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It is well known that, for —a, —f,—a — § — 1 ¢ N, the Jacobi polynomials

o0

{Péa’ﬁ ) (x)} are orthogonal on R with respect to a bilinear form of the type

n=0
pr— d
(f,9)u /R fadp,

for some measure . However, for negative integer parameters o and 3, an applica-
tion of Favard’s theorem shows that the Jacobi polynomials cannot be orthogonal
on the real line with respect to a bilinear form of this type for any positive or signed
measure. But it is known that they are orthogonal with respect to a Sobolev inner
product. In this work, we first consider the special case where o = § = —1. We
shall discuss the Sobolev orthogonality of the Jacobi polynomials and construct a
self-adjoint operator in a certain Hilbert-Sobolev space having the entire sequence of
Jacobi polynomials as eigenfunctions. The key to this construction is the left-definite
theory associated with the Jacobi differential equation, and the left-definite spaces
and operators will be constructed explicitly. The results will then be generalized to

the case where oo > —1,3 = —1.
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CHAPTER ONE

Summary

In 1929, S. Bochner classified all second order equations of hypergeometric type
that have orthogonal polynomial eigenfunctions. Up to a complex linear change of
variable, the only such equations are the Hermite, Laguerre, Jacobi, and the Bessel
polynomial equations.

It has been well known that, for —a, —f3, —a — f — 1 ¢ N, the Jacobi poly-

nomials {Péa’ﬁ ) (95)} are orthogonal on R with respect to a bilinear form of the

n=0

type
(fs 9= [ fgdp, (1.1)
/

for some measure p [7]. However, for negative integer parameters « and 3, an appli-
cation of Favard’s theorem shows that the Jacobi polynomials cannot be orthogonal
on the real line with respect to a bilinear form of this type for any measure. But
are they orthogonal with respect to some “natural” inner product? Indeed, they are
orthogonal with respect to a Sobolev inner product [35]. We discuss this Sobolev
orthogonality when a@ > —1 and § = —1 and, by applying the left-definite spectral
theory, we construct a self-adjoint operator that is generated from the Jacobi dif-
ferential expression in a certain Hilbert space having the entire sequence of Jacobi
polynomials as a complete set of eigenfunctions.

The left-definite theory can be traced back to Weyl [56] and the work of Schéfke
and Schneider who coined the term left-definite in their 1965 paper, that is, the Ger-
man links-definit [50]. In a recent paper, Littlejohn and Wellman develop a general
left-definite theory. They show that any self-adjoint operator A in a Hilbert space
H that is bounded below generates a continuum of Hilbert spaces and self-adjoint

operators that are called the left-definite spaces and operators, respectively, associ-



ated with (H, A). Examples for which these left-definite spaces and operators have
been specifically constructed include the Hermite [19], Legendre [21], and Laguerre
[39] differential equations. The left-definite spectral analysis of the classical Jacobi
differential expression, when «, 5 > —1, has been discussed in [17]. The Laguerre
differential equation for nonclassical parameters was studied in a left-definite setting
in [20].

In this work, we study the Sobolev-orthogonality of the Jacobi polynomials for
the non-classical parameters « = § = —1 and f = —1,a > —1. In the special case

where o = = —1, the Jacobi differential expression reduces to

I alyl(z) = (1= 2) (= (2)) + k(1 — 2*) " "y(x))

for x € (—1,1) and where k& > 0 is a constant. The associated classical weight func-
tion is w(z) = (1 — 22) ", and the right definite spectral setting is L2 ((—1,1); w).

The maximal domain associated with [_; _1][-] is
A= {f (=1,1) — C | f, f' € ACie(—~1,1); f,1[f] € L? ((—1, 1); (1- 3:2)_1)} .
From the Glazman-Krein-Naimark theory, the operator
A:DA) C L ((-1,1);1—2*)"") — L*((-1,1); (1 — 2*) )
defined by

Af = l*l,—l[f]
feDA)=A

is self-adjoint and bounded below by kI in L? ((—1,1); (1 — z*)71).

When considering the sequence of Jacobi polynomials {Péil’fl)} in this

n=0

setting, one quickly notices that the first Jacobi polynomial is degenerate, that

is, Pl(fl’fl)(az) = 0. However, any polynomial of degree 1 will be a solution of the



equation I_; _1[y|(z) = 0 and the degeneracy can be fixed by choosing a suitable first-
degree polynomial. The next complication is that neither the Jacobi polynomial of
degree 0 nor any non-trivial choice of Pl(_l’_l)(a:) are in L2 ((—=1,1); (1 —z%)71), due
to the singularities in the weight function w(z) = (1 — 22)”". Although the Jacobi
polynomials of degree > 2 form a complete orthogonal set of eigenfunctions of A
in L2 ((—1,1); (1 — 2?)71), it is not possible for the entire sequence {P£—1,—1)}1°:_0
to be orthogonal on the real line with respect to any bilinear form of type (1.1) for
any positive or signed measure p. This is a simple application of Favard’s theorem.
However, upon choosing Pl(fl’fl)(m) = 1/4/3, the entire sequence of polynomials
{P,gfl’fl) }OO can be normalized so that they form an orthonormal set with respect

n=0

to the Sobolev inner product
1 _ 1 _ / 1N
6(£,9) = 3 (=Dg(-1) + 35V + [ £ (@) ()da,
-1

as shown in [35]. In fact, the set {P}fl"”} forms a complete orthonormal
n=0

sequence in the Hilbert-Sobolev space
Wii={f:[-1,1] —C|fe AC[-1,1]; f' € L*(-1,1)} (1.2)

carrying the inner product ¢ (-,-). A central question in this dissertation is if there

exists a self-adjoint operator in W; which is generated from the Jacobi differential

[e.o]

expression [_; _1[-], that has the entire sequence of Jacobi polynomials {PT(L_I’_I)}
n=0

as its eigenfunctions? We show that the answer is yes, and the left-definite spectral

analysis associated with A will be the key in this construction.

The integral powers of ¢_; _1[-], the coefficients cg-fl’fl)(n, k), the left-definite

vector spaces Vn(fl’fl), and the left-definite inner products (-, -)5{1’71) can be found in

exactly the same fashion as in [17]; indeed, by letting & = 3 = —1 in the formulae in
[17], we obtain the necessary expressions, combinatorial numbers, spaces, and inner
products. Indeed, for n € N, we shall see that the n'* left-definite Hilbert space

3



associated with the pair (L2 ((—1,1); (1 — 22)~1), ACL=D) is given by Wi Y =
(Va7 (), where

V,S_l’_l) = {f : (—17 ]_) — (C | f, f,, Ce ,f(n_l) € Aoloc(_]-’ 1)) (13)

) e 12 ((_1’ 1);(1— a;2>j71),j =0,1,..,n}

and

1
n

()0 = 3wk [ FO@)g @)1 - o)

Jj=0 —1
Moreover, the Jacobi polynomials «{197(n_1’_1)}»7°n<’:2 form a complete orthogonal set in

cach W™ and they satisfy the orthogonality relation
(PCL=D pEL=DY = (m(m — 1) 4 k)"

Furthermore, define Agfl’fl) :D (Aﬁf“”) C Wéfl’fl) — Wéfl’fl) by

ACE V=0, 0 [f) (FeDATTY) =Y.

Uis the n'" left-definite operator associated with the pair

Then the operator A%_l’_
(L2 ((=1,1); (1 — 2*)71), A); this is a self-adjoint operator in Wi with spectrum
given by

o(ATE YY) = {m(m — 1) + k| m € No} = a(A).

Moreover, the Jacobi polynomials {Pﬁ;l’*”} form a complete set of eigenfunc-
m=2
tions of each AL "™ in WiV,
To construct a self-adjoint operator T that is a realization of the Jacobi dif-

ferential expression having the full sequence of Jacobi polynomials as a complete set

of eigenfunctions in the space W7, defined in (1.2), we consider the decomposition

Wi =Wi1 @ Wio,



where

Wi = {f e WELD | f(£1) =0}

WLQ = {f c W(_L_l) ‘ f”((lﬁ) = 0} .

It is the case that {P}, "M}

o _o is a complete orthonormal set in W3 ; and the

set {P,S:L‘”}}nzo is complete and orthonormal in the two-dimensional space W s.
Furthermore, we show that

Wii= ‘/1(—1,—1)7

where Vl(_l’_l) denotes the first left-definite space defined in (1.3); moreover, the
inner products (-, -)g_l’_l) and ¢(-,-) are equivalent on Wy = Vl(_l’_l).

We will then show that the first left-definite operator
Ty :D(Th) C Wiy — Wi,
given by

Tf = Aﬁfl’fl)f ={_1,-1[f]

feD() =V

is self-adjoint in (Wi 1, ¢(-,-)). It is easy to construct a self-adjoint operator 75 in

W2 generated by ¢y _1[-]:

T2f = gfl,fl[f];

D(Tg) - PQ.
For each f € Wy, write f = fi + fo where f; € Wi ,and fo € Wi 9. Define

TD(T)CW1—>W1

Tf="Tf+Tafo=Llfr] + 0 fa] = £[f],
5



for

[ €D(T) =D(Th) & D(T2).

Then T is self-adjoint in (W1, ¢(+,-)) and has the entire sequence of Jacobi poly-
nomials {Pﬁfl’_l)}fn"zo as eigenfunctions. From the explicit determination of D(T})

and D(T3), it is not difficult to obtain the following characterization of D(T):

D(T)={f:[-1,1] — C |f € AC[-1,1]; f', f" € AC1oe(—1,1); (1 — 22) f",
(1 i $2)1/2f”,f, c L2<_17 1)}
={f:[-1,1] — C| f € AC|-1,1]; /', f" € AC)oc(—1,1);

(1—2*)f" e L*(-1,1)}.

Furthermore, the spectrum of 7" is given by o(T) = {m(m — 1) + k | m € Ny} and
T is bounded below by kI in (Wy, é(-,-)).

In chapter 6, these results will be extended to the general case where a >
—1,8 = —1. This case is in many ways similar to the special case, but it is worth
noting some fundamental differences: for fixed a = 8 = —1, the set {P,Sb‘l"l)}gjﬂ
is complete in L? ((—1,1); (1 —2%)71), i.e. the Jacobi polynomials starting with
the polynomial of degree 2 form a maximal orthogonal set, whereas in the general
case, { PXV}%_ forms a maximal orthogonal set in L? ((—1,1); (1 — z)*(1 + 2)~?).
Again, the left-definite theory will play a key role in constructing a self-adjoint
operator in a certain Hilbert-Sobolev space having the entire sequence of Jacobi

polynomials as eigenfunctions.



CHAPTER TWO

Right-Definite Spectral Theory

The purpose of this chapter is to summarize the theory of self-adjoint exten-
sions of formally symmetric differential expressions. Our main source is [41] and
references therein. Throughout this chapter, we shall assume that I = (a,b) C R
is an open interval with —oo < a < b < 00, and that a; € CV(I,R), j = 0,1,...,n,
with a,(z) # 0 for all x € I, and n is a positive integer. We consider the ordinary

differential expression [[-] of order 2n defined by

n

() = 3 (=1) (a5 (@)@, wer (2.1)

=0
and study certain linear operators in L?(I) generated from I[-]. Two operators of
interest are the maximal and the minimal operator associated with I[-]. We will
be concerned with constructing self-adjoint extensions (restrictions) of the minimal
(maximal) operator, and we will study their spectra. In particular, we shall consider

the eigenvalue problem
Ayl = Ay,

where A is one of these self-adjoint operators. Expression (2.1) is called a formally
symmetric differential expression. We note that differential expressions with less
smooth coefficients can be considered which leads to the concept of quasi-derivatives,
as in [2],[43]. However, we will keep our smoothness assumptions and note that
for any eigenvalue problem [[y] = Ay having a sequence of orthogonal polynomial

solutions, it is always the case that a; € C7(I,R).

Definition 2.1. The differential expression (2.1) is called regular if I is of finite length
and the coefficients i, Ap_1,-.-, a9 € L(I). If [[-] is not regular, it is called singular.

The endpoint a is called a regular point of {[-] if a > —oo and if there exists an e > 0

7



such that *, a,_1,...,a0 € L(a,a + ¢). Otherwise, the point a is a singular point of
Qn

[[-]. There is a similar definition for the endpoint b.

The Jacobi differential expression is singular on (—1, 1), and thus for the rest
of this chapter, we will assume that [[-] is a singular differential expression unless

otherwise stated.

Definition 2.2. Let {[-] be as in (2.1). The operator £ : L?(I) — L*(I) defined by

D(L) == {y: I — Cly™ € ACioe(I),k =0,1,....2n — L;y,l[y] € L*(I)}
is called the maximal operator generated by [[-] in L*(I).

The space D(L) is in fact the largest subspace in which £ can be defined as an
operator from L*(I) into L?*(I).
For f,g € D(L), and [«, 5] C I, it is easy to verify Green’s formula by inte-

gration by parts:
B
[ tsig =16y de = (1.9

where the sesquilinear form [f, ¢](-) is defined by

[f, gl(z) := Z Z {(aj(x)y(j)(x))(j‘m) f(m_l)(l‘) (aj(x)f(j) (x))(j—m) y(m—l)(x)} )

7j=1 m=1

(2.2)

Observe that [g, f](z) = —[f, g](x) for all f,g € D(L) and a < = < b, and that the

limits [f, g](a) := lim, .+[f, ¢](z) and [f, g](b) := lim, ;- [f, ¢](x) both exist and
are finite for all f, g € D(L) by the definition of D(L) and Holder’s inequality.

Since D(L) is dense in L?*(I), the adjoint operator £* exists. If T C L is

a densely defined linear operator in L?*(I), then £* C T*, so it is natural to call

Ly := L* the minimal operator generated by [[].



Definition 2.3. The restriction of the maximal operator £ to the (densely defined)
subspace Dj of all functions f € D(L) with compact support in I will be denoted
by L.

Definition 2.4. Let H be a Hilbert space with inner product (-,-). A linear operator
S : H — H is symmetric in H if D(S) is dense in H and (Sz,y) = (z, Sy) for all
x,y € D(9).

A densely defined operator S is symmetric in H if and only if S C S*.

Definition 2.5. Let H be a Hilbert space. A linear operator S : H — H is self-
adjoint in H if D(S) is dense in H and S = S*.

Theorem 2.1. The operator L} is symmetric in L*(I).

Definition 2.6. Let H be a Hilbert space and T': H — H a linear operator with
domain D(T). Then T is closed if whenever {z,} C D(T) satisfies z, — = and

Tx, — vy, then x € D(T) and Tz = y.

It is easy to see that the adjoint of a densely defined operator is closed. In particular,

the minimal operator Ly is closed.

Definition 2.7. Let H be a Hilbert space and T': H — H a linear operator. We say
that T is closable if there exists a closed, linear extension S of T. If 7" : H — H
is a closed linear extension of 7" and 7" C S for all closed linear extensions of T,
then 7" is called the closure of T and T is said to admit a closure. The closure of

an operator T is denoted by T.

Theorem 2.2. Let H be a Hilbert space. A symmetric operator S : H — H admits

a closure. Moreover, this closure S is also symmetric in H.
Proof. See [43], page 13. O

Consequently, £{, has a symmetric closure E_{).

9



Theorem 2.3. (L£{)* = L.

Proof. See [43], page 68. O

It is well-known (e.g. [33]) that a closed, densely defined operator A in a
Hilbert space H has the property that A** = A. This fact, combined with the

previous theorem yields:

Theorem 2.4. Ly = E_{) and L5 = L. In particular, the minimal operator Ly and the

maximal operator L are closed operators, being adjoints of each other.

The following theorem is a very useful criterion for determining whether or not
an element f € D(L) is in the minimal domain D(Ly). It involves the sesquilinear

form (2.2).

Theorem 2.5. The domain D(Ly) of the minimal operator Lo in L*(I) consists of all

f € D(L) satisfying [f,g)(x) |° =0, for all g € D(L).
Proof. See [43], page 70. O

If one or both endpoints of I are regular, then the condition in the previous

theorem simplifies further, see [43], page 71.

Remark 2.1. If A is a symmetric extension of the minimal operator Ly in L?(I), then
A C L, where L is the maximal operator. Indeed, this is an immediate consequence
of Theorem 2.4:

LoCACA CLi=L.

In particular, A[y] = [[y] for all y € D(A); i.e. A has the same form as the expression

[[-] and A is the restriction of the maximal operator L.

Remark 2.2. Note that the theory presented in this chapter can be applied mutatis

mutandis to expressions of the form



where f(x) € C*"(I) and f(x) > 0 for all z € I. Observe that f(x)mly] is then for-
mally symmetric; in this case, we call the function f(z) a symmetry factor for m[-],
see [38]. The appropriate Hilbert space setting for the theory of self-adjoint exten-
sions would be L*((a,b); f). We note that the maximal operator £ in L*((a,b); f),

generated by m/[-], is defined to be
Lyl = mly]
D(L) = {y: (a,b) — Cly® € ACipe(a,b),k =0,1,...,2n — 1;

y.mly] € L*((a,); f)} .
Example 2.1. The classical Jacobi differential expression for k£ > 0 is defined by
Tyl = -1 —2°)y" + (a= B+ (a+B8+2)x)y +ky, x€(-1,1).

Although this expression cannot be directly put into the form (2.1), multiplication

of I[] by the symmetry factor f(z) = (1 — 2)*(1 + z)° yields

lyl(z) = (1 = 2)*(1 + 2)°7[y]

= — (1= 2)°T 1+ 2)° ) + k(1 — 2)*(1 + 2)%y ().

For a = 3 =0, 7[+] is called the Legendre expression. For the Jacobi expression, the

proper right-definite setting is the weighted Lebesgue space
L((-1,1); (1 = 2)*(1 + 2)"),

and the maximal and minimal operators in this space are generated from 7[-] =

(1 —z)~(1 +z)~PI[].

In 1929, von Neumann considered and solved the problem of when a symmetric
operator in a Hilbert space H had self-adjoint extensions in H. The motivation for
this study came from his interest in several unbounded operators that appear quite

naturally in the theory of quantum mechanics. In 1939, Calkin presented his method

11



for determining necessary and sufficient conditions when such self-adjoint extensions
exist and proceeded to characterize the domains of each of these extensions in terms
of general “boundary conditions”. A well-written account of this elegant theory can
be found in [12], pages 1222-1239 and 1268-1274. For our study, this theory has par-
ticularly important applications to the subject of symmetric differential operators.
Indeed, the Russian mathematicians M. A. Naimark and I. M. Glazman are credited
with applying and refining both van Neumann’s theory and Calkin’s method to the
minimal operator £y generated by [[-]. We will now briefly describe von Neumann’s

results, followed by the Glazman-Naimark theory of self-adjoint extensions of L.

Definition 2.8. Let A be a symmetric operator in a Hilbert space H. Let

D, :={f e D(A*) |A*f = if}

D_:={f DA |A*f = —if},

where ¢ := +/—1. The space D, is called the positive deficiency space of A, and
D_ is called the negative deficiency space of A. The dimensions of these spaces are
called the positive and negative deficiency indices of A, respectively, and we write

ny := dim(D.). The deficiency index of A in L?(I) is the ordered pair (n,,n_).

As shown in [12], page 1232, there is nothing special about using the complex
number ¢ in this definition: if A € C and Im(A\) > 0, then it is the case that
dim{f € D(A*) | A*f = Af} = ny. A similar result holds for n_ and any A € C
with Im(\) < 0. This is a result due to Weyl (1910, see [56] and [29], chapter
13) which he proved in the context of the classical second-order Sturm-Liouville
differential expression.

If A is a symmetric operator in a Hilbert space H, we define a new inner
product on D(A*) by (z,y)* := (z,y) + (A*z, A*y). It can be shown (see [12], page
1225) that D(A*) is a Hilbert space when equipped with this inner product. We are
now in the position to state the following important theorem.

12



Theorem 2.6. Let A be a symmetric operator in a Hilbert space H. Then D(A), Dy,

and D_ are closed orthogonal subspaces in (D(A*),(-,-)*) and
D(A*)=D(A)®D,®D-_.

This is known as von Neumann’s formula.

Proof. See [12], page 1227. O

In the case of A = L, the minimal operator in L?(I) generated by I[-], von

Neumann’s formula becomes
D(L)=D(Ly) @D, & D-_. (2.3)

Consequently, it is not surprising that the positive and negative deficiency spaces
play a major role in determining the self-adjoint extensions of Ly in L?(I). In fact,

we state the following theorem, [12] page 1228, to illustrate this influence.

Theorem 2.7. Let A be a symmetric operator in a Hilbert space H. Let D' be a closed

subspace of Dy @ D_ and set D = D(A) @ D'. Then the restriction of A* to D is

self-adjoint if and only if D' is the graph of an isometry mapping Dy onto D_.
This implies the following key result:

Theorem 2.8. Let A be a symmetric operator in a Hilbert space H. Then A has self-
adjoint extensions in H if and only if its deficiency indices are equal. Furthermore,

if ny =n_ =0, then the only self-adjoint extension of A is its closure A = A*.
Proof. See [12], page 1230. O

Although much more can be said about the characterizations of self-adjoint
extensions of general symmetric operators in a Hilbert space, we return to our dis-
cussion of finding self-adjoint extensions of the minimal operator £y in L*(I). Since

for any complex number A, the equation I[y] = Ay has a basis of 2n solutions, the
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deficiency indices of Ly in L?(I) are both finite. In fact, these two indices are equal.
Indeed, because the coefficients ay, of [[-] are real-valued, the function f is a solution
of [[y] = —iy. This same argument shows that if { f1, fo, ..., fin} is a basis for the pos-
itive deficiency space D, then {E, fa, ,f_m} is a basis for the negative deficiency
space D_. However, we note that, in general, the deficiency indices n need not be

equal when the coefficients of [[-] are complex-valued.

Theorem 2.9. Let Ly be the minimal operator in L*(I) generated by I[-], where I =
(a,b).

(i) If both endpoints a and b are regular, then ny = 2n.

(ii) If one of these endpoints is singular, then 0 < n, =n_ < 2n. In fact, it is
possible to construct l[-] so that ne = m for any integer m, 0 < m < 2n. If

exactly one of the endpoints is singular, thenn < n, =n_ < 2n.

Proof. For the proof of (i), see [43], page 66. For the proof of (ii), see [43], pages 69
and 71. Furthermore, in [25], Glazman constructs examples to show that m = n.

can actually take on all possible integer values between 0 and 2n. O

Let ¢ € I; necessarily, ¢ is a regular point of {[-]. Let £, denote the minimal
operator generated by [[-] on (a, ¢) and let £] denote the minimal operator generated
by [[-] on (¢,b). Let (m_,m_) and (my,m,) denote the deficiency indices of £, in

L*(a,c) and L§ in L*(c,b), respectively.

Theorem 2.10. The deficiency index of the minimal operator Lo in L*(I) is (m,m)
where

m=myq+m_ —2n,

and 2n is the order of the expression l[-]. Furthermore, m is independent of the

choice of c € 1.
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Proof. See [25], page 353. O

The importance of this theorem may need some explanation. Since the point
c is a regular point, all solutions of [[y] = +iy will belong to L?(c — ¢,¢| for all
0 < € < ¢ — a. Consequently, the number m_ is precisely equal to the number of
solutions of I[y] = +iy that are in L?*(a,a + 6] for some sufficiently small § > 0.
Similarly, the number m is equal to the number of solutions of [[y] = +iy that are

in L?(b — 4, b] for some small enough ¢ > 0. This motivates the following.

Definition 2.9. The differential expression [[-] is said to be in the limit-p condition
at = a in L*(I) if there exist exactly p solutions of I[y] = +iy that belong to
L?*(a,a+¢) for some sufficiently small € > 0. Similarly, [[-] is said to be in the limit-q
condition at z = b in L?(I) if there exist exactly q solutions of I[y] = +iy that belong
to L?(b — ¢, b) for some sufficiently small ¢ > 0. Since [[-] is of order 2n, it is clear

that 0 < p,q < 2n.

If the order of [[-] is two, the limit-2 condition is more commonly referred
to as the limit-circle condition, while the limit-1 condition is known as the limit-
point condition. This notion goes back to Weyl’s seminal paper [56]. His analysis
of the number of Lebesgue square integrable solutions of the second order Sturm-
Liouville equation involved some key geometric arguments. The terms limit-point
and limit-circle reflect the geometry used in his solution. In the second-order case,
Weyl showed that if [[y] = \gy is limit-point (respectively, limit-circle) at a or b for
a certain complex number \g, then {[y] = Ay is limit-point (respectively, limit-circle)
at a or b for a all complex numbers \.

From the previous definition and theorem, it is clear that once we have de-
termined the limit condition for each endpoint, then the deficiency index of the
minimal operator Ly in L?(I) can be found. Fortunately, there is a method available

for determining the limit condition of an endpoint when that endpoint is a regular
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singular point in the sense of Frobenius. Indeed, the so-called Method of Frobenius
from ordinary differential equations (see [30], pages 396-404) can sometimes be used
to determine the number of Lebesgue square integrable solutions near this singular

endpoint.

Definition 2.10. Consider the differential equation
Liyl(z) =Y _bi(x)yP(z) =0, =z €] (24)
§=0

where J C R is some open interval, b, : J — R, j = 0,1,...,n, b,(x) # 0 for all
x € J. Suppose a,b € J with a < b. If v =a > —o0, then & = a is called a regular

singular point of L[] if

(z —a)"Llyl(z) < j j

where ¢, () = 1 and where each ¢;j(x) is analytic in some neighborhood of z = a,

7 =0,1,...,n — 1. The definition of x = b < oo as a regular singular point is similar.

If a = —o00 or (b = o00) and L[] can be put into the form
> Hei(ty (),
=0

under the transformation z = 1/¢, where again c¢,(t) = 1 and where each ¢;(t) is
analytic in some neighborhood of ¢ = 0, then we say that x = oo is a regular singular
point of L[-]. If an endpoint is not a regular singular point, it is called an irregular

singular point.

Based on earlier work of Fuchs, Frobenius developed an ingenious tool for
determining a basis of n solutions of the homogeneous equation (2.4), where each
solution is expanded about a regular singular point. A key ingredient in this method

is the indicial equation at x = a associated with (2.4):

Z P(r,j)e; =0, (2.5)
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r!
(r=7)v

of degree exactly n. We will not describe this method here; it suffices to say that

where ¢; = ¢;(a) and P(r,j) = j =0,1,...,n. Evidently, this is a polynomial
each of the n roots of the indicial equation (2.5) determines a solution of (2.4), even
in the case of roots having multiplicity greater than one.

After the following definition, we will be in the position to state the important

Glazman-Krein-Naimark theorem.

Definition 2.11. Let X be a vector space and M; C M, be subspaces of X. We say

that the set {1, xs, ..., 2, } C My is linearly independent modulo M if the condition

Z Q;T; € M,
j=0
implies that a; =0, 7 =1,2,...,n. If A C M, is a maximal linearly independent set

modulo M; and 8 = card(A), we say that the dimension of M, is f modulo M.

It is not difficult to see that if {x1,xs,...,2,} C My is a linearly independent

set, then it is a maximal linearly independent modulo M; if and only if
My = My + sp{x1,x9,...,xn} . (2.6)

Of course, any set of linearly independent vectors modulo M is a linearly indepen-
dent set in X; the converse of this is not necessarily true. This concept of linear
independence modulo a subspace plays an important role in characterizing all self-
adjoint extensions of Ly in L?*(I). In view of (2.6) and the importance that von

Neumann’s formula (2.3) plays, this statement is not too surprising.

Theorem 2.11. (Glazman-Krein-Naimark) Suppose the deficiency index of the min-

imal operator Lo in L?(a,b) generated by the expression l[-] is (m,m).

(1) Let S be a self-adjoint extension of Ly in L*(a,b). Then there exists a set

{w1,wa, ...,w,} C D(S) that is linearly independent modulo D(Ly) such that

D(S) = {y e D(L) | [w;,y] | =0, j=1,2, m} . (2.7)



Here, [-, -] is the sesquilinear form defined in (2.2).
(i1) Suppose {wy,ws, ..., w,} C D(L) is linearly independent modulo D(Ly) with

[wj, we] =0, j,k=1,2,...,m.

a

Define an operator S in L*(a,b) by

Sly] = I[y]

D(S) = {y € D(L) [ [wj, 9] [}, = 0, j = 1.2, m .
Then S is a self-adjoint extension of Ly.

The conditions given in (2.7) are known as the Glazman boundary conditions and

. D(L£) — C is called a boundary value for L,. If for some

the functional [wj, ] |, :

j, [w;,y] | = 0 is independent of a or b for all y € D(S), then it is called a separated
boundary condition; otherwise it is a mixed boundary condition. In [12], page 1234,
a boundary value for a symmetric operator A is defined to be a continuous linear
functional on (D(A*), (+,-)*) that vanishes on D(A). There is a generalization of the
Glazman-Krein-Naimark theorem for arbitrary symmetric operators which can be

found in [12], page 1239.
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CHAPTER THREE

General Left-Definite Spectral Theory

In a recent paper [39], Littlejohn and Wellman developed a general abstract
left-definite theory for a self-adjoint operator A that is bounded below in a Hilbert
space (H, (+,-)). They show that there exists a continuum of unique Hilbert spaces
{W,, (+,-)r) },20 and, for each 7 > 0, a unique self-adjoint restriction A, of A in W,.
The Hilbert space W, is called the r*" left-definite Hilbert space associated with the
pair (H, A) and the operator A, is called the r'* left-definite operator associated
with (H, A). In this chapter, we discuss the main results in [39] and their relevance
to the Jacobi equation that we study in this thesis.

The left-definite spectral theory has its roots in the work of Weyl [56] on for-
mally symmetric second-order differential expressions. The terminology left-definite
is due to Schiifke and Schneider who used the German links-definit [50] in 1965 to
describe one of the Hilbert space settings in which certain formally symmetric dif-
ferential expressions can be studied. As an example, let us consider the differential
equation

Liyl(t) = dw(t)y(t) (e ;AeC), (3.1)

where I = (a,b) is an open interval of the real line R, w is Lebesgue-measurable,
locally integrable and positive almost everywhere on I, and where L[-] is the formally
symmetric differential expression
j ] (9)
Lly)(t) = > (=1 (b(t)yV (1)) (tel),
j=0
with non-negative, infinitely differentiable coefficients b;(t) (7 = 0,1,...,n) on I.
Then the classical Glazman-Krein-Naimark theory [43] applies to (3.1) and charac-

terizes all self-adjoint extensions of the minimal operator Ty, generated by w™ L[]
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in the weighted Hilbert space L2 (I) of all Lebesgue-measurable functions f : I — C

with inner product

(f.f) = / FOR w(t)dt < oo,

The space L2 (I) is called the right-definite Hilbert space for w='L[-] because w
appears on the right-hand side of (3.1). However, the differential expression w™!L][/]

can also be studied in a Hilbert space W generated by the Sobolev inner product
(fr9w =D bOfPMg9 ) (fgeW).
j=0

Since this inner product is generated from the left-hand side of (3.1), we call W a left-
definite Hilbert space and the spectral study of w™' L[] in W a left-definite spectral
setting. It is worth noting that, although the motivation for the general left-definite
theory developed in [39] arose from the study of certain self-adjoint differential op-
erators, the left-definite theory can be applied to any self-adjoint operator that is
bounded below. In what follows, we will give an overview of the general left-definite

spectral theory as developed in [39].

Let V be a vector space over C with inner product (-,-) such that H :=
(V,(+,-)) is a Hilbert space. Suppose that V. is a vector subspace of V' with inner
product (-,-), and let us denote this inner product space by W, := (V,, (-,-),). Let
A :D(A) C H — H be a self-adjoint operator that is bounded below by rI for some

r > 0, that is to say
(Az,x) > r(x,x) (x € D(A)).
Then for any s > 0, the operator A® is self-adjoint and bounded below in H by r°1.

Definition 3.1. Let s > 0, let V, be a vector subspace of the Hilbert space H =
(V,(,-)) with inner product (-,-)s and let Wy := (Vj, (+,)s). We say that W is an

st left-definite space associated with the pair (H, A) if
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(i) Wy is a Hilbert space

(ii) D(A?) is a vector subspace of Vj
(iii) D(A®) is dense in W
(iv) (x,2)s > r°(x,x) Yo € V

(v) (z,9)s = (A%2,y) Vo € D(A%),y € V.

Remark 3.1. In a sense, the most important property is (v), as it shows how the s

left-definite space is generated by the s power of A.

Note that, at this point, the existence of such a left-definite space is certainly in

question. However, Littlejohn and Wellman in [39] prove the following result.

Theorem 3.1. Let A : D(A) C H — H be a self-adjoint operator that is bounded

below by r1 for some r > 0. Let s > 0 and define Wy := (Vs, (+,)s) by
V, = D(A¥?)

and

(,y)s = (A2, A*/%y) (v,y € V3).

Then W is the unique left-definite space associated with the pair (H, A).

Definition 3.2. For s > 0, let W, := (Vj, (-, -)s) be the s left-definite space associated

with (H, A). If there exists a self-adjoint operator By : D(Bs) C W, — W satisfying
B.f = Af (f € D(B,) € D(A)),
we call such an operator an s left-definite operator associated with the pair (H, A).

Note that it is not immediately clear that such an operator exists. However,

its existence and uniqueness is established as follows.
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Theorem 3.2. Let A be a self-adjoint operator in a Hilbert space H that is bounded
below by 1 for some r > 0. For any s > 0, let W, := (V,,(+,+)s) denote the s
left-definite space associated with (H,A). Then there exists a unique left-definite

operator By in Wy associated with (H, A). Furthermore,
D(B,) = Viia C D(A).

Theorem 3.3. Suppose A is a self-adjoint operator in a Hilbert space H that is

bounded below by r1 for some r > 0. Let {H, = (V;, (,7)s) },o0 and { B}, be the

s>0

left-definite spaces and operators associated with (H, A). Then the following hold:
(1) Suppose A is bounded. Then, for each s >0,
(1) V=V,
(ii) the inner products (-,-) and (-,-)s are equivalent
(iii) A= B,.
(2) Suppose A is unbounded. Then
(i) Vs is a proper subspace of V
(ii) Vi is a proper subspace of V; whenever 0 <t < s
(iii) the inner products (-,-) and (-,-)s are not equivalent for any s > 0
(iv) the inner products (-,-); and (+,-)s are not equivalent for any s,t > 0,s # t
(v) D(Bs) is a proper subspace of D(A) for each s > 0
(vi) D(By) is a proper subspace of D(Bs) whenever 0 < s < t.

Theorem 3.4. For each s > 0, let By denote the s left-definite operator associated
with the self-adjoint operator A that is bounded below by rI in H for some s > 0.
Then
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(1) the point spectra of A and B are identical, i.e. 0,(B;) = 0,(A)
(i1) the continuous spectra of A and By coincide, i.e. 0.(Bs) = 0.(A)

(iii) the resolvent sets of A and By are equal, i.e. p(Bs) = p(A).
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CHAPTER FOUR

Spectral Analysis of the Jacobi Differential Equation (a, 8 > —1)

4.1 The Classical Jacobi Differential Equation
The classical second-order Lagrange symmetrizable Jacobi differential expres-

sion is defined by

laslile) = s (=002 ) Y () 461 =20+ 2) (o)

= —(1=2*)y"(z) + (a = B+ (a+ B+ 2)2)y () + ky()
for o, > —1 and = € (—1,1), where
Wap(w) = (1 — 2)*(1 + z)°

and k£ > 0 is a spectral parameter which is used to shift the spectrum of the self-
adjoint operator Ag’ﬁ to a subset of the positive real line.
With

XD i=r(r+a+ B+1)+E, (r € Np)

has polynomial solutions {PT(O"B ) (3:)} , where pe) (z) is the 7" Jacobi polyno-

r=0

mial of exactly degree r, [46]:

aﬁ) B 14+ a),(1+a+B); 1—2\7
& =5 Z (r— N1 +a);(1+a+p6), \ 2 (4.1)

and where

(Y21 +a+ B+ 2r) 2T (a4 B+7r+1))Y2
20T P (a+ 7+ D) PTE+r+ D)7
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o0

In fact, {Pr(a’ﬁ ) (x)} forms a complete orthonormal set in the weighted L2-space
r=0

L2 5(—1,1) = L*((—1,1); 1 — 2)*(1 + 2)°), i.e.
(Pr(aﬂ)7 quaﬁ))aﬂ = 57’,71 (T, n e Ng)

The derivatives of the Jacobi polynomials satisfy the identity

S BO(@) = a D P (@) () € No), (42)
where
Y2 (T 1+ )"
a(a,f)’)(r’j): (T) ( (OZ+6+T+ +])) 1/2 (jzo,l,...,T),
((r =2 (C(a+ B +r+1))
and a®?(r, j) = 0 if j > r. Furthermore,
F (PO @) @ (P (@)
Wt j oy () d (4.3)

dxi dxl

“1
ril(a+ B +r+1+)) :
- . 5Tn s 1y € Np).
(r—)Hla+pB+r+1) " (rym.j 0)

We remark that, equivalently, the Jacobi polynomials may be defined by

Pgam(x);:i("j;a)(r_ri) <I;1)k<m;1)n_k (neNy)  (4.4)

k=0

as in [10]. Up to the normalization constant kP these polynomials are identical

to the ones in (4.1). The connection can be seen by using the  F; —representation for

the Jacobi polynomials as in [46]. The set {Bga’ﬂ ) (x)} satisfies the orthogonality
n=0
relation
1
/P,g“’ﬁ)(:c)Pr(na’ﬁ)(x)(l —2)*(1 + x)’da
“1
22D+ o+ 1)D(n+ S +1)
C2nta+p+DI(nd+a+B+1n! ™"
for a, 5 > —1.
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The Rodrigues’ formula for the Jacobi polynomials (for z € (—1,1)) is

n

qua’ﬂ)(x) = (=2)""(n))" M1 —2) (1 + x)_ﬂ% [(1 —x)" (1 + x)"+6}

and many properties hold for arbitrary parameters a and [, but for integrability

purposes one is restricted to a, 3 > —1. The Jacobi polynomials satisfy the three-

term recurrence relation

nn+a+pB)2n+a+B—2)P(x)=2n+a+8-1)[(2n+a+ B)x
2n+a+ B —2)z+a® — 7] P () (4.5)

—2(n+a—1)(n+B—-1)(2n+a+B)PP ()

for n > 1.

We note that for « = g = —1, by Favard’s theorem, the full sequence of Jacobi
polynomials cannot be orthogonal on the real line with respect to an inner product
of the form [ f(x)g(x)dp, where p is a measure. This observation shall be the
starting poinf for the study of the Sobolev orthogonality of the Jacobi polynomials
for o = f = —1 in chapter 5.

A generating function for the Jacobi polynomials is

2RI —w+ R) 1+ w+ R =Y P()w"

n=0
where

R:= (1 - 2zw + w2

A differentiation formula is

2n+a+B)(1 - xZ)épr(La’ﬁ)(:ﬂ) =nla—B— (2n+a+ B)z] P*)(z)

or



and the sequence of derivatives also forms an orthogonal polynomial system.
Special cases of the Jacobi polynomials are the Legendre polynomials (o =
= 0), the Chebychev polynomials of the first kind (« = f = 1/2) and of the
second kind (o« = 8 = —1/2); in general, when o = 3, the Jacobi polynomials are
also called Gegenbauer or ultraspherical polynomials.

Useful identities include

and

l
(’Z) PO (g) = (” 7 p ) (%) P9 () (leN,1<1<n).

4.2 Combinatorics and Jacobi-Stirling Numbers

The key to constructing the left-definite spaces associated with the Jacobi
differential expression is to determine the integral composite powers I} 5[.] (n € N)
of the Jacobi differential expression. In [17], the authors show that the Jacobi-
Stirling numbers are closely connected to the explicit representation of the powers
Ly BH These results are purely algebraic and therefore hold for arbitrary parameters
« and . We shall apply these results in chapter 5 and 6 to construct the left-definite
spaces associated with the Jacobi expression for a = § = —1, so let us state the

following definitions and theorems from [17].

Theorem 4.1. Suppose k > 0 and n € N. For each m € Ny, the recurrence relations

m!l'(a+ B +m+1+7)
m— ) a+p+m+1)

(mm+a+B+1)+k)" = ch»a’ﬂ)(n, k)(
5=0
have a unique solution

(C[()a g (n7 k)? Cgaﬂ) (TL, k)7 e Cglaﬁ) (n7 k>) ’
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where each %

7 (n, k) is independent of m, given explicitly by

0 ifk=0
empy=] 0 T (1.6)
k" ifk >0
and, for j € {1,2,...,n},
P8 if k=0
C§'a76) (na k) = n—j ) ) (47)
> (M)PePSY ke if k>0

s=0

where each P@9SY) s positive and given by

wmuy_j gyl B+r+ Dl a+B8+2r+2)r(r+a+ S+ 1)]"
D e Ty i e iy By et

r=0

(4.8)
or each n € N and j € {1,2,....,n}. The number P(O“B)ST(Lj) 18 called the Jacobi-
f J

Stirling number of order (n,j) associated with (o, B). This definition is extended

by

P(a’B)SéO) =1
PASY =0 ifjeNand0<n<j—1

PP SO .— 0 forn € N.

a) Let £ > 0. For each n € N, the n'® composite power of the classical Ja-
cobi differential expression l, s[.] is Lagrange symmetrizable, with symmetry factor
Waps(t) = (1 —1)*(1 +¢)%, and it is given explicitly by

n

waala)(8) = (=17 (™ (n k)1 =" (1 + 1)y 1))

J=0

()

where cg»a’ﬁ )(n, k) is defined as in 4.6 and 4.7. Moreover, for p,q € P, the following
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identity is valid:

(o slpls Dap = [ 1o sxlP))7()wa,s(t)dt

S L~

1

o9 (n, 1) / P9 (07D (H)(1 — £)*(1 + 1)t
j=0 4

b) For every n € N, the bilinear form (., .)%a’ﬁ ) defined on P x P by

1
n

.0 = &) [0 - 000 (e P)

Jj=0 —1

is an inner product when k£ > 0, and, for each k£ > 0,

(12 5 4lP) Qs = (0, ) (p,q € P).

c) For each k > 0, the Jacobi polynomials {Pﬁla’ﬁ )} are orthogonal with respect
m=0
to (., )\

(P, PO = (mlm+ o+ 5+1) + KO

4.8  Right-Definite Spectral Analysis
Here we shall briefly state the operator-theoretic properties of the classical
Jacobi differential expression [, g[.] as found in [17] and references therein.

The maximal domain A©# of [, 4[] in L2 5(—1,1) is given by
A(aﬁ) = {f € LZ,,B(_L ]-) }fv f, S ACloc(_17 1)9 laﬂ[-f] S Li,ﬁ(_L 1) } :

Note that A(®#) is a dense vector subspace of Li, 6(_17 1) since it contains the space

of all polynomials P. The maximal operator T\wy’ generated by lq 5] in L2 5(—1,1)

is then defined by

TP (f) = lagslf]

D (T2P) == Al
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min

TP = (Ted)" .

min max

The minimal operator is closed, symmetric, and satisfies

<T(a’5)> * _ T(a,/j)'

min max

The minimal operator 7, (25) ig defined as the Hilbert space adjoint of 7; {oB)

ax

The deficiency index d (T(a’ﬁ )> of T'*? depends on the values of a and 3 and is

given by
(0,0) ifa,B>1
d (Téﬁf)) ={ (1,1) ifa>landfe(~1,1)or > 1and a e (—1,1)

(272) if aaﬁ € (_171)

By the von-Neumann theory of self-adjoint extensions of symmetric operators [12],

T(ang)

min

self-adjoint extension when «, 8 > 1 since the deficiency index is (0, 0).

has self-adjoint extensions in Lgéﬁ(—l, 1) for all a, 8 > —1. There is a unique

The singular endpoints x = £1 of the Lagrange symmetric differential expres-

sion we gla,s[-] satisfy the following limit-point/limit-circle criteria in L7 5(—1,1) :

(i) the endpoint x = +1 is limit-point if & > 1;if -1 < a < 0, x

regular, and if 0 < o < 1, z = +1 is limit-circle, non-oscillatory;

(ii) the endpoint x = —1 is limit-point if § > 1;if -1 < f < 0, x

regular, and if 0 < 8 < 1, x = —1 is limit-circle, non-oscillatory.
From the Glazman-Krein-Naimark theory [2],[43], the operator

A D (AP C L2 4(—1,1) — L2 5(—1,1)

ACA(f) = laplf]
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where D (A(O"ﬁ)) =

p

Ah) if o, 5 >1
{feA(aﬁ lim (1 — 2)* f/(z) = } if o] <1and 8> 1
f e Alh) Ilin_ll(l + x)PHf(z) = 0} if |f|<landa>1
\ feAh) lim (1 —2)°"H(1 + x) FrLfi(z) = o} if —1<a,B<1.

is self-adjoint in L2 5(=1,1). The Jacobi polynomials {Péo‘ﬁ )} form a complete
’ n=0

set of eigenfunctions of A% in Liﬂ(—l, 1), and the spectrum of A#) is given by
o (A“P)={n(n+a+pB+1)+klneNy}.

In particular,

o (A(O"ﬁ)) C [k,00),

implying that A is bounded below by kI in L2 4,(—1,1), i.e

(ACDF ),y 2 K s (€D (42)).

Consequently, the left-definite theory can be applied to this self-adjoint operator.

For f,g € D (A(a’ﬁ)) , we have the well-known Dirichlet-identity for A%

1

(AP fg) = / los F1(@)T@(1 — 2)*(1 + 2)Pd

/{ a—l—l 1 + ZE)B—Hf (ZL’)?I(I) (49)

+k(1 —2)*(1+2)° f(2)g(2) } d
as a consequence of the strong limit-point condition on the domain D (A(aﬂ)) :

lim (1—2)*™ (1 +2)" f(2)7(z) =0 (f,g€D(A>)).

z—=+1
Note that Dirichlet’s identity holds on D (A(O"B)) , and not in general on the maximal

domain A(®#) Furthermore, when k& > 0, the right-hand side of 4.9 satisfies the
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conditions of an inner product. We define the inner product (-, -)go"ﬁ )on D (A(aﬂ)) X
D (AP by

(190 = [{(1=2)" (14 2)* (@) (o) + b1 = (1 + ) f@)g(a)} do

for all f,g € D (A(Q’B)) . The authors extend this inner product to the set Vl(a’ﬁ )
V") where V;* is the first left-definite space associated with (L2 5(—1,1), AlR))
The inner product (-, -)ga’ﬂ ) is called the first left-definite inner product in the liter-

ature.

4.4 Left-Definite Spectral Analysis
This section will give a summary of the left-definite results by Everitt, Kwon,
Littlejohn, Wellman and Yoon [17]. In the following, we shall write
L2 5(-1,1):=L* ((-1,1); (1 — 2)*(1 + 2)”) .
Definition 4.1. Let k£ > 0. For each n € N, define
loc

vﬂ(a,,@) = {f(—].,l)—>(C|f€AO(n 1)( 1,1);f()€La+j,3+]( 1,1),]':0,1,...,71}

and let (., .)%a’ﬁ ) and ||.H(a’ﬁ ) denote the inner product

f,”“iﬁwwk/f DA-0" A+ (fg e Vi),
and the norm ||f|| (2,5) = ((f, f)(a )1/2, where the numbers cg-a’ﬁ)(n, k) are defined
as in 4.6 and 4.7. Let

WT(L(,DIQB)(_]-? 1) = (Véa’ﬂ)u ('7 ')gLaﬁ)>'

Note that, from the non-negativity of each of the numbers cg-a’ﬁ ) (n, k), j =

0,1,...,n, we have

2 n ,
(1717) = 220D 1,

> k) [ F9)2, (j=0,1,...,n; f € V@),
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In particular, if j = 0, we see that

(f- P = KM(f, fas (f € WD (~1,1)),

so the left-definite theory can be applied.

Theorem 4.2. Let k > 0. For each n € N, Wéi’ﬁ)(—l, 1) is a Hilbert space.

o0

Theorem 4.3. Let k > 0. The Jacobi polynomials {PT(LO"B)(:C)} form a complete

n=0

orthogonal set in the space Wéojf )(—1, 1). Equivalently, the space P of polynomials

. . a8
is dense in Wék )(—1, 1).
We are now ready to state the main result in [17].

Theorem 4.4. For k > 0, let

A . p (Al(:z,ﬁ)) C L2 5(—1,1) — L2 4(—1,1)

[e.o]

be the Jacobi self-adjoint operator having the Jacobi polynomials {PTS?’B)} as

m=0

eigenfunctions. For each n € N, let

V(s . {f (~=1,1) — C ‘f e A0, £0) ¢ 2 y(=1,1),5 =0, ,n}

n loc (a+3,8+5

and

. 1
(fo = #w%um/?@wﬁwwu—wwuruWﬂﬁ (f.g € V@),
=0 J,
Then Wﬂg,czﬁ)(_L 1):= <Vn(a”8)a () ‘)S}éﬁ)> is the n'" left-definite space associated with

[e o]

<L(21”8(—1, 1),A§f”8)>. Moreover, the Jacobi polynomials {ana’ﬁ)} form a com-

m=0

plete orthogonal set in each Wéo;f )(—1, 1), and they satisfy the orthogonality relation

(Pl AP = (m(m = 1) + 8"

m

Furthermore, define



by
BiPr=1f)  (rep(BY) =vie)).
Then BS,;B) is the n'" left-definite operator associated with (Li”@(—l, 1),A,(Ca’6)>.

Lastly, the spectrum of Bﬁf ) is given by

I

o)

and the Jacobi polynomials {P&a”g )} form a complete set of eigenfunctions of

m=0

each BT(:Y,;’B ),
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CHAPTER FIVE

Spectral Analysis of the Jacobi Differential Equation (o, 5 = —1)

The art of doing mathematics consists in finding that special case which contains all

the seeds of generality.

- David Hilbert

In this chapter, the Jacobi differential equation will be considered for the non-
classical parameters o = = —1. The authors in [17] study the Jacobi differential
equation for classical parameters (o, 5 > —1) and develop the left-definite spectral
analysis associated with the self-adjoint Jacobi operator which has the full sequence
of Jacobi polynomials as a complete set of eigenfunctions. Note that, for non-classical
parameters, the full sequence of Jacobi polynomials cannot be orthogonal on R with
respect to any bilinear form of type (f,g), = [ fgdu, for some positive or signed
measure £; this is an application of Favard’s thefrem (see [10]). However, it is known
that the Jacobi polynomials for parameters o = f = —1 are orthogonal with respect

to a Sobolev inner product [35],

6(£,9) = 5 (-D3(-1) + 3/ + [ £ @)da,

that is to say,
¢ (P,E‘L_l), p(—1,—1)) = S (n,m € Ny).

m

This observation is the starting point for this work, and a proof is included below
(see theorem 5.3). It is a natural question to ask if there exists a self-adjoint operator
in a certain Hilbert space which is equipped with this Sobolev inner product that has
the full sequence of Jacobi polynomials as a complete set of eigenfunctions. Here,
this question will be answered in the affirmative; the self-adjoint operator and its

domain will be constructed at the end of this chapter. The left-definite spectral
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analysis will play a key role in this construction. These results will be extended to

the more general case of parameters &« > —1,3 = —1 in the next chapter. Let us

begin by establishing some (right-definite) spectral results for the Jacobi differential

equation for non-classical parameters.

5.1 Right-Definite Spectral Analysis

For a = g = —1, the Jacobi differential expression reduces to

Ly alil(@) = (1= 2%) (~(/ @) + k(1 — %) y(a)
for x € (—1,1) and where k£ > 0 is a constant. For brevity, let us define
L) (-1,1):=L*((-1,1);(1 —2*)7"),
and, more generally,
L2 5(—1,1) == L* ((—=1,1); (1 — 2)*(1 + 2)°)..
The maximal domain associated with [_y 4[] in L?; ;(—1,1) is
A={f:(-1,1) — C|f, [ € ACiue(-1,1); fU[f] € L2, _;(~1,1)}.

For f,g € A and [a,b] C (—1,1), we have Dirichlet’s formula:

/l—l,_l[f](af)?(fv)(l — %) e = — f'(2)g(2) |,

and Green’s formula:

b
/l—1,—1[f] (2)g(2)(1 = 2®) " da = [f(2)g (x) = f'(2)g(2)] |,

(5.1)

(5.2)



Dirichlet’s formula for a« — —1,b0 — 1 is a key result in constructing the left-
definite inner products and in establishing that the (right-definite) self-adjoint op-
erator from the GKN theory is bounded below for the left-definite theory to apply.
Green’s formula in turn shows that this operator is indeed Hermitian if the inte-
grated out terms vanish as a — —1,b — 1. However, initially there is no reason
to expect f f'(x)g'(z)dx to be finite or the integrated out terms to vanish in the

limit as @ — —1,b — 1. Thus we shall prove the following result.

Theorem 5.1. The Jacobi differential expression (5.1) is strong limit-point (SLP)

and Dirichlet at x = +1, i.e.
1 0
(i) (Dirichlet) [ |f/(t)|*dt < oo and [ |f'(t)]>dt < oo for all f € A and
0 “1

(ii) (SLP) lim f'(x)g(z) =0 for all f,g € A.

rz—=+1

Note that strong limit-point implies that the Jacobi expression is in the limit-point
condition in the sense of Weyl’s second theorem.
The proof is via the following three lemmas. We begin by rewriting the maxi-

mal domain as

f
A=<f:(-1,1 C|f, [ € ACi(—1,1); —=—=,V1 — 22" € L*(—1,1
{£:c10—cins cacum-L Lo vimape e
and by recalling a result by Chisholm and Everitt, [8], [9].
Theorem 5.2. (Chisholm-FEveritt) Let (a,b) C R, ¢ € (a,b), and assume that
p € L*(a,c)
Y € L*(c,b).

Define the two linear operators

S, T : L*(a,b) — L} (a,b)
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a

Then S and T are bounded operators into L*(a,b) if and only if there exists K > 0

such that ,
/|g0(x)|2dx~/|w(x)|2dx <K Vre(ab).
Lemma 5.1 (Dirichlet). f' € L?(—1,1) Vf € A. In particular, f € AC[—1,1].

Proof. Write
Flz) = £(0) + / % V_l;tzdt (z € [0,1)) (5.3)

and apply Chisholm-Everitt with ¢(z) =1 and ¢ (x) = \/1;_7 Since

/w <ﬁ/ (1)t = 5 (1~ ) (1)

— X

is bounded on [0,1), we see that ff \/—‘lt dt € L?[0,1). Hence, f' € L*0,1).

Similarly, f' € L*(—1,0). [
Lemma 5.2. f(£1) =0 for all f € A.

Proof. Note that from the previous lemma, f € AC[—1, 1] and thus we may define

f(£1) == lim f(x),

r—=+1
and the limits exist and are finite. First let us consider f(1) and suppose that
f(1) # 0. Without loss of generality, we may assume that f(1) > 0. By continuity,

there exists 2* € (0,1) such that

f(z) > fT for z € [z*,1).
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Then

szt /|f_ " ”)2/11522200’

T*

a contradiction. A similar argument shows that f(—1) = 0. O

Lemma 5.3 (Strong limit-point). lim f(z)g¢' (x) =0 for all f,g € A.

rz—1-

Proof. Let f,g € A, and assume that f, g are both real-valued. Note that \/1]:7

and v/1 — z2¢” € L*(—1,1), which implies fg” € L'(—1,1). Now

/ F(0)g" (1)t = F(1)g'(2) | — / F(6) (1)t

By our first lemma, lim [ f'(¢)¢'(¢)dt exists and is finite. Since lim f f(t)g"(t)dt
r—1— 0

r—1—

exists and is finite, we see that lim f(x)¢'(x) exists and is finite. We w111 now show

r—1—

that necessarily lim f(z)¢'(x) = 0 for all f,g € A. Suppose that lim f(x)¢'(z) =

r—1— r—1—

¢ > 0; we may assume that, for x close to 1,

f(z) > 0and ¢'(z) > 0.

Hence, there exists z* € [0, 1) such that ¢'(z) > f(gm) [z*,1), where ¢ = £ > 0.
Therefore,
_|f'(z)]
[z >c x € [z*,1)).
|f'(2)g (2)] e (z € 2", 1))

Integrate to obtain

/!f ()] dt > 7 /'ffdt /;;((:)) — Zln f(z)] + k.

Now let x — 17; from lemma 5.1,

oo>/|f |dt>k+chm IIn f(z)| = o0

a contradiction by the second lemma. It can be shown in a similar fashion that the

Jacobi differential expression (for «, 5 = —1) is strong limit-point at x = —1. O

39



This completes the proof of the theorem, i.e. the Jacobi differential expression (for
a, 3 = —1) is both strong limit-point and Dirichlet at x = £1 on A.

We now define the operator

A:D(A)C L2, (-1,1) — L2, _;(~1,1)

Af =111lf]
feD(A) = A.

By the Glazman-Krein-Naimark theory, since x = 41 are SLP (in fact, all
that is necessary is that z = +1 are LP), A is self-adjoint (and, in fact, is the same
as the minimal or the maximal operator generated by [_y 4[] in L?, _,(—1,1)).

By our theorem, we have Green’s formula,

1

(A, Q)Lzl,fl(—m) = /l—l,—l[f] (2)g(z)(1 — 2*) " da = (f, Ag)Lil,,l(—l,l)

“1
(i.e. A is Hermitian), and Dirichlet’s formula,

1

(Af.9)i2, (o= / [F(@)7 (2) + k(1 — ) (27 ()] dx = (£,g),

-1
and we will see that this is the first left-definite inner product generated from {_; _;[-].

Note, in particular, that

1

(Af> f)L2_17_1(_171) = / [|f’(l')|2 —+ ]‘{7(1 — $2)_1 |f(l‘>|2 dx

-1

>k (fa f)Lilﬁl(_m)

i.e. Ais bounded below in L?; ;(—1,1) by kI, so that the left-definite theory can

be applied.
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5.2 Completeness Results

For a« = 8 = —1, we note again that the Jacobi differential equation is given by
—(1 =2y +ky =Ny (5.4)

where we now assume that £ > 0 and = € (—1,1). We shall study the second-
order differential equation I_; _4[y] = Ay, where [_; _;[-] is as in (5.1), and the initial

Hilbert space setting is L?, ;(—1,1) as defined in (5.2).

Based on the (equivalent) definitions of the Jacobi polynomials in (4.1) and

(4.4), we define the Jacobi polynomials for o = § = —1 as

£ (7)) ()

We see immediately that there is degeneracy for the polynomial of degree 1 :

Po(_l’_l)(x) = 1 and Pl(_l’_l)(x) = 0. However, it is important to note that any
first degree polynomial will be a solution of equation (5.4). Therefore, we redefine

Pl(_l’_l)(x) and normalize the sequence of Jacobi polynomials as follows:

Definition 5.1. Define the Jacobi polynomials for « = § = —1 as

Po(_l’_l)(x) =1

and, for n > 2,

o (B () (5 ()

With this definition of the Jacobi polynomials, it is the case that {PT(L_I’_U}
n=2

forms a complete orthonormal set in L* ((—1,1); (1 — 2?)7!), that is to say,

(PP ) = G (> 2),

see lemma 5.6.
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For the remainder of this chapter, we shall write qu_l’_l)(:v) to mean the n'*
Jacobi polynomial normalized as in the definition above.

To show that the Jacobi polynomials are orthonormal with respect to a Sobolev
inner product, we renormalize the Jacobi polynomials as follows for our next two

results:

Definition 5.2. Define the Jacobi polynomials for a = f = —1 as

Pt D) =1 (5.5)
PO () = 5.6
and, for n > 2,
1 n . n—i
ﬁ(—l,—n(x) . (2n —1)2 n—1\/n-1\ (z—-1\ [z+1 ].
" 2-1/2 <n_1)j:0 n—j J 2 2
Lemma 5.4. Forn > 2,
D(—1,-1) _ 2 1\ pL1)
Iy () = fin(2” = 1) P, 25 (x) (5.7)

where

Proof. Note that

Now,

Aot = gy 3 () (D e e

i—o N/

N|=

(2n —1)

s S (N (e,

since (”;1) = 0. Shifting the index from j to j + 1 yields

Pyt () = 2,1(_2172—@1)_1)2_2 (;: 11) (n :i 1) (x = 1) (@ + 1),
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Note that (nﬁ;il) = ("J_.l), and ("_1) = (nﬁ_l ) to obtain

j+1 2-j
2n—1)7 &3 1 1
Pl () — T )7 n- n- _qyni-1 1)+
(@) 2n1/2<n_1>; P | PP [ i R
21/2(2n — 1)1/2 ~

(@ - 127 P (),

which agrees with (5.7) if we choose

21/2(2n o 1)1/2
Ky =
4(n—1)

]

We shall use this lemma to prove that the Jacobi polynomials for a« = § = —1 are

orthonormal with respect to a Sobolev inner product.

Theorem 5.3. The Jacobi polynomials {ﬁg_l’_l)(x)}oo as given in (5.6), are ortho-

normal with respect to the Sobolev inner product

6(£,9) == 3 (=Dg(-1) + 35V + [ £ (@) (a)da,

i.€.
6 (B0, P ) = (n,m € Ny).
Proof. A calculation shows that
o (B0 A YY) o (B ) -,

Forn=0,m=1,

o (B0, B o,
Let n =0,m > 2, and use lemma 5.4 to see that

é <ﬁ0(71,71)’ ﬁ;ﬂ—l,—l)) —0
and

é (131(71,71), 157(51,71)) —0.
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For n,m > 2,

o (P, P

1~ =_1_-1 ~ =1_-1
1,—1)) _ §P7(L_L_1)(—1>P7§z 1, 1)(—1)+—P(_1’_1)(1)P,$1 1, 1)(1)
1

- I = /
+ / (B 9@) (BT w) da.
“1
~ !/
The first two summands vanish by the previous lemma. Note that (P,Sfl’fl)) re-

duces to a Legendre polynomial (that is, « = 8 = 0, and the n'* Legendre polynomial

is denoted by P,(z)) by the following well known identity (see [10] page 149)

(@) = 30— 1Pa(e)

d ~ 1 ~
— p=1-1) — Z(m — (
SR (@) = S(n - )P

so that

21/2(2n . 1)1/2 21/2<2m o 1)1/2
N n—1 m—1

m

& (13;;1,71)7 ﬁ(71,71)>

] =

X

(n—1)(m —1) / B (2) By (2)da

From the theory of classical orthogonal polynomials, it is well known that the
Jacobi polynomials for & = 3 = 1 are dense in a weighted L?—space:

[e.o]

Lemma 5.5. The sequence {Pél’l)(x)} forms a complete orthogonal set in the

n=0

Hilbert space L? ((—1,1); (1 — 2?%)) .
We shall use this lemma to establish the following result.

Lemma 5.6. The sequence {Péfl’fl)(x)} forms a complete orthogonal set in the

n=2

Hilbert space L? ((—1,1); (1 — 2*)71).
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Equivalently, the set of all polynomials P_i[—1,1] of degree > 2 satisfy-
ing p(+1) = 0 is dense in L?((—1,1);(1 —z*)~!). These statements are equiva-
lent because a complete orthogonal set is dense, and by lemma 5.4, they satisfy
p(£1) = 0. Moreover, the Jacobi polynomials {P,g_l’_l)(x)}:2 form a complete
orthonormal set in L2 ((—1,1); (1 — 22)~!) . In fact, for each j € Ny, the Jacobi poly-
nomials {PT(Lj —hd _1)(x)}0O form a complete orthonormal set in the Hilbert space

n=2

Lgfl,jfl(_la 1).

Proof. Note that

1 1

J1r@F @ =ty tan = [0 -a) @) 0 - e

—1 —1
ie. fel2((-1,1);1—2)"1) <= (1—2*)"1feL?((-1,1);(1—2%), and in
this case,
_ 2\—1
||fHL2((—l,1);(1—362)_1) - H(]' - ) fHLQ((—l,l);(l—:cz)) ’

Let f € L*((—1,1); (1 —2*)7'), and let € > 0. Hence
(1 - $2>_1f S L? ((_]—’ 1)7 (1 - 5(32)) )
so by lemma 5.5, there exists ¢ € P[—1, 1] such that

11 =27 = al| o Ly ayaary < €

)

Let p(x) := (1 — 2%)q(x). Then p is a polynomial of degree > 2, and we may write

q(z) = (1 — 2?)"'p(x). Hence

e>[[(1—2)71f = (1 - $2)71p"L2((—1,1);(1—12))
= H(l - $2)_1(f - p)HL2((—1,1);(1—x2))
= If = plla(1aya-en-1)

which completes the proof of the lemma. ]
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5.8  Left-Definite Spectral Analysis
Definition 5.3. For each n € N, define

L (),

where
V= L) e e A0V 69
) e r? ((_17 1);(1— x2)j_1),j =0,1, ..,n}
and

(195 = e k) [ £ @)1 - ) o

We shall show that W )( 1,1) is the n'" left-definite space associated with

k:
the pair (L2 (=1,1): (1 —22)"1); A 1’—”) .
Theorem 5.4. Let k > 0. For each n € N, W b 1)( 1,1) is a Hilbert space.

Proof. Let n € N, and let {f,,} ~_, be a Cauchy sequence in W( b7U(-1,1). Then,

since the numbers cg_l’_l)(n, k) >0,

n

(1= £S5 = 30670000 29 = £,y

0

> 07(;1’71)(”, k) Hf?gy) - frgn)Hflfxz)"_l (59)

.

SO { 7(7?)} is a Cauchy sequence in L*((—1,1); (1 — 2?)""!), and hence there
m=1

exists a g1 € L2 ((—1,1); (1 — 2%)"1) such that
o g (5.10)

in L? ((—1,1); (1 — 2*)" ') as m — oo. In particular, g,,.1 € L}, .(—1,1) : fix t, ¢y €

(—1,1) such that ty < ¢. Then, by Holder’s inequality,

t t

/ |15 () = o ()| du = / | £ (1) = g ()] (1 — u2)@=D/2(1 — 2)=0=D/2g
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/f u)du — /gn+1 (5.11)

as m — oo. Now, since fi " € AC)(—1,1), we can integrate in (5.11):
$oD () - / 75 (u)tu — / gui(u (512)

Also, from (5.9), it follows that {féffl)} is Cauchy in L? ((—1,1); (1 — 2*)"2).

m=1

Hence, there exists a g, € L? ((—1,1); (1 — 2?)"~2) such that
fysf?_l) — On

in L2 ((=1,1); (1 — 2%)"7?).

Repeating the above argument, we see that ¢, € L}, (—1,1), and, for ¢,¢, € (—1,1),

t t
£ = 5570w = [ 1 — [g@a. 613
t1 t1
By the Riesz-Fischer theorem, there exists a subsequence { fﬁ?,;l) }OO of { fr(r? b }OO
m=1 m=1

such that
fy(;:;il)(t) - gn(t)

for a.e. t € (—1,1). Choose ty € (—1,1) in (5.12) such that fln= 1)(150) — gn(to) and

then pass through the subsequence in (5.12) to obtain

t

gAﬂ—gAm%—/ﬁwmwmt

to
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for a.e. t € (—1,1). This is to say that g, € ACj,.(—1,1), and

9 (t) = gnya(t)

for a.e. t € (—1,1). Again, from (5.9), we see that {ﬁg’fd)} is Cauchy in
m=1

L?((—1,1); (1 — z*)"3) , implying that there exists a g, 1 € L*((—1,1); (1 — z?)"73)

such that

f’r(?;z—?) — gn—-1

in L2 ((—1,1); (1 — 2?)"3) . Moreover, for any t,t, € (—1,1),
t

FO () — fO(ty) = / £ (u)du — / gn-1(u)du

o0

and there exists a subsequence { f,g?,:m} of { ff,f _2)} such that
m=1

m=1

fa () — gar(t)

for a.e. t € (—1,1). In (5.13), choose t; such that fT(rZ:Q)(tl) — gn_1(t1) and then

pass through the subsequence in (5.13) to get

t

Gur (1) — gur () = / (1) dus

t1

for a.e. t € (—1,1),i.e. g1 € ACZ(OIC)(—I, 1), and

Ina(t) = g (t) = gnya(t)

for a.e. ¢t € (—1,1). Continuing in this manner, we obtain n + 1 functions g¢,_;+1 €

L2 ((—=1,1); (1 — 2?)" 1) for j = 0,1,...,n such that
(]‘) T(’:L_]) — n—j+1 in L2 (<_1’ 1)’ (1 - x2)n7j71) ) for .] - 07 17 cees
(2) g1 € ACT D (=1,1), g € ACT P (=1,1), ..., gn € ACi0e(—1,1)

(3) gn_j(t) =g _ja1(t) forae te(=1,1),j=0,1,...,n—1
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(4) QY) =0j+1, 7 =0,1,...,n.

In particular,

f — g

in L2 ((=1,1); (1 — 22}~ for j = 0,1,...,n and g; € V;\ """ Hence,

1
2 n , : 2 ,
(I =0l 57) = S0ty [ |19 = o @] (1= a2y
Jj=0 —1
" NP
_ (-1,-1) G _ )
= ch (n, k) Hfm 91 (1_z2)i-1 —0
7=0
as m — 00, i.e. Wé;cl’*l)(—l, 1) is complete. O

Definition 5.4. Wy :={f : [-1,1] — C | f € AC' [-1,1]; f € L*(—1,1)}
Lemma 5.7. Vl(_l’_l) CWip={feW|f(£l)=0}.

Proof. Let [ € ‘/1(71,71)' In particular, f € ACj(—1,1) and f" € L*(—1,1), so
flel'(—1,1). For 0 <x <1,

and

]f’(t)dt — /1f’(t)dt

which implies that lim f(x) exists and is finite. Similarly, lim+ f(z) exists and is
z—1- r——1

finite. Define
f(£1):= L f
( ) IHIEJF (37),

so f € AC' [—1,1]. It suffices to show that f(£1) = 0. Suppose that f(1) # 0. Hence,

for some ¢ > 0, there exists 0 < § < 1 such that

[f(2)] = ¢>0
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for all z € [,1]. Since f € L?((—1,1); (1 — 2*)71), we see that
1
00 > / |f(@)] (1 —2®)tda

0
)

> / F@) (1 = 22z > & /6(1 — %)y = o0,

0

a contradiction. Hence, f(1) = 0, and, similarly, f(—1) =0, so f € Wy;. H

Theorem 5.5. The Jacobi polynomaials {P - 71)} form a complete orthogonal set
m=2
in the first left-definite space Wl’zl’fl)(—l, 1).

Proof. Let f € I/V1 k ( 1,1), so f' € L*(—1,1). Since the Legendre polynomials

{P,}>_, are complete and orthonormal in L*(—1,1), we know
Zc p, — f' asr— oo in L*(—1,1)

(_17_1)

where ¢,, ;7 are the Fourier coefficients given by

1—1) /f

Note that céjll’*l) = 0 by lemma 5.7. For r > 1 define

r (-1,-1)

pr(t) " Z (m(i:__Lll))l/QPT(n b _1)( )

m=2

Then

(-1,-1) r

P = Y o g mlm = 1) PP (6) = 32 2 P (),

m=2 m=2

<

since

d 11y _ 1/2
P I(E) = (m(m — 1) P (8).

Shifting the index of summation from m to m — 1 yields

r—1
pl(t) = Z 1_I)P — ' asr— oo in L*(—1,1).

m=1

50



Furthermore, by Riesz-Fischer, there exists a subsequence { p'Tj} of {p..} such that
/ !
p,, — [ forae te(-1,1). (5.14)
Since, by Dirichlet’s test (see [4]), the sequence

(71’71)
Cm—l,l c 62
(m(m—1))"*]

and {Py(n_l’_l)} is complete in L? ((—1,1); (1 — %) 1), we see that there exists a

m=2

g€ L?((—1,1); (1 — 2*)7) such that
pr—g inL?((=1,1);(1—2%)"" asr — oo. (5.15)

From (5.14), we see that, for a,t € (—1,1),

t

/@;WMu—ajfwmm

a

Now integrate both sides to obtain
pr;(t) = f(t) +c forae te(-1,1),

implying that

git)=f(t)+c forae te(—1,1)

by (5.15). Define 7,.(t) := p,.(t) — c¢. Then
1

nf—mmﬁhn:/{uw»~ﬁwf+ka—RVWﬂw—muW}ﬁ

= [{1r® = sOF + K1 = 27 70 = pr(0) + o} e

-1

— 0

as r — 00, i.e. the Jacobi polynomials {Pf(n_l’_l)} are complete in the first
m=2

left-definite space Wl(;’_l)(—l, 1). O

o1



In the next theorem, we generalize this result and prove that in fact the Jacobi
polynomials {R(n_l’_l)} form a complete orthogonal set in each left-definite space
m=2

Wi (-1,1), n e N,

Theorem 5.6. The Jacobi polynomzals {P 1)} form a complete orthogonal set
m=2
in each left-definite space W ( 1,1), n € N.

Proof. Fixn € N, and let f e W ,""V(=1,1), s0 f™ € L?((—1,1); (1 — 2?)" ).

Since {P(" b 1)} is complete and orthonormal in L? ((—1,1); (1 — 22?)" 1), we

m=0

know

m

Z L pln=tn=l) st asr — 00 in L2 ((—1,1); (1 — 2®)" ) (5.16)

—1.-1 . . .
where cﬁnm’ ) are the Fourier coefficients given by

1
C( 171 /f (n—1,n— 1)(t)<1_t2>nfldt

For r > n define
Gt (m =) (m - 2))"”

pt):= Y Tmeme

m=max{2,n} (ml)l/Z ((m +n— 2)‘)1/2

From the differentiation formula (4.2),

& (m))? ((m + j — 2))*/? (—1,j—1)
_pL=1) ) = Py ,
) oy

we see that, for j =0,1,....n

r (-1,—1) 1/2 . 1/2
j Cr—n,n ((m—=n))"" ((m+j—2)" j—1,j—1
0= 2 e gy

m=max{2,n}

In particular, by (5.16),
LRI S sl
m=max{2,n}
r—max{2,n}

_ Z Cl(nl —1)P(n 1,n—1)

=0
s

CT(WIAL_I)P(” Ln=l) (W a5 5 — 0o in L2 ((=1,1); (1 —2*)"1).

m=0
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Furthermore, by Riesz-Fischer, there exists a subsequence {pgl)} of {pﬁn)} such
that

pﬁ?) — f™  forae. te(—1,1).

From Dirichlet’s test, the sequence

{é;;?wn—mwﬂ«m+j—mwﬂ}eﬁ

((m+n—2))"7 ((m — )7

so there exists a g; € L? ((—1,1); (1 — 2%)?~!) such that

P gy (L1, (5.17)

For a.e. a,t € (—1,1),
t t
[ — [ 5w

Integrate both sides and obtain

pHE) — fOVt) 4 ¢ forae. te(—1,1) (5.18)

i
for some constant ¢;. Passing through the subsequence implies
Gna(t) = fO V(@) 4, forae te(—1,1).

From (5.18), we see that

t t

t
[ dn — [ 100 du e, [ au

a a

i.e.

Ut — [P + et 4o forae te(—1,1)
or

Gn2(t) = fO D)+ it +¢  forae te(—1,1).

Continue this process to see that for j € {0,1,...,n — 1},

9;(t) = fO) + gujr1 forae te(-1,1),
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where ¢,,—;_; is a polynomial of degree <n — j — 1 and
/
4p—j—1 = Gn—j—2-
Hence, from (5.17),
P — [0 g, in L2 ((=1,1); (1 — 2?71 (5.19)

For r > n, define

in L? ((—1,1); (1 — 2%)’~1). Now,

2 .
(I = mell ™) = ( L /\f 0= (1 -2y td—0
as r — 00. [

The following lemma should be for n > 2 !!

Lemma 5.8. For p,q € P,

(poa) " ((A( 1_1> p,q) )

Proof. First we note that this may be restated as
1
[

=0

(1" _4[p ", z)g(x)w_y 1 (x)dx

A, k)pD (2) gD () (1 — ) (1 + 2) e, (5.20)

J

.

Since the Jacobi polynomials form a basis for P, it suffices to prove (5.20) for p =

P Y and q= PV for arbitrary m,r € Ny. From

1%y [P V](@) = (m(m = 1) + k)" P V(@) (m € No)
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and

(Pr(_l’_l)7 Pr(n_l’_l))_1 = 5T,m (7", m e No),

the left-hand side of (5.20) becomes
1

(AP = [ P @) P @ (0)da

-1

= (m(m —1) + k)"0 m. (5.21)

Upon using (4.3) for &« = f = —1 and the recurrence relation for the cg-_l’_l)(n, k),

that is,

(m(m = 1)+ k)" =3 D (i, k) (:L!(_W; )+'(;7n —_2;!) !

the right-hand side of (5.20) becomes

n

> k) (@) ) (B0@) (@)1= a0+ 0

ml(m + j — 2)!
(m — j)(m —2)!

Orm (5.22)
= (m(m —1) + k)"0 m.

Comparing (5.21) and (5.22) completes the proof of the lemma. O

Theorem 5.7. For k > 0, let

AT D (AT € L2 (1L (1 - )7 o 2 (1,1 (1= 2%) )

be the Jacobi self-adjoint operator having the Jacobi polynomials {Pgl’*l)} as

m=2

eigenfunctions as discussed in section 5.1. For each n € N, let

loc

Vn(fl’fl) = {f (-1,1) —C|fe AC(nfl)(—l, 1);
fP el ((-1,1);(1—=2*""),j=0,1,.,n}

and

1
n

(f, g);jkL—l) — c§-_1’_1)(n; k) / f(j)(a:)g(j)(m)(l o I2)j—1dm‘
=0 7
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Then Wé;gl’_l)(—l,l) = <V7f_1’_1), (-,-)2?,{1’_1)) is the n'" left-definite space asso-

ciated with <L2 ((—1,1);(1 — x2)_1),A§€_1’_1)>. Moreover, the Jacobi polynomials

{P&_l’_l)} form a complete orthogonal set in each Wé_kl’_l)(—l, 1), and they
m=2 ’

satisfy the orthogonality relation

Furthermore, define

Bf;kl’_l) =D (B ) cwl V(=11 — wi Y (-1,

n

by
BV =1 [f] ( feD (Bfl;}’_l)) — vn(;;"”) .
Then Bf&:’*l) is the n'" left-definite operator associated with the pair
(L%L,l(—l, 1), Agfl’*l)) Lastly, the spectrum of 37(1;1,71) s given by
o (BGET) = {mlm = 1)+ k |m € No} = o{A{ ),

o0

and the Jacobi polynomials {P&_l’_l)} form a complete set of eigenfunctions of
m=2

each Bf;kl’_l).

Proof. Let n € N. We need to show that WT(LTkl’fl)( —1, 1) satisfies the five properties

given in definition 3.1.
(1) WT(L;{l’_l)(—l, 1) is a Hilbert space (see theorem 5.4).

(ii) We need to show: D <(A,(;1’71)>n) C Wé;ﬁl’fl)(—l, 1).

Let f €D <<A,(€_17_1))n). Since the Jacobi polynomials {Pﬁfl’_l)}m form

m=2

a complete orthonormal set in L? ((—1,1); (1 — 22)™"), we see that

pj— L2 ((=1,1);(1—2?) ) as j — oo (5.23)
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where

Y = (f, PEY) /f LD (1 - t2)*1 dt  (m € N).
Since (A,i_l’_l)>n FeL2((—1,1);(1—22)"), we see that

AP — (AT) i (1) (- %))

m=0

as j — 00, where

E<m—1,—1) — ((Al(;l,fl))"ﬁ Pﬁfl’_l)>_1,_1 = <f, <A;(€1,1)>nP7$:1,—1)>_17_1
=(m(m—-1)+k)" (f7 Prgq_l’_l))—L—l

= (mlm — 1)+ Kyl
ie.
(A,i_l’_l))npj — (A,i_l’_l))nf in L? ((—=1,1); (1 — m2)_1) as j — 00.

Moreover, by lemma 5.8,

(Ips ~ 2l G) = (A7) s~ )2~ )

— 0 asj,r— o0

~1,-1

Le. {p;};2, is Cauchy in W ( ,1). Since W ( 1,1) is a Hilbert

space (by theorem 5.4), there exists a
ge WM (=1,1) c L2 ((-1,1); (1 —2?) )

such that
p;, — ¢ in Wéy_kl’_l)(—l, 1) as j — o0.

o7



(i)

(iv)

(v)

Furthermore, since

FPE 2k () (Fewii V1),

[this is due to

n

(D™ =22 by [ £

j=0

> k) 9

— k() ( few (-, 1))

Jj—1,j-1

from the positivity of the coefficients cg_l’_l)(n, k)], we see that

_n —1,—1
pj —all_y_y < k7% Iy — gl

and hence,
pj—g inL*((—=1,1);(1—2%)7"). (5.24)

Comparing (5.23) and (5.24),
f=gew V(1,1

We need to show: D ((A( b 1)) ) is dense in Wé;cl’fl)(—l, 1). Since the set
of polynomials is contained in D ((A,(;l’fl)>n) and is dense in the n' left-
definite space W(fl’fl)(—l, 1) (by theorem 5.6), D <<A£71’71)>n> is dense
in Wn k ( 1,1). Furthermore, from theorem 5.6, the Jacobi polynomials

{qufl’_l)} form a complete orthonormal set in qu_kl’_l)(—l, 1).
m=2 )

We need to show: (f, f)\ 0" > k" (f.f)_,_, for all f € Vi " This

follows immediately by the definition of (-, -)il,_kl’_l)

We show: (f, g) —L-1) (<A 1_1> f, )_ ) for f € D<<A( 1_1)) >
and g € V8V This is true for any f,g € vay lemma 5.8.

LethD((A( L 1)) )cW,gj,j’*”(—Lm g e WM (=1,1).
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Since the set of polynomials is dense in both W,E;CL_D (—1,1) and in the space
L2((—1,1); (1 — 22)"), and since (by (iv)), convergence in WT(L’_,Cl’_l)(—l, 1)
implies convergence in L2 ((—1,1); (1 — #2)™"), there exist sequences {p; };io

and {g;};_, such that
. (—1,-1) .
pj—f W, (=1,1)as j — o0
<A,(€71’71)>npj — <A,(€71’71)>n foin L ((-1,1);(1— xz)fl) as j — 00
and
G —9 mW (-1 ,1) and L? ((—1,1);(1—1’2)71) as j — 00.
Hence, from lemma 5.8,

((477) r0) =t ((A770) ).,

= lim (pj,q5),

j—00
= (£
The results listed in the theorem on Bfl;cl’ Y and the spectrum of B 1 -
follow immediately from the general left-definite theory.
]

5.4 Self-Adjoint Operators
Definition 5.5. Define

Wy={f:[-1,1] —C|fe AC[-1,1]; f' € L*(-1,1)}

1

6(£9) = 3 (-Dg(-1) + 3D + [ @@z (f.g€ W)

-1

and
If1l, == o(f, )Y? (f € Wh).
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Theorem 5.8. (W1, ¢(+,-)) is a Hilbert space.

Proof. Let {f,} C Wi be a Cauchy sequence. Hence
1= Fll3 = 3 1a(=1) = S =D + 5 1) = £ D + [ 1£:(0) = S d

—0 asn,m — oo.

In particular, since

1

[ 1520 = fu@P e <115 = £l

4
we see that {f’} is Cauchy in L?(—1,1). Since L?*(—1,1) is complete, there exists

g € L?*(—1,1) such that

fl— g asn— oo in L*(—1,1). (5.25)

n

Also, since

S D) = fulDE < =l and
S D) = S F < 1o = Sl
we see that the sequences { f,,(£1)} are both Cauchy in C and, hence, there exists
A4, € C such that
fa(1) — A (5.26)

fa(=1) — Ay (5.27)

Furthermore, since f,, € AC'[-1,1] (n € N), we see that

1

/wwn—/ﬂ@ﬁzmm<maweAﬁA%

-1

i.e.

A=A+ / g()dt. (5.28)
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Define f : [-1,1] — C by

fla) = A+ [ gt

21

It is clear that f € AC[-1,1] and f'(z) = g(z) € L*(—1,1) for ae. z € [-1,1],
1

so f € Wi. Furthermore, f(—1) = A_; and f(1) = A1 + [ g(t)dt = A; by (5.28).

-1

Now
= FIB = S 1ul1) = FCDP + 5 151 |+/U’ ()] d
1
= DUl — AL+ L1 Au+/u (0 d
— 0
as n — oo by (5.25), (5.26) and (5.27). Thus, (W1, é(-,-)) is complete. O

Theorem 5.9. Let Wy and ¢(-,-) be as before, and
Wip=A{f e Wi | f(£1) = 0}
Wig:={feWi|f"(x)=0}.
Then W11 and Wi o are closed, orthogonal subspaces of (W1, ¢ (-,-)) and
Wy =Wy & Wis.

Proof. Since W 5 is 2-dimensional, it is a closed subspace of W;. The orthogonal

complement of W, 5 is given by

WIJ,_2 ={feW|[(f,g)h=0 (g€ Wy)}.

To see that Wy, C Wﬁ, let f € Wi, g € Wiy and consider

1

(F.9) = 3 (=Dg(-=1) + 37(g1) + [ 1@ @)

-1
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The first two summands vanish because f € W, and §'(z) = ¢ for some constant

c since g € W o, and we see that

1 1

6(f9) = [ F@g @iz =c [ f)is

so f € sz.
Now let f € W;. We need to find f; € Wy and fo € Wi 9 such that f = f1+ fs.
To this end, let

fo(z) := Az + B,
A, B to be determined. Clearly, fo € Wi 2. Let
filz) = f(z) = fo(2).

We show that f; € Wi, by appropriate choice of A, B. For any choice of A, B,
f1 € Wi. Now set

fil) = f(1) = A-B=0
A(-1)=[(-1)+A-B=0

and add the two equations to find

PEUES(C)
P UES (S}

i.e. with the choice of

filx) = f(z) = fa(2)

iy = IOIED, | )+ S

every f € W; can indeed be written as f = f; + fo, where fi € Wi, and fy €
WLQ. OJ
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The next result shows that the space W, ; is precisely the first left-definite space.
Theorem 5.10. Wy, = ‘/1(71,71)’ where ‘/1(71,71) is defined as in (5.8).

Proof. (1) ‘/1(—1,—1) C Wy, was proved in lemma 5.7.
(2) Wl,l g ‘/1(71’71) .
Let f € Wy 4. It suffices to show that f € L? ((—1,1); (1 —2%)7!). For -1 <z <0,

) [ e = (- o) )
“1
since f(—1) = 0. We use Chisholm-Everitt on (—1,0) with

V@) = (1=at) 2

Clearly, v is L? near 0, and ¢ is L? near —1. In this case,

Jof vt )

—(x+1)In(1 + 2),

and this is a bounded function on (—1,0). By Chisholm-Everitt, we have f €

L2 ((—-1,0);(1—2*)" ). For0 <z < 1,

%1ﬂ/fmﬁ=—u—ﬁ>Wﬂm.

We again apply Chisholm-Everitt on [0,1) with

P(z) =1
In this case,
T 1 T J 1
t
/(1—t2)‘1dt/dt§/m/dt
0 T 0 T

—(1—=2)In(1 — x),
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which is also bounded on (0, 1). By Chisholm-Everitt, —(1 —2%)~Y/2f € L?(0, 1), or,
equivalently, f € L*((0,1); (1 —2*)71). O

Theorem 5.11. The inner products ¢(-,-) and (-, -)1 are equivalent on Wi 1 = ‘/.1(71,71).

Proof. First of all, (W1, ¢(-,-)) is a Hilbert space, and, by definition, (Vl(*l’*l), (- )1>
is a Hilbert space. Let f € Wy, = Vl(fl’*l). Then

1

1915 = (@i < [[IF@F+1r@F 0 -a) ] d

-1

2
=715
By the open mapping theorem, these inner products must be equivalent. O]

Note that T, is self-adjoint in W, since it is defined on the whole two-
dimensional space.
We now need to consider 7} in the space W ;. Recall that by theorem 5.10,

Vl(_l’_l) = Wi,1. We also know that the operator
Bi—kl,—l) D (Bi—kl,—l)) - ‘/3(—1,—1) c ‘/1(—1,—1) N Vl(—l,—l)

namely, the first left-definite operator associated with (A, L? ((—=1,1); (1 — 2?)71)),

is self-adjoint and given by

BLI V(@) = L Lfl(@) = —(1 — a?) f'(2) + kf(2)

FeD (BRI = Vi {1 (-1,1) —— T £ f, " € ACie(~1, 1)
(L= )", (L= 2?2, (1= a?) 2 € LA(=1, 1)}

s self-adjoint with respect to the first left-definite inner

More specifically, Bfkl’
product (-,-); which we know is equivalent to the inner product ¢(-,-). We shall
prove that the operator

Ty :D(Ty) C Wip — Wis
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given by
T = Bﬂl’il)f =1 1,1[f]
feD(m) =V
is self-adjoint in (Wy1,¢(-,-)) .
Theorem 5.12. Let f, g € Vg(_l’_l). Then

lim (1 — 2?)f"(z)g (z) = 0.

r—+1

We shall prove this result for x — +17.

Proof. Let f,g € ‘/3(_1’_1). Without loss of generality, assume that f, g are both

real-valued. Since Vg(_l’_l) C ‘/1(—1,—1) and 11 f € Vl(_l’_l), we see that

fla (Tlf)lv gl S LQ(_l’ 1)

Hence (T1f)'¢, f'g € L'(—1,1). For 0 < z < 1,

xT

/ (TufY (g (t)dt = / (1) (1) g (t)dt + & / £ (1)t

0 0

xT

It follows that

liml/ (1= f" (1) ¢ (t)at (5.29)
0
exists and is finite. An integration by parts step shows that
[(a=rw) gwie = -2 0go - [0- ) od 0
0 0

Since (1 — 22)V2f"(z), (1 — 22)/2¢"(x) € L*(—1,1), this implies that
lim / (1= ) " (t)g" (t)dt
0
exists and is finite. It follows that

lim (1 - o2)f"(2)g ()

r—1
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exists and is finite. Suppose

lim (1 — 22) f"(z)g (z) =: 2¢c

r—1

where we assume that ¢ # 0. Without loss of generality, assume ¢ > 0. Then there

exists o € [0, 1) such that
(1—2%)f"(2)g'(z) = c (5.30)
f"(x) >0,¢'(x) >0  Va € [xg,1),

implying that

9" ()|

(1)) 9" (2)] 2 2

Vz € [z, 1).

Hence,

x
T

/ (L= 2)7"(8) g"(1)] dt > / %cﬁ

o

= clin(g/ (1)L, (531)

=c|ln(¢'(x))] — a1 Va € [z, 1).

Therefore,

lim sup |In (¢'(x))| < oc.

rz—1

Claim: There exist constants M7, M5 such that
M, < ¢'(x) < My  Vx € [z0,1).

Otherwise, if ¢'(z) is unbounded above, there exists a sequence {z,},-, C [7o,1)
such that

g (x,) — oo.

Then it follows from (5.31) that

(1 —a*)f"(2)g"(x) € L'(-1,1),
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so M, > 0 exists as claimed. If M; doesn’t exist, then there exists a sequence

9 (yn) — 0.

Again, it follows from (5.31) that

(1—2%)f"(x)g"(x) ¢ L'(-1,1),

a contradiction. From the claim, it now follows from (5.30) that

=:¢ Vz € x,1).

This implies

SO
’52

1—22

(1= 2%) (f"(x))” >

Va € [xo,1).

Integrating over [z, 1) and using the fact that

(1—a?)2f"(x) € L*(~1,1),

we see that
1 1 dt
oo>/(1—t2)f"(t)dt>52/1 5 =00

xo xo
It follows that ¢ = 0. [
Lemma 5.9. T} is densely defined in (W1 1, ¢(-,-)).
Proof. T} has the Jacobi polynomials {PTS‘L‘”}OO as its eigenfunctions, and they

n=2

are dense in D(T}). O

Theorem 5.13. T3 is symmetric in (Wi, ¢(-,-)).
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Proof. From the previous lemma, it suffices to show that 7} is Hermitian. Let

f,g € D(T) = \/3(_1’_1). Since V3(_1’_1) - ‘/1(—1,—1) and T f,T1g € ‘/1(—1,—1)7 we see

that
F(E1) = g(£1) = 0 = Ty f(£1) = Tig(£1).

Hence,

1

(Tif.g), = / (Tof) (0)7 (x)de

— [ |- (= r@) + s @)] g @)

-1
1

= —(1-2")f"(2)7 () I, +/ (1= 2%)f"(2)7"(x) + kf'(2)7 ()] do

= (f7 Tlg)(;S

since —(1 —22) f" ()7 (x) |-, = 0 by theorem 5.12. A similar calculation shows that

(1Tig)y = [ [~ (0 =g @) + b9'@)] £ a)da

-1
1

= —(1—2")g"(@) [ (=) |1, +/ (1= 2%)f"(2)7"(x) + kf'(2)7 ()] do

-1

= (T1f7 g)¢
since f,g € V3 = (1 —2%)7"(2)f' () — 0 as * — +1.

Theorem 5.14. The operator Ty has the following properties:
(i) T} is self-adjoint in (W1, ¢(-,-)) .

(i) o(T)) = {n(n— 1)+ k |n > 2}.

(iii) {Pﬁ_l’_l)} is a complete orthonormal set of eigenfunctions of 77 in
n>2

(Wla ¢(7 )) :
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(iv) T3 is bounded below by kI in (W1, ¢(-,-)).

Proof. For (iii): We know that {P,sfl’*l)} is a complete orthonormal set in
n>0
(Wi, (-, -)) and we know that Wy = Wy, @& Wi ,.
Also, Wi o = span{Péfl’fl),Pl(fl’fl)} and so Wy, = Wi, = span{Péfl’fl)}
’ n>2

We shall now prove that 7} is closed in (W5, ¢(+,-)) . Take a sequence {f,} C D(17) =

1/'3(71’71) such that
fn —>f in (W17¢(7>)
Tlfn — 49 in (W1,¢(,))

We show that f € D(T}) and T} f = g. We know that A; is self-adjoint and hence
closed in (W7, (+,+)1), and we know, since ¢(-,-) and (-, -); are equivalent, there exist

constants ¢; and ¢y such that

C1 ||fH¢ S ||f||1 S Co ||fH¢ ‘V’f c Wl,l — ‘/1(—1,—1).

Hence,
1= £l < 2l = flly — 0
ie.
fo—f in (Wi, ()
and
IT1fn = glly < c2[[T2fn = glly — 0
i.e.

Tifn — g in (le("')l)
and since T} is closed in (Wi, (+,-)1), we see that f € D(T}) and T f = g. Also, we
know that, for n > 2,
(M P Y) () = L [P Y] (2)
= (n(n—1) + k)PL"D ().

n
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This implies
{n(n—1)+k|n>2} Co(Ty).

Since {P,E‘l"l)} is complete and A, :=n(n — 1) + k — oo, we know that
n>2
o(Ty)={nn—1)+k|n>2}

by a result due to Riesz-Nagy, which proves (ii) and (iii). To summarize: 7T} is a
closed, symmetric operator with a complete set of eigenfunctions. From Naimark’s

book, T3 is self-adjoint. This proves (i). To prove (iv), let f € D(17). Then, since
T ‘/})(*1:*1) c Vl(*lv*l) N ‘/1(*1,*1)

and by (5.29),

5.29 / [(1 —a?) |f”($)|2 +k |f’(9€)|2] dx
> [ 17w da

Eo o ke [
= S IFEDP+ SO k[ 17w da
:k(f7f)¢

O

We now construct the self-adjoint operator 7' in (Wi, ¢(-,-)) that is gener-
ated by the Jacobi differential expression I_; ;[.], having the entire set of Ja-
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cobi polynomials {P}fl"”} as eigenfunctions and having spectrum o (7)) =
n>0

{n(n—1)+k|n e Ny}. For f € W, write
f=h+r
where f; € Wi, and fo € Wi 5. Define

TID(T)CW1—>W1

Tf=Tfi+Tafo=laalfi] + I alfe] = 1S,
D(T) =D(Ty) ® D(T3).
Theorem 5.15. T is self-adjoint in (W1, ¢(-,-)) and
DT)={f:[-L1] — C|f € AC[-L1]; ', f" € ACine(—1,1);

(1=a%)f", (1= a*)2f", f € L2(-1,1)}
={f:[-1,1] — C|fe AC[-1,1]; f', 1" € ACi..(—1,1;)
(1—2*)f" e L*(-1,1)}.

Furthermore, o(T) = {n(n—1)+k|n € Ny} and T is bounded below by kI in

(W17¢('7 ))

For the following theorem let us recall the spaces
V= {f 1 (-L1) — C|f € ACue(~1,1): (1 = 2?2, [ € L*(-1, 1)}
={f:[-1,1] — C|f € AC[-1,1]; f' € L*(—1,1); f(£1) = 0}

- Wl,l
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Vit =D(T) = {f: (-1,1) — C| £, f', f" € ACiue(~1,1);
(1—a?)f", (1= 22" f, (1= 2?72 f € L¥(-1,1)}
= {F €V € ACioo(~1,1); (1 = 2?) ", (1 = a*)/2f" € L*(~1,1)}
={f:[-1,1] —C|f e AC[-L1]; f', " € ACioe(—1,1);

FEL) =05 (1 =) f", (L= 2®)2f", f e L*(=1,1)} .

Note that the space D below is Vg(_l’_l) minus the condition f(+1) =0, so ‘/3(—17—1) C

D.
Theorem 5.16. Let
Di={f:[-1,1] — C|f € AC[-L,1]; f', f € ACiuu(—1,1);
(L—a®)f", (1 —a®)V2f" f e L*(-1,1)}.
Then D(T) = D.
Proof. First show D(T) C D: Let f € D(T) = D(T}) & D(T3). Write
f=h+/

where f; € D(Ty) = V& ") C D, f, € D(Ty) € D. Then f € D. To show that
D CD(T),let f € D. Write

f) - f(—l)) . (f(l) +f(—1)ﬂ

with

o) = (FDJED) (10D

Then f; € D, and fi(x1) = 0, ie. fi € V3 = D(T1). Also, fi(x) = 0, ie.
fo € D(T3). Together, f € D(T). O
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To summarize, we have studied the Sobolev orthogonality of the Jacobi poly-
nomials for « = § = —1 in depth, and, through the left-definite theory, we have

constructed a self-adjoint operator T in a suitable Hilbert space having the full se-

o0

quence of Jacobi polynomials {P,E‘L‘”} as eigenfunctions. This completes the
n=0

discussion of the special case where a = = —1.
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CHAPTER SIX

Spectral Analysis of the Jacobi Differential Equation (o > —1,5 = —1)

One should always generalize.

- Carl Gustav Jacobi

Following Jacobi’s advice, we shall now extend the results from the previous
chapter to the more general case where a« > —1,3 = —1. There are many simi-
larities between the two cases, and the main techniques can be modified to apply
to the general case. However, it is worth noting that there is a fundamental dif-
ference: unlike in the special case where the set {Pﬁfl’fl)(x)}oo is complete in

n=2

L2 ((—1,1); (1 — 2*)71), see lemma 5.6, in the general case, the set {P,ga’fl)(x)}
n=1

is complete in L? ((—1,1); (1 — 2)*(1 + x)~'), that is, the maximal orthogonal set

contains the first Jacobi polynomial!

6.1 Right-Definite Spectral Analysis
In this section, we show that for o > 1,3 = —1, both endpoints z = +1 are
in the limit-point condition, and thus the right-definite GKN self-adjoint operator
is unique. No boundary conditions are necessary. For —1 < a < 1, the endpoint
x = —1isin the limit-point condition, whereas x = +1 is in the limit-circle condition.
Therefore, one boundary condition is needed to define the right-definite GKN self-

adjoint operator.

For a > —1, 8 = —1, the Jacobi differential expression becomes
1 _
loa (@) = —— [~ (1= )" /(@) + k(1 - 21 +2) (@) ()
Wa,—1()
=1 =2y +(a+ 1)@+ 1)y +ky.
Let £ =0, so

lo1lyl(x) = —(1 = 2®)y" + (e + 1)(z + 1)y
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Consider the endpoint = = 1.

Multiply lo,—1[y)(z) by &

- * to see that x = 1 is a regular singular point in

the sense of Frobenius:

(z—1)?

e all@) =~ = D — (e + Dz — 1)y =0

or
(z—1)%"+ (a+1)(z - 1)y =0.
Then the indicial equation for z =1 is
r(r—1)4+r(a+1)=0.

Thus,

r=0~1=:y ()

o =—a~ (1 —x)"%=:ys(x).

(1= fﬁ)

Determine whether y; and y, are in L*((—1,1), =) near = = 1:

1

1
1—x
d
[ = [ B <o
0

0

Since 1= < 1 for x € (0, 1), we have

[0 [0 [ yea,

0 0 0
{<oo if —1l<ax<l1

=oc0 ifa>1 '

i.e. the endpoint x = 1 is limit-point if —1 < o < 1 and limit-circle if o« > 1.

Now consider the endpoint x = —1.
Multiply lo,—1[y](2) by IH to see that = —1 is a regular singular point in the

sense of Frobenius:

(x+1)2
1 — 22

(x+ 1)

/
=0
rx—1 Y

lo1ly)(@) = —(z + )% — (a +1)

)



or

r+ 1)
N AR
Then the indicial equation for x = —1 is
r(r—1)=0.
Thus,

r1=0n~1=:y(x)

ry =1~ (142) =: ya(2).

Determine whether y; and y, are in L*((—1,1), (1;:22&) near r = —1:
0 (1o 0 .
2 — T
——dr > dr =
/y1($)1+x$ /1+$$ 00
1 “1

since (1 —x)* > 0 on (—1,0). For the same reason,

0

/Oyg(@ﬂdas - /(1 +2)(1 - 2)%dx < o,

“1 -1
which makes © = —1 limit-point for any o > —1. No boundary conditions are

necessary at r = —1.

Lemma 6.1. For all n € N,

n+u«
2n

P @) = S5 =@+ DR (@)
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We now turn to the discussion of the operator theoretic properties of the
Jacobi differential expression (6.1). The appropriate right-definite setting is given
by L? ((—1,1); (1 — 2)*(1 + )~ '), and the maximal domain of , _1[-] in this space
is

A={f:(-11) — C|f [ € ACie(—1,1);
folaalfl € L2 (-1, 1);(1 —2)*(1+2)7") }.

For f,g €A and [a,b] C (—1,1), we have Dirichlet’s formula:

[ el @)1 = )" (14 ) o = (1= ) (@)gle) |

b

+/ (1= 2)*" 1 f(2)g () + k(1 — 2)*(1 + 2) " f(2)g(x)] dz

a

and Green’s formula:

b
/la,—l[f](w)ﬁ(l“)(l —2)*(1+2) e = [(1—2)* (f(2)7 (2) = f(2)g(2))] |,

+ [ @l - 1+ )

a
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Let us first consider the endpoint x = —1,a > —1,5 = —1. We begin by

showing that the Jacobi differential expression (k = 0)

1 '
la B — [_ 1 — a+1,/ :|
) 1[y](ZE) (1 _ .CL')O‘(]_ + $>_1 (( ZE) Y (:L‘))
is Dirichlet at x = —1. Note that the maximal domain can be written as

{£:(=1,1) = CI[.f' € ACie(-1, 1>-<1—:c>%<1+x>—%f e L*(~1,1),
(1—2)"2(1+2)2 [(1—z)*f'(z)] € L3(— ifa>1

A= {f:i(=1.1) — Cf, [ € ACii(~1,1); (1—x)%(1+x) if € L2(-1,1),
(=) 3 (1+2)7 [(1—2)* " f(2)] € L(~1,1),

lim (1 — x)*T!f(x) _0}, if —l<a<l.

\ r—1—

For f,g € A and —1 < z <0, we have Green’s formula

0

/la,_l[f](t)ﬁ(t)(l —t)*(L+1)"dt = / (1= f'()] g(t)dt

0

= f'(0)g(0) — (1 — 2)**' f'(z)g(x) — /(1 — )" (D)7 (t)dt.

T

Let f = g be real-valued, then Green’s formula becomes

/(1 =0T (f(6)" dt = f(0)£(0) = (1= 2)* " /() () (6.2)

_ / Al fIOFOA -0+ 07 (6.3)

Lemma 6.2. (1—2z)“ f' € L*(—1,0) for all f € A.

Proof. By contradiction. We assume that f is real-valued on (—1,1). Now suppose

that
0

lim [ (1= ) (/1) dt = oo.

Then, from (6.2), lirzll(l—:zt)a“f'(m)f(m) = —00, and consequently, lir£11 fl(x)f(x) =
—o00. Then for any N € N, there exists zy € (—1,0) such that for —1 < = < 2y,
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we have f'(x)f(z) < —N. Choose any such N, e.g. N = 1. Integrate from x to xy

(where —1 < x < zy) to obtain

fQ(;N /f #)dt < —N(ay — ).
It follows that
L) < Ny —0) - ) < Ny - o)
i.e.
_f2§x) < —N(y—12), (-1<z<azy)
or
2 (z) > 2N(ay — 1) (-1 <z <ay)
Hence,

TN

/(f/(t))2 (1 =)L +t) tdt > 2N/(xN —t)(1 —t)*(1 4 t)dt.

xT

Here, we distinguish between two cases, « > 0 and —1 < o < 0. First, for a > 0,

(xn — 1)
l—l—t

2N/a:N—t(1—t) (141) 1dt>2N/ dt

:2N/$N—1+1—tdt
(1+1)

= —2N(zy — ) + 2N(1 + 2y) In(1 + zy) — In(1 + 2)]

=-2N(zy —z) —2N(1+azx)In(l +2) +cy — o0

with z — —17, contradicting that (1—2)% (142)"2f € L?*(—1,1). For =1 < a < 0,

we have
TN — 1)

(1+1) at

2N/ oy —t)(1—H)*(1+1t)” 1dt>20‘+1N/
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—141—t
—2““]\1/ v 1+ dt
(1+1)

141
—2a+1N/xN R
T+10)

:2a+1N/ B
1+t

= —2°"'N(xy —2) + 2°T'N(1 + 2n) [In(1 + zx) — In(1 + )]

= -2"IN(zy —2) = 2°"'N(1 + 2x)In(1 4+ 2) + cy — 00

with 2 — —17, contradicting that (1 —2)%(1+xz) 2 f € L2(—1,1). This completes

the proof of the lemma. n
Lemma 6.3. f(—1) =0 for all f € A.

Proof. Let f € A, and suppose that f(—1) # 0. We may assume that f(—1) > 0. By
continuity, there exists z* € (—1,0) such that f(z) > f( D for z € (—1,2*]. Then,
since(1 — £)* is bounded below by some K > 0,

0

oo>/\f (-1 <1+t>1dt>Kf2<;1>/1‘ft_oo,

-1

a contradiction, and hence, f(—1) =0 for all f € A. ]

Together, the previous two lemmas imply that the Jacobi expression is Dirich-
let at the endpoint x = —1 for a > —1, 3 = —1. We now proceed to show that the

Jacobi expression is strong limit-point at z = —1 for a > —1,3 = —1.

Lemma 6.4. lim (1 —xz)*" f(z)¢'(z) =0 for all f,g € A.

r——11

Proof. From Green’s formula,

/ L1 [F(B)FE) (1 — £)°(1 + )t = (6.4)
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f@ﬂ@—U—xWﬂN@W@—/ﬁ—@“VWEWM@

x

we see that lim+(1 — )T f'(z)g(z) exists and is finite (since the left-hand side of
rz——1
(6.4) is finite, f'(0)g(0) is a constant and the integral on the right-hand side of (6.4) is
finite by the previous lemma). Now suppose that lim+(1 — )" f(x)g'(x) = c > 0.
T——1

We may assume that, for x close to —1,

f(z) > 0and ¢'(z) > 0.

Hence, there exists z* € (—1,0] such that ¢'(z) > )

for z € (—1,z%], where

¢ = 5 > 0. Therefore,

f'(x)

@) )] 2 5

(x € (—1,27]).

Integrate to obtain

/uwMWMmzé/%%%m

Zgjfwﬁ

f(t)

= C|K —In[f(x)]].

*

Knowing that [ |f/(t)¢'(t)| dt < oo (since f € L*(—1,0)), we let © — —17 to see
“1

that

r——1F

o0 > /|f’(t)g’(t)|dt > lK = tim In|f(@)]] = oo,
21
a contradiction. O
We now turn our attention to the endpoint x = 1.

Lemma 6.5. lim (1 —z)*™ f'(z) =0 for all f € A and for all « > —1.

r—1—
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Proof. For —1 < a: < 1, this holds true due to the boundary condition in A.
For a > 1, the Jacobi expression is limit-point at x = 1, and, from Green’s formula,

the Wronskian must vanish:

W(f.gl(z) = 1 —2)*"[f'(2)g(z) — f(2)7 (z)] = 0.

By Naimark’s patching lemma, we can find a function g € A which is 1 near 1 and

0 near —1:
0, 1<z<0
g(@) =¢ —162° + 1222, O0<z <}
1
It is easy to see that g € C? N A. ]

Lemma 6.6. Let a > —1, f € A. Then (1 —2)“ f' € L*(0,1).
Proof. From the previous lemma, we know that

lim (1 —2)** f'(x) = 0 (6.5)

r—1—

for f € A and for all « > —1. For f = g, Green’s formula is

- [n®r@a -0

0

Assume that f(l — )L (f/(t))* dt = oo. Then lim (1 — z)**f'(z) f(x) = oo, since
0

r—1~

the remaining terms on the right-hand side are known to be finite. Hence, there
exists z* € [0,1) such that (1 — z)*™ f'(z)f(z) > 1 for all z € [2*,1). Assume,

without loss of generality, that

f(z)>0and (1—2)*"f'(z) >0
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on [z*,1). It follows that

(L= 7))
(L= )" /(1)

on [z*,1).

(1=t ()

Integrate to obtain

1

o> / AL SO~ (1 +1) e = / (= o) | sy
_ a+1 } - a+1f t)”
/ (@=-r ‘”>/ —epn
(T 0 TP
> / Ao | = I ((1 =) /()] I2.
as x — 1~ by (6.5), a contradiction. O

Lemma 6.7. Let o > —1, f,g € A. Then

lim (1 — 2)**! f'(x)g(x) = 0.

r—1—

Proof. From Dirichlet’s formula,

T

[l - o+ [ (- 0000y s

0 0

= (1—2)"" f'(2)g(x) — f'(0)3(0)

= oo oo

we see that lim (1 —z)*™! f/(z)g(x) exists and is finite, since all the other terms are
rz—1~

finite (the last integral is finite for x — 1~ from the previous lemma). Assume,

without loss of generality, that f, g € A are both real-valued, and suppose

lim (1 — 2)** f'(2)g(x) = ¢ > 0.

r—1-

Then we may assume that, for x close to 1,

(1 —2)*™ f'(z) > 0 and g(z) > 0.
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Hence, there exists z* € [0,1) such that
(1—2) " f(2) > — (6.6)
where ¢ := § > 0, and consequently,

(1= 2) (@)’

g(x)>¢ 1: , (6.7)

on [z*,1). Integrate:

1

oo>/l UA®g) A = )* (L +1) " dt = /) — )T (1)) | g(t)dt
e ) mg\((l—t)a“f’(t))\
/‘ @) | g(t)dt (627)! A=) dt
| U0 ) oo - ) . — o
by the previous lemma, a contradiction. O

This completes the proof of the following theorem.

Theorem 6.1. The Jacobi expression (6.1) is strong limit-point and Dirichlet at x =
+1, i.e.

1 0
) L1 (1—=t)dt < ocoand [ |f/(t)]° (1—t)*Fdt < oo for all f € A and
0 “1
(ii) lirill(l —t)*T f(2)g(z) = 0 for all f,g € A.

The remainder of this section will be devoted to the (right-definite) self-adjoint
operator that is generated by the Jacobi differential expression I, _1x[-]. To this
end, recall that L2 ;(—1,1) denotes the space L*((—1,1); (1 — 2)*(1 +x)~"), and

the maximal domain A,(Ca’_l) of lo,—1[-] in L2 _; is defined to be

AT = {f € L2 (-1 1) £, f' € ACue(—1, D)l 14lf] € L2 4(~1,1)}
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The maximal operator 7(e—1)

max associated with [, —1[-] is given by

T () o= Lo lf]

D(T-1) = Al

max

The minimal operator is defined as Tl = (T(a’_l))*, the Hilbert space adjoint

min,k max,k

of Tr(ni}:,i) The operator Téﬁr’;kl) is closed, symmetric and satisfies

(T((L_l))* — T(O‘:_l) .

min,k max,k

The deficiency index d(T\% ") of T~Y is

min,k min,k

0,0) iff=—1,a>1
Ty = (0,0) s

min,k

(1,1) ifg=-1, —1l<a<l.

This can be seen from the limit-point/limit-circle classification of the singular end-

points x = +1:
(i) x = £1 are limit-point if 5 = —1, & > 1 and
(ii) = = —1 is limit-point, z = 1 is limit-circle if § = —1, -1 < a < 1.

Consequently, by von Neumann’s theory of self-adjoint extensions of symmetric
operators ([12], chapter XII), Téﬁr’;kl) has self-adjoint extensions in L7 ;(—1,1) for
B =—1,a>—1.1If a > 1, there is a unique self-adjoint extension in L7, ,(—1,1).

From the Glazman-Krein-Naimark theory [2], [43], the self-adjoint operator A,ga’_l) :

DAM Yy c L2 [ (-1,1) — L2

a,—1 a,—1

(—1,1) defined by

ATV =1 4 [f] (6.8)
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for f € D(A,(Ca’_l)) =

(

{F:(-11) = CIf.f € ACuu(-1,1); (1 = 2)F (1L +2) 4 € I3(-1,1),
(1—2) 51+ 2)3[(1—2)*f(2)] € L2(— ,1)} . ifa>1
{F:(-1,1) — CI[.f' € ACue(=1,1); (1 = )5 (1 + 2) 5 f € L3(-1,1),
(1—2) (1 +a)}[(1—0) @) € LA(-1,1),

lim (1 — )" f(z) :0}, if —1<a<l

\ r—1-

is self-adjoint in L2 _,(—1,1). By theorem 6.1, we have Green’s formula

1

(A" g = / b1 [f1(@)g(2) (1 = 2)*(1 + 2) " da

- / F@) o Bl(@)(1 - )21+ ) da

-1

= (f, AV g)0 1

and Dirichlet’s formula

1

ALt = [ laca AT 2)7 (14 ) o

_ / (1= )" (@) () + k(1 — 2)°(1 + 2)" f(2)g(x)] d.

-1

In particular,
(A o = / (=)™ @)+ k1= )1+ 2) 7 | ()] do

Z k(fa f)a,fla

forall f,g € D(A" ) i.e. A" isbounded below in L2 _1(—1,1) by kI. (Another
way to see this is to observe that J(A,(ca’_l)) C [k, 00).) Thus, the left-definite theory

can be applied.
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6.2 Completeness Results

The initial setting is the weighted Hilbert space

L ((-1,1);(1—2)*(A+a) ") = L2 _4(—1,1).

Define
1 /
Iy = — (L =a)*ty k(1—z)*(1+2)™! :
= gy | (@) k(=) (1 ) (o)
We study the second-order differential equation I[y] = Ay in L2 ,(—1,1). With

a > —1,5 = —1, the definition of the Jacobi polynomials in (4.4) becomes

e B (5 () () ()

and we note that the first Jacobi polynomial Pl(a’_l)(x) is degenerate. However, any

multiple of the first degree polynomial y = x + 1 will solve the Jacobi differential
equation. Therefore, we redefine Pl(a’fl)(x) and normalize the sequence of Jacobi

polynomials as follows:
Definition 6.1.
Po(a’_l)(a:) =1

Pl(a’il)(l') — \/(O& + 1)(Oé + 2) (LC 4 1)

2a+2

and, for n > 2,

o BRI (5 ()

With this definition of the Jacobi polynomials for a > —1,8 = —1, the se-

quence {Péa’fl)}zo ) forms a complete orthonormal set in La _4(=1,1), see lemma
6.10. Note that P (g ) & LZ _,(—1,1) due to the singularity in the weight func-
tion, but unlike in the special case, P{* " (z )€ L ,(—1,1).

To see that the Jacobi polynomials are orthonormal with respect to a Sobolev

inner product, we renormalize them for the next two results:
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Definition 6.2.

and, for n > 2,

P Y (z) 2n+a)? (n+a)(n-1\ z-1\ (z+1\"7
’ T) = .
n on+ta/2 (n+ ) n—j j 2 9

=0

Lemma 6.8. Forn > 2,

~ n+a)l(n—1)! ~(al
= (Qn'(n l(oz - 1))! @+ DR @)

In particular, ﬁ,ﬁ“"”(—m =0.

We shall use this lemma to prove that the Jacobi polynomials for § = —1,a > —1

are orthonormal with respect to a Sobolev inner product.

Theorem 6.2. The Jacobi polynomials {P,S“’*”(x)} are orthonormal with respect

n=0
to the Sobolev inner product

1

b(f.9) = F(—1)g(~1) + / (1 — ) f ()7 (),

-1

1.e.
é (ﬁéa,fl)’ ﬁr(na,fl)) — 5, (n,m € Np).
Proof. A calculation shows that
& (130(&,71) ﬁo(a,q)) — ¢ <ﬁ1(a,fl) ﬁl(a,fl)> 1
Forn=0,m =1,
o (P, P) <o,
Let n =0,m > 2, and use lemma 6.1 to see that
é (ﬁéa,fl), JBT(na,q)) —0.
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For n = 1,m > 2 : we recall from [46] that

1
/ (1= 2)°(1 + )72 PP (2)dz = 0

-1

for j =0,1,...,m—1and «, 8 > —1. Applying this result and lemma 6.1 shows that
é <§1(a,71)7 ﬁr(na,fl)> —0.
For n,m > 2,

o (Pl Ple0) = Ble ()P ()
1

+ 1=zt (Be@) (PE @) do

-1

~ !/
The first summand vanishes by the previous lemma. Note that <P7(La’_1) ) reduces

to a Jacobi polynomial with classical parameters [10], p. 149,

d D o, — 1 Dl )
P T@) = 5+ ) B ()

so that

o (Plon, pla-v) = Znx a)'? (2m + a)!/?
’ - 20/2 (n 4 @) 29/2 (m + )
1

x / (1 -2y (B (@) (B (@) da

n+a\? (2n+a)? 2m+ a)/?
2 29/2 (n + ) 292 (m + «)

x / (1 -+ (B0 w) (B ) do

0 ifn#m
| ()t 2 i —m
5

20 (n4a)? 2n+o
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From the theory of orthogonal polynomials, it is well known that the classical Jacobi

polynomials are dense in a corresponding Hilbert space:

Lemma 6.9. The sequence {Péa’l)(:c)} forms a complete orthogonal set in the
n=0
Hilbert space L? ((—1,1); (1 — 2)*(1 + x)) .

We shall use this result to prove that the truncated sequence of non-classical Jacobi
polynomials are dense in L? ((—1,1); (1 —z)*(1 +z)71).

o0

Lemma 6.10. The sequence {Pr(fl’_l)(x)} forms a complete orthogonal set in

n=1

the Hilbert space L? ((—1,1); (1 —2)*(1 + x)~'). Equivalently, the set of all poly-
nomials P € P[—1,1] of degree > 1 satisfying p(—1) = 0 is dense in the space
L2((-L1); (L= a2)*(L+2)7).

Proof. We have
/|f (1—2)*(1+x)" 1dm—/|1+x @) (1= 2)(1 + 2)da,
ie.
fel?(-1,1);1—-2)*1+42)") < (1+z) 'feL*((-1,1);(1 —2)*(1 +2)),
and in this case,

_ -1
”f‘|LQ((fl,l);(lfw)“(lJr:r)*l) - ”(1 + ) f||L2((71,1);(17w)a(1+m)) :

Let fe L*((—1,1); (1 —x)*(1 +2)™!), and let ¢ > 0. Hence
(42)'f € (- 1) (1—2)*(1 4+ 1),
so by lemma 6.9, there exists ¢ € P[—1, 1] such that

1O +2)7f = all a1 aysamape ey <€
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Let p(z) := (1 + z)q(x), so deg(p) > 1 and p(—1) = 0. Then ¢(z) = (1 + x)"'p(x).

Hence

€> H<1 +a)7 = (1+ x)_lpHLQ((—l,l);(l—x)a(1+$))
= H(l +a) 7 (f - p)||L2((71,1);(17z)a(1+:z:))

=[If - p“L2((—1,1);(1—x)"‘(1—0—1)*1) :
O]

Remark 6.1. We note that this property, that is the completeness of {P,E“"” (x)}
n=1

in L2 ((—1,1); (1 — 2)*(1 + x)~'), distinguishes the special case where o = = —1

from the general case o > —1, 3 = —1 which is considered here. In the special case,
the set {P,Sfl’fl) (a:)} is complete in L? ((—1,1); (1 — 2?)71), see lemma 5.6.
n=2

6.3 Left-Definite Spectral Analysis
Definition 6.3. Let k£ > 0. For each n € N, define

Véa,—l) — {f . (_171) - C ‘f € ACTL 1) 7f' J) c L%oﬁ»j,jfl)(_]" ]_),j = O, ,77/}

loc

and let (-, )(O‘k Y and IE H ) denote the Sobolev inner product
(F, ) Z @D (n, k) /f JA—t)*H (14t at (f.g e Vi)

a,—1) (a,—1)\ /2 (a,—1)
and the norm ||f|| = ((f, Dk > , where the numbers ¢~ “(n, k) are
defined in (4.6) and (4.7) in section 4.2. Let

W =11) = (Ve 05

In this section, it is our goal to show that W(a’fl)(—l, 1) is the n'" left-definite

a,—1

space associated with the pair (L2 (—1,1), A(a 1)), where A,(f’fl) is the self-

adjoint Jacobi operator defined in (6.8).
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Theorem 6.3. Let k > 0. For each n € N, WT(L?Z_D(—I, 1) is a Hilbert space.

Proof. Let n € N, and let {f,,} -_, be a Cauchy sequence in Wé"zfl)(—l, 1). Then,

since the numbers cg»a’fl)(n, k) >0,

3

(L= £G0) = S0 D) 70— 10

J r HO&-‘(‘],]—]-
7=0

2
atj,j—1

> D (n, k) || £ = £ (6.9)

for any j = 0,1,...,n and f € Vn(a’_l), SO {fr(,?)} is a Cauchy sequence in

m=1
L2 pn-1(—1,1), and hence there exists a gn1 € L2, _,(—1,1) such that

i g (6.10)

in L2, ,_1(=1,1) as m — oo. In particular, g,+1 € Lj,(—1,1). Fix t,tg € (—1,1)

such that ¢ty < t. Then, by Holder’s inequality,

/Uﬁmn—%Hwa

= [ 1A200) = g )] (1 = ) (1 )DL = ) (L) Dy
to
' 1/2

< [ 1900 = guea(w] (1= (14 0

' 1/2

X /(1 — )1 4 )~ Dy
to
1/2

= (= to) | [ 1F00) = gura()] (1= w14 0 | 0

as m — oo by (6.10), i.e

/f u)du — /9n+1 (6.11)
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as m — 0o0. Now, since ff(n € ACj(—1,1), we can integrate in (6.11):
£0() - / 1 () — / G (1 (6.12)

Also, from (6.9), it follows that {f(" 1)} ) is Cauchy in L7, ;, o(—1,1). Hence,

there exists a g, € L7, 1, »(—1,1) such that

fr(:_l) — 9n
in L2, , n2(—1,1). Repeating the above argument we see that g, € L .(—1,1),
and, for t,t; € (—1,1),

£ = 5570w = [ e — [gd. 613

By Riesz-Fischer, there exists a subsequence { fé?,j_)l} of { ff,f 71)} such that
m=1 m=1

JD () — gu(t)

for a.e. t € (—1,1). Choose ty € (—1,1) in (6.12) such that f,%’;f,}_)l(to) — gn(to)

and then pass through the subsequence in (6.12) to obtain

t

gn(t) - gn(to) = /gn+1(u)du

to

for a.e. t € (—1,1). This is to say that g, € ACj,.(—1,1), and

In(t) = gn4(t)

for a.e. t € (—1,1). Again, from (6.9), we see that {f,Sf_Q)}OO is Cauchy in

m=1

L2 2n-3(—1,1), implying that there exists a g,_1 € L2, 5, _3(—1,1) such that
fg_z) — Gn—-1

in L2, 5, 3(—1,1). Again, g, 1 € L},.(—1,1), and, for any t,t, € (-1,1),

£ty — FOD) (1) = / £ () — / s (w)du
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and there exists a subsequence { f%fnz_)z} of { ff,? 72)} such that
’ 1

m= m=1
FI2 () — gaa(t)

n—2)

for a.e. t € (—1,1). In (6.13), choose t; such that f7(nk,n72(t1) — gn_1(t1) and then

pass through the subsequence in (6.13) to get

t

Gnr (1) — gur () = / (1) dus

t1

for a.e. t € (—1,1), i.e. g,1 € AC’(I)(—l,l), and g/ ,(t) = g,(t) = gny1(t) for

loc

a.e. t € (—1,1). Continuing in this manner, we obtain n + 1 functions g,_;+1 €

L2

atn_jm_j1(=1,1) for j = 0,1,...,n such that

(1) 75”7_)‘) 7 Un—j+1 in LgH»nfj,nfjfl(_lu 1)7 for ] = 07 17 ey T

(2) g1 € ACTV(=1,1), gy € ACT"D(=1,1), ..., g € AC1pe(—1,1)
(3) gn_j(t) =g _ja1(t) forae te(=1,1),j=0,1,...,n—1

(4) ggj) =9j+1,J =0,1,...,n.

In particular, fg) — gy) in L? (—=1,1) for j = 0,1,...,n and g; €

atjj—1

A Hence,

2
(Hfm _91”7(1,/7; 1)> CE' 7 1)(n7k>

as m — 00, i.e. Wé?;_l)(—l, 1) is complete.
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Definition 6.4.
We={f:[-1,1) — C|fe AC[-1,1); f € L* ((-1,1); 1 —x)*"")}
Lemma 6.11. V; C W, :={f e W, | f(-1) =0}

Proof. Vi C W, 1: Let f € V4. We know that V; C A, and by lemma 6.3 f(—1) =0
for all f € A, so f € W,1. O

Theorem 6.4. The Jacobi polynomials {P&a’fl)} form a complete orthogonal
m=1

set in each qufzfl)(—l,l). FEquivalently, the set of polynomials, P, is dense in
a,—1
Wr(z,k )(_171)

Proof. Fixn € N, and let f € Wéfgfl)(—l, 1), so

F e L2 ((-1,1); (1 — 2)*™ (1 +2)" 1) .

Since {Pf(nawn_l)} is a complete orthonormal set in L

m=0

2

oinn_1(=1,1), we know

r

Z o= plagnn=1) _ ¢ a5 00 in L2 ((—1, 1); (1 —2)*™(1 + J;)”_l)

m,n
m=0

(6.14)

(«

—1
where ¢ )

are the Fourier coefficients given by
1
i = [ FO@RE IO = 1 s
—1

for m € Ny. For » > n define the polynomials

r (e, —1) 1/2 1/2
L Cm—n,n ((m - n)') (F(OL + m))
)= 3, ()2 (D(a+ m + n))2

m=max{2,n}

PD(t),

m

From

&1 (m))"* (C(a+m+ N i
—plel) = — P (),
dt’ W ((m — )N (T (a +m))" W

we see that, for 7 =0,1,...,n,

r (a,—1)

‘ D ((m =) (D +m+ )N i
() (+) — ; (a+3,j—1)
Pl 2 (D(a+m + )Y ((m — j)H)'? Fon

(2)-

m=max{2,n}

95



In particular, by (6.14),

T

PO = Y b
m=max{2,n}

r—max{2,n}

a,—1) p(a+n,n—1
= > VR

=0
s

_ Cgp?:,’n_ 1)PT(rLa+n,n—1) N f(n)

m=0
as v — oo in L*((—1,1);(1 —z)*™(1 + x)"!). Furthermore, by Riesz-Fischer,

there exists a subsequence {pq(n?)} of {pﬁ")} such that
pfn?) — ™ forae. t€(—1,1).

By Dirichlet’s test, the sequence

057?—;1121 ((m — n)!)1/2 (T(a +m + j)!)1/2 e
(D(a+m + )7 ((m — j)H)Y? )

so there exists a g; € L? ((—1,1); (1 — 2)*™ (1 4+ x)’~!) such that
pr, —g;  inL*((-=1,1);(1—2)*"(14+z)"). (6.15)
For a.e. a,t € (—1,1), t t
[ wan— [ 1w
Integrate both sides and obatain )
pﬁ?_l)(t) —s f V) 4 ¢, forae te(—1,1) (6.16)
for some constant ¢;. Passing through the subsequence implies
Gna(t) = fO V@) 4, forae te(—1,1).

From (6.16), we see that
¢ t

t
/pg‘_l)(u)du — /f(”_l)(u)du+cl/du,

a a
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i.e.

p(?_Z)(t) — fn=2) (t)+cit+cy  forae te(—1,1)

T

or

Gno(t) = fO D)+ 1t + ¢ forae te(—1,1).

Continue this process to see that for j € {0,1,....n — 1},
g;(t) = fOt) +qu_j1  forae te(—1,1),
where ¢,,_;_1 is a polynomial of degree < n — j — 1 and where
/
p—j—1 = n—j—2-
Hence, with (6.15),
PV — D g,y in L2 ((—1,1); (1 —2)*H (1 42y, (6.17)

For r > n, define
T (t) := pr(t) — qu-a(t).

Note that, with (6.17),

m) (1) = (1) = a4 (1) = o (1) = guja(t) — FO0).

Now,
2 n
a,—1 a,—
(1f =l ) = DV, )
7=0
-1
X / F9O() — 7907 (1= ™1+ 1) dt — 0
-1
as r — o0. ]

The following lemma holds for n > 1!!

Lemma 6.12. For p,q € P,

a,—1 a,—1 n
i = () n),_,
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Proof. First we note that this may be restated as

a,—1

1
(2 20), -, = [ b)) (0)da
“1
=YV, k)pD ()79 (2) (1 — ) (1 + 2y dr. (6.18)
j=0
Since the Jacobi polynomials form a basis for P, it suffices to prove (6.18) for p =

PV and q= P for arbitrary m,r € Ny. From

n
la,—l

[P VN(@) = (m(m = 1) + k)" PV (z) - (m € No)

and

(PleD, ]37%05,—1))067_1 =06m (r,meNy),

the left-hand side of (6.18) becomes

1
(in [PV, Pty = / 12 [P D) (@) P (0) we, -1 (2)dx

-1

= (m(m—1)+ k)" . (6.19)

Upon using (4.3) for & > —1, § = —1 and the recurrence relation for the cg.a’_l)(n, k),

that is,

n

(m(m+ ) + k)" = Z cga’_l)(n, k)

J=0

the right-hand side of (6.18) becomes

m!(m+a+j—1)!
(m—jH)l(m+a—1)!

Sl ) (P @) @) (P @) 00—y 04 0y

mi(m+a+j—1)
(m—)(m+a—1)!

=N " D (n, k) S (6.20)
= (m(m + a) + k)" 6, m.

Comparing (6.19) and (6.20) completes the proof of the lemma. O
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Theorem 6.5. For k > 0, let

ALY D (APTY) C L2 (-1,1) — L2, (<11

o0

be the Jacobi self-adjoint operator having the Jacobi polynomials {P&a’_l)} as

m=1

eigenfunctions. For each n € N, let

Ve = {11 (=1,1) — C|f € AT [ € Ly oy(=1,1),5 = 0, }

loc

and
n 1

(195" i= ) [ SO0 -1 e (g € Vi),
i=0 7

Then Wé?;’_l)(—l, 1) := (Vn(a’_l), (-, -);iy,;_l)) is the n'"* left-definite space associated

with (Li (-1, 1),A,(€a’_1)>. Moreover, the Jacobi polynomials {R(na’_l)} form
) m=1

a complete orthogonal set in each Wé?z_l)(—l, 1), and they satisfy the orthogonality

relation

(P, P ) = (mlm = 1) + k)"0
Furthermore, define
Bl = (BV) c Wi -1 — w1
by

B p=1lf) (rep(BS) =vi").

Then B,(f,;_l) is the n'" left-definite operator associated with <L(21’71
)

(—1,1), A,(f’_l)> .

Lastly, the spectrum of Bf:y,fl 1S given by
o (BU") = {mlm = 1) + k [m € No} = o {A{"
n,k - 0y — U{ k }7

and the Jacobi polynomials {P&a’_l)} form a complete set of eigenfunctions of
m=1

each Bfg,;_l) .
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Proof. Let n € N. We need to show that qui’_l) (—1,1) satisfies the five properties

in definition 3.1.
(i) Wéj‘c’_l)(—l, 1) is a Hilbert space (see theorem 6.3).
(ii)) We need to show:
D ((A,i“‘”)n) CWE™(=1,1) € L2 ((—1,1); (1 — 2)* (1 +2) 7).

Let f € D <(A,(€a’_1)>n>. Since the Jacobi polynomials {P&a’_l)}oo form

m=1

a complete orthonormal set in L? ((—1,1); (1 — 2)” (1 + x)~!), we see that
by f (L — 2P (1t a) Y asj oo (62)
where

=0

p;i(t) := i:q(ﬁ“’_np&o"_l)(t) (te(=1,1)),

e V= (£PEY), = [FOPSI Q-7 (10 e (e No)

Since (A,(f’fl)>n fel?(=1,1); (1 —2)* (14+2)71), we see that

j n
SEe P (AP i 2 (1) (- ) (1))
m=0
as j — 0o, where
ot () ) 0 ) ),

= (m(m +a) + k)" (£, PV, _,

= (m(m+ «a) + k)"cfﬁ”l),

1.e.



in L2 ((—=1,1); (1 — 2)* (1 + z)~') as j — oo. Moreover, by lemma 6.12,

a,—1 2 a,—1 n
(s =1 5) = (A7) s =pdomi =)

— 0 asj,r — o0

ie. {pj};.’io is Cauchy in Wé?;_l)(—l, 1). Since Wé%_l)(—l, 1) is a Hilbert

space (theorem 6.3), there exists
gEWT(=1) C (=11 (1= 2)" (1 +2)7)
such that
pj—g WG V(-11) as j — oo

Furthermore, since

ENG 20 fae (FemSV1),

[this is due to

n

(O =S k) || f9

j=0

> k) [ £

— K (f P (f e WV(-1, 1))

2
Jta,j—1

from the positivity of the coefficients cga’_l)(n, k)], we see that

lp; = glly_y < K" lp; — gl
and hence,
pj—g inL2((—1,1);(1 —2)* (1 +2)™). (6.22)
Comparing (6.21) and (6.22),

f=gew 5V (=11).
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(iii)

We need to show: D ((A(a 1)> ) is dense in Wé%’fl) (—1,1). Since the set of

polynomials is contained in D ((A,(f’_l)> ) and is dense in WT(L?,:_D(—L 1)

(by theorem 6.4), D ((Al(f’_l)> ) is dense in Wé?g_l)(—l, 1). Furthermore,

from theorem 6.4, the Jacobi polynomials {Pysf"_l)} form a complete
m=1

orthonormal set in Wéj‘c’_l)(—l, 1).

We need to show that (f, f)ff,;_l) > k" (f, f) Vf € Vn(z’_l). This

a,—1

follows immediately from the definition of (-, ) SLO",;_U.

We need to show: (f, g) o) ((A(a 1)> /s g> for f € D <<A(a’_1)>n>
and g € V(O,i Y. This is true for any f,g € P by lemma 6.12. Let f €
D ((A,(Ca’_l)> > C Wf:z_l)(—l, 1),g9€ an;;_ (—1,1). Since the set of poly-
nomials is dense in both W% ™" (~1,1) and L? ((—1,1); (1 — 2)* (1 + )1,
and since convergence in W o 1)( 1,1) implies convergence in the space
L2((—=1,1); (1 —2)* (1 +2)71) (by (iv)), there exist sequences {pj};2y and

{g;};2, such that

p—f WS (-1,1) as j — oo
(Aia,q)) p; — (Aéa,q)) f

in L2((—=1,1);(1 —2)* (1 +2)') as j — oo and
9% — 9

in qufg_l)(—l, 1) and L? ((—1,1); (1 — 2)* (14+2)~!) as j — oo. Hence, by

lemma 6.12,

= tm (s, gj)n
= (f: i -

102



(a,—1)

The results listed in the theorem on B, } oY

and the spectrum of B

follow immediately from the general left-definite theory.

6.4 Self-Adjoint Operators
Definition 6.5. Define

_{f 11 —>C|f€AO[ );f’eL2(<_171);(1_x)a+1)}

1

¢Uy%=fenm—n+/fumwm1—@wwm

-1

Theorem 6.6. (W, ¢(-,-)) is a Hilbert space.

Proof. Let {f,} C W; be a Cauchy sequence. Hence
1
1fa = Fully = [ fu(=1) = fm(—1)|2+/Ifé(x)—f&(fv)lz(l—l‘)““daf
1

—0 asn,m— oo.

In particular, since
1
/ @) = fo@) (= 2 e < [ fo — ful?
]

we see that {f/} is Cauchy in L? ((—1,1); (1 — z)*™!). Since L? ((—1,1); (1 — z)>™)

is complete, there exists g € L ((—1,1); (1 — 2)**!) such that

fi—g asn—oo in L*((-1,1);(1—=)*™). (6.23)

n

Also, since
Fa(=1) = Fn (=D < [l fa = fll
we see that the sequence {f,(—1)} is Cauchy in C and, hence, there exists A € C
such that
fu(—1) — A. (6.24)
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Furthermore, since f,, € AC' [—1,1) (n € N), we see that

1

JEACEE R / — e,

-1

Since g € AC'[—1,1), we may define f : [-1,1) — C by

fla)=A+ /g(t)dt.

21
It is clear that f € AC[-1,1) and f'(z) = g(x) € L?((—1,1); (1 — 2)*™!) for a.e.
€ [-1,1), so f € W,. Furthermore, f(—1) = A. Now

1= £ = | fu(=1 D2+ / 7t 21— )t

= Ifa(-1) ~ AP + / 1,0 = g0 (1= )+ de
— .0
as n — oo by (6.23) and (6.24). Thus, (W,, ¢(-,-)) is complete. O

Theorem 6.7. Let W, and ¢(-,-) be as before, and

Wa={f € Wa|[f(-1) =0}
Wa,2 = {f €W, |f/(:E) = 0}'

Then Wo1 and W, 2 are closed, orthogonal subspaces of W, and
Wa = Wa,l S¥) Wa,2-

Proof. Since W, » is one-dimensional, it is a closed subspace of W,,. The orthogonal

complement of W, » is given by

Wao={f €Wald(f,9) =0 Vg€ W}
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To see that W, ; C ng, let f € Wy, g € Wso and consider

6(f,9) = F(-1)g(~1) + / F(2)7 (2)(1 — 2)°d = 0.

The first summand vanishes because f € W, 1, and the integral is 0 because g € W, 5.
Now Let f € W,. We need to find f; € W,; and f, € W, such that
f = fi+ f2. To this end, let
fo(z) = C,

C to be determined. Clearly, f, € W, 2. Let

fi(z) = f(x) = fa(2).

We show that f; € W, ; by appropriate choice of C. For any choice of C, f; € W,,.

Now set
A(-1) = f(-1)+C =0
to find
C=-f(-1)

i.e. with the choice of

every [ € W, can indeed be written as f = f; + f2, where f; € W, and f, €
W2 O

The next result shows that the space W, is precisely the first left-definite

space.

Theorem 6.8. W, 1 = V.
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Proof. (1) Vi € W, 1: This was shown in lemma 6.11.
(2) Wa71 g Vi : Let f € Wa,l-

It suffices to show that f € L? ((—1,1); (1 — 2)*(1 + z)™'). For -1 <z <0,
(1—2)*2(1+ l’)”Q/xf'(t)dt = (1—2)*?(1+2) 2 [f(z) = f(=1)]
41
= (1 —2)*?(L+2)"2f(x)
since f(—1) = 0. We use Chisholm-Everitt on (—1,0) with

(x)=(1- x)a/Q(l 4 m)71/2

p(r) = 1.

Clearly, 1 is L? near 0, and ¢ is L? near —1. In this case,

0

x 0 x
dt
dt | (1 =01+ tdt < dt | ——
[ fa-nraroase fa [
—1 -1

T x

= —c(x+1)In(1 + 2),

and this is a bounded function on (—1,0). By Chisholm-Everitt, we have f €
L2((—1L,0); (1 —2)*(L+2)7h).

For0 <z <1,
(1-— x)a/2(1 + x)l/Q/f’(t)dt =—(1- m)a/Q(l + :U)fl/2f(a:).

We again apply Chisholm-Everitt on [0, 1) with

o(z) = (1 —2)*?(1 4 2)~ /2
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In this case,

x 1 T 1

/(1 —t)“(l—i—t)‘ldt/dt < c/(l —t)adt/dt
= (1= ()
__ole(l_I)CH—2

which is bounded on (0,1). By Chisholm-Everitt, f € L? ((0,1); (1 — 2)*(1 +z)71).

]
Theorem 6.9. The inner products ¢(-,-) and (-,-)1 are equivalent on W1 = V.
Proof. First of all, (W,.1,¢(-,-)) is a Hilbert space, and, by definition, (V4, (+,);1) is
a Hilbert space. Let f € W, = Vi. Then

1

112 = / PP ) de
21
1

< [P =-a)m k- o) o) ] do

-1

= (I/1,)*-

By the open mapping theorem, these inner products must be equivalent. O

Note that T, is self-adjoint in W, since it is defined on the whole one-
dimensional space.
We now need to consider 7} in the space W, ;. Recall that by theorem 6.8,

Vi = W,1. We also know that the operator
BV D (BY) =Vc i — W

namely, the first left-definite operator associated with (A, L? (—1,1)), is self-

a,—1
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adjoint and given by

B V(@) = loalf](@)
FeD(BG) =Va=1{f: (-1,1) — C|f, £, f" € ACiu(~1,1);
(1= 2) @921 ) f7 (1= ) D21 ) V2 f7 (1= )tV

(1—2)"2(1 +2) 2 € I2(~1,1)}

More specifically, B&’fl) is self-adjoint with respect to the first left-definite inner
product (-,-); which we know is equivalent to the inner product ¢(-,-). We shall

prove that the operator
T, : D(Th) C War — Wan
given by

Tif =BV f = loalf]

feD(h):=Vs
is self-adjoint in (W1, 6(-,-)) -
Proof. Let f,g € Vs. ]
Lemma 6.13. T in (W1, ¢(-,-)) is densely defined.

Proof. Ty is defined through the first left-definite operator,

Tif =BV f

o0

with domain V3. The Jacobi polynomials {PT(LO"_D} are its eigenfunctions and
n=1

they are dense in V3. O]

Theorem 6.10. T3 is symmetric in (Waq, ¢(-,-))-
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Proof. From the previous lemma, it suffices to show that 7} is Hermitian. Let

f,g € D(Ty) = V3. Since V3 C V; and T} f,T1g € V1, we know that

f(=1) =g(-1) =0="T1f(-1) = Tig(-1).

Integration by parts shows that

1

Tt = [ @7 @

-1

= (fa Tlg)¢

Theorem 6.11. The operator Ty has the following properties:
(i) T} is self-adjoint in (W,, ¢(-,-)) -
(i) o(Ty) = {n(n +a) + k| n > 2}.

(iii) {Pé,“"”} is a complete orthonormal set of eigenfunctions of 77 in the
n>1

space (Wa, ¢(-,)) -

(iv) Ty is bounded below by kI in (W, é(-,)) .

Proof. For (iii): We know that {R(La’_l)} is a complete orthonormal set in
n>0
(Wa, ¢(.,.)) and we know that W, = W,1 & W,a. Also, W,2 = span {Po(a’_l)}
and so W,1 = Wi, = span{Prga’_l)} . We next prove that 7; is closed in
’ n>1

(Wa, ¢(+,+)) . Take a sequence {f,} € D(T1) = V5 such that
fn - f in (Won ¢(7 ))
Tifo—g in (Wa,o(,")).
We show that f € D(71) and T f = g. We know that Bﬁ,‘;‘” is self-adjoint and

hence closed in (Wyy1, (+,+)1), and we know, since ¢(-,-) and (-,-); are equivalent,
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there exist constants ¢; and ¢, such that

allflly <Iflly <ellflly,  VfeWar =W

Hence,
1= Fl < eallfu = flly — 0
ie.
fo—f in (Wan, (1)
and
171 fo =gl <2 [T fu—9glly — O
i.e.

Tifn — g in (Wa,la('y')l)

and since T is closed in (Wy 1, (+,-)1), we see that f € D(T}) and T} f = g. Also, we

know that, for n > 2,

(T PEY) () = Lo o [PV ()

n

=(n(n+a)+ k)P,(L“’_l)(x).
This implies
{n(n+a)+kln=2}Co(hh)

Since {Péa’fl)} is complete and A, := n(n + a) + k — oo, we know that

n>1

o(Ty) ={n(n+a)+k|n>2}

by a result due to Riesz-Nagy, which proves (ii) and (iii). To summarize: 7} is a
closed, symmetric operator with a complete set of eigenfunctions. From Naimark’s

book, T} is self-adjoint. This proves (i). To prove (iv), let f € D(T;). Then, since
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Vs C Vi — V7,

(Lf. ), = (T3 f) (~)F(-1) + / (Tof) (@ (@)(1 — )™ da

2
+ k| f ()] (1 —2)*"| da

:_[ T )
>k / F@) (1 - 2)*da

— k(1P + K / F@)P (1 - 2)da

[l

We now construct the self-adjoint operator 7" in (W,, ¢(-,-)) that is gener-
ated by the Jacobi differential expression [, _1[.], having the entire set of Jacobi

polynomials {PT(LO"_I)} as eigenfunctions and having spectrum
n>0
o(T)={n(n+a)+k|neNpy}.

For f € W, write
f=h+F

where f; € Wy, (i = 1,2). Define

T:D(T)Cc W, — W,

Tf=Tifi+Tafa = loalfi] + la1[fo] = la,1[f],
D(T) = D(T)) & D(Ty).
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Theorem 6.12. T is self-adjoint in (W, ¢(-,-)) and
D(T)=A{f:1-1,1) — C|f € AC[-1,1); f', f" € ACoe(—1,1);
(1= )OI 2) 7, (1= ) D21 4 )
(1—z)t2f e 2(~1,1)}
={f:[-11) — C|fe AC[-L1); f", f" € ACio(—1,1);
(1—2) ™21 4 2)f" € L*(~1,1)}.
Furthermore, o(T) = {n(n+a)+k|n €Ny} and T is bounded below by kI in
(Wa, o(-, )
For the following theorem let us recall the definitions of the first and third left-definite

spaces:

Vi={f:(-1,1) — C|f € ACjp.(—1,1);
(1—2)*(1+2)2f, (1 —2)V2f e L2(-1,1)}

={f:[-1,1) — C|fe AC[-1,1); (1 — 2)@TV/2f € [2(~1,1); f(-1) = 0}

a,l

Vs=D(T1) ={f:(-1,1) — C| [, [, J" € ACie(~1,1);

(1= 2) @21 a) f", (1= a) D214 )2 f7 (1 — )l D2,
(1—2)*2(1+2)" 2 f € L*(-1,1)}

={feVIlf " € ACie(=1,1); (1 = ) @T2(1 4 ) f"
(1—2) 221+ 2)2f" € L*(-1,1)}

={f:[-1,1) — C|f € AC[-1,1); f', [" € ACioe(—1,1);
F(=1) = 0; (1 =) 21 ) f7, (1 = 2) @FD2(1L 4 ) 2 7,
(1—a2)et2f e [2(-1,1)}.

Note that the space D below is V3 minus the condition f(—1) =0, so V3 C D.
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Theorem 6.13. Let

D:={f:[-1,1) — C|fe AC[-1,1); /', f" € AC},c(—1,1);

(1= 2) D2 a) 7 (L= )DL 2) PP (L= )R € L2(-1,1))
Then D(T) = D.
Proof. First show D(T) C D: Let f € D(T) = D(T1) ® D(1z). Write
f=h+/

where f; € D(Ty) = V3 € D, fo € D(Tz) € D. Then f € D. To show that
D C D), let f € D. Write

with

Then f; € D, and fi(—1) = 0, ie. fi € V3 = D(Ty1). Also, f¥(z) = 0, ie.
fo € D(T3). Together, f € D(T). O
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CHAPTER SEVEN
Further Work

The self-adjoint operator T which was constructed in sections 5.4 and 6.4,
respectively, is bounded below so that the left-definite theory can be applied again
to this operator.

In the study of angular momentum in quantum mechanics, the Jacobi poly-
nomials occur quite naturally for negative integer parameters [6]. Usually, this is
treated by using identities relating the Jacobi polynomials for negative integer pa-
rameters to those for positive integer parameters. This application is of particular
interest, now that orthogonality and spectral results are available for the Jacobi
polynomials for non-classical parameters.

The left-definite theory has never been applied to difference equations or par-
tial differential equations. A natural place to start with difference equations would
be the Charlier difference equation, as the integral powers are known for the corre-
sponding difference expression.

In the orthogonal polynomial examples, the set of polynomials is dense in
every left-definite space, while these left-definite spaces are proper subsets of one
another. It seems natural to ask what functions are contained in the intersection
of all left-definite spaces. In the case of the orthogonal polynomial examples, our
conjecture is that the intersection consists of the set of all infinitely differentiable

functions.
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