
ABSTRACT

Restarting the Lanczos Algorithm for Large Eigenvalue Problems
and Linear Equations

Dywayne A. Nicely, Ph.D.

Advisor: Ronald B. Morgan, Ph.D.

We are interested in computing eigenvalues and eigenvectors of large matrices

and in solving large systems of linear equations. Restarted versions of both the

symmetric and nonsymmetric Lanczos algorithms are given.

For the symmetric case, we give a method called Lan-DR that simultaneously

solves linear equations and computes eigenvalues and eigenvectors. The use of ap-

proximate eigenvectors deflates eigenvalues. Maintaining the orthogonality of the

Lanczos vectors is a concern. We suggest an approach that is a combination of Par-

lett and Scott’s idea of selective orthogonalization and Simon’s partial orthogonal-

ization. For linear systems with multiple right-sides, eigenvectors computed during

the solution of the first right-hand side can be used to give much faster convergence

of the second and subsequent right-hand sides.

A restarted version of the nonsymmetric Lanczos algorithm is developed. Both

the right and left eigenvectors are computed while systems of linear equations are

solved. We also investigate a restarted two-sided Arnoldi. We compare expense and

stability of this approach with restarted nonsymmetric Lanczos.
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CHAPTER ONE

Introduction

In this dissertation, we are interested in solving the eigenvalue problem

Az = λz,

and the linear equations problem

Ax = b.

The cases where A is a large symmetric (and Hermitian) and a large nonsymmetric

(and non-Hermitian) square matrix are discussed. We deflate eigenvalues using the

thick restarting technique given by Wu and Simon in [25, 56, 64] and as mentioned

both new methods are related to implicitly restarted Arnoldi [56] and GMRES-DR

[25]. Deflating eigenvalues can improve the convergence of restarted methods. The

idea of deflation is as follows. At the restart we augment the Krylov subspace with

approximate eigenvectors. This allows us to compute many eigenvalues at the same

time. For linear equations, the approximated eigenvectors essentially remove or de-

flate the corresponding eigenvalues. This can dramatically improve the convergence

and can mostly make up for the effect of the restarting.

The new methods are called Lanczos with deflated restarting (Lan-DR) and

Nonsymmetric Lanczos with deflated restarting (NLan-DR), respectively. When

solving systems of linear equations Lan-DR is closely related to the Conjugate Gra-

dient method (CG) while NLan-DR it is closely related to the Biconjugate Gradient

method (BiCG). Convergence theories on how deflation aides Lan-DR and NLan-

DR are given. Also due to the known instabilities of the Lanczos algorithm, we

give an alternate method to NLan-DR. This method is Two-Sided Arnoldi with de-

flated restarting (TSArn-DR). TSArn-DR is also equipped to solve systems of linear

equations.

1



2

Also, in the case of a linear system with multiple right-hand sides the deflation

of small eigenvalues aides in the quicker convergence of the second and subsequent

right-hand sides. An application involving multiple right-hand sides is Quantum

Chromodynamics problems or QCD problems. Some examples are given for the

hermitian case. In the nonsymmetric case, we also give examples of how deflation

aides in the convergence of linear systems with multiple right-hand sides.

In chapter 2, we introduce Krylov subspace methods in particular symmetric

and nonsymmetric Lanczos. This chapter also includes some examples showing

how polynomials can be used to analyze convergence and also includes convergence

theory that uses polynomials to analyze convergence. The importance of deflation

in Krylov methods is discussed. Lan-DR is presented in Chapter 3 and numerical

examples are given for solving the eigenvalue problems and finding solutions to

systems with multiple right-hand sides (this includes QCD problems). Chapter

4 presents NLan-DR, and NLan-DR’s linear equation solvers, biconjugate gradient

with deflated restarting (BiCG-DR) and deflated biconjugate gradient stabilized (D-

BiCGStab). Numerical examples are given including comparisons to ARPACK and

BiCG-DR versus GMRES-DR (first right-hand side) and non-deflated BiCGStab and

D-BiCGStab (for the second and subsequent right-hand sides) for linear equations.

In chapter 5, TSArn-DR is discussed and examples comparing NLan-DR and TSArn-

DR are given.



CHAPTER TWO

Preliminaries

2.1 The Rayleigh-Ritz Procedure for eigenvalues

Standard eigenvalue methods such as the QR iteration are too expensive for

large problems. So iterative methods are need for these large problems, and of those

iterative methods, Krylov subspace methods are the most popular.

The Rayleigh-Ritz procedure,[38, 46] extracts approximate eigenvectors from

a subspace of Rn by reducing to a smaller eigenvalue problem. The Krylov methods

described later use this procedure.

The Rayleigh-Ritz Procedure

1. Let S be a j−dimensional subspace of Rn.

2. Compute Q, an n× j orthonormal matrix whose columns span S.

3. Compute the j × j matrix H = QT AQ.

4. Find eigenvalues θi of H, and if desired, find eigenvectors gi of unit length.

The θi are approximate eigenvalues of A called Ritz values. The Ritz vectors,

yi = Qgi, are approximate eigenvectors of A. The residual norms are ‖ri‖ =

‖Ayi − θiyi‖.

2.2 Krylov Subspaces

The Krylov subspace of dimension m with starting vector v is:

Km = Km(A, v) = Span{v, Av,A2v, ..., Am−1v}.

A Krylov subspace has the following property: Km is the subspace of all vectors in

Rn which can be written as x = p(A)v where p is a polynomial degree m− 1 or less.

3
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2.3 Krylov Methods

In this section we discuss methods that utilize Krylov subspaces. These meth-

ods are very useful for finding approximations to eigenvalues and can be used to

solve systems of linear equations. We first focus on eigenvalues.

2.3.1 Arnoldi Method

The Arnoldi method [2, 44, 46] is used for a large matrix A. The method

produces a small matrix Hm which can give accurate approximations to some of the

eigenvalues of A. We offer the following algorithm which is actually the Modified

Gram-Schmidt version of the Arnoldi algorithm. This method is more reliable than

the standard version of the Arnoldi method in the face of roundoff problems.

The Arnoldi Algorithm

1. Choose an initial vector v1 of norm 1.

2. For j = 1, 2, ...m. Do:

3. Compute wj := Avj

4. For i = 1, 2, ...j. Do:

5. hij := (wj, vi)

6. wj := wj − hijvi

7. EndDo

8. hj+1,j = ‖wj‖2. If hj+1,j = 0 Stop

9. vj+1 = wj+1/hj+1,j

10. EndDo
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The resulting Hm matrix is upper-Hessenberg. An upper-Hessenberg matrix

has zero entries if i ≥ j + 1, where i and j are the row and column of the matrix.

So it is an upper triangular matrix with the addition of the sub-diagonal. Also from

the Arnoldi algorithm we obtain the following relations:

AVm = VmHm + wmeT
m

AVm = Vm+1H̄m

V T
m AVm = Hm

where Vm is an n × m matrix whose columns are the vectors v1, ..., vm, H̄m is the

(m + 1) × m upper-Hessenberg matrix whose entries, hij, are obtained from the

algorithm, and Hm is obtained from removing the m+1st row of H̄m. These relations

are important, for this work, because the symmetric and nonsymmetric Lanczos

algorithms have similar relations with their matrix Tm.

As stated earlier, the above algorithm is the modified Gram-Schmidt version of

the Arnoldi algorithm. And while this method is often more reliable for maintaining

orthogonality between the vectors, sometimes cancellations in the orthogonalization

steps cause roundoff error and loss of orthogonality. The idea to remedy this is to do

double orthogonalization, or a reorthogonalization, but this is a significant increase

of expense for an already expensive method. It is known that reorthogonalizing

more than once is redundant. Also, sometimes a partial reorthogonalization is per-

formed where a vector is only reorthogonalized if its norm drops by over 90% during

orthogonalization [5].

2.3.2 Symmetric Lanczos

The symmetric Lanczos algorithm is a special case or simplification of the

Arnoldi algorithm that is used when the matrix A is symmetric.
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The Symmetric Lanczos Algorithm

1. Choose an initial vector v1 of norm 1. Set β1 ≡ 0 and v0 ≡ 0.

2. For j = 1, 2, ...m. Do:

3. wj := Avj − βjvj−1

4. αj := (wj, vj)

5. wj = wj − αjvj

6. βj+1 = ‖wj‖2 If βj+1 = 0 Stop

7. vj+1 = wj+1/βj+1

8. EndDo

Since A is symmetric, the resulting V T
m AVm matrix, now called Tm is now

tridiagonal, i.e.

Tm =




α1 β2

β2 α2 β3

. . .

βm−1 αm−1 βm

βm αm




where the α′is and β′is come from the algorithm. An orthonormal set of vectors,

{v1, v2, ..., vm}, results from the symmetric Lanczos algorithm. But this set of vectors

has a unique property. It can be generated using a three-term recurrence. This brings

us to the following proposition.

Proposition 2.1. Given the fact that span{v1, ..., vi} = span{v1, Av1, ..., A
i−1v1} for

i < j and {v1, v2, ..., vj} is a set of orthonormal vectors, if you form the next vector,

vj+1, by orthogonalizing Avj against the previous two vectors, vj and vj−1, then vj+1

is automatically orthogonal to {v1, ..., vj−2}.
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Proof. Consider w = Avj−αvj−βvj−1, with α and β chosen so that w is orthogonal

to vj and vj−1. We want vT
i w = 0 for i < j − 1. So,

vT
i w = vT

i (Avj − αvj − βvj−1)

= vT
i Avj − αvT

i vj − βvT
i vj−1

= vT
i Avj

since vi ⊥ vj, vj−1. Note,

span{v1, v2, ..., vj} = span{v1, Av1, ..., A
j−1vi}.

Therefore

vT
i Avj = vT

i AT vj(A symmetric)

= (Avi)
T vj

= 0

since Avi ∈ span{v1, ..., vi+1} and i + 1 < j.

As mentioned earlier, the symmetric Lanczos method has similar relations to

the Arnoldi method. The difference is in the resulting matrices (Hm for Arnoldi and

Tm for Lanzos):

AVm = VmTm + wmeT
m

AVm = Vm+1T̄m

V T
m AVm = Tm.

The symmetric Lanczos method can incur breakdown problems, namely where

βj+1 = 0. However, for the symmetric Lanczos algorithm, breakdown is an advan-

tage. Like the Arnoldi algorithm, at this breakdown step eigenpairs are exact. Then

from this point one needs to restart in order to find the remaining desired eigenpairs.
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2.3.3 Nonsymmetric Lanczos

The nonsymmetric Lanczos algorithm utilizes two Krylov subspaces,

Km(A, v1) = span{v1, Av1, ..., A
m−1v1}

Km(AT , w1) = span{w1, A
T w1, ..., (A

T )m−1w1}.

Biorthogonal sets of vectors, v′is and w′
is respectively, are produced that span these

two subspaces. By biorthogonality we mean that,

(vi, wj) = δij =





1 if i = j

0 if i 6= j

which, in actuality, makes these sets of vectors biorthonormal.

The matrix A is associated with the v vectors and the w vectors with its

transpose, AT . The nonsymmetric Lanczos algorithm gives a three-term recurrence

for generating the biorthonormal bases. So Orthogonalizations are saved, compared

to the Arnoldi method, which reduces expense for sparse matrices and computes

both right and left eigenvectors simultaneously.

The Nonsymmetric Lanczos Algorithm

1. Choose two vectors v1 and w1 such that (v1, w1) = 1.

2. Set β1 = δ1 ≡ 0 and w0 = v0 ≡ 0.

3. For j = 1, 2, ...m. Do:

4. αj := (Avj, wj)

5. v̂j+1 = Avj − αjvj − βjvj−1

6. ŵj+1 = AT vj − αjwj − δjwj−1

7. δj+1 = |(v̂j+1, ŵj+1)| 12 . If δj+1 = 0 Stop.
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8. βj+1 = (v̂j+1, ŵj+1)/δj+1

9. wj+1 = ŵj+1/βj+1

10. vj+1 = v̂j+1/δj+1

11. EndDo

The form of the resulting tridiagonal matrix, Tm = W T
mAVm, formed during

the nonsymmetric Lanczos algorithm is

Tm =




α1 β2

δ2 α2 β3

. . .

δm−1 αm−1 βm

δm αm




where the α′s, β′s and δ′s come from the three-term recurrence produced by the

Nonsymmetric Lanczos algorithm. The three-term recurrence is as follows,

vj+1 =
Avj − αjvj − βjvj−1

δj+1

wj+1 =
AT wj − αjwj − δjwj−1

βj+1

.

And this brings us to the following proposition.

Proposition 2.2. Given the fact that span{v1, ..., vi} = span{v1, Av1, ..., A
i−1v1} and

span{w1, ..., wi} = span{w1, A
T w1, ..., (A

T )i−1w1} for i < j ,and for biorthonormal

sets of vectors {v1, ..., vj} and {w1, ..., wj}, if you form the next vectors, vj+1 and

wj+1, corresponding to the respective sets and orthogonalize Avj against the previous

two vectors, wj and wj−1, and do the same with AT wj against vj and vj−1 then

vj+1 will be automatically orthogonal to {w1, ..., wj−2} as will wj+1 be automatically

orthogonal to {v1, ..., vj−2}.
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Proof. Let {v1, ..., vj} and {w1, ..., wj} be orthogonal bases. Consider u = Avj −
αvj − βvj−1 with α and β chosen so that u is orthogonal to wj and wj−1. We want

wT
i u = 0 for i < j − 1.

wT
i u = wT

i (Avj − αvj − βvj−1)

= wT
i Avj − αwT

i vj − βwT
i vj−1

= wT
i Avj.

Note, span{w1, ..., wj} = span{w1, A
T w1, (A

T )2w1, ..., (A
T )j−1w1}. Thus,

wT
i Avj = (AT wi)

T vj

= 0.

This comes from the fact that AT wi ∈ span{w1, ..., wi+1} and {w1, ..., wi+1} are all

orthogonal to vj with i + 1 < j. Now consider y = AT wj − γwj − ηwj−1 with γ and

η chosen such that y is orthogonal to vj and wj−1. Similarly we want vT
i y = 0 for

i < j − 1. So,

vT
i y = wT

i (AT wj − γwj − ηwj−1)

= vT
i AT wj − γvT

i wj − ηvT
i wj−1

= vT
i AT wj.

Note we have, span{v1, ..., vj} = span{v1, Av1, A
2v1, ..., A

j−1v1}. Therefore,

vT
i AT wj = (Avi)

T wj

= 0.

This comes from the fact that Avi ∈ span{v1, ..., vi+1} and {v1, ..., vi+1} are all

orthogonal to wj with i + 1 < j.

It is clear that this recurrence saves orthogonalizations, because one only has

to orthogonalize against the previous two vectors of a subspace. Like the Arnoldi
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algorithm, the Nonsymmetric Lanczos algorithm has relations involving Vm,Wm, A,

and AT ,

AVm = VmTm + δm+1vm+1e
T
m (2.1)

AVm = Vm+1T̄m (2.2)

and

AT Wm = WmT T
m + βm+1wm+1e

T
m

AT Wm = Wm+1T̄
T
m

which yields

T = W T
mAVm

where Vm is an n×m matrix whose columns are the vectors v1, ..., vm, Wm is an n×m

matrix whose columns are the vectors w1, ..., wm, T̄m and T̄ T
m are the (m + 1) ×m

tridiagonal matrices whose entries are obtained from the algorithm, and Tm and T T
m

are obtained from removing the m + 1st rows of T̄m and T̄ T
m respectively.

Nonsymmetric Lanczos generally has significant roundoff error that causes lose

of biorthogonality. There can even be breakdown. The fix for these problems is the

look-ahead method introduced by Parlett. [41]

2.4 Two-Sided Arnoldi

The two-sided Arnoldi algorithm is credited to Axel Ruhe [42]. This method

has two subspaces, like nonsymmetric Lanczos, that are associated with A and AT

respectively. However the vectors, v and w, that are produced in this method are

not biorthonormal.

The Two-Sided Arnoldi Algorithm

1. Perform the Arnoldi algorithm until right vector has converged, giving AVm =

Vm+1H̄mm.
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2. Compute left eigenvector approximation:

tT Hmm = zT = tT V T
m

3. Perform the Arnoldi algorithm from the left

4. wT
1 = zT

5. Compute wT
j , orthonormal and Kjj lower Hessenberg, such that W T

j A =

K̄jjW
T
j+1.

6. Stop when left vector has converged indicated by

tT Kjj = νtT

|tjkjj+1| small

7. If possible, adjust vectors so that adjusted residuals v′j+1 and w′k+1 satisfy

w′Tk+1Vj = 0

W T
k v′j+1.

2.5 Deflation in Krylov Methods

Techniques that remove eigenvalues from a problem are often called deflation

techniques. A type of deflation can occur in Krylov type methods when approximate

eigenvectors are used to augment a Krylov subspace. Deflation occurs automatically

once the Krylov subspace grows large enough. However, in a restarted method

a Krylov subspace might not grow large enough for this automatic deflation, and

convergence will suffer accordingly. But for restarted methods, approximate eigen-

vectors can be calculated at the restart and kept for the next cycle. So when the

approximate eigenvectors, called Ritz vectors, gain a certain accuracy, they “van-

ish” or deflate from the subspace. And this is what we define as deflation. It is
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known that deflation helps convergence in eigenvalue problems and when finding

solutions to linear systems. In particular, deflation is most useful for eigenvalue

problems where eigenvalues (small or large) are close together. For convergence

of a particular eigenvalue, if there are approximate eigenvectiors in the subspace

corresponding to nearby eigenvalues then they can be deflated and the particular

eigenvalue converges faster. As for linear equations, convergence in Krylov subspace

methods depends to a large degree on the distribution of eigenvalues. (Exceptions

can be found for GMRES [14, 32].) Deflating or removing small eigenvalues helps

increase the convergence rate.

2.5.1 Deflation in Restarted Methods

In this section, we look at some recent approaches that deflate restarted Krylov

methods for both eigenvalue problems and linear equations. For eigenvalue compu-

tations with small matrices, deflation of eigenvalues that have completely converged

is a natural part of the procedure [38]. The Rayleigh-Ritz procedure [38, 46] with

large matrices can be assisted by other eigenvectors, even if they have not fully con-

verged, in the computation of a particular eigenvector. One can notice the benefits of

deflation even if these approximate eigenvectors are not very accurate. Convergence

can improve, especially for problems with close eigenvalues, when several eigenvec-

tor approximations are kept in the subspace in non-Krylov Rayleigh-Ritz methods,

such as Davidson’s method [6, 19, 21, 22, 31, 57, 50, 58], and in subspace iteration

[38, 46, 60, 16].

When restarting a Krylov method, the natural approach of beginning the next

Krylov subspace with only one vector and this makes deflation impossible. Using

block methods with addition storage and expense is a possible approach [46]. Much

better is the implicity restarted Arnoldi method [56, 20, 24]. We first discuss simple

restarted Arnoldi, then implicitly restarted Arnoldi and related methods.
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2.5.2 Restarted Arnoldi

The non-restarted Arnoldi method can be rather expensive so restarting the

method can reduce costs so Saad proposed a restarted Arnoldi method [43]. The

idea behind the algorithm is to run the Arnoldi method for the first run. Then after

the first run, you restart with a new starting vector for the second and subsequent

runs. That new starting vector is a Ritz vector or a combination of two or more Ritz

vectors. In the following example, we illustrate and explain the poor convergence of

this method compared to non-restarted Arnoldi and nonsymmetric Lanczos.

Example 2.1. We compare the Arnoldi, nonsymmetric Lanczos, and restarted Arnoldi

algorithms using a nonsymmetric, bidiagonal matrix of size 2000 with .1,1,2,...,1999

on the diagonal and 1’s on the super diagonal. For restarted Arnoldi, we use the

Ritz vector associated with the desired Ritz value for the starting vector at each

restart. This residual plot is of the smallest eigenvalue, .1, and we can see in Figure

2.1 that the Arnoldi and Lanczos algorithms have similar convergence through 350

iterations while the restarted Arnoldi algorithm lags behind. In fact, it will take
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Figure 2.1: Comparison of Restarted Arnoldi with unrestarted Arnoldi and unrestarted
nonsymmetric Lanczos.
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restarted Arnoldi more than twice the number of iterations to converge compared

to the Arnoldi and nonsymmetric Lanczos methods. This poor convergence for the

restarted Arnoldi algorithm is due to the use of Ritz vectors at the restart. This

occurs because the poor accuracy of the approximation. And when a combination

of two or more Ritz vectors are used, the poorest approximation is transferred to all

the approximations [24]. The “spiking” of the Lanczos convergence plot is typical

and for Lanczos the same starting vectors are used, i.e. v1 = w1.

2.5.3 Implicitly Restarted Arnoldi

This method, due to Sorenson [56], is a way to restart the Arnoldi method

while keeping all desired approximate eigenvectors and uses the subspace,

span{y1, y2, ..., yk, r, Ar,A2r, ..., Am−k−1r}

where the y′is are the Ritz vectors computed at the end of and Arnoldi cycle and

used in the next cycle, and r is a residual vector for one of the Ritz pairs. The

subspace used in IRAM contains the subpaces,

span{yi, Ayi, A
2yi, ..., A

m−kyi}

where yi is any of the k Ritz vectors saved from the previous cycle. So each Ritz

vector has its own Krylov subapace that is contained in the larger Krylov subspace.

So this a significant aid in the convergergenc of each Ritz vector respectively. This

is due to the fact that ri = Ayi− θiyi = βiqm+1. So the vector qm+1 is a combination

of Ayi and yi (for more see [24]).

2.5.4 Restarted Arnoldi with Eigenvector Approximations

The restarted Arnoldi with eigenvector approximations [24] uses the same

Krylov subspaces as Sorenson’s approach. Also this method is equivalent, at the

end of a cycle, to the built-in MatLab function Eigs or ARPACK. It would be ideal

for us to test against ARPACK. However, ARPACK factors often the matrix so
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this would not be a fair comparison. We use the Restarted Arnoldi with Eigenvector

Approximations method instead of ARPACK when comparing the convergence of the

eigenvalues with NLan-DR. Here we give the modern version of the restarted Arnoldi

with eigenvector approximations that places the Ritz vectors at the beginning of the

subspace [30].

Restarted Arnoldi with Eigenvector Approximations

1. Start: Choose m, the maximum size of the subspace, and k, the number

of approximated eigenvectors that are retained from one cycle to the next.

Also pick numev, the desired of eigenpairs. Specify σ, the target around

which eigenvalues are desired. Choose an initial vector v1 of unit length.

2. Arnoldi iteration: Apply the Arnoldi iteration from the current point to

form the rest of Vm+1 and H̄m. The current point is either v1 if it is the first

cycle or from vk+1 on the other cycles.

3. Small eigenvalue problem: Compute eigenpairs (θi, gi), of Hm nearest σ.

4. Check convergence Residual norm can be computed using

‖Ayi − θiyi‖ = hm+1,m|eT
mgi

and convergence can be checked. If all desired eigenvalues have acceptable

residual norm, then stop, first computing eigenvectors, if desired, as yi =

Vmgi. Otherwise continue. The next step begins the restart.

5. Orthonormalization of first k short vectors: Orthonormalize gi’s, for 1 ≤ i ≤
k, first separating into real and imaginary parts if complex, in order to form

a real m× k matrix Pk. Both parts of complex vectors need to be included,

so temporarily reduce k by 1 if necessary (or k can be increased by 1).
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6. Orthonormalization of the k+1 short vector: Let pk+1 = ek+1. This vector is

already orthonormal.

7. Form portions of new H and V using the old H and V Let H̄new
k = P T

k+1H̄mPk

and V new
k+1 = Vm+1Pk+1. Then let H̄k = H̄new

k and Vk+1 = V new
k+1 . Converged

eigenvectors can be locked in by zeroing out part of H̄k; see [30].

8. Reorthogonalization of long k+1 vector: Orthogonalize vk+1 against the ear-

lier columns of the new Vk+1. Go to step 2.

2.5.5 Thick-restarted Lanczos (TRLAN)

This method is due to Wu and Simon and is used to solve symmetric eigenvalue

problems. It is equivalent to implicitly restarted Lanczos (IRL) [3] where IRL is the

special case of Sorenson’s IRAM. The main advantage of this method is that it saves

on orthogonalizations. Orthogonalizations are saved by using an ω− recurrence that

lets you monitor orthogonality between the Lanczos vectors. So you do a partial

orthogonalization but only when the ω− recurrence deems that orthogonalization

necessary. This method also shows some effective restarting strategies [64].

2.5.6 Convergence Criteria for Eigenvalue Problems

• Want well relative separation between the eigenvalues.

• Want exterior eigenvalues.

• Don’t want a starting vector that has small components in the direction

of the eigenvectors that correspond to the eigenvalues you are interested in

because initially convergence will be slow.

We will now switch from discussing the eigenvalue problem to the solution of

the linear equations problem.
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2.6 Methods for Solving Linear Equations

In this section, we discuss Krylov methods that solve systems of linear equa-

tions. But first, we give examples of how polynomials aid in the understanding of

the convergence of these methods.

2.6.1 Convergence of Krylov Methods for Linear Equations

As stated earlier, polynomials aid in the understanding of how Krylov methods

converge. We give the following theorem for convergence analysis in dealing with a

system of linear equations. This theorem shows that the residual vector of a linear

equations problem can be written in a polynomial.

Theorem 2.1. Suppose that A has a basis of eigenvectors, then for the system of

linear equations, Ax = b the residual vector, r, can be written as r = q(A)r0, where

r0 is the initial residual vector and q is a polynomial of degree m or less and q(0) = 1.

Also r can be written as

r =
n∑

i=1

q(λi)βizi.

Proof. Let x be the initial guess for the solution to Ax = b. So the initial residual

vector is r0 = b− Ax and we have

b− Ax = r0

Ax− Ax = r0

A(x− x) = r0.

The Krylov subspace associated with this is,

Km(A, r0) = Span{r0, Ar0, A
2r0, ..., A

m−1r0}.

Now pick, x̂ ∈ Km(A, r0), where x̂ is an approximate solution to the original system.
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Then we have the residual vector

r = b− A(x + x̂)

= b− Ax− Ax̂

= r0 − Ax̂.

Now we write x̂ as,

x̂ = c1r0 + c2Ar0 + c3A
2r0 + ... + cmAm−1r0

= (c1 + c2A + c3A
2 + ... + cmAm−1)r0

= p(A)r0

where p is a polynomial of degree m− 1 or less and defined as

p(α) = c1 + c2α + c3α
2 + ... + cmαm−1.

Looking back at our residual vector r we have,

r = r0 − Ax̂

= r0 − Ap(A)r0

= (I − Ap(A))r0

= q(A)r0

where q(A) = I − Ap(A) and q is a polynomial of degree m or less and q(0) = 1.

Let zi’s and λi’s be eigenvectors and eigenvalues of A respectively. Now let r0 =

β1z1 + ... + βnzn =
∑n

i=1 βizi. So

q(A)r0 = q(A)(
n∑

i=1

βizi)

=
n∑

i=1

βiq(A)zi

=
n∑

i=1

q(λi)βizi

because Azi = λizi.

For this polynomial q we want it to be small over the spectrum of λi’s.
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2.6.2 How Polynomials Help Analyze Convergence

In this section, we give an example of how polynomials help analyze conver-

gence. All the graphs use the same matrix that is bidiagonal with a diagonal of 0.1,

1,2,3,...,999, and a superdiagonal of all 1’s.

Example 2.2. We begin with the GMRES (referred to in section 2.6.4) polynomial

of degree 10. Recall, the ideal situation for convergence is for the value of the

polynomial to be 1 at x = 0 and small over the eigenvalues.
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Figure 2.2. Behavior of a 10th degree GMRES polynomial over the eigenvalues

As seen in Figure 2.2, the polynomial is not small at the first eigenvalue of

0.1 and has this oscillating behavior over the remainder of the eigenvalues. This

oscillating behavior is fine if the polynomial remains small over the eigenvalues, but

this is not happening in this situation.

Now we take a broad and close look at the GMRES polynomial of degree 50.

From Figure 2.3, the polynomial seems to be flattening out as the eigenvalues increase

in size. However this polynomial is still not what we want. As we zoom in and take

a closer look at this polynomial in Figure 2.4 , we can see that we still have a large

polynomial value at the eigenvalue of 0.1. Also over the remaining eigenvalues, the
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Figure 2.3. Behavior of a 50th degree GMRES polynomial over the eigenvalues

polynomial values are not small enough and there is still some oscillating behavior

though it is getting better.
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Figure 2.4: Behavior of a 50 degree GMRES polynomial over the eigenvalues (Close-Up
View)

Figure 2.5 shows a polynomial of degree 100. We can see that for the eigen-

values of 2 and greater we are getting small polynomial values but the polynomial

still is not small at the eigenvalues of 0.1 and 1.
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Figure 2.5. Behavior of a 100 degree GMRES polynomial over the eigenvalues

Figure 2.6 illustrates what we want. The polynomial is small over all the

eigenvalues. Notice the polynomial dips down and comes back up before getting to

zero at the eigenvalue of 1. This behavior is fine because we don’t care how the

polynomial behaves between the eigenvalues. We just require that the polynomial

be one at zero and small over the eigenvalues.
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Figure 2.6. Behavior of a 150 degree GMRES polynomial over the eigenvalues

So we need a polynomial of degree 150 to get good convergence and this
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is illustrated in the next Figure 2.7. The figure shows the residual curve of the

solution to the linear equations. We can see that between 100 and 150 matrix-

vector products, which corresponds to the number of iterations in this case, that we

are getting convergence of the linear equations.
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Figure 2.7: Convergence behavior of the Linear Equations problem associated with the
polynomials

2.6.3 Conjugate Gradient (CG)

This method can be derived from the symmetric Lanczos algorithm and is

best known for solving systems of sparse symmetric positive definite matrices. A

symmetric positive definite matrix, call it A, is a symmetric matrix that has the

property that for any nonzero vector x ∈ Rn, xT Ax > 0. Equivalently, all of the

eigenvalues are positive. From that, the CG method is not suitable for nonsymmetric

systems of linear equations because the orthogonality of the residuals cannot be made

with short recurrences [9, 63].

2.6.4 Generalized Minimum Residual (GMRES)

The generalized minimum residual method or GMRES is a more expensive

method than the CG method due to the fact orthogonality of the residual vectors is
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maintained by using long recurrences. This requires more computation and causes

a larger demand on storage. This method is a projection method over the Krylov

subspace, Km. The residual vector for GMRES has the following relation,

r = b− Ax = b− A(x̄ + x̂)

= b− Ax̄− Ax̂

= r0 − Ax̂

= βvi − Vm+1H̄md

= Vm+1(βe1 − H̄md).

So the residual norm is,

‖r‖2 = ‖Vm+1(βe1 − H̄md)‖2

= ‖Vm+1‖2‖(βe1 − H̄md)‖2

= ‖(βe1 − H̄md)‖2,

since Vm+1 is orthonormal. The GMRES is a byproduct of the Arnoldi algorithm.

A stopping criteria for the GMRES method is to monitor the norm of the residual

vector. One consequence of the breakdown (a division by zero in the algorithm) of

the GMRES method is that if breakdown does occur then the algorithm will yield

the exact solution. GMRES also has the same loss of orthogonality problems as the

Arnoldi algorithm. So doing a double orthogonalization may help, but again that

increases expense and storage. However to avoid these storage requirements and

computational costs for orthogonalizing, GMRES is usually restarted. This method

is called GMRES(m) because you restart after m iterations.

2.6.5 Biconjugate Gradient (BiCG)

Since the conjugate gradient method is not suited for nonsymmetric systems

the biconjugate gradient method or BiCG was developed. As how the conjugate gra-

dient method is associated with the symmetric Lanczos algorithm, the biconjugate
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gradient method is associated with the nonsymmetric Lanczos algorithm. BiCG is

a projection method from,

K = span{v1, Av1, A
2v1, ..., A

m−1v1}

to

L = span{w1, A
T w1, (A

T )2w1, ..., (A
T )m−1w1}.

Recall, the CG method cannot force the orthogonality of its residual vectors through

short recurrences and GMRES method retains orthogonality of the residual vectors

through an expensive long recurrence. However, the BiCG method can retain this

orthogonality of residual vectors through a short recurrence, namely a three-term

recurrence exactly like the nonsymmetric Lanczos method. In terms of number of

iterations, BiCG is comparable to GMRES.

The convergence of BiCG is often irregular because BiCG is derived from

the nonsymmetric Lanczos algorithm which also has irregular convergence behav-

ior. Moreover, BiCG can experience breakdown problems like the nonsymmetric

Lanczos algorithm and again these breakdown problems can be remedied through

look-ahead procedures or by restarting at the iteration step before breakdown or

near breakdown.

2.6.6 Quasi-Minimum Residual (QMR)

Recall that GMRES is a byproduct of the Arnoldi algorithm. This method,

the Quasi-Minimum Residual method or QMR, is a byproduct of the nonsymmet-

ric Lanczos algorithm. It is not possible to find the minimum residual solution

with BiCG because the GMRES relation, ‖r‖2 6= ‖βe1 − T̄md‖2, does not hold.

However, r = Vm+1(βe1 − T̄md) but when taking the norm of r it does not reduce

like GMRES since Vm+1 is not orthonormal. Nevertheless, QMR says minimize

‖r‖2 = ‖βe1 − T̄md‖2 anyway hence ”quasi-minimum.” The convergence behavior

is smoother than BiCG. While QMR is not as fast as full GMRES and takes two
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matrix-vector products per iteration compared to GMRES, it can be faster than

restarted GMRES. However like Lanczos, QMR can experience breakdown prob-

lems with look-ahead procedures or restarting are possible fixes though restarting

will slow convergence.

2.6.7 Conjugate Gradient Squared (CGS)

This method is an alternative to BiCG and usually requires less iterations than

BiCG. Where in BiCG A and AT is used, the Conjugate Gradient Squared algorithm

uses the matrix A twice. So this method is a welcome alternative when computing

AT is impractical. The residual norm with CG is r = q(A)b while the residual norm

with CGS is r = q2(A)b. So the CGS method will converge twice as fast in number

of iterations but not in terms of matrix-vector products. However if the convergence

plot is not so ”linear” then the CGS method is not as helpful compared to BiCG.

Irregular convergence in the CGS method can have substantial build up of rounding

errors. This leads to our next method.

2.6.8 Biconjugate Gradient Stabilized (BiCGStab)

The Biconjugate Gradient Stabilized method was developed to ”smooth” the

irregular convergence of the BiCG method and to remedy the roundoff problems

of the CGS method, but it is more expensive than CGS and BiCG. Generally,

BiCGStab converges about as fast as the CGS method however there are cases

where it is faster and slower. One can think of the BiCGStab as a product of BiCG

and a repeated application of GMRES. So from GMRES, BiCGStab minimizes the

residual vector locally.

Example 2.3. In this example compare GMRES, BiCG, BiCGStab, and QMR using

the same bidiagonal matrix that was used in Example 2.1. In Figure 2.8 we see that

GMRES and BiCGStab are clearly the best of the four with GMRES being the best.

It is well-known that GMRES cannot be beat in terms of matrix-vector products
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since it minimizes the residual. Also, the behavior of QMR and BiCG are expected

since there are two matrix-vector products per iteration.
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Figure 2.8. Comparison of a few linear equation methods

2.6.9 Transpose Free Quasi-Minimum Residual (TFQMR)

The best way to explain the TFQMR method,due to Freund, is to say it is the

Quasi-Minimum Residual (QMR) method applied to CGS. However, QMR is linked

to the nonsymmetric Lanczos algorithm which requires AT . As stated in a previous

section, CGS uses the matrix A twice rather than using AT . Hence, the transpose free

(TF) in TFQMR. It attempts to produce residual norms that are ”quasi optimal”

in that an expression for residual norms is minimized by ”pretending” that the

Lanczos vectors are orthonormal. Despite the lack of orthonormality, the residual

vectors tend to behave smoothly and are monotone decreasing.

2.6.10 Harmonic Ritz Values

As an alternative to the regular Rayleigh-Ritz procedure, there are Harmonic

Ritz approximations [21, 10, 36, 50, 27]. Given a subspace S and an orthonormal

matrix V whose columns span S, regular Rayleigh-Ritz projects over the subspace
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using operator A. The small eigenvalue problem V T AV g = θg is solved. On the other

hand, harmonic Rayleigh-Ritz projects over subspace (A− σI)S using the operator

(A − σI)−1, where σ is a shift (possibly complex) in the region where eigenvalues

are desired. The small eigenvalue problem becomes

V T (A− σI)H(A− σI)V g̃ = (θ̃ − σ)(A− σI)V g̃. (2.3)

Harmonic Ritz pairs are (θ̃i, ỹi), where ỹi = V g̃i. From (2.3), Stewart [61] shows that

if ỹi has unit norm, then

‖(A− σI)‖ỹi ≤ |θ̃i − σ|. (2.4)

So it is guaranteed that if θ̃i is near σ, then the corresponding harmonic Ritz pair

has a small residual. This means that harmonic Ritz pairs near σ are meaningful,

even when σ is in the interior of the spectrum. This is not always the case for regular

Ritz pairs.

The Rayleigh quotients of the harmonic Ritz vectors can be computed. We

call these the harmonic Rayleigh quotients or ρ values. They often are more accurate

than the harmonic Ritz values, particulary at early stages. However, the harmonic

Rayleigh quotients do not have a property like the harmonic Ritz values do in (2.2),

so they may not be as reliable. See [21, 26] for more on these ρ values.

2.6.11 GMRES with Deflated Restarting (GMRES-DR)

This method uses the thick restarting technique due to Wu and Simon [64]. As

mentioned earlier, convergence for Krylov methods that solve linear systems depends

greatly on the distribution of eigenvalues. This method is equivalent to the restarted

method GMRES augmented with eigenvectors or GMRES-E at the end of each cycle.

For more information on GMRES-E look to [23]. As for the algorithm the first cycle

is regular GMRES, and the matrices Hm and Vm+1 are produced from the Arnoldi

iteration. The k smallest Ritz vectors are saved and orthonormalized after splitting
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them into real and imaginary parts. New forms of Hk and Vk+1 are formed from old

forms of Hm and Vm+1, then an Arnoldi iteration is performed to fill in the remaining

parts of the new Hm and Vm+1 respectively. Then an approximate solution,xm, is

formed, residual vector r is computed and Ritz pairs (θi, yi) are computed. Again the

k smallest Ritz vectors are saved (or others, if desired). Then restart with x0 = xm

and r0 = r.

2.6.12 Convergence Criteria for Linear Equations

• Want eigenvalues to be well-separated from the origin (we don’t want small

eigenvalues)

• Want eigenvalues to not be too spread out

• Don’t want negative eigenvalues or even worse eigenvalues spread on all sides

of the origin.

2.6.13 Multiple Right-Hand Sides

Systems with multiple right-hand sides occur in many applications (see [11] for

some examples). Block methods are a standard way to solve systems with multiple

right-hand sides (see for example [34, 47, 11, 29, 15]). They put together Krylov

subspaces for each right-hand side. If a non-restarted approach such as a block

conjugate gradient method is used, then eventually there is quite a large space. This

can give rapid convergence once eigenvectors corresponding to small eigenvalues are

contained in this space. However, block methods are not ideal for every circumstance.

They require all right-hand sides be available at the beginning. They have extra

orthogonalization expense compared to non-block methods. They cannot always

fully take advantage of related right-hand sides. Also, the implementation must be

carefully done for stability (with removal or deflation of degenerate right-hand sides

along the way).
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Other approaches for multiple right-hand sides use information from the solu-

tion of the first right-hand side (and possibly others) to assist subsequent right-hand

sides. Seed methods [55, 4, 18, 39, 45, 62, 8] project over entire subspaces generated

while solving previous right-hand sides. Simoncini and Gallopoulos [53, 54] suggest

methods including using blocks and using Richardson iteration with a polynomial

generated from GMRES applied to the first right-hand side. In [28] a small subspace

is generated with GMRES-DR applied to the first right-hand side that contains im-

portant information of approximate eigenvectors, and this is used to improve the

subsequent right-hand sides. See [37] for a method for multiple right-hand sides

that can also handle a changing matrix.

2.6.14 Problems in QCD

Many problems in lattice quantum chromodynamics (lattice QCD) have large

complex systems of multiple right-hand sides. For example, the Wilson-Dirac formu-

lation [12, 7] and overlap fermion [33, 1] computations both lead to such problems.

Very large complex non-Hermitian matrices are needed. For Wilson-Dirac matrices,

the right-hand sides represent different noise vectors.



CHAPTER THREE

Lanczos with Deflated Restarting (LAN-DR)

3.1 Introduction and Algorithm

We propose a restarted symmetric Lanczos method that both solves linear

equations and computes eigenvalues and eigenvectors. It is called Lanczos with de-

flated restarting or Lan-DR. The Lan-DR method is a version of FOM-DR [25] for

symmetric and Hermitian problems and is closely related to GMRES-DR [25]. As

mentioned earlier, the eigenvalue portion of Lan-DR is TRLAN [64] and is math-

ematically equivalent to implicitly restarted Arnoldi (IRAM) [56]. For more on

restarting symmetric Lanczos see [49].

For Lan-DR, the number of desired eigenvectors k must be chosen, along with

which eigenvalues are to be targeted. Normally the eigenvalues nearest the origin

are the most important ones for deflation purposes, but other eigenpairs can be com-

puted. In particular, deflating large outstanding eigenvalues may help convergence

of the linear equations solution and may be needed for stability.

At the time of a restart, let r0 be the residual vector for the linear equations

and let the Ritz vectors from the previous cycle be {y1, y2, . . . , yk}. Then the next

cycle of Lan-DR builds the subspace

Span{y1, y2, . . . yk, r0, Ar0, A
2r0, A

3r0 . . . , Am−k−1r0}. (3.1)

Lan-DR generates the

AVm = Vm+1T̄m, (3.2)

where Vm is a n by m matrix whose columns span the subspace (3.1) and Vm+1 is

the same except for an extra column. Also T̄m is an m + 1 by m matrix that is

upper-Hessenberg except for the k + 1 by k + 1 leading portion. This portion is

non-zero only on the main diagonal (which has the Ritz values) and in the k +1 row

31
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and column. A part of recurrence (3.2) can be separated out to give

AVk = Vk+1T̄k, (3.3)

where Vk is an n by k matrix whose columns span the subspace of Ritz vectors, Vk+1

is the same except for an extra column and T̄k is the leading k + 1 by k portion of

Tm. This recurrence allows access to both the approximate eigenvectors (the Ritz

vectors) and their products with A while requiring storage of only k + 1 vectors of

length n. The approximate eigenvectors in Lan-DR span a small Krylov subspace

of dimension k.

It is necessary to maintain some degree of orthogonality of the columns of

Vm+1. We suggest an approach to reorthogonalization that we call k-selective re-

orthogonalization (k-SO). For cycles after the first one, all new Lanczos vectors are

reorthogonalized against the k Ritz vectors. This uses Parlett and Scott’s idea of

selective reorthogonalization [40], but is more natural in this setting, because we

are already computing the approximate eigenvectors. Also, because of the restart-

ing, there is no need to store a large subspace. Simon’s partial reorthogonalization

[52, 64] is also a possibility, as is periodic reorthogonalization [13].

Lan-DR is related to IRAM, GMRES-DR and TRLAN. However, it does some-

thing these other methods do not do. It efficiently solves systems of linear equations

while simultaneously computing both eigenvectors and their related eigenvalues. We

now give the algorithm for Lan-DR with k-selective orthogonalization.

The Lan-DR Algorithm

1. Start. Choose m, the maximum size of the subspace, k, the desired number

of approximate eigenvectors. Set desired residual tolerance for eigenvalues,

rtol.

2. First cycle and formation of the (k+1) by (k+1) portion of the new T. Apply

standard symmetric Lanczos Algorithm with starting vector v of norm 1 for
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first cycle. This computes Vm+1 and Tm. In addition, fully reorthogonalize

all v vectors of Vm+1. Compute the k smallest (or others, if desired) eigen-

pairs, (θi, gi), Tm. Form T new
k+1 . T new

k+1 has zeros except on the main diagonal

which has Ritz values, θ1, ..., θk. The rest of T new
k+1 is formed element wise

by tk+1,i = eT
m+1Tm+1,mgi. Apply projection to solve first right hand side of

linear equations. The projection is as follows, V T
m AVm = V T

m b → Tmd = c,

where V T
m b = c. Then solve for d and set x̂ = Vmd. From that, compute the

residual norm r = b− Ax̂.

3. Reassigning of the first k+1 vectors for second and subsequent cycles. First

form the Ritz vectors yi = Vm+1gi. Now for i = 1, ..., k vi = yi. Also set

vk+1 = vold
m+1.

4. Lanczos step from iteration k+2 to m of each cycle after cycle 1. The re-

maining elements of Tm,m are done using standard symmetric Lanczos from

k + 2nd iteration to the mth iteration. Using standard Gram-Schmidt, re-

orthogonalize against the new Lanczos vectors the first k vectors (k-SO). A

full reorthogonalization of all m vectors from step 2 can be done if desired.

Solve first right hand side of linear equations problem as in step 2.

5. Computing k smallest Ritz pairs. Compute the k smallest (or others, if

desired) Ritz pairs (θi, gi) of Tm. Form T new
k+1 in the same manner as in step

2.

6. Computing residual norms.

ri = |βm+1||gm,i|‖vm+1‖/‖yi‖.

7. Restart Go to 3.

Full reorthogonalization can be used for the first cycle, but it may not be

necessary. By Paige’s theorem [35, 38, 61], orthogonality is only lost when some
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eigenvectors begin to converge. This may not happen in the first cycle if there are

no outstanding eigenvalues.

We also suggest some hybrid approaches of k-SO. First, is k-PO (k partial

orthogonalization). This approach uses Simons partial orthogonalization and you

can use his ω-recurrence [52] to determine when you need to reorthogonalize. This

approach cuts even more costs since we monitor the orthogonality from the ω-

recurrence. The second hybrid approach is periodic k-SO. This is the same as k-SO

but we only do it every so often. The form of the new Tm is exactly as it is for

NLan-DR and will be discussed in detail in Chapter 4.

3.2 Convergence Theory

In this section, we give a theorem that concerns convergence theory of eigen-

vectors. This theorem deals with the case where the Ritz vectors are the actual

eigenvectors. In particular this theory shows how deflation aids in convergence.

Theorem 3.1. Assume that at a particular cycle of the Lan-DR algorithm the Ritz

vectors from the previous cycle, y2, ..., yk, have attained an accuracy level so that they

are the eigenvectors, z2, ..., zk, of the matrix A. Then those k− 1 Ritz vectors can be

deflated out in that we are able to extract a vector, ynew
1 , from the Lan-DR subspace

that has no components in the direction of z2, ..., zk.

Proof. The Krylov subspace from the Lan-DR is the Krylov subspace augmented

with Ritz vectors,

K = {y1, y2, ..., yk, vm+1, Avm+1, A
2vm+1, ..., A

m−k−1vm+1},

where vm+1 is the residual vector. Also, vold
m+1 = vk+1 where old means from the

previous cycle. So assume that,

{y2, ..., yk} = {z2, ..., zk}
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and let ynew
1 ∈ K. Thus our new subspace is,

K = {y1, z2, ..., zk, vm+1, Avm+1, A
2vm+1, ..., A

m−k−1vm+1},

and ynew
1 = p(A)vm+1 +

k∑
i=2

αizi + α1y1 where p is a polynomial of degree m− k − 1

or less. Now we expand vm+1 in terms of the eigenvectors. So,

vm+1 =
n∑

i=1

βizi.

Substituting this into the equation for ynew
1 and we have,

ynew
1 = p(A)(

n∑
i=1

βizi) +
k∑

i=2

αizi + α1y1

=
n∑

i=1

p(λi)βizi +
k∑

i=2

αizi + α1y1

=
k∑

i=2

(βip(λi) + αi)zi +
n∑

i=k+1

βip(λi)zi + p(λ1)β1z1 + α1y1.

Now let αi = −βip(λi) for i = 2, ..., k and from that we get that

ynew
1 =

n∑

i=k+1

βip(λi)zi + p(λ1)β1z1 + α1z1.

From this result, we can choose a polynomial, p, that has the value of 1 at λ1

and needs to be small over the eigenvalues λk+1, ..., λn. So we can use a standard

Tchebyshev polynomial to give concrete bounds on the accuracy of the vector ynew
1

as an approximation to z1.

3.3 Multiple Right-Hand Sides

Solution of systems with multiple right-hand sides is considered. We suggest

a simple approach that uses the eigenvectors generated during the solution of the

first right-hand side to deflate eigenvalues from the solution of the second right-hand

side. First a projection is done over the Ritz vectors at the end of Lan-DR for the
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first right-hand side. Then the standard conjugate gradient method is used. We call

this approach deflated CG or D-CG, since it deflates out eigenvalues before applying

CG. It is similar to the init-CG approach [8] that also does a projection before CG.

3.4 Examples

Example 3.1. We use a test matrix that has many small eigenvalues. It is a diagonal

matrix of dimension n = 5000 whose diagonal elements are 0.1, 0.2, 0.3, . . . 9.8, 9.9, 10,

11, 12, . . . , 4909, 4910. The right-hand side is a random normal vector. We apply the

method Lan-DR(100,40), which at each restart keeps the 40 Ritz vectors corre-

sponding to the smallest Ritz values and then builds a subspace of dimension 100

(including the 40 approximate eigenvectors). With k-SO, at every iteration of all of

the cycles except the first, there is a reorthogonalization against 40 vectors. We first

look at how well Lan-DR computes the eigenvalues.

Figure 3.1 shows the residual norms for the 40 Ritz vectors. The desired

number of eigenvalues is 30 and the desired residual tolerance is 10−8. It takes 57

cycles for the first 30 eigenvalues to reach this level. Since this is a fairly difficult

problem with eigenvalues clustered together, it takes a while for eigenvalues to start

converging. However, from that point, eigenvalues converge regularly, and it can be

seen that many eigenvalues and their eigenvectors can be computed accurately. The

orthogonalization costs are significantly less than for fully reorthogonalized IRAM

(about 84 vector operations for orthogonalization per Lan-DR iteration versus an

average of 280 for IRAM). For a matrix that is fairly sparse so that the matrix-

vector product is inexpensive (and also with cheap preconditioner, if there is one),

the difference in orthogonalization is significant.

We continue the example by comparing Lan-DR(100,40) to unrestarted Lanc-

zos. Figure 3.2 has the residual norms for the smallest and 30th eigenvalues with

each method. The results are very similar for the first eigenvalue, in spite of the
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Figure 3.1. Computing many eigenvalues of a matrix with small eigenvalues.

fact that Lan-DR is restarted. The presence of the approximate eigenvectors cor-

responding to the nearby eigenvalues essentially deflates them and thus gives good

convergence for Lan-DR. For eigenvalue 30, Lan-DR trails unrestarted Lanczos, but

is still competitive. This is significant, since Lan-DR(100,40) requires storage of only

about 100 vectors compared to nearly 3000 for unrestarted Lanczos.
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Figure 3.2: Comparison of Lan-DR(100,40) with unrestarted Lanczos for first and 30th
eigenvalues.
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Example 3.2. Next, we look at the solution of the linear equations. Figure 3.3

has Lan-DR with three choices of m and k and also has CG. The convergence of

Lan-DR(100,40) is very close to that of CG. Lan-DR(100,0) has restarting every

100 iterations without saving any Ritz vectors, and it converges much slower. This

is because only 100 steps of Lanczos does not generate very accurate approximate

eigenvectors in its space. The deflation of eigenvalues in Lan-DR(100,40) allows it

to compete with an unrestarted method such as CG. Lan-DR(100,10) is not too far

behind CG, but Lan-DR(30,10) restarts too frequently and is much slower.
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Figure 3.3. Comparison of Lan-DR with CG for solving linear equations.

Now we look at the vector operations for each of these methods. A vector

operation is either a length n inner product or a length n daxpy (multiply a vector

by a constant and add to another vector) or a similar operation. Lan-DR(100,40)

performs 220348 vector operations while Lan-DR(100,10) performs 67036. Lan-

DR(30,10) does not reach desired convergence but in 1410 iterations it performs

61920 vector operations. To that end, a comparison of vector operations of Lan-

DR(30,10) and CG is not a fair one. CG only performs 3963 vector operations but

this is due to two circumstances. The first is that CG ran less iterations to reach
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desired convergence than both Lan-DR(100,40) and Lan-DR(100,10) and second is

that CG doesn’t compute eigenvectors.

3.4.1 Reorthogonalization

It was mentioned earlier that some reorthogonalization is necessary to con-

trol roundoff error. We now look at this in more detail and give several possible

approaches. The first is full reorthogonalization which takes every Lanczos vector

formed by the three-term recurrence and reorthogonalizes it against every previous

vector. The expense for this in terms of vector operations of length n varies from

about 2k to 2m per iteration. This expense is significant if the matrix-vector product

is fairly cheap, but may not be for a less sparse matrix with expensive matrix-vector

product. The restarting of Lan-DR keeps the cost of full reorthogonalization down

compared to non-restarted Lanczos. The next approach is periodic reorthogonaliza-

tion [13]. For this, we always reorthogonalize the vk+1 and vk+2 vectors, then at regu-

lar intervals reorthogonalize two consecutive vectors (see [64, 61] for why consecutive

vectors need to be reorthogonalized). The cost for this varies as with full reorthog-

onalization when it is applied, but it saves considerably if the reorthogonalization

is not needed frequently. Next is partial reorthogonalization (PRO) [52, 51, 64, 61]

which monitors loss of orthogonality and thus determines when to reorthogonalize.

As suggested in [64], we use “global orthogonalization” against all previous vectors.

As with periodic, we always reorthogonalize the vk+1 and vk+2 vectors and always re-

orthogonalize two consecutive vectors. This approach can be cheaper than periodic

reorthogonalization, because it waits until reorthogonalization is needed.

The next three reorthogonalization methods are related to the three above, but

reorthogonalization is done only against the first k vectors. Here we are using the

idea from selective reorthogonalization (SO) [40] that orthogonality is only lost in the

direction of converged or converging Ritz vectors [35, 38]. Since restarting is used,
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normally only the k Ritz vectors that are kept at the restart have an opportunity

to converge. There can be exceptions as will be discussed in Examples 3.4 and 3.5

below. The first SO-type approach has been used in the previous section. It is called

k-SO and has reorthogonalization at every iteration against the k Ritz vectors. This

requires about 2k vector operations per iteration versus an average of about k + m

vector operations for full reorthogonalization. The last two methods are k-periodic

and k-PRO. These are the same as periodic and PRO, except they reorthogonalize

only against the first k vectors.

Example 3.3. We consider again Lan-DR for the matrix of Example 3.1. For this

problem, loss of orthogonality is controlled by the restarting and the reorthogonal-

ization of the vk+1 and vk+2 vectors at the restart. No further reorthogonalization

is needed. Table 3.1 show a comparison with full reorthogonalization. The sec-

ond column gives the loss of orthogonality as measured by ‖V T
m Vm − Im×m‖ at the

end of 57 cycles. The next two columns have the residual norms of the first and

thirtieth Ritz pairs. While full orthogonalization gives greater orthogonality of the

Lanczos vectors, the Ritz vectors end up with similar accuracy. The thirtieth eigen-

vector continues to converge beyond cycle 57 and eventually reaches residual norm of

3.7× 10−12 even with the approach of reorthogonalizing only at the restart. For this

example, the Ritz vectors converge slowly enough that we don’t have a Ritz vector

appear and significantly converge in one cycle (see Figure 3.1). So before a eigenvec-

tor has converged, an approximation to it is among the group of Ritz vectors that

vk+1 and vk+2 are reorthogonalized against. This explains why reorthogonalizing at

restarts turns out to be often enough.

This example points out that restarting can make reorthogonalization easier.

Reorthogonalization against only 40 vectors is done for two vectors every 60 itera-

tions. If we compare to unrestarted Lanczos using PRO with global reorthogonal-

ization and with tolerance on loss of orthogonality of square root of machine epsilon,
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Table 3.1. Full reorthogonalization vs. reorthogonalize only at the restart

orthogonality rn 1 rn 30
k+1, k+2 vectors only 2.2× 10−12 5.6× 10−12 9.9× 10−9

full reorthog. 1.2× 10−14 6.7× 10−12 9.9× 10−9

the number of reorthogonalizations is similar. However, as the unrestarted Lanczos

iteration proceeds, there are many previous vectors to reorthogonalize against. Also

unrestarted Lanczos with PRO gives converged eigevectors with residual norms of

just below 10−6 compared to well below 10−11 for Lan-DR(100,40) with reorthog-

onalization only at the restart. We note however, that the PRO tolerance can be

adjusted for more frequent reorthogonalization and greater accuracy.

The next matrix is designed so that Lan-DR needs more reorthogonalization.

We compare approaches and look at some potential problems.

Example 3.4. Let the matrix be diagonal with dimension n = 5000 and diagonal ele-

ments 1, 2, 3, . . . 9, 10, 100, 101, 102, . . . , 5088, 5089. The right-hand side is a random

normal vector. We use 10 cycles of Lan-DR(140,40) with the reorthogonalization

approaches described at the beginning of this section. More reorthogonalization is

needed than in Example 3.3, because eigenvectors converge quicker. Table 3.2 has

the results. Two different tolerances on the loss of orthogonality for the PRO meth-

ods are used, square root of machine epsilon and three-quarters power. The second

column of the table gives the frequency of reorthogonalization (of two vectors) for

periodic methods. The last column has another measure of the effect of the roundoff

error. It gives the number of iterations needed to solve a second right-hand side

using the deflated CG method which will be given in the next section. We see that

k-periodic reorthogonalizing of two vectors every 40 iterations is as good as k-SO

with reorthogonalizing of every vector against the k Ritz vectors. Accuracy drops

as the reorthogonalization is done less frequently. With frequency of 80, Lan-DR
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is still is able to compute some eigenvectors accurately, but unlike with frequency

of 70, multiple copies of eigenvalues start appearing. Also, Lan-DR is not longer

helpful for the solution of the second right-hand side.

Partial reorthogonalization gives results somewhat similar to periodic restart-

ing without the need to select the frequency ahead of time. For k-PRO with ε.75
0 , a

total of 88 vectors are reorthogonalized compared to 60 for k-periodic with frequency

of 40.

This example also demonstrates a problem that can happen when we reorthog-

onalize against only the k Ritz vectors. After the first cycle of Lan-DR with k-SO,

there are only seven Ritz values below 10. After the second cycle, all ten small eigen-

values have converged to a high degree. Some orthogonality is lost in that cycle,

because there are converged Ritz vectors in the subspace that are not reorthogonized

against. This explains why the orthogonality of the basis is not as good for k-SO

as for full reorthogonalization and also why other k-versions are not as good. It is

dangerous to use k-SO if some eigenvectors converge very rapidly (within one cycle).

The next example shows another possible problem with k-SO.

Example 3.5. For matrices with outstanding eigenvalues other than the small ones

that can converge in one cycle, care must be taken. Ritz vectors corresponding to

those eigenvalues need to be included in the Ritz vectors that are saved at the restart.

We use the same matrix as in the previous example, except the largest eigenvalue is

changed from 5089 to 5250. This eigenvalue is now outstanding enough to converge

rapidly. Lan-DR with k-SO loses orthogonality of its basis. After 10 cycles, the

orthogonality level is 7.2 × 10−3, and it is actually worse (near 1) at earlier cycles.

As mentioned, this can be fixed by including the large eigenpair among those selected

to be saved for the next cycle.
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Table 3.2. Compare reorthogonalization methods

reor. freq. orthogonality rn 1 rn 30 2nd rhs it’s
full 1 1.2× 10−14 7.0× 10−12 7.0× 10−12 57

k-SO 1 1.1× 10−8 7.0× 10−12 3.6× 10−7 57
k-periodic 40 8.4× 10−10 5.4× 10−12 2.7× 10−8 57

60 1.8× 10−7 4.9× 10−12 6.1× 10−7 57
70 4.0× 10−6 7.0× 10−12 2.5× 10−5 57
77 1.4× 10−1 4.4× 10−12 1.0× 10−4 103
80 2.0 5.3× 10−12 1.4× 10−4 210

periodic 70 4.2× 10−6 7.0× 10−12 2.6× 10−5 57
80 3.3 5.3× 10−12 3.6× 10−4 212

k-PRO, ε.5
0 - 2.6× 10−8 5.3× 10−12 1.4× 10−7 57

k-PRO, ε.75
0 - 2.8× 10−9 4.4× 10−12 8.5× 10−7 57

PRO, ε.5
0 - 1.4× 10−8 5.3× 10−12 1.1× 10−7 57

PRO, ε.75
0 - 1.3× 10−11 4.4× 10−12 4.2× 10−11 57

3.4.2 Examples with Multiple Right-Hand Sides

Next, solution of systems with multiple right-hand sides is considered. We

suggest a simple approach that uses the eigenvectors generated during the solution

of the first right-hand side to deflate eigenvalues from the solution of the second right-

hand side. First a projection is done over the Ritz vectors at the end of Lan-DR

for the first right-hand side. Then the standard conjugate gradient method is used.

We call this approach deflated CG or D-CG, since it deflates out eigenvalues before

applying CG. It is similar to the init-CG approach [8] that also does a projection

before CG.

Example 3.6. We consider the same matrix as in Example 3.1 and solution of a

second right-hand side. The first right-hand side system has been solved with Lan-

DR(100,40). We first illustrate how increasing the accuracy of the approximate

eigenvectors helps the convergence of the second right hand side. Figure 3.4 has

convergence curves for the second right-hand side with CG and with D-CG when

Lan-DR has been run different numbers of cycles. D-CG always beats CG. However,

D-CG is not as effective as it can be if Lan-DR has only been run 20 cycles. The
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eigenvectors are not all accurate enough to deflate out the eigencomponents from

the residual of the second right-hand side, and eventually CG has to deal with these

components and this slows convergence. So D-CG after 40 cycles converges rapidly

0 100 200 300 400 500 600 700 800 900 1000
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

CG with no projection

D−CG with k=40,
20 cycles for 1st rhs

40 cycles

60 cycles

Matrix−vector products

R
es

id
ua

l N
or

m

Figure 3.4. Solving the first right-hand side to different levels of accuracy.

and does not slow down as it procedes. Using 60 cycles of Lan-Dr is only a little

better.

We next consider varying the number of approximate eigenvectors that are

used for deflation. For the first right-hand side, Lan-DR(m,k) is run for 50 cycles

with changing k and with m = k + 60. Figure 3.5 has the convergence results for

applying D-CG to the second right-hand side. With k = 10 eigenvectors, D-CG is

already significantly better than regular CG, but deflating even more eigenvalues

is even better. For this example there is a significant jump upon going from 80

to 120 eigenvectors. This happens because having 120 gets past the 100 clustered

eigenvalues pushes well into the rest of the spectrum.

Figure 3.6 shows that Lan-DR/D-CG can come out ahead of regular CG in

terms of matrix-vector products even if we spend more on Lan-DR for the first

right-hand side. We use 10 right-hand sides. The first is solved with 44 cycles of
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Figure 3.5. Deflating different numbers of eigenvalues.
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Figure 3.6. Lan-DR and D-CG versus regular CG for 10 right-hand sides.

Lan-DR(100,40). Then the other nine use runs of D-CG. This all takes about as

many matrix-vector products as solving three systems with CG.

3.4.3 Comparison with Block-CG

Block-CG generates a Krylov subspace with each right-hand side as a starting

vector then combines them all together into one large subspace. This large subspace

can generally develop approximations to the eigenvectors corresponding to the small

eigenvalues, so block-CG naturally deflates eigenvalues as it goes along. As a result,
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block-CG can be very efficient in terms of matrix-vector products.

Block methods require all the right-hand sides be available at the same time,

while Lan-DR/D-CG only needs one right-hand side at a time. Simple block-CG can

be unstable, particularly if the right-hand sides are related to each other. This can

be controlled by the somewhat complicated process of removing (called “deflating”)

right-hand sides.

Example 3.7. We let the matrix be diagonal with eigenvalues 1, 2, 3,...,10, 100,

101, 102,..., 5089. We compare the Lan-DR/D-CG approach with block-CG for

20 random right-hand sides. Figure 3.7 shows that the two approaches converge

at almost the same number of matrix-vector products. However, Lan-DR has less

orthogonalization expense.
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Figure 3.7. Comparison with Block-CG for 20 right-hand sides.

3.4.4 Related Right-Hand Sides

Example 3.8. We use the same matrix as in the previous example. There are again

20 right-hand sides, but this time the first is chosen randomly and the others are

chosen as b(i) = b(1)+10−3∗ran(i), where ran(i) is a random vector. The convergence

tolerance is moved to relative residual below 10−6, because block-CG has instability
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after that point. Figure 3.8 shows that Lan-DR does a better job of taking advantage

of the related right-hand sides. As mentioned earlier, block-CG can be improved by

removing right-hand sides once they become linear dependent.
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Figure 3.8. Comparison with Block-CG for 20 related right-hand sides.

3.4.5 Examples from QCD

Example 3.9. We choose a large QCD matrix of size n = 1.5 million. The kappa value

is set near to kappa-critical, which makes it a difficult problem. There are generally

a dozen or more right-hand sides for each matrix. The first test uses the γ5M

formulation which results in an indefinite matrix. The first right-hand side is solved

with Lan-DR(m,k) with several values of k. Figure 3.9 shows the convergence for

solution with the second right-hand side using either CG or D-CG with the different

choices of k. We note that deflating 20 eigenvalues gives a big improvement over

regular CG. Using 150 eigenvectors is almost an order of magnitude improvement

over CG. The results in Figure 3.9 are fairly typical. Figure 3.10 shows results for

the first five configurations (matrices) generated. D-CG with k = 100 eigenvalue

deflated is compared with CG. There is some variance in CG, but with 100 small

eigenvalues taken out, the convergence of D-CG is almost identical for all matrices.
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Figure 3.9: Comparison of CG to D-CG with varying numbers of eigenvalues deflated for
a large QCD matrices.
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Figure 3.10: Comparison of CG to D-CG with k=100 eigenvalues deflated for five QCD
matrics.



CHAPTER FOUR

Nonsymmetric Lanczos with Deflated Restarting (NLan-DR)

4.1 Introduction and Algorithm

It is known that while IRAM and restarted Arnoldi augmented with eigenvec-

tors (simply called restarted Arnoldi from here on out) are reliable methods they

can be expensive, and if one wants or needs to compute both left and right eigen-

vectors then two runs of IRAM or restarted Arnoldi are required. Hence, we offer

the nonsymmetric Lanczos algorithm with deflated restarting (NLan-DR). For more

on restarting the nonsymmetric Lanczos method see [59, 17]The benefits of defla-

tion have already been discussed. So we focus on the facts that NLan-DR also is

generally less expensive, from the three-term recurrence, and storage requirements

are reduced compared to unrestarted Lanczos. Also, NLan-DR can compute both

left and right eigenvectors simultaneously. Our application for needing both right

and left eigenvectors is deflated BiCG-Stab. Options for computing left and right

eigenvectors include running ARPACK twice, two-sided Arnoldi or nonsymmetric

Lanczos. With nonsymmetric Lanczos there is limited storage and restarting may

be necessary. NLan-DR is also equipped to solve systems of linear equations and in

particular it can assist systems with multiple right-hand sides.

The NLan-DR Algorithm

1. Start. Choose m, the maximum size of the subspace, and k, the desired

number of approximate eigenvectors.

2. First cycle. Apply standard Nonsymmetric Lanczos Algorithm. This com-

putes Vm+1,Wm+1 and Tm. Compute the k smallest (or others, if desired)

eigenpairs (θi, hi), and (θi, gi), left and right respectively, of T T
m and Tm.

49
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3. Biorthonormalization of the first k vectors. Orthonormalize the hi’s against

the gi’s first separating into real and imaginary parts if complex in order to

form m by k matrices Hk and Gk. (It may be necessary to adjust k in order

to be certain both parts of the complex vectors are included.)

4. Formation of a portion of new T using old T. First extend the columns of

Hk and Gk to length m+1 by appending a zero entry to each. Also add the

k + 1st row, of length m + 1, to both Hk and Gk all zeros except for placing

1 in the m + 1 position. Now we have Hk+1 and Gk+1 are m + 1 by k + 1.

Then let Tk+1 = HT
k+1T

oldGk+1.

5. Reassigning of the first k vectors. First form the approximate left and right

eigenvectors, ui = Wm+1hi and yi = Vm+1gi. Now for i = 1, ..., k let wi = ui

and vi = yi.

6. Computing residual norms.

ry
i = |δm+1||gm,i|‖vm+1‖/‖yi‖

ru
i = |βm+1||hm,i|‖wm+1‖/‖ui‖

7. Biorthonormalization of k+1 vector Set vnew
k+1 = vold

m+1 and wnew
k+1 = wold

m+1.

Form Avk+1 and AT wk+1 and biorthonormalize against the first k+1 vectors.

This forms vk+2 and wk+2.

8. Lanczos Iteration Apply nonsymmetric Lanczos from this point to form the

remainder of Tm+1.

9. Eigenvalue Computations. Compute the k smallest (or others, if desired)

left and right eigenpairs of Tm, (θi, hi), and (θi, gi).

10. Restart. Go to 3.
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The Krylov subspaces that are produced during a run of NLAN-DR are,

Span{y1, y2, ..., yk, vm+1, Avm+1, A
2vm+1, ..., A

m−k−1vm+1}

Span{u1, u2, ..., uk, wm+1, A
T wm+1, (A

T )2wm+1, ..., (A
T )m−k−1wm+1}

where the y′is are right Ritz vectors, the u′is are left Ritz vectors, and where vm+1

and wm+1 are the m + 1st vectors from the previous cycle. But not only that, the

left and right residual vectors, ru
i = AT ui − θiui and ry

i = Ayi − θiyi, are multiples

of the wm+1 and vm+1 vectors respectively.

We want to show that the vector spaces that are utilized by NLan-DR remain

Krylov subspaces. Also, we only focus on the subspace associated with the right

Ritz vectors because the proof for the left Ritz vectors is a very simple change to

the proof of the right Ritz vectors. We have this from the algorithm:

Span{v1, v2, ..., vm} = sp{y1, y2, ..., yk, vm+1, Avm+1, A
2vm+1, ..., A

m−k−1vm+1}

where vm+1 is from the previous cycle. So we want to show that

Span{y1, y2, ..., yk, vm+1, Avm+1, A
2vm+1, ..., A

m−k−1vm+1} = sp{s, As, A2s, ..., Am−1s},

for some vector s. We first proceed with the help of a lemma.

Lemma 4.1. The residual vector for computing right eigenpairs of NLan-DR is a

multiple of the vm+1 vector from the previous cycle i.e.

ri = Ayi − θiyi = γivm+1.
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Proof.

ri = Ayi − θiyi

= AVmgi − θiVmgi

= VmTm − θiVmgi + vm+1tm+1,meT
mgi

= Vm(Tmgi − θigi) + vm+1tm+1,meT
mgi

= vm+1tm+1,meT
mgi

= (tm+1,m)(gm,i)vm+1

= γivm+1

Line two of the proof uses the fact that Vmgi = yi, and line three uses Equation 2.2

and the fact that T̄m = Tm + vm+1tm+1,meT
m. A similar proof can be done for the left

eigenpairs.

Theorem 4.1. We consider a cycle of NLan-DR. Let r = vm+1 be the residual vector

and y1, ..., yk be the Ritz vectors calculated during the previous cycle. Then

Span{y1, y2, ..., yk, vm+1, Avm+1, A
2vm+1, ..., A

m−k−1vm+1} = Span{s, As, A2s, ..., Am−1s},

for some vector s. So the subspace for NLan-DR is a Krylov subspace.

Proof. From the lemma,

Ayi − θiyi = αivm+1 (4.1)

First we claim that

Span{y1, ..., yk} = Span{s, As, A2s, ..., Ak−1s}, (4.2)

for some vector s. Let

s =
k∑

i=1

βiyi. (4.3)
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Multiplying by A and using Eq. (4.1),

As =
k∑

i=1

βiθiyi +
k∑

i=1

βiαivm+1.

To have As in the span of the yi vectors, we will make

k∑
i=1

αiβi = 0.

We set this equation up as part of a homogeneous system of linear equations with

the βi’s as the unknowns. With vm+1 eliminated, we have

As =
k∑

i=1

βiθiyi.

Multiplying again by A and using Eq. (4.1) gives

A2s =
k∑

i=1

βiθ
2
i yi +

k∑
i=1

αiθiβivm+1.

To again eliminate the vm+1 term, we let

k∑
i=1

αiθiβi = 0.

So the next equation of our homogeneous system has the αiθi’s as coefficients. Sim-

ilarly, the next equation will have αiθ
2
i ’s as coefficients. We continue this until we

have Ak−1s is a linear combination of the yi’s. The homogeneous system then has

k − 1 equations. Since the system has k unknowns, there are linearly independent

solutions for the βi’s. Putting these in (4.3) gives the desired vector s that satisfies

Eq. (4.2). Again multiply by A and using Eq. (4.2) we have

Aks =
k∑

i=1

βiθ
k
i yi +

k∑
i=1

αiθ
k
i βivm+1.

So Aks is a linear combination of the yi’s and the vm+1. Ak+1s will be a linear

combination of the yi’s, vm+1 and Avm+1. We continue until we have Am−1s is a linear

combination of the yi’s and vm+1 multiplied by the powers of A up to m−k− 1.
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The proof for the left Krylov subspace is the same with making the appropriate

changes of A to AT , yi to ui and vm+1 to wm+1.

Recall, that the Tm matrix formed from the symmetric and nonsymmetric

Lanczos algorithms is tridiagonal. However in NLan-DR (and Lan-DR) the T matrix

has a varied form and we present that in the following section.

4.2 The Form of the new T for NLan-DR

We want to show that after restarting in the Lanczos Algorithm that the m×m

matrix T has nonzero entries for ti,i, 1 ≤ i ≤ m, tk+1,i, 1 ≤ i ≤ k and k + 1 < m,

and ti,k+1, 1 ≤ i ≤ k and k + 1 < m. Also T is tridiagonal below the k + 1st row.

Exactly like Lan-DR, the Tm+1 matrix, after cycle 2, with m = 10 and k = 5

has the form,

Tm+1 =




∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗




First we need the help of two lemmas to help us prove this new form of T.

Lemma 4.2. Wm is orthogonal to ri = Ayi−θiyi

‖yi‖ , the right residual vector.

Proof. For

ri =
Ayi − θiyi

‖yi‖
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Since ‖yi‖ 6= 0 we only need to show that Wm is orthogonal to the numerator of ri.

So we have,

W T
mri = W T

m(Ayi − θiyi)

= W T
m(AVmgi − θiVmgi)

= W T
mAVmgi − θiW

T
mVmgi

= Tgi − θigi

= 0.

Lemma 4.3. The vk+1 vector from the current cycle of NLan-DR is a multiple of

vm+1 vector from the previous cycle or,

vk+1 = vold
m+1.

Similarly, wk+1 = wold
m+1.

Proof. We have span{y1, ..., yk} = span{v1, ..., vk} so vk =
k∑

i=1

yi. From this we have,

Avk = A(yk + αk−1yk−1 + ... + α1y1) (4.4)

= θkyk + θk−1αk−1yk−1 + ... + θ1α1y1 + γvold
m+1. (4.5)

Then vk+1 is formed by multiplying vk by A and orthogonalizing against v1, ..., vk.

So,

vk+1 = Avk −
k∑

i=1

βivi.

Now using Equation 4.4 and Equation 4.5 to substitute for Avk and the fact that

the v′is can be written as a combination of the y′is we have

vk+1 = (θk + δk)yk +
k−1∑
i=1

(αiθi − δi)yi + γvold
m+1

=
k∑

i=1

ηivi + γvold
m+1

= γvold
m+1.
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The last line is true because vk+1⊥vi for 1 ≤ i ≤ k. So ηi = vT
i vk+1 = 0. The proof for

wk+1 is similar by making the y′is into u′is, changing from right to left Ritz vectors,

and changing v′s to w′s.

Proposition 4.1. After restarting the nonsymmetric Lanczos Algorithm the m × m

matrix T has nonzero entries for ti,i, 1 ≤ i ≤ m, tk+1,i, 1 ≤ i ≤ k and k + 1 < m,

and ti,k+1, 1 ≤ i ≤ k and k + 1 < m. Also T is tridiagonal below the k + 1st row.

Proof. We prove this by selecting certain entries that are zero. Let j < i < k, so

tij = wT
i Avj

= wT
i [A(yj −

j−1∑
s=1

αsys)]

= wT
i [Ayj −

j−1∑
s=1

αsAys].

Now using the substitution ry
i = Ayi − θiyi = γivm+1 we have

wT
i [γjvm+1 + θjyj −

j−1∑
s=1

(αsγsvm+1 + θsys)]

= (γj −
j−1∑
s=1

αsγs)w
T
i vm+1 + wT

i (

j∑
s=1

θsys).

The first dot product is zero due to Lemma 4.2 while the remaining dot products

are equal to zero because wi is orthogonal to each yj. This is due to sp{v1, ..., vk} =

sp{y1, ..., yk}. Now let i < j < k, so

tij = wT
i Avj

= (AT wi)
T vj

= [AT (ui −
i−1∑
s=1

α̂sus)]
T vj

= [AT ui −
i−1∑
s=1

α̂sA
T us)]

T vj

= [(ru
i +

i−1∑
s=1

α̂sr
u
s ) + (θiui −

i−1∑
s=1

α̂sθsus)]
T vj
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Since ru
i = AT ui − θiui = γ̂iwm+1 we have,

tij = (γ̂i +
i−1∑
s=1

)wT
m+1vj + (θiui −

i−1∑
s=1

θsus)
T vj

The dot product involving wm+1 and vj is zero because of the orthogonality of wm+1

to each vj. The dot products involving the u′is and vj because

sp{w1, ..., wm} = sp{u1, ..., uk, A
T ui, (A

T )2ui, ..., (A
T )m−k−1ui}.

To show tk+1,i is nonzero for 1 ≤ i ≤ k, we have

tk+1,i = wT
k+1Avi

= wT
k+1(γvm+1 +

k∑
s=1

θsys)

= γwT
k+1vm+1 + wT

k+1(
k∑

s=1

θsys).

The dot products involving wk+1 and the y′ks are all zero because wk+1 is orthogonal

to each yk. So that just leaves γwT
k+1vm+1 = αwT

m+1vm+1 due to Lemma 4.3, and

αwT
m+1vm+1 = α. For 1 ≤ i ≤ k,

ti,k+1 = wT
i Avk+1

= (AT wi)
T vk+1

= [AT (ui −
i−1∑
s=1

α̂sus)]
T vk+1

= [AT ui −
i−1∑
s=1

α̂sA
T us]

T vk+1

= (γwm+1 −
i∑

s=1

θsus)
T vk+1

= γwT
m+1vk+1.
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And we know, by Lemma 4.3, vk+1 = δvm+1, so we have

γwm+1vk+1

= βwm+1vm+1

= β,

where β = γδ. From the k + 2nd vector on, for both vk+1 and wk+1 in each cycle,

NLAN-DR is the regular nonsymmetric Lanczos algorithm. Therefore T is tridiag-

onal from that point.

4.3 Biconjugate Gradient with Deflated Restarting (BiCG-DR)

BiCG-DR is NLan-DR’s linear equation solver. We give the algorithm for this

as an addendum to NLan-DR’s algorithm.

The BiCG-DR Algorithm

2.5 Apply projection to the matrix A after the matrix T is formed. After the

formation of Tm a projection is applied to the linear equations problem

Ax = b and solve the small linear equations problem Tmd = c.

8.5 Apply projection to the matrix A after the formation of T. Apply same

projection to A and follow the same process as in step 2.5. Then solve

to desired tolerance.

Here we give more details of the projection process which is akin to the projection

process for Lan-DR.

Ax = b

W T
mAVmd = W T

mb

Tmd = c
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where Tm = W T
mAVm and W T

m = c. Then solve for d and set x̂ = Vmd. From that we

have,

A(x− x̂) = b− Ax̂

= r,

where r is the residual vector.

4.4 Deflated BiConjugate Gradient (D-BiCGStab)

To perform D-BiCGStab, for multiple right-hand sides (second and subse-

quent), first apply a projection using the right and left Ritz vectors from NLan-DR.

This will be performed after the Ritz vectors have gained enough accuracy to deflate

eigenvalues which means that the first right-hand side will usually run past a desired

tolerance of 10−8.

The D-BiCGStab Algorithm

1. Apply projection on Ax = b after the completion of NLan-DR algorithm. For

right hand sides 2 to number of right hand sides (nrhs), after the Ritz vectors

have gained enough accuracy to deflate the eignvalues apply a projection on

A using Wk and Vk to form the new linear equations problem Tkd = c.

Like BiCG-DR, we give further details of the projection process,

Ax = bnrhs

W T
k AVkd = W T

k bnrhs

Tmd = c

where Tk = W T
k AVk and W T

k = c. Then solve for d and set x̂ = Vkd. From that we

have,

A(x− x̂) = bnrhs − Ax̂

= r,
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where r is the right-hand side that is solved by BiCGStab.

4.5 Examples

Example 4.1. This first example is of NLan-DR against restarted Arnoldi using a

bidiagonal matrix of size 2000 with .1, 1, 2, ....., 1999 down the main diagonal and 1’s

along the super diagonal. The size of the subspace m = 40 and the desired number

of eigenvalues k = 10 are the same for both NLan-DR and restarted Arnoldi. Figure

4.1 shows a comparison of convergence toward the smallest and sixth eigenvalues.

NLan-DR and Restarted Arnoldi are nearly identical for the smallest and sixth

eigenvalue. This version of NLan-DR uses the basic k-selective reorthogonalization

scheme used in Lan-DR. So, we get similar results with NLan-DR with less cost. A

cost comparison is discussed later.
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Figure 4.1: Eigenvalue comparison of NLan-DR and Restarted Arnoldi for a bidiagonal
matrix of size 2000.

Example 4.2. In this second example the comparison of NLan-DR and restarted

Arnoldi is given using the matrix Sherman4 from the Harwell-Boeing/Matrix Market

collection. Sherman4 is an oil reservoir simulation matrix and is of size 1104. Again

Figure 4.2 deals with the smallest and sixth eigenvalues, and NLan-DR uses the
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same rebiorthogonalization scheme as in the previous example. For the smallest

eigenvalue, NLan-DR reaches a desired tolerance level of 10−8 in 10 cycles. Now for

the sixth eigenvalue, we have near identical convergence like the previous example.

Again we are seeing good convergence from NLan-DR compared to restarted Arnoldi
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Figure 4.2: Eigenvalue comparison of NLan-DR and Restarted Arnoldi for the matrix
Sherman4.

and also we know NLan-DR is a less expensive method than Arnoldi.

As stated earlier, the NLan-DR method is developed to also solve systems of

linear equations (BiCG-DR) and is used to aid in deflating eigenvalues for BiCGStab

(D-BiCGStab). Here we give a one example of each.

Example 4.3. For this example, we compare BiCG-DR with GMRES-DR. The matrix

we use is the same bidiagonal matrix that is in example 4.1. Also we have the same

size subspace of m = 40 and the same number of eigenvalues k = 10.

As seen in Figure 4.3, BiCG-DR is very competitive with GMRES-DR in

number of iterations. BiCG-DR does require two matrix-vector products per cycle.

This is justified if both left and right eigenvectors are desired. Also, we know that

it is a less expensive method than GMRES-DR, because GMRES comes from the

Arnoldi method.
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Figure 4.3: Linear equations comparison of NLan-DR and Restarted Arnoldi for a bidiag-
onal matrix of size 2000 of the first right hand side.

Example 4.4. In this example, we show the advantages of deflation for nonsymmetric

linear systems with multiple right hand sides. This example uses the same matrix

as in example 4.1 and has the same parameters of m = 40 and k = 10. So once the

desired Ritz vectors have reach an accuracy that they will deflate, we see in Figure

4.4 that D-BiCGStab has converged in about 275 less matrix-vector products than

non-deflated BiCGStab.

4.5.1 Expense

In this section we will compare the expense of NLAN-DR and restarted Arnoldi

using size variations (n) of the matrix in Example 4.1 and we also increase the size of

the subspace m as the size of the matrix increases. However, the number of desired

eigenvalues (k = 10) does not change. Vector operations (vops) are defined as they

were in the previous chapter and matrix-vector products (mvps) are defined as a

multiplication of the matrix A or AT with an n−length vector. Also the the values

for restarted Arnoldi are doubled to make a fair comparison for NLan-DR computing

both left and right eigenvectors.
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right hand side..

Table 4.1. Expense for Restarted Arnoldi and NLan-DR for k=10 eigenvalues

Restarted Arnoldi NLan-DR
n m mvp vops cycles mvp vops cycles

2000 40 980 67226 16 1089 31098 17
3000 55 1110 90090 12 1227 36393 13
5000 65 1560 142858 14 1600 47728 14
7000 75 1840 186258 14 2015 60167 15
10000 120 2000 289938 9 2248 82083 10

For these examples, NLan-DR again uses k-selective orthogonalization. Restarted

Arnoldi uses no reorthogonalization due to it being a full orthogonalization method.

As seen in Table 4.1, the ratios of vector operations for restarted Arnoldi to the

vector operations for NLan-DR improves from 2.16 to 3.53 as we go from from the

first example, n = 2000, to the last, n = 10000. NLan-DR does in most examples

have more matrix-vector operations but this is due to going an extra cycle.
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4.6 Roundoff Error

The nonsymmetric Lanczos algorithms have roundoff problems due to break-

down. A way to cure breakdown is the Look-Ahead Lanczos algorithm [41]. This al-

gorithm essentially skips the breakdown step and continues from that point. However

NLan-DR offers an alternative to the complicated Look-Ahead approach. Roundoff

problems can also occur due to the loss of biorthogonality of the Lanczos vectors,

v and w. We have seen examples where this is cured with selective reorthogonal-

ization, partial reorthogonalization, or our k-selective reorthogonalization. In hard

problems, our k-selective reorthogonalization is not enough to insure the biorthogo-

nality of these vectors. So we have done a double k-selective reorthogonalization to

treat some roundoff problems but also a full reorthogonalization is need for more se-

vere roundoff problems. We also suspect that the ill-conditioning of the eigenvalues

can cause roundoff problems and that is to be considered in future work.



CHAPTER FIVE

Two-Sided Arnoldi with Deflated Restarting (TSArn-DR)

5.1 Introduction and Algorithm

This method is given as an alternative to NLan-DR due to well-known insta-

bilities of the Lanczos algorithm. We modify Ruhe’s algorithm so that the Rayleigh

Quotient matrix, here called Gm, is developed like the Tm = W T
mAVm matrix in

NLan-DR. Though more expensive, TSArn-DR does still produce both left and

right eigenvectors. Like nonsymmetric Lanczos both a set of left and right vectors

are developed, but instead of making them biorthogonal, we make them individually

orthogonal. Also we feel that TSArn-DR is a better approach than running restarted

Arnoldi twice, because you get both left and right eigenvectors simultaneously and

if you do run restarted Arnoldi twice there is the opportunity for error when trying

to match right and left eigenpairs.

The TSArn-DR Algorithm

1. Start. Choose m, the maximum size of the subspace, and k, the desired

number of approximate eigenvectors.

2. First cycle. Apply standard Arnoldi Algorithm for the left and right sides

where AT is used for the left instead of A. This computes Vm+1andWm+1.

Form Gm = W T
mAVm and Pm = W T

mVm. However in the formation of Gm

use the Arnoldi recurrence for AVm = Vm+1H̄m. So Gm = W T
mAVm =

W T
m(Vm+1H̄m) = (W T

mVm+1)H̄m = PmHm + W T
mVm+1hm+1,m. While running

the separate left and right Arnoldi procedures, store the corresponding left

and right Arnoldi matrices, Tm and Hm. These will be used later to compute

left and right residual norms. Compute the k smallest (or others, if desired)

65
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eigenpairs (θi, hi), and (θi, gi), left and right respectively, of the generalized

eigenvalue problems Gmgi = θiPmgi and GT
mhi = θiP

T
mhi.

3. Compute residual norms. Extend Tm and Hm to size m + 1 by m by adding

a row of zeros and in the m + 1,m entry, of both Tm and Hm, place the

appropriate hj+1, j. Now call the new matrices Tm and Hm respectively.

ru
i = ‖Tmhi − θ̂ihi‖

ry
i = ‖Hmgi − θigi‖

4. Orthonormalization of the first k vectors. Orthonormalize the hi’s and the

gi’s, first separating into real and imaginary parts if complex, in order to

form m by k matrices Ĥk and Ĝk. (It may be necessary to adjust k in order

to be certain both parts of the complex vectors are included.)

5. Formation of portions of new G, P, T, and H from old G, P, T, and H.

Gnew
k = ĤT

k Gold
m Ĝk

P new
k = ĤT

k P old
m Ĝk

T new
k = ĤT

k T old
m Ĥk

Hnew
k = ĜT

k Hold
m Ĝk

6. Reassigning of the first k vectors and forming the k+1st vectors. First form

the left and right eigenvectors, ui = Wmhi and yi = Vmgi. Now for i = 1, ..., k

let wi = ui and vi = yi. Form the k + 1st vectors, wk+1 = AT wk and

vk+1 = Avk and reorthothogonalize these vectors against the previous k

vectors. Form Avi = V old
m+1H̄mgi and Awi = W old

m+1T̄mhi.

7. Reorthonormalization of the first k vectors and orthonormalization of the

k+1st vectors. Use full Gram-Schmidt to orthonormalize the first k + 1st

left and right vectors.
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8. Forming the remainder of the matrices G, P, T, and H For k+1, ..., m apply

Arnoldi iteration to both left and right sides as in cycle 1.

9. Eigenvalue Computations. Compute the k smallest (or others, if desired)

left and right eigenpairs, (θi, hi), and (θi, gi).

10. Restart. Go to 3.

Both NLan-DR and TSArn-DR utilize the same Krylov subspaces of

span{y1, y2, ..., yk, r
y, Ar, A2ry, ..., Am−k−1ry}

span{u1, u2, ..., uk, r
u, AT ru, (AT )2ru, ..., (AT )m−k−1ru}

where the only difference is the residual vectors, ry and ru, for NLan-DR are the

vectors, vm+1 and wm+1, respectively from the previous cycle.

This explains the fact the convergence of NLan-DR and TSArn-DR are identi-

cal. Also we use TSArn-DR instead of running restarted Arnoldi twice because this

simultaneously computes both left and right eigenvectors.

5.2 Examples

Example 5.1. Like the first example involving NLan-DR and restarted Arnoldi, we

compare NLan-DR and TSArn-DR using the bidiagonal matrix of size 2000 with

.1, 1, 2, ....., 1999 down the main diagonal and 1’s along the super diagonal with

m = 40 and k = 10. As in previous figures, Figure 5.1 shows a comparison of the

first and sixth eigenvalues.

Example 5.2. Once again for our second example involving NLan-DR and TSArn-

DR, we use the Sherman4 matrix with m = 40 and k = 10. Also the rebiorthogonal-

izations of NLan-DR are the same as the second example involving NLan-DR and

restarted Arnoldi. Again from Figure 5.2 we see the identical convergence of the two

methods.
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Figure 5.1: Eigenvalue comparison of NLan-DR and TSArn-DR for a bidiagonal matrix
of size 2000.
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Figure 5.2: Eigenvalue comparison of NLan-DR and TSArn-DR for the matrix Sherman4.



CHAPTER SIX

Conclusions

We have given three new methods. The first two, Lan-DR and NLan-DR,

find eigenvalues and simultaneously solve linear equations with multiple right hand

sides. Both methods save on orthogonalizations compared to other methods so

accurate results are found with less work. And while Lan-DR has been shown to

be competitive with other methods in QCD problems and against block methods,

NLan-DR needs further investigation. The third method, TSArn-DR, is given as

an alternative to NLan-DR because of nonsymmetric Lanczos’ instabilities. Both

NLan-DR and TSArn-DR utilize the same subspace so they give identical results.

We also feel TSArn-DR has an advantage over running the restarted Arnoldi method

twice because TSArn-DR gives both left and right eigenvectors simultaneously.
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