single, disjoint

charge in our gauge states and consequently occurs often when groups are broken.

 0

 50

 100

 150

 200

 250

 300

 350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

N
u
m
b
e
r

o
f

M
o
d
e
l
s

Rank

(a) Non-SUSY Statistics

SU

SO

E

314

127

210
198

187

154

119

63

44

23
28

12 9 6 7 3 3 3 1 1 0 0
 0

 5

 10

 15

 20

 25

 30

 35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

N
u
m
b
e
r

o
f

M
o
d
e
l
s

Rank

(b) SUSY Statistics

SU

SO

E30

3

11

15

16

22

19

13

7

5 5
4

2 2
3

1 1
0 0

2

0
1

Figure 3.2.3: Number of Models with Factors of Each Rank – For each rank and
class of gauge group, the number of models with at least one factor of that type
is plotted. The label on each bar is the total number of models with at least one
group of that rank. The plots for the SUSY and non-SUSY models are provided for
comparison. Here the red, green and blue bars represent the number of A, D and
E algebras groups, respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

A
v
e
r
a
g
e

#

o
f

F
a
c
t
o
r
s

Rank

(a) Non-SUSY Statistics

SU
SO
E

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

A
v
e
r
a
g
e

#

o
f

F
a
c
t
o
r
s

Rank

(b) SUSY Statistics

SU
SO
E

Figure 3.2.4: Average Number of Factors of Non-Abelian Groups – For each rank,
the average number of factors for each class of groups is plotted for each set of
statistics, (a) Non-SUSY Models and (b) SUSY Models. Here the red, green and
blue bars represent the number of A, D and E algebras groups, respectively.

For the N = 0 models we see that Mn > Mn+2 for all classes of group factor,

SUN , SON and EN . However, this trend only occurs for SUN of odd rank up to

n = 11. Additionally, we can see M2n−1 > M2n up to n = 10 for non-SUSY models.

72

This does not speak to how the factors are distributed amongst the models. Of

the non-SUSY models, 314 have at least one factor of SU2, but generally we can

expect more than one for a particular model, approximately 1.74 on average. The

average number of factors of each rank, M̄n, is plotted in Figure 3.2.4.

3.2.3 Group Combinations

In this subsection we present statistics for the occurrence of specific group factors

in various combinations across the layer 1 landscape. As well as combinations of two

group factors, we look at combinations of specific compound factors in conjunction

with single and other compound factors. Such compound factors include E6 ⊗ E6,

GPS ≡ SU4 ⊗ SU2 ⊗ SU2 (Pati-Salam), GLRS ≡ SU3 ⊗ SU2 ⊗ SU2 (Left-Right

Symmetric), GSM ≡ SU3⊗ SU2⊗U1 (Standard Model), and GRSM ≡ SU3⊗ SU2

(Reduced Standard Model). We also include FSU5 ≡ SU5 ⊗ U1, though, because

we are not considering matter content, we can only say that the model has the

FSU5 gauge group; it may not actually be FSU5.

Recall that the modular invariance constraints and redundancies lead to two

GSO projection matrices for even-order models and only one for odd-order models.

In either case, the GSO projection that admits N = 4 SUSY is consistent, as

discussed in Section 3.1. The SUSY landscape exhibits 68 unique models. From

these, the percentage of models exhibiting each combination of group factors at least

once is calculated as a straight percentage of the 68 models. The full statistics are

provided in Table B.0.3 with special GUT8 group statistics provided in Table 3.2.3

below.

8 Remember that throughout this work we are only interested in the gauge
group, so when we say “GUT group” we are literally referring to the group and not
the model as a whole.

73

While the groups GLRS, GRMS and GSM do not occur in the SUSY landscape,

this is not true for N = 0 models; we include their respective columns here for

consistency.

As can be seen from either Table B.0.3 or Table 3.2.3, SU3 never occurs in

tandem with SU2. This means there is no Standard Model gauge group in the SUSY

layer 1 landscape, as defined here. Pati-Salam and FSU5 occur in an equal number

across the SUSY landscape but never in the same model. The only compound factor

that occurs more than once in any model is FSU5 and it does so 75% of the time,

though this only amounts to 3 models in total.

Table 3.2.3: N = 4 GUT Group Statistics – The percentage of all unique N = 4
models with each combination of gauge groups is tabulated. For example, 4.41%
of the 68 unique SUSY models have the combination FSU5 ⊗ SU5 at least once.

N = 68 SO10 E6 ⊗ E6 FSU5 GPS GLRS GRSM GSM

U1 7.35 1.47 5.88 2.94 0 0 0

SU2 7.35 0 0 1.47 0 0 0

SU3 0 0 1.47 0 0 0 0

SU4 4.41 1.47 0 2.94 0 0 0

SU5 0 0 4.41 0 0 0 0

SUN>5 12.24 1.47 2.94 4.41 0 0 0

SO8 0 0 0 0 0 0 0

SO10 2.94 0 0 0 0 0 0

SUN>10 – 0 0 0 0 0 0

EN – 1.47 0 1.47 0 0 0

E6 ⊗ E6 – 0 0 0 0 0 0

FSU5 – – 4.41 0 0 0 0

GPS – – – 0 0 0 0

GLRS – – – – 0 0 0

GRSM – – – – – 0 0

GSM – – – – – – 0

Total 13.24 2.94 5.88 5.88 0 0 0

74

Turning our attention to N = 0 models, we can perform the same statistical

analysis we did above. This time, however, we note that there are 502 unique

non-SUSY models; see Tables B.1.4 and 3.2.4.

It is interesting to note that the occurrence of N = 0 group combinations is not

simply an extension of the N = 4. That is, groups that are uncommon in N = 4

models are not necessarily less common in N = 0. We also find that SU3 ⊗ SU2

combinations never occur with SON nor EN .

Table 3.2.4: N = 0 GUT Group Statistics – The percentage of all unique N = 0
models with each combination of gauge groups is tabulated. Here each value is
calculated against the 502 N = 0 models, i.e. SO10 ⊗ SU5 occurs in 1.00% of

these 502 models.

N = 502 SO10 E6 ⊗ E6 FSU5 GPS GLRS GRSM GSM

U1 13.35 1.39 20.92 15.54 8.76 14.74 14.74

SU2 8.17 1.00 12.35 9.36 4.78 8.76 8.76

SU3 1.20 0 10.76 3.78 6.57 8.96 8.96

SU4 5.98 0.60 9.56 8.37 3.78 7.17 7.17

SU5 1.00 0 8.76 2.59 4.38 7.17 7.17

SUN>5 10.16 0.40 12.35 9.36 3.00 7.17 7.17

SO8 1.79 0 0.80 2.39 0 0 0

SO10 2.59 0.40 1.00 2.39 0 0 0

SUN>10 – 0.20 0 0.40 0 0 0

EN – 0.20 0.60 1.59 0 0 0

E6 ⊗ E6 – 0 0 0.20 0 0 0

FSU5 – – 8.76 2.59 4.38 7.17 7.17

GPS – – – 2.99 0.80 1.99 1.99

GLRS – – – – 1.99 3.78 3.78

GRSM – – – – – 6.57 6.57

GSM – – – – – – 6.57

Total 13.94 1.39 20.92 16.33 8.76 14.74 14.74

3.2.4 Extended Layer One Survey

The results above were published in 2011 and have since been extended up

through order 32. It was found that the statistics above changed only negligibly as

no new SUSY models were generated and only seven unique non-SUSY models were

75

produced. What’s more, all seven additional models were constructed at order 24.

Nothing new was found beyond order 24. For the sake of completeness, we provide

the additional models built at order 24 in Table 3.2.5, and the N = 0 layer one

statistics in four dimensions in Table B.1.5. Note that models 2 and 6 contribute

to the Pati-Salam content while models 4–6 contribute potentially standard-model

like content.

Table 3.2.5: Unique Order 24 N = 0 Models – The unique non-supersymmetric
models generated at order 24.

ϑ UniqueModels

1 (SU2)14 ⊗ (U1)8

2 (SU2)12 ⊗ SU4 ⊗ (U1)7

3 (SU2)12 ⊗ SO8 ⊗ SO12

4 (SU2)8 ⊗ (SU3)2 ⊗ (U1)10

5 (SU2)7 ⊗ (SU3)3 ⊗ (U1)9

6 (SU2)6 ⊗ (SU3)2 ⊗ SU4 ⊗ (U1)9

7 (SU3)6 ⊗ (U1)10

3.3 Survey of Layer One in D Dimensions

In 2013 the results of a survey of layer one models in D = 4 through D =

10 spacetime dimensions were published in [61]. The survey constructed all layer

one models from order 2 through 24. This section presents those results with full

statistics in Section B.2.

In conformation with [64], we find two Nmax and six N = 09 models in D = 10

with one gauge group, SO32, occurring with both possible SUSYs. The correspond-

ing results for zero to six compactifications are presented in Table 3.3.6.

The general trend, an increase in unique models with compactification, is ex-

pected; each compactification adds an addition U1 gauge degree of freedom. In the

9 An additional model can be produced utilizing chiral Isings, however such
models are not considered here.

76

FFHS formalism, several factors influence how the U1 alters the initial gauge group:

it may enhance the initial gauge group, manifest as an additional group factor, or

in more rare cases, result in a splitting of group factors.

Table 3.3.6: Number of Unique Models – Number of unique N = Nmax and N = 0
models for each value of D. Also included is the number of models that have both

N = Nmax and N = 0 realizations.

SUSY D = 10 D = 9 D = 8 D = 7 D = 6 D = 5 D = 4

N = Nmax 2 9 13 16 18 40 68

N = 0 6 32 50 85 73 292 509

Both 1 3 6 8 18 26 50

Upon construction of all unique models, it is a straightforward matter to con-

sider the rate of occurrence of various combinations of group factors, which is pre-

sented in the tables in the appendix. Of particular interest is the emergence of GUT

groups with compactification. As most common GUTs require multiple low-rank

special unitary group factors, a notable exception being SUSY SO10, they arise sig-

nificantly more often in low dimensions. This can be attributed to the enhancement

of the additional U1 factors produced with compactification. Additionally, the ap-

plication of the GSO projection to reduce the number of spacetime supersymmetries

has the tendency of increasing the production of special unitary groups. This leads

to N = 0 models favoring the occurrence of the “unitary GUTs” while the Nmax

models favor those with special orthogonal groups.

Beyond GUT groups we can examine how individual group factors arise. As

an example, consider SU3 whose first occurrence is at D = 7, N = 0 and first

manifests with Nmax at D = 5. In all cases, SU3 occurs in conjunction with a

U1 factor which gives rise to the MSSM group in any situation where SU2 and

SU3 arise together. Of particular interest is the manner in which SU3 is produced.

Specifically, each compactification produces a U1 gauge charge. If this charge does

not enhance any of the present factors it may remain external, in which case a

77

subsequent compactification is likely to provided an enhancement to SU2 ⊗ SU2.

A further compactification often yields another enhancement to SU4, suggesting

that the SU3 does not result from the typical enhancement pattern. In fact, it is

believed that the most probable method of producing an SU3 is via breaking of

the SU4 previously described. This is due to the combination of the additional U1

charge and the application of the GSO projection to reduce the model to N = 0.

3.4 Higher Layer Surveys

It was the hope of this work to explore a large region of the string landscape,

namely the gauge landscape. However, the results of several long-running higher

layer10 surveys present evidence that there are far fewer gauge models than ex-

pected. The table below describes the present state of these higher layer survey

projects.

Table 3.4.7: Higher Layer Survey Status

D Orders Status

4 2× 2 – 2× 11 Completed

3× 3 – 5× 5 Completed

2× 2× 2 – 2× 7× 7 InProgress

3× 3× 3 – 3× 5× 5 Planned

4× 4× 4 – 2× 5× 5 Planned

5–10 2× 2 – 2× 11 Completed

3× 3 – 10× 10 InProgress

2× 2× 2 – 5× 5× 5 Planned

As of this writing, the surveys have found all of the layer one models described in

Sections 3.2 and 3.3 but nothing new. This is surprising in that the number of input

sets grows exponentially with the layer of the model. Most surveys to date have

10 By “higher layer” we mean l > 1.

78

focused on increasing the layer rather than the order because of this expectation.11

This curious observation prompts the following conjecture:

Conjecture (Completeness). All gauge models can be produced by a layer 1

basis vector set with an appropriate choice of GSO coefficient matrix.

Presently the evidence to support this is “empirical”, however it is the ex-

pectation of the author that a proof exists and will be found in the near future.

The remainder of this section discusses one possible explanation for this result.

For the sake of the author’s imminent carpal tunnel, we will use the short hand

N1 × N2 × . . . × Nl to represent the layer l model with order N1 . . . Nl, e.g. the

layer 3 model with orders 2, 2, and 5 can be represented as 2 × 2 × 5 throughout

the remainder of this chapter.

3.4.1 Coprime Orders

Recall that in Section 2.2 partition function modular invariance was discussed.

One requirement of modular invariance is that the sectors of the theory form an

abelian group, Ξ, which can thus be decomposed into a direct sum of additive cyclic

groups

Ξ = ZN1 ⊕ . . .⊕ ZNL. (2.2.2)

Moving from the generic models discussed in Chapter 2 to gauge models, the cyclic

decomposition of Ξ becomes

Ξ = Z2 ⊕ Z2 ⊕ ZN1 ⊕ . . .⊕ ZNl . (3.4.1)

where the first two Z2 factors are generated by the all-periodic and SUSY sec-

tors, 1 and S, while the remaining factors are generated by the additional bosonic

generators α1,. . .,αl.

11 Another reason for this preference toward increasing layer is that order 2 basis
sets have several computational advantages, so only adding order 2 basis vectors is
a simpler process than increasing the order.

79

Suppose for simplicity that we have a layer two model such that

Ξ = Z2 ⊕ Z2 ⊕ ZN1 ⊕ ZN2. (3.4.2)

We know that if N1 and N2 are coprime, i.e. GCD(N1, N2) = 1, then

ZN1 ⊕ ZN2 = ZN1N2. (3.4.3)

This implies that we can replace any pair of basis vectors that have coprime orders

with a single basis vector with an order equal to the product of the orders and

still generate precisely the same model. This redundancy was, to the author’s

knowledge, first noted in [64], and poses a rather advantageous simplification: rather

than building all order 2× 3 we prefer to build all order 6 models instead. This is a

vast improvement over building everything. The table below shows a few equivalent

layer one and layer two runs and the number of models built in each. Note that

in all cases precisely the same models were generated. The only difference between

the layer one and layer two surveys was the volume and distribution of models.

Table 3.4.8: Redundancy of Layer 2 Models – The total number of SUSY and
non-SUSY models at each layer and order is tabulated. For each row, the unique
models generated in the l = 2 survey are precisely the same as those generated in

the l = 1 survey. We see the significant redundancy of l = 2 with l = 1, e.g
building the 7394 order 2× 3 models is equivalent to building the 362 order 6

models. All models were built in D = 4.

l = 2 l = 1

N ϑofSUSY ϑofNon↩SUSY N ϑofSUSY ϑofNon↩SUSY
2× 3 3,697 3,697 6 181 181
2× 5 342,699 342,699 10 3,983 3,983
2× 7 12,032,612 12,032,612 14 55,422 55,422
3× 4 1,018,921 1,026,378 12 15,262 15,262
3× 5 8,377,415 0 15 104,391 0

It is simple to see why the equivalence occurs. Consider a layer two model with

bosonic basis vectors α1 and α2. These sectors generate Ξ, but the sector α1 + α2

also generates Ξ if N1 and N2 are coprime. As a concrete example the following

80

basis vector sets produce the same models{
(010 || 1 1 1 1 07 018)
(010 || 0 0 2

3
2
3 (2

3)7 018)

}
∼=
{

(010 || 1 1 −1
3 −1

3 (2
3)7 018)

}
,

namely SO28 ⊗E8 and (SU2)3 ⊗ SO24 ⊗E7, with and without SUSY respectively.

3.4.2 Generating Sectors

Based on the preceding discussion we can ask whether every redundant, higher

layer model is equivalent to a model that is generated by one of its sectors. This is

not the case, though it is remarkably common. Consider the basis vector set

A =

{
(020 || 1 1 1 1 0 0 0 0 014)
(020 || 0 0 0 1 1

2
1
2

1
2

1
2 014)

}
.

This set produces the gauge groups SO8 ⊗ SO36 and SO16 ⊗ SO28 with N = 0,

and the groups SO44 and SO28 ⊗ E8 with both N = 0 and N = 4. In this case,

each gauge group can be built from a basis set consisting of one sector from ΞA,

the sectors generated by A.

A counterexample, however is the basis set

B =

{
(020 || 1 1 0 0 0 1 1 010 05)

(020 || 0 0 1 1 1 1
2

1
2

1
2

10
05)

}
which generates the models listed in Table 3.4.9. However, in this case one model,

(SU2)2 ⊗ SU6 ⊗ SU10 ⊗ SO10 ⊗ U1 with N = 0, cannot be realized in the manner

previously described. All others are produced by one of the individual sectors.

Table 3.4.9: Models Generated by B – Two groups, namely SU12 ⊗ SO10 ⊗E6 and
SU16 ⊗ SO14, have N = 4 and N = 0 realizations from B while the remaining

four groups are produced with N = 0.

ϑ GaugeGroup N
1 SU12 ⊗ SO10 ⊗ E6 4 and 0

2 SU16 ⊗ SO14 4 and 0

3 SU12 ⊗ (SO10)2 ⊗ U1 0

4 (SU2)3 ⊗ SU14 ⊗ SO10 ⊗ U1 0

5 (SU2)2 ⊗ SU6 ⊗ SU10 ⊗ SO10 ⊗ U1 0

6 SU4 ⊗ SU12 ⊗ SO14 ⊗ U1 0

81

A survey to ascertain the typicality of this redundancy is presently underway

and results are expected to submitted for publication within the year.

3.5 Generalized Gauge Models

We finish off this chapter with one possible generalization of gauge models that

is presently of interest. Consider the following gauge basis set

A =

(1 (1 1 1)3 || 1 112 19)
(1 (1 0 0)3 || 0 012 09)

(0 (0 0 0)3 || 1 1
2

12
09)

 .

This is easily verified to be modularly invariant and the basis vectors are linearly

independent. Provided an admissible choice of k, it will produce either SO20⊗SO24

with N = 4 or SU12⊗ SO18⊗U1⊗U1 with N = 0. One method of modifying this

basis while ensuring modular invariance is to “move” the periodic right-mover to

the left. For example

A′ =

(1 (1 1 1) (1 1 1)2 || 112 110)
(1 (1 0 0) (1 0 0)2 || 012 010)

(0 (0 1 0) (0 0 0)2 || 1
2

12
010)

 .

Let us refer to the third basis vector as α. This basis is still modularly invariant and

linearlly independent; however, now α’s non-trivial left-mover allows a right-mover

that is not modularly invariant on its own and some of the sectors generated by α

will be unable to generate massless states. In particular, only sectors constructed

from an even multiple of α will yield massless states. Because the α and S share

no simultaneously periodic fermions, we can still only generate N = 4 and N = 0.

Ultimately, A′ produces SU12 ⊗ SO20 ⊗ U1 with both N = 4 and N = 0.

Fortuitously, this particular example provides a prototype of the situation in

which we are interested: models that cannot be generated by gauge models as

presently defined. Adding left-movers that share no periodic modes with S still

results in models of the form in which we are interested, models dominated by

gauge content.

82

Unfortunately, the Gauge Framework is not capable of constructing such gen-

eralized models in its present incarnation. Two options for further work on these

models exist: either extend the Gauge Framework to build these models as well or

use the FF Framework [65]. It would likely be the case that extending the Gauge

Framework would be both easier and result in more efficient surveys. In its present

form the FF Framework is neither optimized for the construction of gauge models,

nor does it have the capacity for parallelism.

It is the hope of the author that future work can be done to extend the gauge

surveys discussed herein to include the generalized gauge models. One question in

particular is whether the higher layer redundancy will persist upon expanding our

definition.

3.6 Summary

This section has covered the author’s work on systematic investigations of the

string gauge landscape. Gauge models were defined and described in Section 3.1,

at which point we discussed several redundancies that plague the surveys as well as

what we mean by “uniqueness”. Sections 3.2 and 3.3 outline the results of several

systematic surveys of layer one gauge models from D = 4 up to D = 10. We then

reviewed the significant redundancy of the multi-layer gauge models and conjectured

that they are all redundant with some layer one model (Section 3.4). Finally, we

described one possible approach to extending the gauge landscape to include models

that may not have such redundancies.

This concludes our discussion of large scale systematic surveys. This remainder

of this work will overview a new approach to looking for models in the landscape

with specific properties without building everything along the way.

83

CHAPTER FOUR

Landscape Surveys Through Metaheuristic Algorithms

This final chapter is intended to describe a novel approach to landscape surveys

that focuses on finding models with particular properties. Something of a holy

grail of string model building is the ability to pick out vacua from the landscape

that exhibit specified properties, e.g. gauge group, matter representations, number

of supersymmetries, cosmological constant, etc. At present we are forced to build

large swaths of the landscape and hope that a model with the desired properties is

represented. This is somewhat distasteful in that it is computationally intensive and

relatively brute-force. The process can be improved, as was discussed in Chapter 3,

by whittling down the input space into equivalence classes of redundant models,

but the current state of the art is still much too weak to bring larger scale surveys1

within reach. We still have redundancy that is far beyond tractable in general; a

new approach is necessary.

Given that we have at our disposal frameworks for constructing FFHS models,

namely the Gauge and FF Frameworks, we simply need a smarter way of generating

the input sets, {A,k}, so that models with particular properties are more likely to

appear. If we have a way of assigning some value to a given input, e.g. how well it

generates a model with the desired phenomenology, then we can express the problem

as an optimization problem:

Optimization – Let P be the input space and energy : P → R an “energy”

function on the inputs. Find an input {A,k} ∈ P that optimizes energy.

1 Even an exhaustive survey of layer three is approaching the limits of the
Gauge Framework.

84

Whether we are minimizing or maximizing energy will depend on the context.

Throughout this chapter we will liberally mix pseudocode with mathematical lan-

guage as is demonstrated above.

In this chapter we discuss a metaheuristic algorithm, an algorithm that uses

lower-level heuristics to find a near optimal solution to an optimization problem, as

an approach to targeted landscape searches. It is important to realize that while

the string landscape is exceedingly vast, it is finite. This means that there will be

models that the starry eyed theoretician may dream up that will not exist in the

landscape. For this reason we need algorithms that search for solutions that are

close to those requested; a truly optimal solution may not exist at all! This is the

strength of metaheuristic algorithms.

The remainder of this chapter will describe the simulated annealing algorithm

(Section 4.1). We will describe the algorithmic process, discuss the heuristic char-

acter of each, and finally some of the obstacles of applying these to the problem

domain at hand. One thing to note before proceeding is that this algorithm is by no

means the only metaheuristic that may be applied to these problems; it is simply

the one in which the author grew interested. We will conclude the chapter with

a short discussion of genetic algorithms that may be applicable to this problem

domain (Section 4.2).

4.1 Simulated Annealing

Many or most metaheuristic algorithms derive from natural processes. Simu-

lated annealing is analogous to metallurgical annealing in which a metal is heated

to a high temperature and allowed to slowly cool making the metal softer and more

ductile. As the system cools slowly, phase transformations can occur resulting in

lower energy structure. A similar process can be applied to an optimization problem

in which the energy of a potential solution is minimized as the temperature of the

85

“system” falls. This metaheuristic algorithm was independently developed in [66,

67] and can be applied to a very broad class of optimization problems.

4.1.1 Description and Pseudocode

The first step in the process of defining an optimization problem is to choose

a function, energy, to optimize over the input set, P. In the case of simulated

annealing this function is referred to as the energy function, hence the name, and the

objective is to minimize it. To do this we must heuristically define three constructs:

the cooling schedule, a neighbor function and a transition function.

The cooling schedule, temp : [0, 1] → R+, controls the temperature of the

system. This can be thought of as a function that specifies the temperature based

on how long the system has been running. Throughout this discussion we will

represent the “time” as t ∈ [0, 1] and the temperature as T = temp(t). Since we are

interested in cooling, we require that temp be non-increasing with temp(0) = Tmax

and temp(1) = 0. Tmax is a user-specified maximum value for the temperature

and should typically be large in comparison to the scale of the energy. The choice

of cooling schedule is largely problem specific and is highly complex. An effective

cooling schedule must be slow enough for the system to come to equilibrium, and

the time that it takes for the system to come to equilibrium depends on both the

energy function and the temperature.

The next object of interest is the neighbor function, neighbor : P → P which,

given the current solution, selects a neighboring solution, i.e. new trial solutions.

Your choice of neighbor can be either deterministic or probabilistic and is en-

tirely problem-specific. A standard heuristic for choosing a neighbor function

is to make small changes whenever possible. By “small” we mean that for the

current solution s and the neighbor s′ = neighbor(s), the difference in energies

|energy(s) − energy(s′)| << Tmax.

86

Finally we address the transition probability P(e, e′, T) which is a function of the

energies of the current and neighboring solutions, e and e′, and the temperature of

the system T . The only strict requirements on P are that P(e, e′, T) > 0 when e′ > e

and T > 0, and that it should tend to zero with T . The first of these requirements

ensures that the system does not get stuck in a local minimum and the latter ensures

that we make smaller transitions as time progresses. Most implementations use the

standard transition function

P(e, e′, T) =

{
1, if e′ < e

exp
(
e−e′
T

)
, otherwise,

(4.1.1)

first chosen in [66].

We are now in a position to provide a Julia2 implementation of the simulated

annealing algorithm.

function anneal(energy, neighbor, temp, P, randsol, numsteps)
time, timestep = 0, 1/numsteps
s = randsol()
es = energy(s)
while time < 1

t = neigh(s)
et = energy(t)
if P(es,et,temp(time)) > rand()
s = t
es = et

end
time = time + timestep

end
return s

end

Figure 4.1.1: Simulated Annealing Algorithm – Written in Julia, it traverses the
input space in search of a global minimum energy solution.

The process is pretty straightforward. First we generate an initial solution. If

time remains, we generate a neighbor and probabilistically transition to it based on

2 Julia is a high-level, high-performance dynamic programming language for
technical computing, with syntax that is familiar to users of other technical com-
puting environments, http://julialang.org.

87

the temperature and energies of the new and initial solutions. We then step time

forward and continue generating new potential solutions until time runs out.

There is absolutely no guarantee that this process will converge on an opti-

mal solution; however, if the heuristic components temp, neighbor and P are well

selected, and a solution actually exists, the algorithm will often converge.

One variation of this algorithm is to keep track of the best solution presently

found. From time to time doing so would be beneficial, but typically the system

arrives at the optimal solution last. Because of this and the added computational

step, we don’t worry about keeping the predecessors of the current solution.

4.1.2 Simulated Annealing as Applied to Gauge Models

We now turn our attention back to our problem: finding models in the landscape

with specified properties. As shamefully little is known about the landscape, the

problem domain is relatively amorphous. This makes explicit algorithms extraordi-

narily difficult to devise; however, if we can reexpress our problem in terms of some

optimization, simulated annealing may lend itself nicely to finding a solution, i.e. a

vacuum with the desired properties.

Since gauge models are so simple, we will try to develop such an approach for

these models. Gauge models have only two distinguishing characteristics: the gauge

group and number of spacetime supersymmetries. As a simplifying assumption for

this treatment, let us only deal with maximally supersymmetric models, N = Nmax,

with only one bosonic layer. Recalling from Chapter 3, layer one gauge models

admit at most two distinct GSO projection coefficient matrices; the two choices

select between N = 0 and N = Nmax. In this way we can neglect k as well and

always choose so it to force N = Nmax, ensuring modular invariance. Additionally,

let us restrict our discussion herein to models in four dimensions. This serves no

purpose other than to make our subsequent discussion simpler and ensure that

Nmax = 4. We now formally state our problem.

88

Simulated Annealing – Develop a simulated annealing algorithm, i.e. choose

an energy function, energy, a neighbor function, neighbor, and cooling

schedule, temp, that will survey the D = 4 gauge landscape in search of

N = 4 models with a specified target gauge group, G. Assume the standard

acceptance probability, (4.1.1).

We now move on to a choice of neighbor function, neighbor. The chief difficulty

in defining neighbor arises from modular invariance. How does one make a small

change to a basis vector without mucking up modular invariance? This is a question

to which the author has no wholly satisfying answer. However, for the purposes

herein, we do have an example algorithm.

function rand(x::Type{BasisVector}, dim)
randomly generate a BasisVector of length dim
...

end

function neighbor(s)
t = rand(BasisVector, 22)
while !modinv(s,t)

t = rand(BasisVector, 22)
end
s + t

end

Figure 4.1.2: Example of neighbor – Randomly generate a basis vector of length
22 and repeat until it is modularly invariant with the original. Return the sum.

We first note that if a layer two basis set {α, β} is modular invariant then each

of its sectors is modular invariant on its own; hence α + β is modular invari-

ant. So, as long as we can randomly generate basis vectors that are modular

invariant as pairs, then we can randomly generate neighbors. The definition of

rand(x :: Type{BasisVector}, dim), while simple, is a bit technical and unenlight-

ening, thus we eschew a description here. Of course this algorithm is by no means

efficient or elegant, but it works as a starting point.

89

Next we define our cooling schedule, temp. We will actually define several for

testing purposes later.

function mktemp(tmax,exponent)
@assert(exponent > 0) # temp must decrease with time
t -> tmax*(1-t^exponent) # return the temp function

end

lineartemp(t) = mktemp(1000, 1) # temp(t) = 1000 * (1 - t)
quadtemp(t) = mktemp(1000, 2) # temp(t) = 1000 * (1 - t^2)
roottemp(t) = mktemp(1000, 0.5) # temp(t) = 1000 * (1 - t^0.5)

Figure 4.1.3: Cooling Schedules – We define a closure mktemp for creating some basic
temp functions and create linear, quadratic and square-root cooling schedules, for
example, each with a maximum temperature of 1000.

Our choices of cooling schedule are somewhat unsophisticated. It will turn out, that

because of our trouble defining energy, the nature of temp is insignificant.

We turn now to the energy function, energy, which is the most difficult. The

functions energy and neighbor are intimately connected. In order for the algorithm

to effectively evolve a solution toward optimal, we need neighbor to favor states

of lower energy; that is, the probability of a neighbor to be generated should be

higher for neighbors that have a lower energy than the present solution. Our choice

of neighbor is not particularly good at this because the requirements of modular

invariance. The energy function is actually the greater trouble. What we find in

defining energy is that it tends to favor features of the target gauge group rather

than the precise group. The implications of this will be seen in Subsection 4.1.4.

Here we define two possible energy functions, neither of which will prove to be

sufficient for finding particular gauge groups.

The first trial energy function is based on the “entropy” of a gauge group.

Effectively, we are interested in the number of gauge groups with both the same

number of group factors and non-abelian rank. To this end, we simply count the

number of such groups, referring to each as a microstate, and take the natural

logarithm in line with Boltzmann’s formula

90

S = log Ω. (4.1.2)

We then define the energy of a solution as the absolute difference between its en-

tropy and the entropy of the target solution. An implementation is provided in

Figure 4.1.4.

Number of group factors with each rank
states(r::Int) = (r < 4) ? 2 : (r < 6) ? 2 : (r < 9) ? 3 : 2;

Number of states based on the number of group factors per rank.
states(prt::Array{Int,1}) = mapreduce(states, *, prt)

partitions is a built in Julia function
partition(n,m) = 〈 partitionings of n into m partitions 〉
Number of microstate = sum of numstates per partitioning
function microstates(s)

mapreduce(states,+,partitions(narank(s),length(s)))
end

The entropy of a Group
entropy(g::Group) = log(microstates(g))

The entropy of a BasisVector = entropy of its Group
entropy(s::BasisVector) = entropy(buildgroup(s))

Closure to return an energy function for target group t
mkentropic(t::Group) = s -> norm(entropy(s) - entropy(t))

An example energy function for the group SO44
entropicenergy = mkentropic(parsegroup("D22"))

Figure 4.1.4: Entropic Energy Function – Create a closure that takes the group in
which the user is interested and returns an energy function that takes the norm of
the difference between the entropies of the target and the newly generated solution.

The first thing to note about this implementation is that it miscounts the num-

ber of microstates of a given group. Consider the two groups

SU2 ⊗ SU6 ⊗ SO8 ⊗ SO24 and SU2 ⊗ SU5 ⊗ SO10 ⊗ SO24. (4.1.3)

These would each have the same entropy since they have the same number of mi-

crostates as defined. This, of course, could be improved by considering the entropy

of each of the classes of groups; e.g. the A-class and D-class entropies would be

(1.099, 2.079) and (0.069, 2.079), respectively. In this way a better distinction be-

91

tween the classes is provided and it may improve the effectiveness of the algorithm.

We will not expound upon this course of action herein, but it is presently under

examination.

The second point is that one might expect this algorithm to drive the groups

toward a given non-abelian rank rather than toward a particular group. In par-

ticular, note that the number of microstates is determined by the number of ways

the non-abelian rank can be partitioned into a particular number of factors. In this

way the entropy increases with the non-abelian rank and number of group factors.

This will drive the groups toward a particular set of rank distributions rather than

toward a particular group.

Our second energy algorithm is actually just the absolute difference in the sam-

ple variance of the non-abelian rank of the solution with that of the target.

var is Julia’s built in sample variance. It requires the sample
size to be greater than one; it gives NaN if that is not the
case. We ensure that it gives 0 in that situation.
variance(rs::Array{Int,N}) = (length(rs) <= 1) ? 0 : var(rs)

variance(g::Group) = variance(map(naranks,g))

mkvarenergy(t::Group) = s -> norm(variance(s) - variance(t))

varenergy = mkvarenergy(parsegroup("D22"))

Figure 4.1.5: Variance Energy Function – Create a closure that takes the group in
which the user is interested and returns an energy function that takes the norm of
the difference between the variance of the non-abelian ranks of the target and newly
generated solution.

As one might expect this is actually going to drive the ranks toward homo-

geneity: all group factors with the same rank! One might be able to incorporate

the mean rank of the non-abelian factors of the group as well, providing a push

in the right direction. Unfortunately, tests are suggesting that this does not work

particularly well. We won’t discuss the details of that here.

92

4.1.3 Random Sampling and Random Search

We are now in a position to run our simulated annealing algorithm, but before

we do we have to have a method of determining how well the algorithm works. To

that end, we choose two algorithms, random sampling and random search, to which

we will compare the simulated annealing algorithm. This subsection will discuss

those algorithms.

The random sampling algorithm is pretty straightforward. Generate a random

solution, determine how will that solutions solves the problem. If the energy of

the solution is zero we terminate as it is a minimum; otherwise we generate a

new random solution and continue. We repeat this process at most some specified

number of times and return the best after the process has terminated. The Julia

implementation is below.

function randomsample(energy, numloops, randsol)
best = randsol()
bestenergy = energy(best)
if bestenergy == 0

return best, bestenergy
end
for i in 1:numloops

s = randsol()
e = energy(s)
if e < bestenergy
best = s
bestenergy = e

end
if bestenergy == 0
break

end
end
best, bestenergy

end

Figure 4.1.6: Random Sampling – Generate random solutions until you find an
optimal one or you run out of loops. Return the best.

The random search algorithm is somewhere between random sampling and sim-

ulated annealing. Like random sampling it always keeps a solution if it is at least as

good as the best yet found. However, it generates is random solutions as neighbors

93

of the present best solution, like simulated annealing. Random search is almost

simulated annealing with a step function for a transition probability

P(e, e′, T) =
{

1 e− e′ >= 0
0 e− e′ < 0.

(4.1.4)

The major distinction is in the simulated annealing algorithm the neighbor is taken

from the current solution rather than the global best solution. An implementation

of random search follows.

function randomsearch(energy, numloops, randsol, neighbor)
best = randsol()
bestenergy = energy(best)
if bestenergy == 0

return best, bestenergy
end
for i in 1:numloops

s = neighbor(best)
e = energy(s)
if e < bestenergy
best = s
bestenergy = e

end
if bestenergy == 0
break

end
end
best, bestenergy

end

Figure 4.1.7: Random Search – Generate random neighbors of the best solution
found until you find an optimal one or you run out of loops. Return the best.

4.1.4 Comparison of Algorithms

We can now determine how effective simulated annealing (SA) actually is. To

do this we will search specifically for groups that we know are in the landscape;

after all, we have already built all of the gauge models! This will give us an idea of

how well the algorithm finds groups that are there. We will compare the results to

those for random sampling (RSa) and random search (RSe).

94

Each algorithm was run on the same target group with each completing a max-

imum of 1000 loops. Additionally we ran each algorithm on both the entropic and

variance energy functions discussed in Figures 4.1.4 and 4.1.5, respectively.

We will focus on SO44, SO20 ⊗ SO24, (SU2)22 and E7 ⊗ E7 ⊗ E8, as we know

they exist in the gauge landscape. These were chosen to illustrate the way in which

the energy function favors certain features. In each case the four algorithms are

run 100 times and the results collected. Three metrics are collected, the energy of

the generated solution, whether the energy was minimized and whether the gauge

group in question was actually generated. The results are presented in Tables 4.1.1

and Tables 4.1.2 for the entropic and variance energies, respectively. In both tables,

the energy represents the average energy of the best solution produced by each

algorithm in 1,000 trials. The % Minimized and % Successful columns depict the

percentage of best models produced with the minimal energy and the target group,

respectively.

Table 4.1.1: Comparison of Algorithms (Entropic Energy) – Results for searches
for four gauge groups utilizing three search algorithms are presented. The
algorithms, simulated annealing, random sampling and random search, are

denoted by SA, RSa and RSe, respectively. Note that RSa outperformed both SA
and RSe for group and metric.

Target Algorithm Energy %Minimized %Successful

SO44 SA 3.774± 1.566 8 8
RSa 2.162± 2.133 29 29
RSe 3.79± 1.666 11 11

SO20 ⊗ SO24 SA 0.11± 0.363 81 15
RSa 0.0± 0.0 100 42
RSe 0.196± 0.492 77 13

(SU2)22 SA 7.501± 1.921 2 2
RSa 5.771± 2.174 0 0
RSe 7.768± 1.431 0 0

E7 ⊗ E7 ⊗ E8 SA 0.12± 0.591 96 0
RSa 0.0± 0.0 100 0
RSe 0.27± 0.863 91 0

95

Considering the results of the entropic energy search, we see that simulated

annealing is actually less effective than random sampling in every way. This is likely

a consequence of two causes. First of all, the neighbor function inhibits exploration

of the landscape, evidenced by the fact that both SA and RSe are comparable; the

only thing they have in common is the use of neighbor. Second, we see that our

energy function is not particularly effective at representing an optimal solution. In

the case of SO44, whenever energy is minimized the target is produced. However,

in the case of SO20 ⊗ SO24 this is only true roughly 50 of the time and is never

the case for the other two groups. We can conclude that, in combination, neighbor

and energy are incompatible.

Table 4.1.2: Comparison of Algorithms (Variance Energy) – Results for searches
for four gauge groups utilizing three search algorithms are presented. The
algorithms, simulated annealing, random sampling and random search, are

denoted by SA, RSa and RSe, respectively. Note that RSa outperformed both SA
and RSe for group and metric.

Target Algorithm Energy %Minimized %Successful

SO44 SA 0.023± 0.085 93 6
RSa 0.0± 0.0 100 1
RSe 0.053± 0.287 94 3

SO20 ⊗ SO24 SA 0.065± 0.075 56 36
RSa 0.0± 0.0 100 98
RSe 0.08± 0.073 45 35

(SU2)22 SA 0.017± 0.073 95 0
RSa 0.0± 0.0 100 0
RSe 0.03± 0.096 91 0

E7 ⊗ E7 ⊗ E8 SA 0.037± 0.105 89 0
RSa 0.0± 0.0 100 0
RSe 0.077± 0.254 85 0

The results of the variance energy searches are fairly straightforward: the vari-

ance energy is not effective. For SO20 ⊗ SO24 the probability that the optimal

solution has been found given that the energy has been minimized is quite high.

This is not the case for the other three groups. In fact, for those three groups

the chance that a minimal energy solution will be found is 85 or higher, but for

96

SO20 ⊗ SO24 the probability is on the order of 50. In all cases, the SA algorithm

is outperformed by RSa.

These results give insight into the design of optimization algorithms in this

domain. In particular, the choice of energy function is coupled to the gauge group.

For example, if you are searching for SO20 ⊗ SO24 the variance energy is a decent

option. The difficulty with this is that one cannot know how to design the energy

function based solely on the group itself. We are left to conclude that this approach

is largely ineffectual unless better neighbor and energy functions are designed.

We do not need to consider the results of searches for models that we know

are absent from the landscape because the searches for models that we know are

present fail. For this reason, and brevity, we do not consider the results here. For

more information, see subsequent publications.

4.2 Genetic Algorithms

Genetic algorithms are some of the more interesting metaheuristic algorithms.

A genetic algorithm (GA) is an algorithm in which the solutions are encoded in

some nice manner, a population of random solutions are generated, and a series of

genetic operators are applied to push the population toward high and higher fitness.

This requires the definition of a fitness function, much like the energy function of

simulated annealing.

GAs are modeled after the evolutionary process, so one might expect genetic

operators representing mutation, selection and crossover. Mutation is a process

that randomly selects an individual and modifies it slightly. The probability of this

occurring is typically chosen to be very small, otherwise the fitness of the population

fluctuates rapidly. Selection is a process of selecting the most fit individuals of the

population for crossover, and crossover is the act of mixing the genetic representa-

tion of the solutions. Selection rates, the percentage of the population that is select

97

during each cycle, vary based on the form of the crossover. There are many types

of crossover, but it will not be of interest to go into them.

Much as in the case of simulated annealing, modular invariance makes devising

a genetic algorithm for landscape surveys difficult. While in SA modular invariance

only appears in the random generation of neighbors, it interferes in three places:

mutation, crossover, and population generation. Population generation is no more

difficult than that dealt with in SA. Mutation and crossover are not so simple. How

does one randomly mutate a basis vector without breaking modular invariance?

What’s more, how might one mix two basis vectors together in crossover to produce

a single modular invariant basis vector?

The author has no answer to these questions as of this writing, but research

into possibilities is underway.

4.3 Summary

We have found that simulated annealing is not likely to prove a viable land-

scape search technique in the immediate future. Obstacles of this approach include

the definition of an effective energy function, energy, and the selection of a neigh-

bor function, neighbor, that can produce nearby basis vectors without discarding

modular invariance. In fact, the proposed functions, energy and neighbor, actually

inhibit the computation of a optimal solution.

Genetic algorithms are more severely afflicted as the choice of the mutation

and crossover genetic operators are likely to fail to produce modularly invariant

solutions.

The author’s hope is that this line of inquiry will be further explored in subse-

quent publications.

98

APPENDICES

99

APPENDIX A

The Gauge Framework

100

This appendix discusses the structure, form and function of the Gauge Frame-

work. This is largely a discussion of the basics of the Gauge Framework; docu-

mentation will be made available with the repository at the EUCOS github page,

https://github.com/EUCOS.

A.1 Philosophy and Influences

When the Gauge Framework was first written it was entirely object-oriented.

This was the style that I, the author, first learned and what was preferred by the

group at the time. As development progressed I grew more disenchanted by the

object-oriented paradigm. In particular, as the second version was being written

I noticed that by making some of the data members public and removing the as-

sociated accessors we gained a roughly 40% speed improvement. That amounted

to approximately 1,000 models/second as opposed to 700 models/second. This, to-

gether with my learning Haskell drove me to use more functional and procedural

techniques when it was appropriate. While all programming paradigms are tech-

nically equivalent1, they are not all equal. Object oriented design is very good at

representing data and data structures. We have used these features extensively in

creating classes found in the include/Datatypes directory. However, processes and

transformations on that data are often better represented as a functional and thus

are more naturally represented by a procedural or functional paradigm. These also

appear from time to time throughout the project. All of this said, it is important

to realize that the project is still evolving, and there are several places were a class

could be replaced by a collection of functions or even the other way around.

The most important detail for this project is that it is correct. We need to be

sure that the computed statistics are true. Another aspect of this is reliability; we

need to be able to start a program running and return two weeks later to find that

1 There is no program that can be written procedurally that cannot be written
in an object-oriented fashion, and vice versa.

101

it is still running2. The are both facets of good design. To facilitate the vetting

process I’ve implemented the test-driven design principles: write a test, write the

code until the test passes, and repeat. This has a limit; some aspects of model

building are long-running. We cannot reasonably devise tests for the systematic

surveys on the whole, but we can write tests for the smaller parts. This is where

functional and procedural programming shine.

After reliability is speed. This project needs to be as fast as it reasonably can

be. To make this work, we’ve used MPI for parallelism and implemented many

of the performance critical algorithms in low-level C. This seems to have done the

trick as the Gauge Framework can build anywhere from 1,000 to 120,000 models

per second on Baylor’s 128-node beowulf cluster.

Finally we want the Gauge Framework to be used. What is the good in writing

software that no one uses? To that end I have tried to make everything as user

friendly as possible while still allowing a developer low-level access to the framework.

You be the judge as to whether I’ve succeeded here.

A.2 Structure

We now discuss the structure of the Gauge Framework. There are three aspects

to the structure. First is the obvious directory and file structure. Where do the

various files belong and can you tell the purpose of a file based on its location? Next

is the object structure. How does inheritance work for the framework; how inter-

connected are the components? Finally there is the aspect that is most important

to the user, the survey structure. How are surveys structured and run?

A.2.1 Directory and File Structure

2 Or has terminated successfully, of course.

102

The Gauge Framework has, by default, four directories in its root: cmd, tests,

include and src. Additional, there are two relevant files Doxyfile and Makefile.

We will use this subsection to discuss each of these and their substructures.

We will start with the cmd directory. This directory contains all of the main

implementation files, i.e. files with main methods that can be compiled into exe-

cutable programs. It has any number of subdirectories, each of which contains at

least one file: main.cpp. The name of the subdirectory determines the name of the

executable upon building. For example, the file cmd/layer-one/main.cpp would

compile to a binary file bin/layer-one. Executable binaries are built and placed

in bin which is found in the project root directory.

Next consider tests. Within tests one finds three subdirectories, gtest, in-

clude and src. The gtest subdirectory contains all of the source for a version

of Google’s testing framework, Google Test. Details regarding Google Test can

be found at http://code.google.com/p/googletest/. This framework is used

to provided testing facilities to the Gauge Framework. The other directories in-

clude and src contain the actual tests for the framework. When a file of the form

<Name>Test.cpp is created in the tests/src directory, it can be compiled into an

executable. This executable will also be found in tests/src. Header files for the

tests can be placed in tests/include.

The directories include and src go hand in hand; include is for API head-

ers and src is for implementations. Within include one finds four directories.

The first is Datatypes. This subdirectory contains the declarations of the var-

ious datatypes of the framework, e.g. Gauge::Vector, Gauge::BasisVector,

Gauge::GSOMatrix, Gauge::Inputs, etc. The next subdirectory of interest is the

Interfaces directory. Most objects in the framework have the capacity to be

printed and serialized. Rather than reimplement all of the features necessary for

each for every class, we abstract the details into interfaces. These interfaces are

103

found in include/Interfaces; there is no analogous directory in src because in-

terfaces are abstract classes. Now, as models are constructed we must perform

various processing activities on them. Since there is no way for the developers to

plan for every such processing pattern, the Gauge Framework has a processor sys-

tem. The ideas is that the end user can create a processor and add it to a chain

of processors through which models can be passed as they are build. The public

APIs for these processors are found in include/Processor and the implementa-

tion in src/Processor. Finally, the Utility subdirectory contains various utilities

used through the framework. Presently we only have a single collection of utility

functions for creating filesystem directories. This may be extended in the future.

As mentioned there are two files found in the project root, Doxyfile and Make-

file. The former is a configuration file for Doxygen3, a program that reads com-

mented source code and generates API documentation in HTML, LATEX, etc. The

Makefile is the recipe used by the build tool make to compile, link and archive

the Gauge Framework library and its executables. When run, Doxygen creates a

single directory structure, rooted at share, filled will all of the generated documen-

tation. When the project is built, three directories are created: bin contains binary

executables, obj contains binary object files4, and lib contains a static library,

libgauge.a, against which projects may be linked.

3 http://www.stack.nl/ dimitri/doxygen/

4 For those unfamiliar with the C/C++ build process, object files are the result
of compiling a source file, but not linking it. This means it is not executable.

104

A.2.2 Object Structure

The object structure of the Gauge Framework is pretty simple. There is very

little inheritance in general; rather than going through and listing all of the different

lines of inheritance, we will only discuss a few of the major classes and examples.

Let us start with the Vector-family. The Vector datatype, declared in in-

clude/Datatypes/Vector.h, represents the structure of each of the three main

types of phase vectors in the project: BasisVector, Sector and State. These are

each an array of rational number, so they are all represented by an array of nu-

merators and a common denominator. An distilled version of the Gauge::Vector

struct is provided in Figure A.2.1.

namespace Gauge {
struct Vector : public Printable, public Serializable {

int *numerators; // The numerators of the vector
int denominator; // The common denominator
size_t size; // The size of the vector (26 - D)

〈other data members〉

〈constructors〉
〈operators〉

// Printable Interface
virtual void PrintTo(std::ostream *out) const;

// Serializable Interface
virtual void SerializeWith(Serializer *serializer) const;
virtual void DeserializeWith(Serializer *serializer);

};

〈template functions on vectors, e.g . dot products, summation, etc.〉
}

Figure A.2.1: Gauge::Vector – A simplified implementation for the Vector struct.
Note that the basic data members, numerators, denominator and size are defin-
ing characteristics of all phase vectors. For this reason Gauge::BasisVector,
Gauge::Sector and Gauge::State each derive from Gauge::Vector.

The Gauge::Vector class typifies a typical inheritance of the interfaces,

Gauge::Printable and Gauge::Serializable. These classes are inherited by all

of the Gauge Framework’s datatypes. The former facilitates printing to screen and

105

the latter provides a mechanism for efficiently converting an object to a binary en-

coded string5. Gauge::Serializable is also inherited by several of the working

classes, e.g. Gauge::ModelFactory.

Our final example of inheritance is of the Processor class. To ensure that end-

user processors have the correct machinery to run, at least in principle, and to ensure

that we can them all in a single list, all processors inherit from Gauge::Processor.

The difficulty with the processor class is the Merge method. As we construct models

in parallel, discussed in Subsection A.2.3, each model builder will have its own set

of processors. Once the building is completed, we must merge those processors into

one for consolidated handling, hence the Merge method.

A.2.3 Survey Structure

Gauge surveys come in two varieties serial and parallel. In both cases a

Gauge::GeometryFactory object is constructed and used to facilitate the gen-

eration of Gauge::Geometrys, {A,k}. The geometries are then passed on to a

Gauge::ModelFactory object which constructs the associated Gauge::Model. Af-

ter creating the model it is pushed through a series of Gauge::Processors. After

all processing has finished the program terminates. The distinction between serial

and parallel amounts to the topology of the processes involved. In fact, the serial

surveys have only one process.

Serial surveys follow the above description. Throughout its life cycle, only a

single computing process exists. Control is passed from object to object as the

algorithm progresses. Figure A.2.3 depicts the a serial process.

5 This makes such luxuries as check-pointing and message passing possible.

106

Gauge::GeometryFactory

Gauge::ModelFactory

Gauge::Processors

Gauge::Geometry

Gauge::Model

output

Process 1

Figure A.2.2: Serial Topology – Each gray rectangle represents an operating sys-
tem process. Within each we find at least one algorithmic objects, in rounded
rectangles, and lines of data flow marked by the type of the data. For example,
within Process 1, Gauge::GeometryFactory and Gauge::ModelFactory exchange
a Gauge::Geometry.

On the other hand, a parallel survey will have many concurrently running algo-

rithms. Each of which typically has at least one algorithmic object and the processes

themselves exchange data via the standard Message Passing Interface (MPI). Be-

cause the Gauge::GeometryFactory can construct the Gauge::Geometry objects

much more quickly, approximately 105 times faster, we need only run one and dis-

tribute the outputs to each of the slave processes. The slaves then construct the

model and process it. Once the GeometryFactory has terminated, the root process

requests that each of the slaves send their Gauge::Processors to back to the root.

Once received, the processors are merged together and finalized. Output is then

issued from the root process, and the job terminates.

107

Gauge::GeometryFactory

Gauge::Processors

output

Process 1: Root

Gauge::ModelFactory

Gauge::Processors

Gauge::Model

Process 2

Gauge::ModelFactory

Gauge::Processors

Gauge::Model

Process N

Gauge::ModelFactory

Gauge::Processors

Gauge::Model

Process 3

Gauge::ModelFactory

Gauge::Processors

Gauge::Model

Process (N − 1)

Processes 3 to (N − 2)

Figure A.2.3: Parallel Topology – Each gray rectangle represents an operating sys-
tem process. Within each we find at least one algorithmic objects, in rounded
rectangles, and lines of data flow marked by the type of the data.

Now that we know the basic structure of the framework, let us give a brief

presentation of how to run a survey.

A.3 Usage

The Gauge Framework has abstracted much away from the user. In order to

run a standard survey, say “construct all models from orders 2×2 to 5×5”, we need

only make a function call! It does not matter whether one is running in series or

parallel, the process is basically the same; the main difference is the function that is

executed. Below are two example implementations, Figure A.3.4 and Figure A.3.5,

which run a survey in serial and parallel, respectively.

108

#include <Processor/ByGroup.h>
#include <Survey.h>
#include <Utility.h>

using namespace std;

int main(int argc, char **argv) {
const int D = 4, L = 2;
const int lower[] = {2,2}, upper[] = {5,5};
auto susytype = Gauge::Input::kSUSY;

const string root = "results/L=" + to_string(L) + "/";
const string output = root + "D=" + to_string(D) + "/";
const string log_file = root + "D=" + to_string(D) + ".log";
Utility::Dir::Create(root_dir);

Gauge::Survey::Serial(
// Processors
{ new Gauge::Process::ByGroup(output, false) },

// Geometry Factory
Gauge::GeometryFactory::SystematicFactory(),

// Input Factory
new Gauge::InputFactory::Range(lower, upper, L, D, susytype),

// Log File
log_file

);

return 0;
}

Figure A.3.4: Serial Survey – An example demonstrating how to run a gauge survey
in serial.

109

#include <Processor/ByGroup.h>
#include <Survey.h>
#include <Utility.h>

using namespace std;

int main(int argc, char **argv) {
const int D = 4, L = 2;
const int lower[] = {2,2}, upper[] = {5,5};
auto susytype = Gauge::Input::kSUSY;

const string root = "results/L=" + to_string(L) + "/";
const string output = root + "D=" + to_string(D) + "/";
const string log_file = root + "D=" + to_string(D) + ".log";
Utility::Dir::Create(root_dir);

Gauge::Survey::Parallel(
// Required for MPI
argc, argv,

// Processors
{ new Gauge::Process::ByGroup(output, false) },

// Geometry Factory,
Gauge::GeometryFactory::SystematicFactory(),

// Input Factory
new Gauge::InputFactory::Range(lower, upper, L, D, susytype),

// Log File
log_file

);

return 0;
}

Figure A.3.5: Parallel Survey – An example demonstrating how to run a gauge
survey in parallel.

110

APPENDIX B

Layer One Statistics

111

B
.1

L
a
ye

r
O

n
e

S
ta

ti
st

ic
s

in
F

o
u

r
D

im
en

si
o
n

s

T
ab

le
B

.0
.3

:
N

=
4

G
a
u

ge
G

ro
u

p
C

o
m

bi
n

a
ti

o
n

s
–

T
h

e
p

er
ce

n
ta

ge
of

al
l

u
n

iq
u

e
N

=
4

m
o
d

el
s

w
it

h
ea

ch
co

m
b

in
at

io
n

o
f

g
au

g
e

gr
o
u

p
s

is
ta

b
u

la
te

d
.

F
o
r

ex
am

p
le

,
11

.7
6%

of
th

e
68

u
n

iq
u

e
S

U
S

Y
m

o
d

el
s

h
av

e
th

e
co

m
b

in
at

io
n
S
U

4
⊗
U

1
a
t

le
a
st

on
ce

.

N
=

68
U

1
S
U

2
S
U

3
S
U

4
S
U

5
S
U
N
>

5
S
O

8
S
O

1
0
S
U
N
>

1
0

E
N

E
6
⊗
E

6
F
S
U

5
G
P
S

G
L
R
S

G
R
S
M

G
S
M

U
1

29
.4

1
11

.7
6

4.
41

11
.7

6
5
.8

8
3
6
.7

6
4
.4

1
7
.3

5
1
1
.7

6
5
.8

8
1
.4

7
5
.8

8
2
.9

4
0

0
0

S
U

2
–

29
.4

1
0

7.
35

0
3
2
.3

5
1
1
.7

6
7
.3

5
2
5
.0

0
1
0
.2

9
0

0
1
.4

7
0

0
0

S
U

3
–

–
2.

94
0

1
.4

7
2
.9

4
0

0
0

0
0

1
.4

7
0

0
0

0

S
U

4
–

–
–

5.
88

0
1
1
.7

6
1
.4

7
4
.4

1
1
.4

7
2
.9

4
1
.4

7
0

2
.9

4
0

0
0

S
U

5
–

–
–

–
4
.4

1
2
.9

4
0

0
0

0
0

4
.4

1
0

0
0

0

S
U
N
>

5
–

–
–

–
–

3
3
.8

2
7
.3

5
1
2
.2

4
1
6
.1

8
8
.8

2
1
.4

7
2
.9

4
4
.4

1
0

0
0

S
O

8
–

–
–

–
–

–
4
.4

1
0

5
.8

8
1
.4

7
0

0
0

0
0

0

S
O

1
0

–
–

–
–

–
–

–
2
.9

4
0

2
.9

4
0

0
0

0
0

0

S
U
N
>

1
0

–
–

–
–

–
–

–
–

1
7
.6

5
1
3
.2

4
0

0
0

0
0

0

E
N

–
–

–
–

–
–

–
–

–
1
1
.7

6
1
.4

7
0

1
.4

7
0

0
0

E
6
⊗
E

6
–

–
–

–
–

–
–

–
–

–
0

0
0

0
0

0

F
S
U

5
–

–
–

–
–

–
–

–
–

–
–

4
.4

1
0

0
0

0

G
P
S

–
–

–
–

–
–

–
–

–
–

–
–

0
0

0
0

G
L
R
S

–
–

–
–

–
–

–
–

–
–

–
–

–
0

0
0

G
R
S
M

–
–

–
–

–
–

–
–

–
–

–
–

–
–

0
0

G
S
M

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
0

T
ot

al
45

.5
8

44
.1

2
4.

41
16

.1
8

5
.8

8
5
4
.4

1
1
6
.1

8
1
3
.2

4
4
4
.1

2
2
3
.5

3
2
.9

4
5
.8

8
5
.8

8
0

0
0

112

T
a
b

le
B

.1
.4

:
N

=
0

G
a
u

ge
G

ro
u

p
C

o
m

bi
n

a
ti

o
n

s
–

T
h

e
p

er
ce

n
ta

ge
of

al
l

u
n

iq
u

e
N

=
0

m
o
d

el
s

w
it

h
ea

ch
co

m
b

in
at

io
n

o
f

ga
u

g
e

gr
ou

p
s

is
ta

b
u

la
te

d
.

H
er

e
ea

ch
va

lu
e

is
ca

lc
u

la
te

d
ag

ai
n

st
th

e
50

2
N

=
0

m
o
d

el
s,

i.
e.
S
O

1
0
⊗
S
U

5
o
cc

u
rs

in
1
.0

0%
of

th
es

e
50

2
m

o
d
el

s.

N
=

68
U

1
S
U

2
S
U

3
S
U

4
S
U

5
S
U
N
>

5
S
O

8
S
O

1
0
S
U
N
>

1
0

E
N

E
6
⊗
E

6
F
S
U

5
G
P
S

G
L
R
S

G
R
S
M

G
S
M

U
1

75
.7

0
49

.8
0

25
.3

0
40

.6
4

2
0
.9

2
6
3
.7

5
1
1
.7

5
1
3
.3

5
1
0
.3

6
1
0
.3

6
1
.3

9
2
0
.9

2
1
5
.5

4
8
.7

6
1
4
.7

4
1
4
.7

4

S
U

2
–

42
.6

3
14

.7
4

24
.5

0
1
2
.3

5
3
9
.2

4
1
2
.5

5
8
.1

7
1
2
.7

5
9
.9

6
1
.0

0
1
2
.3

5
9
.3

6
4
.7

8
8
.7

6
8
.7

6

S
U

3
–

–
13

.9
4

11
.9

5
1
0
.7

6
1
5
.7

4
1
.0

0
1
.2

0
0

0
.6

0
0

1
0
.7

6
3
.7

8
6
.5

7
8
.9

6
8
.9

6

S
U

4
–

–
–

19
.1

2
9
.5

6
2
8
.0

9
6
.3

7
5
.9

8
4
.1

8
3
.9

8
0
.6

0
9
.5

6
8
.3

7
3
.7

8
7
.1

7
7
.1

7

S
U

5
–

–
–

–
8
.7

6
1
2
.3

5
0
.8

0
1
.0

0
0

0
.6

0
0

8
.7

6
2
.5

9
4
.3

8
7
.1

7
7
.1

7

S
U
N
>

5
–

–
–

–
–

3
1
.2

7
9
.7

6
1
0
.1

6
9
.5

6
7
.9

7
0
.4

0
1
2
.3

5
9
.3

6
3
.0

0
7
.1

7
7
.1

7

S
O

8
–

–
–

–
–

–
4
.5

8
1
.7

9
4
.9

8
3
.7

8
0

0
.8

0
2
.3

9
0

0
0

S
O

1
0

–
–

–
–

–
–

–
2
.5

9
1
.2

0
2
.1

9
0
.4

0
1
.0

0
2
.3

9
0

0
0

S
U
N
>

1
0

–
–

–
–

–
–

–
–

5
.9

8
5
.3

8
0
.2

0
0

0
.4

0
0

0
0

E
N

–
–

–
–

–
–

–
–

–
3
.7

8
0
.2

0
0
.6

0
1
.5

9
0

0
0

E
6
⊗
E

6
–

–
–

–
–

–
–

–
–

–
0

0
0
.2

0
0

0
0

F
S
U

5
–

–
–

–
–

–
–

–
–

–
–

8
.7

6
2
.5

9
4
.3

8
7
.1

7
7
.1

7

G
P
S

–
–

–
–

–
–

–
–

–
–

–
–

2
.9

9
0
.8

0
1
.9

9
1
.9

9

G
L
R
S

–
–

–
–

–
–

–
–

–
–

–
–

–
1
.9

9
3
.7

8
3
.7

8

G
R
S
M

–
–

–
–

–
–

–
–

–
–

–
–

–
–

6
.5

7
6
.5

7

G
S
M

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
6
.5

7

T
ot
a
l

83
.6

7
62

.5
5

25
.3

0
41

.8
3

2
0
.9

2
6
6
.5

3
1
9
.3

2
1
3
.9

4
2
1
.5

1
1
5
.5

4
1
.3

9
2
0
.9

2
1
6
.3

3
8
.7

6
1
4
.7

4
1
4
.7

4

113

T
ab

le
B

.1
.5

:
S

ta
ti

st
ic

s
o
f
D

=
4,
N

=
0

M
od

el
s

–
T

h
e

p
er

ce
n
ta

ge
of

al
l

u
n

iq
u

e
N

=
0

m
o
d

el
s

w
it

h
ea

ch
co

m
b

in
at

io
n

o
f

ga
u

ge
gr

o
u

p
s

is
ta

b
u

la
te

d
.

H
er

e
ea

ch
va

lu
e

is
ca

lc
u

la
te

d
ag

ai
n

st
th

e
50

9
N

=
0

m
o
d

el
s,

i.
e.
S
O

1
0
⊗
S
U

5
o
cc

u
rs

in
0
.9

8%
of

th
es

e
50

9
m

o
d

el
s.

N
=

50
9

U
1

S
U

2
S
U

3
S
U

4
S
U

5
S
U
N
>

5
S
O

8
S
O

1
0

S
U
N
>

1
0

E
N

E
6
⊗
E

6
F
S
U

5
G
P
S

G
L
R
S

G
S
M

U
1

75
.8

3
50

.1
0

25
.7

4
40

.4
7

2
0
.6

3
6
2
.8

7
1
1
.5

9
1
3
.1

6
1
0
.2

2
1
0
.0

2
1
.3

8
2
0
.6

3
1
5
.7

2
9
.2

3
1
5
.1

3

S
U

2
–

43
.2

2
15

.1
3

24
.5

6
1
2
.1

8
3
8
.7

0
1
2
.5

7
8
.0

6
1
2
.7

7
9
.4

3
0
.9

8
1
2
.1

8
9
.6

3
5
.3

0
9
.2

3

S
U

3
–

–
14

.5
4

11
.9

8
1
0
.6

1
1
5
.5

2
0
.9

8
1
.1

8
0

0
.5

9
0

1
0
.6

1
3
.9

3
7
.0

7
9
.4

3

S
U

4
–

–
–

18
.8

6
9
.4

3
2
7
.7

0
6
.2

9
5
.8

9
4
.1

3
3
.9

3
0
.5

9
9
.4

3
8
.2

5
3
.9

3
7
.2

7

S
U

5
–

–
–

–
8
.6

4
1
2
.1

8
0
.7

9
0
.9

8
0

0
.5

9
0

8
.6

4
2
.5

5
4
.3

2
7
.0

7

S
U
N
>

5
–

–
–

–
–

3
0
.8

4
9
.6

3
1
0
.0

2
8
.6

4
7
.8

6
0
.3

9
1
2
.1

8
9
.2

3
2
.9

5
7
.0

7

S
O

8
–

–
–

–
–

–
4
.5

2
1
.7

7
5
.1

1
3
.5

4
0

0
.7

9
2
.3

6
0

0

S
O

1
0

–
–

–
–

–
–

–
2
.5

5
1
.1

8
2
.1

6
0
.3

9
0
.9

8
2
.3

6
0

0

S
U
N
>

1
0

–
–

–
–

–
–

–
–

5
.8

9
5
.3

0
0
.2

0
0

0
.3

9
0

0

E
N

–
–

–
–

–
–

–
–

–
3
.1

4
0
.2

0
0
.5

9
1
.5

7
0

0

E
6
⊗
E

6
–

–
–

–
–

–
–

–
–

–
0

0
0
.2

0
0

0

F
S
U

5
–

–
–

–
–

–
–

–
–

–
–

8
.6

4
2
.5

5
4
.3

2
7
.0

7

G
P
S

–
–

–
–

–
–

–
–

–
–

–
–

2
.9

5
0
.9

8
2
.1

6

G
L
R
S

–
–

–
–

–
–

–
–

–
–

–
–

–
2
.5

5
4
.3

2

G
R
S
M

–
–

–
–

–
–

–
–

–
–

–
–

–
–

7
.0

7

G
S
M

–
–

–
–

–
–

–
–

–
–

–
–

–
–

7
.0

7

T
ot

al
83

.6
9

62
.8

7
25

.7
4

41
.6

5
2
0
.6

3
6
5
.6

2
1
9
.2

5
1
3
.7

5
2
1
.4

1
1
5
.3

2
1
.3

8
2
0
.6

3
1
6
.5

0
9
.2

3
1
5
.1

3

114

B.2 Layer One Statistics in D Dimensions

Herein we present statistics for occurrence of specific group factors in various

combinations across the layer 1 landscape. As well as combinations of two group

factors, we look at combinations of specific compound factors in conjunction with

single and other compound factors. Following [60] we include such compound factors

as E6 ⊗ E6, GPS ≡ SU4 ⊗ SU2 ⊗ SU2 (Pati-Salam), GLRS ≡ SU3 ⊗ SU2 ⊗ SU2

(Left-Right Symmetric), and GSM ≡ SU3 ⊗ SU2 ⊗ U1 (Standard Model). We also

include FSU5 ≡ SU5⊗U1, though, because we are not considering matter content,

we can only say that the model has the FSU5 gauge group; it may not actually be

FSU5.

The percentage of all unique Nmax and N = 0 models in D = 10 through D = 4

with each combination of gauge groups is tabulated. As an example, 11.76% of the

68 unique N = 4 models, Table B.1.5, have the combination SU4⊗U1 at least once.

Note that since the D = 4 results have already been presented, Tables B.0.3 and

B.1.5.

B.2.1 Maximally Supersymmetric Models

Table B.2.6: Statistics of D = 10, N = 1 Models – The percentage of all unique
N = 1 models with each combination of gauge groups is tabulated. Here each

value is calculated against the 2 N = 1 models.

N = 2 SUN>10 EN

SUN>10 0 0

EN – 50.00

Total 50.00 50.00

115

Table B.2.7: Statistics of D = 9, N = Nmax Models – The percentage of all
unique N = Nmax models with each combination of gauge groups is tabulated.
Here each value is calculated against the 9 N = Nmax models, i.e. SU2 ⊗ SU2

occurs in 0.98% of these 9 models.

N = 9 U1 SU2 SU4 SUN>5 SO10 SUN>10 EN

U1 0 0 0 0 0 22.22 11.11

SU2 – 11.11 0 11.11 0 0 0

SU4 – – 0 0 0 0 11.11

SUN>5 – – – 0 0 0 11.11

SO10 – – – – 0 11.11 0

SUN>10 – – – – – 11.11 11.11

EN – – – – – – 22.22

Total 33.33 11.11 11.11 22.22 11.11 55.56 44.44

Table B.2.8: Statistics of D = 8, N = 1 Models – The percentage of all unique
N = Nmax models with each combination of gauge groups is tabulated. Here each

value is calculated against the 13 N = Nmax models, i.e. 38.46% of these 13
models have at least one EN factor.

N = 13 U1 SU2 SU4 SUN>5 SO8 SUN>10 EN

U1 0 0 0 7.69 0 0 7.69

SU2 – 23.08 0 7.69 0 23.08 15.38

SU4 – – 0 7.69 0 0 0

SUN>5 – – – 7.69 0 0 7.69

SO8 – – – – 0 0 7.69

SUN>10 – – – – – 23.08 15.38

EN – – – – – – 15.38

Total 7.69 38.46 7.69 30.77 7.69 53.85 38.46

116

Table B.2.9: Statistics of D = 7, N = Nmax Models – The percentage of all
unique N = Nmax models with each combination of gauge groups is tabulated.
Here each value is calculated against the 16 N = Nmax models, i.e. SU2 ⊗ U1

appears in 12.50% of these 16 models.

N = 16 U1 SU2 SU4 SUN>5 SO8 SO10 SUN>10 EN E6 ⊗ E6

U1 0 12.50 0 18.75 0 0 18.75 12.50 6.25

SU2 – 6.25 0 12.50 0 0 6.25 12.50 0

SU4 – – 0 0 0 0 12.50 6.25 0

SUN>5 – – – 12.50 6.25 6.25 6.25 6.25 0

SO8 – – – – 0 0 0 0 0

SO10 – – – – – 0 0 6.25 0

SUN>10 – – – – – – 18.75 12.50 0

EN – – – – – – – 18.75 6.25

E6 ⊗ E6 – – – – – – – – 0

Total 37.50 18.75 18.75 37.50 6.25 12.50 50.00 37.50 6.25

Table B.2.10: Statistics of D = 6, N = 2 Models – The percentage of all unique
N = 2 models with each combination of gauge groups is tabulated. Here each

value is calculated against the 18 N = 2 models, i.e. SO8 ⊗ SO8 appears in 5.56%
of these 18 models.

N = 18 U1 SU2 SU4 SUN>5 SO8 SO10 SUN>10 EN E6 ⊗ E6

U1 11.11 0 0 11.11 0 5.56 5.56 5.56 5.56

SU2 – 22.22 0 11.11 0 0 11.11 5.56 0

SU4 – – 0 5.56 0 0 0 5.56 0

SUN>5 – – – 16.67 0 11.11 5.56 5.56 0

SO8 – – – – 5.56 0 11.11 5.56 0

SO10 – – – – – 0 0 0 0

SUN>10 – – – – – – 16.67 16.67 0

EN – – – – – – – 16.67 5.56

E6 ⊗ E6 – – – – – – – – 0

Total 16.67 22.22 5.56 38.89 22.22 11.11 50.00 33.33 5.56

117

T
ab

le
B

.2
.1

1:
S

ta
ti

st
ic

s
o
f
D

=
5,
N

=
N

m
a
x

M
od

el
s

–
T

h
e

p
er

ce
n
ta

ge
of

al
l

u
n

iq
u

e
N

=
N

m
a
x

m
o
d

el
s

w
it

h
ea

ch
co

m
b

in
at

io
n

of
ga

u
ge

gr
ou

p
s

is
ta

b
u

la
te

d
.

H
er

e
ea

ch
va

lu
e

is
ca

lc
u

la
te

d
ag

ai
n

st
th

e
40
N

=
N

m
a
x

m
o
d

el
s,

i.
e.
S
O

8
⊗
S
O

8
ap

p
ea

rs
in

2
.5

0%
of

th
es

e
40

m
o
d

el
s.

N
=

40
U

1
S
U

2
S
U

3
S
U

4
S
U

5
S
U
N
>

5
S
O

8
S
O

1
0

S
U
N
>

1
0

E
N

E
6
⊗
E

6
F
S
U

5

U
1

2.
50

12
.5

0
2.

5
0

5
.0

0
5
.0

0
4
0
.0

0
7
.5

0
7
.5

0
2
5
.0

0
1
5
.0

0
2
.5

0
0

S
U

2
–

12
.5

0
0

5
.0

0
0

1
2
.5

0
2
.5

0
2
.5

0
7
.5

0
5
.0

0
2
.5

0
0

S
U

3
–

–
0

0
0

2
.5

0
0

0
0

0
0

0

S
U

4
–

–
–

2
.5

0
0

1
0
.0

0
0

2
.5

0
5
.0

0
5
.0

0
0

0

S
U

5
–

–
–

–
2
.5

0
2
.5

0
0

0
0

0
0

2
.5

0

S
U
N
>

5
–

–
–

–
–

2
5
.0

0
5
.0

0
1
0
.0

0
1
2
.5

0
1
0
.0

0
0

2
.5

0

S
O

8
–

–
–

–
–

–
2
.5

0
0

2
.5

0
2
.5

0
0

0

S
O

1
0

–
–

–
–

–
–

–
2
.5

0
5
.0

0
2
.5

0
0

0

S
U
N
>

1
0

–
–

–
–

–
–

–
–

1
5
.0

0
1
5
.0

0
0

0

E
N

–
–

–
–

–
–

–
–

–
1
0
.0

0
2
.5

0
0

E
6
⊗
E

6
–

–
–

–
–

–
–

–
–

–
0

0

F
S
U

5
–

–
–

–
–

–
–

–
–

–
–

0

T
ot

al
62

.5
0

20
.0

0
2.

5
0

1
7
.5

0
5
.0

0
5
2
.5

0
1
0
.0

0
1
7
.5

0
4
7
.5

0
2
7
.5

0
2
.5

0
5
.0

0

118

B.2.2 N = 0 Supersymmetric Models

Table B.2.12: Statistics of D = 10, N = 0 Models – The percentage of all unique
N = 0 models with each combination of gauge groups is tabulated. Here each

value is calculated against the 6 N = 0 models, i.e. SU2 ⊗ SU2 appears in 16.67%
of these 6 models.

N = 6 U1 SU2 SUN>5 SO8 SUN>10 EN

U1 0 0 16.67 0 0 0

SU2 – 16.67 0 0 0 16.67

SUN>5 – – 0 0 0 0

SO8 – – – 0 16.67 0

SO10 – – – – 0 0

SUN>10 – – – – 16.67 16.67

EN – – – – – 16.67

Total 16.67 16.67 16.67 16.67 66.67 33.33

119

T
ab

le
B

.2
.1

3
:

S
ta

ti
st

ic
s

o
f
D

=
9,
N

=
0

M
od

el
s

–
T

h
e

p
er

ce
n
ta

ge
of

al
l

u
n

iq
u

e
N

=
0

m
o
d

el
s

w
it

h
ea

ch
co

m
b

in
at

io
n

o
f

ga
u

g
e

gr
ou

p
s

is
ta

b
u

la
te

d
.

H
er

e
ea

ch
va

lu
e

is
ca

lc
u

la
te

d
ag

ai
n

st
th

e
32
N

=
0

m
o
d

el
s,

i.
e.
S
O

1
0
⊗
S
U

4
ap

p
ea

rs
in

3.
1
3%

of
th

es
e

32
m

o
d
el

s.

N
=

32
U

1
S
U

2
S
U

4
S
U
N
>

5
S
O

8
S
O

1
0

S
U
N
>

1
0

E
N

E
6
⊗
E

6
G
P
S

U
1

21
.8

8
28

.1
3

1
2
.5

0
4
0
.6

3
1
2
.5

0
6
.2

5
2
5
.0

0
1
5
.6

3
3
.1

3
3
.1

3

S
U

2
–

34
.3

8
1
2
.5

0
1
5
.6

3
0

0
1
8
.7

5
1
5
.6

3
3
.1

3
3
.1

3

S
U

4
–

–
0

1
2
.5

0
0

3
.1

3
9
.3

8
6
.2

5
0

0

S
U
N
>

5
–

–
–

1
2
.5

0
3
.1

3
6
.2

5
3
.1

3
3
.1

3
0

3
.1

3

S
O

8
–

–
–

–
6
.2

5
6
.2

5
1
2
.5

0
3
.1

3
0

0

S
O

1
0

–
–

–
–

–
0

6
.2

5
3
.1

3
0

0

S
U
N
>

1
0

–
–

–
–

–
–

1
2
.5

0
1
2
.5

0
0

6
.2

5

E
N

–
–

–
–

–
–

–
6
.2

5
0

0

E
6
⊗
E

6
–

–
–

–
–

–
–

–
0

0

G
P
S

–
–

–
–

–
–

–
–

–
0

T
ot

al
71

.8
8

40
.6

3
2
1
.8

8
4
0
.6

3
2
1
.8

8
1
5
.6

3
5
0
.0

0
2
5
.0

0
3
.1

3
9
.3

8

120

T
ab

le
B

.2
.1

4
:

S
ta

ti
st

ic
s

o
f
D

=
8,
N

=
0

M
od

el
s

–
T

h
e

p
er

ce
n
ta

ge
of

al
l

u
n

iq
u

e
N

=
0

m
o
d

el
s

w
it

h
ea

ch
co

m
b

in
at

io
n

o
f

ga
u

ge
g
ro

u
p

s
is

ta
b

u
la

te
d

.
H

er
e

ea
ch

va
lu

e
is

ca
lc

u
la

te
d

ag
ai

n
st

th
e

50
N

=
0

m
o
d

el
s,

i.
e.
S
U

4
⊗
S
U

4
ap

p
ea

rs
in

4
.0

0%
of

th
es

e
50

m
o
d
el

s.

N
=

50
U

1
S
U

2
S
U

4
S
U
N
>

5
S
O

8
S
O

1
0

S
U
N
>

1
0

E
N

E
6
⊗
E

6
G
P
S

U
1

32
.0

0
24

.0
0

2
0
.0

0
4
4
.0

0
0

8
.0

0
2
.0

0
8
.0

0
2
.0

0
2
.0

0

S
U

2
–

46
.0

0
6
.0

0
2
4
.0

0
1
6
.0

0
2
.0

0
3
2
.0

0
1
6
.0

0
0

0

S
U

4
–

–
4
.0

0
1
8
.0

0
0

2
.0

0
0

4
.0

0
2
.0

0
0

S
U
N
>

5
–

–
–

2
2
.0

0
0

8
.0

0
2
.0

0
6
.0

0
0

2
.0

0

S
O

8
–

–
–

–
8
.0

0
0

1
8
.0

0
6
.0

0
0

0

S
O

1
0

–
–

–
–

–
0

0
0

0
0

S
U
N
>

1
0

–
–

–
–

–
–

1
8
.0

0
1
2
.0

0
0

0

E
N

–
–

–
–

–
–

–
8
.0

0
0

0

E
6
⊗
E

6
–

–
–

–
–

–
–

–
0

0

G
P
S

–
–

–
–

–
–

–
–

–
0

T
ot

al
46

.0
0

64
.0

0
2
0
.0

0
4
4
.0

0
2
4
.0

0
8
.0

0
4
6
.0

0
2
6
.0

0
2
.0

0
2
.0

0

121

T
ab

le
B

.2
.1

5
:

S
ta

ti
st

ic
s

o
f
D

=
7,
N

=
0

M
od

el
s

–
T

h
e

p
er

ce
n
ta

ge
of

al
l

u
n

iq
u

e
N

=
0

m
o
d

el
s

w
it

h
ea

ch
co

m
b

in
at

io
n

o
f

g
au

ge
gr

o
u

p
s

is
ta

b
u

la
te

d
.

H
er

e
ea

ch
va

lu
e

is
ca

lc
u

la
te

d
ag

ai
n

st
th

e
85
N

=
0

m
o
d

el
s,

i.
e.
S
O

1
0
⊗
S
U

4
a
p

p
ea

rs
in

3.
5
3%

of
th

es
e

85
m

o
d
el

s.

N
=

85
U

1
S
U

2
S
U

3
S
U

4
S
U

5
S
U
N
>

5
S
O

8
S
O

1
0

S
U
N
>

1
0

E
N

E
6
⊗
E

6
F
S
U

5
G
P
S

U
1

45
.8

8
38

.8
2

4.
71

2
0
.0

0
3
.5

3
5
1
.7

6
1
2
.9

4
1
2
.9

4
1
8
.8

2
17

.6
5

2
.3

5
3
.5

3
4.

7
1

S
U

2
–

36
.4

7
0

1
0
.5

9
0

2
8
.2

4
5
.8

8
9
.4

1
1
8
.8

2
14

.1
2

0
0

4
.7

1

S
U

3
–

–
1.

18
0

2
.3

5
3
.5

3
0

0
0

0
0

2
.3

5
0

S
U

4
–

–
–

8
.2

4
0

1
7
.6

5
7
.0

6
3
.5

3
9
.4

1
4
.7

1
0

0
1.

1
8

S
U

5
–

–
–

–
2
.3

5
2
.3

5
0

0
0

0
0

2
.3

5
0

S
U
N
>

5
–

–
–

–
–

2
5
.8

8
5
.8

8
9
.4

1
7
.0

6
7
.0

6
0

2
.3

5
4
.7

1

S
O

8
–

–
–

–
–

–
4
.7

1
0

9
.4

1
4
.7

1
1
.1

8
0

0

S
O

1
0

–
–

–
–

–
–

–
2
.3

5
3
.5

3
3
.5

3
1
.1

8
0

1
.1

8

S
U
N
>

1
0

–
–

–
–

–
–

–
–

1
1
.7

6
10

.5
9

0
0

2
.3

5

E
N

–
–

–
–

–
–

–
–

–
5
.8

8
0

0
3.

5
3

E
6
⊗
E

6
–

–
–

–
–

–
–

–
–

–
0

0
0

F
S
U

5
–

–
–

–
–

–
–

–
–

–
–

2
.3

5
0

G
P
S

–
–

–
–

–
–

–
–

–
–

–
–

0

T
ot

al
75

.2
9

48
.2

4
4.

71
3
0
.5

9
3
.5

3
5
5
.2

9
2
1
.1

8
1
7
.6

5
3
7
.6

5
24

.7
1

2
.3

5
3
.5

3
8.

2
4

122

T
ab

le
B

.2
.1

6
:

S
ta

ti
st

ic
s

o
f
D

=
6,
N

=
0

M
od

el
s

–
T

h
e

p
er

ce
n
ta

ge
of

al
l

u
n

iq
u

e
N

=
0

m
o
d

el
s

w
it

h
ea

ch
co

m
b

in
at

io
n

o
f

ga
u

g
e

gr
ou

p
s

is
ta

b
u

la
te

d
.

H
er

e
ea

ch
va

lu
e

is
ca

lc
u

la
te

d
ag

ai
n

st
th

e
73
N

=
0

m
o
d

el
s,

i.
e.
S
U

3
⊗
S
U

5
a
p

p
ea

rs
in

4
.1

1%
of

th
es

e
73

m
o
d
el

s.

N
=

73
U

1
S
U

2
S
U

3
S
U

4
S
U

5
S
U
N
>

5
S
O

8
S
O

1
0

S
U
N
>

1
0

E
N

E
6
⊗
E

6
F
S
U

5
G
P
S

U
1

45
.2

1
23

.2
9

6.
85

2
0
.5

5
5
.4

8
4
5
.2

1
8
.2

2
1
2
.3

3
6
.8

5
10

.9
6

2
.7

4
5
.4

8
8.

2
2

S
U

2
–

41
.1

0
0

9
.5

9
0

2
4
.6

6
9
.5

9
2
.7

4
1
5
.0

7
10

.9
6

0
0

5
.4

8

S
U

3
–

–
2.

74
0

4
.1

1
4
.1

1
0

0
0

0
0

4
.1

1
0

S
U

4
–

–
–

1
0
.9

6
0

1
7
.8

1
4
.1

1
4
.1

1
1
.3

7
2
.7

4
0

0
4.

1
1

S
U

5
–

–
–

–
2
.7

4
2
.7

4
0

0
0

0
0

2
.7

4
0

S
U
N
>

5
–

–
–

–
–

2
4
.6

6
6
.8

5
8
.2

2
5
.4

8
6
.8

5
0

2
.7

4
6
.8

5

S
O

8
–

–
–

–
–

–
6
.8

5
0

1
0
.9

6
5
.4

8
0

0
0

S
O

1
0

–
–

–
–

–
–

–
2
.7

4
0

2
.7

4
1
.3

7
0

0

S
U
N
>

1
0

–
–

–
–

–
–

–
–

9
.5

9
10

.9
6

0
0

0

E
N

–
–

–
–

–
–

–
–

–
8
.2

2
1
.3

7
0

0

E
6
⊗
E

6
–

–
–

–
–

–
–

–
–

–
0

0
0

F
S
U

5
–

–
–

–
–

–
–

–
–

–
–

2
.7

4
0

G
P
S

–
–

–
–

–
–

–
–

–
–

–
–

1
.3

7

T
ot

al
58

.9
0

45
.2

1
6.

85
2
1
.9

2
5
.4

8
5
2
.0

5
2
6
.0

3
1
3
.7

0
3
2
.8

8
26

.0
3

2
.7

4
5
.4

8
8.

2
2

123

T
ab

le
B

.2
.1

7:
S

ta
ti

st
ic

s
o
f
D

=
5,
N

=
0

M
od

el
s

–
T

h
e

p
er

ce
n
ta

ge
of

al
l

u
n

iq
u

e
N

=
0

m
o
d

el
s

w
it

h
ea

ch
co

m
b

in
at

io
n

o
f

ga
u

ge
gr

ou
p

s
is

ta
b

u
la

te
d

.
H

er
e

ea
ch

va
lu

e
is

ca
lc

u
la

te
d

ag
ai

n
st

th
e

29
2
N

=
0

m
o
d

el
s,

i.
e.
S
U

3
⊗
S
U

2
⊗
U

1
a
p

p
ea

rs
in

7
.5

3%
of

th
es

e
29

2
m

o
d

el
s.

N
=

29
2

U
1

S
U

2
S
U

3
S
U

4
S
U

5
S
U
N
>

5
S
O

8
S
O

1
0

S
U
N
>

1
0

E
N

E
6
⊗
E

6
F
S
U

5
G
P
S

G
L
R
S

G
S
M

U
1

68
.1

5
47

.6
0

15
.0

7
35

.9
6

1
5
.7

5
6
3
.3

6
1
6
.1

0
1
3
.7

0
1
8
.1

5
1
4
.0

4
1
.7

1
1
5
.7

5
1
3
.7

0
4
.4

5
7
.5

3

S
U

2
–

41
.7

8
7.

53
22

.9
5

6
.8

5
3
6
.9

9
9
.5

9
7
.8

8
1
3
.3

6
8
.9

0
0
.6

8
6
.8

5
9
.2

5
1
.0

3
4
.4

5

S
U

3
–

–
9.

25
4.

79
5
.8

2
1
0
.2

7
1
.0

3
1
.3

7
0

1
.0

3
0

5
.8

2
2
.0

5
2
.7

4
4
.4

5

S
U

4
–

–
–

16
.4

4
6
.5

1
2
6
.0

3
7
.5

3
5
.1

4
7
.1

9
4
.4

5
0

6
.5

1
7
.1

9
2
.0

5
3
.4

2

S
U

5
–

–
–

–
6
.5

1
1
0
.6

2
0
.6

8
0
.6

8
0

0
.3

4
0

6
.5

1
1
.7

1
2
.0

5
2
.7

4

S
U
N
>

5
–

–
–

–
–

2
9
.7

9
9
.5

9
9
.5

9
1
0
.2

7
8
.2

2
0
.3

4
1
0
.6

2
8
.9

0
1
.7

1
4
.7

9

S
O

8
–

–
–

–
–

–
4
.1

1
2
.4

0
5
.8

2
3
.4

2
0

0
.6

8
3
.7

7
0

0

S
O

1
0

–
–

–
–

–
–

–
2
.4

0
3
.4

2
2
.7

4
0
.6

8
0
.6

8
1
.7

1
0

0

S
U
N
>

1
0

–
–

–
–

–
–

–
–

6
.8

5
6
.8

5
0
.3

4
0

2
.7

4
0

0

E
N

–
–

–
–

–
–

–
–

–
4
.1

1
0
.3

4
0
.3

4
0
.6

8
0

0

E
6
⊗
E

6
–

–
–

–
–

–
–

–
–

–
0

0
0

0
0

F
S
U

5
–

–
–

–
–

–
–

–
–

–
–

6
.5

1
1
.7

1
2
.0

5
2
.7

4

G
P
S

–
–

–
–

–
–

–
–

–
–

–
–

2
.7

4
0
.3

4
0
.3

4

G
L
R
S

–
–

–
–

–
–

–
–

–
–

–
–

–
1
.0

3
1
.0

3

G
R
S
M

–
–

–
–

–
–

–
–

–
–

–
–

–
–

2
.7

4

G
S
M

–
–

–
–

–
–

–
–

–
–

–
–

–
–

2
.7

4

T
ot

al
87

.6
7

54
.7

9
15

.0
7

40
.7

5
1
5
.7

5
6
5
.0

7
2
0
.5

5
1
7
.1

2
2
6
.7

1
1
8
.1

5
1
.7

1
1
5
.7

5
1
6.

7
8

4
.4

5
7
.5

3

124

BIBLIOGRAPHY

[1] M. Green, J.H. Schwarz, and E. Witten. Superstring Theory. Vol. 1: Introduc-
tion. Cambridge University Press, 1987.

[2] M. Green, J.H. Schwarz, and E. Witten. Superstring Theory. Vol. 2: Loop
Amplitudes, Anomalies And Phenomenology. Cambridge University Press,
1987.

[3] J. Polchinski. String theory. Vol. 1: An introduction to the bosonic string.
Cambridge University Press, 1998.

[4] J. Polchinski. String theory. Vol. 2: Superstring theory and beyond. Cambridge
University Press, 1998.

[5] K. Becker, M. Becker, and J.H. Schwarz. String theory and M-theory: A modern
introduction. Cambridge University Press, 2007.

[6] M. Robinson, G. Cleaver, and M. Hunziker. Free fermionic heterotic model
building and root systems. Mod. Phys. Lett., A24:2703–2715, 2009.

[7] F. Gliozzi, J. Scherk, and D. Olive. Supergravity and the spinor dual model.
Phys.Lett., B65:282, 1976.

[8] F. Gliozzi, J. Scherk, and D. Olive. Supersymmetry, supergravity theories and
the dual spinormodel. Nucl.Phys., B122:253–290, 1977.

[9] D. Gross, J. Harvey, E. Martinec, and R. Rohm. The heterotic string.
Phys.Rev.Lett., 54:502–505, 1985.

[10] D. Gross, J. Harvey, E. Martinec, and R. Rohm. Heterotic string theory. 1. the
free heterotic string. Nucl.Phys., B256:253, 1985.

[11] D. Gross, J. Harvey, E. Martinec, and R. Rohm. Heterotic string theory. 2. the
interacting heterotic string. Nucl.Phys., B267:75, 1986.

[12] G. Cleaver, A. Faraggi, D. Nanopoulos, and J. Walker. Phenomenological study
of a minimal superstring standard model. Nucl. Phys., B593:471–504, 2001.

[13] J. Lopez, D. Nanopoulos, and K. Yuan. The search for a realistic flipped su(5)
string model. Nucl. Phys., B399:654–690, 1993.

[14] A. Faraggi, D. Nanopoulos, and K. Yuan. A standard like model in the 4d free
fermionic string formulation. Nucl. Phys., B335:347, 1990.

[15] A. Faraggi. Construction of realistic standard - like models in the free fermionic
superstring formulation. Nucl. Phys., B387:239–262, 1992.

[16] I. Antoniadis, G. Leontaris, and J. Rizos. A three generation su(4) x o(4) string
model. Phys. Lett., B245:161–168, 1990.

125

[17] G. Leontaris and J. Rizos. N=1 supersymmetric su(4)xsu(2)lxsu(2)r effective
theory from the weakly coupled heterotic superstring. Nucl. Phys., B554:3–
49, 1999.

[18] A. Faraggi. A new standard - like model in the four-dimensional free fermionic
string formulation. Phys. Lett., B278:131–139, 1992.

[19] A. Faraggi. Aspects of nonrenormalizable terms in a superstring derived stan-
dard - like model. Nucl. Phys., B403:101–121, 1993.

[20] A. Faraggi. Generation mass hierarchy in superstring derived models. Nucl.
Phys., B407:57–72, 1993.

[21] A. Faraggi. Hierarchical top - bottom mass relation in a superstring derived
standard - like model. Phys. Lett., B274:47–52, 1992.

[22] A. Faraggi. Yukawa couplings in superstring derived standard like models.
Phys. Rev., D47:5021–5028, 1993.

[23] A. Faraggi. Top quark mass prediction in superstring derived standard - like
model. Phys. Lett., B377:43–47, 1996.

[24] A. Faraggi. Calculating fermion masses in superstring derived standard - like
models. Nucl. Phys., B487:55–92, 1997.

[25] G. Cleaver. Advances in old-fashioned heterotic string model building. Nucl.
Phys. Proc. Suppl., 62:161–170, 1998.

[26] G. Cleaver and A. Faraggi. On the anomalous u(1) in free fermionic superstring
models. Int. J. Mod. Phys., A14:2335–2356, 1999.

[27] G. Cleaver, M. Cvetic, J. Espinosa, L. Everett, and P. Langacker. Classifi-
cation of flat directions in perturbative heterotic superstring vacua with
anomalous u(1). Nucl. Phys., B525:3–26, 1998.

[28] G. Cleaver, M. Cvetic, J. Espinosa, L. Everett, and P. Langacker. Flat di-
rections in three-generation free-fermionic string models. Nucl. Phys.,
B545:47–97, 1999.

[29] G. Cleaver et al. Physics implications of flat directions in free fermionic super-
string models. i: Mass spectrum and couplings. Phys. Rev., D59:055005,
1999.

[30] G. Cleaver et al. Physics implications of flat directions in free fermionic super-
string models. ii: Renormalization group analysis. Phys. Rev., D59:115003,
1999.

[31] G. Cleaver. Quark masses and flat directions in string models. pages 332–340,
1998.

[32] G. Cleaver, A. Faraggi, and D. Nanopoulos. String derived mssm and m-theory
unification. Phys. Lett., B455:135–146, 1999.

126

[33] G. Cleaver, A. Faraggi, and D. Nanopoulos. A minimal superstring standard
model. i: Flat directions. Int. J. Mod. Phys., A16:425–482, 2001.

[34] G. Cleaver, A. Faraggi, D. Nanopoulos, and J. Walker. Phenomenological study
of a minimal superstring standard model. Nucl. Phys., B593:471–504, 2001.

[35] G. Cleaver. M fluences on string model building. 1999.

[36] G. Cleaver, A. Faraggi, D. Nanopoulos, and J. Walker. Non-abelian flat direc-
tions in a minimal superstring standard model. Mod. Phys. Lett., A15:1191–
1202, 2000.

[37] G. Cleaver, A. Faraggi, and C. Savage. Left-right symmetric heterotic-string
derived models. Phys. Rev., D63:066001, 2001.

[38] G. Cleaver, A. Faraggi, D. Nanopoulos, and J. Walker. Phenomenology of
non-abelian flat directions in a minimal superstring standard model. Nucl.
Phys., B620:259–289, 2002.

[39] G. Cleaver, D. Clements, and A. Faraggi. Flat directions in left-right symmetric
string derived models. Phys. Rev., D65:106003, 2002.

[40] G. Cleaver, A. Faraggi, and S. Nooij. Nahe-based string models with su(4) x
su(2) x u(1) so(10) subgroup. Nucl. Phys., B672:64–86, 2003.

[41] G. Cleaver. Parameter space investigations of free fermionic heterotic models.
2002.

[42] G. Cleaver et al. On the possibility of optical unification in heterotic strings.
Phys. Rev., D67:026009, 2003.

[43] J. Perkins, B. Dundee, R. Obousy, E. Kasper, M. Robinson, et al. Heterotic
string optical unification. pages 86–93, 2003.

[44] J. Perkins et al. Stringent phenomenological investigation into heterotic string
optical unification. Phys. Rev., D75:026007, 2007.

[45] G. Cleaver, A. Faraggi, E. Manno, and C. Timirgaziu. Quasi-realistic heterotic-
string models with vanishing one-loop cosmological constant and pertur-
batively broken supersymmetry? Phys. Rev., D78:046009, 2008.

[46] J. Greenwald, K. Pechan, T. Renner, T. Ali, and G. Cleaver. Note on a nahe
variation. Nucl.Phys., B850:445–462, 2011.

[47] G. Cleaver, A. Faraggi, J. Greenwald, D. Moore, K. Pechan, et al. Investiga-
tion of quasi-realistic heterotic string models with reduced higgs spectrum.
Eur.Phys.J., C71:1842, 2011.

[48] S. Elitzur, E. Gross, E. Rabinovici, and N. Seiberg. Aspects of bosonization in
string theory. Nucl.Phys., B283:413, 1987.

[49] D. Bailin, D. Dunbar, and A. Love. Bosonization of four-dimensional real
fermionic string models and asymmetric orbifolds. Nucl.Phys., B330:124,
1990.

127

[50] I. Antoniadis, C. Bachas, and C. Kounnas. Four-dimensional superstrings.
Nucl. Phys., B289:87, 1987.

[51] I. Antoniadis and C. Bachas. 4-d fermionic superstrings with arbitrary twists.
Nucl. Phys., B298:586, 1988.

[52] H. Kawai, D. Lewellen, and S.H.H. Tye. Construction of fermionic string models
in four- dimensions. Nucl. Phys., B288:1, 1987.

[53] H. Dreiner, J. Lopez, D. Nanopoulos, and D. Reiss. String model building in
the free fermionic formulation. Nucl. Phys., B320:401, 1989.

[54] G. Cleaver. Supersymmetries in free fermionic strings. Nucl. Phys., B456:219–
256, 1995.

[55] R. Bousso and J. Polchinski. Quantization of four-form fluxes and dynamical
neutralization of the cosmological constant. JHEP, 06:006, 2000.

[56] S. Ashok and M. Douglas. Counting flux vacua. JHEP, 01:060, 2004.

[57] K. Dienes. Statistics on the heterotic landscape: Gauge groups and cosmological
constants of four-dimensional heterotic strings. Phys. Rev., D73:106010,
2006.

[58] K. Dienes, M. Lennek, D. Senechal, and V. Wasnik. Supersymmetry versus
gauge symmetry on the heterotic landscape. Phys. Rev., D75:126005, 2007.

[59] K. Dienes and M. Lennek. Fighting the floating correlations: Expectations and
complications in extracting statistical correlations from the string theory
landscape. Phys. Rev., D75:026008, 2007.

[60] D. Moore, J. Greenwald, T. Renner, M. Robinson, C. Buescher, et al. Sys-
tematic investigations of the free fermionic heterotic string gauge group
statistics: Layer 1 results. Mod.Phys.Lett., A26:2411–2426, 2011.

[61] D. Moore, J. Greenwald, and G. Cleaver. Gauge models in d dimensions.
Mod.Phys.Lett., A28:1350055, 2013.

[62] H. Kawai, D. Lewellen, J. Schwartz, and S.H.H. Tye. The spin structure con-
struction of string models and multiloop modular invariance. Nucl. Phys.,
B299:431, 1988.

[63] H. Kawai, D. Lewellen, and S.H.H. Tye. Classification of closed fermionic string
models. Phys. Rev., D34:3794, 1986.

[64] T. Renner, J. Greenwald, D. Moore, and G. Cleaver. Redundancies in explic-
itly constructed ten dimensional heterotic string models. Int.J.Mod.Phys.,
A26:4451–4473, 2011.

[65] T. Renner. Initial systematic investigations of the weakly coupled free fermionic
heterotic string landscape statistics. http://hdl.handle.net/2104/8240,
2011.

128

[66] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

[67] V. Cerny. Thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm. Journal of Optimization Theory and Appli-
cations, 45(1):41–51, 1985.

129

