
ABSTRACT

On Inferring Cognitive Impairment from a Battery of Tests and Predicting an
Event-of-Interest Using Longitudinal and Time-to-Event Data

Morgan McCreary, Ph.D.

Chairperson: Dennis A. Johnston, Ph.D.

In this dissertation we first investigated two commonly used methods’ and a

recently proposed method’s ability to predict conditional survival probabilities based

on longitudinal biomarker measurements. Then, in preparation for the application

of such dynamic prediction methods, we proposed the use of Bayesian multivariate

mixture model accounting for censoring to infer cognitive impairment status at base-

line from a battery of cognitive tests in the presence of censoring. The currently used

methods for inferring cognitive impairment from a battery of cognitive tests and the

proposed method were applied to the task of inferring cognitive impairment from a

battery of cognitive tests administered to pediatric Multiple Sclerosis patients. The

impact of censoring on the inferred cognitive impairment status was examined, as

well as the predictive accuracy of the proposed and currently used methods via simu-

lation. Finally, in order to infer cognitive impairment based on results from a battery

of cognitive tests obtained during follow-up in the presence of a practice effect, we

proposed the use of a Bayesian continuous-time mixed hidden Markov model. To ac-

count for the practice effect in the hidden Markov model, we proposed incorporating

an adapted form of the half-life regression equation presented by Settles and Meeder.

We simulated two example datasets based on the results from the analysis of the



battery of cognitive tests at baseline due to the lack of longitudinal cognitive testing

data from pediatric Multiple Sclerosis patients and applied the hidden Markov model

to infer cognitive impairment. We examined the ability of the hidden Markov model

to correctly infer cognitive impairment at each time point during follow-up for the

simulated patients as well as the accuracy of parameter estimates. The predictive

accuracy of the proposed methods in simulated and real data obtained from pediatric

Multiple Sclerosis patients enable us to efficiently design clinical studies and trials

aimed at improving the understanding and treatment of cognitive impairment in this

patient population, as well as other diseases in which cognitive impairment is a known

effect.
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CHAPTER ONE

Introduction

Our initial intent for this dissertation was to examine methods for the dynamic

prediction of longitudinal and time-to-event data in which real-time predictions are

made of the probability a patient will experience an event-of-interest based on lon-

gitudinal biomarker measurements (Van Houwelingen and Putter, 2011; Rizopoulos,

2012; Huang et al., 2016). As the medical field continues its transition to individu-

alized medicine, dynamic prediction has become a valuable tool given its ability to

predict a given patient’s diseases prognosis based on biomarker measurements and

influence future care. Recently, Huang et al. (2016) proposed a novel method for

dynamic prediction of longitudinal and time-to-event data which addressed short-

comings of the two commonly used methods, landmark analysis and joint modeling

of longitudinal and time-to-event data. The simulation study constructed by Huang

et al. (2016) examined the ability of the three models to predict the conditional sur-

vival probabilities a given patient experiences the event-of-interest before some future

time point given that they have not experienced the event-of-interest based on lon-

gitudinal biomarker measurements. However, their simulation trained and tested on

the same group of patients, potentially resulting in overestimated predictive accuracy

as a consequence of overfitting. Additionally, Huang et al. (2016) did not examine the

predictive accuracy of the three methods for differing lengths of time between the time

up to which the longitudinal measurements are obtained and the future time point.

Also, the biologic variability of the simulated longitudinal biomarker in Huang et al.

(2016) was relatively small compared to the simulated biomarker values. Therefore,

in Chapter Two we reconstructed the simulation study from Huang et al. (2016) and

examined the predictive accuracy of the model trained on a training sample to predict
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the conditional survival probability of a testing sample of patients. Additionally, we

examined the predictive accuracy for various lengths of time between the time up to

which the longitudinal measurements were obtained and the future time point along

with differing degrees of biologic variability.

Following examination of the three dynamic prediction methods, our interest

was in developing an improved method to infer the cognitive impairment from a bat-

tery of cognitive tests in preparation of the application of dynamic prediction methods

to this type of data as well the analysis of datasets currently being collected. The

current methods used to infer cognitive impairment violate many of the underlying

standard assumptions. Cognitive impairment is a latent variable inferred based on

a given patient’s scores from a battery, or collection, of cognitive tests which are

often correlated. However, the statistical methods currently used to infer cognitive

impairment operate under the assumption of independence amongst the cognitive

tests in a given battery. Additionally, censored cognitive test scores are commonly

encountered in clinical data and can lead to biased parameter estimates and incorrect

inferred cognitive status. Therefore, we proposed the use of a Bayesian multivariate

finite mixture model accounting for censoring to estimate the correlation amongst the

test and infer each patient’s cognitive impairment status in the presence of censored

test scores. In Chapter Three we inferred patients’ cognitive impairment status from

a battery of cognitive tests administered to pediatric Multiple Sclerosis patients at

the Pediatric Demyelinating Diseases Clinic of Children’s Health Dallas using the

currently used methods and the Bayesian multivariate finite mixture model in the

presence and absence of censoring. Additionally, we have constructed a simulation

study to examine the sensitivity and specificity of the currently used methods and

the Bayesian multivariate finite mixture model to infer cognitive impairment, as well

as agreement in the inferred cognitive status amongst the various methods.

While the Bayesian multivariate finite mixture model accurately inferred cogni-
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tive impairment at baseline in the simulation study, we needed to extend the Bayesian

multivariate finite mixture model to infer cognitive impairment based on scores from

a battery of cognitive tests during follow-up testing. This task was further compli-

cated by the well-documented presence of a practice effect for many cognitive tests in

which a patient’s score increases due to repeated exposure to a given cognitive test

(Dikmen et al., 1999; Beglinger et al., 2005; Collie et al., 2003; Calamia et al., 2012).

The practice effect can create the artificial perception that a patient’s cognitive test

score increased. Therefore, we needed to account for the practice effect to accurately

infer a given patient’s cognitive impairment status during follow-up. To infer a pa-

tient’s cognitive impairment status during follow-up, we have proposed the use of a

Bayesian continuous-time mixed hidden Markov model. To account for the practice

effect during repeated testing, an additional term adapted from the half-life regression

equation proposed by Settles and Meeder (2016) was incorporated into the Bayesian

continuous-time mixed hidden Markov model. Due to the lack of longitudinal scores

for the battery of cognitive test of interest from pediatric Multiple Sclerosis patients,

data were simulated based on results presented in Chapter Three and the parameter

estimates corresponding to each subpopulation and the predictive accuracy of the

inferred cognitive impairment status were examined in Chapter Four.
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CHAPTER TWO

Current Methods for Dynamic Prediction of Longitudinal and Time-to-Event Data

2.1 Introduction

Dynamic prediction is an attempt to make real-time predictions of a given pa-

tient’s disease prognosis based on longitudinal biomarker measurements (Huang et al.,

2016). Dynamic prediction has become increasingly used in the prediction of vari-

ous cancers, including Chronic Myeloid Leukemia (CML), Advanced Ovarian Cancer,

and Breast Cancer (Huang et al., 2016; Van Houwelingen and Putter, 2011; Rizopou-

los, 2012). Estimation of the conditional survival probability based on longitudinal

biomarker measurements, whose values are thought to be a manifestation of a pa-

tient’s given disease state, enables physician to make real-time clinical decisions to

limit further disease progression.

Two common methods for dynamic prediction of longitudinal and time-to-event

data are landmark analysis and joint modeling of longitudinal and time-to-event data

(Van Houwelingen and Putter, 2011; Rizopoulos, 2012). However, associated with

each of these methods are specific shortcomings that limit their predictive accuracy.

Recently, Huang et al. (2016) proposed a novel method for the estimation of the con-

ditional survival based on longitudinal measurements to address the shortcomings of

the two aforementioned techniques. A simulation study was constructed in Huang

et al. (2016) to examine the predictive accuracy of the two commonly used methods

and their proposed method. Unfortunately, the design of the simulation study was

flawed and the results may provide inaccurate estimates of the predictive accuracy

of three methods. Also, the authors only considered a relatively low level of bio-

logic variability in their simulated longitudinal biomarker measurements. Lastly, the

authors did not examine the predictive accuracy of the three methods for different

4



lengths of time between the time up to which the longitudinal measurements were

obtained and the future time point. Therefore, we have addressed the flaws of the

simulation study presented in Huang et al. (2016) and have presented those results

here.

Section 2.2 provides a detailed description of the basic survival notation that

will be used in the remainder of this chapter. Section 2.3 provides information re-

garding the two commonly used dynamic prediction methods and the method re-

cently proposed by Huang et al. (2016). Section 2.4 then describes the simulation

study presented in Huang et al. (2016) and the changes we have made to obtain

more correct and informative results, as well as the results obtained in our simulation

study. Finally, Section 2.5 describes the apparent shortcomings of the three methods

investigated here.

2.2 Basic Survival Notation

Suppose n patients with a particular disease are enrolled in a clinical study and

followed for a previously set period of time. Let Ti denote the true time of an event-

of-interest occurring after the initiation of follow-up for the ith patient, i = 1, . . . , n.

Events-of-interest in clinical studies often are defined as disease relapse or death due

to disease. However, during the course of follow-up the particular event-of-interests

may not be observed in a subgroup of patients who do not experience the event-of-

interest during their study enrollment. The time to the event-of-interest for these

subjects is said to be censored. More specifically, patients who are lost to follow-up

during the course of a study are said to be right censored and patients who complete

the study event-free are said to be administratively censored. In either case, Ti is not

observed for these patients, only the censoring time for the ith patient, Ci, is observed.

Therefore, we will define the random variable Xi = min(Ti, Ci) and the censoring

indicator ∆i = I(Ti ≤ Ci), where I(·) is the indicator function. We will denote a
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realization of the random variable pair {Xi,∆i} as {xi, δi}. A crucial assumption for

the validity of the model estimates we will discuss is that of independent censoring.

Under independent censoring, the true survival time Ti and the censoring time Ci are

independent. Methods for dependent censoring exists and are discussed in Collett

(2015), but are not discussed further here.

The true time to an event-of-interest for the ith patient, Ti, is a non-negative

random variable with probability density function f(t). We will then define cu-

mulative incidence function evaluated at t to be the cumulative probability of an

event-of-interest occurring before t, calculated as

F (t) = P (T < t) =

∫ t

0

f(u)du. (2.1)

From (2.1), we arrive at the survivor function,

S(t) = P (T ≥ t) = 1− F (t),

which is the probability that the event-of-interests occurs at or after time t. An

additional function in which we will be interested is the hazard function, h(t). The

hazard function for the ith patient represents the instantaneous risk of the event-

of-interest occurring at time t, given that it has not occurred before time t, and is

defined as

hi(t) = lim
δt→0

{
P (t ≤ Ti < t+ δt|Ti ≥ t)

δt

}
.

Similarly, the cumulative hazard function for the ith patient is defined as

Hi(t) =

∫ t

0

hi(u)du, (2.2)

and represents the cumulative risk of the event-of-interest occurring by time t, given

that the event-of-interest has not occurred prior to t. It can be shown that

hi(t) =
fi(t)

Si(t)
, (2.3)
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and it follows from (2.3) and (2.2) that hi(t) = − d
dt
{logSi(t)}, Si(t) = exp{−Hi(t)},

and Hi(t) = − logSi(t).

An additional measure related to the survivor function that is often of interest

is the conditional probability of survival up to a time point t+ u given survival up to

time t, u > 0. This probability can be expressed as

π(t+ u|t) = P (Ti ≥ t+ u|Ti ≥ t, u > 0)

=
P (Ti ≥ t+ u ∩ Ti ≥ t|u > 0)

P (Ti ≥ t)

=
P (Ti ≥ t+ u|u > 0)

P (Ti ≥ t)

=
Si(t+ u)

Si(t)
. (2.4)

This quantity will be our main quantity-of-interest as we delve into dynamic predic-

tion in later sections.

Suppose that in addition to recording time to the event-of-interest, the clinical

study also collects additional covariates thought to be related to Ti. We will be

interested in covariates of two types: time-independent covariates and endogenous

time-dependent covariates. Time-independent covariates include baseline information

that does not change during the course of the clinical study such as gender, age at

onset, and treatment administered throughout the course of the clinical study. We

will denote the p-dimensional vector of time-independent covariates for the ith patient

Yi = (Yi1, . . . , Yip)
>. Endogenous, or internal, time-dependent covariates are time-

dependent measurements obtained for each subject that relate to Ti and can only

be measured while the patient is alive. An example of endogenous time-dependent

covariates are longitudinal biomarker measurements obtained from a patient during

the course of the clinical study. We will denote the q-dimensional vector of endogenous

time-dependent covariates for the ith patient at time t as Zi(t) = (Zi1(t), . . . , Ziq(t))
>.

In order to model time-to-event data with endogenous time-dependent covari-

ates and, thereby, estimate the survivor function, the Cox regression model with
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endogenous time-dependent covariates can be used (Cox, 1992, 1975). Using the no-

tation presented above, the Cox regression model containing time-independent and

endogenous time-dependent covariates is defined as

hi(t) = h0(t) exp
{
α>Yi + γ>Zi(t)

}
,

such that α = (α1, . . . , αp)
> is a p-dimensional vector of unknown coefficients cor-

responding to the time-independent covariates, γ = (γ1, . . . , γq)
> is a q-dimensional

vector of unknown coefficients corresponding to the endogenous time-dependent co-

variates, and h0(t) is the baseline hazard function, defined as the value of the hazard

function when all covariates in the model are zero. The resulting survivor function

for the ith individual is then defined as

Si(t) = exp{−Hi(t)}

= exp

{
−
∫ t

0

hi(u)du

}
= exp

{
−
∫ t

0

h0(u) exp
{
α>Yi + γ>Zi(u)

}
du

}
. (2.5)

Estimation of the parameters α and γ and the baseline hazard function, h0(t),

are complicated by the presence of endogenous time-dependent covariates. Addition-

ally, estimation of the survivor function in equation (2.5) is complicated due to the

presence of the integral from 0 to t. Particularly, this presents a problem for endoge-

nous time-dependent covariates such as longitudinal biomarker measurements, whose

value is often not known at all time points u ∈ [0, t]. Estimation of α, γ, h0(t), and

Si(t) remains a topic of interest in the analysis of time-to-event and longitudinal data

research, with a wide array of methods differing in their approach. We will forego an

explanation of such methods until a later section.

2.3 Dynamic Prediction of Time-to-Event and Longitudinal Data

The main quantity of interest in dynamic prediction is the conditional prob-

ability that a patient survives up to a time t + u, u > 0, given that a patient
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has survived up to time t with longitudinal biomarker measurements available at

times ti1, . . . , tik ∈ [0, t] and known time-independent covariates. We will denote

the q × k-dimensional matrix of biomarker measurements for the ith subject as

Zi = (Zij(ti1), . . . , Zij(tik)), j = 1, . . . , q. Using equation (2.4), we can express the

quantity of interest in dynamic prediction as

π(t+ u|t) =
Si(t+ u|u > 0,Zi, Yi)

Si(t|Zi, Yi)
.

Therefore, estimation of the quantity of interest requires estimation of the survivor

distributions at time t+ u and t, given both time-independent and endogenous time-

dependent covariates. As discussed previously, the presence of endogenous time-

dependent covariates creates difficulties in the estimation of the survivor function. A

brief overview of the landmark approach, joint modeling of longitudinal and time-

to-event approach, and the Huang et al. (2016) two-stage approach are provided

below. For the interested reader, further information regarding landmark analysis,

joint modeling of longitudinal and time-to-event data, and the Huang et al. (2016)

two-stage approach can be found in Van Houwelingen and Putter (2011), Rizopoulos

(2012), and Huang et al. (2016), respectively.

2.3.1 Landmark Analysis

As presented in Van Houwelingen and Putter (2011) and Van Houwelingen

(2007), the landmark analysis approach uses the covariate information at the selected

landmark t for only those patients who have yet to experience the event-of-interest or

were lost to follow-up before t. The hazard function for the ith patient at time t+ u

based on covariates at landmark time t is defined as

hi(t+ u|Yi, Zi(t)) = ht,0(t+ u) exp{θLM(t)Yi + γLM(t)Zi(t)}, u > 0, (2.6)

where θLM(t) and γLM(t) are not time-varying coefficients, but instead the coeffi-

cients corresponding to the time-independent and time-dependent covariate at the

9



landmark time t. Additionally, ht,0(t + u) is the baseline hazard function at time

t+ u based on the covariates at time t. To estimate P (T ≥ t + u|T ≥ t, Yi, Zi(t)),

the landmark approach first estimates the parameters θLM(t) and γLM(t) in equation

(2.6) by maximizing the partial likelihood of the the Cox regression model, treating

Zi(t) as a time-independent covariate, defined as

L(θLM(θ), γLM(t)) =
n∏
i=1

{
exp{θLM(t)yi + γLM(t)zi(t)}∑

`∈R(xi)
exp{θLM(t)y` + γLM(t)z`(t)}

}δi

,

where R(xi) is the risk set defined as the set of subjects who have not experienced

the event-of-interest prior to xi and have not been censored prior to xi (Collett,

2015). Then, the baseline survival function, or survival function when all are zero, is

estimated using the Breslow estimate defined as

Ŝ0(t) = exp

{
−
∑
i:xi≤t

[
δi∑

j:xj≥xi exp(θ̂LM(t)yj + γ̂LM(t)zj(t))

]}
,

and the estimated baseline hazard function at time t + u in the landmark approach

is defined as

Ŝ0(t+ u) = exp

{
−

∑
i:xi≤t+u

[
δi∑

j:xj≥xi exp(θ̂LM(t)yj + γ̂LM(t)zj(t))

]}
.

Then, for a new patient with time-independent covariate values ynew and time-dependent

covariate values znew(t), the conditional probability of not experiencing the event-

of-interest up to time t + u, given that the new patient has not experienced the

event-of-interest before time t, is estimated using

π̂(t+ u|t) =

[
Ŝ0(t+ u)

Ŝ0(t)

]exp(θ̂LM (t)ynew+γ̂LM (t)znew(t))

.

The landmark analysis approach is the simplest of the three methods considered

here, a very appealing feature of this approach. Van Houwelingen (2007) argued

that the landmarking approach can achieve comparable results without the need to

create complex models. However, the landmark approach requires for all patients
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to have measurements collected at the selected landmark t, a requirement that is

often unreasonable in the clinical setting. Imputation techniques can be used to

obtain estimates of covariates at the selected landmark time t, but can lead to biased

estimates (Tsiatis and Davidian, 2001).

2.3.2 Joint Modeling of Longitudinal and Time-to-Event Data

The joint modeling of longitudinal and time-to-event data approach attempts

to address the issue previously mentioned in the estimation of Si(t) in equation (2.5)

in that biomarker measurement are rarely available for all time points from baseline

to t, and unavailable after time t to t + u, u > 0. The proposed solution offered by

the joint modeling approach is to estimate a model for the biomarker measurement

over time based on the observed biomarker measurements, where for the ith patient

it is assumed that

Zi(t) = fi(t) + εi(t), i = 1, . . . , n,

where fi(t) represents the underlying true distribution of the longitudinal biomarker

measurements for the ith patient and εi(t) is associated with any measurement and/or

biological variability associated with the biomarker measurements. The function fi(t)

is often modeled using linear mixed effects models such that

fi(t) = u>i (t)β + v>i bi,

bi ∼ N (0, D),

εi(t) ∼ N (0, σ2),

where ui(t) is the design vector for the fixed effects β and vi(t) is the design vector

for the random effects bi. The joint modeling hazard function and survival function

for the ith patient at time t is then defined as

hi(t|Yi, fi(t)) = h0(t) exp{θ>Yi + γ>fi(t)}, (2.7)
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and

Si(t|Yi, fi(t)) = exp

(
−
∫ t

0

h0(s) exp{θ>Yi + γ>fi(s)}ds
)
. (2.8)

Additionally, in joint modeling, the baseline hazard function, h0(t), in equations (2.7)

and (2.8) must be specified. Rizopoulos (2012) discusses various options for specifying

the baseline hazard function and mentions a simple option in the piecewise-constant

mode. In the piecewise-constant model, the baseline hazard function is defined as

h0(t) =

Q∑
q=1

ξqI(νq−1 < t < νq), (2.9)

such that I(·) denotes the identity function, 0 = ν0 < ν1 < · · · < νQ denotes points

along the time interval of interest, with νQ being greater than largest observed time

or the end of the study, and ξq denoting the value of the hazard within the interval

(νq−1, νq] (Rizopoulos, 2012).

The traditional method for estimation of the joint model is based on maximiza-

tion of the likelihood function of the joint distribution of (Xi,∆i, Yi, Zi(t)) using the

Expectation-Maximization (EM) algorithm or the Newton-Rhapson algorithm (Ri-

zopoulos, 2012). We do not provide the likelihood (or log-likelihood) function or EM

algorithm for maximization of the likelihood (or log-likelihood). Instead we direct the

reader to Rizopoulos (2012, Chapter 4), which provides the log-likelihood function

corresponding to the joint distribution of (Xi,∆i, Yi, Zi(t)) as well as the steps of the

EM algorithm used to maximize the log-likelihood function.

Rizopoulos (2012) has proposed the use of Monte Carlo simulation schemes to

estimate the conditional probability π(t + u|t). Again, we will not reproduce the

Monte Carlo simulation scheme here but instead direct the reader to Rizopoulos

(2012, Chapter 7) for a detailed description of the Monte Carlo simulation.
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2.3.3 Huang et al. (2016) Two-Stage Approach

Huang et al. (2016) proposed a two-stage approach for dynamic prediction of

longitudinal and time-to-event data to address shortcomings of the landmark ap-

proach and the joint modeling approach. Specifically, the authors wanted a method

which did not require subjects to have biomarker measurements obtained at the same

time points, as is required by the landmark approach, and did not require the spec-

ification of the longitudinal biomarker trajectory model, as does the joint modeling

approach, due to the potential impact of misspecification.

The Huang et al. (2016) two-stage approach assumed a Cox regression model

for the hazard function for the ith patient, defined as

hi(t|Yi, Zi(t)) = h0(t) exp{θ>Yi} exp{γ>(t)Zi(t)},

where γ(t) is a time-varying coefficient. Additionally, the authors specified the co-

variate Yi to include the baseline value of the biomarker measurements, as well as

time-independent covariates. Therefore, the model proposed by Huang et al. (2016)

does not require specification of the model of the longitudinal biomarker trajectory,

but does require the specification of the model of the time-varying coefficient. The first

stage of the two-stage approach estimates h0(t) and θ, ignoring the time-dependent

biomarker measurements. In order to first estimate θ, the partial likelihood, defined

as

L(θ) =
n∏
i=1

{
exp(θ>Yi)∑

j:xj≥xi exp(θ>Yj)

}
,

is maximized. Then, using the estimated value for θ, θ̂, the baseline hazard function

and baseline survival function are estimated using the Breslow estimator; that is,

ĥ0(xi) =
δi∑

j:xj≥xi exp(θ̂>yi)
, (2.10)
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and

Ŝ0(t) = exp

{
−
∑
i:xi≤t

ĥ0(xi)

}
.

The goal of the second stage of the two-stage approach is to estimate the time-

varying coefficient associated with the longitudinal biomarkers, γ(t). The authors

specified a model for γ>(t)Zi(t) defined as

γ>(t)Zi(t) = γ>0 (t) + γ>1 Zi(t),

where γ0(t) and γ1(t) are defined as fractional polynomials such that

γk(t) = γk0 + γk1 ln(t) + γk2
√
t+ γk3

1√
t

+ γk4t+ γk5
1

t
+ γk6t

2 + γk7
1

t2
,

for k = 1, 2. The authors then removed higher order polynomials using backwards

elimination.

Huang et al. (2016) then defined their likelihood function for the ith patient at

time t as

L̂ij(γ(t)) = [ĥ0(xi) exp{θ̂>yi + γ>zi(t)}]δi

× exp

[
− exp{θ̂>yi + γ>(t)zi(t)}

∑
m:t<xm≤xi

h0(xm)

]
.

Then, under the working independence assumption among the different time points

tij, the ‘working’ log-likelihood function is defined as

̂̀(γ(t)) =
n∑
i=1

ni∑
j=1

δi{log[ĥ0(xi)] + θ̂>yi + γ>(tij)zi(tij)}

− exp{θ̂>yi + γ̂>(tij)zi(tij)}
∑

m:tij<xm≤xi

ĥ0(xm). (2.11)

However, given that ĥ0(xi) is calculated according to equation (2.10), if δi = 0, then

ĥ0(xi) = 0 and δi log[ĥ0(xi)] in equation (2.11) is indeterminate. Therefore, we will

use a corrected version of the log-likelihood which does not encounter this issue.
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Instead of using the ‘working’ log-likelihood function defined in equation (2.11), we

define the ‘working’ log-likelihood to be

̂̀(γ(t)) =
r∑
i=1

ni∑
j=1

log[ĥ0(xi)] + θ̂>yi + γ>(tij)zi(tij)

−
n∑
i=1

ni∑
j=1

exp{θ̂>yi + γ̂>(tij)zi(tij)}
∑

m:tij<xm≤xi

ĥ0(xm), (2.12)

where r denotes those subjects who are not censored during the course of the study.

Then, the maximum likelihood estimate of γ(t) is obtained by maximizing the log-

likelihood in equation (2.12).

Finally, for a new patient who has time-independent measurements ynew and

biomarker values at time t znew(t), the conditional survival probability is estimated

to be

π̂(t+ u|t) =

[
Ŝ0(t+ u)

Ŝ0(t)

]exp{θ̂>ynew+γ̂>(t)znew(t)}
.

2.4 Simulation

2.4.1 Generation of Longitudinal and Time-to-Event Data

In order to examine the predictive accuracy of the landmark approach, joint

modeling approach, and the Huang et al. (2016) two-stage approach for varying de-

grees of biological variability of the biomarker, we have constructed a simulation

study consisting of n = 200 patients followed for a period of 10 years with biomarker

measurements taken at baseline and every year over the study duration. To generate

the longitudinal and time-to-event data, we first generate the longitudinal biomarker

measurements from the following linear mixed effects model

fi(tij) = (β0 + b0i) + (β1 + b1i)tij

Zi(tij) = fi(tij) + εi(tij),
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where β0 = 3 and β1 = 2. The vector of random effects, bi = (b0i, b1i)
>, were given a

multivariate normal distribution with mean vector (0, 0)> and covariance matrix

Σb =

 4 0.1

0.1 2

 .
Lastly, for the linear mixed effects model, the error term was assumed to be attributed

to biologic variation in the biomarker, as opposed to measurement error. Additionally,

for the ith patient the error term at each time-point is assumed to be independent

and distributed N (0, σ). In the original simulation study constructed by Huang

et al. (2016) to investigate these three methods of dynamic prediction, the authors

considered a low level of biologic variability, relative to the values of Zi(t) based on the

values of β0 and β1, by assuming σ = 0.6. Therefore, in addition to investigating the

predictive accuracy of the three model for longitudinal data with a biologic variability

of σ = 0.6, we will also investigate greater degrees of biologic variability with σ = 2

and σ = 4. Simulated longitudinal biomarker trajectories for 8 random patients for

each value of σ are shown in Figure 2.1.

Huang et al. (2016) assumed that the hazard function for the ith patient followed

the Cox regression model

hi(t|Yi, Zi(t)) = h0(t) exp{ψfi(t)}, (2.13)

where ψ was defined as a method to control how the survival time was influenced by

the longitudinal biomarker values and were set at two different values of ψ = 0.8 and

ψ = 1.6. While increasing the value of ψ increased the root-mean-squared prediction

error of the estimated conditional survival, it did not affect the performance of each

method relative to the others. That is, if the ordering of root-mean-squared prediction

error from smallest to largest were the joint modeling approach, Huang et al. (2016)

two-stage approach, and the landmark approach, this ordering did not change for an

increase in ψ. Therefore, we chose to exclude the ψ term and assume that the hazard

16



σ = 0.6 σ = 2 σ = 4

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

−20

0

20

40

Time

B
io

m
a

rk
e

r 
L

e
v
e

l

Figure 2.1. Simulated biomarker trajectories from 8 patients with biologic variability
equal to σ = 0.6, σ = 2, and σ = 4.

function for the ith patient follows the Cox regression model

hi(t|Yi, Zi(t)) = h0(t) exp{fi(t)},

where h0(t) = λνeν−1, a Weibull hazard function. The shape parameter of the Weibull

hazard function, ν, was set to be 0.5 and the scale parameter, λ, was to be λ = 5×10−6

in order to achieve a 50% censoring rate.

Recall that cumulative incidence function can be represented as

Fi(t) = 1− Si(t)

= 1− exp{−Hi(t)}.

If we then assume that F (t) ∼ Uniform(0, 1), we can use the inverse transform

method to obtain the failure time for the ith patient based on the following:

P (F (Ti) < u) = P (Ti < F−1(u)) = u,
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Figure 2.2. Kaplan-Meier curves corresponding to (a) the event-of-interest and (b)
censoring.

for u ∈ [0, 1]. Hence, if U ∼ Uniform(0, 1), then F−1(U) has the same distribution

as Ti. As in Beyersmann et al. (2011), we conducted the inverse transform method by

first computing F−1(U) = H−1(− ln(1−u)). However, the inverse of H does not have

a closed form expression. Therefore, we are required to compute it numerical inver-

sion. Then, we can generate the random variable for U such that U ∼ Uniform(0, 1).

It then follows that for the ith patient, H−1(− ln(1− ui)) := ti. Then, the censoring

variable for the ith patient, Ci, will be generated from the Uniform(0, 28) distribution

and Xi will then be defined to be min(Ci, Xi). Finally, ∆i = I(Ti < Ci). The result-

ing Kaplan-Meier curve for the event-of-interest and censoring for data simulated for

all three values of σ are shown in Figure 2.2.

Table 2.1 provides the number of simulated patients who failed or were censored

during each interval.

2.4.2 Results

In the original article by Huang et al. (2016), the authors do not describe at

which time point t biomarker measurements were used to predict π(Ti ≥ 10|Ti > t).
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Table 2.1. Number of simulated patient who failed, were censored, or remained in
the risk set during each time interval.

Time
Interval

Failure Censored Remaining

[0, 1) 0 8 192
[1, 2) 0 12 180
[2, 3) 2 3 175
[3, 4) 12 8 155
[4, 5) 15 5 135
[5, 6) 23 6 106
[6, 7) 13 3 90
[7, 8) 17 5 68
[8, 9) 12 5 51
[9, 10) 6 4 41

Additionally, the authors do not specify whether a testing and training sample were

used, so we assume that the authors estimated the parameters and corresponding

hazard function using the full dataset and then estimated conditional survival of all

patients based on these estimates. Instead, we will examine the performance of these

three methods using a testing and training sample in each iteration of the simulation.

Based on the n = 200 simulated patients, the three methods were used to

predict π(Ti ≥ 10|Ti > t), for t = 1, 2, . . . , 9, on a testing sample of 10% of the

patients remaining at the risk set at each time t. Additionally, the proportion of

patients in the testing sample who were administratively censored (and experienced

the event-of-interest) were designed to be equivalent to the proportion of patients

in each simulated dataset who were administratively censored (and experienced the

event-of-interest) after time t. For instance, at t = 5, 135 patients remain in the

risk set, of which 94 patients experience the event-of-interest or are lost to follow-

up before t = 10 and 41 complete the study without the event of interest. In this

instance, the testing sample would contain 9 patients who experienced the event-of-

interest and 4 who were administratively censored. Given that we know the true
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biomarker trajectory, fi(t), for each patient at all times t ∈ [0, 10], we can compute

the true value of π(Ti ≥ 10|Ti > t) for t = 1, 2, . . . , 9 based on equation (2.5). Then, to

test the predictive accuracy of the landmark approach, the joint modeling approach,

and the two-stage approach proposed by Huang et al. (2016), we can compute root-

mean-squared prediction error (RMSE) for a testing sample of patients remaining in

the risk-set at time t based on the parameter estimates obtained using a training

sample of patients as follows

RMSE =
√

[π̂(Ti ≥ 10|Ti > t)− π(Ti ≥ 10|Ti > t)]2, t = 1, 2, . . . , 9,

where π̂(Ti ≥ 10|Ti > t) is the predicted conditional survival probability obtained us-

ing the landmark approach, joint modeling approach, or two-stage approach proposed

by Huang et al. (2016).

The landmark approach, joint modeling approach, and two-stage approach pro-

posed by Huang et al. (2016) were performed as discussed in Section 3.4. For the

joint modeling approach, the procedure was carried out using the JM package in R

(Rizopoulos, 2010). Additionally, in the joint modeling approach, the baseline hazard

function h0(t) was given the piecewise-constant model shown in equation (2.9) with

the number of knots specified such that the number of linear predictors in the mixed

effects model and the number of knots is less than 1/10 the total number of events in

the sample, as suggested by Rizopoulos (2012) to avoid overfitting. Given that the

main interest in our simulation study is to investigate the effect of increasing biologic

variability and not the bias introduced by misspecification of the linear mixed effects

model, the linear mixed effects model in the joint modeling approach was specified to

be fi(t) = (β0 + b0i) + (β1 + b1i)t to match the true biomarker trajectory.

The RMSE for each of the three dynamic prediction methods from the simu-

lation study for σ = 0.6, 2, and 4 are shown in Figures 2.3 - 2.5. Additionally the

average RMSE and standard deviations can be found in Tables 2.2 - 2.4. As would
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Figure 2.3. Root-mean-squared prediction error of π(t + u = 10|t) for the landmark
approach, joint modeling approach, and Huang et al. (2016) two-stage approach for
times t = 1, 2, . . . , 9 when σ = 0.6

be expected, the RMSE for the joint modeling approach, landmark approach, and

two-stage approach proposed by Huang et al. (2016) decreases as t gets closer to

t + u = 10. Also as would be expected, we see that the RMSE for each of the three

methods increase as the value of σ increases.

When we compare the performance of the three methods over time when the

biologic variability is low (σ = 0.6), we see that the joint modeling approach results

in the lowest RMSE among the three methods, with the average RMSE of the Huang

et al. (2016) two-stage approach having greater than a two standard deviation dif-

ference for times t = 2, t = 3, and t = 4 relative to the joint modeling approach

while the average RMSE corresponding to the landmark approach is within two stan-

dard deviations of the average RMSE of the joint modeling approach for all times

t ∈ {1, 2, . . . , 9}. However, we did not find that for any t ∈ {1, 2, . . . , 9} the Huang

et al. (2016) two-stage performance had greater than a two-standard deviation dif-
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Figure 2.4. Root-mean-squared prediction error of π(t + u = 10|t) for the landmark
approach, joint modeling approach, and Huang et al. (2016) two-stage approach for
times t = 1, 2, . . . , 9 when σ = 2

ference relative to the landmark approach. While the results presented in Huang

et al. (2016) are not separated by time t, the authors average (standard deviation)

of the RMSE for the landmark approach, joint modeling approach, and their pro-

posed method when υ in equation (2.13) is defined as υ = 0.8 were 0.346 (0.021),

0.564 (0.020), and 0.344 (0.035), respectively. Given that the RMSE increases as υ

increases, we would expect the RMSE computed in our simulation study to be greater

than that of the previously reported values. However, examining Figure 2.3 and Table

2.2, it appears that our reported average RMSE for the joint modeling approach are

lower for all time points t > 1. Similarly, our reported average RMSE for the land-

mark approach is lower than that reported by Huang et al. (2016) for all time points

t ∈ {1, 2, . . . , 9}. Lastly, we see that our reported average RMSE for the Huang et al.

(2016) two-stage approach is less for times t > 4. The decrease in the average RMSE

joint model may be attributed to the fact that in the original simulation study the
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Figure 2.5. Root-mean-squared prediction error of π(t + u = 10|t) for the landmark
approach, joint modeling approach, and Huang et al. (2016) two-stage approach for
times t = 1, 2, . . . , 9 when σ = 4

authors used a nonparametric estimate of the baseline hazard function, which cor-

responds to the piecewise-constant model with knots positioned such that one event

occurs between each knot, a practice known to lead to biased results.(Rizopoulos,

2012). However, we do notice that the standard deviations associated with the av-

erage RMSE for all three methods are larger than those reported by Huang et al.

(2016). This results is to be expected given that we are considering prediction for a

testing sample not involved in the training of the parameters associated with each of

the three methods.

When comparing the performance of the three methods over time when the

biologic variability is set at σ = 2, we see very little discrepancy between the joint

modeling approach, landmark approach, and the Huang et al. (2016) two-stage ap-

proach, with no average RMSE being greater than two standard deviations apart

between the three methods for any time point. When comparing the average RMSE
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Table 2.2. Average (standard deviation) of root-mean-squared prediction error of the
landmark approach, joint modeling approach, and two-stage approach proposed by

Huang et al. (2016) for π(Ti ≥ 10|Ti > t), t = 1, 2, . . . , 9 for σ = 0.6.

Time (t) Rt Landmark Joint Modeling Huang et al. (2016)
t = 1 192 0.37 (0.05) 0.36 (0.09) 0.42 (0.06)
t = 2 180 0.29 (0.07) 0.19 (0.10) 0.40 (0.08)
t = 3 175 0.25 (0.08) 0.15 (0.09) 0.36 (0.10)
t = 4 155 0.20 (0.08) 0.10 (0.06) 0.36 (0.12)
t = 5 135 0.16 (0.09) 0.08 (0.06) 0.33 (0.14)
t = 6 106 0.15 (0.09) 0.06 (0.05) 0.34 (0.14)
t = 7 90 0.10 (0.07) 0.06 (0.05) 0.27 (0.17)
t = 8 68 0.09 (0.07) 0.05 (0.05) 0.20 (0.16)
t = 9 51 0.07 (0.06) 0.06 (0.07) 0.11 (0.13)

of the three methods between σ = 0.6 and σ = 2, we see a much larger increase

in the average RMSE for the joint modeling approach than the landmark approach

and two-stage approach proposed by Huang et al. (2016), increasing in the range of

(0.07, 0.2). However, many of the average RMSE for the Huang et al. (2016) two-

stage approach decrease with the exception of time t = 9, which increases by 5 points.

Then, comparing the standard deviations of the RMSE for the three approaches when

σ = 0.6 and σ = 2, we do not see a considerable increase.

Finally, when comparing the performance of the three methods over time when

the biologic variability is specified to be σ = 4, we again see very little discrepancy

between the three methods, with no average RMSE being greater than two standard

deviations apart between the three methods for any time point. When comparing

the average RMSE error for the three method between σ = 2 and σ = 4, we first see

increases in the average RMSE for the landmark approach ranging from (0.03, 0.09).

For the joint modeling approach we see changes ranging from (0.04, 0.09). Lastly,

for the Huang et al. (2016) two-stage approach we see increases in average RMSE

ranging from (0.00, 0.10). Additionally, when examining the standard deviations of

the RMSE, we do not see a considerable increases between the three approach.
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Table 2.3. Average (standard deviation) of root-mean-squared prediction error of the
landmark approach, joint modeling approach, and two-stage approach proposed by

Huang et al. (2016) for π(Ti ≥ 10|Ti > t), t = 1, 2, . . . , 9 for σ = 2.

Time (t) Rt Landmark Joint Modeling Huang et al. (2016)
t = 1 192 0.40 (0.04) 0.45 (0.09) 0.41 (0.05)
t = 2 180 0.33 (0.06) 0.38 (0.10) 0.36 (0.06)
t = 3 175 0.30 (0.06) 0.35 (0.10) 0.35 (0.06)
t = 4 155 0.24 (0.07) 0.26 (0.12) 0.29 (0.06)
t = 5 135 0.22 (0.08) 0.22 (0.10) 0.26 (0.07)
t = 6 106 0.23 (0.09) 0.17 (0.11) 0.25 (0.09)
t = 7 90 0.22 (0.09) 0.19 (0.09) 0.28 (0.08)
t = 8 68 0.21 (0.09) 0.12 (0.08) 0.19 (0.10)
t = 9 51 0.17 (0.11) 0.10 (0.09) 0.16 (0.10)

Table 2.4. Average (standard deviation) of root-mean-squared prediction error of the
landmark approach, joint modeling approach, and two-stage approach proposed by

Huang et al. (2016) for π(Ti ≥ 10|Ti > t), t = 1, 2, . . . , 9 for σ = 4.

Time (t) Rt Landmark Joint Modeling Huang et al. (2016)
t = 1 192 0.43 (0.04) 0.51 (0.09) 0.44 (0.04)
t = 2 180 0.39 (0.05) 0.47 (0.09) 0.40 (0.06)
t = 3 175 0.37 (0.05) 0.39 (0.10) 0.35 (0.06)
t = 4 155 0.32 (0.06) 0.31 (0.10) 0.36 (0.07)
t = 5 135 0.30 (0.08) 0.27 (0.12) 0.35 (0.08)
t = 6 106 0.34 (0.07) 0.26 (0.11) 0.34 (0.09)
t = 7 90 0.32 (0.09) 0.25 (0.12) 0.35 (0.10)
t = 8 68 0.28 (0.09) 0.20 (0.12) 0.29 (0.13)
t = 9 51 0.21 (0.11) 0.17 (0.13) 0.25 (0.15)

Based on the results for various degrees of biologic variability and the effect of

increasing u in π(Ti ≥ t + u|Ti > t), we can see that the joint modeling approach

performs ideally with minimal amounts of biologic variability (i.e, σ = 0.6). How-

ever, as the the biologic variability increases, the performance of the joint modeling

approach becomes almost indistinguishable from that of the landmark approach and

the Huang et al. (2016) two-stage approach. An interesting result of our simulation

study is that the predictive performance of the Huang et al. (2016) approach does

not differ considerably as biologic variability increases.
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2.5 Advantages and Shortcomings of the Three Dynamic Prediction Approaches

We briefly mentioned the advantages and shortcomings of the landmark

approach and the joint modeling approach as we introduced the respective

models, but here we delve deeper into their respective flaws and benefits as

well as the flaws and advantages associated with the Huang et al. (2016) two-stage

approach.

First, the most glaring shortcoming of the landmark approach in the clini-

cal setting is the unrealistic requirement that subjects have longitudinal biomarker

measurements taken at the same landmark time point. As mentioned previously, a

solution to this problem when subjects do not have measurements at exactly the same

point is to employ a missing data technique. However, this has been shown to lead to

additional bias in the estimated π(Ti ≥ t + u|Ti > t). Also, the landmark approach

only considers biomarker measurements taken at the landmark time point and ig-

nores all historical biomarker measurements, which may reveal additional evidence of

the impending occurrence of an event-of-interest. Despite these flaws, the landmark

approach provides an easily implementable option for dynamic prediction and, as we

have shown, an equally effective method for dynamic prediction in the presence of

large biologic variability.

Second, the joint modeling approach requires the specification of a longitudinal

model for the biomarker measurements. As we previously mentioned, misspecification

of this longitudinal model can result in biased estimates of π(Ti ≥ t+ u|Ti > t). Ad-

ditionally, while the large number of options provided to the user of the JM package

in R offer the user the flexibility necessary to find the joint model which fits the data

best, the amount of work necessary to obtain such a model requires

considerable testing on the user’s part as opposed to have a ready-to-go

method for dynamic prediction straight out-of-the-box such as the landmark ap-

proach.
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Lastly, while the Huang et al. (2016) two-stage approach does not specify a

model for the biomarker trajectory, it does require specification of the time-varying

coefficient model. The authors believed this consolation was a better option but the

use of a large number of coefficients in the fractional polynomial model can lead to

overfitting when the sample size may be small and require much more computational

burden relative to both the joint modeling and landmark approach. Also, the pre-

diction of the conditional survival probability at each time point t considers only

the biomarker measurements at time t and at baseline, excluding biomarker history

between those two time points. Finally, the Huang et al. (2016) two-stage approach

does not have an R package or code to implement the method as do the two previ-

ously discussed methods. This requires any interested user or clinician to code the

model from scratch, a time-consuming and less than ideal process given the other two

methods.

2.6 Concluding Remarks and Future Works

As individualized medicine becomse common practice in research hospitals, dy-

namic prediction of longitudinal and time-to-event data has become a useful practice

in adapting a patient’s care to limit disease progression. We have conducted a simu-

lation study to examine the predictive accuracy of the predicted conditional survival

for the two commonly used dynamic prediction methods, the landmark approach and

joint modeling approach, as well as the newly proposed Huang et al. (2016) two-stage

approach. The simulation study conducted was constructed similarly to that in Huang

et al. (2016), but instead examined the predictive accuracy of π̂(Ti ≥ t + u|Ti > t)

for each method on a testing set patients after training on a training set of patients

for differing values of u and differing degrees of biologic variability.

In our simulation study, we found that for biomarker measurement prone to

minimal biologic variability, the joint modeling approach is most effective when the
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longitudinal model of the biomarker is correctly specified. However, as biologic vari-

ability increases, the joint modeling approach, landmark approach, and the Huang

et al. (2016) two-stage approach perform similarly.

Additionally, we have discussed the shortcomings and advantages of the three

methods. If simplicity is key and data are all available at the landmark time point, the

landmark approach is ideal. If the biologic variability of the longitudinal biomarker

measurements is low, we encourage the use of the joint modeling approach with at-

tention to correctly specifying the longitudinal model. If the biologic variability of

the longitudinal measurements is high and data are available at the landmark time

point, we suggest the use of the landmark approach given its simplicity and the ab-

sence of the need to specify the longitudinal biomarker measurements Huang et al.

(2016). The Huang et al. (2016) two-stage approach does not appear to be advanta-

geous in either situation given the computational complexity of the method relative

to the landmark approach. However, we have only considered the scenario in which

observations are all available at the landmark time point and the true longitudinal

model is known. Future work should examine the performance of the Huang et al.

(2016) two-stage approach when the longitudinal model is misspecified and data are

not all measured at the landmark time point. The results previously reported by

Huang et al. (2016) illustrated favorable performance of their proposed method, but

given that their model was trained and tested on the same data during each iteration

of the simulation study, their results may be representative of overfitting.

While the joint modeling approach is the method most investigated in dynamic

prediction literature, development of a novel model which can incorporate history of

the longitudinal biomarker measurements into the prediction of conditional survival

while being robust to misspecification of the longitudinal model would be an invalu-

able contribution to the field of dynamic prediction. However, the inability to know

longitudinal biomarker measurements for all time points from [0, t], as well as future
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values of the longitudinal biomarkers of interest, makes development of such a model

difficult.
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CHAPTER THREE

Inferring Cognitive Impairment from a Battery of Cognitive Tests at Baseline

3.1 Introduction

Multiple Sclerosis (MS) is an immune-mediated disease of the central nervous

system affecting the brain, optic nerves, and spinal cord. Cognitive impairment has

been well appreciated in the adult MS population, and recent research efforts have

begun to document the presence of cognitive impairment in the pediatric MS popula-

tion (Amato et al., 2008; Julian et al., 2013; MacAllister et al., 2005; Tan et al., 2017).

Awareness of cognitive impairment in pediatric MS patients has led to an increase in

research efforts aimed at identifying and treating cognitive impairment (MacAllister

et al., 2005; Yeh et al., 2009).

The latent class status of cognitive impairment is inferred based on a patient’s

results from a battery, or collection, of multiple cognitive tests measuring various

cognitive functions. Recently, the statistical methodology used to infer cognitive

impairment status based on a given patient’s results from a battery of cognitive tests

has become a renewed topic of interest as cognitive impairment has become a outcome

measure of interest in clinical trials (Huizenga et al., 2016). Much of the current efforts

are aimed at controlling the Type I error in the presence of correlated cognitive tests

in a given battery. Additionally, little has been done from the Bayesian perspective.

A characteristic of cognitive testing data that further complicates statistical

analysis is the presence of censored data. Historically, censoring has been ignored

because the most commonly used method converts test scores to ‘pass’/‘fail’ variables,

which is unaffected by censoring. However, as we investigate new methods for inferring

cognitive impairment based on results from a battery of cognitive tests, accounting

for censoring is beneficial to the estimation procedure.
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Here we have investigated the use of a Bayesian multivariate normal mixture

model to infer cognitive impairment from a battery of cognitive tests used for pedi-

atric MS patients at the Pediatric Demyelinating Diseases Clinic of Children’s Health

Dallas with and without censoring. We first constructed a simulation study assum-

ing independence among cognitive tests in a given battery and found that the Bayes

procedure achieves a similar sensitivity and specificity relative to the commonly used

methods. More importantly, we constructed a simulation based on the results from

the analysis of the pediatric MS patients with correlated cognitive tests in the given

battery and found that the Bayes procedure performed better than the commonly

used methods in terms of both sensitivity and specificity. Finally, we examined the

impact of censoring on the inferred cognitive status for the proposed model as well

as the currently used methods. We found that despite accounting for censoring, pa-

rameter estimates in the Bayesian multivariate normal mixture model obtained when

analyzing the censored dataset remain biased relative to the analysis of the uncensored

dataset.

3.2 Background

A battery of cognitive tests consists of K cognitive tests administered to a

patient during a single session. Let the random variable Xk denote the score on the

k-th cognitive test in the battery, k = 1, . . . , K, such that X = (X1, X2, . . . , XK)> is

the K-dimensional random vector of cognitive tests scores. Additionally, the marginal

distribution of Xk for a healthy (i.e., not cognitively impaired) patient is assumed to

be normally distributed with known mean µk and standard deviation σk. Let Yk be the

centered and scaled score on the k-th cognitive test such that the marginal distribution

of Yk is assumed to be the standard normal distribution and Y = (Y1, Y2, . . . , YK)> is

the K-dimensional random vector of standardized cognitive test scores. Going forth

we will only discuss the vector Y as opposed to X.
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Consider a K-dimensional vector of data which are censored above at

b = (b1, b2, . . . , bK)> and below at a = (a1, a2, . . . , aK)>. Let the observed cognitive

test results for the i-th subject on the k-th test be defined as

y∗ik = yik · I[ak,bk](yik) + ak · I(−∞,ak)(yik) + bk · I(bk,∞)(yik), ∀i,∀k, (3.1)

where IA(yik) denotes the indicator function which equals 1 if yik ∈ A and is 0

otherwise (Lee and Scott, 2012). Historically in cognitive test scoring, a patient’s

score is censored below and above at 3 standard deviations below and above the mean,

respectively. That is, if yik has a marginal standard normal distribution, ak = −3 and

bk = 3, for k = 1, . . . , K, in equation (3.1). We can then define the random vector of

potentially censored cognitive test scores as Y ∗ = (Y ∗1 , Y
∗
2 , . . . , Y

∗
K)>, such that

Y ∗k =


3, if Yk > 3;

Yk, if Yk ∈ [−3, 3];

−3, if Yk < −3.

(3.2)

However, it is rare to encounter standardized test scores greater than three standard

deviations above the mean but common to find test scores in cognitively impaired

patients to fall below three standard deviations below the mean. Therefore, for the

remainder of the text, when we refer to censoring we are referring to censoring below

at three standard deviations below the mean (i.e., Yk < −3).

3.2.1 Current Methods for Inferring Cognitive Impairment Based on a Battery of

Cognitive Tests

3.2.1.1 Ingraham & Aiken (1996). Historically, the methods for inferring cog-

nitive impairment based on the vector Y (or Y ∗) have relied upon first transforming

Y (or Y ∗) into a binary ‘pass’/‘fail’ variable based on score cut-off, c. Failure of a

cognitive test is typically defined as scoring excessively low, so the value of c is gen-

erally negative and a patient is said to have ‘failed’ a given test if they scores lower
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than c. Commonly used values of c in the neuropsychology literature are c = −1,

c = −1.5, and c = −2 (Ingraham and Aiken, 1996). Let S be a random variable

denoting the number of cognitive tests ‘failed’ such that si is the number of tests the

i-th patient failed defined as

si =
K∑
k=1

I(−∞,c)(yik), (3.3)

for some pre-defined c, where IA(yik) denotes the indicator function which equals 1

if yik ∈ A and is 0 otherwise. Ingraham and Aiken (1996) first proposed assuming

S has a binomial distribution with K trials and probability of success equal to Φ(c),

where Φ(·) denotes the univariate standard normal cumulative distribution function

(Ingraham and Aiken, 1996). Then, for a pre-defined significance level α, the ith

patient is inferred to be cognitively impaired if P (S ≥ si) < α based on the binomial

cumulative distribution function, and not cognitively impaired otherwise. We will

refer to this method as the IA Method for the remainder of this article for simplicity.

However, a well-recognized issue with IA Method, even by the authors them-

selves, is the assumption of independence among the tests in a cognitive battery.

This assumption is often known to be invalid in various standard cognitive batteries,

leading to an inflation of the probability of a Type I error (Berthelson et al., 2013).

An attractive feature of the IA Method is that it is not affected by the presence

of censoring so long as the value of the cut-off, c, is greater than the value of ak in

equation (3.1).

3.2.1.2 P -value adjustments applied to the method proposed by Ingraham &

Aiken (1996). As is common in the presence of multiple testing, p-value adjustment

methods were incorporated into the IA Method. First, let the K-dimensional vector

of p-values be defined as p = (p1 = Φ(Y1), . . . , pK = Φ(YK))>, where Φ(·) is the

univariate standard normal cumulative distribution function. Then, through com-

monly used p-value adjustment methods including the Bonferroni correction, Holm
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correction, one-step resampling, and step-down resampling, the vector of p-values are

corrected for multiple testing and the resulting vector of adjusted p-values will be

labled p∗ = (p∗1, . . . , p
∗
K)>. For a pre-defined α, let S∗ be the random variable denot-

ing the number of cognitive tests for which the corrected p-value is below α such that

for the i-th patient

s∗i =
K∑
k=1

I[0,α](p
∗
ik), (3.4)

where IA(yik) denotes the indicator function which equals 1 if yik ∈ A and is 0 other-

wise. Then, similar to the IA Method, S∗ is assumed to have a Binomial distribution

with K trials and probability of success equal to α. Therefore, the i-th patient is

inferred to be cognitively impaired if P (S∗ ≥ s∗i ) < α and not cognitively impaired

otherwise.

The extensions of the IA Method using p-value adjustments may be affected by

the presence of censoring given that the p-values computed prior to adjustment are

based on Y ∗k as opposed to Yk and Φ(Yk) ≤ Φ(Y ∗k ), for k = 1, . . . , K.

3.2.1.3 Crawford et al. (2007). Crawford et al. (2007) proposed a novel

method of inferring cognitive impairment from a battery of cognitive tests which did

not rely on the Binomial distribution as does the method proposed by Ingraham and

Aiken (1996) and its extensions (Crawford et al., 2007). The method proposed by

Crawford et al. (2007) instead took advantage of the known correlation among tests

in a standard battery of cognitive tests. Let Ω be a known K ×K correlation matrix

for a standard battery of K cognitive tests. Data were simulated from a multivariate

normal distribution with a mean vector µ = (0, . . . , 0)> and correlation matrix Ω.

Then, the probability a subject ‘fails’ at least k cognitive tests in a given battery was

estimated to be the frequency of simulated data vectors with at least k simulated

scores below a pre-defined value, k = 1, . . . , K. If the number of tests a given subject

‘fails’ has a frequency of less than α in the simulated sample, the patient is classified
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as cognitively impaired and not cognitively impaired otherwise. We will refer to the

method proposed by Crawford et al. (2007) as the C Method for the remainder of

the article for simplicity.

An issue that arises when using the C Method is that their approach is inter-

ested only in the number of tests below a pre-defined value, and not which tests are

below a pre-defined value. This characteristic makes it possible to overestimate the

probability of k tests being below a pre-defined value, especially if the k tests on

which a patient scores below the pre-defined value are uncorrelated. Additionally,

in order to implement this method, the correlation among the cognitive tests in the

battery, Ω, must be known.

However, given that the C Method is interested only in the number of values

falling below a given cut-off, it is not affected by the presence of censoring as long as

the cut-off is greater than ak in equation (3.1).

3.2.1.4 Huizenga et al. (2007). Huizenga et al. (2007) were one of the first

to propose a multivariate approach which does not require the transformation of

the vector Y (or Y ∗) into a vector of binary ‘pass’/‘fail’ variables (Huizenga et al.,

2007). However, the method proposed by Huizenga et al. (2007) requires a normative

sample from healthy (i.e., not cognitively impaired) individuals. Let y1,y2, . . . ,yn be

the results of a battery of cognitive tests from n healthy individuals and let ynew be

the results from a battery of cognitive tests for a potentially cognitively impaired

patient. Huizenga et al. (2007) then computed the T 2 test statistic as follows:

T 2 = (ynew − ȳ)>Σ̂−1(ynew − ȳ), (3.5)

such that ȳ =
∑n

i=1 yi/n and Σ̂ is the K×K sample covariance matrix corresponding

to the healthy sample. Then, given that T 2 ∼ (n2−1)K
n(n−K)

FK,n−K , the critical value

corresponding to a desired α can be computed and patients whose scores from a

battery of cognitive tests result in a T 2 value greater than the critical value are
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inferred to be cognitively impaired and not cognitively impaired otherwise. We will

refer to the method proposed by Huizenga et al. (2007) as the H Method for the

remainder of the article for simplicity.

The T 2 statistic above is the T 2 statistic for testing the equality of vector

means from two multivariate normal populations with equal covariance matrices,

where n1 = n and n2 = 1. Thus, the T 2 statistic above and its respective distri-

bution operate under the assumption that ynew and the independent and identically

distributed observations y1,y2, . . . ,yn are all normally distributed with a common

covariance matrix, Σ , but potentially different means. A concern that must be

addressed is if the covariance matrix of the cognitively impaired population of pa-

tients can be assumed to be equal to that of the healthy population. Additionally,

this method requires that a reference sample of healthy individuals be available for

comparison.

The H Method can potentially be affected by the presence of censoring. If y∗new

denotes the censored vector of a potentially cognitively impaired patient, it follows

that (ynew−ȳ)>Σ̂−1(ynew−ȳ) ≥ (y∗new−ȳ)>Σ̂−1(y∗new−ȳ). Hence, ignoring censoring

can lead to underestimated values of T 2 and potential misclassificaton.

3.3 Multivariate Normal Mixture Model

Suppose that each of the i = 1, . . . , n pediatric MS patients in a given sam-

ple is sampled from either a cognitively impaired subpopulation or healthy (i.e., not

cognitively impaired) subpopulation, with each latent subpopulation distribution be-

longing to the same parametric family with potentially different parameter values.

Let zi denote the latent class status for the i-th patient such that

zi =


1, if the i-th patient is from the healthy subpopulation;

2, if the i-th patient is from the cognitively impaired subpopulation.

(3.6)
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It follows that the distribution of the results from a battery of cognitive tests for the

i-th patient, conditional on latent class status, is defined to be

yi|zi ∼ f(θzi), (3.7)

where f(θzi) is a parametric distribution with parameters θzi that potentially differ

for each subpopulation (Gelman et al., 2014). Then, let λ denote the proportion of

the population of pediatric MS patients who are not cognitively impaired such that

Pr(zi = 1) = λ and let (1 − λ) denote the proportion of the population of pediatric

MS patients who are cognitively impaired such that Pr(zi = 2) = 1−λ. The resulting

likelihood obtained after marginalizing out the latent class status is defined to be

L(y|λ,θ) = λf(y|θ1) + (1− λ)f(y|θ2), (3.8)

which corresponds to a finite multivariate mixture model with two components, with

component 1 assigned probability weight λ and component 2 assigned probability

weight (1− λ) (Gelman et al., 2014).

For many cognitive tests, including the cognitive tests in which we are con-

cerned, the marginal distribution of each cognitive test for a healthy (i.e., not cogni-

tively impaired) patient is assumed to be normally distributed with known mean and

standard deviation. That is, for the centered and scaled score on the kth cognitive

test in a battery, k = 1, . . . , K,

(yik|zi = 1) ∼ N(0, 1). (3.9)

However, the marginal distribution of each cognitive test in a given battery for the

cognitively impaired subpopulation is not known. Based on the assumed marginal

distribution of each test in the healthy subpopulation shown in equation (3.9), we

will begin by assuming a multivariate normal distribution for the joint distribution of

the K cognitive test scores for a given battery for both subpopulations. The validity

of this assumption will be examined upon analysis.
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Let Y |zi ∼ NK(µzi ,Σzi), where NK(µzi ,Σzi) is a K-dimensional normal dis-

tribution with mean vector µzi and covariance matrix Σzi . Instead of discussing the

covariance matrix, we will consider a common correlation matrix for the two latent

subpopulations, Ω, and the K-dimensional vector of standard deviations

σzi = (σ1,zi , . . . , σK,zi)
>, where Σzi = (diag(σzi))Ω(diag(σzi)). That is,

f(y|θzi) =
1

(2π)K/2|(diag(σzi))Ω(diag(σzi))|1/2

× exp

{
−1

2
(y − µzi)> [(diag(σzi))Ω(diag(σzi))]

−1 (y − µzi)
}
, (3.10)

where θzi = (µzi ,σzi ,Ω). From equation (3.9), given that µk,zi=1 = 0 and σ2
k,zi=1 = 1,

for k = 1, . . . , K, it follows that µ1 = (0, . . . , 0)> and σ1 = (1, . . . , 1)>.

Under the assumption that the Y |zi = 1 and Y |zi = 2 are of the same paramet-

ric family, there are two parameters which can vary relative to the healthy subpopu-

lation: µ2 and σ2. Therefore, relative to the healthy subpopulation, the cognitively

impaired subpopulation can be shifted (i.e., µ1 6= µ2) and/or have differing variability

(i.e., σ1 6= σ2).

3.4 Methods

Data utilized in this study were collected under an IRB approved protocol

of pediatric MS patients treated at the Pediatric Demyelinating Diseases Clinic of

Children’s Health Dallas.

The current battery of cognitive tests used in the Pediatric Demyelinating Dis-

eases Clinic for MS patients is a non-standard battery of cognitive tests consisting

of K = 15 cognitive tests, including: California Verbal Learning Test (CVLT) Total,

CVLT Trial 1, CVLT Trial 5, CVLT Recognition Hits, CVLT Long Delay, Grooved

Pegboard (Dominant Hand), Grooved Pegboard (Non-Dominant Hand), Digit Span,

Beery Visual Motor Integration (VMI), Beery Visual Perception (VP), Trail Mak-

ing Test A (TMTA), Trail Making Test B (TMTB), Symbol Search, Symbol Digit
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Modality Test (SDMT), and the Delis-Kaplan Executive Function System (D-KEFS)

Letter Fluency Test. Given that the current battery of cognitive tests is not a stan-

dard battery, correlation amongst the 15 tests is not available in a reference manual.

Per the reference manuals for each cognitive test in the current battery, all cognitive

tests scores are adjusted for age. Given that we are interested in the results from

a given battery of cognitive tests for pediatric patients, it is important to note that

TMTA and TMTB are not available for patients under the age of 9 and SDMT and

the Letter Fluency Test are not available for patients under the age of 8.

For scores missing due to the score not being available for their given age group,

we will assume that the missing data mechanism corresponding to these missing

test scores is ignorable because the scores are age-adjusted. Additionally, due to

administrative error some patients are missing additional test scores. However, this

missingness is not believed to be of relevance to the score that the patient would have

received and, thus, we will assume that the missing data mechanism is also ignorable.

There are two versions of the current dataset, a censored and an uncensored

version. In the censored dataset, of the 15 cognitive tests in the current battery,

seven of the tests are subject to censoring below at ak = −3: Grooved Pegboard

(Dominant), Grooved Pegboard (Non-Dominant), Beery VMI, Beery VP, TMTA,

TMTB, and SDMT. In the uncensored dataset, while the true value of many of the

censored test scores are known, the TMTA, TMTB, Beery VMI, and Beery VP may

still be censored based on the lower limits on the scores available in their respective

reference manuals or the participant not completing the task in the allotted amount of

time. If a patient takes an excessive length of time to complete the TMTA and TMTB,

the lowest score on the TMTA and TMTB was defined to be Yk = −12.67 (Xk = −90)

at the discretion of the examiner. Additionally, the lowest score in the reference

manual for Beery VMI and Beery VP is Yk = −3.67 (Xk = 45). Therefore, these tests

are censored below at ak = −12.67 and ak = −3.67, respectively, in the uncensored
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dataset. Despite the uncensored dataset potentially containing censored test scores,

though to a much lesser extent, we will refer to this dataset as the uncensored dataset

for convenience. Lastly, no test scores in the current dataset were greater than three

standard deviations above the mean, so censoring above three standard deviations

above the mean was not a concern.

For the i-th patient, let yi,obs denote a ki,obs-dimensional vector of observed

and uncensored test scores, yi,cens denote a ki,cens-dimensional vector of censored test

scores, and yi,mis denote a ki,mis-dimensional vector of missing test scores, such that

ki,obs + ki,cens + ki,mis = K. The missing data yi,mis and censored data yi,cens will be

treated as unknown parameters in the Bayesian model and their values will be esti-

mated based on the joint posterior distribution p(yi,mis,yi,cens,θzi=1,θzi=2|yobs).(Stan

Development Team, 2017)

All analysis were performed using Stan in R (version 3.4.3) via the Rstan pack-

age (version 2.17.3) (R Core Team, 2016; Stan Development Team, 2016, 2017). Finite

multivariate mixture models were fit with J = 2 components corresponding to the

cognitively impaired and healthy subpopulations assuming a multivariate normal dis-

tribution for each subpopulation. All models were run with 5,000 warmup iterations

and 20,000 post-warmup iterations. The model was initially run with three chains at

different starting values to ensure convergence of each model to a stationary distri-

bution. After determining convergence, each model was rerun with a single chain for

the estimation of the joint posterior distribution of the unknown parameters, missing

values, and censored values conditional on the observed data.

3.4.1 Priors

Due to the current battery of interest being a non-standard battery of cogni-

tive tests, limited information is available regarding the correlation amongst tests.

Additionally, limited information is available for the location and scale parameters
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corresponding to the cognitively impaired subpopulation of pediatric MS patients.

Therefore, weakly informative prior distributions will be used for most priors in each

model to reflect our lack of knowledge.

While the proportion of pediatric MS patients suffering from cognitive impair-

ment has been estimated to be approximately one-third, this estimate was obtained

using the currently implemented methods to which we are comparing our method

(Amato et al., 2008; Julian et al., 2013; MacAllister et al., 2005). Therefore, we will

not use a strongly informative prior distribution for the distribution of λ which favors

this estimate. We will specify a Beta(4, 4) prior distribution for λ to provide low

probabilities that λ is close to zero or one.

The prior distributions specified for the healthy subpopulation (i.e., Yi|zi = 1)

and the cognitively impaired subpopulation (i.e., Yi|zi = 2) are listed below. Due to

the limited number of patients in the current sample, a common correlation matrix,

Ω, was assumed for both subpopulations.

Ω ∼ LKJ-Correlation Distribution(η = 1)

σ1 = (1, . . . , 1)>

σ2 ∼ Log-normal(0, 1)

µ1 = (0, . . . , 0)>

µ2 ∼ N
(
(0, . . . , 0)>, (diag(σ2))Ω(diag(σ2))

)
Per the marginal distribution of each tests shown in equation (3.9), the mean

vector was specified to be µ1 = (0, . . . , 0)> and the vector of standard deviations was

specified to be σ1 = (1, . . . , 1)>. The LKJ-correlation distribution with η = 1 prior

distribution was chosen for the correlation matrix because when η = 1 the density

is uniform over correlation matrices of order K = 15, while maintaining symmetry

and positive definiteness (Stan Development Team, 2017; Lewandowski et al., 2009).

Therefore, the LKJ-correlation distribution provides a weakly informative prior for
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the correlations amongst the test to reflect our prior knowledge.

A log-normal(0, 1) distribution was chosen as the prior distribution for the standard

deviations of each of the K tests because the 2.5th and 97.5th percentiles of the log-

normal(0, 1) distribution are 0.14 and 7.10, respectively, and given that the greatest

range for any test in the censored dataset is 5.67 and the greatest range for any test

in the uncensored dataset is 16.33, the log-normal(0, 1) provides a weakly informative

prior. Finally, the prior distribution specified for µ2 was chosen because had we chosen

to specify conjugate prior distributions for the multivariate normal distribution, the

prior distribution for µ2 is NK(µ0, (diag(σ2))Ω(diag(σ2))/κ0), where κ0 is the prior

number of measurements on the (diag(σ2))Ω(diag(σ2)) scale (Gelman et al., 2014).

Therefore, given our lack of information regarding the mean of the K cognitive test

scores obtained from the ‘cognitively impaired’, we specified µ0 to be the zero vector

and that we have 1 prior measurement on the (diag(σ2))Ω(diag(σ2)) scale, which is

weakly informative.

3.4.2 Subpopulation Membership Estimate

The probability that a patient belongs to each subpopulation was estimated

using the posterior estimates of the parameters θzi from the two subpopulations. Let

πj(yi) denote the probability that the i-th patient belongs to the j-th subpopulation,

j = 1, 2. It follows that

πj(yi) = P (zi = j|yi,θ1,θ2)

=
λjf(yi|θj)

λf(y|θ1) + (1− λ)f(y|θ2)
,

for j = 1, 2, where λ2 = (1 − λ). A patient is then classified as cognitively impaired

if E[p(π1|yi,θ1,θ2)] < E[p(π2|yi,θ1,θ2)] and not cognitively impaired otherwise. Let

n1 denote the number of patient estimated to belong to the healthy subpopulation and

let n2 denote the number of patients estimate to belong to the cognitively impaired

subpopulation.
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3.4.3 Posterior Predictive Check

After estimating latent subpopulation membership, the squared Mahalanobis

distance is to be computed based on the estimated parameters for respective sub-

population. Let d 2
i,zi

denote the squared Mahalanobis distance for the ith subject

estimated to belong to the zi subpopulation calculated as

d 2
i,zi

(yi) = (yi − µ̂zi)>Σ̂−1zi (yi − µ̂zi), (3.11)

such that µ̂zi is the estimated mean vector for the zi subpopulation and Σ̂zi

is the estimated covariance matrix for the zi population. Therefore, there are n1

squared Mahalanobis distances corresponding to the patients estimated to belong to

the healthy subpopulation and n2 squared Mahalanobis distances corresponding to

the patients estimated to belong to the cognitively impaired subpopulation. Then,

using the posterior predictive distribution for each subpopulation, n1 and n2 new

patients are simulated from their respective subpopulations. Let ỹi,zi denote the ith

simulated patient from the posterior predictive distribution of the zith subpopulation,

for i = 1, . . . , nzi . Then, the squared Mahalanobis distance is computed for the

simulated patients as in equations (3.11). Let the squared Mahalanobis distance

evaluated for the i-th simulated patient from the zi-th subpopulation be denoted as

d 2
i,zi

(ỹi)

Let d 2
(i),zi

(y) and d 2
(i),zi

(ỹ) denote the ith ordered squared Mahalanobis distance

for real patients and simulated patients, respectively, such that d 2
(i),zi
≤ d 2

(i+1),zi
, for

i = 1, . . . , (nzi − 1). If the model assumptions previously made are valid, we would

expect d 2
(i),zi

(y) ≈ d 2
(i),zi

(ỹ). That is, if we plot the nzi points (d 2
(i),zi

(y), d 2
(i),zi

(ỹ)), the

values should lie on the bisection of the quadrant.

Let d̂ 2
(i),zi

(y) denote the i-th ordered posterior mean of the squared Mahalanobis

distance from the zi-th subpopulation computed as

d̂ 2
(i),zi

(y) =
(
Ê[p(d 2

i,zi
|y,θzi)]

)
(i)
, (3.12)
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where (i) need not equal i. Then, let d̂ 2
(i),zi

(ỹi) denote the posterior mean for the

i-th ordered squared Mahalanobis distance obtained from the posterior predictive

distribution computed as

d̂ 2
(i),z(i)

(ỹi) = Ê[p(d 2
(i),z(i)

|ỹ,θz(i))]. (3.13)

We will therefore estimate the ordered pair (d 2
(i),zi

(y), d 2
(i),zi

(ỹ)) using

(d̂ 2
(i),zi

(y), d̂ 2
(i),zi

(ỹ)).

For those patients who have missing and/or censored test scores, the missing

and/or censored test scores will be replaced with the simulated draw from the pos-

terior predictive distribution of the missing and/or censored test scores given the

observed test scores at each iteration.

3.4.4 Comparison to Currently Used Methods

The IA Method will be implemented on the patients’ results with cut-off values

c = −1, −1.5, and −2. A patient will be diagnosed if P (S ≥ si) ≤ 0.05. At an α level

of 5%, given that there are K = 15 tests in the battery of cognitive tests, the value of

si needed for a patient to be classified as ‘cognitively impaired’ using IA Method for

c = −1, −1.5, and −2 are 6, 4, and 2, respectively. For those subjects with missing

test scores, the number of trials in the binomial random variable are adjusted to the

number of tests for which each subject has been scored. Censored values are used as

they exist in the dataset.

The p-value adjustment methods that will be used are the Bonferroni, Holm,

single-step multivariate permutation resampling, and step-down multivariate permu-

tation resampling as discussed by Westfall and Young (1993) (Westfall and Young,

2002). Each individual test will be labelled as ‘failed’ if the adjusted p-value is less

than 5%. Given that there are K = 15 tests, a patient will be classified as ‘cognitively

impaired’ if they ‘fail’ at least 3 tests in the given battery. Again, for subjects with
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missing observations, the number of trials in the binomial random variable will be

adjusted accordingly. Censored values will be used as they are in the original dataset.

The C Method requires the correlation matrix corresponding to the tests in

a given battery be known, as is the case for standard batteries of cognitive tests.

However, the current battery is not a standard battery. Therefore, we will instead

use the estimated correlation matrix for the healthy subpopulation obtained from the

Bayesian multivariate mixture model to estimate the number of tests required that

a patient ‘fail’ for them to be classified as cognitively impaired. The same cut-off

score of −1.96 was used as in the original Crawford et al. (2007) article and it was

determined that a patient needed to ‘fail’ at least 4 tests to be classified as ‘cognitively

impaired’. Again, for subjects with missing observations, the correlation matrix and

mean vector will be marginalized to account for those tests observed and the number

of tests a given patient is required to ‘fail’ to be considered cognitively impaired will

be recomputed. Censored values will be used as they are in the original dataset.

The H Method requires a sample of known healthy patients. However, we do

not have access to such a sample. Therefore, we will instead utilize the squared Ma-

halanobis distance of each patient using the parameters corresponding to the healthy

subpopulation and a mean vector µ = (0, . . . , 0)>. If the null distribution of Y

is NK(µ,Σ), the squared Mahalanobis distance is known to have an asymptotic

chi-square distribution with K = 15 degrees-of-freedom. A subject will be classi-

fied as ‘cognitively impaired’ if their squared Mahalanobis distance is greater than

χ2
15(0.95) = 25.00. The approach using the asymptotic distribution of the squared

Mahalanobis distance operates under the same distributional assumptions as the H

Method and the use of the F distribution corresponding to the T 2 shown in equation

(3.5) converges to the chi-sqaure distribution with K degrees of freedom as the sam-

ple size of the healthy (i.e., not cognitively impaired) patients goes to infinity. The

correlation matrix and mean vector will be marginalized to account for missing tests
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for those patients with missing test scores. Censored values will remain censored as

they are in the original dataset.

3.4.5 Leave-One-Out Cross Validation

In order to assess the potential for overfitting, leave-one-out cross validation was

performed. Leave-one-out cross validation was used as opposed to larger testing sam-

ples due to the limited number of patients. For patient’s in the training sample with

missing and/or censored values, the missing and/or censored values are simulated

from the posterior predictive distribution estimated from the n− 1 training patients

and then the posterior probability of subpopulation membership is estimated. The

average in-sample and out-of-sample error will be computed relative to the subpopu-

lation membership estimated using the full dataset.

3.5 Simulation

Simulations were constructed based on the results presented later in Section

3.6 to assess the ability of the Bayesian multivariate normal mixture model and the

currently used methods to correctly infer a given patients subpopulation membership.

Data were first simulated with n = 45 total patients, with n1 = 23 patients sampled

from the healthy subpopulation and n2 = 22 patients simulated from the cognitively

impaired subpopulation based on the estimated proportion of pediatric MS patients

belonging to each subpopulation presented in Section 3.6. Data were simulated from

four multivariate mixture distributions. Model 1 is meant to reflect the results from

the actual dataset. The purpose of including Model 2 in our simulations is to examine

the Bayesian multivariate normal mixture model’s capabilities in the situation ideal

for IA Method (i.e., uncorrelated tests in given battery). The purpose of Models 3 and

4 was to investigate the methods’ performances with greater variability than specified

by the multivariate normal model. The four multivariate mixture distributions from
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which the data were simulated are shown below:

Model 1 :Y |zi = 1 ∼ N15(0,Ω),

Y |zi = 2 ∼ N15(µ2, (diag(σ2))Ω(diag(σ2))),

Model 2 :Y |zi = 1 ∼ N15(0, I),

Y |zi = 2 ∼ N15(−1.2× 1, I);

Model 3 :Y |zi = 1 ∼ T15(ν = 4,0,Ω),

Y |zi = 2 ∼ T15(ν = 4,µ2, (diag(σ2))Ω(diag(σ2)));

Model 4 :Y |zi = 1 ∼ T15(ν = 10,0,Ω),

Y |zi = 2 ∼ T15(ν = 10,µ2, (diag(σ2))Ω(diag(σ2)));

such that I denotes the identity matrix, 1 denotes at 15-dimensional vectors of 1s, and

0 denotes a 15-dimensional vector of 0s. The values of Ω, µ2, and σ2 in Models 1, 3,

and 4 are defined to be the posterior means of the respective parameters found in Table

3.4 under the censored and uncensored data columns and in Tables A.1, A.2, A.3, and

A.4. The mean vector of−1.2×1 was chosen based on simulation to ensure that the IA

Method for c = −1, −1.5, and −2 would have a power of at least 80% and α of at most

5% for n1 and n2 patients in the respective subpopulation. After simulating the n1 and

n2 values in each model from their respective subpopulation distribution, censoring

was applied using the method previous shown in equation (3.2). The missing values

in the real dataset were reflected in the simulated datasets. For instance, if a subject

was missing the TMTA and TMTB test scores in the real dataset and was inferred

to belong to the healthy subpopulation, a subject in the simulated datasets from

the healthy subpopulation would also be missing the TMTA and TMTB test scores.

The diagnostic performance of all the Bayesian mixture models and the currently

used methods are based on predictive accuracy of the known cognitive impairment

status of the simulated patients. The simulation described above was then repeated

to reflect the results presented in section 3.6 for the uncensored dataset. That is, 100
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datasets were simulated with n1 = 24 patients belonging to the healthy subpopulation

and n2 = 21 belonging to the cognitively impaired subpopulation, with the parameter

values of Ω, µ2, and σ2 in Models 1, 2, and 3 are the defined to be the posterior means

of the respective parameters found in 3.4 under the uncensored dataset columns and

in Tables A.3 and A.4. All methods and priors described in section 3.4 were used in

simulation with two exceptions. First, in the C Method, the true value of correlation

matrix Ω is used to conduct their procedures. Similarly, in the H Method, the true

covariance of the healthy subpopulation was used. These changes were made to

examine the ideal performance of both methods.

Table 3.1 provides the true positive rate (TPR) and false positive rate (FPR)

for the multivariate normal mixture model and the currently used methods for each of

the four simulation models in the presence of censoring such that a patient is positive

if they are (or are inferred) to be cognitively impaired. From the results in Table 3.1,

the multivariate normal mixture model has a large sensitivity for correctly inferring

cognitive impairment across the four simulation models and exceptional specificity

for the simulated data from Model 1 and Model 2, but the percentage of patients

incorrectly inferred to be cognitively impaired increases as the degrees of freedom

of the multivariate Student’s t distribution decrease. The Holm, Bonferroni, and

Single-Step p-value adjustments applied to the IA Method have perfect true negative

rates but their ability to detect patients who are cognitively impaired in simulation

is severely lacking. Conversely, the Step-Down p-value adjustment applied to the IA

Method has a large sensitivity across all four simulation models, but the specificity

of the method is very poor. The IA Method performs consistently across all four

simulation models, with sensitivity increasing as c decreases and specificity decreasing

as c decreases. More importantly, the multivariate normal mixture model has a high

sensitivity with a much smaller range between the 97.5-th percentile and the 2.5-th

percentile compared to the IA Method for all three values of c considered. However, for
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the two simulated multivariate Student’s t mixture models, the IA Method does have

a greater specificity, with a smaller range between the 97.5-th percentile and the 2.5-

th percentile of the FPR compared to the multivariate normal mixture model. The C

Method performs exceptionally poorly on Model 2. However, the C Method maintains

a constant sensitivity across the other three simulated models, which is less than that

of the multivariate normal mixture model, but experiences a decrease in specificity for

decreasing degrees of freedom in the multivariate Student’s t distributions to a lesser

extent than the multivariate normal mixture model. Finally, the H Method has a lower

sensitivity than that of the multivariate normal mixture model on all four simulation

models and experiences a much greater decrease in specificity for decreasing degrees of

freedom in the simulated multivariate Student’s t mixture models. When examining

the results from the uncensored simulated data found in Table 3.2, we did not find any

differences relative to those described above for the censored data with the exception

of the sensitivity of the H Method. We see a much greater specificity for the H Method

on Models 1, 3, and 4; achieving near equal sensitivity to the multivariate normal

mixture model.

Finally, regarding the inferred subpopulation membership estimate, we can ex-

amine the agreement of the currently used methods and the Bayesian multivariate

normal mixture model in the 100 simulated datasets from Model 1 for both the cen-

sored and uncensored scenario. The results are found in Table 3.3. From the results

in Table 3.3 for the censored dataset, we see that for the Holm, Bonferroni, and

Single-Step p-value adjustments to the IA Method result in a considerable disagree-

ment in those inferred to be cognitively impaired by the multivariate normal mixture

model. Conversely, the Step-Down p-value adjustment to the IA Method results in

a large number of disagreements in those inferred to be not cognitively impaired by

the multivariate normal mixture model. The IA Method for all three values of c

results in similar number of disagreements in those inferred to be not cognitively im-
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paired and those inferred to cognitively impaired, with a slightly larger number of

disagreements in those inferred to be cognitively impaired, by the multivariate nor-

mal mixture model. The C Method results in a large number of disagreements among

patients classified as impaired by the multivariate normal mixture model. Similarly,

the H Method results in a large number of disagreements among patients classified as

impaired by the multivariate normal mixture model. When examining the same re-

sults in the uncensored simulated dataset, we find many of the same trends discussed

above but it is worth noting that the number of disagreements in patients inferred

to cognitively impaired by the multivariate normal mixture model decreases for the

Holm, Bonferroni, and Single-Step p-value adjustments to the IA Method, as well as

the C Method and H Method.

3.6 Results

Results from a battery of cognitive tests were obtained for n = 45 pediatric

MS patients. These patients underwent initial cognitive assessment via a battery of

cognitive tests as part of an initial screening and independent of suspected cognitive

impairment. Therefore, we will assume the sample of 45 patients represents a random

sample of pediatric MS patients. The average age of patients was 15.08 years of age

(range: 7 to 18 years of age) and 29 (64.4%) of the patients were female. A total of

five patients were missing at least one cognitive test score in the current battery, with

one patient missing a single cognitive test score, two patients missing two cognitive

test scores, and two patients missing four cognitive test scores.

When examining the censored dataset, eleven patients had Grooved Pegboard

(Dominant) scores censored, ten patients had Grooved Pegboard (Non-Dominant)

scores censored, one patient had their Beery VMI score censored, one patient had

their Beery VP score censored, eight had their TMTA score censored, 13 have their

TMTB score censored, and one patient had their SDMT score censored. In the
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Figure 3.1. Posterior mean of the squared Mahalanobis distance based on the results
from censored cognitive test scores for nzi patients inferred to be not cognitively versus
the posterior mean and 95% credible interval of the squared Mahalanobis distance for
nzi simulated patients; n1 = 23, n2 = 22.

uncensored dataset, one subject’s score on the TMTB was below Yk = −12.67, one

subject’s score on the Beery VMI was below Yk = −3.67, and one subject’s score on

the Beery VP was below Yk = −3.67. Therefore, the uncensored data still consisted

of 3 censored cognitive test scores for which we are unable to obtain the true test

score.

3.6.1 Censored Data

After ensuring model convergence via running multiple chains, the posterior

predictive check was completed as discussed in section 3.4.3. The resulting plots of

(d̂ 2
(i),zi

(y), d̂ 2
(i),zi

(ỹ)) for the two subpopulations are shown in Figure 3.1. There does

not appear to be any indication of a poor fit for the multivariate normal model in

Figure 3.1. Table 3.4 gives the posterior mean and 95% credible interval for the

subpopulation membership proportion, as well as the mean and standard deviation

vectors for the multivariate normal mixture model. The estimated correlation matrix

can be found in the Appendix in Tables A.1 and A.2.

After performing the leave-one-out cross validation described in section 3.4.5,

the average in-sample error (Êin) and out-of-sample error (Êout) were computed for

the multivariate normal mixture model. The resulting average out-of-sample and in-
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Table 3.4. Posterior mean and credible interval of parameters in the mixture of
multivariate normal distributions.

Censored Dataset Uncensored Dataset

Parameter1
Posterior

Mean
95% Credible

Interval
Posterior

Mean
95% Credible

Interval
λ 0.48 (0.33, 0.62) 0.52 (0.38, 0.66)
µ2,1 −1.04 (−1.42, −0.67) −1.08 (−1.48, −0.69)
µ2,2 −0.64 (−0.94, −0.34) −0.68 (−0.97, −0.39)
µ2,3 −1.02 (−1.44, −0.63) −1.12 (−1.54, −0.70)
µ2,4 −0.75 (−1.16, −0.35) −0.77 (−1.17, −0.36)
µ2,5 −0.53 (−1.02, −0.05) −0.60 (−1.15, −0.06)
µ2,6 −2.51 (−3.85, −1.47) −3.99 (−5.87, −2.13)
µ2,7 −2.62 (−3.74, −1.74) −3.64 (−5.30, −2.01)
µ2,8 −0.73 (−1.06, −0.40) −0.75 (−1.10, −0.38)
µ2,9 −1.46 (−1.89, −1.03) −1.66 (−2.19, −1.13)
µ2,10 −0.92 (−1.39, −0.46) −0.98 (−1.51, −0.47)
µ2,11 −1.85 (−2.86, −1.02) −2.26 (−3.30, −1.24)
µ2,12 −3.20 (−4.91, −2.07) −4.08 (−5.72, −2.47)
µ2,13 −1.35 (−1.81, −0.89) −1.35 (−1.84, −0.86)
µ2,14 −0.83 (−1.35, −0.33) −0.88 (−1.41, −0.37)
µ2,15 −0.76 (−1.35, −0.17) −0.83 (−1.40, −0.21)
σ2,1 0.91 (0.74, 1.14) 0.90 (0.72, 1.14)
σ2,2 0.71 (0.55, 0.94) 0.66 (0.52, 0.85)
σ2,3 0.94 (0.74, 1.22) 0.94 (0.74, 1.20)
σ2,4 0.94 (0.73, 1.23) 0.91 (0.70, 1.19)
σ2,5 1.13 (0.83, 1.54) 1.25 (0.91, 1.74)
σ2,6 2.41 (1.61, 3.75) 4.39 (3.40, 5.78)
σ2,7 1.98 (1.32, 3.02) 3.87 (2.99, 5.07)
σ2,8 0.80 (0.62, 1.05) 0.80 (0.60, 1.07)
σ2,9 1.01 (0.74, 1.38) 1.18 (0.85, 1.66)
σ2,10 1.13 (0.83, 1.57) 1.16 (0.84, 1.66)
σ2,11 1.96 (1.36, 2.91) 2.35 (1.77, 3.17)
σ2,12 2.41 (1.50, 4.04) 3.71 (2.82, 4.97)
σ2,13 1.11 (0.85, 1.47) 1.13 (0.84, 1.55)
σ2,14 1.21 (0.92, 1.62) 1.22 (0.94, 1.63)
σ2,15 1.37 (0.94, 1.89) 1.31 (0.84, 1.89)

1 1) CVLT Total, 2) CVLT Trial 1, 3) CVLT Trial 5, 4) CVLT Recognition Hits, 5) CVLT Long
Delay, 6) Grooved Pegboard (Dominant Hand), 7) Grooved Pegboard (Non-Dominant Hand),
8) Digit Span, 9) Beery VMI, 10) Beery VP, 11) TMTA, 12) TMTB, 13) Symbol Search, 14)
SDMT, 15) Letter Fluency Test.
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sample error for the mixture of multivariate normal distributions was Êout = 13.3%

and Êin = 0.9%. Of the six patients whose inferred latent class status changed in the

testing sample, four contained missing observations. Additionally, only two subjects’

inferred cognitive status changed in the training sample, neither of which contained

missing observations and only one of which contained a single censored cognitive test

score.

Comparisons of inferred cognitive impaired status amongst the multivariate

normal mixture model and the currently used methods are shown in Table 3.5. Based

on the results presented in Table 3.5, relative to the inferred cognitive impairment

status from multivariate normal mixture model, the p-value adjustments made to the

method proposed by Ingraham and Aiken results in considerably different inferred

cognitive status. Relative to the inferred cognitive status from the multivariate nor-

mal mixture model, the Holm, Bonferroni, and single-step method result in a greater

number of patients being inferred as not cognitively impaired (n1 = 35 (77.8%)).

However, the step-down p-value adjustment infers a greater number of patients be-

longing to the cognitively impaired subpopulation (n2 = 29 (64.4%)) relative to the

multivariate normal mixture model (n2 = 22 (48.9%)). Relative to the multivariate

normal mixture model, these results suggest a greater agreement amongst the IA

Method without p-value adjustments. However, there do exist differences amongst

the inferred cognitive impairment status using the IA Method and the multivariate

normal mixture model, with 9 (20%), 7 (15.6%), and 7(15.6%) inferred to belong to

a different subpopulation for c = −1, c = −1.5, and c = −2, respectively. The C

Method performs similarly to the IA Method relative to the multivariate normal mix-

ture model, with a total of 8 (17.8%) patients whose inferred cognitive impairment

status differs. Finally, the H Method infers a greater number of patients to belong to

the healthy subpopulation (8) relative to the multivariate normal mixture model.

The results in Table 3.5 are similar to those obtained via simulation found in
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Figure 3.2. Posterior mean of the squared Mahalanobis distance based on the results
from uncensored cognitive test scores for nzi patients inferred to be not cognitively
versus the posterior mean and 95% credible interval of the squared Mahalanobis
distance for nzi simulated patients; n1 = 24, n2 = 21.

Table 3.3 for the censored dataset. The only striking difference between the results in

Table 3.5 and Table 3.3 for the censored dataset is that in the real dataset there is a

single patient who is inferred to be impaired by the Holm, Bonferroni, and Single-Step

p-value adjustment but inferred to be not cognitively impaired by the multivariate

mixture model, while the average number of times this occurred in simulation is 0.1.

3.6.2 Uncensored Data

After ensuring model convergence via running multiple chains, the posterior

predictive check was completed as discussed in section 3.4.3. The resulting plots of

(d̂ 2
(i),zi

(y), d̂ 2
(i),zi

(ỹ)) for the mixture of multivariate normal distributions are shown

in Figure 3.2. Based on the results shown in Figure 3.2, we do not see any obvi-

ous characteristics that demonstrate a poor fit for multivariate normal models we

considered.

Table 3.4 gives the posterior mean and 95% credible interval for the subpopu-

lation membership proportion, as well as the location and scale parameters for the

multivariate normal mixture model. The estimated correlation matrix is found in

TablesA.3 and A.4.

After performing the leave-one-out cross validation described in section 3.4.5,
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the average in-sample error (Êin) and out-of-sample error (Êout) were computed for

the multivariate normal mixture model. The resulting average out-of-sample and in-

sample error for the mixture of multivariate normal distributions was Êout = 15.6%

and Êin = 2.3%. Of the seven patients whose inferred latent class status changed

in the testing sample, four contained missing observations. Additionally, only four

subjects’ inferred cognitive status changed in the training sample, none of which

contained missing or censored cognitive test scores.

Comparisons of inferred cognitive impaired status amongst the three mixture

models and the currently used methods are shown in Table 3.5. The trends described

previously in the comparison of the currently used methods to the mixture models for

the censored dataset are very similar to those found in Table 3.5, with the exception

of the H Method. Using the uncensored data, the H Method performs much more

similar to the multivariate mixture models than previously observed in the censored

dataset. This result is expected as the value of the T 2 statistic will be biased in

the presence of censoring. The results in Table 3.5 are similar to those obtained

via simulation found in Table 3.3 for the uncensored dataset. There is no obvious

discrepancy between the results obtained via simulation and those obtaining using

the real dataset.

3.6.3 Comparison of Censored and Uncensored Data Results

Three comparisons are of interest regarding the censored and uncensored datasets:

1) agreement in inferred subpopulation membership, 2) accuracy of posterior esti-

mates of censored values, and 3) parameter estimates. When comparing changes

in the inferred cognitive status between the censored dataset and the uncensored

dataset for the multivariate normal mixture model, we see that two patients’ diag-

noses change from cognitively impaired to not cognitively impaired and one patient’s

diagnosis changes from not impaired to impaired. Additionally, we do see that the
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Bonferroni and single-step p-value adjustments result in a single patient converting

from impaired to not impaired when considering the uncensored dataset relative to

the censored dataset. Then, as would be expected, no conversions occur when con-

sidering the IA Method and the C Method. Finally, as was observed previously, using

the H Method we see an increase in the number of patients whose inferred cognitive

impairment status changes to impaired when considering the uncensored data. Again,

this result is not surprising given that the value of the T 2 statistic will be biased in

the presence of censoring.

In the censored dataset there are a total of 42 censored test scores for which the

true value of the censored test score is known. Given that the uncensored cognitive

test scores are available, we can investigate the accuracy of the posterior estimates of

these censored test scores. The 95% credible interval was obtained for the censored

test scores and the predictive accuracy is measured based on the true value of the

censored test score falling within the 95% credible interval. For the multivariate

normal mixture model, 32 (76.2%) of the true values of the censored test scores fall

in the 95% credible interval.

Based on the parameter estimates and their 95% credible intervals for the cen-

sored and uncensored datasets found in Table 3.4, respectively, we see that the large

differences in the posterior estimates correspond to the location, shape, and scale

parameters for the tests which have censored scores. Therefore, despite taking into

account censoring when analyzing the censored dataset, the resulting parameter es-

timates remain biased. This result is to be expected given the increased amount

of information provided by the uncensored test scores relative to the censored test

scores. Based on the correlation estimates and their 95% credible intervals for the

censored and uncensored datasets found in Tables A.1 and A.2 versus A.3 and A.4,

respectively, there do not appear to be any striking discrepancies in the estimated

correlations.
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3.7 Discussion and Concluding Remarks

Evidence of cognitive impairment in the pediatric MS patient population has

led to an increase in research efforts aimed at identifying and treating this symptom

of the disease. However, in order for the latent class status of cognitive impairment

to be used as a marker or outcome measure in clinical trials, a patient’s inferred cog-

nitive impairment status must be valid. Therefore, we propose the use of a Bayesian

multivariate normal mixture model to infer cognitive impairment status to address

the shortcomings of currently used methods.

The Bayesian multivariate normal mixture model and the currently used meth-

ods for inferring cognitive impairment were applied to a sample of pediatric MS

patients treated at the Pediatric Demyelinating Diseases Clinic of Children’s Health

Dallas. In order to assess the validity of the Bayesian multivariate normal mix-

ture model, data were simulated from a mixture of multivariate normal distributions

corresponding to the estimated multivariate normal mixture model for the given sam-

ple. From this simulation, we found that the Bayesian multivariate normal mixture

model performs exceptionally well in terms of sensitivity and specificity relative to

the currently used methods. Additionally, the agreement in cognitive impairment

status between the Bayesian multivariate normal mixture model and the currently

used methods in the simulated dataset is similar to that of the agreement in the

cognitive status between the Bayesian multivariate normal mixture model and the

currently used methods in the actual dataset. This result provides further evidence

of the effectiveness and superiority of the Bayesian multivariate normal mixture model

relative to the currently used methods.

Furthermore, data were simulated from a multivariate mixture distribution as-

suming all tests in the given battery were independent in order to determine the

effectiveness of the proposed method in a scenario ideal for the method proposed by

Ingraham and Aiken (1996). As in the other simulation, the Bayesian multivariate
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normal mixture model performed exceedingly well with sensitivity and specificity sim-

ilar to the method proposed by Ingraham and Aiken (1996). This result illustrates

the ability of the proposed model to effectively infer cognitive impairment even when

the tests in a battery are independent.

Two other methods investigated require information regarding the correlation

matrix of the tests in a given battery. However, without the correlation matrix being

known or obtaining a sample of healthy subjects, it is not possible to implement

either of these two methods. However, the Bayesian multivariate normal mixture

model enables us to estimate the correlation matrix without the use of a sample of

subjects known to be not cognitively impaired.

Finally, we were able to examine the effect of censoring on the inferred cognitive

impairment status for the proposed method and the currently used method. Based

on our results, censoring impacts the p-value adjustments to the method proposed

by Ingraham and Aiken (1996), the method proposed by Huizenga et al. (2007), and

the Bayesian multivariate normal mixture model. Regarding our proposed method,

despite taking into account censoring, the parameter estimates corresponding to those

tests which contain censored values remained biased. However, the estimated corre-

lation matrix remained relatively unchanged in our analysis. Three patients’ inferred

cognitive impairment status changed between the analysis of the censored dataset

and the analysis of the uncensored datasets. Given that the results of the uncensored

simulated data are more similar to the results from the real uncensored data than

the results from the censored simulated data are to the real censored data, as well as

the persistence of bias in parameter estimates despite accounting for censoring, we

suggest the use of uncensored data, if available, when inferring cognitive impairment

status with the Bayesian multivariate mixture model.

We have provided a method for inferring cognitive impairment from a cohort

of patients thought to contain healthy (i.e., not cognitively impaired) patients and
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cognitively impaired patients with minimal prior information. Our results illustrate

the effectiveness of the Bayesian multivariate normal mixture model in simulated

situations meant to reflect what is observed in actual data. Additionally, we provided

estimates for the location, scale, and correlation parameters for future studies and

sample size calculations for clinical trials aimed at investigating cognitive impairment

in the pediatric MS population.

Future efforts will focus on the application of the proposed method to larger

sample sizes once available. Also, mixture models consisting of parametric families

other than the multivariate normal distribution will be examined such as the mul-

tivariate Student’s t distribution, multivariate skew normal distribution, and multi-

variate skew t distribution. These mixture models were examined using the current

dataset but issues arose due to the limited number of patients in the current dataset.

Lastly, an extension of the current work is to develop a longitudinal method to in-

fer cognitive impairment status using the proposed model. However, a longitudinal

method becomes complicated when considering the impact of the practice effect, a

consequence of serial cognitive testing.

A limitation of the current study is due to the inability to know the true value

of the latent class status. Therefore, we must rely upon simulation to verify the

accuracy of our proposed method. Additionally, due to the rarity of pediatric MS,

obtaining a large sample of patients is difficult. However, larger samples are needed

for future studies which examine different mixture models as well as the potential for

different correlation matrices for each subpopulation.
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CHAPTER FOUR

Inferring Cognitive Impairment from a Battery of Cognitive Tests During Follow-Up

4.1 Introduction

When considering only baseline results from a battery of cognitive tests, the

Bayesian multivariate normal mixture model worked well for inferring cognitive im-

pairment from a battery of cognitive tests. However, a battery of cognitive tests

is often administered multiple times during a patient’s follow-up to assess potential

changes in cognitive impairment status due to disease progression or therapeutic in-

tervention. Therefore, we must have a method for inferring cognitive impairment

from a battery of cognitive tests administered during follow-up.

An aspect of serial cognitive testing that complicates inferring cognitive status

in repeated testing is the existence of the practice effect for various cognitive tests

(Dikmen et al., 1999; Beglinger et al., 2005; Collie et al., 2003; Calamia et al., 2012).

That is, a patient’s cognitive test score may increase simply due to prior exposure to

the test and the recency of such exposure. The practice effect can create an artificial

perception that a patient’s score may have increased when the score has stayed the

same or, even worse, decreased. Therefore, we must account for the practice effect in

order to correctly infer a patient’s cognitive status in repeated cognitive testing.

We have proposed the use of a Bayesian continuous-time mixed hidden Markov

model to infer cognitive impairment for serial administrations of a battery of cog-

nitive tests. Limited longitudinal data exist currently from the battery of cognitive

tests discussed previously in the pediatric MS population. Therefore, in preparation

for such data, we have designed two simulated scenarios and have tested the pro-

posed model’s performance by examining the accuracy of the posterior estimates and

classification of the simulated patients’ cognitive impairment status.
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4.2 Continuous-Time Hidden Markov Model

The application of the Bayesian multivariate mixture presented in Chapter

Three to results from a battery of cognitive tests during follow-up would require the

assumption of independence among cognitive test scores obtained over time within

a given patient as well as the cognitive impairment status over time within a given

patient. A relaxation of these independence assumptions can be achieved through

the use of a hidden Markov model (HMM). A HMM is similar to the finite mixture

model previously discussed in that the observed data are generated from a distribu-

tion dependent upon an underlying, unobserved Markov process, with the marginal

distribution of a HMM being a finite mixture model (Zucchini et al., 2016).

The most basic, time-homogeneous HMM incorporates the correlation among

the cognitive status during a patient’s disease course. For the ith patient,

i = 1, 2, . . . , n, let Yi` denote the observed results from a battery of cognitive tests

measured at time point ti`, ` = 1, 2, . . . ,mi, where mi denotes the number of lon-

gitudinal measurements for the ith patient. Additionally, let ti` ∈ R+ denote the

time from baseline at which the battery of cognitive tests is administered, such that

ti1 = 0. Extending the notation previously used to account for serial cognitive testing,

let Zi` denote the random variable corresponding to the ith patient’s cognitive status

at time ti`, i = 1, 2, . . . , n, ` = 1, 2, . . . ,mi. In a HMM, we define

P (Zi`|Zi(`−1), Zi(`−2), . . . , Zi1) = P (Zi`|Zi(`−1)),

and

P (Yi`|Yi(`−1),Yi(`−2), . . . ,Yi1, Zi`, Zi(`−2), . . . , Zi1) = P (Yi`|Zi`). (4.1)

Based on equation (4.1), we see that the distribution of Yi` depends only on the

unobserved state of the Markov process at time ti`, which indicates that we are still

assuming Yi` is independent of previous results from a battery of cognitive tests. We

will address a method of incorporating dependence among the results from a battery
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of cognitive tests from a single patient after introducing additional notation associated

with the HMM.

Additionally, we need to define an important quantity of interest in the HMM,

the transition probability matrix Γ(ti` − ti(`−1)). The transition probability matrix

contains as its j, j′-th element the conditional probabilities of Zi` = j given

Zi(`−1) = j′; that is,

Γ(ti` − ti(`−1))j,j′ = P (Zi` = j′|Zi(`−1) = j). (4.2)

Assuming that the Markov process is time-homogeneous, equation (4.2) simplifies to

Γ(ti` − ti(`−1))j,j′ = P (Zi(ti` − ti(`−1)) = j′|Zi(0) = j), (4.3)

where Zi(ti` − ti(`−1)) denotes the latent class status evaluated at time (ti` − ti(`−1))

from baseline, Zi(0). That is, the transition probability matrix shown in equation

(4.3) does not depend upon ti` and ti(`−1), only the difference (ti` − ti(`−1)). In the

scenario in which we are interested, zi` can assume two values such that zi` = 1 if a

patient is healthy (i.e., not cognitively impaired) and zi` = 2 if a patient is cognitively

impaired. Therefore, j = 1, 2 and j′ = 1, 2.

For a continuous-time HMM under the assumption of a time-homogeneous

Markov process, we can define the transition probability matrix as

Γ(ti` − ti(`−1)) = Exp[(ti` − ti(`−1))Q],

where Exp denotes the matrix exponential function, not the element-wise exponential

function, and Q is a matrix of transition intensities which, for a two-state Markov

process, can be defined as

Q =

 −q1 q1

q2 −q2

 , (4.4)

such that q1, q2 ∈ R+ (Jackson et al., 2011).
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Define λ = (λ1, λ2)
> to be the vector of component membership probabilities

at ti1 and P (yi`) = diag(f1(yi`), f2(yi`)), such that f1(yi`) = P (Yi` = yi`|Zi` = 1)

and f2(yi`) = P (Yi` = yi`|Zi` = 2). The likelihood for the ith patient can then be

defined as

Li = λ>P (yi1)Γ(ti2 − ti1)P (yi2) · · ·Γ(timi
− ti(mi−1))P (yimi

)1, (4.5)

such that 1 = (1, 1)>.

The introduction of f1(yi`) and f2(yi`) enable us to now present a method for

accounting for correlation among results from a battery of cognitive tests from a given

patient. We can specify f1(yi`) and f2(yi`) to be functions of fixed effects and random

effects at the patient level. So-called mixed HMM have previously been investigated

as a method for accounting for intra-subject correlation of the observed data given

the latent class status (Van Montfort et al., 2010).

Two quantities of interest that must be defined are the forward probability

j-dimensional vector αi` and the backwards probability j-dimensional vector βi`,

j = 1, 2, . . . , J . The vector αi` for the ith patient at the `th time point is defined as

αi` = λP (yi1)Γ(ti2 − ti1)P (yi2) · · ·Γ(ti` − ti(`−1))P (yi`), (4.6)

such that the j-th element of αi` is αi`(j) = P (Yi1 = yi1, . . . ,Yi` = yi`, Zi` = j). It

follows from equation (4.6) that

αi` = αi(`−1)Γ(ti` − ti(`−1))P (yi`), (4.7)

and

Li = αimi
1.

The vector βi` is then defined to be

βi` = Γ(ti(`+1) − ti`)P (yi(`+1)) · · ·Γ(timi
− ti(mi−1))P (yimi

)1, (4.8)
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where the j-th element of βi` is βi`(j) = P (Yi(`+1) = yi(`+1), . . . ,Yimi
= yimi

|Zi` = j)

and βimi
= 1. It can be seen from equations (4.5), (4.6), and (4.8) that

αi`(j)βi`(j) = P (Yi1 = yi1, . . . ,Yimi
= yimi

, Zi` = j),

where αi`(j) corresponds to the forward probability if zi` = j, j = 1, 2, and

αi`βi` = Li.

Finally, we can compute the conditional probability

P (Zi` = j|Yi1 = yi1, . . . ,Yimi
= yimi

) = αi`(j)βi`(j)/Li. (4.9)

The resulting quantity in equation (4.9) will be our quantity of interest when inferring

cognitive impairment in serial cognitive testing.

4.3 Accounting for the Practice Effect in Serial Cognitive Testing

The practice effect has been well documented in serial cognitive testing for

various cognitive tests, as well as the necessity of accounting for such an effect when

analyzing serial cognitive testing results (Dikmen et al., 1999; Beglinger et al., 2005;

Collie et al., 2003; Calamia et al., 2012). However, focus has generally been on

incorporating the practice effect when examining changes over time in the scores

Yij. To our knowledge, the potential impact of the practice effect on the inferred

cognitive status of a particular patient has not been investigated or incorporated into

any methods. Therefore, we seek to add a covariate in the mixed HMM capable of

accounting for the practice effect.

It has been well documented that the practice effect decays as the difference

tij − ti(j−1) increases (Dikmen et al., 1999; Beglinger et al., 2005; Collie et al., 2003;

Calamia et al., 2012). Therefore, we chose to incorporate a method proposed by

Settles and Meeder (2016) termed half-life regression. Half-life regression is based on
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Figure 4.1. Practice effect as estimated by β exp{−(ti` − ti(`−1))/ exp[θ]}, such that
β = 1 and θ = 0.5, 1, and 2, for values of (ti` − ti(`−1)) ∈ [0, 12].

the forgetting curve proposed by Ebbinghaus (2013), defined as

p = exp{−(ti` − ti(`−1))/h}, (4.10)

where p is a percentile of recall and h is the half-life. Settles and Meeder (2016)

proposed defining the quantity ĥ = exp{ΘX}, where Θ are the parameters associated

with the covariates X. This definition of ĥ enables the incorporation of covariates

into the model that impact the half-life in equation (4.10).

As was mentioned, the forgetting curve refers to percent recall. For example,

the number of words learned and recalled after a delay. However, we are interested

in applying this equation to the percentage of points increased from baseline due to

the practice effect. Therefore, we will define a new quantity based on the half-life

regression equation proposed by Settles and Meeder (2016), defined as

βp = β exp{−(ti` − ti(`−1))/ exp[ΘX]}, (4.11)

where β is the number of points a patient’s score would increase if tested immediate

(i.e., (ti`−ti(`−1)) = 0) due to the practice effect. We will incorporate this parameter in

69



the distributions f1(yi`) and f2(yi`), with potentially subject-specific random effects

included as βi. A plot of a simple form of equation (4.11) in which Θ = θ ∈ R and

X = 1 evaluated at three value of θ and over (ti` − ti(`−1)) ∈ [0, 12] can be found in

Figure 4.1.

4.4 Method

4.4.1 Data Generation

To examine the ability of the continuous-time mixed HMM, we have constructed

two scenarios meant to reflect a subset of the results presented in Chapter Three. In

the Scenario 1, we will simulate n = 100 patients with results from a single cognitive

test at baseline, ti1 = 0, and four additional testings after baseline irregularly spaced

in the interval ti` ∈ [2, 30] months such that ti(`−1) < ti`, ` = 2, . . . , 5. Therefore,

there are a total of mi = 5 measurements per patient. The transition intensities of

the matrix Q in equation (4.4) are defined to be q1 = 0.6 and q2 = 0.4. As has

been discussed, we will define two latent subpopulations where zi` = 1 if a patient is

healthy (i.e., not cognitively impaired) and zi` = 2 if a patient is cognitive impaired.

We will then define the vector λ = (0.5, 0.5), which is approximately the subpopu-

lation membership estimates obtained in Chapter Three, and the latent class status

for the ith patient at baseline will be simulated by randomly sampling Wi1 from a

Bernoulli(p = 0.5) and defining zi1 = wi1 + 1. The latent class status for the ith

patient at times ti2, . . . , timi
are then determined by randomly sampling Wi` from a

Bernoulli(pi`), such that pi` is defined as P (Zi` = 2|Zi(`−1) = zi(`−1)) computed using

the zi(`−1), 2-nd element of Γ(ti` − ti(`−1)), and zi` = wi` + 1, ` = 2, . . . ,mi.

Lastly, for the two scenarios we will define Yi`k|zi` = j to be the scores for

the ith patient at time ti` on the kth test, k = 1, . . . , K, in the cognitive battery

conditional on the latent class status zi` at time ti`. We will define the probability
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density function corresponding to the latent subpopulation zi` to be the mixed effects

model shown below:

(yi`k|zi` = j) =


(
β
(j)
0k + b

(j)
0ik

)
+ ε

(j)
i`k, if ti1;(

β
(j)
0k + b

(j)
0ik

)
+
(
β
(j)
1k + b

(j)
1ik

)
exp

{
− (ti`−ti(`−1))

exp
[
θ
(j)
k

]
}

+ ε
(j)
i`k, otherwise.

such that β
(j)
0k and β

(j)
1k are the fixed effects corresponding to the jth subpopulation on

the kth cognitive test in the battery, b
(j)
0ik and b

(j)
1ik are the random effects corresponding

to the ith patient on the kth test in the cognitive battery if zi` = j, and θ(j) is

the half-life for the kth cognitive test if zi` = j. We have chosen to not include

additional covariates in the half-life regression equation for simplicity. However, we

could include additional covariates such at the number of times the participant has

previously completed the kth test in the battery of cognitive tests.

Data were simulated using results from the analysis of the uncensored dataset

presented in Table 3.4 in Chapter Three. In Scenario 1 we will define K = 1, cor-

responding to only a single test in the given cognitive battery which we set to be

the TMTB. In Scenario 2 we will define K = 2, corresponding to a battery of cogni-

tive tests with two tests consisting of the TMTB and Grooved Pegboard (Dominant

Hand). These two tests were chosen due to the magnitude of the posterior esti-

mate of the mean µ. From Table 3.4, the posterior estimate for the mean of the

marginal distribution of the TMTB in the cognitively impaired subpopulation was

µ̂ = −4.08 and the posterior estimate for the mean of the marginal distribution of

the Grooved Pegboard (Dominant Hand) in the cognitively impaired subpopulation

was µ̂ = −3.99. Therefore, for the first test in the cognitive battery (TMTB), we

will define β
(j=1)
0,k=1 = 0 to correspond to the known baseline mean for the healthy sub-

population and β
(j=2)
0,k=1 = −4.08 to correspond the estimated mean for the cognitively

impaired subpopulation from Table 3.4. For the second test in the cognitive bat-

tery (Grooved Pegboard (Dominant Hand)), we will define β
(j=1)
0,k=2 = 0 to correspond
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to the known baseline mean for the healthy subpopulation and β
(j=1)
0,k=2 = −3.99 to

correspond to the estimated mean for the cognitively impaired subpopulation from

Table 3.4. Then, we know that the standard deviation of the marginal distribution of

the TMTB and the Grooved Pegboard (Dominant Hand) are one. Furthermore, the

posterior estimate of the standard deviation of the marginal distribution of TMTB

in the cognitively impaired subpopulation was σ̂ = 3.71 and the posterior estimate of

the standard deviation of the marginal distribution of Grooved Pegboard (Dominant

Hand) in the cognitively impaired subpopulation was σ̂ = 4.39. However, with the

mixed HMM, assuming independence among the fixed effects and error term, the vari-

ance at baseline is the sum of the variance of the random intercept and the variance

of the error term. Therefore, for the TMTB test for the healthy subpopulation, we

defined the marginal distribution of the random intercept to be N (0, σ = 0.9) and the

marginal distribution of the error term to be N (0, σ =
√

1− 0.92). Then, for the cog-

nitively impaired subpopulation, we defined the marginal distribution of the random

intercept to be N (0, σ =
√

(3.712 − 0.19)) and the marginal distribution of the error

term to be N (0, σ =
√

0.19). Then, for the Grooved Pegboard (Dominant Hand) test

for the healthy subpopulation, we defined the marginal distribution of the random

intercept to be N (0, σ = 0.8) and the marginal distribution of the error term to be

N (0, σ =
√

1− 0.82). Then, for the cognitively impaired subpopulation, we defined

the marginal distribution of the random intercept to beN (0,
√

(4.392 − 0.62)) and the

marginal distribution of the error term to be N (0, σ = 0.6). Given that the estimated

correlation between the TMTB test and the Grooved Pegboard (Dominant Hand) test

was near 0, we chose to specify a larger correlation between the two tests and defined

the correlation amongst the two tests to be 0.5. Then, for the TMTB test, we defined

β
(j=1)
1,k=1 = β

(j=2)
1,k=1 = 1 corresponding to a one standard deviation increase in a patient’s

cognitive test score if the patient were retested immediately after completion of initial

testing. The joint distribution of the random effects for the healthy subpopulation
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was given a multivariate normal distribution with mean vector 0 = (0, 0)>, standard

deviation vector σ
b
(j=1)
i,k=1

= (0.9, 0.5)> and correlation ρ
b
(j=1)
i,k=1

= −0.7. For the cogni-

tively impaired subpopulation, the joint distribution of the random effects was given

a multivariate normal distribution with mean vector 0 = (0, 0)>, standard deviation

vector σ
b
(j=1)
i,k=1

= (3.68, 0.5)> and correlation ρ
b
(j=1)
i,k=1

= −0.7. Then, for the Grooved

Pegboard (Dominant Hand) test, we defined β
(j=1)
1,k=2 = β

(j=2)
1,k=2 = 1 corresponding to a

one standard deviation increase in a patient’s cognitive test score if the patient were

retested immediately after completion of initial testing. The joint distribution of the

random effects for the healthy subpopulation was given a multivariate normal distri-

bution with mean vector 0 = (0, 0)>, standard deviation vector σ
(j)
bi,k=2

= (0.8, 0.4)>,

and correlation ρ
(j)
bi,k=2

= −0.5, j = 1, 2. For the cognitively impaired subpopulation,

we defined the joint distribution of the random effects as a multivariate normal distri-

bution with mean vector 0 = (0, 0)>, standard deviation vector σ
(j)
bi,k=2

= (4.35, 0.4)>,

and correlation ρ
(j)
bi,k=2

= −0.5, j = 1, 2. We will then assume that the joint distribu-

tion of σ
(j)
ε = (σ

(j)
ε,k=1, σ

(j)
ε,k=2)

> is multivariate normal with mean vector 0 = (0, 0)>,

standard deviation vector σ
(j)
ε = (

√
0.19, 0.6)> and correlation ρ

(j)
ε = 0.5, j = 1, 2.

Finally, will let θ
(j)
k = 0.5, j = 1, 2, k = 1, 2 to correspond to a half-life which results

in the decay of the practice effect to near zero by 6 months post testing.

Figure 4.2 shows the longitudinal scores on a single cognitive test as well as the

respective positions of the average (and 95% confidence limits) cognitive test score

for the two latent class subpopulations corresponding to the ith subject.

4.4.2 Statistical Software

All analyses will be performed using Stan in R (version 3.4.3) via the Rstan

package (version 2.17.3) (R Core Team, 2016; Stan Development Team, 2016, 2017).

The continuous-time mixed HMM will be fit with two subpopulations, as in Chap-

ter Three, corresponding to the cognitively impaired and healthy subpopulations.
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Figure 4.2. Longitudinal cognitive test scores from a randomly selected patient and
the corresponding subpopulation distribution with shaded regions denoting the 95%
confidence interval for each subpopulation.

Analysis in both scenarios was originally performed for 10,000 iterations with a 5,000

iteration warm-up using three chains in order to ensure that the posterior distribution

for all parameters was converging to a stationary distribution. After confirming con-

vergence, the analysis was performed again for 25,000 iterations with a 5,000 iteration

burn-in using only a single chain.

4.4.3 Forward and Backwards Algorithm

In order to estimate the parameters in the continuous-time mixed HMM, we

must use the forward algorithm as described in section 4.2. The forward algorithm as

performed in Stan is defined in Algorithm 1. To estimate the cognitive impairment

status of the ith patient at time ti`, we must use the backwards algorithm as discussed

in section 4.2. The backwards algorithm as performed in Stan is defined in Algorithm

2.
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Data: Yi ∈ RN×K and ti` for i = 1, . . . , N , ` = 1, . . . ,mi, k = 1, . . . ,K
Result: α̂`(j) = P (Y1 = y1, Y2 = y2, . . . , Ymi = ymi , Zi` = j)

1 begin

2 for λ̂j at each iteration do

3 α̂1(zij)← λ̂zj
4 for i ∈ {1, 2, . . . , N} do
5 for ` ∈ {1, 2, . . . ,mi} do
6 for j = 1, 2 do
7 α̂`(j)← α̂`(1)fj(yi`)
8 end
9 for j = 1, 2 do

10 α̂`(j)← α̂`(j)/
∑

j=1,2 α̂`(j)

11 end
12 if ` < mi then
13 for j = 1, 2 do

14 α̂`+1(j)← α̂`(j)Γ̂(ti(`+1) − ti`)1,j + α̂`(2)Γ̂(ti(`+1) − ti`)2,j
15 end
16 for j = 1, 2 do
17 α̂`+1(j)← α̂`+1(j)/

∑
j=1,2 α̂`+1(j)

18 end

19 end

20 end

21 end

22 end

23 end

Algorithm 1: Forward Algorithm

4.4.4 Data Model and Priors

The data model in Scenario 1 and Scenario 2 were specified to match the true

data models presented in subsection 4.4.1. Using the results from Chapter Three,

we used informative priors for appropriate parameters and used weakly informative

priors for all other parameters. The data model for both longitudinal test scores was

defined to be

(Yi`|zi` = j) ∼ Nk(µ(j)
i`k, σ

(j)
εk

),

such that µ
(j)
i`k = (β

(j)
0k + b

(j)
0ik) at baseline (ti1), and for ti`, ` = 2, . . . ,mi

µ
(j)
i`k = (β

(j)
0k + b

(j)
0ik) + (β

(j)
1k + b

(j)
1ik) exp{−(ti` − ti(`−1))/ exp[θ

(j)
k ]}. As was the case in
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Data: Yi ∈ RN×K and tij for i = 1, . . . , N , j = 1, . . . ,mi, k = 1, . . . ,K
Result: P (Zij = zij |Y1 = y1, Y2 = y2, . . . , Ymi = ymi)

1 begin
2 for α̂` at each iteration do

3 β̂mi(j)← 1, j = 1, 2
4 for i ∈ {1, 2, . . . , N} do
5 for ` ∈ {1, 2, . . . ,mi − 1} do
6 u← mi − `
7 for j = 1, 2 do

8 β̂u(j)←
∑

j=1,2 Γ̂(ti(u+1) − tiu)1,jfj(yi,u)βu+1(j)

9 end
10 for j = 1, 2 do

11 β̂u(j)← β̂u(j)/
∑

j=1,2 β̂u(j)

12 end
13 for j = 1, 2 do
14 P (Zij = j|Y1 = y1, Y2 = y2, . . . , Yj = yj) =

α̂u(j)β̂u(j)/[α̂u(j)β̂u(j)]

15 end

16 end

17 end

18 end

19 end

Algorithm 2: Backwards Algorithm

Chapter Three, we know that the baseline mean for the healthy subpopulation for

each test is zero. Therefore, we will specify the known parameter βj=1
0,k=1 = βj=1

0,k=2 = 0.

Similarly, we know that the baseline standard deviation of each test is one for the

healthy subpopulation. Therefore, we can define σ
(j=1)
k = 1, where σ

(j=1)
k is the

standard deviation of the marginal distribution of the kth test, k = 1, 2, in the healthy

subpopulation.All prior distributions specified for the parameters in the continuous-

time mixed HMM are shown in Figure 4.3. The only additional information we have

regarding the values of other parameters in the continuous-time mixed HMM we can

obtain from the results in Chapter Three. For the baseline mean of the marginal

distribution of the cognitively impaired subpopulation for test k = 1 (TMTB), we

see from Table 3.4 that the posterior mean is −4.08 with a 95% confidence interval
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β
(j=2)
0,k=1 ∼ N (−4.08, 1);

β
(j=2)
0,k=2 ∼ N (−3.99, 1);

β
(j)
1k ∼ N (0, 1), k = 1, 2, j = 1, 2;

Ωε ∼ LKJ-correlation distribution(η = 1);

ε
(j)
i ∼ N

([
0
0

]
,
[
diag

(
σ(j)
ε

)]
Ωbik

[
diag

(
σ(j)
ε

)])
k = 1, 2, j = 1, 2;

σ(j=1)
εk

∼ Uniform(0, 1), k = 1, 2;

σ(j=2)
εk

∼ Lognormal(0, 1), k = 1, 2;

b
(j)
ik ∼ N

([
0
0

]
,
[
diag

(
σ

(j)
bik

)]
Ωbik

[
diag

(
σ

(j)
bik

)])
;

σ
(j=1)
b0i,k

=

√
1−

(
σ
(j=1)
εk

)2
, k = 1, 2;

σ
(j=2)
b0i,k

=

√(
σ
(j=2)
k

)2
−
(
σ
(j=2)
εk

)2
, k = 1, 2;

σ
(j=1)
b1i,k

∼ Lognormal(0, 1), k = 1, 2;

σ
(j=2)
k=1 ∼ Lognormal(1.3, 0.5);

σ
(j=2)
k=2 ∼ Lognormal(1.47, 0.5);

σ
(j=2)
b1i,k

∼ Lognormal(0, 1), k = 1, 2;

Ωbik ∼ LKJ-correlation distribution(η = 1);

qj ∼ Half-Normal(0, 1), j = 1, 2;

θ
(j)
k ∼ N (0, 1) k = 1, 2, j = 1, 2;

λ ∼ Dirichlet(24, 21);

Figure 4.3. Prior distributions for all parameters in the continuous-time mixed hidden
Markov model

between (−5.72,−2.47). Therefore, we will define an informative prior for the baseline

mean of the marginal distribution of the cognitive impaired subpopulation for the

TMTB test in the form of a N (−4.08, 1) in accordance with the posterior estimates

in Table 3.4. Similarly, for the baseline mean of the marginal distribution of the

cognitively impaired subpopulation for test k = 2 (Grooved Pegboard (Dominant

Hand)), we see from Table 3.4 that the posterior mean is −3.99 with a 95% confidence

interval between (−5.87,−2.13). Therefore, we will define an informative prior for

the baseline mean of the marginal distribution of the cognitive impaired subpopula-

tion for the Grooved Pegboard (Dominant Hand) test in the form of a N (−3.99, 1).

Additionally, the estimated posterior mean for σj=2
k=1 in Table 3.4 was 3.71 with a 95%
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Figure 4.4. Posterior distribution obtained in Chapter Three and selected prior for the
mean of the marginal distribution for the (a) TMTB test and (b) Grooved Pegboard
(Dominant Hand) test and the standard deviation of the marginal distribution for
the (c) TMTB test and (d) Grooved Pegboard (Dominant Hand) test.

credible interval of (2.82, 4.97). The similarity of the prior distributions discussed

for the mean of the marginal distribution at baseline for the cognitively impaired

subpopulation for the TMTB test and the Grooved Pegboard (Dominant Hand) test

as well as the standard deviation of the marginal distribution at baseline for the

cognitively impaired subpopulation for the TMTB test and the Grooved Pegboard

(Dominant Hand) test used in our analysis and the estimated posterior distribution

obtained in Chapter Three are shown in Figure 4.4. In order to provide a informative

prior based on the estimated posterior distribution, we specified a lognormal(1.3, 0.5).
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Similarly, the estimated posterior mean for σj=2
k=2 in Table 3.4 was 4.39 with a 95%

credible interval of (3.40, 5.78). In order to provide a informative prior based on the

estimated posterior distribution, we specified a lognormal(1.47, 0.5). Lastly, we spec-

ified an informative prior distribution for λ in the form of a Dirichlet(21, 24) based

on the number of patients estimated to belong to each subpopulation in Chapter 4.

For all other parameters, weakly informative priors were chosen to reflect the limited

information regarding potential parameter values.

4.5 Results

The parameter estimates and 95% credible intervals for both Scenario 1 and

Scenario 2 are shown in Table 4.1. Based on the results presented, for both Scenario 1

and Scenario 2 we see that the true value of all parameters included in the continuous-

time HMM are contained within their respective 95% credible interval. However, we

see that in Scenario 1 that the 95% credible interval for σj=1
b1,k=1

is very wide. Similarly,

in Scenario 2 the 95% credible interval for σj=1
b1,k=1

and σj=1
b1,k=1

have a large range. Lastly,

we see that ρb,k=1 in Scenario 1 and ρb,k=2 in Scenario 2 include positive value, but

their respective posterior means are indeed negative. Once real data are ready to be

analyzed, if we can obtain illicit more informative priors from an expert, we may be

able to improve the accuracy of posterior estimates.

Additionally, we can examine the predictive accuracy of the model to correctly

infer the cognitive status of patients at each time point tij. For Scenario 1, we find

that out of a total of n × mi = 500 total observed instances at which a patient’s

cognitive status is inferred using the Bayesian continuous-time HMM, the cognitive

status is incorrectly inferred 69 times (13.8%). For Scenario 2, 19 (3.8%) patients

cognitive status is incorrectly inferred.
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Table 4.1. Parameters in continuous-time mixed hidden Markov model and the
respective posterior estimates for Scenario 1 (K = 1) and Scenario 2 (K = 2); j

refers to the subpopulation, j = 1, 2 and k refers to the cognitive test number in the
given battery k = 1, . . . , K.

Scenario 1 Scenario 2

Parameter j k
True
Value

Posterior
Mean

95% Credible
Interval

Posterior
Mean

95% Credible
Interval

β0 2 1 −4.08 −4.16 (−4.87, −3.48) −3.51 (−4.16, −2.86)
β1 1 1 1 1.44 (0.45, 2.71) 0.99 (0.50, 1.64)
β1 2 1 1 1.14 (0.71, 1.60) 0.92 (0.65, 1.24)
β0 2 2 −3.99 −3.70 (−4.54, −2.87)
β1 1 2 1 0.94 (0.34, 1.67)
β1 2 2 1 1.14 (0.74, 1.60)
σb0 1 1 0.9 0.87 (0.82, 0.91) 0.92 (0.90, 0.95)
σb0 2 1 3.71 3.79 (3.34, 4.31) 3.53 (3.11, 3.99)
σb1 1 1 0.5 0.65 (0.10, 1.82) 0.46 (0.11, 1.05)
σb1 2 1 0.5 0.60 (0.15, 1.11) 0.28 (0.09, 0.54)
σb0 1 2 0.8 0.73 (0.61, 0.82)
σb0 2 2 4.39 4.63 (4.09, 5.23)
σb1 1 2 0.4 0.64 (0.11, 1.57)
σb1 2 2 0.4 0.55 (0.13, 1.11)
ρb 1, 2 1 −0.7 −0.31 (−0.87, 0.32) −0.70 (−1.00, −0.13)
ρb 1, 2 2 −0.5 −0.40 (−0.87, 0.27)
σε 1 1 0.44 0.48 (0.41, 0.57) 0.38 (0.33, 0.44)
σε 2 1 0.44 0.42 (0.37, 0.48) 0.43 (0.39, 0.47)
σε 1 2 0.6 0.68 (0.58, 0.80)
σε 2 2 0.6 0.60 (0.54, 0.66)
ρε 1, 2 1,2 0.5 0.46 (0.37, 0.55)
θ 1 1 0.5 −0.43 (−1.35, 0.59) 0.28 (−0.44, 1.09)
θ 1 2 0.5 0.43 (−0.61, 1.30)
θ 2 1 0.5 0.63 (0.10, 1.15) 0.39 (−0.21, 1.00)
θ 2 2 0.5 0.33 (−0.17, 0.82)
q1 - - 0.6 0.54 (0.27, 1.07) 0.96 (0.50, 1.84)
q2 - - 0.4 0.33 (0.17, 0.66) 0.50 (0.26, 0.96)
λ1 - - 0.5 0.53 (0.45, 0.62) 0.47 (0.39, 0.56)
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4.6 Concluding Remarks

As cognitive impairment status over time becomes a quantity of interest in clini-

cal research and clinical trials, a method for accurately inferring cognitive impairment

based on serial administrations of a battery of cognitive tests is crucial. Moreover,

such a method must also be able to account for the presence of a practice effect caused

by repeated administration of a given cognitive test. We have proposed the use of

a Bayesian continuous-time mixed hidden Markov model to infer cognitive impair-

ment from a battery of cognitive tests administered serially. Additionally, we have

incorporated an additional term in the distribution of the battery of cognitive test

scores conditional on the latent subpopulation adapted from the half-life regression

equation proposed by Settles and Meeder (2016) for recall which is able to capture

the presence of a practice effect and can incorporate various covariates which may

affect the magnitude and/or rate of decay of the practice effect.

Due to the unavailability of longitudinal scores from the battery of cognitive

tests administered to pediatric MS patients treated at the Pediatric Demyelinating

Diseases Clinic of Children’s Health Dallas, we were forced to simulate longitudinal

data based on a subset of the results presented in Chapter Three. We first simulated

longitudinal cognitive test scores for a single cognitive test from a mixed effects model

containing the additional practice effect term and found that the 95% credible inter-

vals of the posterior estimates contained the true value of all parameters contained

in the model. Additionally, the cognitive status was inferred incorrectly for only

0.65% of the total instances at which a cognitive test was administered. Then, we

simulated longitudinal cognitive test scores for a battery of two cognitive tests from

a multivariate mixed effects model containing the additional practice effect term and

found that all except for three of the 95% credible intervals of the posterior estimates

contained the true value of their respective parameter. However, more importantly,

the cognitive status was inferred correctly for every instance at which a cognitive test
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was administered. Therefore, the Bayesian continuous-time mixed hidden Markov

model performed well for the simulated data.

The main limitation of the current study is the absence of actual longitudinal

scores from a battery of cognitive tests administered to a sample of the patient pop-

ulation of interest. Preliminary data is crucial to the development of an appropriate

clinical trial. Additionally, the proposed method was investigated in a battery of cog-

nitive tests much smaller than the true battery of cognitive tests used for pediatric MS

patients treated at the Pediatric Demyelinating Diseases Clinic of Children’s Health

Dallas due to time constraints. As the number of tests in a given battery increases,

the computational complexity of the model increases with limited, if any, information

available to provide more informative priors for any of the parameters. However, the

proposed model may be simplified by limiting the number of random effects, but this

leads to the need for estimating the correlation matrix for the errors terms for each

cognitive test.

Future work will focus on obtaining and analyzing actual longitudinal results

from the battery of cognitive tests presented in Chapter Three, an effort that has

already begun. After which, we will construct a simulation study similar to that

performed in Chapter Three to examine the predictive accuracy of the proposed

method. After which, we will assist in the development of a clinical study investigating

the effect of therapeutic agents on patients’ cognitive impairment status over time.
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CHAPTER FIVE

Conclusion

The understanding of cognitive impairment in patients suffering from various

diseases and its impact on the patient’s and their family’s quality-of-life has led to

an increased interest in researching this symptom of the disease. Longitudinal stud-

ies are currently underway investigating cognitive impairment in pediatric Multiple

Sclerosis, as well as early discussions related to clinical trials investigating the im-

pact of therapeutic intervention on cognitive impairment in this patient population.

However, the diagnosis of the latent class status of cognitive impairment has been

flawed and must be resolved before proper analysis of longitudinal cognitive testing

data and the design of longitudinal clinical trials.

In Chapter Three we investigated the use of a Bayesian multivariate finite mix-

ture model to infer cognitive impairment based on a battery of cognitive tests admin-

istered at baseline. The proposed method and currently used methods for inferring

cognitive impairment based on a battery of cognitive tests were applied to baseline

results from pediatric Multiple Sclerosis patients seen at the Pediatric Demyelinat-

ing Diseases Clinic of Children’s Health Dallas. In order to examine the sensitivity

and specificity of the proposed method and the currently used methods, a simulation

study was constructed to reflect the results from the pediatric MS patient data. In the

simulation study we find that the Bayesian multivariate mixture model has a greater

sensitivity and specificity relative to the currently used methods. Additionally, we

examined the effect of censored cognitive test scores on parameter estimates and the

inferred cognitive impairment status. We found that despite accounting for censoring,

the resulting parameter estimates were biased when analyzing censored cognitive test

scores relative to the analysis of uncensored cognitive test scores.
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Finally, in Chapter Four we propose the use of a Bayesian continuous-time

mixed hidden Markov model accounting for the practice effect to infer cognitive im-

pairment status in serial administrations of a battery of cognitive tests. We simulated

data for a serial administration of a single cognitive test and a battery of two cogni-

tive tests based on a subset of the results obtained in Chapter Three to examine the

ability of the Bayesian continuous-time mixed hidden Markov model. The Bayesian

continuous-time mixed hidden Markov model correctly inferred cognitive impairment

for 99.35% of administration of the single cognitive test and 100% of administrations

of the battery of two cognitive tests in the presence of a practice effect.

Given the predictive ability of the proposed methods to accurately infer cogni-

tive impairment, we are able to move forward with longitudinal studies of cognitive

impairment in the pediatric Multiple Sclerosis patient population. As sample sizes

amass to greater numbers, we can apply the proposed methods and obtain better es-

timates of the correlation amongst cognitive tests in the given battery, the transition

probabilities, and the impact of the practice effect. After which, we can accurately

estimate the necessary sample size to conduct a longitudinal clinical trial investi-

gating the impact of therapeutic intervention. Lastly, we can then investigate the

association of longitudinal biomarker measurements on cognitive impairment status

and use such measurements to make predictions that a given patient will become

cognitively impaired at a future time point, a task that can be accomplished using

the methods investigated in Chapter Two. Based on the results presented in Chapter

Two, it is clear that the joint modeling approach and landmark approach are most

appropriate with the choice amongst the two methods depending on biologic variabil-

ity. Additional research will be needed to apply the dynamic prediction methods to

the scenario where patients are able to switch back-and-forth between the two latent

class status. Accomplishing such task will dramatically improve the understanding

and treatment of cognitive impairment in pediatric Multiple Sclerosis patients result-

84



ing in an alleviation of this symptom of disease and lead to an improvement in the

quality-of-life of all those impacted by this disease.

In addition to the ability of the proposed methods to accurately infer cognitive

impairment based on the current battery of cognitive tests in pediatric Multiple Scle-

rosis patients, the proposed methods are suitable for any battery of cognitive tests

thought to capture cognitive impairment. Furthermore, the proposed methods can be

implemented to infer cognitive impairment in other conditions which affect cognition

such as Alzheimer’s disease and Parkinson’s disease. The Bayesian models created for

the analysis of pediatric Multiple Sclerosis data can be easily adapted to any battery

of cognitive tests for any condition. Our efforts have led to an improved and statis-

tically valid method for inferring cognitive impairment from a battery of cognitive

tests with broad applicability in the research and treatment of cognitive impairment.
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APPENDIX A

Posterior Estimates of the Correlation Matrix in the Analysis of Censored and
Uncensored Data

A.1 Posterior Estimates of the Correlation Matrix

In Chapter 3, we defined the multivariate distribution of the scores obtained

from the battery of cognitive tests conditional on the subpopulation membership, zi,

to be

f(y|θzi) =
1

(2π)K/2|(diag(σzi))Ω(diag(σzi))|1/2

× exp

{
−1

2
(y − µzi)T [(diag(σzi))Ω(diag(σzi))]

−1 (y − µzi)
}
.

The resulting posterior estimates for all other parameters in the finite multi-

variate mixture model have been presented in Chapter 3, with the exception of Ω

due to its size. We present the posterior estimates for the off-diagonal elements of

Ω from the analysis of the censored and uncensored dataset in Tables A.1-A.2 and

Tables A.3-A.4, respectively.

Let Ω∗ denote the upper off-diagonal portion of Ω. Furthermore, let Ω∗1 denote

the first seven columns of Ω∗ and let Ω∗2 denote the last seven columns of Ω∗, such

that Ω∗ = [Ω∗1
... Ω∗2]. Table A.1 presents the posterior estimates for Ω∗1 from the

censored dataset, table A.2 presents the posterior estimates for Ω∗2 from the censored

dataset, table A.3 presents the posterior estimates for Ω∗1 for the uncensored dataset,

and table A.4 presents the posterior estimates for Ω∗2 for the uncensored dataset.
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