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It is well known that, for ��;��;�� � � � 1 =2 N, the Jacobi polynomialsn
P
(�;�)
n (x)

o1
n=0

are orthogonal on R with respect to a bilinear form of the type

(f; g)� =

Z
R
fgd�;

for some measure �. However, for negative integer parameters � and �, an applica-

tion of Favard�s theorem shows that the Jacobi polynomials cannot be orthogonal

on the real line with respect to a bilinear form of this type for any positive or signed

measure. But it is known that they are orthogonal with respect to a Sobolev inner

product. In this work, we �rst consider the special case where � = � = �1. We

shall discuss the Sobolev orthogonality of the Jacobi polynomials and construct a

self-adjoint operator in a certain Hilbert-Sobolev space having the entire sequence of

Jacobi polynomials as eigenfunctions. The key to this construction is the left-de�nite

theory associated with the Jacobi di¤erential equation, and the left-de�nite spaces

and operators will be constructed explicitly. The results will then be generalized to

the case where � > �1; � = �1.
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CHAPTER ONE

Summary

In 1929, S. Bochner classi�ed all second order equations of hypergeometric type

that have orthogonal polynomial eigenfunctions. Up to a complex linear change of

variable, the only such equations are the Hermite, Laguerre, Jacobi, and the Bessel

polynomial equations.

It has been well known that, for ��;��;�� � � � 1 =2 N, the Jacobi poly-

nomials
n
P
(�;�)
n (x)

o1
n=0

are orthogonal on R with respect to a bilinear form of the

type

(f; g)� =

Z
R

fgd�; (1.1)

for some measure � [7]. However, for negative integer parameters � and �, an appli-

cation of Favard�s theorem shows that the Jacobi polynomials cannot be orthogonal

on the real line with respect to a bilinear form of this type for any measure. But

are they orthogonal with respect to some �natural�inner product? Indeed, they are

orthogonal with respect to a Sobolev inner product [35]. We discuss this Sobolev

orthogonality when � � �1 and � = �1 and, by applying the left-de�nite spectral

theory, we construct a self-adjoint operator that is generated from the Jacobi dif-

ferential expression in a certain Hilbert space having the entire sequence of Jacobi

polynomials as a complete set of eigenfunctions.

The left-de�nite theory can be traced back toWeyl [56] and the work of Schäfke

and Schneider who coined the term left-de�nite in their 1965 paper, that is, the Ger-

man links-de�nit [50]. In a recent paper, Littlejohn and Wellman develop a general

left-de�nite theory. They show that any self-adjoint operator A in a Hilbert space

H that is bounded below generates a continuum of Hilbert spaces and self-adjoint

operators that are called the left-de�nite spaces and operators, respectively, associ-
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ated with (H;A). Examples for which these left-de�nite spaces and operators have

been speci�cally constructed include the Hermite [19], Legendre [21], and Laguerre

[39] di¤erential equations. The left-de�nite spectral analysis of the classical Jacobi

di¤erential expression, when �; � > �1, has been discussed in [17]. The Laguerre

di¤erential equation for nonclassical parameters was studied in a left-de�nite setting

in [20].

In this work, we study the Sobolev-orthogonality of the Jacobi polynomials for

the non-classical parameters � = � = �1 and � = �1; � > �1: In the special case

where � = � = �1; the Jacobi di¤erential expression reduces to

l�1;�1[y](x) := (1� x2)
�
�(y0(x))0 + k(1� x2)�1y(x)

�
for x 2 (�1; 1) and where k � 0 is a constant. The associated classical weight func-

tion is w(x) = (1� x2)�1 ; and the right de�nite spectral setting is L2 ((�1; 1);w) :

The maximal domain associated with l�1;�1[�] is

� :=
n
f : (�1; 1) �! C j f; f 0 2 ACloc(�1; 1); f; l[f ] 2 L2

�
(�1; 1);

�
1� x2

��1�o
:

From the Glazman-Krein-Naimark theory, the operator

A : D(A) � L2
�
(�1; 1); (1� x2)�1

�
�! L2

�
(�1; 1); (1� x2)�1

�
de�ned by

Af = l�1;�1[f ]

f 2 D(A) = �

is self-adjoint and bounded below by kI in L2 ((�1; 1); (1� x2)�1).

When considering the sequence of Jacobi polynomials
n
P
(�1;�1)
n

o1
n=0

in this

setting, one quickly notices that the �rst Jacobi polynomial is degenerate, that

is, P (�1;�1)1 (x) = 0: However, any polynomial of degree 1 will be a solution of the
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equation l�1;�1[y](x) = 0 and the degeneracy can be �xed by choosing a suitable �rst-

degree polynomial. The next complication is that neither the Jacobi polynomial of

degree 0 nor any non-trivial choice of P (�1;�1)1 (x) are in L2 ((�1; 1); (1� x2)�1) ; due

to the singularities in the weight function w(x) = (1� x2)�1. Although the Jacobi

polynomials of degree � 2 form a complete orthogonal set of eigenfunctions of A

in L2 ((�1; 1); (1� x2)�1) ; it is not possible for the entire sequence
n
P
(�1;�1)
n

o1
n=0

to be orthogonal on the real line with respect to any bilinear form of type (1.1) for

any positive or signed measure �. This is a simple application of Favard�s theorem.

However, upon choosing P (�1;�1)1 (x) = x=
p
3; the entire sequence of polynomialsn

P
(�1;�1)
n

o1
n=0

can be normalized so that they form an orthonormal set with respect

to the Sobolev inner product

� (f; g) :=
1

2
f(�1)g(�1) + 1

2
f(1)g(1) +

1Z
�1

f 0(x)g0(x)dx;

as shown in [35]. In fact, the set
n
P
(�1;�1)
n

o1
n=0

forms a complete orthonormal

sequence in the Hilbert-Sobolev space

W1 :=
�
f : [�1; 1] �! C j f 2 AC [�1; 1] ; f 0 2 L2(�1; 1)

	
(1.2)

carrying the inner product � (�; �). A central question in this dissertation is if there

exists a self-adjoint operator in W1 which is generated from the Jacobi di¤erential

expression l�1;�1[�]; that has the entire sequence of Jacobi polynomials
n
P
(�1;�1)
n

o1
n=0

as its eigenfunctions? We show that the answer is yes, and the left-de�nite spectral

analysis associated with A will be the key in this construction.

The integral powers of `�1;�1[�]; the coe¢ cients c(�1;�1)j (n; k); the left-de�nite

vector spaces V (�1;�1)
n ; and the left-de�nite inner products (�; �)(�1;�1)n can be found in

exactly the same fashion as in [17]; indeed, by letting � = � = �1 in the formulae in

[17], we obtain the necessary expressions, combinatorial numbers, spaces, and inner

products. Indeed, for n 2 N; we shall see that the nth left-de�nite Hilbert space

3



associated with the pair (L2 ((�1; 1); (1� x2)�1) ; A(�1;�1)) is given by W (�1;�1)
n =

(V
(�1;�1)
n ; (�; �)(�1;�1)n ); where

V (�1;�1)
n = ff : (�1; 1) �! C j f; f 0; : : : ; f (n�1) 2 ACloc(�1; 1); (1.3)

f (j) 2 L2
�
(�1; 1); (1� x2

�j�1
); j = 0; 1; ::; ng

and

(f; g)(�1;�1)n =

nX
j=0

c
(�1;�1)
j (n; k)

1Z
�1

f (j)(x)g(j)(x)(1� x2)j�1dx:

Moreover, the Jacobi polynomials fP (�1;�1)m g1m=2 form a complete orthogonal set in

each W (�1;�1)
n and they satisfy the orthogonality relation

(P (�1;�1)m ; P (�1;�1)r )n = (m(m� 1) + k)n�m;r:

Furthermore, de�ne A(�1;�1)n : D
�
A
(�1;�1)
n

�
� W

(�1;�1)
n �! W

(�1;�1)
n by

A(�1;�1)n f := `�1;�1 [f ] (f 2 D(A(�1;�1)n ) := V
(�1;�1)
n+2 ):

Then the operator A(�1;�1)n is the nth left-de�nite operator associated with the pair

(L2 ((�1; 1); (1� x2)�1) ; A) ; this is a self-adjoint operator inW (�1;�1)
n with spectrum

given by

�(A(�1;�1)n ) = fm(m� 1) + k j m 2 N0g = �(A):

Moreover, the Jacobi polynomials
n
P
(�1;�1)
m

o1
m=2

form a complete set of eigenfunc-

tions of each A(�1;�1)n in W (�1;�1)
n .

To construct a self-adjoint operator T that is a realization of the Jacobi dif-

ferential expression having the full sequence of Jacobi polynomials as a complete set

of eigenfunctions in the space W1; de�ned in (1.2), we consider the decomposition

W1 = W1;1 �W1;2;

4



where

W1;1 :=
�
f 2 W (�1;�1) j f(�1) = 0

	
W1;2 :=

�
f 2 W (�1;�1) j f 00(x) = 0

	
:

It is the case that fP (�1;�1)m g1m=2 is a complete orthonormal set in W1;1 and the

set fP (�1;�1)m g1m=0 is complete and orthonormal in the two-dimensional space W1;2:

Furthermore, we show that

W1;1 = V
(�1;�1)
1 ;

where V (�1;�1)
1 denotes the �rst left-de�nite space de�ned in (1.3); moreover, the

inner products (�; �)(�1;�1)1 and �(�; �) are equivalent on W1;1 = V
(�1;�1)
1 :

We will then show that the �rst left-de�nite operator

T1 : D(T1) � W1;1 �! W1;1

given by

T1f = A
(�1;�1)
1 f = `�1;�1[f ]

f 2 D(T1) := V
(�1;�1)
3

is self-adjoint in (W1;1; �(�; �)) : It is easy to construct a self-adjoint operator T2 in

W1;2 generated by `�1;�1[�]:

T2f = `�1;�1[f ];

D(T2) = P2:

For each f 2 W1, write f = f1 + f2 where f1 2 W1;1;and f2 2 W1;2. De�ne

T : D(T ) � W1 ! W1

by

Tf = T1f1 + T2f2 = `[f1] + `[f2] = `[f ];

5



for

f 2 D(T ) = D(T1)�D(T2):

Then T is self-adjoint in (W1; �(�; �)) and has the entire sequence of Jacobi poly-

nomials fP (�1;�1)m g1m=0 as eigenfunctions. From the explicit determination of D(T1)

and D(T2); it is not di¢ cult to obtain the following characterization of D(T ):

D(T ) = ff : [�1; 1] �! C jf 2 AC[�1; 1]; f 0; f 00 2 ACloc(�1; 1); (1� x2)f 000;

(1� x2)1=2f 00; f 0 2 L2(�1; 1)g

= ff : [�1; 1] �! C j f 2 AC[�1; 1]; f 0; f 00 2 ACloc(�1; 1);

(1� x2)f 000 2 L2(�1; 1)
	
:

Furthermore, the spectrum of T is given by �(T ) = fm(m� 1) + k j m 2 N0g and

T is bounded below by kI in (W1; �(�; �)).

In chapter 6, these results will be extended to the general case where � >

�1; � = �1: This case is in many ways similar to the special case, but it is worth

noting some fundamental di¤erences: for �xed � = � = �1; the set fP (�1;�1)m g1m=2
is complete in L2 ((�1; 1); (1� x2)�1) ; i.e. the Jacobi polynomials starting with

the polynomial of degree 2 form a maximal orthogonal set, whereas in the general

case, fP (�;�1)m g1m=1 forms a maximal orthogonal set in L2 ((�1; 1); (1� x)�(1 + x)�1).

Again, the left-de�nite theory will play a key role in constructing a self-adjoint

operator in a certain Hilbert-Sobolev space having the entire sequence of Jacobi

polynomials as eigenfunctions.

6



CHAPTER TWO

Right-De�nite Spectral Theory

The purpose of this chapter is to summarize the theory of self-adjoint exten-

sions of formally symmetric di¤erential expressions. Our main source is [41] and

references therein. Throughout this chapter, we shall assume that I = (a; b) � R

is an open interval with �1 � a < b � 1; and that aj 2 Cj(I;R); j = 0; 1; :::; n;

with an(x) 6= 0 for all x 2 I; and n is a positive integer. We consider the ordinary

di¤erential expression l[�] of order 2n de�ned by

l[y](x) :=
nX
j=0

(�1)j
�
aj(x)y

(j)(x)
�(j)

; x 2 I (2.1)

and study certain linear operators in L2(I) generated from l[�]. Two operators of

interest are the maximal and the minimal operator associated with l[�]. We will

be concerned with constructing self-adjoint extensions (restrictions) of the minimal

(maximal) operator, and we will study their spectra. In particular, we shall consider

the eigenvalue problem

A[y] = �y;

where A is one of these self-adjoint operators. Expression (2.1) is called a formally

symmetric di¤erential expression. We note that di¤erential expressions with less

smooth coe¢ cients can be considered which leads to the concept of quasi-derivatives,

as in [2],[43]. However, we will keep our smoothness assumptions and note that

for any eigenvalue problem l[y] = �y having a sequence of orthogonal polynomial

solutions, it is always the case that aj 2 Cj(I;R):

De�nition 2.1. The di¤erential expression (2.1) is called regular if I is of �nite length

and the coe¢ cients 1
an
; an�1; :::; a0 2 L(I): If l[�] is not regular, it is called singular.

The endpoint a is called a regular point of l[�] if a > �1 and if there exists an " > 0

7



such that 1
an
; an�1; :::; a0 2 L(a; a + "): Otherwise, the point a is a singular point of

l[�]: There is a similar de�nition for the endpoint b:

The Jacobi di¤erential expression is singular on (�1; 1); and thus for the rest

of this chapter, we will assume that l[�] is a singular di¤erential expression unless

otherwise stated.

De�nition 2.2. Let l[�] be as in (2.1). The operator L : L2(I) �! L2(I) de�ned by

L[y] = l[y]

D(L) :=
�
y : I �! Cjy(k) 2 ACloc(I); k = 0; 1; :::; 2n� 1; y; l[y] 2 L2(I)

	
is called the maximal operator generated by l[�] in L2(I).

The space D(L) is in fact the largest subspace in which L can be de�ned as an

operator from L2(I) into L2(I).

For f; g 2 D(L); and [�; �] � I; it is easy to verify Green�s formula by inte-

gration by parts:
�Z
�

fl[f ]g � l[g]fg dx = [f; g](x) j��

where the sesquilinear form [f; g](�) is de�ned by

[f; g](x) :=

nX
j=1

jX
m=1

n�
aj(x)g

(j)(x)
�(j�m)

f (m�1)(x)
�
aj(x)f

(j)(x)
�(j�m)

g(m�1)(x)
o
:

(2.2)

Observe that [g; f ](x) = �[f; g](x) for all f; g 2 D(L) and a < x < b, and that the

limits [f; g](a) := limx�!a+ [f; g](x) and [f; g](b) := limx�!b� [f; g](x) both exist and

are �nite for all f; g 2 D(L) by the de�nition of D(L) and Hölder�s inequality.

Since D(L) is dense in L2(I); the adjoint operator L� exists. If T � L is

a densely de�ned linear operator in L2(I); then L� � T �; so it is natural to call

L0 := L� the minimal operator generated by l[�].

8



De�nition 2.3. The restriction of the maximal operator L to the (densely de�ned)

subspace D00 of all functions f 2 D(L) with compact support in I will be denoted

by L00.

De�nition 2.4. Let H be a Hilbert space with inner product (�; �): A linear operator

S : H �! H is symmetric in H if D(S) is dense in H and (Sx; y) = (x; Sy) for all

x; y 2 D(S):

A densely de�ned operator S is symmetric in H if and only if S � S�.

De�nition 2.5. Let H be a Hilbert space. A linear operator S : H �! H is self-

adjoint in H if D(S) is dense in H and S = S�:

Theorem 2.1. The operator L00 is symmetric in L2(I).

De�nition 2.6. Let H be a Hilbert space and T : H �! H a linear operator with

domain D(T ). Then T is closed if whenever fxng � D(T ) satis�es xn �! x and

Txn �! y; then x 2 D(T ) and Tx = y:

It is easy to see that the adjoint of a densely de�ned operator is closed. In particular,

the minimal operator L0 is closed.

De�nition 2.7. Let H be a Hilbert space and T : H �! H a linear operator. We say

that T is closable if there exists a closed, linear extension S of T: If T 0 : H �! H

is a closed linear extension of T and T 0 � S for all closed linear extensions of T ,

then T 0 is called the closure of T and T is said to admit a closure. The closure of

an operator T is denoted by T .

Theorem 2.2. Let H be a Hilbert space. A symmetric operator S : H �! H admits

a closure. Moreover, this closure S is also symmetric in H.

Proof. See [43], page 13.

Consequently, L00 has a symmetric closure L00:

9



Theorem 2.3. (L00)� = L:

Proof. See [43], page 68.

It is well-known (e.g. [33]) that a closed, densely de�ned operator A in a

Hilbert space H has the property that A�� = A: This fact, combined with the

previous theorem yields:

Theorem 2.4. L0 = L00 and L�0 = L: In particular, the minimal operator L0 and the

maximal operator L are closed operators, being adjoints of each other.

The following theorem is a very useful criterion for determining whether or not

an element f 2 D(L) is in the minimal domain D(L0): It involves the sesquilinear

form (2.2).

Theorem 2.5. The domain D(L0) of the minimal operator L0 in L2(I) consists of all

f 2 D(L) satisfying [f; g](x) jba = 0; for all g 2 D(L):

Proof. See [43], page 70.

If one or both endpoints of I are regular, then the condition in the previous

theorem simpli�es further, see [43], page 71.

Remark 2.1. If A is a symmetric extension of the minimal operator L0 in L2(I), then

A � L, where L is the maximal operator. Indeed, this is an immediate consequence

of Theorem 2.4:

L0 � A � A� � L�0 = L:

In particular, A[y] = l[y] for all y 2 D(A); i.e. A has the same form as the expression

l[�] and A is the restriction of the maximal operator L.

Remark 2.2. Note that the theory presented in this chapter can be applied mutatis

mutandis to expressions of the form

m[y](x) =
1

f(x)

nX
j=0

(�1)j
�
aj(x)y

(j)(x)
�(j)

; x 2 I;

10



where f(x) 2 C2n(I) and f(x) > 0 for all x 2 I: Observe that f(x)m[y] is then for-

mally symmetric; in this case, we call the function f(x) a symmetry factor for m[�];

see [38]. The appropriate Hilbert space setting for the theory of self-adjoint exten-

sions would be L2((a; b); f): We note that the maximal operator L in L2((a; b); f);

generated by m[�]; is de�ned to be

L[y] = m[y]

D(L) =
�
y : (a; b) �! Cjy(k) 2 ACloc(a; b); k = 0; 1; :::; 2n� 1;

y;m[y] 2 L2((a; b); f)
	
:

Example 2.1. The classical Jacobi di¤erential expression for k � 0 is de�ned by

� [y] := �(1� x2)y00 + (�� � + (�+ � + 2)x)y0 + ky; x 2 (�1; 1):

Although this expression cannot be directly put into the form (2.1), multiplication

of l[�] by the symmetry factor f(x) = (1� x)�(1 + x)� yields

l[y](x) := (1� x)�(1 + x)�� [y]

= �
�
(1� x)�+1(1 + x)�+1y0

�0
+ k(1� x)�(1 + x)�y(x):

For � = � = 0; � [�] is called the Legendre expression. For the Jacobi expression, the

proper right-de�nite setting is the weighted Lebesgue space

L2((�1; 1); (1� x)�(1 + x)�);

and the maximal and minimal operators in this space are generated from � [�] =

(1� x)��(1 + x)��l[�]:

In 1929, von Neumann considered and solved the problem of when a symmetric

operator in a Hilbert space H had self-adjoint extensions in H. The motivation for

this study came from his interest in several unbounded operators that appear quite

naturally in the theory of quantum mechanics. In 1939, Calkin presented his method
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for determining necessary and su¢ cient conditions when such self-adjoint extensions

exist and proceeded to characterize the domains of each of these extensions in terms

of general �boundary conditions�. A well-written account of this elegant theory can

be found in [12], pages 1222-1239 and 1268-1274. For our study, this theory has par-

ticularly important applications to the subject of symmetric di¤erential operators.

Indeed, the Russian mathematicians M. A. Naimark and I. M. Glazman are credited

with applying and re�ning both van Neumann�s theory and Calkin�s method to the

minimal operator L0 generated by l[�]. We will now brie�y describe von Neumann�s

results, followed by the Glazman-Naimark theory of self-adjoint extensions of L0.

De�nition 2.8. Let A be a symmetric operator in a Hilbert space H. Let

D+ := ff 2 D(A�) jA�f = ifg

D� := ff 2 D(A�) jA�f = �ifg ;

where i :=
p
�1: The space D+ is called the positive de�ciency space of A, and

D� is called the negative de�ciency space of A: The dimensions of these spaces are

called the positive and negative de�ciency indices of A, respectively, and we write

n� := dim(D�): The de�ciency index of A in L2(I) is the ordered pair (n+; n�):

As shown in [12], page 1232, there is nothing special about using the complex

number i in this de�nition: if � 2 C and Im(�) > 0; then it is the case that

dim ff 2 D(A�) jA�f = �fg = n+: A similar result holds for n� and any � 2 C

with Im(�) < 0: This is a result due to Weyl (1910, see [56] and [29], chapter

13) which he proved in the context of the classical second-order Sturm-Liouville

di¤erential expression.

If A is a symmetric operator in a Hilbert space H, we de�ne a new inner

product on D(A�) by (x; y)� := (x; y) + (A�x;A�y): It can be shown (see [12], page

1225) that D(A�) is a Hilbert space when equipped with this inner product. We are

now in the position to state the following important theorem.
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Theorem 2.6. Let A be a symmetric operator in a Hilbert space H. Then D(A);D+;

and D� are closed orthogonal subspaces in (D(A�); (�; �)�) and

D(A�) = D(A)�D+ �D�:

This is known as von Neumann�s formula.

Proof. See [12], page 1227.

In the case of A = L0; the minimal operator in L2(I) generated by l[�]; von

Neumann�s formula becomes

D(L) = D(L0)�D+ �D�: (2.3)

Consequently, it is not surprising that the positive and negative de�ciency spaces

play a major role in determining the self-adjoint extensions of L0 in L2(I). In fact,

we state the following theorem, [12] page 1228, to illustrate this in�uence.

Theorem 2.7. Let A be a symmetric operator in a Hilbert space H. Let D0 be a closed

subspace of D+ � D� and set D = D(A) � D0: Then the restriction of A� to D is

self-adjoint if and only if D0 is the graph of an isometry mapping D+ onto D�:

This implies the following key result:

Theorem 2.8. Let A be a symmetric operator in a Hilbert space H. Then A has self-

adjoint extensions in H if and only if its de�ciency indices are equal. Furthermore,

if n+ = n� = 0; then the only self-adjoint extension of A is its closure A = A�:

Proof. See [12], page 1230.

Although much more can be said about the characterizations of self-adjoint

extensions of general symmetric operators in a Hilbert space, we return to our dis-

cussion of �nding self-adjoint extensions of the minimal operator L0 in L2(I). Since

for any complex number �, the equation l[y] = �y has a basis of 2n solutions, the
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de�ciency indices of L0 in L2(I) are both �nite. In fact, these two indices are equal.

Indeed, because the coe¢ cients ak of l[�] are real-valued, the function f is a solution

of l[y] = �iy: This same argument shows that if ff1; f2; :::; fmg is a basis for the pos-

itive de�ciency space D+, then
�
f1; f2; :::; fm

	
is a basis for the negative de�ciency

space D�: However, we note that, in general, the de�ciency indices n� need not be

equal when the coe¢ cients of l[�] are complex-valued.

Theorem 2.9. Let L0 be the minimal operator in L2(I) generated by l[�]; where I =

(a; b):

(i) If both endpoints a and b are regular, then n� = 2n.

(ii) If one of these endpoints is singular, then 0 � n+ = n� � 2n: In fact, it is

possible to construct l[�] so that n� = m for any integer m; 0 � m � 2n: If

exactly one of the endpoints is singular, then n � n+ = n� � 2n.

Proof. For the proof of (i), see [43], page 66. For the proof of (ii), see [43], pages 69

and 71. Furthermore, in [25], Glazman constructs examples to show that m = n�

can actually take on all possible integer values between 0 and 2n:

Let c 2 I; necessarily, c is a regular point of l[�]. Let L�0 denote the minimal

operator generated by l[�] on (a; c) and let L+0 denote the minimal operator generated

by l[�] on (c; b): Let (m�;m�) and (m+;m+) denote the de�ciency indices of L�0 in

L2(a; c) and L+0 in L2(c; b); respectively.

Theorem 2.10. The de�ciency index of the minimal operator L0 in L2(I) is (m;m)

where

m = m+ +m� � 2n;

and 2n is the order of the expression l[�]. Furthermore, m is independent of the

choice of c 2 I.
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Proof. See [25], page 353.

The importance of this theorem may need some explanation. Since the point

c is a regular point, all solutions of l[y] = �iy will belong to L2(c � "; c] for all

0 < " < c � a: Consequently, the number m� is precisely equal to the number of

solutions of l[y] = �iy that are in L2(a; a + �] for some su¢ ciently small � > 0.

Similarly, the number m+ is equal to the number of solutions of l[y] = �iy that are

in L2(b� �; b] for some small enough � > 0. This motivates the following.

De�nition 2.9. The di¤erential expression l[�] is said to be in the limit-p condition

at x = a in L2(I) if there exist exactly p solutions of l[y] = �iy that belong to

L2(a; a+") for some su¢ ciently small " > 0: Similarly, l[�] is said to be in the limit-q

condition at x = b in L2(I) if there exist exactly q solutions of l[y] = �iy that belong

to L2(b � "; b) for some su¢ ciently small " > 0: Since l[�] is of order 2n, it is clear

that 0 � p; q � 2n:

If the order of l[�] is two, the limit-2 condition is more commonly referred

to as the limit-circle condition, while the limit-1 condition is known as the limit-

point condition. This notion goes back to Weyl�s seminal paper [56]. His analysis

of the number of Lebesgue square integrable solutions of the second order Sturm-

Liouville equation involved some key geometric arguments. The terms limit-point

and limit-circle re�ect the geometry used in his solution. In the second-order case,

Weyl showed that if l[y] = �0y is limit-point (respectively, limit-circle) at a or b for

a certain complex number �0; then l[y] = �y is limit-point (respectively, limit-circle)

at a or b for a all complex numbers �:

From the previous de�nition and theorem, it is clear that once we have de-

termined the limit condition for each endpoint, then the de�ciency index of the

minimal operator L0 in L2(I) can be found. Fortunately, there is a method available

for determining the limit condition of an endpoint when that endpoint is a regular
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singular point in the sense of Frobenius. Indeed, the so-called Method of Frobenius

from ordinary di¤erential equations (see [30], pages 396-404) can sometimes be used

to determine the number of Lebesgue square integrable solutions near this singular

endpoint.

De�nition 2.10. Consider the di¤erential equation

L[y](x) =
nX
j=0

bj(x)y
(j)(x) = 0; x 2 J (2.4)

where J � R is some open interval, bj : J �! R; j = 0; 1; :::; n; bn(x) 6= 0 for all

x 2 J: Suppose a; b 2 J with a < b. If x = a > �1; then x = a is called a regular

singular point of L[�] if

(x� a)nL[y](x)
bn(x)

=
nX
j=0

(x� a)jcj(x)y(j)(x);

where cn(x) = 1 and where each cj(x) is analytic in some neighborhood of x = a;

j = 0; 1; :::; n� 1: The de�nition of x = b <1 as a regular singular point is similar.

If a = �1 or (b =1) and L[�] can be put into the form
nX
j=0

tjcj(t)y
(j)(t);

under the transformation x = 1=t; where again cn(t) = 1 and where each cj(t) is

analytic in some neighborhood of t = 0; then we say that x =1 is a regular singular

point of L[�]: If an endpoint is not a regular singular point, it is called an irregular

singular point.

Based on earlier work of Fuchs, Frobenius developed an ingenious tool for

determining a basis of n solutions of the homogeneous equation (2.4), where each

solution is expanded about a regular singular point. A key ingredient in this method

is the indicial equation at x = a associated with (2.4):

nX
j=0

P (r; j)cj = 0; (2.5)
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where cj = cj(a) and P (r; j) = r!
(r�j)! ; j = 0; 1; :::; n: Evidently, this is a polynomial

of degree exactly n: We will not describe this method here; it su¢ ces to say that

each of the n roots of the indicial equation (2.5) determines a solution of (2.4), even

in the case of roots having multiplicity greater than one.

After the following de�nition, we will be in the position to state the important

Glazman-Krein-Naimark theorem.

De�nition 2.11. Let X be a vector space and M1 � M2 be subspaces of X. We say

that the set fx1; x2; :::; xng �M2 is linearly independent moduloM1 if the condition
nX
j=0

�jxj 2M1

implies that �j = 0; j = 1; 2; :::; n: If A �M2 is a maximal linearly independent set

modulo M1 and � = card(A); we say that the dimension of M2 is � modulo M1.

It is not di¢ cult to see that if fx1; x2; :::; xng � M2 is a linearly independent

set, then it is a maximal linearly independent modulo M1 if and only if

M2 =M1 + sp fx1; x2; :::; xng : (2.6)

Of course, any set of linearly independent vectors modulo M1 is a linearly indepen-

dent set in X; the converse of this is not necessarily true. This concept of linear

independence modulo a subspace plays an important role in characterizing all self-

adjoint extensions of L0 in L2(I). In view of (2.6) and the importance that von

Neumann�s formula (2.3) plays, this statement is not too surprising.

Theorem 2.11. (Glazman-Krein-Naimark) Suppose the de�ciency index of the min-

imal operator L0 in L2(a; b) generated by the expression l[�] is (m;m):

(i) Let S be a self-adjoint extension of L0 in L2(a; b): Then there exists a set

fw1; w2; :::; wng � D(S) that is linearly independent modulo D(L0) such that

S[y] = l[y]

D(S) =
n
y 2 D(L) j [wj; y] jba = 0; j = 1; 2; :::;m

o
: (2.7)
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Here, [�; �] is the sesquilinear form de�ned in (2.2).

(ii) Suppose fw1; w2; :::; wng � D(L) is linearly independent modulo D(L0) with

[wj; wk] jba = 0; j; k = 1; 2; :::;m:

De�ne an operator S in L2(a; b) by

S[y] = l[y]

D(S) =
n
y 2 D(L) j [wj; y] jba = 0; j = 1; 2; :::;m

o
:

Then S is a self-adjoint extension of L0.

The conditions given in (2.7) are known as the Glazman boundary conditions and

the functional [wj; �] jba : D(L) �! C is called a boundary value for L0. If for some

j; [wj; y] jba = 0 is independent of a or b for all y 2 D(S); then it is called a separated

boundary condition; otherwise it is a mixed boundary condition. In [12], page 1234,

a boundary value for a symmetric operator A is de�ned to be a continuous linear

functional on (D(A�); (�; �)�) that vanishes on D(A): There is a generalization of the

Glazman-Krein-Naimark theorem for arbitrary symmetric operators which can be

found in [12], page 1239.
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CHAPTER THREE

General Left-De�nite Spectral Theory

In a recent paper [39], Littlejohn and Wellman developed a general abstract

left-de�nite theory for a self-adjoint operator A that is bounded below in a Hilbert

space (H; (�; �)). They show that there exists a continuum of unique Hilbert spaces

f(Wr; (�; �)r)gr>0 and, for each r > 0; a unique self-adjoint restriction Ar of A in Wr:

The Hilbert space Wr is called the r th left-de�nite Hilbert space associated with the

pair (H;A) and the operator Ar is called the r th left-de�nite operator associated

with (H;A): In this chapter, we discuss the main results in [39] and their relevance

to the Jacobi equation that we study in this thesis.

The left-de�nite spectral theory has its roots in the work of Weyl [56] on for-

mally symmetric second-order di¤erential expressions. The terminology left-de�nite

is due to Schäfke and Schneider who used the German links-de�nit [50] in 1965 to

describe one of the Hilbert space settings in which certain formally symmetric dif-

ferential expressions can be studied. As an example, let us consider the di¤erential

equation

L[y](t) = �w(t)y(t) (t 2 I;� 2 C); (3.1)

where I = (a; b) is an open interval of the real line R; w is Lebesgue-measurable,

locally integrable and positive almost everywhere on I; and where L[�] is the formally

symmetric di¤erential expression

L[y](t) =

nX
j=0

(�1)j
�
bj(t)y

(j)(t)
�(j)

(t 2 I);

with non-negative, in�nitely di¤erentiable coe¢ cients bj(t) (j = 0; 1; :::; n) on I:

Then the classical Glazman-Krein-Naimark theory [43] applies to (3.1) and charac-

terizes all self-adjoint extensions of the minimal operator Tmin generated by w�1L[�]
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in the weighted Hilbert space L2w(I) of all Lebesgue-measurable functions f : I �! C

with inner product

(f; f) =

Z
I

jf(t)j2w(t)dt <1:

The space L2w(I) is called the right-de�nite Hilbert space for w
�1L[�] because w

appears on the right-hand side of (3.1). However, the di¤erential expression w�1L[�]

can also be studied in a Hilbert space W generated by the Sobolev inner product

(f; g)W =

nX
j=0

bj(t)f
(j)(t)g(j)(t) (f; g 2 W ):

Since this inner product is generated from the left-hand side of (3.1), we callW a left-

de�nite Hilbert space and the spectral study of w�1L[�] in W a left-de�nite spectral

setting. It is worth noting that, although the motivation for the general left-de�nite

theory developed in [39] arose from the study of certain self-adjoint di¤erential op-

erators, the left-de�nite theory can be applied to any self-adjoint operator that is

bounded below. In what follows, we will give an overview of the general left-de�nite

spectral theory as developed in [39].

Let V be a vector space over C with inner product (�; �) such that H :=

(V; (�; �)) is a Hilbert space. Suppose that Vr is a vector subspace of V with inner

product (�; �)r and let us denote this inner product space by Wr := (Vr; (�; �)r). Let

A : D(A) � H ! H be a self-adjoint operator that is bounded below by rI for some

r > 0, that is to say

(Ax; x) � r(x; x) (x 2 D(A)):

Then for any s > 0, the operator As is self-adjoint and bounded below in H by rsI.

De�nition 3.1. Let s > 0, let Vs be a vector subspace of the Hilbert space H =

(V; (�; �)) with inner product (�; �)s and let Ws := (Vs; (�; �)s): We say that Ws is an

sth left-de�nite space associated with the pair (H;A) if
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(i) Ws is a Hilbert space

(ii) D(As) is a vector subspace of Vs

(iii) D(As) is dense in Ws

(iv) (x; x)s � rs(x; x) 8x 2 Vs

(v) (x; y)s = (Asx; y) 8x 2 D(As); y 2 Vs:

Remark 3.1. In a sense, the most important property is (v), as it shows how the sth

left-de�nite space is generated by the sth power of A.

Note that, at this point, the existence of such a left-de�nite space is certainly in

question. However, Littlejohn and Wellman in [39] prove the following result.

Theorem 3.1. Let A : D(A) � H ! H be a self-adjoint operator that is bounded

below by rI for some r > 0. Let s > 0 and de�ne Ws := (Vs; (�; �)s) by

Vs = D(As=2)

and

(x; y)s = (A
s=2x;As=2y) (x; y 2 Vs):

Then Ws is the unique left-de�nite space associated with the pair (H;A).

De�nition 3.2. For s > 0, letWs := (Vs; (�; �)s) be the sth left-de�nite space associated

with (H;A). If there exists a self-adjoint operator Bs : D(Bs) � Ws ! Ws satisfying

Bsf = Af (f 2 D(Bs) � D(A));

we call such an operator an sth left-de�nite operator associated with the pair (H;A).

Note that it is not immediately clear that such an operator exists. However,

its existence and uniqueness is established as follows.
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Theorem 3.2. Let A be a self-adjoint operator in a Hilbert space H that is bounded

below by rI for some r > 0. For any s > 0, let Ws := (Vs; (�; �)s) denote the sth

left-de�nite space associated with (H;A). Then there exists a unique left-de�nite

operator Bs in Ws associated with (H;A). Furthermore,

D(Bs) = Vs+2 � D(A):

Theorem 3.3. Suppose A is a self-adjoint operator in a Hilbert space H that is

bounded below by rI for some r > 0. Let fHs = (Vs; (�; �)s)gs>0 and fBsgs>0 be the

left-de�nite spaces and operators associated with (H;A). Then the following hold:

(1) Suppose A is bounded. Then, for each s > 0,

(i) V = Vs

(ii) the inner products (�; �) and (�; �)s are equivalent

(iii) A = Bs.

(2) Suppose A is unbounded. Then

(i) Vs is a proper subspace of V

(ii) Vs is a proper subspace of Vt whenever 0 < t < s

(iii) the inner products (�; �) and (�; �)s are not equivalent for any s > 0

(iv) the inner products (�; �)t and (�; �)s are not equivalent for any s; t > 0; s 6= t

(v) D(Bs) is a proper subspace of D(A) for each s > 0

(vi) D(Bt) is a proper subspace of D(Bs) whenever 0 < s < t.

Theorem 3.4. For each s > 0, let Bs denote the sth left-de�nite operator associated

with the self-adjoint operator A that is bounded below by rI in H for some s > 0.

Then
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(i) the point spectra of A and Bs are identical, i.e. �p(Bs) = �p(A)

(ii) the continuous spectra of A and Bs coincide, i.e. �c(Bs) = �c(A)

(iii) the resolvent sets of A and Bs are equal, i.e. �(Bs) = �(A).
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CHAPTER FOUR

Spectral Analysis of the Jacobi Di¤erential Equation (�; � > �1)

4.1 The Classical Jacobi Di¤erential Equation

The classical second-order Lagrange symmetrizable Jacobi di¤erential expres-

sion is de�ned by

l�;�[y](x) :=
1

!�;�(x)

h��
�(1� x)�+1(1 + x)�+1

�
y0(x)

�0
+ k(1� x)�(1 + x)�y(x)

i
= �(1� x2)y00(x) + (�� � + (�+ � + 2)x)y0(x) + ky(x)

for �; � > �1 and x 2 (�1; 1), where

!�;�(x) := (1� x)�(1 + x)�

and k � 0 is a spectral parameter which is used to shift the spectrum of the self-

adjoint operator A�;�k to a subset of the positive real line.

With

��;�r;k := r(r + �+ � + 1) + k; (r 2 N0)

the Jacobi di¤erential equation

l�;�[y](x) = ��;�r;k y(x)

has polynomial solutions
n
P
(�;�)
r (x)

o1
r=0
, where P (�;�)r (x) is the rth Jacobi polyno-

mial of exactly degree r; [46]:

P (�;�)r (x) := k�;�r

rX
j=0

(1 + �)r(1 + �+ �)r+j
j!(r � j)!(1 + �)j(1 + �+ �)r

�
1� x
2

�j
(4.1)

and where

k�;�r :=
(r!)1=2(1 + �+ � + 2r)1=2(�(�+ � + r + 1))1=2

2(�+�+1)=2(�(�+ r + 1))1=2(�(� + r + 1))1=2
:
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In fact,
n
P
(�;�)
r (x)

o1
r=0

forms a complete orthonormal set in the weighted L2-space

L2�;�(�1; 1) = L2((�1; 1); (1� x)�(1 + x)�), i.e.

(P (�;�)r ; P (�;�)n )�;� = �r;n (r; n 2 N0):

The derivatives of the Jacobi polynomials satisfy the identity

dj

dxj
P (�;�)r (x) = a(�;�)(r; j)P

(�+j;�+j)
r�j (x) (r; j 2 N0); (4.2)

where

a(�;�)(r; j) =
(r!)1=2 (�(�+ � + r + 1 + j))1=2

((r � j)!)1=2 (�(�+ � + r + 1))1=2
(j = 0; 1; :::; r);

and a(�;�)(r; j) = 0 if j > r. Furthermore,

1Z
�1

dj
�
P
(�;�)
r (x)

�
dxj

dj
�
P
(�;�)
n (x)

�
dxj

w�+j;�+j(x)dx (4.3)

=
r!�(�+ � + r + 1 + j)

(r � j)!�(�+ � + r + 1)
�r;n (r; n; j 2 N0):

We remark that, equivalently, the Jacobi polynomials may be de�ned by

P (�;�)n (x) :=
nX
k=0

�
n+ �

k

��
n+ �

n� k

��
x� 1
2

�k �
x+ 1

2

�n�k
(n 2 N0) (4.4)

as in [10]. Up to the normalization constant k(�;�)r ; these polynomials are identical

to the ones in (4.1). The connection can be seen by using the 2F1�representation for

the Jacobi polynomials as in [46]. The set
n
P
(�;�)
n (x)

o1
n=0

satis�es the orthogonality

relation

1Z
�1

P (�;�)n (x)P (�;�)m (x)(1� x)�(1 + x)�dx

=
2�+�+1�(n+ �+ 1)�(n+ � + 1)

(2n+ �+ � + 1)�(n+ �+ � + 1)n!
�m;n

for �; � > �1:
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The Rodrigues�formula for the Jacobi polynomials (for x 2 (�1; 1)) is

P (�;�)n (x) = (�2)�n(n!)�1(1� x)��(1 + x)�� d
n

dxn
�
(1� x)n+�(1 + x)n+�

�
and many properties hold for arbitrary parameters � and �, but for integrability

purposes one is restricted to �; � > �1. The Jacobi polynomials satisfy the three-

term recurrence relation

2n(n+ �+ �)(2n+ �+ � � 2)P (�;�)n (x) = (2n+ �+ � � 1) [(2n+ �+ �)�

(2n+ �+ � � 2)x+ �2 � �2
�
P
(�;�)
n�1 (x) (4.5)

� 2(n+ �� 1)(n+ � � 1)(2n+ �+ �)P
(�;�)
n�2 (x)

for n � 1:

We note that for � = � = �1, by Favard�s theorem, the full sequence of Jacobi

polynomials cannot be orthogonal on the real line with respect to an inner product

of the form
R
R
f(x)g(x)d�; where � is a measure. This observation shall be the

starting point for the study of the Sobolev orthogonality of the Jacobi polynomials

for � = � = �1 in chapter 5.

A generating function for the Jacobi polynomials is

2�+�R�1(1� w +R)��(1 + w +R)�� =
1X
n=0

P (�;�)n (x)wn

where

R := (1� 2xw + w2)1=2:

A di¤erentiation formula is

(2n+ �+ �)(1� x2) d
dx
P (�;�)n (x) = n [�� � � (2n+ �+ �)x]P (�;�)n (x)

+ 2(n+ �)(n+ �)P
(�;�)
n�1 (x)

or
d

dx
P (�;�)n (x) =

1

2
(n+ �+ � + 1)P

(�+1;�+1)
n�1 (x);
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and the sequence of derivatives also forms an orthogonal polynomial system.

Special cases of the Jacobi polynomials are the Legendre polynomials (� =

� = 0), the Chebychev polynomials of the �rst kind (� = � = 1=2) and of the

second kind (� = � = �1=2); in general, when � = �, the Jacobi polynomials are

also called Gegenbauer or ultraspherical polynomials.

Useful identities include

P (�;�)n (�x) = (�1)nP (�;�)n (x)

P (�;�)n (1) =

�
n+ �

n

�
and �

n

l

�
P (�l;�)n (x) =

�
n+ �

l

��
x� 1
2

�l
P
(l;�)
n�l (x) (l 2 N; 1 � l � n):

4.2 Combinatorics and Jacobi-Stirling Numbers

The key to constructing the left-de�nite spaces associated with the Jacobi

di¤erential expression is to determine the integral composite powers ln�;�[:] (n 2 N)

of the Jacobi di¤erential expression. In [17], the authors show that the Jacobi-

Stirling numbers are closely connected to the explicit representation of the powers

ln�;�[:]. These results are purely algebraic and therefore hold for arbitrary parameters

� and �. We shall apply these results in chapter 5 and 6 to construct the left-de�nite

spaces associated with the Jacobi expression for � = � = �1; so let us state the

following de�nitions and theorems from [17].

Theorem 4.1. Suppose k � 0 and n 2 N: For each m 2 N0; the recurrence relations

(m(m+ �+ � + 1) + k)n =

nX
j=0

c
(�;�)
j (n; k)

m!�(�+ � +m+ 1 + j)

(m� j)!�(�+ � +m+ 1)

have a unique solution

�
c
(�;�)
0 (n; k); c

(�;�)
1 (n; k); :::; c(�;�)n (n; k)

�
;
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where each c(�;�)j (n; k) is independent of m; given explicitly by

c
(�;�)
0 (n; k) :=

8><>: 0 if k = 0

kn if k > 0
; (4.6)

and, for j 2 f1; 2; :::; ng;

c
(�;�)
j (n; k) :=

8><>:
P (�;�) if k = 0
n�jP
s=0

�
n
s

�
P (�;�)S

(j)
n�sk

s if k > 0
; (4.7)

where each P (�;�)S(j)n is positive and given by

P (�;�)S(j)n :=

jX
r=0

(�1)r+j�(�+ � + r + 1)�(�+ � + 2r + 2)[r(r + �+ � + 1)]n

r!(j � r)!�(�+ � + 2r + 1)�(�+ � + j + r + 2)

(4.8)

for each n 2 N and j 2 f1; 2; :::; ng: The number P (�;�)S(j)n is called the Jacobi-

Stirling number of order (n; j) associated with (�; �): This de�nition is extended

by

P (�;�)S
(0)
0 := 1

P (�;�)S(j)n := 0 if j 2 N and 0 � n � j � 1

P (�;�)S(0)n := 0 for n 2 N:

a) Let k � 0. For each n 2 N, the nth composite power of the classical Ja-

cobi di¤erential expression l�;�[:] is Lagrange symmetrizable, with symmetry factor

!�;�(t) = (1� t)�(1 + t)�, and it is given explicitly by

!�;�(t)l
n
�;�[y](t) =

nX
j=0

(�1)j
�
c
(�;�)
j (n; k)(1� t)�+j(1 + t)�+jy(j)(t)

�(j)
where c(�;�)j (n; k) is de�ned as in 4.6 and 4.7. Moreover, for p; q 2 P , the following
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identity is valid:

(ln�;�[p]; q)�;� =

1Z
�1

ln�;�;k[p](t)q(t)!�;�(t)dt

=

nX
j=0

c
(�;�)
j (n; k)

1Z
�1

p(j)(t)q(j)(t)(1� t)�+j(1 + t)�+jdt:

b) For every n 2 N, the bilinear form (:; :)
(�;�)
n de�ned on P � P by

(p; q)(�;�)n :=

nX
j=0

c
(�;�)
j (n; k)

1Z
�1

p(j)(t)q(j)(t)(1� t)�+j(1 + t)�+jdt (p; q 2 P )

is an inner product when k > 0, and, for each k � 0,

(ln�;�;k[p]; q)�;� = (p; q)
(�;�)
n;k (p; q 2 P ):

c) For each k � 0, the Jacobi polynomials
n
P
(�;�)
m

o1
m=0

are orthogonal with respect

to (:; :)(�;�)n :

(P (�;�)m ; P (�;�)r )(�;�)n = (m(m+ �+ � + 1) + k)n�m;r:

4.3 Right-De�nite Spectral Analysis

Here we shall brie�y state the operator-theoretic properties of the classical

Jacobi di¤erential expression l�;�[:] as found in [17] and references therein.

The maximal domain �(�;�) of l�;�[:] in L2�;�(�1; 1) is given by

�(�;�) :=
�
f 2 L2�;�(�1; 1)

��f; f 0 2 ACloc(�1; 1); l�;�[f ] 2 L2�;�(�1; 1)	 :
Note that �(�;�) is a dense vector subspace of L2�;�(�1; 1) since it contains the space

of all polynomials P. The maximal operator T (�;�)max generated by l�;�[:] in L2�;�(�1; 1)

is then de�ned by

T (�;�)max (f) := l�;�[f ]

D
�
T (�;�)max

�
:= �(�;�):
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The minimal operator T (�;�)min is de�ned as the Hilbert space adjoint of T (�;�)max ;

T
(�;�)
min :=

�
T (�;�)max

��
:

The minimal operator is closed, symmetric, and satis�es

�
T
(�;�)
min

��
= T (�;�)max :

The de�ciency index d
�
T
(�;�)
min

�
of T (�;�)min depends on the values of � and � and is

given by

d
�
T
(�;�)
min

�
=

8>>>><>>>>:
(0; 0) if �; � � 1

(1; 1) if � � 1 and � 2 (�1; 1) or � � 1 and � 2 (�1; 1)

(2; 2) if �; � 2 (�1; 1)

:

By the von-Neumann theory of self-adjoint extensions of symmetric operators [12],

T
(�;�)
min has self-adjoint extensions in L2�;�(�1; 1) for all �; � > �1: There is a unique

self-adjoint extension when �; � � 1 since the de�ciency index is (0; 0):

The singular endpoints x = �1 of the Lagrange symmetric di¤erential expres-

sion w�;�l�;�[:] satisfy the following limit-point/limit-circle criteria in L2�;�(�1; 1) :

(i) the endpoint x = +1 is limit-point if � � 1; if �1 < � < 0; x = +1 is

regular, and if 0 � � < 1; x = +1 is limit-circle, non-oscillatory;

(ii) the endpoint x = �1 is limit-point if � � 1; if �1 < � < 0; x = �1 is

regular, and if 0 � � < 1; x = �1 is limit-circle, non-oscillatory.

From the Glazman-Krein-Naimark theory [2],[43], the operator

A(�;�) : D
�
A(�;�)

�
� L2�;�(�1; 1) �! L2�;�(�1; 1)

A(�;�)(f) := l�;�[f ]
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where D
�
A(�;�)

�
:=8>>>>>>>>><>>>>>>>>>:

�(�;�) if �; � � 1n
f 2 �(�;�)

���lim
x!1
(1� x)�+1f 0(x) = 0

o
if j�j < 1 and � � 1�

f 2 �(�;�)

���� limx!�1
(1 + x)�+1f 0(x) = 0

�
if j�j < 1 and � � 1�

f 2 �(�;�)

���� limx!�1
(1� x)�+1(1 + x)�+1f 0(x) = 0

�
if � 1 < �; � < 1:

is self-adjoint in L2�;�(�1; 1). The Jacobi polynomials
n
P
(�;�)
n

o1
n=0

form a complete

set of eigenfunctions of A(�;�) in L2�;�(�1; 1); and the spectrum of A(�;�) is given by

�
�
A(�;�)

�
= fn(n+ �+ � + 1) + k jn 2 N0g :

In particular,

�
�
A(�;�)

�
� [k;1) ;

implying that A(�;�) is bounded below by kI in L2�;�(�1; 1), i.e.�
A(�;�)f; f

�
�;�
� k (f; f)�;�

�
f 2 D

�
A(�;�)

��
:

Consequently, the left-de�nite theory can be applied to this self-adjoint operator.

For f; g 2 D
�
A(�;�)

�
; we have the well-known Dirichlet-identity for A(�;�)

�
A(�;�)f; g

�
�;�
=

1Z
�1

l�;�[f ](x)g(x)(1� x)�(1 + x)�dx

=

1Z
�1

�
(1� x)�+1(1 + x)�+1f 0(x)g0(x) (4.9)

+k(1� x)�(1 + x)�f(x)g(x)
	
dx

as a consequence of the strong limit-point condition on the domain D
�
A(�;�)

�
:

lim
x!�1

(1� x)�+1(1 + x)�+1f(x)g0(x) = 0
�
f; g 2 D

�
A(�;�)

��
:

Note that Dirichlet�s identity holds on D
�
A(�;�)

�
; and not in general on the maximal

domain �(�;�). Furthermore, when k > 0; the right-hand side of 4.9 satis�es the
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conditions of an inner product. We de�ne the inner product (�; �)(�;�)1 on D
�
A(�;�)

�
�

D
�
A(�;�)

�
by

(f; g)(�;�)1 :=

1Z
�1

�
(1� x)�+1(1 + x)�+1f 0(x)g0(x) + k(1� x)�(1 + x)�f(x)g(x)

	
dx

for all f; g 2 D
�
A(�;�)

�
: The authors extend this inner product to the set V (�;�)

1 �

V
(�;�)
1 where V (�;�)

1 is the �rst left-de�nite space associated with
�
L2�;�(�1; 1); A(�;�)

�
:

The inner product (�; �)(�;�)1 is called the �rst left-de�nite inner product in the liter-

ature.

4.4 Left-De�nite Spectral Analysis

This section will give a summary of the left-de�nite results by Everitt, Kwon,

Littlejohn, Wellman and Yoon [17]. In the following, we shall write

L2�;�(�1; 1) := L2
�
(�1; 1); (1� x)�(1 + x)�

�
:

De�nition 4.1. Let k > 0. For each n 2 N, de�ne

V (�;�)
n :=

n
f : (�1; 1)! C j f 2 AC(n�1)loc (�1; 1); f (j) 2 L2�+j;�+j(�1; 1); j = 0; 1; :::; n

o
and let (:; :)(�;�)n and k:k(�;�)n denote the inner product

(f; g)(�;�)n :=
nX
j=0

c
(�;�)
j (n; k)

1Z
�1

f (j)(t)g(j)(t)(1�t)�+j(1+t)�+jdt (f; g 2 V (�;�)
n );

and the norm kfk(�;�)n := ((f; f)
(�;�)
n )1=2, where the numbers c(�;�)j (n; k) are de�ned

as in 4.6 and 4.7. Let

W
(�;�)
n;k (�1; 1) := (V (�;�)

n ; (�; �)(�;�)n ):

Note that, from the non-negativity of each of the numbers c(�;�)j (n; k), j =

0; 1; :::; n, we have�
kfk(�;�)n

�2
=

nX
j=0

c
(�;�)
j (n; k)

f (j)2
�+j;�+j

� c
(�;�)
j (n; k)

f (j)2
�+j;�+j

(j = 0; 1; :::; n; f 2 V (�;�)
n ):
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In particular, if j = 0, we see that

(f; f)(�;�)n � kn(f; f)�;� (f 2 W (�;�)
n (�1; 1));

so the left-de�nite theory can be applied.

Theorem 4.2. Let k > 0: For each n 2 N; W (�;�)
n;k (�1; 1) is a Hilbert space.

Theorem 4.3. Let k > 0: The Jacobi polynomials
n
P
(�;�)
n (x)

o1
n=0

form a complete

orthogonal set in the space W (�;�)
n;k (�1; 1): Equivalently, the space P of polynomials

is dense in W (�;�)
n;k (�1; 1).

We are now ready to state the main result in [17].

Theorem 4.4. For k > 0, let

A
(�;�)
k : D

�
A
(�;�)
k

�
� L2�;�(�1; 1) �! L2�;�(�1; 1)

be the Jacobi self-adjoint operator having the Jacobi polynomials
n
P
(�;�)
m

o1
m=0

as

eigenfunctions. For each n 2 N, let

V (�;�)
n :=

n
f : (�1; 1) �! C

���f 2 AC(n�1)loc ; f (j) 2 L2(�+j;�+j)(�1; 1); j = 0; :::; n
o

and

(f; g)
(�;�)
n;k :=

nX
j=0

c
(�;�)
j (n; k)

1Z
�1

f (j)(t)g(j)(t)(1� t)�+j(1 + t)�+jdt (f; g 2 V (�;�)
n ):

Then W (�;�)
n;k (�1; 1) :=

�
V
(�;�)
n ; (�; �)(�;�)n;k

�
is the nth left-de�nite space associated with�

L2�;�(�1; 1); A
(�;�)
k

�
. Moreover, the Jacobi polynomials

n
P
(�;�)
m

o1
m=0

form a com-

plete orthogonal set in each W (�;�)
n;k (�1; 1), and they satisfy the orthogonality relation�

P (�;�)m ; P
(�;�)
l

�
n;k
= (m(m� 1) + k)n�m;l:

Furthermore, de�ne

B
(�;�)
n;k := D

�
B
(�;�)
n;k

�
� W

(�;�)
n;k (�1; 1) �! W

(�;�)
n;k (�1; 1)
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by

B
(�;�)
n;k f := l [f ]

�
f 2 D

�
B
(�;�)
n;k

�
:= V

(�;�)
n+2

�
:

Then B
(�;�)
n;k is the nth left-de�nite operator associated with

�
L2�;�(�1; 1); A

(�;�)
k

�
.

Lastly, the spectrum of B(�;�)
n;k is given by

�
�
B
(�;�)
n;k

�
= fm(m� 1) + k jm 2 N0g = �fA(�;�)k g;

and the Jacobi polynomials
n
P
(�;�)
m

o1
m=0

form a complete set of eigenfunctions of

each B(�;�)
n;k .
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CHAPTER FIVE

Spectral Analysis of the Jacobi Di¤erential Equation (�; � = �1)

The art of doing mathematics consists in �nding that special case which contains all

the seeds of generality.

- David Hilbert

In this chapter, the Jacobi di¤erential equation will be considered for the non-

classical parameters � = � = �1: The authors in [17] study the Jacobi di¤erential

equation for classical parameters (�; � > �1) and develop the left-de�nite spectral

analysis associated with the self-adjoint Jacobi operator which has the full sequence

of Jacobi polynomials as a complete set of eigenfunctions. Note that, for non-classical

parameters, the full sequence of Jacobi polynomials cannot be orthogonal on R with

respect to any bilinear form of type (f; g)� =
R
R
fgd�; for some positive or signed

measure �; this is an application of Favard�s theorem (see [10]). However, it is known

that the Jacobi polynomials for parameters � = � = �1 are orthogonal with respect

to a Sobolev inner product [35],

� (f; g) :=
1

2
f(�1)g(�1) + 1

2
f(1)g(1) +

1Z
�1

f 0(x)g0(x)dx;

that is to say,

�
�
P (�1;�1)n ; P (�1;�1)m

�
= �nm (n;m 2 N0):

This observation is the starting point for this work, and a proof is included below

(see theorem 5.3). It is a natural question to ask if there exists a self-adjoint operator

in a certain Hilbert space which is equipped with this Sobolev inner product that has

the full sequence of Jacobi polynomials as a complete set of eigenfunctions. Here,

this question will be answered in the a¢ rmative; the self-adjoint operator and its

domain will be constructed at the end of this chapter. The left-de�nite spectral
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analysis will play a key role in this construction. These results will be extended to

the more general case of parameters � > �1; � = �1 in the next chapter. Let us

begin by establishing some (right-de�nite) spectral results for the Jacobi di¤erential

equation for non-classical parameters.

5.1 Right-De�nite Spectral Analysis

For � = � = �1, the Jacobi di¤erential expression reduces to

l�1;�1[y](x) := (1� x2)
�
�(y0(x))0 + k(1� x2)�1y(x)

�
(5.1)

for x 2 (�1; 1) and where k � 0 is a constant. For brevity, let us de�ne

L2�1;�1(�1; 1) := L2
�
(�1; 1); (1� x2)�1

�
; (5.2)

and, more generally,

L2�;�(�1; 1) := L2
�
(�1; 1); (1� x)�(1 + x)�

�
:

The maximal domain associated with l�1;�1[:] in L2�1;�1(�1; 1) is

� :=
�
f : (�1; 1) �! C j f; f 0 2 ACloc(�1; 1); f; l[f ] 2 L2�1;�1(�1; 1)

	
:

For f; g 2 � and [a; b] � (�1; 1), we have Dirichlet�s formula:
bZ
a

l�1;�1[f ](x)g(x)(1� x2)�1dx = �f 0(x)g(x) jba

+

bZ
a

�
f 0(x)g0(x) + k(1� x2)�1f(x)g(x)

�
dx

and Green�s formula:

bZ
a

l�1;�1[f ](x)g(x)(1� x2)�1dx = [f(x)g0(x)� f 0(x)g(x)] jba

+

bZ
a

f(x)l�1;�1[g](x)(1� x2)�1dx.
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Dirichlet�s formula for a �! �1; b �! 1 is a key result in constructing the left-

de�nite inner products and in establishing that the (right-de�nite) self-adjoint op-

erator from the GKN theory is bounded below for the left-de�nite theory to apply.

Green�s formula in turn shows that this operator is indeed Hermitian if the inte-

grated out terms vanish as a �! �1; b �! 1: However, initially there is no reason

to expect
bR
a

f 0(x)g0(x)dx to be �nite or the integrated out terms to vanish in the

limit as a �! �1; b �! 1. Thus we shall prove the following result.

Theorem 5.1. The Jacobi di¤erential expression (5.1) is strong limit-point (SLP)

and Dirichlet at x = �1, i.e.

(i) (Dirichlet)
1R
0

jf 0(t)j2 dt <1 and
0R
�1
jf 0(t)j2 dt <1 for all f 2 � and

(ii) (SLP) lim
x!�1

f 0(x)g(x) = 0 for all f; g 2 �:

Note that strong limit-point implies that the Jacobi expression is in the limit-point

condition in the sense of Weyl�s second theorem.

The proof is via the following three lemmas. We begin by rewriting the maxi-

mal domain as

� :=

�
f : (�1; 1) �! C j f; f 0 2 ACloc(�1; 1);

fp
1� x2

;
p
1� x2f 00 2 L2(�1; 1)

�
and by recalling a result by Chisholm and Everitt, [8], [9].

Theorem 5.2. (Chisholm-Everitt) Let (a; b) � R, c 2 (a; b), and assume that

' 2 L2(a; c)

 2 L2(c; b):

De�ne the two linear operators

S; T : L2(a; b) �! L2loc(a; b)
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by

(Sf) (x) := '(x)

bZ
x

 (x)f(x)dx

(Tf) (x) :=  (x)

xZ
a

'(x)f(x)dx:

Then S and T are bounded operators into L2(a; b) if and only if there exists K > 0

such that
xZ
a

j'(x)j2 dx �
bZ
x

j (x)j2 dx � K 8x 2 (a; b):

Lemma 5.1 (Dirichlet). f 0 2 L2(�1; 1) 8f 2 �: In particular, f 2 AC[�1; 1]:

Proof. Write

f 0(x) = f(0) +

xZ
0

f 00(t)
p
1� t2p

1� t2
dt (x 2 [0; 1)) (5.3)

and apply Chisholm-Everitt with '(x) = 1 and  (x) = 1p
1�x2 : Since

xZ
0

 2(t)dt

xZ
0

'2(t)dt =
1

2
(1� x) ln(1 + x

1� x)

is bounded on [0; 1), we see that
xR
0

f 00(t)
p
1�t2p

1�t2 dt 2 L2[0; 1): Hence, f 0 2 L2[0; 1):

Similarly, f 0 2 L2(�1; 0):

Lemma 5.2. f(�1) = 0 for all f 2 �:

Proof. Note that from the previous lemma, f 2 AC[�1; 1] and thus we may de�ne

f(�1) := lim
x!�1

f(x);

and the limits exist and are �nite. First let us consider f(1) and suppose that

f(1) 6= 0: Without loss of generality, we may assume that f(1) > 0: By continuity,

there exists x� 2 (0; 1) such that

f(x) >
f(1)

2
for x 2 [x�; 1):
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Then

1 >

1Z
0

jf(t)j2

1� t2 dt �
1Z

x�

jf(t)j2

1� t2 dt �
(f(1))2

4

1Z
x�

dt

1� t2 =1;

a contradiction. A similar argument shows that f(�1) = 0:

Lemma 5.3 (Strong limit-point). lim
x!1�

f(x)g0(x) = 0 for all f; g 2 �:

Proof. Let f; g 2 �; and assume that f; g are both real-valued. Note that fp
1�x2

and
p
1� x2g00 2 L2(�1; 1); which implies fg00 2 L1(�1; 1): Now

xZ
0

f(t)g00(t)dt = f(t)g0(t) jx0 �
xZ
0

f 0(t)g0(t)dt:

By our �rst lemma, lim
x!1�

xR
0

f 0(t)g0(t)dt exists and is �nite. Since lim
x!1�

xR
0

f(t)g00(t)dt

exists and is �nite, we see that lim
x!1�

f(x)g0(x) exists and is �nite. We will now show

that necessarily lim
x!1�

f(x)g0(x) = 0 for all f; g 2 �: Suppose that lim
x!1�

f(x)g0(x) =

c > 0; we may assume that, for x close to 1;

f(x) > 0 and g0(x) > 0:

Hence, there exists x� 2 [0; 1) such that g0(x) � ec
f(x)

for x 2 [x�; 1); where ec = c
2
> 0:

Therefore,

jf 0(x)g0(x)j � ec jf 0(x)j
f(x)

(x 2 [x�; 1)) :

Integrate to obtain

xZ
x�

jf 0(t)g0(t)j dt � ec xZ
x�

jf 0(t)j
f(t)

dt � ec
������
xZ

x�

f 0(t)

f(t)
dt

������ = ec jln f(x)j+ k:

Now let x! 1�; from lemma 5.1,

1 >

1Z
x�

jf 0(t)g0(t)j dt � k + ec lim
x!1�

jln f(x)j =1;

a contradiction by the second lemma. It can be shown in a similar fashion that the

Jacobi di¤erential expression (for �; � = �1) is strong limit-point at x = �1:
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This completes the proof of the theorem, i.e. the Jacobi di¤erential expression (for

�; � = �1) is both strong limit-point and Dirichlet at x = �1 on �.

We now de�ne the operator

A : D(A) � L2�1;�1(�1; 1) �! L2�1;�1(�1; 1)

by

Af = l�1;�1[f ]

f 2 D(A) := �:

By the Glazman-Krein-Naimark theory, since x = �1 are SLP (in fact, all

that is necessary is that x = �1 are LP), A is self-adjoint (and, in fact, is the same

as the minimal or the maximal operator generated by l�1;�1[:] in L2�1;�1(�1; 1)).

By our theorem, we have Green�s formula,

(Af; g)L2�1;�1(�1;1)
=

1Z
�1

l�1;�1[f ](x)g(x)(1� x2)�1dx = (f; Ag)L2�1;�1(�1;1)

(i.e. A is Hermitian), and Dirichlet�s formula,

(Af; g)L2�1;�1(�1;1)
=

1Z
�1

�
f 0(x)g0(x) + k(1� x2)�1f(x)g(x)

�
dx =: (f; g)1

and we will see that this is the �rst left-de�nite inner product generated from l�1;�1[�].

Note, in particular, that

(Af; f)L2�1;�1(�1;1)
=

1Z
�1

h
jf 0(x)j2 + k(1� x2)�1 jf(x)j2

i
dx

� k (f; f)L2�1;�1(�1;1)

i.e. A is bounded below in L2�1;�1(�1; 1) by kI, so that the left-de�nite theory can

be applied.
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5.2 Completeness Results

For � = � = �1; we note again that the Jacobi di¤erential equation is given by

�(1� x2)y00 + ky = �y (5.4)

where we now assume that k > 0 and x 2 (�1; 1). We shall study the second-

order di¤erential equation l�1;�1[y] = �y; where l�1;�1[�] is as in (5.1), and the initial

Hilbert space setting is L2�1;�1(�1; 1) as de�ned in (5.2).

Based on the (equivalent) de�nitions of the Jacobi polynomials in (4.1) and

(4.4), we de�ne the Jacobi polynomials for � = � = �1 as

P (�1;�1)n (x) :=
nX
j=0

�
n� 1
j

��
n� 1
n� j

��
x� 1
2

�j �
x+ 1

2

�n�j
:

We see immediately that there is degeneracy for the polynomial of degree 1 :

P
(�1;�1)
0 (x) = 1 and P (�1;�1)1 (x) = 0. However, it is important to note that any

�rst degree polynomial will be a solution of equation (5.4). Therefore, we rede�ne

P
(�1;�1)
1 (x) and normalize the sequence of Jacobi polynomials as follows:

De�nition 5.1. De�ne the Jacobi polynomials for � = � = �1 as

P
(�1;�1)
0 (x) := 1

P
(�1;�1)
1 (x) :=

xp
3
;

and, for n � 2,

P (�1;�1)n (x) :=

r
2n(2n� 1)
n� 1

nX
j=0

�
n� 1
n� j

��
n� 1
j

��
x� 1
2

�j �
x+ 1

2

�n�j
:

With this de�nition of the Jacobi polynomials, it is the case that
n
P
(�1;�1)
n

o1
n=2

forms a complete orthonormal set in L2 ((�1; 1); (1� x2)�1) ; that is to say,

�
P (�1;�1)m ; P (�1;�1)n

�
�1;�1 = �mn (m;n � 2) ;

see lemma 5.6.
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For the remainder of this chapter, we shall write P (�1;�1)n (x) to mean the nth

Jacobi polynomial normalized as in the de�nition above.

To show that the Jacobi polynomials are orthonormal with respect to a Sobolev

inner product, we renormalize the Jacobi polynomials as follows for our next two

results:

De�nition 5.2. De�ne the Jacobi polynomials for � = � = �1 as

eP (�1;�1)0 (x) := 1 (5.5)

eP (�1;�1)1 (x) :=
xp
3

(5.6)

and, for n � 2,

eP (�1;�1)n (x) :=
(2n� 1)

1
2

2�1=2 (n� 1)

nX
j=0

�
n� 1
n� j

��
n� 1
j

��
x� 1
2

�j �
x+ 1

2

�n�j
:

Lemma 5.4. For n � 2,

eP (�1;�1)n (x) = �n(x
2 � 1) eP (1;1)n�2 (x) (5.7)

where

�n =
21=2(2n� 1)1=2
4(n� 1) :

Proof. Note that

eP (1;1)n�2 (x) =

�
1

2

�n�2 n�2X
j=0

�
n� 1
j

��
n� 1

n� 2� j

�
(x� 1)n�2�j(x+ 1)j:

Now,

eP (�1;�1)n (x) =
(2n� 1)

1
2

2n�1=2 (n� 1)

nX
j=0

�
n� 1
j

��
n� 1
n� j

�
(x� 1)n�j(x+ 1)j

=
(2n� 1)

1
2

2n�1=2 (n� 1)

n�1X
j=1

�
n� 1
j

��
n� 1
n� j

�
(x� 1)n�j(x+ 1)j;

since
�
n�1
n

�
= 0: Shifting the index from j to j + 1 yields

eP (�1;�1)n (x) =
(2n� 1)

1
2

2n�1=2 (n� 1)

n�2X
j=0

�
n� 1
j + 1

��
n� 1

n� j � 1

�
(x� 1)n�j�1(x+ 1)j+1:
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Note that
�
n�1
n�j�1

�
=
�
n�1
j

�
, and

�
n�1
j+1

�
=
�
n�1
n�2�j

�
to obtain

eP (�1;�1)n (x) =
(2n� 1)

1
2

2n�1=2 (n� 1)

n�2X
j=0

�
n� 1
j

��
n� 1

n� 2� j

�
(x� 1)n�j�1(x+ 1)j+1

=
21=2(2n� 1)1=2

n� 1 (x2 � 1)2�2 eP (1;1)n�2 (x);

which agrees with (5.7) if we choose

�n =
21=2(2n� 1)1=2
4(n� 1) :

We shall use this lemma to prove that the Jacobi polynomials for � = � = �1 are

orthonormal with respect to a Sobolev inner product.

Theorem 5.3. The Jacobi polynomials
n eP (�1;�1)n (x)

o1
n=0

as given in (5.6), are ortho-

normal with respect to the Sobolev inner product

� (f; g) :=
1

2
f(�1)g(�1) + 1

2
f(1)g(1) +

1Z
�1

f 0(x)g0(x)dx;

i.e.

�
� eP (�1;�1)n ; eP (�1;�1)m

�
= �nm (n;m 2 N0):

Proof. A calculation shows that

�
� eP (�1;�1)0 ; eP (�1;�1)0

�
= �

� eP (�1;�1)1 ; eP (�1;�1)1

�
= 1:

For n = 0;m = 1;

�
� eP (�1;�1)0 ; eP (�1;�1)1

�
= 0:

Let n = 0;m � 2; and use lemma 5.4 to see that

�
� eP (�1;�1)0 ; eP (�1;�1)m

�
= 0

and

�
� eP (�1;�1)1 ; eP (�1;�1)m

�
= 0:

43



For n;m � 2;

�
� eP (�1;�1)n ; eP (�1;�1)m

�
=
1

2
eP (�1;�1)n (�1) eP (�1;�1)m (�1) + 1

2
eP (�1;�1)n (1) eP (�1;�1)m (1)

+

1Z
�1

� eP (�1;�1)n (x)
�0 � eP (�1;�1)m (x)

�0
dx:

The �rst two summands vanish by the previous lemma. Note that
� eP (�1;�1)n

�0
re-

duces to a Legendre polynomial (that is, � = � = 0; and the nth Legendre polynomial

is denoted by ePn(x)) by the following well known identity (see [10] page 149)
d

dx
eP (�1;�1)n (x) =

1

2
(n� 1) eP (0;0)n�1 (x) =

1

2
(n� 1) ePn(x)

so that

�
� eP (�1;�1)n ; eP (�1;�1)m

�
=
21=2(2n� 1)1=2

n� 1
21=2(2m� 1)1=2

m� 1

� 1
4
(n� 1)(m� 1)

1Z
�1

ePn(x) ePm(x)dx
= (2n� 1)1=2(2m� 1)1=2 1

2n� 1�nm

= �nm:

From the theory of classical orthogonal polynomials, it is well known that the

Jacobi polynomials for � = � = 1 are dense in a weighted L2�space:

Lemma 5.5. The sequence
n
P
(1;1)
n (x)

o1
n=0

forms a complete orthogonal set in the

Hilbert space L2 ((�1; 1); (1� x2)) :

We shall use this lemma to establish the following result.

Lemma 5.6. The sequence
n
P
(�1;�1)
n (x)

o1
n=2

forms a complete orthogonal set in the

Hilbert space L2 ((�1; 1); (1� x2)�1) :
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Equivalently, the set of all polynomials P�1[�1; 1] of degree � 2 satisfy-

ing p(�1) = 0 is dense in L2 ((�1; 1); (1� x2)�1). These statements are equiva-

lent because a complete orthogonal set is dense, and by lemma 5.4, they satisfy

p(�1) = 0. Moreover, the Jacobi polynomials
n
P
(�1;�1)
n (x)

o1
n=2

form a complete

orthonormal set in L2 ((�1; 1); (1� x2)�1) : In fact, for each j 2 N0; the Jacobi poly-

nomials
n
P
(j�1;j�1)
n (x)

o1
n=2

form a complete orthonormal set in the Hilbert space

L2j�1;j�1(�1; 1).

Proof. Note that

1Z
�1

jf(x)j2 (1� x2)�1dx =
1Z

�1

��(1� x2)�1f(x)��2 (1� x2)dx;
i.e. f 2 L2 ((�1; 1); (1� x2)�1) () (1 � x2)�1f 2 L2 ((�1; 1); (1� x2)) ; and in

this case,

kfkL2((�1;1);(1�x2)�1) =
(1� x2)�1f

L2((�1;1);(1�x2)) :

Let f 2 L2 ((�1; 1); (1� x2)�1) ; and let � > 0: Hence

(1� x2)�1f 2 L2
�
(�1; 1); (1� x2)

�
;

so by lemma 5.5, there exists q 2 P [�1; 1] such that

(1� x2)�1f � q
L2((�1;1);(1�x2)) < �:

Let p(x) := (1 � x2)q(x): Then p is a polynomial of degree � 2; and we may write

q(x) = (1� x2)�1p(x): Hence

� >
(1� x2)�1f � (1� x2)�1p

L2((�1;1);(1�x2))

=
(1� x2)�1(f � p)

L2((�1;1);(1�x2))

= kf � pkL2((�1;1);(1�x2)�1)

which completes the proof of the lemma.
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5.3 Left-De�nite Spectral Analysis

De�nition 5.3. For each n 2 N; de�ne

W
(�1;�1)
n;k (�1; 1) :=

�
V (�1;�1)
n ; (:; :)

(�1;�1)
n;k

�
;

where

V (�1;�1)
n :=

n
f : (�1; 1) �! C j f 2 AC(n�1)loc (�1; 1); (5.8)

f (j) 2 L2
�
(�1; 1); (1� x2

�j�1
); j = 0; 1; ::; n

o
and

(f; g)
(�1;�1)
n;k :=

nX
j=0

c
(�1;�1)
j (n; k)

1Z
�1

f (j)(x)g(j)(x)(1� x2)j�1dx:

We shall show thatW (�1;�1)
n;k (�1; 1) is the nth left-de�nite space associated with

the pair
�
L2 ((�1; 1); (1� x2)�1) ;A(�1;�1)k

�
:

Theorem 5.4. Let k > 0. For each n 2 N, W (�1;�1)
n;k (�1; 1) is a Hilbert space.

Proof. Let n 2 N; and let ffmg1m=1 be a Cauchy sequence in W
(�1;�1)
n;k (�1; 1): Then,

since the numbers c(�1;�1)j (n; k) � 0;�
kfm � frk(�1;�1)n;k

�2
=

nX
j=0

c
(�1;�1)
j (n; k)

f (j)m � f (j)r 2(1�x2)j�1
� c(�1;�1)n (n; k)

f (n)m � f (n)r

2
(1�x2)n�1 (5.9)

so
n
f
(n)
m

o1
m=1

is a Cauchy sequence in L2 ((�1; 1); (1� x2)n�1) ; and hence there

exists a gn+1 2 L2 ((�1; 1); (1� x2)n�1) such that

f (n)m �! gn+1 (5.10)

in L2 ((�1; 1); (1� x2)n�1) as m �!1: In particular, gn+1 2 L1loc(�1; 1) : �x t; t0 2

(�1; 1) such that t0 � t: Then, by Hölder�s inequality,

tZ
t0

��f (n)m (u)� gn+1(u)
�� du = tZ

t0

��f (n)m (u)� gn+1(u)
�� (1� u2)(n�1)=2(1� u2)�(n�1)=2du
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�

0@ tZ
t0

��f (n)m (u)� gn+1(u)
�� (1� u2)n�1du

1A1=20@ tZ
t0

(1� u2)1�ndu

1A1=2

=M(t; t0)

0@ tZ
t0

��f (n)m (u)� gn+1(u)
�� (1� u2)n�1du

1A1=2

�! 0

by (5.10), i.e.
tZ

t0

f (n)m (u)du �!
tZ

t0

gn+1(u)du (5.11)

as m �!1: Now, since f (n�1)m 2 ACloc(�1; 1); we can integrate in (5.11):

f (n�1)m (t)� f (n�1)m (t0) =

tZ
t0

f (n)m (u)du �!
tZ

t0

gn+1(u)du: (5.12)

Also, from (5.9), it follows that
n
f
(n�1)
m

o1
m=1

is Cauchy in L2 ((�1; 1); (1� x2)n�2) :

Hence, there exists a gn 2 L2 ((�1; 1); (1� x2)n�2) such that

f (n�1)m �! gn

in L2 ((�1; 1); (1� x2)n�2) :

Repeating the above argument, we see that gn 2 L1loc(�1; 1); and, for t; t1 2 (�1; 1);

f (n�2)m (t)� f (n�2)m (t1) =

tZ
t1

f (n�1)m (u)du �!
tZ

t1

gn(u)du: (5.13)

By the Riesz-Fischer theorem, there exists a subsequence
n
f
(n�1)
mk

o1
m=1

of
n
f
(n�1)
m

o1
m=1

such that

f (n�1)mk
(t) �! gn(t)

for a.e. t 2 (�1; 1): Choose t0 2 (�1; 1) in (5.12) such that f (n�1)mk (t0) �! gn(t0) and

then pass through the subsequence in (5.12) to obtain

gn(t)� gn(t0) =
tZ

t0

gn+1(u)du
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for a.e. t 2 (�1; 1): This is to say that gn 2 ACloc(�1; 1); and

g0n(t) = gn+1(t)

for a.e. t 2 (�1; 1): Again, from (5.9), we see that
n
f
(n�2)
m

o1
m=1

is Cauchy in

L2 ((�1; 1); (1� x2)n�3) ; implying that there exists a gn�1 2 L2 ((�1; 1); (1� x2)n�3)

such that

f (n�2)m �! gn�1

in L2 ((�1; 1); (1� x2)n�3) : Moreover, for any t; t2 2 (�1; 1);

f (n�3)m (t)� f (n�3)m (t2) =

tZ
t2

f (n�2)m (u)du �!
tZ

t2

gn�1(u)du

and there exists a subsequence
n
f
(n�2)
mk

o1
m=1

of
n
f
(n�2)
m

o1
m=1

such that

f (n�2)mk
(t) �! gn�1(t)

for a.e. t 2 (�1; 1): In (5.13), choose t1 such that f (n�2)mk (t1) �! gn�1(t1) and then

pass through the subsequence in (5.13) to get

gn�1(t)� gn�1(t1) =
tZ

t1

gn(u)du

for a.e. t 2 (�1; 1); i.e. gn�1 2 AC(1)loc (�1; 1); and

g00n�1(t) = g0n(t) = gn+1(t)

for a.e. t 2 (�1; 1): Continuing in this manner, we obtain n + 1 functions gn�j+1 2

L2 ((�1; 1); (1� x2)n�j�1) for j = 0; 1; :::; n such that

(1) f (n�j)m �! gn�j+1 in L2 ((�1; 1); (1� x2)n�j�1) ; for j = 0; 1; :::; n

(2) g1 2 AC(n�1)loc (�1; 1); g2 2 AC(n�2)loc (�1; 1); ..., gn 2 ACloc(�1; 1)

(3) g0n�j(t) = g0n�j+1(t) for a.e. t 2 (�1; 1); j = 0; 1; :::; n� 1
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(4) g(j)1 = gj+1; j = 0; 1; :::; n:

In particular,

f (j)m �! g
(j)
1

in L2 ((�1; 1); (1� x2)j�1) for j = 0; 1; :::; n and g1 2 V (�1;�1)
n : Hence,

�
kfm � g1k(�1;�1)n;k

�2
=

nX
j=0

c
(�1;�1)
j (n; k)

1Z
�1

���f (j)m (u)� g(j)1 (u)���2 (1� u2)j�1du
=

nX
j=0

c
(�1;�1)
j (n; k)

f (j)m � g(j)1 2
(1�x2)j�1

�! 0

as m �!1; i.e. W (�1;�1)
n;k (�1; 1) is complete.

De�nition 5.4. W1 := ff : [�1; 1] �! C j f 2 AC [�1; 1] ; f 0 2 L2(�1; 1)g

Lemma 5.7. V (�1;�1)
1 � W1;1 := ff 2 W1 j f(�1) = 0g :

Proof. Let f 2 V
(�1;�1)
1 : In particular, f 2 ACloc(�1; 1) and f 0 2 L2(�1; 1), so

f 0 2 L1(�1; 1): For 0 � x < 1,

xZ
0

f 0(t)dt = f(x)� f(0)

and
xZ
0

f 0(t)dt �!
1Z
0

f 0(t)dt

which implies that lim
x!1�

f(x) exists and is �nite. Similarly, lim
x!�1+

f(x) exists and is

�nite. De�ne

f(�1) := lim
x!�1�

f(x);

so f 2 AC [�1; 1] : It su¢ ces to show that f(�1) = 0: Suppose that f(1) 6= 0: Hence,

for some c > 0; there exists 0 < � < 1 such that

jf(x)j � c > 0
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for all x 2 [�; 1] : Since f 2 L2 ((�1; 1); (1� x2)�1), we see that

1 >

1Z
0

jf(x)j2 (1� x2)�1dx

�
�Z
0

jf(x)j2 (1� x2)�1dx � c2
�Z
0

(1� x2)�1dx =1;

a contradiction. Hence, f(1) = 0, and, similarly, f(�1) = 0, so f 2 W1;1:

Theorem 5.5. The Jacobi polynomials
n
P
(�1;�1)
m

o1
m=2

form a complete orthogonal set

in the �rst left-de�nite space W (�1;�1)
1;k (�1; 1).

Proof. Let f 2 W (�1;�1)
1;k (�1; 1), so f 0 2 L2(�1; 1). Since the Legendre polynomials

fPmg1m=0 are complete and orthonormal in L2(�1; 1), we know
rX

m=0

c
(�1;�1)
m;1 Pm ! f 0 as r !1 in L2(�1; 1)

where c(�1;�1)m;1 are the Fourier coe¢ cients given by

c
(�1;�1)
m;1 :=

1Z
�1

f 0(t)Pm(t)dt:

Note that c(�1;�1)0;1 = 0 by lemma 5.7. For r � 1 de�ne

pr(t) :=

rX
m=2

c
(�1;�1)
m�1;1

(m(m� 1))1=2
P (�1;�1)m (t):

Then

p0r(t) =

rX
m=2

c
(�1;�1)
m�1;1

(m(m� 1))1=2 (m(m� 1))
1=2Pm�1(t) =

rX
m=2

c
(�1;�1)
m�1;1 Pm�1(t);

since
d

dt
P (�1;�1)m (t) = (m(m� 1))1=2Pm�1(t):

Shifting the index of summation from m to m� 1 yields

p0r(t) =
r�1X
m=1

c
(�1;�1)
m;1 Pm ! f 0 as r !1 in L2(�1; 1):
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Furthermore, by Riesz-Fischer, there exists a subsequence
n
p0rj

o
of fp0rg such that

p0rj ! f 0 for a.e. t 2 (�1; 1): (5.14)

Since, by Dirichlet�s test (see [4]), the sequence(
c
(�1;�1)
m�1;1

(m(m� 1))1=2

)
m

2 `2

and
n
P
(�1;�1)
m

o1
m=2

is complete in L2 ((�1; 1); (1� x2)�1), we see that there exists a

g 2 L2 ((�1; 1); (1� x2)�1) such that

pr ! g in L2
�
(�1; 1); (1� x2

��1
as r �!1: (5.15)

From (5.14), we see that, for a; t 2 (�1; 1);
tZ

a

p0rj(u)du �!
tZ

a

f 0(u)du:

Now integrate both sides to obtain

prj(t) = f(t) + c for a.e. t 2 (�1; 1);

implying that

g(t) = f(t) + c for a.e. t 2 (�1; 1)

by (5.15). De�ne �r(t) := pr(t)� c: Then

kf � �rk2W (�1;�1)
1;k

=

1Z
�1

n
jf 0(t)� �0r(t)j

2
+ k(1� t2)�1 jf(t)� �r(t)j2

o
dt

=

1Z
�1

n
jf 0(t)� p0r(t)j

2
+ k(1� t2)�1 jf(t)� pr(t) + cj2

o
dt

�! 0

as r ! 1; i.e. the Jacobi polynomials
n
P
(�1;�1)
m

o1
m=2

are complete in the �rst

left-de�nite space W (�1;�1)
1;k (�1; 1).
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In the next theorem, we generalize this result and prove that in fact the Jacobi

polynomials
n
P
(�1;�1)
m

o1
m=2

form a complete orthogonal set in each left-de�nite space

W
(�1;�1)
n;k (�1; 1); n 2 N.

Theorem 5.6. The Jacobi polynomials
n
P
(�1;�1)
m

o1
m=2

form a complete orthogonal set

in each left-de�nite space W (�1;�1)
n;k (�1; 1); n 2 N.

Proof. Fix n 2 N , and let f 2 W (�1;�1)
n;k (�1; 1), so f (n) 2 L2 ((�1; 1); (1� x2)n�1).

Since
n
P
(n�1;n�1)
m

o1
m=0

is complete and orthonormal in L2 ((�1; 1); (1� x2)n�1), we

know
rX

m=0

c(�1;�1)m;n P (n�1;n�1)m ! f (n) as r !1 in L2
�
(�1; 1); (1� x2)n�1

�
(5.16)

where c(�1;�1)m;n are the Fourier coe¢ cients given by

c(�1;�1)m;n =

1Z
�1

f (n)(t)P (n�1;n�1)m (t)(1� t2)n�1dt:

For r � n de�ne

pr(t) :=
rX

m=maxf2;ng

c
(�1;�1)
m�n;n ((m� n)!)1=2 ((m� 2)!)1=2

(m!)1=2 ((m+ n� 2)!)1=2
P (�1;�1)m (t):

From the di¤erentiation formula (4.2),

dj

dtj
P (�1;�1)m (t) =

(m!)1=2 ((m+ j � 2)!)1=2

((m� j)!)1=2 ((m� 2)!)1=2
P
(j�1;j�1)
m�j (t);

we see that, for j = 0; 1; :::; n,

p(j)r (t) =
rX

m=maxf2;ng

c
(�1;�1)
m�n;n ((m� n)!)1=2 ((m+ j � 2)!)1=2

((m+ n� 2)!)1=2 ((m� j)!)1=2
P
(j�1;j�1)
m�j (t):

In particular, by (5.16),

p(n)r (t) =
rX

m=maxf2;ng

c
(�1;�1)
m�n;n P

(n�1;n�1)
m�n

=

r�maxf2;ngX
l=0

c
(�1;�1)
l;n P

(n�1;n�1)
l

=
sX

m=0

c(�1;�1)m;n P (n�1;n�1)m ! f (n) as s!1 in L2
�
(�1; 1); (1� x2)n�1

�
:
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Furthermore, by Riesz-Fischer, there exists a subsequence
n
p
(n)
rj

o
of
n
p
(n)
r

o
such

that

p(n)rj ! f (n) for a.e. t 2 (�1; 1):

From Dirichlet�s test, the sequence(
c
(�1;�1)
m�n;n ((m� n)!)1=2 ((m+ j � 2)!)1=2

((m+ n� 2)!)1=2 ((m� j)!)1=2

)
2 `2;

so there exists a gj 2 L2 ((�1; 1); (1� x2)j�1) such that

p(j)r �! gj in L2
�
(�1; 1); (1� x2)j�1

�
: (5.17)

For a.e. a; t 2 (�1; 1);
tZ

a

p(n)rj (u)du �!
tZ

a

f (n)(u)du:

Integrate both sides and obtain

p(n�1)rj
(t) �! f (n�1)(t) + c1 for a.e. t 2 (�1; 1) (5.18)

for some constant c1: Passing through the subsequence implies

gn�1(t) = f (n�1)(t) + c1 for a.e. t 2 (�1; 1):

From (5.18), we see that

tZ
a

p(n�1)rj
(u)du �!

tZ
a

f (n�1)(u)du+ c1

tZ
a

du;

i.e.

p(n�2)rj
(t) �! f (n�2)(t) + c1t+ c2 for a.e. t 2 (�1; 1)

or

gn�2(t) = f (n�2)(t) + c1t+ c2 for a.e. t 2 (�1; 1):

Continue this process to see that for j 2 f0; 1; :::; n� 1g ;

gj(t) = f (j)(t) + qn�j+1 for a.e. t 2 (�1; 1);
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where qn�j�1 is a polynomial of degree � n� j � 1 and

q0n�j�1 = qn�j�2:

Hence, from (5.17),

p(j)r �! f (j) + qn�j�1 in L2
�
(�1; 1); (1� x2)j�1

�
: (5.19)

For r � n, de�ne

�r(t) := pr(t)� qn�1(t):

Note that, from (5.19),

�(j)r (t) = p(j)r (t)� q
(j)
n�1(t) = p(j)r (t)� qn�j�1(t) �! f (j)(t)

in L2 ((�1; 1); (1� x2)j�1). Now,

�
kf � �rk(�1;�1)n;k

�2
=

nX
j=0

c
(�1;�1)
j (n; k)

�1Z
�1

��f (j)(t)� �(j)r (t)��2 (1� t2)j�1dt �! 0

as r �!1:

The following lemma should be for n � 2 !!

Lemma 5.8. For p; q 2 P,

(p; q)
(�1;�1)
n;k =

��
A
(�1;�1)
k

�n
p; q
�
�1;�1

:

Proof. First we note that this may be restated as

�
ln�1;�1[p]; q

�
�1;�1 =

1Z
�1

ln�1;�1[p](x)q(x)w�1;�1(x)dx

=
nX
j=0

c
(�1;�1)
j (n; k)p(j)(x)q(j)(x)(1� x)j�1(1 + x)j�1dx: (5.20)

Since the Jacobi polynomials form a basis for P, it su¢ ces to prove (5.20) for p =

P
(�1;�1)
m and q = P

(�1;�1)
r for arbitrary m; r 2 N0: From

ln�1;�1[P
(�1;�1)
m ](x) = (m(m� 1) + k)nP (�1;�1)m (x) (m 2 N0)
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and �
P (�1;�1)r ; P (�1;�1)m

�
�1;�1 = �r;m (r;m 2 N0) ;

the left-hand side of (5.20) becomes

�
ln�1;�1[P

(�1;�1)
m ]; P (�1;�1)r

�
�1;�1 =

1Z
�1

ln�1;�1[P
(�1;�1)
m ](x)P

(�1;�1)
r (x)w�1;�1(x)dx

= (m(m� 1) + k)n�r;m: (5.21)

Upon using (4.3) for � = � = �1 and the recurrence relation for the c(�1;�1)j (n; k);

that is,

(m(m� 1) + k)n =
nX
j=0

c
(�1;�1)
j (n; k)

m!(m+ j � 2)!
(m� j)!(m� 2)!

the right-hand side of (5.20) becomes

nX
j=0

c
(�1;�1)
j (n; k)

�
P (�1;�1)m (x)

�(j)
(x)
�
P
(�1;�1)
r (x)

�(j)
(x)(1� x)j�1(1 + x)j�1dx

=
nX
j=0

c
(�1;�1)
j (n; k)

m!(m+ j � 2)!
(m� j)!(m� 2)!�r;m (5.22)

= (m(m� 1) + k)n�r;m:

Comparing (5.21) and (5.22) completes the proof of the lemma.

Theorem 5.7. For k > 0, let

A
(�1;�1)
k : D

�
A
(�1;�1)
k

�
� L2

�
(�1; 1); (1� x2)�1

�
�! L2

�
(�1; 1); (1� x2)�1

�
be the Jacobi self-adjoint operator having the Jacobi polynomials

n
P
(�1;�1)
m

o1
m=2

as

eigenfunctions as discussed in section 5.1. For each n 2 N, let

V (�1;�1)
n :=

n
f : (�1; 1) �! C j f 2 AC(n�1)loc (�1; 1);

f (j) 2 L2
�
(�1; 1); (1� x2)j�1

�
; j = 0; 1; ::; n

	
and

(f; g)
(�1;�1)
n;k :=

nX
j=0

c
(�1;�1)
j (n; k)

1Z
�1

f (j)(x)g(j)(x)(1� x2)j�1dx:
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Then W
(�1;�1)
n;k (�1; 1) :=

�
V
(�1;�1)
n ; (�; �)(�1;�1)n;k

�
is the nth left-de�nite space asso-

ciated with
�
L2 ((�1; 1); (1� x2)�1); A(�1;�1)k

�
. Moreover, the Jacobi polynomialsn

P
(�1;�1)
m

o1
m=2

form a complete orthogonal set in each W (�1;�1)
n;k (�1; 1), and they

satisfy the orthogonality relation

�
P (�1;�1)m ; P

(�1;�1)
l

�
n;k
= (m(m� 1) + k)n�m;l:

Furthermore, de�ne

B
(�1;�1)
n;k := D

�
B(�1;�1)
n

�
� W

(�1;�1)
n;k (�1; 1) �! W

(�1;�1)
n;k (�1; 1)

by

B
(�1;�1)
n;k f := l�1;�1 [f ]

�
f 2 D

�
B
(�1;�1)
n;k

�
:= V

(�1;�1)
n+2

�
:

Then B(�1;�1)
n;k is the nth left-de�nite operator associated with the pair�

L2�1;�1(�1; 1); A
(�1;�1)
k

�
. Lastly, the spectrum of B(�1;�1)

n;k is given by

�
�
B
(�1;�1)
n;k

�
= fm(m� 1) + k jm 2 N0g = �fA(�1;�1)k g;

and the Jacobi polynomials
n
P
(�1;�1)
m

o1
m=2

form a complete set of eigenfunctions of

each B(�1;�1)
n;k .

Proof. Let n 2 N. We need to show that W (�1;�1)
n;k (�1; 1) satis�es the �ve properties

given in de�nition 3.1.

(i) W (�1;�1)
n;k (�1; 1) is a Hilbert space (see theorem 5.4).

(ii) We need to show: D
��
A
(�1;�1)
k

�n�
� W

(�1;�1)
n;k (�1; 1):

Let f 2 D
��
A
(�1;�1)
k

�n�
. Since the Jacobi polynomials

n
P
(�1;�1)
m

o1
m=2

form

a complete orthonormal set in L2 ((�1; 1); (1� x2)�1), we see that

pj �! f in L2
�
(�1; 1); (1� x2

��1
) as j �!1 (5.23)
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where

pj(t) :=

jX
m=0

c(�1;�1)m P (�1;�1)m (t) (t 2 (�1; 1)) ;

and

c(�1;�1)m :=
�
f; P (�1;�1)m

�
�1;�1 =

1Z
�1

f(t)P (�1;�1)m (t)
�
1� t2

��1
dt (m 2 N0):

Since
�
A
(�1;�1)
k

�n
f 2 L2 ((�1; 1); (1� x2)�1), we see that

jX
m=0

ec(�1;�1)m P (�1;�1)m �!
�
A
(�1;�1)
k

�n
f in L2

�
(�1; 1); (1� x2

��1
)

as j �!1, where

ec(�1;�1)m :=
��
A
(�1;�1)
k

�n
f; P (�1;�1)m

�
�1;�1

=
�
f;
�
A
(�1;�1)
k

�n
P (�1;�1)m

�
�1;�1

= (m(m� 1) + k)n
�
f; P (�1;�1)m

�
�1;�1

= (m(m� 1) + k)nc(�1;�1)m ;

i.e.�
A
(�1;�1)
k

�n
pj �!

�
A
(�1;�1)
k

�n
f in L2

�
(�1; 1); (1� x2

��1
) as j �!1:

Moreover, by lemma 5.8,�
kpj � prk(�1;�1)n;k

�2
=
��
A
(�1;�1)
k

�n
[pj � pr] ; pj � pr

�
�1;�1

�! 0 as j; r �!1

i.e. fpjg1j=0 is Cauchy in W
(�1;�1)
n;k (�1; 1). Since W (�1;�1)

n;k (�1; 1) is a Hilbert

space (by theorem 5.4), there exists a

g 2 W (�1;�1)
n;k (�1; 1) � L2

�
(�1; 1); (1� x2

��1
)

such that

pj �! g in W (�1;�1)
n;k (�1; 1) as j �!1:
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Furthermore, since

(f; f)
(�1;�1)
n;k � kn (f; f)�1;�1

�
f 2 W (�1;�1)

n;k (�1; 1)
�
;

[this is due to

(f; f)
(�1;�1)
n;k =

nX
j=0

c
(�1;�1)
j (n; k)

f (j)2
j�1;j�1

� c
(�1;�1)
0 (n; k)

f (j)2�1;�1
= kn (f; f)�1;�1

�
f 2 W (�1;�1)

n;k (�1; 1)
�

from the positivity of the coe¢ cients c(�1;�1)j (n; k)], we see that

kpj � gk�1;�1 � k�n=2 kpj � gk(�1;�1)n;k ;

and hence,

pj �! g in L2
�
(�1; 1); (1� x2

��1
): (5.24)

Comparing (5.23) and (5.24),

f = g 2 W (�1;�1)
n;k (�1; 1):

(iii) We need to show: D
��
A
(�1;�1)
k

�n�
is dense inW (�1;�1)

n;k (�1; 1): Since the set

of polynomials is contained in D
��
A
(�1;�1)
k

�n�
and is dense in the nth left-

de�nite space W (�1;�1)
n;k (�1; 1) (by theorem 5.6), D

��
A
(�1;�1)
k

�n�
is dense

in W (�1;�1)
n;k (�1; 1). Furthermore, from theorem 5.6, the Jacobi polynomialsn

P
(�1;�1)
m

o1
m=2

form a complete orthonormal set in W (�1;�1)
n;k (�1; 1).

(iv) We need to show: (f; f)(�1;�1)n;k � kn (f; f)�1;�1 for all f 2 V
(�1;�1)
n : This

follows immediately by the de�nition of (�; �)(�1;�1)n;k

(v) We show: (f; g)(�1;�1)n;k =
��
A
(�1;�1)
k

�n
f; g
�
�1;�1

for f 2 D
��
A
(�1;�1)
k

�n�
and g 2 V (�1;�1)

n : This is true for any f; g 2 P by lemma 5.8.

Let f 2 D
��
A
(�1;�1)
k

�n�
� W

(�1;�1)
n;k (�1; 1), g 2 W (�1;�1)

n;k (�1; 1):

58



Since the set of polynomials is dense in bothW (�1;�1)
n;k (�1; 1) and in the space

L2 ((�1; 1); (1� x2)�1), and since (by (iv)), convergence in W (�1;�1)
n;k (�1; 1)

implies convergence in L2 ((�1; 1); (1� x2)�1), there exist sequences fpjg1j=0
and fqjg1j=0 such that

pj �! f in W (�1;�1)
n;k (�1; 1) as j �!1�

A
(�1;�1)
k

�n
pj �!

�
A
(�1;�1)
k

�n
f in L2

�
(�1; 1); (1� x2

��1
) as j �!1

and

qj �! g in W (�1;�1)
n;k (�1; 1) and L2

�
(�1; 1); (1� x2

��1
) as j �!1:

Hence, from lemma 5.8,��
A
(�1;�1)
k

�n
f; g
�
�1;�1

= lim
j�!1

��
A
(�1;�1)
k

�n
pj; qj

�
�1;�1

= lim
j�!1

(pj; qj)n;k

= (f; f)
(�1;�1)
n;k :

The results listed in the theorem on B(�1;�1)
n;k and the spectrum of B(�1;�1)

n;k

follow immediately from the general left-de�nite theory.

5.4 Self-Adjoint Operators

De�nition 5.5. De�ne

W1 :=
�
f : [�1; 1] �! C j f 2 AC [�1; 1] ; f 0 2 L2(�1; 1)

	
� (f; g) :=

1

2
f(�1)g(�1) + 1

2
f(1)g(1) +

1Z
�1

f 0(x)g0(x)dx (f; g 2 W1)

and

kfk� := �(f; f)1=2 (f 2 W1):
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Theorem 5.8. (W1; �(�; �)) is a Hilbert space.

Proof. Let ffng � W1 be a Cauchy sequence. Hence

kfn � fmk2� =
1

2
jfn(�1)� fm(�1)j2 +

1

2
jfn(1)� fm(1)j2 +

1Z
�1

jf 0n(x)� f 0m(x)j
2
dx

�! 0 as n;m �!1:

In particular, since

1Z
�1

jf 0n(x)� f 0m(x)j
2
dx � kfn � fmk2� ;

we see that ff 0ng is Cauchy in L2(�1; 1). Since L2(�1; 1) is complete, there exists

g 2 L2(�1; 1) such that

f 0n �! g as n �!1 in L2(�1; 1): (5.25)

Also, since

1

2
jfn(�1)� fm(�1)j2 � kfn � fmk2� and

1

2
jfn(1)� fm(1)j2 � kfn � fmk2� ;

we see that the sequences ffn(�1)g are both Cauchy in C and, hence, there exists

A�1 2 C such that

fn(1) �! A1 (5.26)

fn(�1) �! A�1 (5.27)

Furthermore, since fn 2 AC [�1; 1] (n 2 N), we see that
1Z

�1

g(t)dt �
1Z

�1

f 0n(t)dt = fn(1)� fn(�1) �! A1 � A�1;

i.e.

A1 = A�1 +

1Z
�1

g(t)dt: (5.28)
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De�ne f : [�1; 1] �! C by

f(x) = A�1 +

xZ
�1

g(t)dt:

It is clear that f 2 AC [�1; 1] and f 0(x) = g(x) 2 L2(�1; 1) for a.e. x 2 [�1; 1],

so f 2 W1: Furthermore, f(�1) = A�1 and f(1) = A�1 +
1R
�1
g(t)dt = A1 by (5.28).

Now

kfn � fk2� =
1

2
jfn(�1)� f(�1)j2 +

1

2
jfn(1)� f(1)j2 +

1Z
�1

jf 0n(t)� f 0(t)j
2
dt

=
1

2
jfn(�1)� A�1j2 +

1

2
jfn(1)� A1j2 +

1Z
�1

jf 0n(t)� g(t)j
2
dt

�! 0

as n �!1 by (5.25), (5.26) and (5.27). Thus, (W1; �(�; �)) is complete.

Theorem 5.9. Let W1 and �(�; �) be as before, and

W1;1 := ff 2 W1 j f(�1) = 0g

W1;2 := ff 2 W1 j f 00(x) = 0g :

Then W1;1 and W1;2 are closed, orthogonal subspaces of (W1; � (�; �)) and

W1 = W1;1 �W1;2:

Proof. Since W1;2 is 2-dimensional, it is a closed subspace of W1. The orthogonal

complement of W1;2 is given by

W?
1;2 := ff 2 W1 j (f; g)1 = 0 (g 2 W1;2)g :

To see that W1;1 � W?
1;2, let f 2 W1;1, g 2 W1;2 and consider

�(f; g) =
1

2
f(�1)g(�1) + 1

2
f(1)g(1) +

1Z
�1

f 0(x)g0(x)dx:
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The �rst two summands vanish because f 2 W1;1, and g0(x) = c for some constant

c since g 2 W1;2, and we see that

� (f; g) =

1Z
�1

f 0(x)g0(x)dx = c

1Z
�1

f 0(x)dx

= c (f(1)� f(�1))

= 0;

so f 2 W?
1;2:

Now let f 2 W1:We need to �nd f1 2 W1;1 and f2 2 W1;2 such that f = f1+f2:

To this end, let

f2(x) := Ax+B;

A;B to be determined. Clearly, f2 2 W1;2: Let

f1(x) := f(x)� f2(x):

We show that f1 2 W1;1 by appropriate choice of A;B: For any choice of A;B;

f1 2 W1: Now set

f1(1) = f(1)� A�B !
= 0

f1(�1) = f(�1) + A�B !
= 0

and add the two equations to �nd

A =
f(1)� f(�1)

2

B =
f(1) + f(�1)

2
;

i.e. with the choice of

f1(x) := f(x)� f2(x)

f2(x) :=
f(1)� f(�1)

2
x+

f(1) + f(�1)
2

every f 2 W1 can indeed be written as f = f1 + f2; where f1 2 W1;1 and f2 2

W1;2:
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The next result shows that the space W1;1 is precisely the �rst left-de�nite space.

Theorem 5.10. W1;1 = V
(�1;�1)
1 ; where V (�1;�1)

1 is de�ned as in (5.8).

Proof. (1) V (�1;�1)
1 � W1;1 was proved in lemma 5.7.

(2) W1;1 � V
(�1;�1)
1 :

Let f 2 W1;1: It su¢ ces to show that f 2 L2 ((�1; 1); (1� x2)�1). For �1 < x < 0,

(1� x2)�1=2
xZ

�1

f 0(t)dt = (1� x2)�1=2f(x)

since f(�1) = 0. We use Chisholm-Everitt on (�1; 0) with

 (x) = (1� x2)�1=2

'(x) = 1:

Clearly,  is L2 near 0, and ' is L2 near �1: In this case,
xZ

�1

dt

0Z
x

dt

1� t2 �
xZ

�1

dt

0Z
x

dt

1 + t

= �(x+ 1) ln(1 + x);

and this is a bounded function on (�1; 0): By Chisholm-Everitt, we have f 2

L2 ((�1; 0); (1� x2)�1) : For 0 � x < 1,

(1� x2)�1=2
1Z
x

f 0(t)dt = �(1� x2)�1=2f(x):

We again apply Chisholm-Everitt on [0; 1) with

'(x) = (1� x2)�1=2

 (x) = 1:

In this case,
xZ
0

(1� t2)�1dt
1Z
x

dt �
xZ
0

dt

1� t

1Z
x

dt

= �(1� x) ln(1� x);
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which is also bounded on (0; 1): By Chisholm-Everitt, �(1�x2)�1=2f 2 L2(0; 1), or,

equivalently, f 2 L2 ((0; 1); (1� x2)�1) :

Theorem 5.11. The inner products �(�; �) and (�; �)1 are equivalent onW1;1 = V
(�1;�1)
1 :

Proof. First of all, (W1;1; �(�; �)) is a Hilbert space, and, by de�nition,
�
V
(�1;�1)
1 ; (�; �)1

�
is a Hilbert space. Let f 2 W1;1 = V

(�1;�1)
1 : Then

kfk2� =
1Z

�1

jf 0(x)j2 dx �
1Z

�1

h
jf 0(x)j2 + jf(x)j2

�
1� x2

��1i
dx

= kfk21 :

By the open mapping theorem, these inner products must be equivalent.

Note that T2 is self-adjoint in W1;2 since it is de�ned on the whole two-

dimensional space.

We now need to consider T1 in the space W1;1: Recall that by theorem 5.10,

V
(�1;�1)
1 = W1;1: We also know that the operator

B
(�1;�1)
1;k : D

�
B
(�1;�1)
1;k

�
:= V

(�1;�1)
3 � V

(�1;�1)
1 �! V

(�1;�1)
1

namely, the �rst left-de�nite operator associated with (Ak; L2 ((�1; 1); (1� x2)�1)),

is self-adjoint and given by

B
(�1;�1)
1;k [f ](x) = l�1;�1[f ](x) = �(1� x2)f 00(x) + kf(x)

f 2 D
�
B
(�1;�1)
1;k

�
= V

(�1;�1)
3 = ff : (�1; 1) �! C j f; f 0; f 00 2 ACloc(�1; 1);

(1� x2)f 000; (1� x2)1=2f 00; f 0; (1� x2)�1=2f 2 L2(�1; 1)
	
:

More speci�cally, B(�1;�1)
1;k is self-adjoint with respect to the �rst left-de�nite inner

product (�; �)1 which we know is equivalent to the inner product �(�; �): We shall

prove that the operator

T1 : D(T1) � W1;1 �! W1;1
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given by

T1f = B
(�1;�1)
1;k f = l�1;�1[f ]

f 2 D(T1) := V
(�1;�1)
3

is self-adjoint in (W1;1; �(�; �)) :

Theorem 5.12. Let f; g 2 V (�1;�1)
3 : Then

lim
x�!�1

(1� x2)f 00(x)g0(x) = 0:

We shall prove this result for x �! +1�:

Proof. Let f; g 2 V
(�1;�1)
3 : Without loss of generality, assume that f; g are both

real-valued. Since V (�1;�1)
3 � V

(�1;�1)
1 and T1f 2 V (�1;�1)

1 ; we see that

f 0; (T1f)
0; g0 2 L2(�1; 1):

Hence (T1f)0g0; f 0g0 2 L1(�1; 1): For 0 � x < 1,

xZ
0

(T1f)
0(t)g0(t)dt = �

xZ
0

�
(1� t2)f 00(t)

�0
g0(t)dt+ k

xZ
0

f 0(t)g0(t)dt:

It follows that

lim
x�!1

xZ
0

�
(1� t2)f 00(t)

�0
g0(t)dt (5.29)

exists and is �nite. An integration by parts step shows that

xZ
0

�
(1� t2)f 00(t)

�0
g0(t)dt = (1� t2)f 00(t)g0(t) jx0 �

xZ
0

(1� t2)f 00(t)g00(t)dt:

Since (1� x2)1=2f 00(x); (1� x2)1=2g00(x) 2 L2(�1; 1), this implies that

lim
x�!1

xZ
0

(1� t2)f 00(t)g00(t)dt

exists and is �nite. It follows that

lim
x�!1

(1� x2)f 00(x)g0(x)
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exists and is �nite. Suppose

lim
x�!1

(1� x2)f 00(x)g0(x) =: 2c

where we assume that c 6= 0: Without loss of generality, assume c > 0: Then there

exists x0 2 [0; 1) such that

(1� x2)f 00(x)g0(x) � c (5.30)

f 00(x) > 0; g0(x) > 0 8x 2 [x0; 1);

implying that

(1� x2)f 00(x) jg00(x)j � c
jg00(x)j
g0(x)

8x 2 [x0; 1):

Hence,

xZ
x0

(1� t2)f 00(t) jg00(t)j dt � c

xZ
x0

jg00(x)j
g0(x)

dt

= c jln (g0(t))jxx0 (5.31)

= c jln (g0(x))j � c1 8x 2 [x0; 1):

Therefore,

lim sup
x�!1

jln (g0(x))j <1:

Claim: There exist constants M1;M2 such that

M1 < g0(x) < M2 8x 2 [x0; 1):

Otherwise, if g0(x) is unbounded above, there exists a sequence fxngn�1 � [x0; 1)

such that

g0(xn) �!1:

Then it follows from (5.31) that

(1� x2)f 00(x)g00(x) =2 L1(�1; 1);
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so M2 > 0 exists as claimed. If M1 doesn�t exist, then there exists a sequence

fyngn�1 � [x0; 1) such that

g0(yn) �! 0:

Again, it follows from (5.31) that

(1� x2)f 00(x)g00(x) =2 L1(�1; 1);

a contradiction. From the claim, it now follows from (5.30) that

(1� x2)f 00(x) � c

g0(x)
>

c

M2

=: ec 8x 2 [x0; 1):

This implies

(1� x2)2 (f 00(x))2 > ec 2
so

(1� x2) (f 00(x))2 > ec 2
1� x2 8x 2 [x0; 1):

Integrating over [x0; 1) and using the fact that

(1� x2)1=2f 00(x) 2 L2(�1; 1);

we see that

1 >

1Z
x0

(1� t2)f 00(t)dt > ec 2 1Z
x0

dt

1� t2 =1:

It follows that c = 0:

Lemma 5.9. T1 is densely de�ned in (W1;1; �(�; �)).

Proof. T1 has the Jacobi polynomials
n
P
(�1;�1)
n

o1
n=2

as its eigenfunctions, and they

are dense in D(T1):

Theorem 5.13. T1 is symmetric in (W1;1; �(�; �)).
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Proof. From the previous lemma, it su¢ ces to show that T1 is Hermitian. Let

f; g 2 D(T1) = V
(�1;�1)
3 : Since V (�1;�1)

3 � V
(�1;�1)
1 and T1f; T1g 2 V (�1;�1)

1 , we see

that

f(�1) = g(�1) = 0 = T1f(�1) = T1g(�1):

Hence,

(T1f; g)� =

1Z
�1

(T1f)
0 (x)g0(x)dx

=

1Z
�1

h
�
�
(1� x2)f 00(x)

�0
+ kf 0(x)

i
g0(x)dx

= �(1� x2)f 00(x)g0(x) j1�1 +
1Z

�1

�
(1� x2)f 00(x)g00(x) + kf 0(x)g0(x)

�
dx

= (f; T1g)�

since �(1�x2)f 00(x)g0(x) j1�1 = 0 by theorem 5.12. A similar calculation shows that

(f; T1g)� =

1Z
�1

h
�
�
(1� x2)g00(x)

�0
+ kg0(x)

i
f 0(x)dx

= �(1� x2)g00(x)f 0(x) j1�1 +
1Z

�1

�
(1� x2)f 00(x)g00(x) + kf 0(x)g0(x)

�
dx

= (T1f; g)�

since f; g 2 V3 =) (1� x2)g00(x)f 0(x) �! 0 as x �! �1:

Theorem 5.14. The operator T1 has the following properties:

(i) T1 is self-adjoint in (W1; �(�; �)) :

(ii) �(T1) = fn(n� 1) + k jn � 2g :

(iii)
n
P
(�1;�1)
n

o
n�2

is a complete orthonormal set of eigenfunctions of T1 in

(W1; �(�; �)) :
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(iv) T1 is bounded below by kI in (W1; �(�; �)) :

Proof. For (iii): We know that
n
P
(�1;�1)
n

o
n�0

is a complete orthonormal set in

(W1; �(�; �)) and we know that W1 = W1;1 �W1;2:

Also, W1;2 = span
n
P
(�1;�1)
0 ; P

(�1;�1)
1

o
and so W1;1 = W?

1;2 = span
n
P
(�1;�1)
n

o
n�2

:

We shall now prove that T1 is closed in (W1; �(�; �)) : Take a sequence ffng � D(T1) =

V
(�1;�1)
3 such that

fn �! f in (W1; �(�; �))

T1fn �! g in (W1; �(�; �)) :

We show that f 2 D(T1) and T1f = g: We know that A1 is self-adjoint and hence

closed in (W1; (�; �)1) ; and we know, since �(�; �) and (�; �)1 are equivalent, there exist

constants c1 and c2 such that

c1 kfk� � kfk1 � c2 kfk� 8f 2 W1;1 = V
(�1;�1)
1 :

Hence,

kfn � fk1 � c2 kfn � fk� �! 0

i.e.

fn �! f in (W1; (�; �)1)

and

kT1fn � gk1 � c2 kT1fn � gk� �! 0

i.e.

T1fn �! g in (W1; (�; �)1)

and since T1 is closed in (W1; (�; �)1), we see that f 2 D(T1) and T1f = g: Also, we

know that, for n � 2,

�
T1P

(�1;�1)
n

�
(x) = l�1;�1[P

(�1;�1)
n ](x)

= (n(n� 1) + k)P (�1;�1)n (x):
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This implies

fn(n� 1) + k jn � 2g � �(T1):

Since
n
P
(�1;�1)
n

o
n�2

is complete and �n := n(n� 1) + k �!1, we know that

�(T1) = fn(n� 1) + k jn � 2g

by a result due to Riesz-Nagy, which proves (ii) and (iii). To summarize: T1 is a

closed, symmetric operator with a complete set of eigenfunctions. From Naimark�s

book, T1 is self-adjoint. This proves (i). To prove (iv), let f 2 D(T1): Then, since

T1 : V
(�1;�1)
3 � V

(�1;�1)
1 �! V

(�1;�1)
1 ;

and by (5.29),

(T1f; f)� =
1

2
(T1f) (�1)f(�1) +

1

2
(T1f) (1)f(1)

+

1Z
�1

(T1f)
0 (x)f

0
(x)dx

=

1Z
�1

(T1f)
0 (x)f

0
(x)dx

=
5:29

1Z
�1

h
(1� x2) jf 00(x)j2 + k jf 0(x)j2

i
dx

� k

1Z
�1

jf 0(x)j2 dx

=
k

2
jf(�1)j2 + k

2
jf(1)j2 + k

1Z
�1

jf 0(x)j2 dx

= k (f; f)� :

We now construct the self-adjoint operator T in (W1; �(�; �)) that is gener-

ated by the Jacobi di¤erential expression l�1;�1[:], having the entire set of Ja-
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cobi polynomials
n
P
(�1;�1)
n

o
n�0

as eigenfunctions and having spectrum �(T ) =

fn(n� 1) + k jn 2 N0g : For f 2 W1, write

f = f1 + f2

where f1 2 W1;1; and f2 2 W1;2. De�ne

T : D(T ) � W1 �! W1

by

Tf = T1f1 + T2f2 = l�1;�1[f1] + l�1;�1[f2] = l�1;�1[f ];

D(T ) = D(T1)�D(T2):

Theorem 5.15. T is self-adjoint in (W1; �(�; �)) and

D(T ) = ff : [�1; 1] �! C j f 2 AC[�1; 1]; f 0; f 00 2 ACloc(�1; 1);

(1� x2)f 000; (1� x2)1=2f 00; f 0 2 L2(�1; 1)
	

= ff : [�1; 1] �! C j f 2 AC[�1; 1]; f 0; f 00 2 ACloc(�1; 1; )

(1� x2)f 000 2 L2(�1; 1)
	
:

Furthermore, �(T ) = fn(n� 1) + k jn 2 N0g and T is bounded below by kI in

(W1; �(�; �)).

For the following theorem let us recall the spaces

V
(�1;�1)
1 =

�
f : (�1; 1) �! C j f 2 ACloc(�1; 1); (1� x2)1=2f; f 0 2 L2(�1; 1)

	
=
�
f : [�1; 1] �! C j f 2 AC[�1; 1]; f 0 2 L2(�1; 1); f(�1) = 0

	
= W1;1
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V
(�1;�1)
3 = D(T1) = ff : (�1; 1) �! C j f; f 0; f 00 2 ACloc(�1; 1);

(1� x2)f 000; (1� x2)1=2f 00; f 0; (1� x2)�1=2f 2 L2(�1; 1)
	

=
�
f 2 V1 j f 0; f 00 2 ACloc(�1; 1); (1� x2)f 000; (1� x2)1=2f 00 2 L2(�1; 1)

	
= ff : [�1; 1] �! C j f 2 AC[�1; 1]; f 0; f 00 2 ACloc(�1; 1);

f(�1) = 0; (1� x2)f 000; (1� x2)1=2f 00; f 0 2 L2(�1; 1)
	
:

Note that the spaceD below is V (�1;�1)
3 minus the condition f(�1) = 0, so V (�1;�1)

3 �

D.

Theorem 5.16. Let

D := ff : [�1; 1] �! C j f 2 AC[�1; 1]; f 0; f 00 2 ACloc(�1; 1);

(1� x2)f 000; (1� x2)1=2f 00; f 0 2 L2(�1; 1)
	
:

Then D(T ) = D.

Proof. First show D(T ) � D: Let f 2 D(T ) = D(T1)�D(T2). Write

f = f1 + f2

where f1 2 D(T1) = V
(�1;�1)
3 � D, f2 2 D(T2) � D. Then f 2 D. To show that

D � D(T ), let f 2 D. Write

f(x) =

�
f(x)�

�
f(1)� f(�1)

2

�
x�

�
f(1) + f(�1)

2

��
+

��
f(1)� f(�1)

2

�
x+

�
f(1) + f(�1)

2

��
with

f1(x) := f(x)�
�
f(1)� f(�1)

2

�
x�

�
f(1) + f(�1)

2

�
f2(x) :=

�
f(1)� f(�1)

2

�
x+

�
f(1) + f(�1)

2

�
:

Then f1 2 D, and f1(�1) = 0, i.e. f1 2 V3 = D(T1). Also, f 002 (x) = 0, i.e.

f2 2 D(T2). Together, f 2 D(T ):
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To summarize, we have studied the Sobolev orthogonality of the Jacobi poly-

nomials for � = � = �1 in depth, and, through the left-de�nite theory, we have

constructed a self-adjoint operator T in a suitable Hilbert space having the full se-

quence of Jacobi polynomials
n
P
(�1;�1)
n

o1
n=0

as eigenfunctions. This completes the

discussion of the special case where � = � = �1:
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CHAPTER SIX

Spectral Analysis of the Jacobi Di¤erential Equation (� > �1; � = �1)

One should always generalize.

- Carl Gustav Jacobi

Following Jacobi�s advice, we shall now extend the results from the previous

chapter to the more general case where � > �1; � = �1: There are many simi-

larities between the two cases, and the main techniques can be modi�ed to apply

to the general case. However, it is worth noting that there is a fundamental dif-

ference: unlike in the special case where the set
n
P
(�1;�1)
n (x)

o1
n=2

is complete in

L2 ((�1; 1); (1� x2)�1), see lemma 5.6, in the general case, the set
n
P
(�;�1)
n (x)

o1
n=1

is complete in L2 ((�1; 1); (1� x)�(1 + x)�1) ; that is, the maximal orthogonal set

contains the �rst Jacobi polynomial!

6.1 Right-De�nite Spectral Analysis

In this section, we show that for � � 1; � = �1, both endpoints x = �1 are

in the limit-point condition, and thus the right-de�nite GKN self-adjoint operator

is unique. No boundary conditions are necessary. For �1 < � < 1, the endpoint

x = �1 is in the limit-point condition, whereas x = +1 is in the limit-circle condition.

Therefore, one boundary condition is needed to de�ne the right-de�nite GKN self-

adjoint operator.

For � > �1; � = �1, the Jacobi di¤erential expression becomes

l�;�1[y](x) =
1

w�;�1(x)

h
�
�
(1� x)�+1y0(x)

�0
+ k(1� x)�(1 + x)�1y(x)

i
(6.1)

= �(1� x2)y00 + (�+ 1)(x+ 1)y0 + ky:

Let k = 0, so

l�;�1[y](x) = �(1� x2)y00 + (�+ 1)(x+ 1)y0:
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Consider the endpoint x = 1:

Multiply l�;�1[y](x) by
(x�1)2
1�x2 to see that x = 1 is a regular singular point in

the sense of Frobenius:

(x� 1)2
1� x2 l�;�1[y](x) = �(x� 1)

2y00 � (�+ 1)(x� 1)y0 = 0

or

(x� 1)2y00 + (�+ 1)(x� 1)y0 = 0:

Then the indicial equation for x = 1 is

r(r � 1) + r(�+ 1) = 0:

Thus,

r1 = 0 � 1 =: y1(x)

r2 = �� � (1� x)�� =: y2(x):

Determine whether y1 and y2 are in L2((�1; 1); (1�x)
�

1+x
) near x = 1:

1Z
0

y21(x)
(1� x)�
1 + x

dx =

1Z
0

(1� x)�
1 + x

dx <1

Since 1
1+x

< 1 for x 2 (0; 1), we have

1Z
0

y22(x)
(1� x)�
1 + x

dx =

1Z
0

(1� x)��
1 + x

dx <

1Z
0

(1� x)��dx

�
<1 if � 1 < � < 1

=1 if � � 1 ;

i.e. the endpoint x = 1 is limit-point if �1 < � < 1 and limit-circle if � � 1:

Now consider the endpoint x = �1:

Multiply l�;�1[y](x) by
(x+1)2

1�x2 to see that x = �1 is a regular singular point in the

sense of Frobenius:

(x+ 1)2

1� x2 l�;�1[y](x) = �(x+ 1)
2y00 � (�+ 1)(x+ 1)

2

x� 1 y0 = 0
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or

(x+ 1)2y00 + (�+ 1)
(x+ 1)2

x� 1 y0 = 0:

Then the indicial equation for x = �1 is

r(r � 1) = 0:

Thus,

r1 = 0 � 1 =: y1(x)

r2 = 1 � (1 + x) =: y2(x):

Determine whether y1 and y2 are in L2((�1; 1); (1�x)
�

1+x
) near x = �1:

0Z
�1

y21(x)
(1� x)�
1 + x

dx >

0Z
�1

1

1 + x
dx =1

since (1� x)� > 0 on (�1; 0). For the same reason,

0Z
�1

y22(x)
(1� x)�
1 + x

dx =

0Z
�1

(1 + x)(1� x)�dx <1;

which makes x = �1 limit-point for any � > �1: No boundary conditions are

necessary at x = �1:

Lemma 6.1. For all n 2 N;

P (�;�1)n (x) =
n+ �

2n
(x+ 1)P

(�;1)
n�1 (x):
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Proof.

P (�;�1)n (x) =

nX
j=0

�
n+ �

j

��
n� 1
n� j

��
x� 1
2

�n�j �
x+ 1

2

�j
=
1

2
(x+ 1)

nX
j=0

�
n+ �

j

��
n� 1
n� j

��
x� 1
2

�n�j �
x+ 1

2

�j�1
=�

n�1
n

�
=0

1

2
(x+ 1)

nX
j=1

�
n+ �

j

��
n� 1
n� j

��
x� 1
2

�n�j �
x+ 1

2

�j�1

=
1

2
(x+ 1)

n�1X
j=0

�
n+ �

j + 1

��
n� 1

n� j � 1

��
x� 1
2

�n�j�1�
x+ 1

2

�j
=
1

2

n+ �

n
(x+ 1)P

(�;1)
n�1 (x):

We now turn to the discussion of the operator theoretic properties of the

Jacobi di¤erential expression (6.1). The appropriate right-de�nite setting is given

by L2 ((�1; 1); (1� x)�(1 + x)�1) ; and the maximal domain of l�;�1[�] in this space

is

� := ff : (�1; 1) �! C j f; f 0 2 ACloc(�1; 1);

f; l�;�1[f ] 2 L2
�
(�1; 1); (1� x)�(1 + x)�1

�	
:

For f; g 2� and [a; b] � (�1; 1), we have Dirichlet�s formula:

bZ
a

l�;�1[f ](x)g(x)(1� x)�(1 + x)�1dx = �(1� x)�+1f 0(x)g(x) jba

+

bZ
a

�
(1� x)�+1f 0(x)g0(x) + k(1� x)�(1 + x)�1f(x)g(x)

�
dx

and Green�s formula:
bZ
a

l�;�1[f ](x)g(x)(1� x)�(1 + x)�1dx =
�
(1� x)�+1 (f(x)g0(x)� f 0(x)g(x))

�
jba

+

bZ
a

f(x)l�;�1[g](x)(1� x)�(1 + x)�1dx.
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Let us �rst consider the endpoint x = �1; � > �1; � = �1. We begin by

showing that the Jacobi di¤erential expression (k = 0)

l�;�1[y](x) =
1

(1� x)�(1 + x)�1
h
�
�
(1� x)�+1y0(x)

�0i
is Dirichlet at x = �1: Note that the maximal domain can be written as

� =

8>>>>>>>>>>><>>>>>>>>>>>:

n
f : (�1; 1) �! C j f; f 0 2 ACloc(�1; 1); (1� x)

�
2 (1 + x)�

1
2f 2 L2(�1; 1);

(1� x)��
2 (1 + x)

1
2 [(1� x)�+1f 0(x)]0 2 L2(�1; 1)

o
; if � � 1n

f : (�1; 1) �! C j f; f 0 2 ACloc(�1; 1); (1� x)
�
2 (1 + x)�

1
2f 2 L2(�1; 1);

(1� x)��
2 (1 + x)

1
2 [(1� x)�+1f 0(x)]0 2 L2(�1; 1);

lim
x!1�

(1� x)�+1f 0(x) = 0
�
; if � 1 < � < 1:

For f; g 2 � and �1 < x � 0; we have Green�s formula
0Z
x

l�;�1[f ](t)g(t)(1� t)�(1 + t)�1dt =
0Z
x

�
(1� t)�+1f 0(t)

�0
g(t)dt

= f 0(0)g(0)� (1� x)�+1f 0(x)g(x)�
0Z
x

(1� t)�+1f 0(t)g0(t)dt:

Let f = g be real-valued, then Green�s formula becomes

0Z
x

(1� t)�+1 (f 0(t))2 dt = f 0(0)f(0)� (1� x)�+1f 0(x)f(x) (6.2)

�
0Z
x

l�;�1[f ](t)f(t)(1� t)�(1 + t)�1dt: (6.3)

Lemma 6.2. (1� x)�+12 f 0 2 L2(�1; 0) for all f 2 �:

Proof. By contradiction. We assume that f is real-valued on (�1; 1): Now suppose

that

lim
x!�1

0Z
x

(1� t)�+1 (f 0(t))2 dt =1:

Then, from (6.2), lim
x!�1

(1�x)�+1f 0(x)f(x) = �1; and consequently, lim
x!�1

f 0(x)f(x) =

�1: Then for any N 2 N; there exists xN 2 (�1; 0) such that for �1 < x < xN ;
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we have f 0(x)f(x) � �N: Choose any such N; e.g. N = 1: Integrate from x to xN

(where �1 < x < xN) to obtain

f 2(xN)

2
� f 2(x)

2
=

xNZ
x

f 0(t)f(t)dt � �N(xN � x):

It follows that

�f
2(x)

2
� �N(xN � x)�

f 2(xN)

2
� �N(xN � x)

i.e.

�f
2(x)

2
� �N(xN � x); (�1 < x < xN)

or

f 2(x) � 2N(xN � x); (�1 < x < xN):

Hence,
xNZ
x

(f 0(t))
2
(1� t)�(1 + t)�1dt � 2N

xNZ
x

(xN � t)(1� t)�(1 + t)�1dt:

Here, we distinguish between two cases, � � 0 and �1 < � < 0: First, for � � 0,

2N

xNZ
x

(xN � t)(1� t)�(1 + t)�1dt � 2N
xNZ
x

(xN � t)
(1 + t)

dt

= 2N

xNZ
x

xN � 1 + 1� t
(1 + t)

dt

= 2N

xNZ
x

�
�1 + 1 + xN

1 + t

�
dt

= �2N(xN � x) + 2N(1 + xN) [ln(1 + xN)� ln(1 + x)]

= �2N(xN � x)� 2N(1 + xN) ln(1 + x) + cN �!1

with x �! �1+; contradicting that (1�x)�2 (1+x)� 1
2f 2 L2(�1; 1): For �1 < � < 0;

we have

2N

xNZ
x

(xN � t)(1� t)�(1 + t)�1dt � 2�+1N
xNZ
x

(xN � t)
(1 + t)

dt
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= 2�+1N

xNZ
x

xN � 1 + 1� t
(1 + t)

dt

= 2�+1N

xNZ
x

xN � 1 + 1� t
(1 + t)

dt

= 2�+1N

xNZ
x

�
�1 + 1 + xN

1 + t

�
dt

= �2�+1N(xN � x) + 2�+1N(1 + xN) [ln(1 + xN)� ln(1 + x)]

= �2�+1N(xN � x)� 2�+1N(1 + xN) ln(1 + x) + cN �!1

with x �! �1+; contradicting that (1�x)�2 (1+x)� 1
2f 2 L2(�1; 1): This completes

the proof of the lemma.

Lemma 6.3. f(�1) = 0 for all f 2 �:

Proof. Let f 2 �; and suppose that f(�1) 6= 0:We may assume that f(�1) > 0: By

continuity, there exists x� 2 (�1; 0) such that f(x) > f(�1)
2

for x 2 (�1; x�]: Then,

since(1� t)� is bounded below by some K > 0;

1 >

0Z
�1

jf(t)j2 (1� t)�(1 + t)�1dt > K
f 2(�1)
4

0Z
�1

dt

1 + t
=1;

a contradiction, and hence, f(�1) = 0 for all f 2 �:

Together, the previous two lemmas imply that the Jacobi expression is Dirich-

let at the endpoint x = �1 for � > �1; � = �1. We now proceed to show that the

Jacobi expression is strong limit-point at x = �1 for � > �1; � = �1.

Lemma 6.4. lim
x!�1+

(1� x)�+1f(x)g0(x) = 0 for all f; g 2 �:

Proof. From Green�s formula,

0Z
x

l�;�1[f ](t)g(t)(1� t)�(1 + t)�1dt = (6.4)
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f 0(0)g(0)� (1� x)�+1f 0(x)g(x)�
0Z
x

(1� t)�+1f 0(t)g0(t)dt;

we see that lim
x!�1+

(1� x)�+1f 0(x)g(x) exists and is �nite (since the left-hand side of

(6.4) is �nite, f 0(0)g(0) is a constant and the integral on the right-hand side of (6.4) is

�nite by the previous lemma). Now suppose that lim
x!�1+

(1�x)�+1f(x)g0(x) = c > 0:

We may assume that, for x close to �1;

f(x) > 0 and g0(x) > 0:

Hence, there exists x� 2 (�1; 0] such that g0(x) � ec
f(x)

for x 2 (�1; x�]; where

ec = c
2
> 0: Therefore,

jf 0(x)g0(x)j � ecf 0(x)
f(x)

(x 2 (�1; x�]):

Integrate to obtain

x�Z
x

jf 0(t)g0(t)j dt � ec x�Z
x

jf 0(t)j
f(t)

dt

� ec
������
x�Z
x

f 0(t)

f(t)
dt

������
= ec jK � ln jf(x)jj :

Knowing that
x�R
�1
jf 0(t)g0(t)j dt < 1 (since f 0 2 L2(�1; 0)), we let x ! �1+ to see

that

1 >

x�Z
�1

jf 0(t)g0(t)j dt � ec ����K � lim
x!�1+

ln jf(x)j
���� =1;

a contradiction.

We now turn our attention to the endpoint x = 1:

Lemma 6.5. lim
x!1�

(1� x)�+1f 0(x) = 0 for all f 2 � and for all � > �1:
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Proof. For �1 < � < 1, this holds true due to the boundary condition in �:

For � � 1; the Jacobi expression is limit-point at x = 1, and, from Green�s formula,

the Wronskian must vanish:

W [f; g](x) = (1� x)�+1[f 0(x)g(x)� f(x)g0(x)] = 0:

By Naimark�s patching lemma, we can �nd a function g 2 � which is 1 near 1 and

0 near �1 :

g(x) =

8>>>><>>>>:
0; �1 � x � 0

�16x3 + 12x2; 0 < x < 1
2

1; 1
2
� x � 1:

It is easy to see that g 2 C2 \�:

Lemma 6.6. Let � > �1; f 2 �: Then (1� x)�+12 f 0 2 L2(0; 1):

Proof. From the previous lemma, we know that

lim
x!1�

(1� x)�+1f 0(x) = 0 (6.5)

for f 2 � and for all � > �1: For f = g, Green�s formula is

xZ
0

(1� t)�+1 (f 0(t))2 dt = (1� x)�+1f 0(x)f(x)� f 0(0)f(0)

�
xZ
0

l[f ](t)f(t)(1� t)�(1 + t)�1dt:

Assume that
xR
0

(1� t)�+1 (f 0(t))2 dt =1: Then lim
x!1�

(1� x)�+1f 0(x)f(x) =1; since

the remaining terms on the right-hand side are known to be �nite. Hence, there

exists x� 2 [0; 1) such that (1 � x)�+1f 0(x)f(x) � 1 for all x 2 [x�; 1): Assume,

without loss of generality, that

f(x) > 0 and (1� x)�+1f 0(x) > 0
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on [x�; 1). It follows that����(1� t)�+1f 0(t)�0��� f(t) � ��((1� t)�+1f 0(t))0��
(1� t)�+1f 0(t) on [x�; 1):

Integrate to obtain

1 >

1Z
�1

jl[f ](t)j f(t)(1� t)�(1 + t)�1dt =
1Z

�1

����(1� t)�+1f 0(t)�0��� f(t)dt
�

xZ
x�

����(1� t)�+1f 0(t)�0��� f(t)dt � xZ
x�

��((1� t)�+1f 0(t))0��
(1� t)�+1f 0(t) dt

�

������
xZ

x�

((1� t)�+1f 0(t))0

(1� t)�+1f 0(t) dt

������ = ��ln �(1� t)�+1f 0(t)��� jxx� �!1
as x! 1� by (6.5), a contradiction.

Lemma 6.7. Let � > �1; f; g 2 �: Then

lim
x!1�

(1� x)�+1f 0(x)g(x) = 0:

Proof. From Dirichlet�s formula,

xZ
0

l�;�1[f ](t)g(t)(1� t)�(1 + t)�1dt =
xZ
0

�
(1� t)�+1f 0(t)

�0
g(t)dt

= (1� x)�+1f 0(x)g(x)� f 0(0)g(0)

�
xZ
0

(1� t)�+1f 0(t)g0(t)dt;

we see that lim
x!1�

(1�x)�+1f 0(x)g(x) exists and is �nite, since all the other terms are

�nite (the last integral is �nite for x �! 1� from the previous lemma). Assume,

without loss of generality, that f; g 2 � are both real-valued, and suppose

lim
x!1�

(1� x)�+1f 0(x)g(x) = c > 0:

Then we may assume that, for x close to 1;

(1� x)�+1f 0(x) > 0 and g(x) > 0:
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Hence, there exists x� 2 [0; 1) such that

(1� x)�+1f 0(x) � ec
g(x)

(6.6)

where ec := c
2
> 0; and consequently,����(1� x)�+1f 0(x)�0��� g(x) � ec ��((1� x)�+1f 0(x))0��

(1� x)�+1f 0(x) (6.7)

on [x�; 1). Integrate:

1 >

1Z
�1

l�;�1[f ](t)g(t)(1� t)�(1 + t)�1dt =
1Z

�1

����(1� t)�+1f 0(t)�0��� g(t)dt
�

xZ
x�

����(1� t)�+1f 0(t)�0��� g(t)dt �
(6:7)

xZ
x�

ec ��((1� t)�+1f 0(t))0��
(1� t)�+1f 0(t) dt

�

������
xZ

x�

ec((1� t)�+1f 0(t))0
(1� t)�+1f 0(t) dt

������ = ��ln((1� t)�+1f 0(t))�� jxx� �!1
by the previous lemma, a contradiction.

This completes the proof of the following theorem.

Theorem 6.1. The Jacobi expression (6.1) is strong limit-point and Dirichlet at x =

�1, i.e.

(i)
1R
0

jf 0(t)j2 (1� t)�+1dt <1 and
0R
�1
jf 0(t)j2 (1� t)�+1dt <1 for all f 2 � and

(ii) lim
x!�1

(1� t)�+1f 0(x)g(x) = 0 for all f; g 2 �:

The remainder of this section will be devoted to the (right-de�nite) self-adjoint

operator that is generated by the Jacobi di¤erential expression l�;�1;k[�]. To this

end, recall that L2�;�1(�1; 1) denotes the space L2 ((�1; 1); (1� x)�(1 + x)�1), and

the maximal domain �(�;�1)
k of l�;�1;k[�] in L2�;�1 is de�ned to be

�
(�;�1)
k :=

�
f 2 L2�;�1(�1; 1)

��f; f 0 2 ACloc(�1; 1); l�;�1;k[f ] 2 L2�;�1(�1; 1)	
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The maximal operator T (�;�1)max;k associated with l�;�1[�] is given by

T
(�;�1)
max;k (f) := l�;�1[f ]

D(T (�;�1)max ) := �
(�;�1)
k :

The minimal operator is de�ned as T (�;�1)min;k := (T
(�;�1)
max;k )

�; the Hilbert space adjoint

of T (�;�1)max;k : The operator T
(�;�1)
min;k is closed, symmetric and satis�es

(T
(�;�1)
min;k )

� = T
(�;�1)
max;k :

The de�ciency index d(T (�;�1)min;k ) of T
(�;�1)
min;k is

d(T
(�;�1)
min;k ) =

8><>: (0; 0) if � = �1; � � 1

(1; 1) if � = �1; � 1 < � < 1:

This can be seen from the limit-point/limit-circle classi�cation of the singular end-

points x = �1:

(i) x = �1 are limit-point if � = �1; � � 1 and

(ii) x = �1 is limit-point, x = 1 is limit-circle if � = �1; �1 < � < 1:

Consequently, by von Neumann�s theory of self-adjoint extensions of symmetric

operators ([12], chapter XII), T (�;�1)min;k has self-adjoint extensions in L2�;�1(�1; 1) for

� = �1; � > �1: If � � 1; there is a unique self-adjoint extension in L2�;�1(�1; 1):

From the Glazman-Krein-Naimark theory [2], [43], the self-adjoint operator A(�;�1)k :

D(A(�;�1)k ) � L2�;�1(�1; 1) �! L2�;�1(�1; 1) de�ned by

A
(�;�1)
k f := l�;�1[f ] (6.8)
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for f 2 D(A(�;�1)k ) =8>>>>>>>>>>><>>>>>>>>>>>:

n
f : (�1; 1) �! C j f; f 0 2 ACloc(�1; 1); (1� x)

�
2 (1 + x)�

1
2f 2 L2(�1; 1);

(1� x)��
2 (1 + x)

1
2 [(1� x)�+1f 0(x)]0 2 L2(�1; 1)

o
; if � � 1n

f : (�1; 1) �! C j f; f 0 2 ACloc(�1; 1); (1� x)
�
2 (1 + x)�

1
2f 2 L2(�1; 1);

(1� x)��
2 (1 + x)

1
2 [(1� x)�+1f 0(x)]0 2 L2(�1; 1);

lim
x!1�

(1� x)�+1f 0(x) = 0
�
; if � 1 < � < 1

is self-adjoint in L2�;�1(�1; 1): By theorem 6.1, we have Green�s formula

(A
(�;�1)
k f; g)�;�1 =

1Z
�1

l�;�1[f ](x)g(x)(1� x)�(1 + x)�1dx

=

1Z
�1

f(x)l�;�1[g](x)(1� x)�(1 + x)�1dx

= (f; A
(�;�1)
k g)�;�1

and Dirichlet�s formula

(A
(�;�1)
k f; g)�;�1 =

1Z
�1

l�;�1[f ](x)g(x)(1� x)�(1 + x)�1dx

=

1Z
�1

�
(1� x)�+1f 0(x)g0(x) + k(1� x)�(1 + x)�1f(x)g(x)

�
dx:

In particular,

(A
(�;�1)
k f; f)�;�1 =

1Z
�1

h
(1� x)�+1 jf 0(x)j2 + k(1� x)�(1 + x)�1 jf(x)j2

i
dx

� k(f; f)�;�1;

for all f; g 2 D(A(�;�1)k ), i.e. A(�;�1)k is bounded below in L2�;�1(�1; 1) by kI: (Another

way to see this is to observe that �(A(�;�1)k ) � [k;1):) Thus, the left-de�nite theory

can be applied.

86



6.2 Completeness Results

The initial setting is the weighted Hilbert space

L2
�
(�1; 1); (1� x)�(1 + x)�1

�
=: L2�;�1(�1; 1):

De�ne

l[y] :=
1

(1� x)�(1 + x)�1
h
�
�
(1� x)�+1y0(x)

�0
+ k(1� x)�(1 + x)�1y(x)

i
.

We study the second-order di¤erential equation l[y] = �y in L2�;�1(�1; 1). With

� > �1; � = �1; the de�nition of the Jacobi polynomials in (4.4) becomes

P (�;�1)n (x) :=
nX
j=0

�
n+ �

j

��
n� 1
n� j

��
x� 1
2

�j �
x+ 1

2

�n�j
;

and we note that the �rst Jacobi polynomial P (�;�1)1 (x) is degenerate. However, any

multiple of the �rst degree polynomial y = x + 1 will solve the Jacobi di¤erential

equation. Therefore, we rede�ne P (�;�1)1 (x) and normalize the sequence of Jacobi

polynomials as follows:

De�nition 6.1.

P
(�;�1)
0 (x) := 1

P
(�;�1)
1 (x) :=

r
(�+ 1)(�+ 2)

2�+2
(x+ 1)

and, for n � 2,

P (�;�1)n (x) :=

s
n (2n+ �)

2� (n+ �)

nX
j=0

�
n+ �

n� j

��
n� 1
j

��
x� 1
2

�j �
x+ 1

2

�n�j
:

With this de�nition of the Jacobi polynomials for � > �1; � = �1, the se-

quence
n
P
(�;�1)
n

o1
n=1

forms a complete orthonormal set in L2�;�1(�1; 1); see lemma

6.10. Note that P (�;�1)0 (x) =2 L2�;�1(�1; 1) due to the singularity in the weight func-

tion, but unlike in the special case, P (�;�1)1 (x) 2 L2�;�1(�1; 1):

To see that the Jacobi polynomials are orthonormal with respect to a Sobolev

inner product, we renormalize them for the next two results:
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De�nition 6.2.

eP (�;�1)0 (x) := 1

eP (�;�1)1 (x) :=

�
�+ 2

2�+2

�1=2
(x+ 1)

and, for n � 2,

eP (�;�1)n (x) :=
(2n+ �)

1
2

2n+�=2 (n+ �)

nX
j=0

�
n+ �

n� j

��
n� 1
j

��
x� 1
2

�j �
x+ 1

2

�n�j
:

Lemma 6.8. For n � 2,

eP (�;�1)n (x) =
(n+ �)!(n� 1)!
2n!(n+ �� 1)! (x+ 1)

eP (�;1)n�1 (x):

In particular, eP (�;�1)n (�1) = 0:

We shall use this lemma to prove that the Jacobi polynomials for � = �1; � > �1

are orthonormal with respect to a Sobolev inner product.

Theorem 6.2. The Jacobi polynomials
n
P
(�;�1)
n (x)

o1
n=0

are orthonormal with respect

to the Sobolev inner product

� (f; g) := f(�1)g(�1) +
1Z

�1

(1� x)�+1f 0(x)g0(x)dx;

i.e.

�
� eP (�;�1)n ; eP (�;�1)m

�
= �nm (n;m 2 N0):

Proof. A calculation shows that

�
� eP (�;�1)0 ; eP (�;�1)0

�
= �

� eP (�;�1)1 ; eP (�;�1)1

�
= 1:

For n = 0;m = 1;

�
� eP (�;�1)0 ; eP (�;�1)1

�
= 0:

Let n = 0;m � 2; and use lemma 6.1 to see that

�
� eP (�;�1)0 ; eP (�;�1)m

�
= 0:
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For n = 1;m � 2 : we recall from [46] that

1Z
�1

(1� x)�(1 + x)�xjP (�;�)m (x)dx = 0

for j = 0; 1; :::;m� 1 and �; � > �1: Applying this result and lemma 6.1 shows that

�
� eP (�;�1)1 ; eP (�;�1)m

�
= 0:

For n;m � 2;

�
� eP (�;�1)n ; eP (�;�1)m

�
= eP (�;�1)n (�1) eP (�;�1)m (�1)

+

1Z
�1

(1� x)�+1
� eP (�;�1)n (x)

�0 � eP (�;�1)m (x)
�0
dx

The �rst summand vanishes by the previous lemma. Note that
� eP (�;�1)n

�0
reduces

to a Jacobi polynomial with classical parameters [10], p. 149,

d

dx
eP (�;�1)n (x) =

1

2
(n+ �) eP (�+1;0)n�1 (x)

so that

�
� eP (�;�1)n ; eP (�;�1)m

�
=
(2n+ �)1=2

2�=2 (n+ �)

(2m+ �)1=2

2�=2 (m+ �)

�
1Z

�1

(1� x)�+1
� eP (�;�1)n (x)

�0 � eP (�;�1)m (x)
�0
dx

=

�
n+ �

2

�2
(2n+ �)1=2

2�=2 (n+ �)

(2m+ �)1=2

2�=2 (m+ �)

�
1Z

�1

(1� x)�+1
� eP (�+1;0)n�1 (x)

�0 � eP (�+1;0)m�1 (x)
�0
dx

=

8><>: 0 if n 6= m�
n+�
2

�2 2n+�
2�(n+�)2

2�+2

2n+�
= 1 if n = m

= �nm:
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From the theory of orthogonal polynomials, it is well known that the classical Jacobi

polynomials are dense in a corresponding Hilbert space:

Lemma 6.9. The sequence
n
P
(�;1)
n (x)

o1
n=0

forms a complete orthogonal set in the

Hilbert space L2 ((�1; 1); (1� x)�(1 + x)) :

We shall use this result to prove that the truncated sequence of non-classical Jacobi

polynomials are dense in L2 ((�1; 1); (1� x)�(1 + x)�1) :

Lemma 6.10. The sequence
n
P
(�;�1)
n (x)

o1
n=1

forms a complete orthogonal set in

the Hilbert space L2 ((�1; 1); (1� x)�(1 + x)�1) : Equivalently, the set of all poly-

nomials P 2 P [�1; 1] of degree � 1 satisfying p(�1) = 0 is dense in the space

L2 ((�1; 1); (1� x)�(1 + x)�1).

Proof. We have

1Z
�1

jf(x)j2 (1� x)�(1 + x)�1dx =
1Z

�1

��(1 + x)�1f(x)��2 (1� x)�(1 + x)dx;
i.e.

f 2 L2
�
(�1; 1); (1� x)�(1 + x)�1

�
() (1+x)�1f 2 L2 ((�1; 1); (1� x)�(1 + x)) ;

and in this case,

kfkL2((�1;1);(1�x)�(1+x)�1) =
(1 + x)�1f

L2((�1;1);(1�x)�(1+x)) :

Let f 2 L2 ((�1; 1); (1� x)�(1 + x)�1) ; and let � > 0: Hence

(1 + x)�1f 2 L2 ((�1; 1); (1� x)�(1 + x)) ;

so by lemma 6.9, there exists q 2 P [�1; 1] such that

(1 + x)�1f � q
L2((�1;1);(1�x)�(1+x)) < �:
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Let p(x) := (1 + x)q(x); so deg(p) � 1 and p(�1) = 0: Then q(x) = (1 + x)�1p(x):

Hence

� >
(1 + x)�1f � (1 + x)�1p

L2((�1;1);(1�x)�(1+x))

=
(1 + x)�1(f � p)

L2((�1;1);(1�x)�(1+x))

= kf � pkL2((�1;1);(1�x)�(1+x)�1) :

Remark 6.1. We note that this property, that is the completeness of
n
P
(�;�1)
n (x)

o1
n=1

in L2 ((�1; 1); (1� x)�(1 + x)�1) ; distinguishes the special case where � = � = �1

from the general case � > �1; � = �1 which is considered here. In the special case,

the set
n
P
(�1;�1)
n (x)

o1
n=2

is complete in L2 ((�1; 1); (1� x2)�1), see lemma 5.6.

6.3 Left-De�nite Spectral Analysis

De�nition 6.3. Let k > 0: For each n 2 N; de�ne

V (�;�1)
n :=

n
f : (�1; 1) �! C

���f 2 AC(n�1)loc ; f (j) 2 L2(�+j;j�1)(�1; 1); j = 0; :::; n
o

and let (�; �)(�;�1)n;k and k�k(�;�1)n;k denote the Sobolev inner product

(f; g)
(�;�1)
n;k :=

nX
j=0

c
(�;�1)
j (n; k)

1Z
�1

f (j)(t)g(j)(t)(1�t)�+j(1+t)j�1dt (f; g 2 V (�;�1)
n )

and the norm kfk(�;�1)n;k :=
�
(f; f)

(�;�1)
n;k

�1=2
; where the numbers c(�;�1)j (n; k) are

de�ned in (4.6) and (4.7) in section 4.2. Let

W
(�;�1)
n;k (�1; 1) :=

�
V (�;�1)
n ; (�; �)(�;�1)n;k

�
:

In this section, it is our goal to show thatW (�;�1)
n;k (�1; 1) is the nth left-de�nite

space associated with the pair
�
L2�;�1(�1; 1); A

(�;�1)
k

�
; where A(�;�1)k is the self-

adjoint Jacobi operator de�ned in (6.8).
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Theorem 6.3. Let k > 0: For each n 2 N; W (�;�1)
n;k (�1; 1) is a Hilbert space.

Proof. Let n 2 N; and let ffmg1m=1 be a Cauchy sequence in W
(�;�1)
n;k (�1; 1): Then,

since the numbers c(�;�1)j (n; k) � 0;

�
kfm � frk(�;�1)n;k

�2
=

nX
j=0

c
(�;�1)
j (n; k)

f (j)m � f (j)r 2�+j;j�1
� c(�;�1)n (n; k)

f (n)m � f (n)r

2
�+j;j�1 (6.9)

for any j = 0; 1; :::; n and f 2 V
(�;�1)
n , so

n
f
(n)
m

o1
m=1

is a Cauchy sequence in

L2�+n;n�1(�1; 1); and hence there exists a gn+1 2 L2�+n;n�1(�1; 1) such that

f (n)m �! gn+1 (6.10)

in L2�+n;n�1(�1; 1) as m �!1: In particular, gn+1 2 L1loc(�1; 1): Fix t; t0 2 (�1; 1)

such that t0 � t: Then, by Hölder�s inequality,

tZ
t0

��f (n)m (u)� gn+1(u)
�� du

=

tZ
t0

��f (n)m (u)� gn+1(u)
�� (1� u)(�+n)=2(1 + u)(n�1)=2(1� u)�(�+n)=2(1 + u)�(n�1)=2du

�

0@ tZ
t0

��f (n)m (u)� gn+1(u)
�� (1� u)�+n(1 + u)n�1du

1A1=2

�

0@ tZ
t0

(1� u)�(�+n)(1 + u)�(n�1)du

1A1=2

=M(t� t0)

0@ tZ
t0

��f (n)m (u)� gn+1(u)
�� (1� u)�+n(1 + u)n�1du

1A1=2

�! 0

as m �!1 by (6.10), i.e.

tZ
t0

f (n)m (u)du �!
tZ

t0

gn+1(u)du (6.11)
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as m �!1: Now, since f (n�1)m 2 ACloc(�1; 1); we can integrate in (6.11):

f (n�1)m (t)� f (n�1)m (t0) =

tZ
t0

f (n)m (u)du �!
tZ

t0

gn+1(u)du: (6.12)

Also, from (6.9), it follows that
n
f
(n�1)
m

o1
m=1

is Cauchy in L2�+n�1;n�2(�1; 1): Hence,

there exists a gn 2 L2�+n�1;n�2(�1; 1) such that

f (n�1)m �! gn

in L2�+n�1;n�2(�1; 1): Repeating the above argument we see that gn 2 L1loc(�1; 1);

and, for t; t1 2 (�1; 1);

f (n�2)m (t)� f (n�2)m (t1) =

tZ
t1

f (n�1)m (u)du �!
tZ

t1

gn(u)du: (6.13)

By Riesz-Fischer, there exists a subsequence
n
f
(n�1)
mk;n�1

o1
m=1

of
n
f
(n�1)
m

o1
m=1

such that

f (n�1)mk;n�1
(t) �! gn(t)

for a.e. t 2 (�1; 1): Choose t0 2 (�1; 1) in (6.12) such that f (n�1)mk;n�1(t0) �! gn(t0)

and then pass through the subsequence in (6.12) to obtain

gn(t)� gn(t0) =
tZ

t0

gn+1(u)du

for a.e. t 2 (�1; 1): This is to say that gn 2 ACloc(�1; 1); and

g0n(t) = gn+1(t)

for a.e. t 2 (�1; 1): Again, from (6.9), we see that
n
f
(n�2)
m

o1
m=1

is Cauchy in

L2�+n�2;n�3(�1; 1); implying that there exists a gn�1 2 L2�+n�2;n�3(�1; 1) such that

f (n�2)m �! gn�1

in L2�+n�2;n�3(�1; 1): Again, gn�1 2 L1loc(�1; 1); and, for any t; t2 2 (�1; 1);

f (n�3)m (t)� f (n�3)m (t2) =

tZ
t2

f (n�2)m (u)du �!
tZ

t2

gn�1(u)du
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and there exists a subsequence
n
f
(n�2)
mk;n�2

o1
m=1

of
n
f
(n�2)
m

o1
m=1

such that

f
(n�2)
mk;n�2(t) �! gn�1(t)

for a.e. t 2 (�1; 1): In (6.13), choose t1 such that f (n�2)mk;n�2(t1) �! gn�1(t1) and then

pass through the subsequence in (6.13) to get

gn�1(t)� gn�1(t1) =
tZ

t1

gn(u)du

for a.e. t 2 (�1; 1); i.e. gn�1 2 AC
(1)
loc (�1; 1); and g00n�1(t) = g0n(t) = gn+1(t) for

a.e. t 2 (�1; 1): Continuing in this manner, we obtain n + 1 functions gn�j+1 2

L2�+n�j;n�j�1(�1; 1) for j = 0; 1; :::; n such that

(1) f (n�j)m �! gn�j+1 in L2�+n�j;n�j�1(�1; 1); for j = 0; 1; :::; n

(2) g1 2 AC(n�1)loc (�1; 1); g2 2 AC(n�2)loc (�1; 1); :::; gn 2 ACloc(�1; 1)

(3) g0n�j(t) = g0n�j+1(t) for a.e. t 2 (�1; 1); j = 0; 1; :::; n� 1

(4) g(j)1 = gj+1; j = 0; 1; :::; n:

In particular, f (j)m �! g
(j)
1 in L2�+j;j�1(�1; 1) for j = 0; 1; :::; n and g1 2

V
(�;�1)
n : Hence,

�
kfm � g1k(�;�1)n;k

�2
=

nX
j=0

c
(�;�1)
j (n; k)

�
1Z

�1

���f (j)m (u)� g(j)1 (u)���2 (1� u)�+j(1 + u)j�1du
=

nX
j=0

c
(�;�1)
j (n; k)

f (j)m � g(j)1 2
�+j;j�1

�! 0

as m �!1; i.e. W (�;�1)
n;k (�1; 1) is complete.
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De�nition 6.4.

W� :=
�
f : [�1; 1) �! C j f 2 AC [�1; 1) ; f 0 2 L2

�
(�1; 1); (1� x)�+1

�	
Lemma 6.11. V1 � W�;1 := ff 2 W� j f(�1) = 0g

Proof. V1 � W�;1: Let f 2 V1: We know that V1 � �, and by lemma 6.3 f(�1) = 0

for all f 2 �, so f 2 W�;1:

Theorem 6.4. The Jacobi polynomials
n
P
(�;�1)
m

o1
m=1

form a complete orthogonal

set in each W
(�;�1)
n;k (�1; 1): Equivalently, the set of polynomials, P ; is dense in

W
(�;�1)
n;k (�1; 1):

Proof. Fix n 2 N , and let f 2 W (�;�1)
n;k (�1; 1), so

f (n) 2 L2
�
(�1; 1); (1� x)�+n(1 + x)n�1

�
:

Since
n
P
(�+n;n�1)
m

o1
m=0

is a complete orthonormal set in L2�+n;n�1(�1; 1), we know

rX
m=0

c(�;�1)m;n P (�+n;n�1)m ! f (n) as r !1 in L2
�
(�1; 1); (1� x)�+n(1 + x)n�1

�
(6.14)

where c(�;�1)m;n are the Fourier coe¢ cients given by

c(�;�1)m;n =

1Z
�1

f (n)(t)P (�+n;n�1)m (t)(1� t)�+n(1 + t)n�1dt

for m 2 N0: For r � n de�ne the polynomials

pr(t) :=

rX
m=maxf2;ng

c
(�;�1)
m�n;n ((m� n)!)1=2 (�(�+m))1=2

(m!)1=2 (�(�+m+ n)!)1=2
P (�;�1)m (t):

From
dj

dtj
P (�;�1)m (t) =

(m!)1=2 (�(�+m+ j))1=2

((m� j)!)1=2 (�(�+m))1=2
P
(�+j;j�1)
m�j (t);

we see that, for j = 0; 1; :::; n,

p(j)r (t) =
rX

m=maxf2;ng

c
(�;�1)
m�n;n ((m� n)!)1=2 (�(�+m+ j)!)1=2

(�(�+m+ n)!)1=2 ((m� j)!)1=2
P
(�+j;j�1)
m�j (t):
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In particular, by (6.14),

p(n)r (t) =

rX
m=maxf2;ng

c
(�;�1)
m�n;nP

(�+n;n�1)
m�n

=

r�maxf2;ngX
l=0

c
(�;�1)
l;n P

(�+n;n�1)
l

=
sX

m=0

c(�;�1)m;n P (�+n;n�1)m ! f (n)

as r ! 1 in L2 ((�1; 1); (1� x)�+n(1 + x)n�1) : Furthermore, by Riesz-Fischer,

there exists a subsequence
n
p
(n)
rj

o
of
n
p
(n)
r

o
such that

p(n)rj ! f (n) for a.e. t 2 (�1; 1):

By Dirichlet�s test, the sequence(
c
(�;�1)
m�n;n ((m� n)!)1=2 (�(�+m+ j)!)1=2

(�(�+m+ n)!)1=2 ((m� j)!)1=2

)
2 `2;

so there exists a gj 2 L2 ((�1; 1); (1� x)�+j(1 + x)j�1) such that

prj �! gj in L2
�
(�1; 1); (1� x)�+j(1 + x)j�1

�
: (6.15)

For a.e. a; t 2 (�1; 1);
tZ

a

p(n)rj (u)du �!
tZ

a

f (n)(u)du:

Integrate both sides and obtain

p(n�1)rj
(t) �! f (n�1)(t) + c1 for a.e. t 2 (�1; 1) (6.16)

for some constant c1: Passing through the subsequence implies

gn�1(t) = f (n�1)(t) + c1 for a.e. t 2 (�1; 1):

From (6.16), we see that

tZ
a

p(n�1)rj
(u)du �!

tZ
a

f (n�1)(u)du+ c1

tZ
a

du;
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i.e.

p(n�2)rj
(t) �! f (n�2)(t) + c1t+ c2 for a.e. t 2 (�1; 1)

or

gn�2(t) = f (n�2)(t) + c1t+ c2 for a.e. t 2 (�1; 1):

Continue this process to see that for j 2 f0; 1; :::; n� 1g ;

gj(t) = f (j)(t) + qn�j+1 for a.e. t 2 (�1; 1);

where qn�j�1 is a polynomial of degree � n� j � 1 and where

q0n�j�1 = qn�j�2:

Hence, with (6.15),

p(j)r �! f (j) + qn�j�1 in L2
�
(�1; 1); (1� x)�+j(1 + x)j�1

�
: (6.17)

For r � n, de�ne

�r(t) := pr(t)� qn�1(t):

Note that, with (6.17),

�(j)r (t) = p(j)r (t)� q
(j)
n�1(t) = p(j)r (t)� qn�j�1(t) �! f (j)(t):

Now, �
kf � �rk(�;�1)n;k

�2
=

nX
j=0

c
(�;�1)
j (n; k)

�
�1Z
�1

��f (j)(t)� �(j)r (t)��2 (1� t)�+j(1 + t)j�1dt �! 0

as r �!1:

The following lemma holds for n � 1!!

Lemma 6.12. For p; q 2 P,

(p; q)
(�;�1)
n;k =

��
A
(�;�1)
k

�n
p; q
�
�;�1

:
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Proof. First we note that this may be restated as

�
ln�;�1[p]; q

�
�;�1 =

1Z
�1

ln�;�1[p](x)q(x)w�;�1(x)dx

=
nX
j=0

c
(�;�1)
j (n; k)p(j)(x)q(j)(x)(1� x)j+�(1 + x)j�1dx: (6.18)

Since the Jacobi polynomials form a basis for P, it su¢ ces to prove (6.18) for p =

P
(�;�1)
m and q = P

(�;�1)
r for arbitrary m; r 2 N0: From

ln�;�1[P
(�;�1)
m ](x) = (m(m� 1) + k)nP (�;�1)m (x) (m 2 N0)

and �
P (�;�1)r ; P (�;�1)m

�
�;�1 = �r;m (r;m 2 N0) ;

the left-hand side of (6.18) becomes

�
ln�;�1[P

(�;�1)
m ]; P (�;�1)r

�
�;�1 =

1Z
�1

ln�;�1[P
(�;�1)
m ](x)P

(�;�1)
r (x)w�;�1(x)dx

= (m(m� 1) + k)n�r;m: (6.19)

Upon using (4.3) for � > �1; � = �1 and the recurrence relation for the c(�;�1)j (n; k);

that is,

(m(m+ �) + k)n =
nX
j=0

c
(�;�1)
j (n; k)

m!(m+ �+ j � 1)!
(m� j)!(m+ �� 1)!

the right-hand side of (6.18) becomes

nX
j=0

c
(�;�1)
j (n; k)

�
P (�;�1)m (x)

�(j)
(x)
�
P
(�;�1)
r (x)

�(j)
(x)(1� x)j�1(1 + x)j�1dx

=

nX
j=0

c
(�;�1)
j (n; k)

m!(m+ �+ j � 1)!
(m� j)!(m+ �� 1)!�r;m (6.20)

= (m(m+ �) + k)n�r;m:

Comparing (6.19) and (6.20) completes the proof of the lemma.

98



Theorem 6.5. For k > 0, let

A
(�;�1)
k : D

�
A
(�;�1)
k

�
� L2�;�1(�1; 1) �! L2�;�1(�1; 1)

be the Jacobi self-adjoint operator having the Jacobi polynomials
n
P
(�;�1)
m

o1
m=1

as

eigenfunctions. For each n 2 N, let

V (�;�1)
n :=

n
f : (�1; 1) �! C

���f 2 AC(n�1)loc ; f (j) 2 L2(�+j;j�1)(�1; 1); j = 0; :::; n
o

and

(f; g)
(�;�1)
n;k :=

nX
j=0

c
(�;�1)
j (n; k)

1Z
�1

f (j)(t)g(j)(t)(1�t)�+j(1+t)j�1dt (f; g 2 V (�;�1)
n ):

Then W (�;�1)
n;k (�1; 1) :=

�
V
(�;�1)
n ; (�; �)(�;�1)n;k

�
is the nth left-de�nite space associated

with
�
L2�;�1(�1; 1); A

(�;�1)
k

�
. Moreover, the Jacobi polynomials

n
P
(�;�1)
m

o1
m=1

form

a complete orthogonal set in each W (�;�1)
n;k (�1; 1), and they satisfy the orthogonality

relation �
P (�;�1)m ; P

(�;�1)
l

�
n;k
= (m(m� 1) + k)n�m;l:

Furthermore, de�ne

B
(�;�1)
n;k := D

�
B
(�;�1)
n;k

�
� W

(�;�1)
n;k (�1; 1) �! W

(�;�1)
n;k (�1; 1)

by

B
(�;�1)
n;k f := l [f ]

�
f 2 D

�
B
(�;�1)
n;k

�
:= V

(�;�1)
n+2

�
:

Then B(�;�1)
n;k is the nth left-de�nite operator associated with

�
L2�;�1(�1; 1); A

(�;�1)
k

�
.

Lastly, the spectrum of B(�;�1)
n;k is given by

�
�
B
(�;�1)
n;k

�
= fm(m� 1) + k jm 2 N0g = �fA(�;�1)k g;

and the Jacobi polynomials
n
P
(�;�1)
m

o1
m=1

form a complete set of eigenfunctions of

each B(�;�1)
n;k .
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Proof. Let n 2 N. We need to show that W (�;�1)
n;k (�1; 1) satis�es the �ve properties

in de�nition 3.1.

(i) W (�;�1)
n;k (�1; 1) is a Hilbert space (see theorem 6.3).

(ii) We need to show:

D
��
A
(�;�1)
k

�n�
� W

(�;�1)
n;k (�1; 1) � L2 ((�1; 1); (1� x)� (1 + x)�1):

Let f 2 D
��
A
(�;�1)
k

�n�
. Since the Jacobi polynomials

n
P
(�;�1)
m

o1
m=1

form

a complete orthonormal set in L2 ((�1; 1); (1� x)� (1 + x)�1), we see that

pj �! f in L2 ((�1; 1); (1� x)� (1 + x)�1) as j �!1 (6.21)

where

pj(t) :=

jX
m=0

c(�;�1)m P (�;�1)m (t) (t 2 (�1; 1)) ;

c(�;�1)m :=
�
f; P (�;�1)m

�
�;�1 =

1Z
�1

f(t)P (�;�1)m (t) (1� t)� (1+t)�1dt (m 2 N0):

Since
�
A
(�;�1)
k

�n
f 2 L2 ((�1; 1); (1� x)� (1 + x)�1), we see that

jX
m=0

ec (�;�1)m P (�;�1)m �!
�
A
(�;�1)
k

�n
f in L2 ((�1; 1); (1� x)� (1 + x)�1)

as j �!1, where

ec (�;�1)m :=
��
A
(�;�1)
k

�n
f; P (�;�1)m

�
�1;�1

=
�
f;
�
A
(�;�1)
k

�n
P (�;�1)m

�
�;�1

= (m(m+ �) + k)n
�
f; P (�;�1)m

�
�;�1

= (m(m+ �) + k)nc(�;�1)m ;

i.e. �
A
(�;�1)
k

�n
pj �!

�
A
(�;�1)
k

�n
f

100



in L2 ((�1; 1); (1� x)� (1 + x)�1) as j �!1: Moreover, by lemma 6.12,�
kpj � prk(�;�1)n;k

�2
=
��
A
(�;�1)
k

�n
[pj � pr] ; pj � pr

�
�;�1

�! 0 as j; r �!1

i.e. fpjg1j=0 is Cauchy in W
(�;�1)
n;k (�1; 1). Since W (�;�1)

n;k (�1; 1) is a Hilbert

space (theorem 6.3), there exists

g 2 W (�;�1)
n;k (�1; 1) � L2 ((�1; 1); (1� x)� (1 + x)�1)

such that

pj �! g in W (�;�1)
n;k (�1; 1) as j �!1:

Furthermore, since

(f; f)
(�;�1)
n;k � kn (f; f)�;�1

�
f 2 W (�;�1)

n;k (�1; 1)
�
;

[this is due to

(f; f)
(�;�1)
n;k =

nX
j=0

c
(�;�1)
j (n; k)

f (j)2
j+�;j�1

� c
(�;�1)
0 (n; k)

f (j)2
�;�1

= kn (f; f)�;�1

�
f 2 W (�;�1)

n;k (�1; 1)
�

from the positivity of the coe¢ cients c(�;�1)j (n; k)], we see that

kpj � gk�;�1 � k�n=2 kpj � gk(�;�1)n;k ;

and hence,

pj �! g in L2 ((�1; 1); (1� x)� (1 + x)�1): (6.22)

Comparing (6.21) and (6.22),

f = g 2 W (�;�1)
n;k (�1; 1):

101



(iii) We need to show: D
��
A
(�;�1)
k

�n�
is dense inW (�;�1)

n;k (�1; 1): Since the set of

polynomials is contained in D
��
A
(�;�1)
k

�n�
and is dense in W (�;�1)

n;k (�1; 1)

(by theorem 6.4), D
��
A
(�;�1)
k

�n�
is dense in W (�;�1)

n;k (�1; 1). Furthermore,

from theorem 6.4, the Jacobi polynomials
n
P
(�;�1)
m

o1
m=1

form a complete

orthonormal set in W (�;�1)
n;k (�1; 1).

(iv) We need to show that (f; f)(�;�1)n;k � kn (f; f)�;�1 8f 2 V
(�;�1)
n;k : This

follows immediately from the de�nition of (�; �)(�;�1)n;k .

(v) We need to show: (f; g)(�;�1)n;k =
��
A
(�;�1)
k

�n
f; g
�
�;�1

for f 2 D
��
A
(�;�1)
k

�n�
and g 2 V

(�;�1)
n;k : This is true for any f; g 2 P by lemma 6.12. Let f 2

D
��
A
(�;�1)
k

�n�
� W

(�;�1)
n;k (�1; 1), g 2 W (�;�1)

n;k (�1; 1): Since the set of poly-

nomials is dense in both W (�;�1)
n;k (�1; 1) and L2 ((�1; 1); (1� x)� (1 + x)�1),

and since convergence in W
(�;�1)
n;k (�1; 1) implies convergence in the space

L2 ((�1; 1); (1� x)� (1 + x)�1) (by (iv)), there exist sequences fpjg1j=0 and

fqjg1j=0 such that

pj �! f in W (�;�1)
n;k (�1; 1) as j �!1�

A
(�;�1)
k

�n
pj �!

�
A
(�;�1)
k

�n
f

in L2 ((�1; 1); (1� x)� (1 + x)�1) as j �!1 and

qj �! g

in W (�;�1)
n;k (�1; 1) and L2 ((�1; 1); (1� x)� (1+x)�1) as j �!1: Hence, by

lemma 6.12,

��
A
(�;�1)
k

�n
f; g
�
�1;�1

= lim
j�!1

��
A
(�;�1)
k

�n
pj; qj

�
�;�1

= lim
j�!1

(pj; qj)n;k

= (f; f)
(�;�1)
n;k :
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The results listed in the theorem on B(�;�1)
n;k and the spectrum of B(�;�1)

n;k

follow immediately from the general left-de�nite theory.

6.4 Self-Adjoint Operators

De�nition 6.5. De�ne

W� :=
�
f : [�1; 1) �! C j f 2 AC [�1; 1) ; f 0 2 L2

�
(�1; 1); (1� x)�+1

�	
� (f; g) := f(�1)g(�1) +

1Z
�1

f 0(x)g0(x)(1� x)�+1dx:

Theorem 6.6. (W�; �(�; �)) is a Hilbert space.

Proof. Let ffng � W1 be a Cauchy sequence. Hence

kfn � fmk2� = jfn(�1)� fm(�1)j
2 +

1Z
�1

jf 0n(x)� f 0m(x)j
2
(1� x)�+1dx

�! 0 as n;m �!1:

In particular, since

1Z
�1

jf 0n(x)� f 0m(x)j
2
(1� x)�+1dx � kfn � fmk2� ;

we see that ff 0ng is Cauchy in L2 ((�1; 1); (1� x)�+1). Since L2 ((�1; 1); (1� x)�+1)

is complete, there exists g 2 L2 ((�1; 1); (1� x)�+1) such that

f 0n �! g as n �!1 in L2
�
(�1; 1); (1� x)�+1

�
: (6.23)

Also, since

jfn(�1)� fm(�1)j2 � kfn � fmk2�

we see that the sequence ffn(�1)g is Cauchy in C and, hence, there exists A 2 C

such that

fn(�1) �! A: (6.24)
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Furthermore, since fn 2 AC [�1; 1) (n 2 N), we see that

1Z
�1

f 0n(t)(1� t)�+1dt �!
1Z

�1

g(t)(1� t)�+1dt;

Since g 2 AC [�1; 1) ; we may de�ne f : [�1; 1) �! C by

f(x) = A+

xZ
�1

g(t)dt:

It is clear that f 2 AC [�1; 1) and f 0(x) = g(x) 2 L2 ((�1; 1); (1� x)�+1) for a.e.

x 2 [�1; 1), so f 2 W�: Furthermore, f(�1) = A. Now

kfn � fk2� = jfn(�1)� f(�1)j
2 +

1Z
�1

jf 0n(t)� f 0(t)j
2
(1� t)�+1dt

= jfn(�1)� Aj2 +
1Z

�1

jf 0n(t)� g(t)j
2
(1� t)�+1dt

�! 0

as n �!1 by (6.23) and (6.24). Thus, (W�; �(�; �)) is complete.

Theorem 6.7. Let W� and �(�; �) be as before, and

W�;1 := ff 2 W� j f(�1) = 0g

W�;2 := ff 2 W� j f 0(x) = 0g :

Then W�;1 and W�;2 are closed, orthogonal subspaces of W� and

W� = W�;1 �W�;2:

Proof. Since W�;2 is one-dimensional, it is a closed subspace of W�. The orthogonal

complement of W�;2 is given by

W?
�;2 := ff 2 W� j�(f; g) = 0 8g 2 W�;2g :
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To see that W�;1 � W?
�;2, let f 2 W�;1, g 2 W�;2 and consider

�(f; g) = f(�1)g(�1) +
1Z

�1

f 0(x)g0(x)(1� x)�+1dx = 0:

The �rst summand vanishes because f 2 W�;1; and the integral is 0 because g 2 W�;2.

Now Let f 2 W�. We need to �nd f1 2 W�;1 and f2 2 W�;2 such that

f = f1 + f2: To this end, let

f2(x) := C;

C to be determined. Clearly, f2 2 W�;2: Let

f1(x) := f(x)� f2(x):

We show that f1 2 W�;1 by appropriate choice of C: For any choice of C; f1 2 W�:

Now set

f1(�1) = f(�1) + C !
= 0

to �nd

C = �f(�1)

i.e. with the choice of

f1(x) := f(x) + f(�1)

f2(x) := �f(�1)

every f 2 W� can indeed be written as f = f1 + f2; where f1 2 W�;1 and f2 2

W�;2:

The next result shows that the space W�;1 is precisely the �rst left-de�nite

space.

Theorem 6.8. W�;1 = V1:
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Proof. (1) V1 � W�;1: This was shown in lemma 6.11.

(2) W�;1 � V1 : Let f 2 W�;1:

It su¢ ces to show that f 2 L2 ((�1; 1); (1� x)�(1 + x)�1). For �1 < x < 0,

(1� x)�=2(1 + x)�1=2
xZ

�1

f 0(t)dt = (1� x)�=2(1 + x)�1=2 [f(x)� f(�1)]

= (1� x)�=2(1 + x)�1=2f(x)

since f(�1) = 0. We use Chisholm-Everitt on (�1; 0) with

 (x) = (1� x)�=2(1 + x)�1=2

'(x) = 1:

Clearly,  is L2 near 0, and ' is L2 near �1: In this case,

xZ
�1

dt

0Z
x

(1� t)�(1 + t)�1dt � c

xZ
�1

dt

0Z
x

dt

1 + t

= �c(x+ 1) ln(1 + x);

and this is a bounded function on (�1; 0): By Chisholm-Everitt, we have f 2

L2 ((�1; 0); (1� x)�(1 + x)�1) :

For 0 � x < 1,

(1� x)�=2(1 + x)�1=2
1Z
x

f 0(t)dt = �(1� x)�=2(1 + x)�1=2f(x):

We again apply Chisholm-Everitt on [0; 1) with

'(x) = (1� x)�=2(1 + x)�1=2

 (x) = 1:
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In this case,

xZ
0

(1� t)�(1 + t)�1dt
1Z
x

dt � c

xZ
0

(1� t)�dt
1Z
x

dt

= � c

�+ 1
(1� t)�+1 jx0 (1� x)

= � c

�+ 1
(1� x)�+2

which is bounded on (0; 1): By Chisholm-Everitt, f 2 L2 ((0; 1); (1� x)�(1 + x)�1) :

Theorem 6.9. The inner products �(�; �) and (�; �)1 are equivalent on W�;1 = V1:

Proof. First of all, (W�;1; �(�; �)) is a Hilbert space, and, by de�nition, (V1; (�; �)1) is

a Hilbert space. Let f 2 W�;1 = V1: Then

kfk2� =
1Z

�1

jf 0j2 (1� x)�+1dx

�
1Z

�1

h
jf 0j2 (1� x)�+1 + k(1� x)�(1 + x)�1 jf j2

i
dx

= (kfk1)
2 :

By the open mapping theorem, these inner products must be equivalent.

Note that T2 is self-adjoint in W�;2 since it is de�ned on the whole one-

dimensional space.

We now need to consider T1 in the space W�;1: Recall that by theorem 6.8,

V1 = W�;1: We also know that the operator

B
(�;�1)
1;k : D

�
B
(�;�1)
1;k

�
:= V3 � V1 �! V1

namely, the �rst left-de�nite operator associated with
�
A;L2�;�1(�1; 1)

�
, is self-
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adjoint and given by

B
(�;�1)
1;k [f ](x) = l�;�1[f ](x)

f 2 D
�
B
(�;�1)
1;k

�
= V3 = ff : (�1; 1) �! C j f; f 0; f 00 2 ACloc(�1; 1);

(1� x)(�+3)=2(1 + x)f 000; (1� x)(�+2)=2(1 + x)1=2f 00; (1� x)(�+1)=2f 0;

(1� x)�=2(1 + x)�1=2f 2 L2(�1; 1)
	

More speci�cally, B(�;�1)
1;k is self-adjoint with respect to the �rst left-de�nite inner

product (�; �)1 which we know is equivalent to the inner product �(�; �): We shall

prove that the operator

T1 : D(T1) � W�;1 �! W�;1

given by

T1f = B
(�;�1)
1;k f = l�;�1[f ]

f 2 D(T1) := V3

is self-adjoint in (W�;1; �(�; �)) :

Proof. Let f; g 2 V3:

Lemma 6.13. T1 in (W�;1; �(�; �)) is densely de�ned.

Proof. T1 is de�ned through the �rst left-de�nite operator,

T1f = B
(�;�1)
1;k f

with domain V3: The Jacobi polynomials
n
P
(�;�1)
n

o1
n=1

are its eigenfunctions and

they are dense in V3:

Theorem 6.10. T1 is symmetric in (W�;1; �(�; �)).
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Proof. From the previous lemma, it su¢ ces to show that T1 is Hermitian. Let

f; g 2 D(T1) = V3: Since V3 � V1 and T1f; T1g 2 V1, we know that

f(�1) = g(�1) = 0 = T1f(�1) = T1g(�1):

Integration by parts shows that

(T1f; g)� =

1Z
�1

(T1f)
0 (x)g0(x)dx

= (f; T1g)�

Theorem 6.11. The operator T1 has the following properties:

(i) T1 is self-adjoint in (W�; �(�; �)) :

(ii) �(T1) = fn(n+ �) + k jn � 2g :

(iii)
n
P
(�;�1)
n

o
n�1

is a complete orthonormal set of eigenfunctions of T1 in the

space (W�; �(�; �)) :

(iv) T1 is bounded below by kI in (W�; �(�; �)) :

Proof. For (iii): We know that
n
P
(�;�1)
n

o
n�0

is a complete orthonormal set in

(W�; �(:; :)) and we know that W� = W�;1 � W�;2: Also, W�;2 = span
n
P
(�;�1)
0

o
and so W�;1 = W?

�;2 = span
n
P
(�;�1)
n

o
n�1

: We next prove that T1 is closed in

(W�; �(�; �)) : Take a sequence ffng � D(T1) = V3 such that

fn �! f in (W�; �(�; �))

T1fn �! g in (W�; �(�; �)) :

We show that f 2 D(T1) and T1f = g: We know that B(�;�1)
1;k is self-adjoint and

hence closed in (W�;1; (�; �)1) ; and we know, since �(�; �) and (�; �)1 are equivalent,
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there exist constants c1 and c2 such that

c1 kfk� � kfk1 � c2 kfk� 8f 2 W�;1 = V1:

Hence,

kfn � fk1 � c2 kfn � fk� �! 0

i.e.

fn �! f in (W�;1; (�; �)1)

and

kT1fn � gk1 � c2 kT1fn � gk� �! 0

i.e.

T1fn �! g in (W�;1; (�; �)1)

and since T1 is closed in (W�;1; (�; �)1), we see that f 2 D(T1) and T1f = g: Also, we

know that, for n � 2,

�
T1P

(�;�1)
n

�
(x) = l�;�1[P

(�;�1)
n ](x)

= (n(n+ �) + k)P (�;�1)n (x):

This implies

fn(n+ �) + k jn � 2g � �(T1):

Since
n
P
(�;�1)
n

o
n�1

is complete and �n := n(n+ �) + k �!1, we know that

�(T1) = fn(n+ �) + k jn � 2g

by a result due to Riesz-Nagy, which proves (ii) and (iii). To summarize: T1 is a

closed, symmetric operator with a complete set of eigenfunctions. From Naimark�s

book, T1 is self-adjoint. This proves (i). To prove (iv), let f 2 D(T1): Then, since
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T1 : V3 � V1 �! V1,

(T1f; f)� = (T1f) (�1)f(�1) +
1Z

�1

(T1f)
0 (x)f

0
(x)(1� x)�+1dx

=

1Z
�1

(T1f)
0 (x)f

0
(x)(1� x)�+1dx

=

1Z
�1

�
1

(1� x)�(1 + x)�1
����(1� x)�+1f 0(x)�0���2 + k jf 0(x)j2 (1� x)�+1

�
dx

� k

1Z
�1

jf 0(x)j2 (1� x)�+1dx

= k jf(�1)j2 + k

1Z
�1

jf 0(x)j2 (1� x)�+1dx

= k (f; f)� :

We now construct the self-adjoint operator T in (W�; �(�; �)) that is gener-

ated by the Jacobi di¤erential expression l�;�1[:], having the entire set of Jacobi

polynomials
n
P
(�;�1)
n

o
n�0

as eigenfunctions and having spectrum

�(T ) = fn(n+ �) + k jn 2 N0g :

For f 2 W�, write

f = f1 + f2

where fi 2 W1;i; (i = 1; 2). De�ne

T : D(T ) � W� �! W�

by

Tf = T1f1 + T2f2 = l�;�1[f1] + l�;�1[f2] = l�;�1[f ];

D(T ) = D(T1)�D(T2):
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Theorem 6.12. T is self-adjoint in (W�; �(�; �)) and

D(T ) = ff : [�1; 1) �! C j f 2 AC[�1; 1); f 0; f 00 2 ACloc(�1; 1);

(1� x)(�+3)=2(1 + x)f 000; (1� x)(�+2)=2(1 + x)1=2f 00;

(1� x)(�+1)=2f 0 2 L2(�1; 1)
	

= ff : [�1; 1) �! C j f 2 AC[�1; 1); f 0; f 00 2 ACloc(�1; 1);

(1� x)(�+3)=2(1 + x)f 000 2 L2(�1; 1)
	
:

Furthermore, �(T ) = fn(n+ �) + k jn 2 N0g and T is bounded below by kI in

(W�; �(�; �)).

For the following theorem let us recall the de�nitions of the �rst and third left-de�nite

spaces:

V1 = ff : (�1; 1) �! C j f 2 ACloc(�1; 1);

(1� x)�=2(1 + x)�1=2f; (1� x)(�+1)=2f 0 2 L2(�1; 1)
	

=
�
f : [�1; 1) �! C j f 2 AC [�1; 1) ; (1� x)(�+1)=2f 0 2 L2(�1; 1); f(�1) = 0

	
= W�;1

V3 = D(T1) = ff : (�1; 1) �! C j f; f 0; f 00 2 ACloc(�1; 1);

(1� x)(�+3)=2(1 + x)f 000; (1� x)(�+2)=2(1 + x)1=2f 00; (1� x)(�+1)=2f 0;

(1� x)�=2(1 + x)�1=2f 2 L2(�1; 1)
	

=
�
f 2 V1 j f 0; f 00 2 ACloc(�1; 1); (1� x)(�+3)=2(1 + x)f 000

(1� x)(�+2)=2(1 + x)1=2f 00 2 L2(�1; 1)
	

= ff : [�1; 1) �! C j f 2 AC[�1; 1); f 0; f 00 2 ACloc(�1; 1);

f(�1) = 0; (1� x)(�+3)=2(1 + x)f 000; (1� x)(�+2)=2(1 + x)1=2f 00;

(1� x)(�+1)=2f 0 2 L2(�1; 1)
	
:

Note that the space D below is V3 minus the condition f(�1) = 0, so V3 � D.
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Theorem 6.13. Let

D := ff : [�1; 1) �! C j f 2 AC[�1; 1); f 0; f 00 2 ACloc(�1; 1);

(1� x)(�+3)=2(1 + x)f 000; (1� x)(�+2)=2(1 + x)1=2f 00; (1� x)(�+1)=2f 0 2 L2(�1; 1)
	
:

Then D(T ) = D.

Proof. First show D(T ) � D: Let f 2 D(T ) = D(T1)�D(T2). Write

f = f1 + f2

where f1 2 D(T1) = V3 � D, f2 2 D(T2) � D. Then f 2 D. To show that

D � D(T ), let f 2 D. Write

f(x) = [f(x) + f(�1)]� f(�1)

with

f1(x) := f(x) + f(�1)

f2(x) := �f(�1):

Then f1 2 D, and f1(�1) = 0, i.e. f1 2 V3 = D(T1). Also, f 002 (x) = 0, i.e.

f2 2 D(T2). Together, f 2 D(T ):
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CHAPTER SEVEN

Further Work

The self-adjoint operator T which was constructed in sections 5.4 and 6.4,

respectively, is bounded below so that the left-de�nite theory can be applied again

to this operator.

In the study of angular momentum in quantum mechanics, the Jacobi poly-

nomials occur quite naturally for negative integer parameters [6]. Usually, this is

treated by using identities relating the Jacobi polynomials for negative integer pa-

rameters to those for positive integer parameters. This application is of particular

interest, now that orthogonality and spectral results are available for the Jacobi

polynomials for non-classical parameters.

The left-de�nite theory has never been applied to di¤erence equations or par-

tial di¤erential equations. A natural place to start with di¤erence equations would

be the Charlier di¤erence equation, as the integral powers are known for the corre-

sponding di¤erence expression.

In the orthogonal polynomial examples, the set of polynomials is dense in

every left-de�nite space, while these left-de�nite spaces are proper subsets of one

another. It seems natural to ask what functions are contained in the intersection

of all left-de�nite spaces. In the case of the orthogonal polynomial examples, our

conjecture is that the intersection consists of the set of all in�nitely di¤erentiable

functions.
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