
ABSTRACT

Bayesian Models for Unmeasured Confounder
in the Analysis of Time-to-Event Data

Wencong Chen, Ph.D.

Chairperson: James D. Stamey, Ph.D.

Observational studies that omit confounders are subject to bias. In this dis-

sertation we consider the specific case of time-to-event data. We also provide both

the Bayesian parametric and the semi-parametric “twin regression” approaches with

distributional assumptions of an unmeasured confounding variable, and then we com-

pare them with the naive model. This assumes we ignore the effect of the unmeasured

confounder.

To explore the ability of bias adjustment from different sources of information,

we offer a Bayesian parametric regression with a normal unmeasured confounder.

We also develop a Bayesian semi-parametric proportional hazards model accounting

for unmeasured confoundings with binary and normal distributions. We can see

that the approaches adequately decrease the bias, even with a small validation size.

Furthermore, we offer a novel Bayesian bias adjustment model when only summary

statistics are available in the external validation data.

Finally, we discuss and obtain several sets of solutions for different sources of

validation data, censoring rates and sample sizes through simulation studies.
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CHAPTER ONE

Introduction

1.1 Unmeasured Confounder

The gold standard for experimental research is the randomized controlled trial.

For a variety of reasons, e.g., the clinical outcomes are rare (as in most genetic dis-

eases), the outcome of interest is far in the future (Black 1996), or ethical objections

such as the clinician believes that the specific intervention is a benefit to the partic-

ipant, the randomized controlled trial (RCT) cannot always be conducted. Instead,

well-designed observational studies play an important role in deriving the evidence

of clinical intervention, although the problem of confounding can lead to biased

estimation (Lin, Psaty and Kronmal 1998).

A confounder is defined as a risk factor for the disease outcome, which is asso-

ciated with the exposure variable under study, and it is not an intermediate step in

the causal path between exposure and the disease outcome (Rothman, Greenland,

and Lash 2008). However, the mixed relationship between a potential confounder,

an exposure variable, and a disease outcome is not easily detected. For instance,

the neighborhood level socioeconomic deprivation was a confounder in McCandless,

Richardson, and Best (2012). Weinberg (1993) presented a special case in which

the history of spontaneous abortion is not a confounder when the disease outcome

is the occurrence of spontaneous abortion. In that case, a woman with a history of

spontaneous abortion was already exposed to the risk factor, so there was no con-

founding to be adjusted for. An additional complication occurs when the confounder

is unmeasured.

Schneeweiss (2006) illustrated the concept of confounding and unmeasured

confounding with causal graphs. Let T denote the survival time, Z denote the mea-
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sured confounder, X1 be the treatment exposure indicator, and U be the unmeasured

confounder. The relationship between X1, Z, and T is presented in Figure 1.1. As-

suming that there is an unmeasured confounder, the relationship is shown in Figure

1.2.

X1 T

Z

Figure 1.1: A graphical concept of a measured confounder

X1 T

Z

U

Figure 1.2: A graphical concept of a measured and an unmeasured confounder

Potential confounders can be variables such as family history, social status

(Rothman et al. 2008), and household income. When the outcome is a disease,

then the confounder may include body mass index (BMI), disease categories, stage

of disease, specific diagnostic criteria, disease subtype, or degree of severity (Song

and Chung 2010).

In an observational study, it is desirable to collect as much data as possi-

ble. Due to technical issues, limited budget, or ethical concerns, this is not always
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possible as some confounders cannot be collected. This can lead to unmeasured con-

founding, like when the patient characteristics have made a doctor choose a specific

intervention but is then not recorded (Collet 2003; Jepsen et al. 2004).

1.2 Motivation and Problems

1.2.1 Right-Heart Catheterization

It is a widespread belief that the direct measurement of cardiac function pro-

vided by right-heart catheterization (RHC) is necessary to guide therapy for certain

critically ill patients and that such management leads to better health outcomes. To

examine the association between the use of right heart catheterization during the

first 24 hours of care in the intensive care unit, the survival time, length of stay, and

cost of care were analyzed in the Study to Understand Prognoses and Preference for

Outcomes and Risks of Treatments (SUPPORT) across five medical centers in the

United States.

Connors et al. (1996) performed a thorough analysis of these data. All the

major risk factors were identified by a panel, which consisted of four intensivists and

three cardiologists. Furthermore, a propensity score for RHC was derived to adjust

for the selection bias. Finally, they deployed the proportional hazards model that

incorporated the propensity score, as well as the other major health risk factors.

Suppose that the primary outcome for SUPPORT is survival time. Let Ti

denote the survival time of the ith subject, xi denote the ith subject’s RHC status,

z1i, z2i, · · · , zqi denote the risk factors in the SUPPORT (e.g., disease categories,

heart rate, temperature, etc.), and let ui denote an unmeasured risk factor. For

i = 1, 2, · · · , 5735, it follows that

P (Ti|xi,Zi, ui) = f(xi,Zi, ui), (1.1)

where Z = (z1i, z2i, · · · , zqi), and f is the function for log-normal regression, non-

parametric methods, or a Cox proportional hazards model.

3



Although Connors et al. (1996) adjusted for the treatment bias with a large

number of covariates, the possibility of missing an important confounder can never

entirely be excluded in observational studies. Suppose the survival time T only

depends on the status of RHC, x (x = 1 represents the subject with RHC), risk

factors Z, and an unmeasured risk factor U . Ignoring the association between X

and U , we apply the Cox proportional hazards model for the survival time with the

risk factor U . That is,

h(t|x,Z, U) = h0(t) exp(β1x+ ηZ + λu), (1.2)

where η = (η1, η2, · · · , ηq), and β1 and λ are unknown parameters. Since X is

a binary exposure indicator, we can decompose the effect for an unmeasured risk

factor as follows:

λ =

 λ0 x = 0

λ1 x = 1.

After re-parameterization of Equation 1.2, we have

h(t|x,Z, U) = h0(t) exp[β1x+ ηZ + λ0u+ (λ1 − λ0)xu], (1.3)

where x = 0, 1. In the case where λ0 6= λ1, there is an interaction effect (λ1−λ0)xu.

Thus, U is an unmeasured confounder, which relates to the treatment exposure

indicator X and the response variable T .

1.2.2 Time-to-Sputum Culture Conversion in MDR

Although epidemiologists are always concerned about the proportion of tu-

berculosis (TB) cases that are resistant to multiple drugs (Zhao et al. 2012), the

status of mycrobacterial cultures is considered the most important interim indicator

of the efficacy of treatment for multidrug-resistant (MDR) tuberculosis (Holtz et al.

2006). Besides the ultimate goal of sputum culture conversion, the time required
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to achieve sputum culture conversion is also an important interim indicator for the

anti-tuberculosis treatment.

Let T denote the time to negative indicator of sputum culture conversion,

and let X be the indicator of living in the inner-city. Suppose we are interested in

the hazard ratio between the inner-city and rural areas, and the clinical outcome

is time-to-sputum culture conversion. Four binary variables (Z1 ,Z2, Z3, and Z4)

are assigned to indicate whether the patients follow the self-administered treatment

protocol, previous TB history (Millet et al. 2013), HIV infection, and an alcohol

abuse indicator (Holtz et al. 2006). Then, the Cox proportional hazards regression

can be written as follows:

h(t|D) = h0(t) exp(β1x+ β2z1 + β3z2 + β4z3 + β5z4), (1.4)

where βi for i = 1, · · · , 5 are the coefficients of regression, andD = (x, z1, z2, z3, z4, z5).

However, Djibuti et al. (2014) showed that poverty is associated with an increased

risk of active TB disease onset and treatment outcomes. Also, there is a still-

expanding gap between the averages of urban and rural household incomes in China

(Khan and Riskin 2005). Thus, the household income is an unmeasured confounder

when there is no income information in the patient report form (PRF). The appro-

priate model is

h(t|D) = h0(t) exp(β1x+ β2z1 + β3z2 + β4z3 + β5z4 + λu), (1.5)

where u is the household income.

1.3 Bias Parameters

Non-sampling biases, such as misclassification, measurement error, and unmea-

sured confounding, are common problems in observational studies. Both frequentist

and Bayesian approaches with various assumptions about available information for

the bias parameters have been proposed to address each of these problems. For

5



instance, non-differential response misclassification in logistic regression adds two

additional parameters to the model: sensitivity and specificity. Madger and Hughes

(1997) used fixed values for the misclassification parameters to account for the mea-

surement error and to find maximum likelihood estimates for the regression param-

eters. Authors such as Paulino, Soares, and Neuhaus (2003) and McInTurff et al.

(2004) replaced the fixed values with informative prior distributions in a Bayesian

context to allow for the uncertainty in the estimation. For unmeasured confounding,

Lin et al. (1998) took an approach similar to that of Madger and Hughes (1997)

and considered several different models.

Accounting for unmeasured confounding, misclassification, and other non-

sampling bias situations requires adding more parameters to the model than are es-

timable. These additional parameters are referred to as “bias parameters”. Gustafson

and Gustafson et al. (2005 and 2015) provided a thorough discussion of the issues

of non-sampling bias as they relate to the non-identifiability of the model. That is,

without restrictions or additional information, the data alone are not able to esti-

mate all the parameters, and standard asymptotic results (for example, convergence

of point estimators and normality of MLEs) do not hold.

First, recall the definition of identifiability. A parameter θ for a family of dis-

tributions {f(x|θ); θ ∈ Θ} is identifiable if distinct values of θ correspond to distinct

distributions (Casella and Berger 2002). Due to the unmeasured confounder, the

model is nonidentifiable. In other words, different values of parameters may result

in the same distributions of disease outcomes. To account for the lack of identi-

fiability, model expansion and contraction is discussed in Gustafson et al. (2005).

Most sensitivity analysis methods for unmeasured confounding ( Lin et al. 1998;

Steenland and Greenland 2004; Lin, Logan, and Henley 2013) can be categorized as

model contraction techniques, since all of the methods assume that the coefficients
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for the unmeasured confounder are derived from pre-existing relationships or are in

some pre-defined ranges.

Rosenbaum and Rubin (1983) introduced the classical propensity score method,

which is a model expansion technique. Most Monte Carlo methods and Bayesian

approaches (Steenland and Greenland 2004; McCandless, Gustafson, and Levy 2007;

McCandless, Gustafson, and Austin 2009) explore model expansion when the model

is identified with an informative prior distribution (Gustafson et al. 2005).

1.4 Overview of Sensitivity Analysis and Bayesian Approaches

Steenland and Greenland (2004) presented a traditional sensitivity analysis

with a lung cancer example, which only relies on a conditional probability assumption

on the different exposure strata. Lin et al. (1998) assessed the sensitivity of a

treatment effect through distributional assumptions of the unmeasured confounder.

Furthermore, they showed a simple additive algebra formula for the relationship

between the true treatment effect and the original biased estimate for time-to-event

data.

VanderWeele (2008) presented a generalized model of Equation 1.2 without the

conditional independence between the unmeasured confounder and the treatment ex-

posure. Lin et al. (2013) developed a large sample approximation of bias adjustment

with omitted covariates. Due to the different characteristics of the unmeasured con-

founder, Handorf et al. (2013) assumed that an unmeasured confounder follows the

gamma and Poisson distributions. They provided a general formula for the different

distributional assumptions. The two-stage calibration approach is discussed by Lin

and Chen (2014), which is similar to Lin et al. (2013).

Steenland and Greenland (2004) also presented a Bayesian analysis of an un-

measured confounder, although they did not provide an adjusted estimate of the

treatment effect (other than a full range of bias due to the unmeasured confounder).
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McCandless et al. (2007) developed Bayesian sensitivity analysis to improve the un-

certainty assessments for unmeasured confounding using Bayesian propensity scores.

To account for a more complex structure of the unmeasured confounder, McCan-

dless et al. (2012) presented a flexible quadratic form adjustment equation in a

Bayesian perspective. Faries et al. (2013) and Stamey et al. (2014) showed that the

Bayesian adjustment with validation data efficiently corrects for the bias due to the

unmeasured confounder, even with a small validation sample size.

1.5 Objectives and Thesis Organization

There are three primary goals in this thesis. First, we investigate the effect

of unmeasured confounding with different distributional assumptions. Second, we

develop Bayesian adjustment methods to assess the efficacy of treatment exposure for

time-to-event data with unmeasured confounding. Finally, we perform the Markov

Chain Monte Carlo (MCMC) simulation to evaluate the performance of parametric

and semi-parametric hazard regression models with unmeasured confounding.

Chapter Two investigates a Bayesian parametric survival regression model

analysis with a continuous unmeasured confounder and a fixed censoring rate.

In Chapter Three, we consider the Bayesian semi-parametric Cox proportional

hazards model and adjust for an unmeasured confounder, assuming that the baseline

hazards function is a sequence of fixed values. Furthermore, MCMC simulations are

conducted with discrete and continuous unmeasured confounders at three different

censoring rates.

Chapter Four provides some important remarks of Bayesian bias adjustment

due to unmeasured confounding. We also address some recommendations for future

work.

Appendices at the end of the thesis include important mathematical deriva-

tions and simulation codes.
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CHAPTER TWO

Bayesian Parametric Survival Regression Model with Unmeasured Confounders

2.1 Introduction

Data in pharmacoepidemiology are often subject to unmeasured confounding,

for example Schneeweiss (2006) and Sturmer et al. (2005). Ignoring unmeasured

confounding is known to yield biased estimates for regression parameters. While

considerable work has been done in the frequentist paradigm, Bayesian methods have

recently shown great promise in terms of correcting for unmeasured confounding. For

instance, McCandless et al. (2007) considered a Bayesian approach to adjust logistic

regression for unmeasured confounding, and they used a mildly informative priors in

order to estimate the model parameters. The main advantage of their model is that

the coverage of interval estimates are above nominal due to the large width. The

lack of information leads to only a slight correction in the bias. Faries et al. (2013)

extended the approach of McCandless et al. (2007) by calibrating the priors for the

regression parameters with internal validation data. That is, for a small sub-sample

of the data, the unmeasured confounder is ascertained. This allows for considerably

better bias correction than the much less informative priors used by McCandless et

al. (2007).

An area of interest in pharmacoepidemiology that has not received much re-

search from the Bayesian perspective is survival models with unmeasured confound-

ing. Lin et al. (1998) considered a simple adjustment plugging in fixed values for

the unmeasured confounding parameters in a Cox regression model. The propen-

sity score approach of Sturmer et al. (2005) can also be applied to the Cox model.

Klungsoyr et al. (2008) considered algebraic approaches to correcting for discrete

unmeasured confounding in a survival model. Here, we extend the work of Faries

9



et al. (2013) by using validation data to correct a parametric Bayesian approach to

survival modeling.

Although the Cox proportional hazards model is the most popular model for

survival data in the health sciences, marketing and social sciences, the parametric

regression model still plays a vital role in survival analysis. The basic idea is that

the outcome (i.e., time to event) follows some specific distribution with unknown

parameters (such as exponential, Weibull, log-logistic, etc.). Hosmer, Lemeshow,

and May (2008) showed the advantages of parametric regression models, such as the

estimation of parameters using the full maximum likelihood and the fitted values

from models which can provide estimates of survival time.

In the absence of information about survival data, distributional assumptions

can be quite strong. This is the reason why parametric survival regression models

are not as popular as semi-parametric or non-parametric models. In disease control

and prevention, the primary interest is often the hazard function or the acceleration

rate of some specific infectious disease, like tuberculosis. For an example of research

that is focused on parametric survival regression techniques, see Carroll (2003).

To accommodate the flexible characteristics of survival data, Mudholkar, Sri-

vastava, and Kollia (1996) developed the beta-Weibull distribution, and Wahed,

Luong, and Jeong (2009) generalized the beta-Weibull family. These extensions of

the Weibull model are able to capture the real pattern of the data distribution. Also,

Carroll (2003) introduced the large sample approximation of survival times, which

provides a feasible alternative approach for a large sample cohort study.

In this chapter, exponential and Weibull regression models with unmeasured

confounding are discussed. All the survival data are right censored with the as-

sumption that the censoring time is independent of the survival time. Left censored,

interval censored, and truncated survival data are not discussed here. The single

unmeasured confounder is assumed to be a continuous normally distributed variable.
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In Section 2.2, we present Weibull survival models with and without accounting

for the normal unmeasured confounder. Three validation sizes were applied in the

simulation studies. In Section 2.3, we illustrate the exponential regression for the

same simulated data, accounting for the unmeasured confounder. In Section 2.4, we

provide a discussion of Bayesian parametric regression for time-to-event data and

whether or not it performs accurately in terms of bias correction. The coverage of

95% credible intervals are also considered in both sections.

2.2 Weibull Regression Model with Unmeasured Confounders

In the start of this section, we overview the distributions and transforma-

tions needed for generating the time-to-event data with a continuous unmeasured

confounder.

Let y1, y2, · · · , yn denote independent and identically distributed survival times

with possible right censoring. Let δ denote the indicator function of censoring. That

is, δi = 1 if the survival time of the ith subject was observed, as in death or disease

progression. δi = 0 if the survival time of the ith subject was not observed (i.e., the

ith subject was still alive or missing at time yi). In this case, we do not know the

exact time of the clinical outcome (death or disease progression).

Let x1, z1, · · · , zq, u denote regression covariates: x1 is the exposure variable

of primary interest, the z1, · · · , zq are other covariates, and u is the unmeasured

confounder. The covariate vector Ψ = (x1, z1, z2, · · · , zq, u) could be discrete, con-

tinuous, or mixed. We assume that all of the covariates are fully measured except

u, and we denote the ith unit as

(yi, δi,Ψi). (2.1)

Let T denote the true survival time with the covariate vector Ψ. By definition of

the survival function, we have
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SX(y) = PX(T > y) =

∫ ∞
y

f(t)dt, (2.2)

where f(t) is the density function of the survival time.

Since the domain for the survival time is t ∈ [0,∞), we can map it to the

whole real line with the log transformation, log(y) ∈ (−∞,∞). Furthermore, it is

applicable to introduce location and scale parameters

Y = log(T ) = α + σW, (2.3)

where W has support in (−∞,∞).

Survival regression models are sometimes called accelerated failure time mod-

els. The survival time can be modeled as the product of the effect of independent

covariates Ψ and the time scale. Suppose σ = 1, and let t denote the observed

time Ψ is the covariate vector of all units. From Equation 2.3, the baseline survival

function is defined as

S0(t) = Pr(T > t|Ψ = 0) = Pr[ew > t]. (2.4)

Then, we explore the survival time model as follows:

S(t|Ψ) = Pr(T > t|Ψ)

= Pr[Y > log(t)|Ψ]

= Pr[Y −Ψβ > log(t)−Ψβ]

= Pr[e
w > te(−Ψβ)].

Therefore, t is accelerated life by exp(−xβ).

To simplify the simulation and follow the assumption of conditional indepen-

dence of the unmeasured confounder U and other confounders Z, given treatment

exposure indicator X1 (Rosenbaum and Rubin 1983; Lin et al. 1998 and Handorf et

al. 2013), we have

P (U |X1, Z) = P (U |X1). (2.5)
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Although VanderWeele (2008) showed that this independence is not always

true, we assume the unmeasured confounder ui is a continuous variable such that it

is linearly related to the treatment exposure indicator x1 and is independent of the

other covariate Z. Also, it is not the case that there already exists a causal inference

from x1 to u, such as the spontaneous abortion history (Weinberg 1993). The mean

of the unmeasured confounder is assumed as follows:

µi = η0i + η1x1. (2.6)

This can be generalized to multiple regression or other types of generalized linear

models such that

ui = f(η0 + η1x1i + ΘZi) + εi, (2.7)

where f could be any link function, such as log, logit, etc., and εi is the random

error under different assumptions.

The survival time y is assumed to have a parametric distribution and be condi-

tional on the covariates. Besides the unmeasured confounder, we assume that there

is no missing data from all of the subjects across the different treatment exposure

groups. We also assume that the censoring time is independent of the survival time,

which is a common assumption in survival analysis. In other words, there is no

informative censoring.

Without accounting for the unmeasured confounder, the general likelihood

function can be written as follows:

L(Θ|D) =

[∏
δi=0

PΨi
(Y > yi)

][∏
δi=1

PΨi
(Y = yi)

]
, (2.8)

where Θ is the vector of parameters and D = (x1, z1, · · · , zn).
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2.2.1 Survival Data with Weibull Distributions

The Weibull regression model is widely used in survival analysis, and it is

sometimes described as the “bathtub curve.” From the previous definition, we have

w =
log(T )− α

σ
, and

∂w

∂T
=

1

σT
. (2.9)

By the probability density function transformation, we have

g(T ) = exp

{
log(T )− α

σ
− exp

[
log(T )− α

σ

]}
.

1

σT
(2.10)

Let σ = 1
α

and α = − log(ω)
α

. It follows that

g(T ) = ωT ν exp(−ωT ν) ν
T

(2.11)

= νωT ν−1 exp(−ωT ν). (2.12)

This means that

T ∼Weibull(ν, ω), (2.13)

where ν is the shape parameter and ω is the scale parameter. Suppose α = 1, we

then have

ω = exp(−α) = exp(−Ψ′β). (2.14)

Let y1, y2, · · · , yn denote identically and independently distributed Weibull observed

survival times with the same shape parameter ν and a different scale parameter ω.

That is,

yi|ν, ωi ∼Weibull(ν, ωi), (2.15)

where ωi is derived as follows:

ωi = β1x1i + β2z1i + β3z2i + λui. (2.16)
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Suppose the conditional independence holds. Given Equations 2.5 and 2.6, the

ith unmeasured confounder can be expressed as

ui|η0, η1 ∼ Normal(µui , σ
2
ui

), (2.17)

where µui is defined in Equation 2.6.

In this section, we assume that we are able to obtain the unmeasured con-

founder for a small random subsample of the data. This is an example of internal

validation. Let δi, x1i, and Z1i be defined as above, assuming m subjects have an

unmeasured confounder available. The likelihood function for the Weibull regression

survival model with an unmeasured confounder is expressed as follows:

L(Θ|D) ∝
n∏
i=1

[
νωyν−1

i exp(−ωyνi )
]δi [exp(−ωyνi )]1−δi exp

[
−(ui − µi)2

2σ2
u

]
×

m∏
j=1

[
νωỹj

ν−1 exp(−ωỹjν)
]δj [exp(−ωỹjν)]1−δj exp

[
−(ũj − µ̃j)2

2σ2
u

]
.

The parameters and observed data are defined as follows:

Θ = (β, ν, η, σ2
u)

D = (Y, δ, Ũ ,Ψ, X̃1)

ω = exp [−(β1x1 + ΘZ′ + λU)]

µ = η0 + η1X1

µ̃ = η0 + η1X̃1.

For a fully Bayesian analysis, we need prior distributions for the parameters.

We assume that there is no knowledge of model parameters, especially for the re-

gression parameters. Non-informative priors are applied to all of the regression

parameters. Since the hazard function has an exponential base for both the expo-

nential and Weibull distributions, a prior with a standard deviation of 10 leads to

diffuse priors.
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Generally, non-informative priors are used except for the bias parameters. In

many instances, we may have partial information about the effect of the unmeasured

confounder, such as negative or positive direction. However, diffuse priors for the

bias parameters are applied in MCMC analysis since we have validation data. In

general the priors are

βi ∼ Normal(µβi , σ
2
βi

) (2.18)

ηj ∼ Normal(µηj , σ
2
ηj

). (2.19)

For our simulation studies, we set σ2
βi

= σ2
ηj

= 10 and µβi = µηj = 0, and we had

βi ∼ Normal(0, 10) for i = 1, 2, 3

ηj ∼ Normal(0, 10) for j = 1, 2.

A diffuse normal prior for the unmeasured confounder coefficient was also assumed

λ ∼∼ Normal(0, 10).

Without the internal validation, we would need informative priors for λ, η, or

β. Since ν > 0 and σ2
u > 0, we used gamma priors

ν ∼ Gamma(0.01, 0.01)

τ ∼ Gamma(0.01, 0.01),

where τ was the precision of the normal distribution such that τ = 1/σ2
u.

2.2.2 Simulation Studies

In this section, we present three simulation studies to explore the usefulness of

internal validation data to correct the bias due to unmeasured confounding. The case

of external validation will be discussed in Chapter 4. Both full and reduced models

were fitted, where the reduced model was the survival regression model without
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accounting for the unmeasured confounder. We evaluated the modeling performance

by the amount of bias and the coverage probability of the 95% posterior intervals.

The survival times were generated by a Weibull distribution process as we

discussed above (Equations 2.13 and 2.14). The treatment exposure indicator and

other regression covariates were generated as follows:

X1 ∼ Bernoulli(0.6)

Z1 ∼ Bernoulli(0.3)

Z2 ∼ Normal(0, 1).

After generating the observed covariate (X1,Z), the unmeasured confounder was

drawn from a normal distribution (Equations 2.3 and 2.21). That is,

U ∼ Normal(µu, σ
2
u),

where µu = 0.1 − 0.4X1 and σ2
u = 3. The internal validation data were generated

from the same process with a smaller sample size. The sample size for the main study

was n = 1000, and the sample sizes for the validation data were m = (50, 100, 200).

Therefore, the validation fractions were (0.05, 0.1, 0.2), and the validation data in-

cluded the unmeasured confounding information.

Differing from regular data generation processes, we also had to generate the

censoring times. The censoring rate was fixed at 60%, which was tuned with the

different values of the scale parameter (Lin et al. 1998).

For the regression coefficients, we assume that the following model represented

the real relationship between the covariate and the outcome:

ωi = −0.3x1i + 0.2z1i + 0.3z2i − 0.8ui. (2.20)

Since there is no closed-form posterior distribution, MCMC was employed to sample

the target posterior distribution. The STAN package (Carpenter et el. ND) was
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used to simulate draws from the posteriors of the parameters via the rstan package

in R. The code is available in the appendix A.

2.2.3 Results

Our primary interest was to estimate the real hazard ratio between two groups.

We performed 40 iterations with a sample size of n = 1000 for the main study,

and we used m = 100 for the validation data since it took almost 10 hours for

each simulation. To evaluate the ability of bias correction, the same simulation

without any additional information was conducted, assuming that the unmeasured

confounder was ignored. This second model is referred to as the naive model.

The stan procedure with a chain length of 20000 and a burn-in of 7000 itera-

tions with a thinning of 10 was performed, so that 20000−7000
10

= 1300. Therefore, 1300

sample draws were kept in our analysis. The initial values were randomly generated,

and the random seed was set at 100.

To assess the performance of the MCMC sampling, the Gelman-Rubin statis-

tics and plots were checked. Also, the sampling autocorrelation was examined using

the coda package. In Figure 2.1, we can see that there was no evidence against

convergence in the simulation. In Figure 2.2, we see there were no issues with auto-

correlation.

The parameter estimations of the Weibull regression models with and without

accounting for the unmeasured confounder are presented in Table 2.1. When the

sample size for the main study was n = 1000 and the validation size was m = 100,

we see that the posterior mean for the naive model was substantially biased, while

the model with internal validation had considerably less bias. Also, the coverage

of the 95% intervals increased from 77.5% to 97.5%. This illustrates the corrected

model has approximately nominal coverage while the naive model has poor coverage.

All of the other parameter estimates accounting for the unmeasured confounder are

18



200 400 600 800 1000

1.
0

1.
1

1.
2

1.
3

last iteration in chain

sh
rin

k 
fa

ct
or

median
97.5%

Figure 2.1: Gelman-Rubin Statistics diagnostic plot of β1

significantly improved, both in terms of coverage probabilities and bias. However,

this comes at the price of increased interval widths. In Table 2.2, we see that even a

Table 2.1: Summary statistics of the posterior for the model that account for the
unmeasured confounder (top) and the naive model (bottom)

Parameter
True
value

Average
pos-
terior
mean

Coverage
of 95%
inter-
vals

Average
95%
interval
width

β1 -0.3
-0.37
-0.13

0.975
0.775

0.819
0.535

β2 0.2
0.22
0.07

0.95
0.875

0.71
0.71

β3 0.3
0.3
0.25

1
0.9

0.34
0.354

λ -0.8
-0.79
NAa

1
NA

0.184
NA

η0 0.1
0.07
NA

0.95
NA

0.832
NA

η1 -0.4
-0.41
NA

0.925
NA

1.271
NA

a NA means not applicable
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Figure 2.2: Autocorrelation diagnostic plot of β1

validation sample size of m = 50 improved the posterior mean from −0.13 to −0.27,

which significantly corrects for the unmeasured confounder. When the validation

sample size was m = 200, the fraction of validation was 20%, the coverage of the 95%

interval was 97.5%, and the posterior mean was close to the true value β1 = −0.3.

Also, the average 95% interval width decreased sharply from 1.09 to 0.608 when the

validation sample size increased from 50 to 200.

Table 2.2: The estimation of β1 = −0.3 under simulations with different sample size
of validation data

sample size
Average
posterior
mean

Coverage
of 95%
intervals

Average
95% in-
terval
width

Naive -0.13 0.775 0.535
m = 50 -0.27 0.95 1.09
m = 100 -0.31 0.975 0.819
m = 200 -0.31 0.975 0.608
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Figure 2.3: Posterior density and traceplot of β1

2.3 Exponential Regression with Unmeasured Confounders

Due to the inverse relationship between work experience and the risk of injury,

the hazard rate in many occupations often decreases when the employee gets more

experience over time. For some occupational exposures or environmental contami-

nations, the hazard rate for individuals stays at the same level over time if there are

no other outside factors. In cases like this, the exponential regression survival model

would be considered as a primary analysis method. Also, the large sample approx-

imation for the PFS (Progression Free Survival) uses the exponential distribution

(Carroll 2007).

Hosmer et al. (2008) and Ibrahim, Chen, and Sinha (2013) discussed the

exponential regression model in survival analysis. The mathematical properties were

illustrated in the texts by Lawless (2002) and Collett (2003). In this section, we first
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review the regression components. After that, we illustrate the Bayesian exponential

regression survival model with the same simulation configurations as in the previous

section.

2.3.1 Survival Data with Exponential Regression

To derive the linear expression of the exponential distribution, we still assume

that w follows an extreme value distribution. The density function for w is

f(w) = exp(w − ew). (2.21)

Suppose the survival time T has an exponential distribution with a single parameter

γ. Based on Equations 2.3 and 2.21, we have w = log(T ) − α. By a one-to-one

random variable transformation, it follows that

g(t) = exp {[log(t)− α]− exp[log(t)− α]} 1

t

= exp(−α) exp[− exp(−α)t].

It is apparent that the survival time T follows an exponential distribution with

γ = exp(−α) = exp(−Xβ).

Again, let y1, y2, · · · , yn denote identically, independently, and exponentially

distributed survival times, δi denote the censoring indicator, Ui denote the unmea-

sured confounder, X1i denote the treatment exposure indicator, and Zi denote the

characteristic covariate vectors or environmental risk factor vectors. We then have

yi|γi ∼ Exponential(γi), (2.22)

where γi = β1x1i+β2z1i+β3z2i+λui, and ui follows a normal distribution such that

ui|µui , σ2
ui
∼ Normal(µui , σ

2
ui

). (2.23)

Suppose there exists m continuous internal validation subjects with means as

in Equation 2.23, and µ̃ui = η0i + η1ix̃1i. Then, the likelihood function is composed
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of two parts:

L(β, λ, η, σu, U |D, D̃) ∝
n∏
i=1

exp[−δi(βx1i + λui + ΘZi
′)] exp{− exp[−(βx1i + λui + ΘZi

′)]}

× exp

{
− [ui − (η0 + η1x1i)]

2

2σ2
u

}
×

m∏
j=1

exp

{
− [ũj − (η0 + η1x̃1j)]

2

2σ2
ũ

}
exp[−δj(βx̃1j + λũj + ΘZ̃′j)]

× exp{− exp[−(βx̃1j + λũj + ΘZ̃′j)]},

where D̃ = (x̃1, Z̃, ũ) is the internal validation data set and D = (x1,Z) is defined

as in the previous section.

2.3.2 Simulation Studies

The data generation configurations and regression parameters were the same

as with the Weibull distribution case. The sample size for main study was n =

1000. The validation sizes were m = (50, 100, 200). Ibrahim et al. (2013) showed

that the posterior of the exponential regression with a conjugate gamma prior has

a closed form distribution. Due to the non-informative priors for the regression

coefficients and the unmeasured confounder, there was no closed form marginal

posterior available. MCMC analysis was employed with the stan package in R.

In each simulation, the length of the posterior chain was 15000 draws with a

5000 burn-in. To tune the autocorrelation problem, the thinning value was chosen

at 10. For each configuration, we generated 40 data sets. Convergence was checked

by the Gelman-Rubin statistics and trace plots (Figures 2.4 and 2.6). The plots

indicate good mixing.
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Figure 2.4: Gelman-Rubin Statistics diagnostic plot of β1 (exponential distribution)
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Figure 2.5: Autocorrelation diagnostic plot of β1 (exponential distribution)
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Figure 2.6: Trace plot of β1 (exponential distribution)

In Figure 2.7, we can see that the density was unimodal and smooth. The

mode of the posterior distribution was close to the true value β1 = 0.30.
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Figure 2.7: Density plot of β1 (exponential distribution)
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2.3.3 Results

To explore the ability of bias adjustment for the exponential regression model,

we first considered the sample validation size m = 100. In Table 2.3, we display

the posterior means, 95% widths, and coverages respectively. Compared with the

naive model, all the posterior means for the model accounting for the unmeasured

confounder were much closer to the true means. It is interesting that the coverage

of a 95% interval for β1 improved significantly from 77.5% to 97.5%, but it was at

the price of a wider interval. Although the original data were generated from the

Weibull distribution, the exponential regression fit the model adequately.

Table 2.3: Summary statistics of the posterior for the exponential model that
account for the unmeasured confounder (top) and the naive model (bottom)

Parameter
True
value

Average
pos-
terior
mean

Coverage
of 95%
inter-
vals

Average
95%
interval
width

β1 -0.3
-0.37
-0.13

0.975
0.775

0.819
0.535

β2 0.2
0.22
0.07

0.95
0.875

0.71
0.71

β3 0.3
0.3
0.25

1
0.9

0.34
0.354

λ -0.8
-0.79
NA a

1
NA

0.184
NA

η0 0.1
0.07
NA

0.95
NA

0.832
NA

η1 -0.4
-0.41
NA

0.925
NA

1.271
NA

a NA means not applicable

In Table 2.4, we can see that the Weibull regression models performed better

than the exponential ones across the m = (50, 100, 200) validation sizes, regarding

the posterior means and the average 95% intervals. Also, the exponential regression

estimates appeared unstable for the estimation of β1 when the sample size increased.
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Unlike the Weibull distribution, when the validation size increased from 50 to 100,

both the performance of the 95% intervals and posterior means worsened.

Table 2.4: The estimation of β1 = −0.3 under simulations with different sample
sizes of validation data and distributions

Sample size Naive Weibull Exponential

m = 50 -0.13(78%, 0.54) -0.27(95%, 1.09) -0.33(95%, 1.12)a

m = 100 -0.13(78%, 0.54) -0.31(90%, 0.81) -0.37(90%, 0.82)
m = 200 -0.13(78%, 0.54) -0.31(97.5%, 0.61) -0.36(100%, 0.60)

a the posterior mean (coverage of 95% interval, 95% interval length)

2.4 Discussion

Although the parameter estimation methods for time-to-event data with an

unmeasured confounder and internal validation data are developed in this chapter,

we only discussed the normal unmeasured confounder. However, it can be general-

ized to any existing distributions. This applies not only to binary data, but also to

gamma or log-normal data. Using notation consistent with the above, we have

f(β, λ, η, u|y, x, ỹ, ũ, x̃) = f(β, u, λ|y, x)f(η|x, ỹ, ũ, x̃). (2.24)

The survival times and unmeasured confounder are modeled with the “twin regres-

sions”:

f(t|x1,Z) = β1x1 + ΘZ′ + λU (2.25)

g(u|x1,Z) = η0 + η1X̃1 + η2Z
′. (2.26)

Without validation data to account for the unmeasured confounder, we can ei-

ther put informative priors on the bias parameter, or we can take the non-parametric

function for the unmeasured confounder U to capture the universe of the unmeasured

confounder. This is discussed in McCandless et al. (2012).
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In summary, validation sample fractions as small as 5% yielded corrected es-

timates considerably better than the naive model. However, there did seem to be

some sensitivity to the choice of parametric distribution.

There were several limitations to the work in this chapter. We made the

strong assumption that the unmeasured confounder only depends on the treatment

exposure indicator, which is an untestable assumption that is unlikely to hold exactly

in applications (Handorf et al. 2013). We also did not expand on the details of the

sample size issues, since there is no “golden” rule for the validation fraction. Further

sensitivity analysis is an area of future work.
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CHAPTER THREE

Bayesian Cox Proportional Hazards Model with Unmeasured Confounding

3.1 Introduction

There are several methods to handle confounders in the design and analysis

of data, such as restriction (study participation is restricted to individuals who

fall within a specified category or categories of the confounder), propensity score,

stratified analysis, and matching techniques. All of these techniques require full

or at least partially measured confounders. If missing or unmeasurable confounders

exist, it is impossible to implement the matching, restriction, and stratified methods.

In this chapter, we investigate the Bayesian semi-parametric proportional hazards

model, adjusting for binary and normal unmeasured confounders.

In observational studies, sensitivity analysis is necessary due to the effect of

unmeasured confounding (Lin, Psaty and Kronmal 1998; VanderWeele 2008; Han-

dorf et al. 2013). Regular sensitivity analysis dominates bias assessment, since it

yields identifiable models. However, most sensitivity analyses can underestimate

overall uncertainty (Mitra and Heitjan 2007).

Most bias adjustment techniques for unmeasured confoundings are frequentist.

There is not as much Bayesian literature. Steenland and Greenland (2004) consid-

ered Bayesian sensitivity analysis for smoking status as the unmeasured confounder.

McCandless et al. (2007, 2009, 2012) developed full Bayesian approaches for the

adjustment of missing confounders with propensity scores and binary outcomes.

Faries et al. (2013) and Stamey et al. (2014) extended the Bayesian approach for

unmeasured confounding to cost-effective analysis.

Considering time-to-event data with missing covariates, Bradshaw, Ibrahim,

and Gammon (2010) provided a straightforward Bayesian approach to model the
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survival time with non-ignorably missing time-varying covariates. Chen et al. (2014)

introduced a more sophisticated Bayesian proportional hazards model for irregular

data structure.

For time-to-event data, Cox proportional hazards regression is widely used,

since it is free of distributional assumptions. There are several texts that discuss

Bayesian proportional hazards model, such as Ibrahim et al. (2013) and Christensen

et al. (2010). Ibrahim et al. (2013) put more attention on the theoretical aspects

of Bayesian proportional hazards model. Conversely, Christensen et al. (2010) were

more concerned about the practical implementation, and they provided a number of

examples.

To simplify the modeling complexity, a single unmeasured confounder is as-

sumed in this chapter. In Section 3.1, we overview the literature related to Bayesian

analysis with an unmeasured confounder and survival data with missing covariates.

Next, we overview the basic survival analysis formula in Section 3.2, which is needed

for data generation. Then in Section 3.3, the Bayesian semi-parametric Cox propor-

tional hazards model with a normal unmeasured confounder is presented. In Section

3.4, we consider a binary confounder, and a different simulation design is employed.

Lastly, we provide concluding comments in Section 3.5.

3.2 Materials and Methods

We denote Ti as the event time and Ci as the censoring time for the ith subject.

For each of N subjects, the observed event time is yi = min{Ti, Ci} and δi = ITi<Ci
,

where ITi<Ci
is the indicator function. This is defined as follows:

δi =

 1 if Ti < Ci

0 Otherwise.

Let X1 denote the treatment vector, Z1, · · · , Zp be a p dimensional vector of

measured covariates, and U be the unmeasured confounder.
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We assume Z1, Z2, · · · , Zp are fully observed. We also assume there is no

missing data in the treatment exposure indicator group X1. Finally, we assume

either internal or external validation data is available.

3.2.1 Cox Proportional Hazards Model

The Cox proportional hazards regression model is probably the most popular

technique for regression analysis of survival data. The equation for a basic Cox

regression model is usually written as follows:

hi(t) = h0(t) exp(β1x1i + ΘZi
′ + λui), (3.1)

where h0(t) is the baseline hazard function that only depends on time t. The values

X1,Z, and U are regression covariates. X1 and Z were defined in the previous section,

and U is an unmeasured confounder vector. Θ = (β2, β3, β4) is a vector of regression

coefficients for the proportional hazards model. Since h0(t) varies with time (Kasza

et al. 2014), it is obvious that the baseline hazard is not fixed. This is true in

most studies of epidemiology and oncology. Due to the lack of information, it is not

appropriate to specify a statistical distribution on the baseline function, although

statistical inference of the h0(t) function is not the primary goal in survival analysis.

An alternative approach is a semi-parametric model, which divides all time t into

finite equal groups with the assumption of homogeneity across the groups. Then,

the subjects in the same time slot will share the same hazard rate.

Suppose the survival times are divided into J intervals for the proportional

hazards model. Let λj be the hazard rates for the subjects who fall in the interval

(sj, sj+1) for j = 1, 2, · · · , J . To avoid the problem of some intervals not covering

the data points, we let sj and sj+1 depend on real data. This so-called data driven

interval was implemented by Christensen et al. (2010). This method guarantees that

each interval contains data points, ensuring that the Bayesian model is not updated

without any data information.
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The event time points can be grouped by quantiles, real values, or some other

specific interests. In this chapter, we are only concerned with the equal quantiles

approach. Suppose J = 10 and N = 2000. We had 10 intervals and 2000 event time

points. To guarantee that each interval had the same number of data points, the

quantile splitting process was implemented in our analysis. In other words, we had a

boundary sequence (s1, s2, · · · , sJ+1). By the previous definition, each interval had

2000/10 = 200 event time points.

The equal quantile approach has two obvious advantages in our study. First, it

guarantees that each interval has the same weight of information, which will reduce

the bias that some intervals have considerably more data points than others. This

is especially true when the event time is a skewed distribution. Second, the number

of data points in each interval is sufficient. When the sample size is large enough,

the likelihood would dominate inference.

3.2.2 Basic Formulas for Survival Analysis

In this section, we overview the survival model with unmeasured confoundings.

Let y be a continuous variable, with CDF F (y) on the interval [0,+∞). Then, the

survival function is defined as

S(y) = P (Y > y) =

∫ ∞
y

f(t)dt.

The hazard function (unconditional failure rate) is defined as

h(y) =
f(y)

S(y)
= − d

dy
ln[S(y)]. (3.2)

Let S(t) denote the survival function and h(t) denote the hazard function.

Incorporating the unmeasured confounder, the survival function can be expressed as

S(t|x1i,Zi, ui) = exp[−H0(t) exp(β1x1i + ΘZi
′ + λui)]

= {exp[−H0(t)]}exp(β1x1i+ΘZi
′+λui)

= [S0(t)]exp(β1x1i+ΘZi
′+λui),
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where H0(t) is the baseline cumulative hazard function, Z = (z1, z2, z3) is a three

dimensional covariates vector, and Θ = (β2, β3, β4) is a coefficients vector.

3.2.3 Likelihood Function and Poisson Approximation

Let X1,Z, and U have the same definition as in the previous section. Let

ψ1, ψ2, · · · , ψJ denote the baseline hazard rates. We assume the data is right censored

(which is common in the clinical trials or observational studies). The ith term of the

core kernel of the likelihood can be written as follows (Christensen et al. 2010):

Li(β1, λ,Θ|Xi) = [f(ti)
δi ][S(ti)]

1−δi

= [h(ti)]
δiS(ti)

= [ψi∗ exp(β1x1i + ΘZi
′ + λui)]

δi exp[−H(ti)]

= [ψi∗ exp(β1x1i + ΘZi
′ + λui)]

δi

× exp

{
− exp(β1x1i + ΘZi

′ + λui)

[
ψi∗(ti − sj) +

i∗−1∑
g=1

ψg(sj+1 − sj)

]}

= [ψi∗ exp(β1x1i + ΘZi
′ + λui)]

δi

× exp

{
−ψi∗ exp(β1x1i + ΘZi

′ + λui)

[
i∗∑
j=1

ω(i, j)

]}
,

where Θ = (β2, β3, β4), i∗ is the largest integer such that si∗ < ti, ti is the ith event

time, ui is an unmeasured confounder (main study data), δi is the indicator function

for whether the event is observed or not, and sj is the jth lower bound of the interval.

ω(i, j) is defined as follows:

ωi,j =


sj+1 − sj if ti ≥ sj+1

ti − sj if ti ∈ [sj, sj+1)

0 if ti < sj .

(3.3)

There is no available distributional form for the survival part of likelihood, but there

is a common method to handle this irregular distribution (Christensen et al. 2010).
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The core kernel likelihood function can be reconstructed as follows:

di,j =

 1 when δi = 1 and ti ∈ [sj, sj+1)

0 Otherwise,
(3.4)

where di,j is an indicator function for when the subject’s event time was observed,

and ti falls in the interval [sj, sj+1). Let ϕ(i, j) = ψj exp(β1x1i + ΘZi
′ + λui)ω(i, j) .

Then,

Li(β1,Θ, ψ) ∝
i∗∏
j=1

[ψj exp(β1x1i + ΘZi
′ + λui)]

d(i,j)
(3.5)

× exp [−ψjω(i, j) exp(β1x1i + ΘZi
′ + λui)] . (3.6)

Since ω(i, j) is not a function of the parameters (β1,Θ, ψ, λ), if ω(i, j) > 0,
∏i∗

j=1[ψj exp(β1x1i+

ΘZi
′ + λui)]

d(i,j) and exp[ϕ(i, j)]d(i,j) are proportional. The difficult part is when

ω(i, j) = 0 (this is exp[ω(i, j)] = 1), we have to make sure that [ψj exp(β1x1i +

ΘZi
′ + λui)]

d(i,j) also equals 1. That is the reason we create the d(i, j) indicator,

which guarantees that ω(i, j) = 0. This implies that d(i, j) = 0 and 00 = 1. There-

fore, the likelihood could be rewritten as

Li(β1,Θ, ψ) = [ϕ(i, j)]d(i,j) exp [−ϕ(i, j)] , (3.7)

which is a Poisson distribution with an outcome of 0 and 1. That is,

d(i, j) ∼ Poisson[ϕ(i, j)]. (3.8)

3.3 Bayesian Proportional Hazards Model with Normal Unmeasured Confounders

External validation data sets are often available. Most healthcare data sources

are readily available and have high external validity (Black 1996). For example,

health care providers have all the patient level data. McCandless et al. (2012)

performed Bayesian adjustment with missing confounders using external validation

data, specifically, a cohort study with information on the unmeasured confounder.
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Sturmer (2005) used national survey data to improve inferences in a large healthcare

database study.

There are several different adjustment methods using external validation data,

such as two-stage calibration (Lin and Chen 2014), sensitivity additive formulas (Lin

et al. 1998), and Bayesian propensity scores (McClandless et al. 2007, McClandless

et al. 2012). Suppose we have partial information without full measurements; then,

not all of the approaches discussed above are applicable. Also, it is a strong assump-

tion that the validation data falls in the “same cluster” or the “same population”

with the main study data. In other words, the information is potentially biased.

More often than not, we only get partial information about the unmeasured con-

founder, like summary statistics (mean or standard deviation) or the correlations

between the unmeasured confounder and the other measured confounders in our

analysis.

3.3.1 External Validation with Continuous Summary Statistics

For the continuous unmeasured confounder, suppose there is only external

summary statistics, such as the sample means and standard deviations across the

treatment exposure variables X1. Assuming that there is a linear relationship be-

tween U and X1, the data could be summarized as in Table 3.1.

Table 3.1: Summary statistics of the unmeasured confounder across a binary
treatment exposure indicator

Statistics X1 = 0 X1 = 1
Mean ŪX1=0 ŪX1=1

Standard Deviation SX1=0 SX1=1

Sample size nX1=0 nX1=1

35



Since the unmeasured confounder U is continuous, a normal distribution was

assumed here. For the ith unmeasured confounder, we have

ui ∼ Normal(µi, τU), (3.9)

where the mean of the unmeasured confounder ui is defined as µi = η0 + η1xi, and

τu = 1/σ2
U is the precision. The summary statistics in Table 3.1 can be incorporated

into the Bayesian analysis as informative normal priors for (η0, η1). To simplify the

simulation, independence is assumed between η0 and η1. Since X1 is binary, note

that x̄1 =
nX1=1

nX1=1+nX1=0
. That is, the number of subjects who get the treatment

of interest is divided by the total number of subjects in the study. We can then

determine the informative priors for parameters η0 and η1.

The means for the parameters are ūx1=0 and ūx1=1− ūx1=0 for η0 and η1 respec-

tively. Here ūx1=0 is the sample mean of the unmeasured confounder at the x1 = 0

group, and ūx=1 is the sample mean for the unmeasured confounder at the x1 = 1

group. The variance of η0 can be derived as

σ2
η0

= σ2
u

(
1

N
+

x̄

SSx

)
, (3.10)

where N = nX1=0 + nX1=1 and SSx =
∑N

i=1(xi − x̄)2. The variance for the other

parameter η1 is

σ2
η1

=
σ2
u

SSx
. (3.11)

3.3.2 Bayesian Inference

Suppose the validation sample size is m. Let X1,Z, and δ be defined as

above. Together with Equations 3.7 and 3.9, the likelihood function with a normal

unmeasured confounder can be expressed as follows:

Li(β1,Θ, ψ, η|D,E) ∝
J∏
j=1

[ϕ(i, j)]d(i,j) exp [−ϕ(i, j)] (3.12)

× exp

[
−(ui − η0 − η1x1i)

2

2σ2
u

]
, (3.13)
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where η = (η0, η1), and (β1,Θ, ψ) are defined above. D is the observed data D =

(X1,Z), and E = ( ¯̃UX1=0,
¯̃UX1=1, σ

2
U :X1=0, σ

2
U :X1=1).

To implement a Bayesian analysis, we construct relatively informative priors

for η0 and η1 based on the external validation data. Suppose η0 and η1 follow normal

distributions. The mean for η0 is ux1=0, and the mean for η1 is ux1=1 − ux1=0. The

variance for η0 and η1 are derived in Equations 3.10 and 3.11. That is,

η0 ∼ Normal

[
ũx1=0, σ

2
u

(
1

N
+

x̄1

SSx

)]
η1 ∼ Normal

[
ũx1=1 − ũx1=0,

σ2
u

SSx

]
,

where σ2
u is the standard deviation for the unmeasured confounder. To speed up the

simulation, a conjugate gamma prior for τu is derived as follows:

τu ∼ Gamma

[
nx1=0 + nx1=1 − 2

2
,
(nx1=0 − 1)S2

x1=0 + (nx1=1 − 1)S2
x1=1

2

]
, (3.14)

where τu is the precision such that τ = 1/σ2
u. Since we do not have any knowl-

edge about the regression coefficients, we assume that the priors for the regression

coefficients all follow normal distributions such that

βi ∼ Normal(µβi , σ
2
βi

) (3.15)

λ ∼ Normal(µλ, σ
2
λ). (3.16)

We take σ2
λ = σ2

βi
= 10 and µβi = µλ = 0.

Since the baseline hazard function is positive over time, we develop the priors

for baseline hazard functions as a product of independent gamma distributions. The

mean of the gamma distribution is chosen as αj/κj, and the variance is αj/κ
2
j . Then,

we have

π(ψ|α, κ) ∝
J∏
j=1

ψ
αj−1
j exp(−ψjκj) for j = 1, · · · , J. (3.17)

This is a practical approach for constructing a gamma process prior for the posi-

tive baseline hazard function. We still use diffuse priors for these discrete baseline
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functions. That is, αj = κj = 0.01 for all j ∈ 1, 2, · · · , J , and the variance for ψj is

αj/κ
2
j = 100.

3.3.3 Simulation Studies

To study the effect of the unmeasured confounder on the posterior distribution,

we performed several simulation studies. The parameters used are similar to the

RHC example (Connors et al. 1996).

Let T denote the survival time and C be the random censoring time, which

is independent of T . Let X1, Z, and U be defined as earlier. The Cox proportional

hazards model with an unmeasured confounder is expressed as

h(t) = h0(t) exp(β1x1 + Θz′ + λu). (3.18)

Bender, Augustin, and Blettner (2005) and Austin (2012) provided a survival time

generation procedure based on the Cox proportional hazards model. Together with

Equations 3.18 and 3.2, we have

F (t|x1, z, u) = 1− exp[−H0(t) exp(β1x1 + Θz′ + λu)], (3.19)

where F (t|x1, z, u) is the cumulative density function that falls between 0 and 1.

Suppose the survival time follows a Weibull distribution. That is,

T ∼Weibull(w, ν), (3.20)

where w is the scale parameter and ν is the shape parameter. Then, we have

H0(t) = wtν , (3.21)

and the inverse cumulative hazard function is

H−1
0 (t) = (w−1t)1/ν . (3.22)
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Recalling Equation 3.19, we drew ξ from a standard uniform distribution. Then, the

survival time t could be generated as follows:

t =

[
− log(ξ)

w exp(β1x1 + Θz′ + λu)

]1/ν

. (3.23)

The censoring time was drawn from a uniform distribution,

c ∼ Uniform(0, γ), (3.24)

where the value of γ is dependent on the censoring rate.

To make the generated data match a real example, we set the scale parameter

w = 0.0035 and the shape parameter ν = 0.13. Thus, the Cox proportional hazards

model with a continuous unmeasured confounder was assumed as

h(t|x1, z, u) = h0(t) exp(0.3x1 − 1.2z1 + 0.4z2 + z3 − 3u), (3.25)

where u follows a normal distribution such that

u ∼ Normal(0.6− 0.04x1, 0.2). (3.26)

We performed 40 replications in each simulation. The sample size for the

main study was n = 1000, while the sample size for the validation was m = 100.

30%, 60%, and 90% censoring rates were considered in our analysis. There was no

closed form marginal posterior available, thus we employed MCMC analysis using

the rjags package in R. The chain length of the simulation was 20000, keeping every

tenth draw for Bayesian inference with a burn-in of 7000 iterations. The convergence

was checked with the Gelman-Rubin statistics (Figure 3.1). There did not appear to

be any convergence problems. After a thinning of 10, we did not detect any strong

autocorrelation.

To summarize the simulation results, we plotted the trace and density of β1.

In Figure 3.2, we can see it was unimodal and smooth. The average of the posterior

means, empirical coverage probabilities, and interval widths for the 95% intervals
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Figure 3.1: Gelman-Rubin Statistics diagnostic plot of β1 (external validaion with
normal data)

are provided in Table 3.2 for the regression coefficients β1, β2, β3, β4, λ, η0, and

η1. It is interesting that this model did not capture the effect of the unmeasured

confounder. That is, the coverage of the 95% interval for λ was 0 in the external

validation scenario, but all the Bayesian estimates with different censoring rates still

performed much better than the naive model. We can see that β1 decreased from

0.47 to 0.31, which is close to the nominal value 0.30. Also, the coverage of the 95%

interval was 0.95, compared to the naive model at only 0.825, without inflating the

interval width.

In Table 3.3, the interval widths became wider when the censoring rates in-

creased from 30% to 90%, which indicates that the uncertainty increased. Especially

when the censoring rate was 90%, the interval width was three times wider than the

30% intervals. At the same time, the posterior mean of β1 was far from the true

value 0.30, about a 39% increase from the 30% to the 90% the censoring rate.

In Figure 3.3, the posterior densities for both the naive model and the external

validation model were plotted in one graph. Again, we see that when we did not

account for the unmeasured confounder, the distribution was centered away from
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Figure 3.2: Density and trace plots of β1 (external validaion with normal data)

the nominal value, compared to the external validation case. Also, the naive model

was less variable, which is consistent with the results from Table 3.2.
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Figure 3.3: Density plots of the naive and external validation models for β1

3.3.4 Internal Validation with Continuous Summary Statistics

In the retrospective observational and case controlled studies, the studies often

start after the disease outcomes are observed. It is impossible to control the qual-

ity of data, especially when the data are from different healthcare providers. Also,
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Table 3.2: External: summary statistics of the posterior for the model that account
for the unmeasured confounder (top) and the naive model (bottom)

Parameter
True
value

Average pos-
terior mean

Coverage of
95% intervals

Average 95%
interval width

β1 0.3
0.31
0.47

0.95
0.925

0.34
0.31

β2 -1.2
-0.74
-0.67

0.725
0.425

0.61
0.58

β3 0.4
0.29
0.29

0.775
0.725

0.35
0.35

β4 1
0.81
0.83

0.625
0.70

0.48
0.47

λ -3
-0.02
NA a

0
NA

2.17
NA

η0 0.6
0.60
NA

1.00
NA

0.65
NA

η1 -0.04
-0.03
NA

0.80
NA

0.1
NA

a NA means not applicable

Table 3.3: The estimation of β1 = 0.3 under different censoring rates with external
validation

Censoring rate
Average pos-
terior mean

Coverage of
95% intervals

Average 95%
interval width

30% 0.31 0.950 0.34
60% 0.35 0.900 0.45
90% 0.43 0.925 1.05

the researcher may lose some confounder information, since the clinical practitioners

dominate the process before the studies. However, there may exist a small fraction

of data from the same study. Chen and Chen (2000) developed a two-stage sampling

design method using the internal validation data. Stamey et al. (2014) presented a

Bayesian simulation for the cost-effectiveness studies, including the internal valida-

tion scenario. Furthermore, Lin and Chen (2014) provided both Bayesian and large

sample approximation approaches with internal validation using the Chen and Chen

(2000) approach.
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Let T denote the survival times and δ be the censoring status. Let X1, Z,

and U be defined as in the previous section. Also, let X̃1, Z̃, and Ũ denote the

validation data. Let ψ = (ψ1, ψ2, · · · , ψJ) be the baseline hazard functions. Suppose

the validation size is m, and the continuous unmeasured confounder follows a normal

distribution such that

ui ∼ Normal(µi, σ
2
ui

), (3.27)

where the mean of the unmeasured confounder is

µi = η0 + η1x1i. (3.28)

Then, the likelihood function of (β,Θ, λ, η) can be written as

L(β1,Θ, ψ, η|D,E∗) ∝
n∏
i=1

{
J∏
j=1

[ϕ(i, j)]d(i,j) exp [−ϕ(i, j)] exp

[
−(ui − η0 − η1x1i)

2

2σ2
u

]}

×
m∏
k=1

{
J∏
j=1

[ϕ∗(k, j)]d
∗(k,j) exp [−ϕ∗(k, j)] exp

[
−(ũk − η0 − η1x̃1k)

2

2σ2
ũ

]}
,

where D is defined the same as in the previous section and E∗ = (X̃1, Z̃, Ũ).

Again, we still used diffuse normal priors for the regression coefficients β1, η,Θ,

and λ. That is,

β1, η,Θ, λ ∼ Normal(0, 10). (3.29)

The gamma process priors were assigned for the baseline hazard function as in

Equation 3.15.

The data generation process was similar to the external validation case, which

is given in Equations 3.7 and 3.15. The validation data sets were generated with

the same coefficients of the main study, and the only difference was the sample size.

Again, the simulation iteration was 40 with n = 1000 subjects in the main study

data, while the validation size was 100. The censoring rates for validation data were
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also the same as in the main study, in which the upper bound of uniform distribution

was dependent on the rates at 30%, 60%, and 90%.

The time-to-event model is given in Equations 3.7 and 3.15, and the naive

model assumes that λ = 0 in Equation 3.7. In Table 3.4, we can see that the

posterior mean of β1 was equal to the nominal value, compared with 0.47 in the

navie model. All of the other posterior means of parameters performed much better

than the naive model without inflating the variability. It is interesting that the

posterior means of η0 and η1 also got close to the simulation set-ups.

Table 3.4: Internal: summary statistics of the posterior for the model that account
for the unmeasured confounder (top) and the naive model (bottom)

Parameter
True
value

Average pos-
terior mean

Coverage of
95% intervals

Average 95%
interval width

β1 0.30
0.30
0.47

0.975
0.925

0.34
0.31

β2 -1.2
-0.82
-0.67

0.725
0.425

0.60
0.58

β3 0.40
0.31
0.29

0.825
0.725

0.35
0.35

β4 1
0.81
0.83

0.625
0.70

0.48
0.47

λ -3
-0.25
NA a

0
NA

2.37
NA

η0 0.60
0.60
NA

0.95
NA

0.11
NA

η1 -0.04
-0.04
NA

1.00
NA

0.16
NA

a NA means not applicable

Tables 3.5 and 3.6 show the simulation results for β1 under 30% and 90%

censoring rates. Consistent with the external validation scenario, the performance

of Bayesian posterior means are negatively associated with the censoring rates. That

is, when the censoring rate is increasing, we lose information from the observed data,

which increases the bias. Furthermore, we can see that the model with internal
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validation provided a more stable posterior mean estimation, compared with the

external validation and naive model, even when the censoring rate increased from

30% to 90%.

Table 3.5: The posterior estimation of β1 = 0.3 when the censoring rate is 30%

Model
Average pos-
terior mean

Coverage of
95% intervals

Average 95%
interval width

Naive 0.47 0.925 0.31
External 0.31 0.95 0.34
Internal 0.30 0.975 0.34

Although the posterior means of β1 in the external and internal validation

models were very close at a 30% censoring rate, the gap of posterior means between

these two models was enlarged when the censoring rate was 90%. Furthermore, the

posterior mean for the naive model was deteriorated from the nominal value when

the censoring rate increased, e.g., β1 changed from 0.30 to 0.56.

Table 3.6: The posterior estimation of β1 = 0.3 when the censoring rate is 90%

Model
Average pos-
terior mean

Coverage of
95% intervals

Average 95%
interval width

Naive 0.56 0.95 0.825
External 0.43 0.925 1.05
Internal 0.37 0.975 1.11

The posterior densities of internal and external validation models are plotted in

Figure 3.4. We can see that the internal validation model had slightly less variation,

compared to the external model in our normal unmeasured confounder case. Also,

the external validation model showed similar performance in terms of parameter

estimates.

In Figure 3.5, the internal validation model performed better than the others.

However, all three models do not show a sharp variation between each other.

45



0

1

2

3

0.0 0.2 0.4 0.6
beta1

de
ns

ity

group

Internal

External

Figure 3.4: Density plots of internal and external validation models for β1

3.3.5 Discussion

A continuous unmeasured confounder is common in observational studies, such

as the blood pressure in the RHC example. Most of these confounders can be

assumed to follow a normal distribution. However, the other continuous distributions

are also applicable for the unmeasured confounder, such as the gamma, beta, and

log-normal distributions. Unlike the regular sensitivity analysis (Lin, Psaty, and

Kronmal 1998; Schneeweiss 2006), our approach provides not only the variability of

the treatment effect due to the unmeasured confounder, but also the full posterior

means of coefficients for the exposure effect and other covariates.

When the censoring rate is low, say 30% as in our study, we only have partial

information of the unmeasured confounder, such as summary statistics across the

exposure indicator. The bias adjustment is performed well, compared with the

unadjusted model. Also, we can extend our method to any other missing covariates

or complex measurement errors with the appropriate assumptions of the relationships

between unmeasured and measured variables or the summary statistics from meta-

analysis.
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Figure 3.5: Density plots of naive, internal, and external validation model for β1

3.4 Bayesian Proportional Hazards Model with Binary Unmeasured Confounders

The frequentist sensitivity analysis approaches for binary unmeasured con-

foundings were discussed by Lin et al. (1998), Schneeweiss (2006), and Lin and

Chen (2014). In addition, Bayesian approach for bias correction and sensitivity

analysis were discussed by McCandless et al. (2007, 2012), Faries et al. (2013), and

Stamey et al. (2014).

In this section, we explore a Bayesian semi-parametric Cox proportional haz-

ards model with a binary unmeasured confounder. Both external and internal val-

idations are discussed. For the external binary unmeasured confounder, we assume

that there are only summary statistics in a contingency table (Table 3.7). For the

internal validation, all the data are observed, including the unmeasured confounder.

There is no missing data issue here. Again, we assume a relationship exists between

the unmeasured confounder and the observed covariates.

Let U denote the binary unmeasured confounder, and let X1 and Z be defined

as in the previous section. ω(i, j) is defined at the start of this chapter. Suppose U

follows a Bernoulli distribution such that

ui ∼ Bernoulli(Pui), (3.30)
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where Pui = Pr(ui = 1|x1i). Since ui is binary data, logistic regression is employed.

Thus, we have

logit(Pui) = η0 + η1x1i. (3.31)

Together with Equation 3.7, the likelihood function can be expressed as

Li(β1,Θ, λ, η|D) = [ψi∗ exp(β1x1i + ΘZi
′ + λui)]

δi

× exp

{
−ψi∗ exp(β1x1i + ΘZi

′ + λui)

[
i∗∑
j=1

ω(i, j)

]}

× P ui
ui

(1− Pui)
1−ui ,

where i∗ is the largest integer such that si∗ < ti and ψ1, ψ2, · · · , ψJ are the baseline

hazard rates.

To implement Bayesian analysis, diffuse priors were assigned on the unknown

regression coefficient parameters. Independent normal priors are derived as follows:

π(β1, β2, · · · , βi) ∝
i∏

j=1

exp

{
−

(βj − µβj)2

2σ2
βj

}
. (3.32)

Suppose there is belief that the odds ratio for the treatment exposure group

(x1 = 1) against the placebo (x1 = 0) is between 1
k

and k with a probability of 95%.

These normal prior distributions can be rewritten as

βj ∼ N

{
µβj ,

[
log(k)

1.96

]2
}

for i = 1, · · · , 4 and j = 1, 2, 3. (3.33)

Continuing with the non-informative priors assumption, let µβj = 0 and σ2
βj

= 10.

After a basic algebra inverse transformation, we have

k = exp[1.96
√

10] = 491.7961. (3.34)

In other words, the prior distribution can capture the odds ratio range from 1/491.7961

to 491.7961, which is large enough to capture the magnitude of typical observational

studies or clinical trials.
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The last unknown parameters are the baseline hazard rates ψ1, ψ2, · · · , ψJ ,

which are non-negative distributions. To guarantee the non-negative property, gamma

process priors are applied. That is,

π(ψ1, · · · , ψJ) ∝
J∏
j=1

ψ
αj−1
j exp(−ψjκj) for j = 1, · · · , J, (3.35)

where J is the number of intervals set up for the semi-parametric Cox proportional

hazards models. To offer a sequence of diffuse priors for ψ, we let the values αj and

κj be the same as in Equation 3.17. That is,

ψj ∼ Gamma(0.01, 0.01) for j = 1, 2, · · · , J. (3.36)

3.4.1 External Validation with Binary Unmeasured Confounders

We assume that the binary unmeasured confounder U is independent with

other covariates, except for the exposure indicator X1. The relationship between

the binary unmeasured confounder U and the treatment exposure indicator X1 can

be expressed as follows:

logit(pU) = η0 + η1X1, (3.37)

where pU is the probability of U = 1, given X1. Initially, we assume the data is in

the form of a 2× 2 table, such as displayed in Table 3.7,

Table 3.7: Contingency table between an unmeasured confounder and the
treatment exposure indicator

U X1 = 0 X1 = 1
U = 0 n00 n01

U = 1 n10 n11

where n10 represents the number of subjects with U = 1 when X1 = 0 and n11

represents the number of subjects with U = 1 when X1 = 1.
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Suppose the marginal distribution of X1 is fixed. That is, the columns of Table

3.7 are fixed. Then n10 and n11 follow a binomial distribution

n10 ∼ Binomial(n00 + n10, pn10)

n11 ∼ Binomial(n01 + n11, pn11),

where pn10 denotes the probability of U = 0 when the total sample size is n00 + n10

and X1 = 0, and pn11 denotes the probability of U = 1 when the total sample size

is n01 + n11 and X1 = 1. Since the marginal distribution is fixed, we can define pn10

and pn11 as

pn10 = Pr(U = 1|X1 = 0)

pn11 = Pr(U = 1|X1 = 1).

We employ logistic regression to the binary response variable U , where the link

function is logit and the predictor variable is X1. That is,

g(µi) = η0 + η1x1i for i = 1, 2, (3.38)

where g(µi) is the logit function. This leads to the following equations:

logit(pn10) = η0

logit(pn11) = η0 + η1.

3.4.2 Bayesian Inference

This form of external validation provides information about η0 and η1 in the

model. Suppose i∗ is the largest integer such that a[i] ≤ t < a[i+ 1], where a[i] was

defined at the start of this chapter. Incorporating the validation data information,
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the likelihood function for the ith subject is expressed as follows:

Li(β1,Θ, λ, η|D) ∝ [ψi∗ exp(β1x1i + ΘZi
′ + λui)]

δi

× exp

{
−ψi∗ exp(β1x1i + ΘZi

′ + λui)

[
i∗∑
j=1

ω(i, j)

]}

× P ui
ui

(1− Pui)
1−ui (Pn10)

n10(1− Pn10)
n00

× (Pn11)
n11(1− Pn11)

n01 ,

where D = (X1,Z, δ, n00, n01, n10, n11). Pn10 and Pn11 are defined as follows:

Pn10 = exp(η0)/[1 + exp(η0)]

Pn11 = exp(η0 + η1)/[1 + exp(η0 + η1)].

Together with Equations 3.2, 3.33, and 3.34, we assign the following priors for

the parameters:

βi ∼ Normal(0, 10) for i = 1, 2, 3, 4

λ ∼ Normal(0, 10)

ηj ∼ Normal(0, 10) for j = 1, 2.

The prior for the baseline hazards function ψ is

ψj ∼ Gamma(0.01, 0.01) for j = 1, 2, · · · , J.

3.4.3 Simulation Studies

Following Equation 3.19, we assumed the sample size for the main study was

n = 1000, while the validation size was m = 100. The data generation process with

a binary unmeasured confounder is discussed in this section. First, we assumed that

x1, z1, and z2 follow independent Bernoulli distributions such that

x1 ∼ Bernoulli(0.4)

z1 ∼ Bernoulli(0.08)

z2 ∼ Bernoulli(0.24).
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Second, we assumed z3 follows a normal distribution, which is also independent

of the other covariates. That is,

z3 ∼ Normal(61, 16).

Then, the binary unmeasured confounder u was generated as

u|x1 ∼ Bernoulli

[
exp(η0 + η1x1)

1 + exp(η0 + η1x1)

]
,

where η0 = −1.3 and η1 = −1.6.

The coefficients for the Cox proportional hazards model were assigned as fol-

lows:

h(t|x1, z, u) = h0(t) exp(−0.3x1 − 1z1 + 0.3z2 + 0.005z3 − 1.4u). (3.39)

The validation summary statistics were generated with the same configurations

as above, except for the sample size (m = 100). Then, we followed the method

in Bender et al. (2005) to generate the survival data with a binary unmeasured

confounder. The censoring time was drawn from a uniform distribution, which is the

same as in Equation 3.24. The censoring rates were 30%, 60%, and 90%, respectively.

Since there is no closed form of marginal posterior distribution (the product

of the likelihood function and prior distributions), the MCMC method was deployed

to sample the target posterior distribution. The JAGS package was used to simulate

drawing the samples of parameters via the rjags package in R with 7000 burn-

in and 20000 iterations. Convergence was diagnosed by Gelman-Rubin’s potential

scale reduction factor. Also, we examined the autocorrelation plot. There was no

convergence issue.

Table 3.8 displays the posterior means coverage of 95% intervals and the inter-

val widths for the regression coefficients of two models when the censoring rate was

at 30%. We can see that the external validation summary statistics had an effect on
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our bias adjustment. All the posterior means were close to the nominal value −0.30

for β1, and the coverage of 95% intervals also increased from 77.5% to 95%.

Aslo, the Bayesian semi-parametric Cox proportional hazards model provided

decent estimates for the other parameters in Equation 3.1 without increasing the

interval widths dramatically. Equation 3.1 accurately captured the effect of β4,

even though the coefficient was very small. It is interesting that the average 95%

credible interval did not enlarge too much compared to the original value in the

naive model. We can draw the conclusion that the Bayesian semi-parametric Cox

proportional hazards model with a binary unmeasured confounder can be adjusted

by the external summary statistics if the information is “informative” enough. In

other words, the model is essentially identified (Gustafson et al. 2005).

Table 3.8: External: summary statistics of the posteriors for the model accounting
for a binary unmeasured confounder (top) and the naive model (bottom) at a 30%

censoring rate

Parameter
True
value

Average pos-
terior mean

Coverage of
95% intervals

Average 95%
interval width

β1 -0.30
-0.37
-0.42

0.95
0.775

0.43
0.31

β2 -1
-0.78
-0.79

0.8
0.85

0.61
0.60

β3 0.30
0.23
0.27

0.875
0.95

0.36
0.35

β4 0.005
0.004
0.004

1.00
0.925

0.01
0.01

λ 1.4
2.02
NA a

0.70
NA

6.18
NA

η0 -1.3
-1.09
NA

0.925
NA

1.72
NA

η1 -1.6
-2.01
NA

0.90
NA

3.63
NA

a NA means not applicable

To investigate the relationship between different censoring rates and the ability

of bias correction under a binary unmeasured confounder scenario, we applied 30%,
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60%, and 90% censoring rates for the external validation. In Table 3.9, it is apparent

that the interval widths increased simultaneously with the increasing of the censoring

rate. When the censoring rate was at 90%, the width of the 95% interval was five

times larger than the 30% censoring rate, although the posterior mean did not shrink

sharply.

Table 3.9: The posterior estimation of β1 = −0.3 with an external validation at
different censoring rates

Model
Average pos-
terior mean

Coverage of
95% intervals

Average 95%
interval width

30% -0.36 0.95 0.43
60% -0.44 0.925 0.64
90% -0.43 0.975 2.09

In Figure 3.6, we can see that the external validation model performed better

than the naive model, which did not account for the unmeasured confounder. Also,

the naive model showed less variation at the same simulation set-ups.
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Figure 3.6: Density plots of naive and external validation models for β1
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3.4.4 Internal Validation with Binary Unmeasured Confounders

In the retrospective cohort study, we may not be able to collect all the variables

that we are interested in, especially when there are ethical and privacy dilemmas.

Also, it is common to have large amounts of missing data in the open label clinical

trials, and this missing data is important in the analysis. For example, we are

interested in the pain medication information when the key endpoint is time-to-pain

medication. However, the patient report forms have messy data due to the different

brands of pain-killer drugs. If the patients did not follow the study protocol, then

the pain medication will be assigned as a missing record on the self-reported form.

Now, we present a semi-parametric Bayesian Cox proportional hazards model

with a binary unmeasured confounder using internal validation data. The data

generation process was the same as the previous simulation, except for the validation

size. Let the main study sample size be n = 1000 and the validation size be m = 100.

Let T denote the survival times and X1 be the treatment exposure indicator.

Z, δ, and U were defined in previous sections. Let X̃1, T̃ , Z̃, δ̃, and Ũ be the observed

variables in the internal validation data set. The binary unmeasred confounder can

be determind by the exposure indicator. That is,

ui ∼ Bernoulli(Pui) for i = 1, 2, · · · , n (3.40)

ũj ∼ Bernoulli(Pũj) for j = 1, 2, · · · ,m, (3.41)

where Pui and Pũj are derived as follows:

logit(Pui) = η0 + η1x1i (3.42)

logit(Pũj) = η0 + η1x̃1j. (3.43)

We assumed that m subjects were fully observed, including the binary unmea-

sured confounder. Suppose i∗ is the largest integer such that s[i] ≤ t, where s[i] was
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defined at the start of this chapter. Then, the likelihood function becomes

L(β1,Θ, λ, η|D) ∝
n∏
i=1

[ψi∗ exp(β1x1i + ΘZi
′ + λui)]

δi

× exp

{
−ψi∗ exp(β1x1i + ΘZi

′ + λui)

[
i∗∑
j=1

ω(i, j)

]}

× P ui
ui

(1− Pui)
1−ui

×
m∏
k=1

[ψk∗ exp(β1x̃1k + ΘZ̃′k + λũk)]
δ̃k

× exp

{
−ψk∗ exp(β1x̃1k + ΘZ̃′k + λũk)

[
k∗∑
m=1

ω̃(k,m)

]}

× P ũk
ũk

(1− Pũk)1−ũk ,

where K∗ is the largest integer such that s[k] ≤ t̃. Pui and Pũi were defined above,

and ω(i, j) and ω̃(k,m) were defined at the start of this chapter.

To analyze this simulated data, diffuse priors were assigned to regression co-

efficients. That is,

β1,Θ, λ|µφi , σ2
φi
∼ Normal(µφi , σ

2
φi

),

where φ = (β1,Θ, λ), µφi = 0, and σ2
φi

= 10.

Again, we relied on gamma process priors for the baseline hazard rates. Let

α = κ = 0.01. The variance for this gamma distribution was α/κ2 = 100, which

provided a sequence of relatively diffuse priors. That is,

π(ψ1, · · · , ψJ) ∝
J∏
j=1

ψ
αj−1
j exp(−ψjκj) for j = 1, · · · , J,

where J = 5 in this section.

To perform the Bayesian simulation, the MCMC method was employed via

the rjags package. We ran 20000 updates with 7000 burn-in. Considering the

autocorrelation, we kept every 10th draw in rjags. The convergence and autocorre-

lation plots were checked, and there was no sign of divergence or autocorrelation.
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The simulation results for this model are summarized in Tables 3.10 and 3.11. The

naive model was the one in which we did not account for the binary unmeasured

confounder. Table 3.10 shows the posterior results of two models with internal

Table 3.10: Internal: summary statistics of the posterior for the model that
accounts for a binary unmeasured confounder (top) and the naive model (bottom)

at a 30% censoring rate

Parameter
True
value

Average pos-
terior mean

Coverage of
95% intervals

Average 95%
interval width

β1 -0.30
-0.30
-0.42

0.975
0.775

0.35
0.31

β2 -1
-0.84
-0.79

0.825
0.85

0.61
0.60

β3 0.30
0.27
0.27

0.95
0.95

0.35
0.35

β4 0.005
0.004
0.004

1.00
0.925

0.01
0.01

λ 1.4
1.14
NA a

0.875
NA

1.22
NA

η0 -1.3
-1.40
NA

0.925
NA

1.16
NA

η1 -1.6
-2.27
NA

0.90
NA

3.61
NA

a NA means not applicable

validation and a naive model. We can see that the average posterior mean of β1

was almost equal to the nominal value. Also, it indicates that the credible interval

was more narrow, compared to the models with external validation. This was espe-

cially true when the censoring rate was high. In other words, the internal validation

method provided a more stable bias adjustment compared to the external validation

and naive models.

The density plots for external and internal validation models in the binary

unmeasured confounder scenario were plotted in Figure 3.7. Consistent with the
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Table 3.11: The posterior estimation of β1 = −0.3 when the censoring rate is 90%

Model
Average pos-
terior mean

Coverage of
95% intervals

Average 95%
interval width

Naive -0.65 0.65 0.95
External -0.43 0.975 2.09
Internal -0.29 0.925 1.37

results of Table 3.11, the parameter estimate of the internal validation model was

close to the nominal value at the price of slightly larger variation, compared to the

external validation model.
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Figure 3.7: Density plots of internal and external validation models for β1

In Figure 3.8, we can see that the models with a binary unmeasured confounder

showed significant discrepancy compared to the normal unmeasured confounder sce-

nario. Both the external and the internal validation models performed much better

than the naive model, which did not account for the binary unmeasured confounder.

3.5 Discussion

In this chapter, we developed the semi-parametric Bayesian Cox proportional

hazards model with a binary unmeasured confounder in the light of McCandless et al.

58



0

1

2

3

−1.0 −0.5 0.0
beta1

de
ns

ity

group

Naive

Internal

External

Figure 3.8: Density plots of naive, internal, and external validation models for β1

(2012) and Stamey et al. (2014). One model accounted for the continuous normal

unmeasured confounder, and the other one adjusted for the binary unmeasured

confounder. Multiple simulations were conducted to study the performance of the

validation data from different sources.

The frequentist sensitivity analyses of the binary unmeasured confounder were

implemented by Lin et al. (1998) and Sturmer et al. (2005). McCandless et al.

(2007) and Stamey et al. (2014) proposed Bayesian approaches with the distri-

butional assumption of the unmeasured confounder using external validation data.

However, none of these methods can account for the binary unmeasured confounder,

unlike the external summary statistics from the other studies.

The simulation results confirmed that external summary statistics play a role

on the estimation of parameters, as well as the coverage of an interval without inflat-

ing the variability of interval widths. Furthermore, the censoring rate has influence

on the parameter estimations and the variation of 95% interval widths. When the

censoring rate is higher than 90%, we may need to consider other techniques, such

as the non-parametric adjustment in McCandless et al. (2012), or we may need to

look for the internal validation data.
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Although we only offer five baseline hazard rates (J = 5) for the analysis, the

semi-parametric Bayesian Cox proportional hazards model with normal and binary

unmeasured confounders shows a good ability to adjust for bias. The number of

baseline hazard rates is discussed in Christensen et al. (2010). In the continuous

unmeasured confounder scenario, the constructed informative priors performed much

better than in the binary case, considering the bias correction and the coverage

of 95% credible intervals. Furthermore, it is wise to look for the availability of

internal validation data, which provides much more stable and accurate estimations

of regression coefficients, even when the censoring rate is high.
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CHAPTER FOUR

Conclusion

In this dissertation, we considered a Bayesian approach to model time-to-event

data with an unmeasured confounder. We also developed a Bayesian parametric

survival regression model to account for the effect of a continuous unmeasured con-

founder. The linear regression models proposed for the unmeasured confounder

assume there is an association between the treatment exposure and the unmeasured

confounder. We introduced a Bayesian semi-parametric Cox proportional hazards

model, that accounts for unmeasured confounders with binary and normal distribu-

tions.

In Chapter Two, we presented the Bayesian parametric survival regression

models with the normal unmeasured confounder, assuming that the survival time

data followed Weibull and exponential distributions. The censoring rates were set

at 60%. Next, made a comparison between Bayesian parametric survival regression

models and the naive model, which did not account for the unmeasured confounder.

Besides the parameter estimation, a novel survival data generation process was in-

troduced in this chapter. We found that having even a small amount of internal

validation data can dramatically improve the estimation of the parameters. How-

ever, it is important to choose the correct distribution assumption for the survival

data, especially when the censoring rate is high. Also, more parametric techniques

for survival data will be of interest, due to the EMA (European Medicines Agency)

regulations (Carroll 2007) and the rising of new generalized distributions, such as

the beta-Weibull distribution family.

In Chapter Three, we developed the Bayesian semi-parametric Cox propor-

tional hazards model for survival data, adjusting for the unmeasured confounder.
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Instead of putting a distribution on the baseline hazard function, we assumed that

the baseline hazard function at a specific time window was a fixed value, which we

did not know. Mixing with the internal and external validations and the unmea-

sured confounders with binary and normal distributions, we conducted the Bayesian

analysis with six different models. Through the simulations, we found that even

relatively small amounts of prior information on the unmeasured confounder will

correct the bias. Consistent with the Bayesian parametric survival regression model,

the internal validation performed much better than the external validation. Also,

the censoring rate is a big concern when there exists only external validation. For

instance, assuming that the censoring rate is high, say 90%, the external validation

data is incorporated into the Bayesian semi-parametric Cox proportional hazards

models, as informative priors may introduce new bias into the analysis.

In the future, we are interested in the effect of informative priors on the un-

measured confounder. Furthermore, the large sample approximation power priors for

the Cox proportional hazards regression coefficients will be another area for future

research.

62



APPENDICES

63



APPENDIX A

R and Stan Programs for Parametric Models

The programs presented here were used for Bayesian parametric (Weibull and

exponential) regression for survival times with Weibull regression presented in Chap-

ter 2 . The data were generated by accelerated failure time models, and the simula-

tions were performed with different validation sizes.

A.1 Weibull Regression

###################################################

## Parametric model with Weibull distribution

## Simulations were performed by rstan package

## Survival times were generated with AFT model

###################################################

library(rstan)

parastan<-function(nmain, nstar, m, b1, b2, b3, lambda, a1, a2 ,

shape, sdu, seed){

## storage of output

## ave=average cov=coverage len=length

## beta

ave.b1<-rep(NA,m)

cov.b1<-rep(NA,m)

len.b1<-rep(NA,m)
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lower.b1<-rep(NA,m)

upper.b1<-rep(NA,m)

ave.b2<-rep(NA,m)

cov.b2<-rep(NA,m)

len.b2<-rep(NA,m)

ave.b3<-rep(NA,m)

cov.b3<-rep(NA,m)

len.b3<-rep(NA,m)

ave.a1<-rep(NA,m)

cov.a1<-rep(NA,m)

len.a1<-rep(NA,m)

ave.a2<-rep(NA,m)

cov.a2<-rep(NA,m)

len.a2<-rep(NA,m)

## lambda

ave.lam<-rep(NA,m)

cov.lam<-rep(NA,m)

len.lam<-rep(NA,m)

lower.lam<-rep(NA,m)

upper.lam<-rep(NA,m)

## shape parameter of Weibull distribution
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ave.shp<-rep(NA,m)

cov.shp<-rep(NA,m)

len.shp<-rep(NA,m)

##The survival time and censoring

##rule depends on specific study

cens.rate<-rep(NA,m)

for (t in 1:m){

# baseline hazard of survival time

lambdaT <- 1

# baseline hazard of censoring

lambdaC <- 0.5

## x1 is treatment, 1 is treatment, 0 is placebo

## the coefficient of x1 is our primary interest

x1<-rbinom(nmain,1,0.6)

z1<-rbinom(nmain,1,0.3)

z2<-rnorm(nmain, 0, 1)

# Generate unmeasured confoundings

u <- rnorm(nmain, cbind(1,x1) %*% c(a1, a2), sdu)

# Generate the survival time

T <- rweibull(nmain, shape, scale=lambdaT*

exp(-b1*x1-b2*z1-b3*z2-lambda*u))

C <- rweibull(nmain, shape, scale=lambdaC)
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dur<-pmin(T,C)

event <- (dur==T)*1 # set to 1 if event is

cens.rate[t]<-1-sum(event)/nmain

## Validation data generation

x1.star<-rbinom(nstar,1,0.6)

z1.star<-rbinom(nstar,1,0.3)

z2.star<-rnorm(nstar, 0, 1)

## continuous confounding

## R and Stan has different expression

u.star <- rnorm(nstar, cbind(1,x1.star) %*% c(a1, a2), sdu)

time.star <- rweibull(nstar, shape, scale=lambdaT*

exp(-b1*x1.star-b2*z1.star-b3*z2.star-lambda*u.star))

cens.star <- rweibull(nstar, shape, scale=lambdaC)

iscens.star<-(time.star>cens.star)

event.star <-1-iscens.star*1

dur.star<-pmin(time.star, cens.star)

## begin stan code

code="data{

int <lower=1> nmain;

int <lower=1> nstar;

int <lower=0,upper=1> event[nmain];

int <lower=0,upper=1> eventstar[nstar];
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vector<lower=0.00,upper=1.00>[nmain]x1;

vector<lower=0.00,upper=1.00>[nmain]z1;

vector[nmain]z2;

vector<lower=0.00,upper=1.00>[nstar]x1star;

vector<lower=0.00,upper=1.00>[nstar]z1star;

vector [nstar] z2star;

vector [nstar] ustar;

vector [nstar] durstar;

vector [nmain] dur;

}

// parameters

parameters{

vector[3] beta;

vector[2] alpha;

real lambda;

vector[nmain] u;

real <lower=0> b;

real <lower=0> sigu;

}

transformed parameters{

vector [nstar] b1;

vector [nmain] b2;

b1<-beta[1]*x1star+beta[2]*z1star+beta[3]*z2star+lambda*ustar;
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b2<-beta[1]*x1+beta[2]*z1+beta[3]*z2+lambda*u;

}

// models

model{

// prior information

lambda~normal(0,10);

beta~normal(0,10);

alpha~normal(0,10);

b~gamma(0.01, 0.01);

sigu~gamma(0.01, 0.01);

// validation data set

ustar~normal(alpha[1]+alpha[2]*x1star, sigu);

for(i in 1:nstar){

increment_log_prob(eventstar[i]*(log(b)-b*log(exp(-b1[i]))+

(b-1)*log(durstar[i]))-pow((durstar[i]/exp(-b1[i])),b));

}

// main study

u~normal(alpha[1]+alpha[2]*x1,sigu);

for(j in 1:nmain){

increment_log_prob(event[j]*(log(b)-b*log(exp(-b2[j]))+

(b-1)*log(dur[j]))-pow((dur[j]/exp(-b2[j])),b));

}

}
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"

data=list(nmain=nmain,nstar=nstar,x1=x1,z1=z1,z2=z2,

x1star=x1.star, z1star=z1.star, z2star=z2.star, ustar=u.star,

dur=dur,durstar=dur.star, event=event, eventstar=event.star)

fit=stan(model_code=code, data=data, iter=20000, thin=10, chains=1,

warmup=7000, pars=c("beta","alpha","lambda","b"))

ss<-extract(fit)

## output the results

ave.b1[t]<-mean(ss$beta[,1])

cov.b1[t]<-(b1>=quantile(ss$beta[,1],probs=c(0.025),

na.rm=TRUE))&(b1<=quantile(ss$beta[,1],probs=c(0.975),na.rm=TRUE))

len.b1[t]<-quantile(ss$beta[,1],probs=c(0.975),na.rm=TRUE)-

quantile(ss$beta[,1],probs=c(0.025),na.rm=TRUE)

lower.b1[t]<-quantile(ss$beta[,1],probs=c(0.025),na.rm=TRUE)

upper.b1[t]<-quantile(ss$beta[,1],probs=c(0.975),na.rm=TRUE)

ave.b2[t]<-mean(ss$beta[,2])

cov.b2[t]<-(b2>=quantile(ss$beta[,2],probs=c(0.025),na.rm=TRUE))&

(b2<=quantile(ss$beta[,2],probs=c(0.975),na.rm=TRUE))

len.b2[t]<-quantile(ss$beta[,2],probs=c(0.975),na.rm=TRUE)-

quantile(ss$beta[,2],probs=c(0.025),na.rm=TRUE)

ave.b3[t]<-mean(ss$beta[,3])

cov.b3[t]<-(b3>=quantile(ss$beta[,3],probs=c(0.025),na.rm=TRUE))&

(b3<=quantile(ss$beta[,3],probs=c(0.975),na.rm=TRUE))

len.b3[t]<-quantile(ss$beta[,3],probs=c(0.975),na.rm=TRUE)-
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quantile(ss$beta[,3],probs=c(0.025),na.rm=TRUE)

ave.a1[t]<-mean(ss$alpha[,1])

cov.a1[t]<-(a1>=quantile(ss$alpha[,1],probs=c(0.025),na.rm=TRUE))&

(a1<=quantile(ss$alpha[,1],probs=c(0.975),na.rm=TRUE))

len.a1[t]<-quantile(ss$alpha[,1],probs=c(0.975),na.rm=TRUE)-

quantile(ss$alpha[,1],probs=c(0.025),na.rm=TRUE)

ave.a2[t]<-mean(ss$alpha[,2])

cov.a2[t]<-(a2>=quantile(ss$alpha[,2],probs=c(0.025),na.rm=TRUE))&

(a2<=quantile(ss$alpha[,2],probs=c(0.975),na.rm=TRUE))

len.a2[t]<-quantile(ss$alpha[,2],probs=c(0.975),na.rm=TRUE)-

quantile(ss$alpha[,2],probs=c(0.025),na.rm=TRUE)

## lambda

ave.lam[t]<-mean(ss$lambda)

cov.lam[t]<-(lambda>=quantile(ss$lambda, probs=c(0.025),na.rm=TRUE))&

(lambda<=quantile(ss$lambda, probs=c(0.975),na.rm=TRUE))

len.lam[t]<-(quantile(ss$lambda, probs=c(0.975),na.rm=TRUE))-

(quantile(ss$lambda, probs=c(0.025),na.rm=TRUE))

lower.lam[t]<-quantile(ss$lambda, probs=c(0.025),na.rm=TRUE)

upper.lam[t]<-quantile(ss$lambda, probs=c(0.975),na.rm=TRUE)

## shape

ave.shp[t]<-mean(ss$b)

cov.shp[t]<-(shape>=quantile(ss$b, probs=c(0.025),na.rm=TRUE))&

(shape<=quantile(ss$b, probs=c(0.975),na.rm=TRUE))

len.shp[t]<-(quantile(ss$b, probs=c(0.975),na.rm=TRUE))-
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(quantile(ss$b, probs=c(0.025),na.rm=TRUE))

}# end of first loop

ave_b1<-mean(ave.b1)

cov_b1<-mean(cov.b1)

len_b1<-mean(len.b1)

lower_b1<-mean(lower.b1)

upper_b1<-mean(upper.b1)

ave_b2<-mean(ave.b2)

cov_b2<-mean(cov.b2)

len_b2<-mean(len.b2)

ave_b3<-mean(ave.b3)

cov_b3<-mean(cov.b3)

len_b3<-mean(len.b3)

ave_a1<-mean(ave.a1)

cov_a1<-mean(cov.a1)

len_a1<-mean(len.a1)

ave_a2<-mean(ave.a2)

cov_a2<-mean(cov.a2)

len_a2<-mean(len.a2)

## lambda
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ave_lam<-mean(ave.lam)

cov_lam<-mean(cov.lam)

len_lam<-mean(len.lam)

lower_lam<-mean(lower.lam)

upper_lam<-mean(upper.lam)

## shape

ave_shp<-mean(ave.shp)

cov_shp<-mean(cov.shp)

len_shp<-mean(len.shp)

csra<-mean(cens.rate)

# pass the return value of function

return(c(ave_b1,cov_b1,len_b1,lower_b1, upper_b1,ave_b2,cov_b2,

len_b2,ave_b3,cov_b3,len_b3,ave_a1,cov_a1,len_a1,

ave_a2,cov_a2,len_a2, ave_lam,cov_lam,len_lam, lower_lam,

upper_lam,ave_shp,cov_shp,len_shp, csra))

}#end of function

ptm<-proc.time()

parastan(1000, 100, 40, -0.3, 0.2, 0.3, -0.8, 0.1, -0.4, 1 ,3, 100)

proc.time()-ptm

A.2 Exponential Regression

##################################################################

## Parametric Survival Regression with Exponential Distribution

## The data were generated by Weibull distribution

##################################################################

library(rstan)
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rstan_options(auto_write = TRUE)

options(mc.cores = parallel::detectCores())

## Begin the self-defined function

parastan<-function(nmain, nstar, m, b1, b2, b3, lambda, a1, a2 ,

shape, sdu, seed){

## storage of output

## ave=average cov=coverage len=length

## beta

ave.b1<-rep(NA,m)

cov.b1<-rep(NA,m)

len.b1<-rep(NA,m)

ave.b2<-rep(NA,m)

cov.b2<-rep(NA,m)

len.b2<-rep(NA,m)

ave.b3<-rep(NA,m)

cov.b3<-rep(NA,m)

len.b3<-rep(NA,m)

ave.a1<-rep(NA,m)

cov.a1<-rep(NA,m)

len.a1<-rep(NA,m)

ave.a2<-rep(NA,m)

cov.a2<-rep(NA,m)

len.a2<-rep(NA,m)
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ave.lam<-rep(NA,m) ## lambda

cov.lam<-rep(NA,m)

len.lam<-rep(NA,m)

## ## the precision of unmeasued confounder 25FEB2015 Wiki

#ave.sigu<-rep(NA,m)

#cov.sigu<-rep(NA,m)

#len.sigu<-rep(NA,m)

cens.rate<-rep(NA,m)

# The survival time and censoring rule depends on specific study

for (t in 1:m){

lambdaT <- 1 # baseline hazard

lambdaC <- 0.5 # hazard of censoring

x1<-rbinom(nmain,1,0.6) # x is treatment, 1 is treatment, 0 is placebo

z1<-rbinom(nmain,1,0.3)# Characteristic 1

z2<-rnorm(nmain, 0, 1)# Characteristic 2

# Generate unmeasured confoundings

u <- rnorm(nmain, cbind(1,x1) %*% c(a1, a2), sdu)

# Generate the survival time

T <- rweibull(nmain, shape, scale=lambdaT*exp(-b1*x1-b2*z1-b3*z2-lambda*u))

C <- rweibull(nmain, shape, scale=lambdaC) #censoring time

dur<-pmin(T,C) #observed time is min of censored time and survival time

event <- (dur==T)*1 # set to 1 if event is
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cens.rate[t]<-1-sum(event)/nmain

x1.star<-rbinom(nstar,1,0.6)

z1.star<-rbinom(nstar,1,0.3)

z2.star<-rnorm(nstar, 0, 1)

## continuous confounding

## R and Stan has different expression

u.star <- rnorm(nstar, cbind(1,x1.star) %*% c(a1, a2), sdu)

time.star <- rweibull(nstar, shape, scale=lambdaT*

exp(-b1*x1.star-b2*z1.star-b3*z2.star-lambda*u.star))

cens.star <- rweibull(nstar, shape, scale=lambdaC) #censoring time

iscens.star<-(time.star>cens.star)

event.star <-1-iscens.star*1

dur.star<-pmin(time.star, cens.star)

## begin stan code

code="data{

int <lower=1> nmain;

int <lower=1> nstar;

int <lower=0,upper=1> event[nmain];

int <lower=0,upper=1> eventstar[nstar];

vector<lower=0.00,upper=1.00>[nmain]x1;

vector<lower=0.00,upper=1.00>[nmain]z1;

vector[nmain]z2;
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vector<lower=0.00,upper=1.00>[nstar]x1star;

vector<lower=0.00,upper=1.00>[nstar]z1star;

vector[nstar]z2star;

vector[nstar]ustar;

vector [nstar] durstar;

vector [nmain] dur;

}

// parameters

parameters{

vector[3] beta;

vector[2] alpha;

real lambda;

vector[nmain] u;

real <lower=0> sigu;

}

transformed parameters{

vector [nstar] b1;

vector [nmain] b2;

b1<-beta[1]*x1star+beta[2]*z1star+beta[3]*z2star+lambda*ustar;

b2<-beta[1]*x1+beta[2]*z1+beta[3]*z2+lambda*u;

}

// models
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model{

// prior information

lambda~normal(0,10);

beta~normal(0, 10);

alpha~normal(0,10);

sigu~gamma(0.01, 0.01);

// validation data set

ustar~normal(alpha[1]+alpha[2]*x1star, sigu);

for(i in 1:nstar){

increment_log_prob(eventstar[i]*(b1[i])-exp(b1[i])*durstar[i]);

}

// main study

u~normal(alpha[1]+alpha[2]*x1,sigu);

for(j in 1:nmain){

increment_log_prob(event[j]*(b2[j])-exp(b2[j])*dur[j]);

}

}

"

data=list(nmain=nmain,nstar=nstar,x1=x1,z1=z1,z2=z2,

x1star=x1.star, z1star=z1.star, z2star=z2.star, ustar=u.star,

dur=dur,durstar=dur.star, event=event, eventstar=event.star)

fit=stan(model_code=code, data=data, iter=15000,chains=1, thin=10,
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warmup=5000, pars=c("beta","alpha","lambda"))

ss<-extract(fit)

## output the results

ave.b1[t]<-mean(ss$beta[,1])

cov.b1[t]<-(b1>=quantile(ss$beta[,1],probs=c(0.025),na.rm=TRUE))&

(b1<=quantile(ss$beta[,1],probs=c(0.975),na.rm=TRUE))

len.b1[t]<-quantile(ss$beta[,1],probs=c(0.975),na.rm=TRUE)-

quantile(ss$beta[,1],probs=c(0.025),na.rm=TRUE)

ave.b2[t]<-mean(ss$beta[,2])

cov.b2[t]<-(b2>=quantile(ss$beta[,2],probs=c(0.025),na.rm=TRUE))&

(b2<=quantile(ss$beta[,2],probs=c(0.975),na.rm=TRUE))

len.b2[t]<-quantile(ss$beta[,2],probs=c(0.975),na.rm=TRUE)-

quantile(ss$beta[,2],probs=c(0.025),na.rm=TRUE)

ave.b3[t]<-mean(ss$beta[,3])

cov.b3[t]<-(b3>=quantile(ss$beta[,3],probs=c(0.025),na.rm=TRUE))&

(b3<=quantile(ss$beta[,3],probs=c(0.975),na.rm=TRUE))

len.b3[t]<-quantile(ss$beta[,3],probs=c(0.975),na.rm=TRUE)-

quantile(ss$beta[,3],probs=c(0.025),na.rm=TRUE)

ave.a1[t]<-mean(ss$alpha[,1])

cov.a1[t]<-(a1>=quantile(ss$alpha[,1],probs=c(0.025),na.rm=TRUE))&

(a1<=quantile(ss$alpha[,1],probs=c(0.975),na.rm=TRUE))

len.a1[t]<-quantile(ss$alpha[,1],probs=c(0.975),na.rm=TRUE)-

quantile(ss$alpha[,1],probs=c(0.025),na.rm=TRUE)
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ave.a2[t]<-mean(ss$alpha[,2])

cov.a2[t]<-(a2>=quantile(ss$alpha[,2],probs=c(0.025),na.rm=TRUE))&

(a2<=quantile(ss$alpha[,2],probs=c(0.975),na.rm=TRUE))

len.a2[t]<-quantile(ss$alpha[,2],probs=c(0.975),na.rm=TRUE)-

quantile(ss$alpha[,2],probs=c(0.025),na.rm=TRUE)

## lambda

ave.lam[t]<-mean(ss$lambda)

cov.lam[t]<-(lambda>=quantile(ss$lambda, probs=c(0.025),na.rm=TRUE))&

(lambda<=quantile(ss$lambda, probs=c(0.975),na.rm=TRUE))

len.lam[t]<-(quantile(ss$lambda, probs=c(0.975),na.rm=TRUE))-

(quantile(ss$lambda, probs=c(0.025),na.rm=TRUE))

}#loop

ave_b1<-mean(ave.b1)

cov_b1<-mean(cov.b1)

len_b1<-mean(len.b1)

ave_b2<-mean(ave.b2)

cov_b2<-mean(cov.b2)

len_b2<-mean(len.b2)

ave_b3<-mean(ave.b3)

cov_b3<-mean(cov.b3)

len_b3<-mean(len.b3)
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ave_a1<-mean(ave.a1)

cov_a1<-mean(cov.a1)

len_a1<-mean(len.a1)

ave_a2<-mean(ave.a2)

cov_a2<-mean(cov.a2)

len_a2<-mean(len.a2)

## lambda

ave_lam<-mean(ave.lam)

cov_lam<-mean(cov.lam)

len_lam<-mean(len.lam)

## shape

csra<-mean(cens.rate)

# pass the return value of function

return(c(ave_b1,cov_b1,len_b1,ave_b2,cov_b2,len_b2,

ave_b3,cov_b3,len_b3,ave_a1,cov_a1,len_a1,ave_a2,cov_a2,

len_a2, ave_lam,cov_lam,len_lam,csra))

}

## The validation size can be 50, 100 or 200

## 40 iterations

## Simulation seed is at 100

## The size for main study is 1000

ptm<-proc.time()
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parastan(1000, 100, 40, -0.3, 0.2, 0.3, -0.8, 0.1, -0.4, 1 ,3, 100)

proc.time()-ptm

A.3 Naive model

###################################################

## Naive Model

## Ignoring the unmeasured confounder

###################################################

library(rstan)

rstan_options(auto_write = TRUE)

options(mc.cores = parallel::detectCores())

naivstan<-function(nmain, nstar, m, b1, b2, b3, lambda,

a1, a2 , shape, sdu, seed){

## storage of output

## ave=average cov=coverage len=length

## beta

ave.b1<-rep(NA,m)

cov.b1<-rep(NA,m)

len.b1<-rep(NA,m)

lower.b1<-rep(NA,m)

upper.b1<-rep(NA,m)

ave.b2<-rep(NA,m)

cov.b2<-rep(NA,m)

len.b2<-rep(NA,m)

ave.b3<-rep(NA,m)
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cov.b3<-rep(NA,m)

len.b3<-rep(NA,m)

## shape parameter of weibull distribution

ave.shp<-rep(NA,m)

cov.shp<-rep(NA,m)

len.shp<-rep(NA,m)

for (t in 1:m){

lambdaT <- 1 # baseline hazard

lambdaC <- 0.5 # hazard of censoring

# x1 is treatment, 1 is treatment, 0 is placebo

x1<-rbinom(nmain,1,0.6)

z1<-rbinom(nmain,1,0.3)

z2<-rnorm(nmain, 0, 1)

# Generate unmeasured confounding

u <- rnorm(nmain, cbind(1,x1) %*% c(a1, a2), sdu)

# Generate the survival time

T <- rweibull(nmain, shape, scale=lambdaT*

exp(-b1*x1-b2*z1-b3*z2-lambda*u))

C <- rweibull(nmain, shape, scale=lambdaC)

dur<-pmin(T,C)

event <- (dur==T)*1

## begin stan code

code="data{

int <lower=1> nmain;
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int <lower=0,upper=1> event[nmain];

vector<lower=0.00,upper=1.00>[nmain]x1;

vector<lower=0.00,upper=1.00>[nmain]z1;

vector[nmain]z2;

vector [nmain] dur;

}

// parameters

parameters{

vector[3] beta;

real <lower=0> b;

real <lower=0> sigu;

}

transformed parameters{

vector [nmain] b2;

b2<-beta[1]*x1+beta[2]*z1+beta[3]*z2;

}

// models

model{

// prior information

beta~normal(0,10);

b~gamma(1,0.5);

for(j in 1:nmain){

increment_log_prob(event[j]*(log(b)-b*log(exp(-b2[j]))+(b-1)*

log(dur[j]))-pow((dur[j]/exp(-b2[j])),b));
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}

}

"

data=list(nmain=nmain,x1=x1,z1=z1,z2=z2, dur=dur, event=event)

fit=stan(model_code=code, data=data, iter=45000,chains=1, thin=10,

warmup=10000, pars=c("beta","b"))

ss<-extract(fit)

## output the results

ave.b1[t]<-mean(ss$beta[,1])

cov.b1[t]<-(b1>=quantile(ss$beta[,1],probs=c(0.025),na.rm=TRUE))&

(b1<=quantile(ss$beta[,1],probs=c(0.975),na.rm=TRUE))

len.b1[t]<-quantile(ss$beta[,1],probs=c(0.975),na.rm=TRUE)-

quantile(ss$beta[,1],probs=c(0.025),na.rm=TRUE)

lower.b1[t]<-quantile(ss$beta[,1],probs=c(0.025),na.rm=TRUE)

upper.b1[t]<-quantile(ss$beta[,1],probs=c(0.975),na.rm=TRUE)

ave.b2[t]<-mean(ss$beta[,2])

cov.b2[t]<-(b2>=quantile(ss$beta[,2],probs=c(0.025),na.rm=TRUE))&

(b2<=quantile(ss$beta[,2],probs=c(0.975),na.rm=TRUE))

len.b2[t]<-quantile(ss$beta[,2],probs=c(0.975),na.rm=TRUE)-

quantile(ss$beta[,2],probs=c(0.025),na.rm=TRUE)

ave.b3[t]<-mean(ss$beta[,3])

cov.b3[t]<-(b3>=quantile(ss$beta[,3],probs=c(0.025),na.rm=TRUE))&

(b3<=quantile(ss$beta[,3],probs=c(0.975),na.rm=TRUE))

len.b3[t]<-quantile(ss$beta[,3],probs=c(0.975),na.rm=TRUE)-
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quantile(ss$beta[,3],probs=c(0.025),na.rm=TRUE)

## shape

ave.shp[t]<-mean(ss$b)

cov.shp[t]<-(shape>=quantile(ss$b, probs=c(0.025),na.rm=TRUE))&

(shape<=quantile(ss$b, probs=c(0.975),na.rm=TRUE))

len.shp[t]<-(quantile(ss$b, probs=c(0.975),na.rm=TRUE))-

(quantile(ss$b, probs=c(0.025),na.rm=TRUE))

}#loop

## beta

ave_b1<-mean(ave.b1)

cov_b1<-mean(cov.b1)

len_b1<-mean(len.b1)

lower_b1<-mean(lower.b1)

upper_b1<-mean(upper.b1)

ave_b2<-mean(ave.b2)

cov_b2<-mean(cov.b2)

len_b2<-mean(len.b2)

ave_b3<-mean(ave.b3)

cov_b3<-mean(cov.b3)

len_b3<-mean(len.b3)

## shape

ave_shp<-mean(ave.shp)

cov_shp<-mean(cov.shp)

len_shp<-mean(len.shp)

# pass the return value of function
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return(c(ave_b1,cov_b1,len_b1,lower_b1, upper_b1,ave_b2,

cov_b2,len_b2,ave_b3,cov_b3,len_b3, ave_shp,cov_shp,len_shp))

}

ptm<-proc.time()

## The validation size can be 50, 100 or 200

## 40 iterations

## Simulation seed is at 100

## The size for main study is 1000

naivstan(1000, 100, 40, -0.3, 0.2, 0.3, -0.8, 0.1, -0.4, 1 ,3, 100)

proc.time()-ptm
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APPENDIX B

R and Jags Programs for Semi-Parametric Models

These codes were presented to model the time-to-event data with an normally

or binary distributed unmeasured confounder. We also performed the external and

internal validation for the Cox proportional hazards models.

B.1 External Validation with Normal Unmeasured Confounders

##################################################################

## External validation data with continuous unmeasured confounder

## m=100 validation size

## n=1000 main study

## Censoring rates 30%, 60%, and 90%

## ###############################################################

## Load the JAGS package

library(rjags)

excs<-function(m, csr, n, n.tilde, J, b1, b2,b3,b4,

lambda,eta1,eta2,sigu,seed){

set.seed(seed)

ave.beta1 = rep(NA, m)

coverage.beta1 = rep(NA,m)

length.beta1 = rep(NA,m)
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## Keep the 95% of credible interval

b1lb<-rep(NA, m) # Low bound of beta1

b1ub<-rep(NA, m) # Upper bound of beta1

ave.beta2 = rep(NA, m)

coverage.beta2 = rep(NA,m)

length.beta2 = rep(NA,m)

ave.beta3 = rep(NA, m)

coverage.beta3 = rep(NA,m)

length.beta3 = rep(NA,m)

ave.beta4 = rep(NA, m)

coverage.beta4 = rep(NA,m)

length.beta4 = rep(NA,m)

## Bias parameter

ave.lambda = rep(NA, m)

coverage.lambda = rep(NA,m)

length.lambda = rep(NA,m)

ave.eta1 = rep(NA, m)

coverage.eta1 = rep(NA,m)

length.eta1 = rep(NA,m)

ave.eta2 = rep(NA, m)

coverage.eta2 = rep(NA,m)

length.eta2 = rep(NA,m)

## censoring rate
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cens.rate<-rep(NA, m)

## Begin the simulation loop

for (i in 1:m){

## All binary data except the unmeasured confounder

x1<-rbinom(n, 1, 0.4)

z1<-rbinom(n, 1, 0.08)

z2<-rbinom(n, 1, 0.24)

z3<-rbinom(n, 1, 0.11)

## Assuming the unmeasured confounder is normal distributed

u<-rnorm(n, (cbind(1,x1))%*%c(eta1,eta2), sigu)

# Generate the survival time

uni<-runif(n, 0, 1)

## Data sets are similar to RHC example (Connors, 1996)

## Suppose the survival time follow Weibull distribution

time<-1/(0.13)*log(1-(0.13*log(uni))/(0.0035*exp(b1*x1+

b2*z1+b3*z2+b4*z3+lambda*u)))

## Different censor rates

limit<-0

repeat{

cens.t<- runif(n,0, limit) #censoring time

dur<- pmin(time,cens.t)

event <- (dur==time)*1 # set to 1 if it is event

limit<-limit+0.01

if (1-sum(event)/n<=csr){

break

}
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}

## Create external validation summary statistics

x1.tilde<-rbinom(n.tilde, 1, 0.4)

z1.tilde<-rbinom(n.tilde, 1, 0.08)

z2.tilde<-rbinom(n.tilde, 1, 0.24)

z3.tilde<-rbinom(n.tilde, 1, 0.11)

u.tilde<-rnorm(n.tilde, (cbind(1,x1.tilde))%*%c(eta1,eta2), sigu)

## Produce the continuous summary statistics

sdx0<-by(u.tilde, x1.tilde, sd)[1]

sdx1<-by(u.tilde, x1.tilde, sd)[2]

ux0<-by(u.tilde, x1.tilde, mean)[1]

ux1<-by(u.tilde, x1.tilde, mean)[2]

nx0<-n.tilde-sum(x1.tilde)

nx1<-sum(x1.tilde)

ubar<-(nx0*ux0+nx1*ux0)/(nx0+nx1)

xbar<-nx1/n.tilde

ssx<-nx1-nx1^2/n.tilde

sigmau<-1/(((nx0-1)*sdx0^2+(nx1-1)*sdx1^2)/(n.tilde))

gam1<-ux0

gam2<-ux1-ux0

tau1<-(nx0+nx1)/2-1

tau2<-((nx0-1)*sdx0^2+(nx1-1)*sdx1^2)/2

## Data driven intervals

quan<-quantile(dur,seq(0,1,length=J+1))

a<-rep(0,J+1)
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for(t in 2:J){

a[t]<-quan[t]

}

a[J+1]<-100*quan[J+1]

## Observed rersults on the grid

d<-array(0, dim=c(n,J))

for(h in 1:n){

for (k in 1:J){

d[h,k]<-event[h]*((dur[h]-a[k])>=0)*((a[k+1]-dur[h])>0)

}

}

data<-list(n=n,J=J,d=d, dur=dur,a=a,x1=x1, z1=z1,z2=z2,

z3=z3, xbar=xbar, ubar=ubar, ssx=ssx, sigmau=sigmau,

gam2=gam2, gam1=gam1, tau1=tau1, tau2=tau2, nx0=nx0, nx1=nx1)

parameters<-c("eta1","eta2","beta", "lambda")

inits<-list(beta=c(rnorm(4,0,1)),eta1=rnorm(1,0,1),eta2=rnorm(1,0,1),

lam=c(rgamma(J,1,2)), lambda=.2,u=rnorm(n,0,1), sig=rgamma(1,1,3))

inits<-list(inits)

jag.sim<-jags.model(file="~/diss/graph/final/excs_in.txt",

data=data, inits=inits,n.chains =1, n.adapt = 200)

burn.in<-7000

samps <- coda.samples(jag.sim, parameters,thin=10, n.iter = 20000)

ss.sim<-summary(window(samps, start = burn.in))
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ave.beta1[i] = ss.sim$statistics[1, 1]

coverage.beta1[i]<-(b1 >= ss.sim$quantiles[1,1])&

(b1 <= ss.sim$quantiles[1,5])

length.beta1[i] = ss.sim$quantiles[1,5]-ss.sim$quantiles[1,1]

b1ub[i]<-ss.sim$quantiles[1,5]

b1lb[i]<-ss.sim$quantiles[1,1]

ave.beta2[i] = ss.sim$statistics[2, 1]

coverage.beta2[i]<-(b2 >= ss.sim$quantiles[2,1])&

(b2 <= ss.sim$quantiles[2,5])

length.beta2[i] = ss.sim$quantiles[2,5]-ss.sim$quantiles[2,1]

ave.beta3[i] = ss.sim$statistics[3, 1]

coverage.beta3[i]<-(b3 >= ss.sim$quantiles[3,1])&

(b3 <= ss.sim$quantiles[3,5])

length.beta3[i] = ss.sim$quantiles[3,5]-ss.sim$quantiles[3,1]

ave.beta4[i] = ss.sim$statistics[4, 1]

coverage.beta4[i]<-(b4 >= ss.sim$quantiles[4,1])&

(b4 <= ss.sim$quantiles[4,5])

length.beta4[i] = ss.sim$quantiles[4,5]-ss.sim$quantiles[4,1]

ave.eta1[i] = ss.sim$statistics[5, 1]

coverage.eta1[i]<-(eta1 >= ss.sim$quantiles[5,1])&

(eta1 <= ss.sim$quantiles[5,5])

length.eta1[i] = ss.sim$quantiles[5,5]-ss.sim$quantiles[5,1]
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ave.eta2[i] = ss.sim$statistics[6, 1]

coverage.eta2[i]<-(eta2 >= ss.sim$quantiles[6,1])&

(eta2 <= ss.sim$quantiles[6,5])

length.eta2[i] <-ss.sim$quantiles[6,5]-ss.sim$quantiles[6,1]

ave.lambda[i]<-ss.sim$statistics[7, 1]

coverage.lambda[i]<-(lambda >= ss.sim$quantiles[7,1])&

(lambda <= ss.sim$quantiles[7,5])

length.lambda[i]<-ss.sim$quantiles[7,5]-ss.sim$quantiles[7,1]

## Censoring rates

cens.rate[i]<-round(1-sum(event)/n, 2)

}

return(cbind(ave.beta1,coverage.beta1,length.beta1,ave.beta2,

coverage.beta2,length.beta2,ave.beta3,coverage.beta3,length.beta3,

ave.beta4,coverage.beta4,length.beta4, ave.eta1,coverage.eta1,

length.eta1,ave.eta2,coverage.eta2,length.eta2,ave.lambda,

coverage.lambda,length.lambda, b1lb, b1ub, cens.rate))

}

## The end of function

csr<-c(0.31, 0.61, 0.91)

res<-array(0, dim=c(length(csr), 24))

ptm <- proc.time()

for (m in 1:length(csr)){

## Call the excs function
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res[m,]<-colMeans(excs(40,csr[m],1000,100,5, 0.3,-1,0.4,1,-3,

0.6,-0.04, 0.2, 104))

}

proc.time() - ptm

#############################################################

## External validation with normally distributed

## unmeasured confounder

## This is jags code

model{

for(i in 1:n){

for (k in 1:J){

d[i,k]~dpois(delta[i,k])

delta[i,k]<-((min(dur[i],a[k+1])-a[k])*step(dur[i]-a[k]))*lam[k]*

exp(beta[1]*x1[i]+beta[2]*z1[i]+beta[3]*z2[i]+beta[4]*z3[i]

+lambda*u[i])

}

u[i]~dnorm(eta1+eta2*x1[i], sig)

}

ubar~dnorm(eta1+eta2*xbar, sig)

# prior information

for(k in 1:J){lam[k]~dgamma(0.01,0.01)}

for(l in 1:4){beta[l]~dnorm(0,0.1)}

sig~dgamma(tau1, tau2)

eta1~dnorm(gam1, 1/(sigmau*ssx))

eta2~dnorm(gam2, 1/(1/sigmau*(1/(nx0+nx1)+xbar^2/ssx)))

lambda~dnorm(0,0.1)
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}

B.2 Internal Validation with Normal Unmeasured Confounders

#################################################################

## Internal validation data with continuous unmeasured confounder

## n=1000

## m=100

##################################################################

library(rjags)

incs<-function(m, cs, n, n.tilde, J, b1, b2,b3,b4, lambda,eta1,eta2,

sigu,seed){

set.seed(seed)

# vectors to store results

ave.beta1 = rep(NA, m)

coverage.beta1 = rep(NA,m)

length.beta1 = rep(NA,m)

## Keep the 95% credible interval of beta1

b1lb<-rep(NA, m) # Low bound of beta1

b1ub<-rep(NA, m) # Upper bound of beta1

ave.beta2 = rep(NA, m)

coverage.beta2 = rep(NA,m)

length.beta2 = rep(NA,m)
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ave.beta3 = rep(NA, m)

coverage.beta3 = rep(NA,m)

length.beta3 = rep(NA,m)

ave.beta4 = rep(NA, m)

coverage.beta4 = rep(NA,m)

length.beta4 = rep(NA,m)

ave.lambda = rep(NA, m)

coverage.lambda = rep(NA,m)

length.lambda = rep(NA,m)

ave.eta1 = rep(NA, m)

coverage.eta1 = rep(NA,m)

length.eta1 = rep(NA,m)

ave.eta2 = rep(NA, m)

coverage.eta2 = rep(NA,m)

length.eta2 = rep(NA,m)

## Different censoring rates

cens.rate<-rep(NA, m)

for (i in 1:m){

## Data generation is similar RHC example (Connors, 1996)

x1<-rbinom(n, 1, 0.4)
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z1<-rbinom(n, 1, 0.08)

z2<-rbinom(n, 1, 0.24)

z3<-rbinom(n, 1, 0.11)

u<-rnorm(n, (cbind(1,x1))%*%c(eta1,eta2), sigu)

# Generate the survival time

uni<-runif(n, 0, 1)

## Suppose the survival time follow Weibull distribution

time<-1/(0.13)*log(1-(0.13*log(uni))/(0.0035*

exp(b1*x1+b2*z1+b3*z2+b4*z3+lambda*u)))

## Different censor rates

limit<-0

repeat{

cens.t<- runif(n,0, limit) #censoring time

dur<- pmin(time,cens.t) #observed time

event <- (dur==time)*1 # set to 1 if it is event

limit<-limit+0.01

if (1-sum(event)/n<=cs){

break

}

}

## A small fraction of internval validation data

x1.tilde<-rbinom(n.tilde, 1, 0.4)

z1.tilde<-rbinom(n.tilde, 1, 0.08)

z2.tilde<-rbinom(n.tilde, 1, 0.24)
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z3.tilde<-rbinom(n.tilde, 1, 0.11)

## Normal unmeasured confounder

u.tilde<-rnorm(n.tilde, (cbind(1,x1.tilde))%*%c(eta1,eta2), sigu)

uni.tilde<-runif(n.tilde, 0, 1)

## Suppose the survival time follow Weibull distribution

time.tilde<-1/(0.13)*log(1-(0.13*log(uni.tilde))/(0.0035*

exp(b1*x1.tilde+b2*z1.tilde+b3*z2.tilde+b4*z3.tilde+lambda*u.tilde)))

limit<-0

repeat{

cens.tilde<- runif(n.tilde,0, limit)

dur.tilde<- pmin(time.tilde,cens.tilde)

event.tilde <- (dur.tilde==time.tilde)*1

limit<-limit+0.01

if (1-sum(event.tilde)/n.tilde<=cs){

break

}

}

## Data driven baseline hazard rates

quan<-quantile(dur,seq(0,1,length=J+1))

a<-rep(0,J+1)

for(t in 2:J){

a[t]<-quan[t]

}

a[J+1]<-100*quan[J+1]

99



## Observed results on the grid

d<-array(0, dim=c(n,J))

for(h in 1:n){

for (k in 1:J){

d[h,k]<-event[h]*((dur[h]-a[k])>=0)*((a[k+1]-dur[h])>0)

}

}

d.tilde<-array(0, dim=c(n.tilde,J))

for(h in 1:n.tilde){

for (k in 1:J){

d.tilde[h,k]<-event.tilde[h]*((dur.tilde[h]-a[k])>=0)*

((a[k+1]-dur.tilde[h])>0)

}

}

data<-list(n=n,J=J,d=d, dur=dur,a=a,x1=x1, z1=z1,z2=z2,z3=z3,

n.tilde=n.tilde, x1.tilde=x1.tilde,z1.tilde=z1.tilde,

z2.tilde=z2.tilde,z3.tilde=z3.tilde, dur.tilde=dur.tilde,

d.tilde=d.tilde, u.tilde=u.tilde)

parameters<-c("beta","eta", "lambda")

inits3<-list(beta=c(rnorm(4,0,1)),eta=c(rnorm(2,0,1)),

lam=c(rgamma(J,1,2)), lambda=.2,u=rnorm(n,0,1), sigu=rgamma(1,1,3))

inits<-list( inits3)
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jag.sim<-jags.model(file="~/diss/graph/normal/incs_in.txt",

data=data, inits=inits,n.chains =1, n.adapt = 200)

samps <- coda.samples(jag.sim, parameters,thin=10, n.iter = 20000)

burn.in<-7000

ss.sim<-summary(window(samps, start = burn.in))

ave.beta1[i] = ss.sim$statistics[1, 1]

coverage.beta1[i]<-(b1 >= ss.sim$quantiles[1,1])&

(b1 <= ss.sim$quantiles[1,5])

length.beta1[i] = ss.sim$quantiles[1,5]-ss.sim$quantiles[1,1]

b1ub[i]<-ss.sim$quantiles[1,5]

b1lb[i]<-ss.sim$quantiles[1,1]

ave.beta2[i] = ss.sim$statistics[2, 1]

coverage.beta2[i]<-(b2 >= ss.sim$quantiles[2,1])&

(b2 <= ss.sim$quantiles[2,5])

length.beta2[i] = ss.sim$quantiles[2,5]-ss.sim$quantiles[2,1]

ave.beta3[i] = ss.sim$statistics[3, 1]

coverage.beta3[i]<-(b3 >= ss.sim$quantiles[3,1])&

(b3 <= ss.sim$quantiles[3,5])

length.beta3[i] = ss.sim$quantiles[3,5]-ss.sim$quantiles[3,1]

ave.beta4[i] = ss.sim$statistics[4, 1]

coverage.beta4[i]<-(b4 >= ss.sim$quantiles[4,1])&

(b4 <= ss.sim$quantiles[4,5])

length.beta4[i] = ss.sim$quantiles[4,5]-ss.sim$quantiles[4,1]
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ave.eta1[i] = ss.sim$statistics[5, 1]

coverage.eta1[i]<-(eta1 >= ss.sim$quantiles[5,1])&

(eta1 <= ss.sim$quantiles[5,5])

length.eta1[i] = ss.sim$quantiles[5,5]-ss.sim$quantiles[5,1]

ave.eta2[i] = ss.sim$statistics[6, 1]

coverage.eta2[i]<-(eta2 >= ss.sim$quantiles[6,1])&

(eta2 <= ss.sim$quantiles[6,5])

length.eta2[i] <-ss.sim$quantiles[6,5]-ss.sim$quantiles[6,1]

ave.lambda[i]<-ss.sim$statistics[7, 1]

coverage.lambda[i]<-(lambda >= ss.sim$quantiles[7,1])&

(lambda <= ss.sim$quantiles[7,5])

length.lambda[i]<-ss.sim$quantiles[7,5]-ss.sim$quantiles[7,1]

## Censored rate

cens.rate[i]<-round(1-sum(event)/n, 2)

}

return(cbind(ave.beta1,coverage.beta1,length.beta1,

ave.beta2,coverage.beta2,length.beta2,

ave.beta3,coverage.beta3,length.beta3,

ave.beta4,coverage.beta4,length.beta4,

ave.eta1,coverage.eta1,length.eta1,

ave.eta2,coverage.eta2,length.eta2,

ave.lambda,coverage.lambda,length.lambda,
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b1lb, b1ub, cens.rate))

}

## The end of function

csr<-c(0.31, 0.61, 0.91)

res<-array(0, dim=c(length(csr), 24))

ptm <- proc.time()

for (m in 1:length(csr)){

res[m,]<-colMeans(incs(40,csr[m],1000,100,5,0.3,-1.2,0.4,1,-3,

0.6,-0.04, 0.2, 104))

}

proc.time() - ptm

#################################################################

## Internal validation with normally distributed

## unmeasured confounder

## This is jags model

## Model the main study data

model

{

for(i in 1:n){

for (k in 1:J){

d[i,k]~dpois(mu[i,k])

mu[i,k]<-(min(dur[i],a[k+1])-a[k])*step(dur[i]-a[k])*

lam[k]*exp(beta[1]*x1[i]+beta[2]*z1[i]+beta[3]*z2[i]+beta[4]*z3[i]

+lambda*u[i])

}

u[i]~dnorm(eta[1]+eta[2]*x1[i], sigu)
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}

## Modeling validation data

for(j in 1:n.tilde){

for (m in 1:J){

d.tilde[j,m]~dpois(mu.tilde[j,m])

mu.tilde[j,m]<-(min(dur.tilde[j],a[m+1])-a[m])*step(dur.tilde[j]-a[m])*

lam[m]*exp(beta[1]*x1.tilde[j]+beta[2]*z1.tilde[j]+beta[3]*z2.tilde[j]+

beta[4]*z3.tilde[j]+lambda*u.tilde[j])

}

u.tilde[j]~dnorm(eta[1]+eta[2]*x1.tilde[j], sigu)

}

# prior information

for(k in 1:J){lam[k]~dgamma(0.01,0.01)}

for(l in 1:4){beta[l]~dnorm(0,0.1)}

for(l in 1:2){eta[l]~dnorm(0,0.1)}

sigu~dgamma(0.01, 0.01)

lambda~dnorm(0,0.1)

}

B.3 Naive Model with Normal Unmeasured Confounders

## Naive model, ignoring unmeasured confounder

## n=1000; m=100;

## Censoring rates: 30%, 60% and 90%

#################################################################
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## Load the JAGS package

library(rjags)

naiv<-function(m, cs, n, J, b1, b2, b3, b4, lambda,eta1,eta2,

sigu, seed){

set.seed(seed)

# vectors to store results

ave.beta1 <- rep(NA, m)

coverage.beta1 <- rep(NA,m)

length.beta1 <- rep(NA,m)

## Keep the 95% of credible interval

b1lb<-rep(NA, m) # Low bound of beta1

b1ub<-rep(NA, m) # Upper bound of beta1

ave.beta2 <- rep(NA, m)

coverage.beta2 <- rep(NA,m)

length.beta2 <- rep(NA,m)

ave.beta3 <- rep(NA, m)

coverage.beta3 <- rep(NA,m)

length.beta3 <- rep(NA,m)

ave.beta4 <- rep(NA, m)

coverage.beta4 <- rep(NA,m)

length.beta4 <- rep(NA,m)

## Censor Rate

cens.rate<-rep(NA, m)
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for(i in 1:m){

x1<-rbinom(n, 1, 0.4)

z1<-rbinom(n, 1, 0.08)

z2<-rbinom(n, 1, 0.24)

z3<-rbinom(n, 1, 0.11)

u<-rnorm(n, (cbind(1,x1))%*%c(eta1,eta2), sigu)

# Generate the survival time

uni<-runif(n, 0, 1)

time<-1/(0.13)*log(1-(0.13*log(uni))/(0.0035*

exp(b1*x1+b2*z1+b3*z2+b4*z3+lambda*u)))

## show different censor rate

limit<-0

repeat{

cens.t<- runif(n,0, limit)

dur<- pmin(time,cens.t)

event <- (dur==time)*1

limit<-limit+0.01

if (1-sum(event)/n<=cs){

break

}

}

## creating the boundaries of

quan<-quantile(dur,seq(0,1,length=J+1))

a<-rep(0,J+1)

for(t in 2:J){
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a[t]<-quan[t]

}

a[J+1]<-100*quan[J+1] ## The last interval should be infinite

## get the observed results

d<-array(0, dim=c(n,J))

for(h in 1:n){

for (k in 1:J){

d[h,k]<-event[h]*((dur[h]-a[k])>=0)*((a[k+1]-dur[h])>0)

}

}

data<-list(n=n,J=J,d=d, dur=dur,a=a,x1=x1, z1=z1,z2=z2, z3=z3)

parameters<-c("beta")

inits<-list(beta=c(rnorm(4,0,1)),lam=c(rgamma(J,1,2)))

inits<-list(inits)

jag.sim<-jags.model(file="~/diss/graph/normal/ncs_in.txt",

data=data, inits=inits,n.chains =1, n.adapt = 200)

burn.in<-7000

samps<-coda.samples(jag.sim, parameters,thin=10, n.iter = 25000)

ss.sim<-summary(window(samps, start = burn.in))

ave.beta1[i] = ss.sim$statistics[1, 1]

coverage.beta1[i]<-(b1 >= ss.sim$quantiles[1,1])&

(b1 <= ss.sim$quantiles[1,5])

length.beta1[i] = ss.sim$quantiles[1,5]-ss.sim$quantiles[1,1]
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b1ub[i]<-ss.sim$quantiles[1,5]

b1lb[i]<-ss.sim$quantiles[1,1]

ave.beta2[i] = ss.sim$statistics[2, 1]

coverage.beta2[i]<-(b2 >= ss.sim$quantiles[2,1])&

(b2 <= ss.sim$quantiles[2,5])

length.beta2[i] = ss.sim$quantiles[2,5]-ss.sim$quantiles[2,1]

ave.beta3[i] = ss.sim$statistics[3, 1]

coverage.beta3[i]<-(b3 >= ss.sim$quantiles[3,1])&

(b3 <= ss.sim$quantiles[3,5])

length.beta3[i] = ss.sim$quantiles[3,5]-ss.sim$quantiles[3,1]

ave.beta4[i] = ss.sim$statistics[4, 1]

coverage.beta4[i]<-(b4 >= ss.sim$quantiles[4,1])&

(b4 <= ss.sim$quantiles[4,5])

length.beta4[i] = ss.sim$quantiles[4,5]-ss.sim$quantiles[4,1]

cens.rate[i]<-1-sum(event)/n

}

return(cbind(ave.beta1,coverage.beta1,length.beta1,

ave.beta2,coverage.beta2,length.beta2,

ave.beta3,coverage.beta3,length.beta3,

ave.beta4,coverage.beta4,length.beta4,

b1ub, b1lb,cens.rate))

}

## End of self-defined function
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csr<-c(0.31, 0.61, 0.91)

res<-array(0, dim=c(length(csr), 15))

ptm <- proc.time()

for (i in 1:length(csr)){

res[i,]<-colMeans(naiv(40,csr[i],1000,5, 0.3,-1,0.4,1,-3,

0.6,-0.04, 0.2, 104))

}

proc.time() - ptm

## Naive model, ignoring unmeasured confounder

## This is jags code

model

{

for(i in 1:n){

for (k in 1:J){

d[i,k]~dpois(mu[i,k])

mu[i,k]<-(min(dur[i],a[k+1])-a[k])*step(dur[i]-a[k])*

lam[k]*exp(beta[1]*x1[i]+beta[2]*z1[i]+beta[3]*z2[i]+beta[4]*z3[i])

}

}

# prior information

for(k in 1:J){lam[k]~dgamma(0.01,0.01)}

for(l in 1:4){beta[l]~dnorm(0,0.1)}

}

B.4 External Validation with Binary Unmeasured Confounders

#################################################################
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# ## External validation with binary unmeasured confounder

# 1) 3 different censored rates (30%, 60%, 90%)

# 2) Unmeasured confounder is binary data

# 3) Including continuous covariate

# 4) Only has external contingency table (u vs x1)

#################################################################

library(rjags)

exds<-function(m, n, n.tilde, J, b1, b2,b3, b4, lambda,a1,a2, csr,

seed){

set.seed(seed)

ave.beta1 = rep(NA, m)

coverage.beta1 = rep(NA,m)

length.beta1 = rep(NA,m)

## Keep the 95% credible interval of beta1

b1lb<-rep(NA, m) # Low bound of beta1

b1ub<-rep(NA, m) # Upper bound of beta1

ave.beta2 = rep(NA, m)

coverage.beta2 = rep(NA,m)

length.beta2 = rep(NA,m)

ave.beta3 = rep(NA, m)

coverage.beta3 = rep(NA,m)
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length.beta3 = rep(NA,m)

ave.beta4 = rep(NA, m)

coverage.beta4 = rep(NA,m)

length.beta4 = rep(NA,m)

ave.lambda = rep(NA, m)

coverage.lambda = rep(NA,m)

length.lambda = rep(NA,m)

ave.eta1 = rep(NA, m)

coverage.eta1 = rep(NA,m)

length.eta1 = rep(NA,m)

ave.eta2 = rep(NA, m)

coverage.eta2 = rep(NA,m)

length.eta2 = rep(NA,m)

cens.rate<-rep(NA,m)

for(i in 1:m){

x1<-rbinom(n, 1, 0.4)

z1<-rbinom(n, 1, 0.08)

z2<-rbinom(n, 1, 0.24)

z3<-rnorm(n, mean=61, sd=4)

## The data is similar to Connors(1996)

u<-rbinom(n,1,1/(1+exp(-(cbind(1,x1))%*%c(a1,a2))))

## Generate the survival time

uni<-runif(n, 0, 1)
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## Suppose the survival time follow Weibull distribution

time<-1/(0.13)*log(1-(0.13*log(uni))/(0.0035*

exp(b1*x1+b2*z1+b3*z2+b4*z3+lambda*u)))

## Defined the different censor rate

limit<-0

repeat{

cens.t<- runif(n,0, limit)

dur<- pmin(time,cens.t)

event <- (dur==time)*1

limit<-limit+0.01

if (1-sum(event)/n<=csr){

break

}

}

x1.tilde<-rbinom(n.tilde, 1, 0.4)

z1.tilde<-rbinom(n.tilde, 1, 0.08)

z2.tilde<-rbinom(n.tilde, 1, 0.24)

#z3<-rbinom(n, 1, 0.11)

z3.tilde<-rnorm(n.tilde, mean=61, sd=4)

## connor(1996) dnr -1.81 and -0.76

u.tilde<-rbinom(n.tilde,1,1/(1+exp(-(cbind(1,x1.tilde))%*%c(a1,a2))))

x0<-c( table(u.tilde, x1.tilde)[1,1]+table(u.tilde, x1.tilde)[2,1],

table(u.tilde, x1.tilde)[1,2]+table(u.tilde, x1.tilde)[2,2])
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w10<-c(table(u.tilde, x1.tilde)[2,1], table(u.tilde, x1.tilde)[2,2])

x10<-c(0,1)

quan<-quantile(dur,seq(0,1,length=J+1))

a<-rep(0,J+1)

for(t in 2:J){

a[t]<-quan[t]

}

a[J+1]<-100*quan[J+1] ## The last interval should be infinite

d<-array(0, dim=c(n,J))

for(h in 1:n){

for (k in 1:J){

d[h,k]<-event[h]*((dur[h]-a[k])>=0)*((a[k+1]-dur[h])>0)

}

}

data<-list(n=n,J=J,d=d, dur=dur, a=a, z1=z1,z2=z2,x1=x1, z3=z3,

x0=x0, w10=w10, x10=x10)

parameters<-c("beta", "eta", "lambda")

inits1<-list(beta=c(rnorm(4,0,1)),lam=c(rgamma(J,1,2)),

eta=c(rnorm(2,0,1)), lambda=rnorm(1))

inits<-list(inits1)

ss.sim<-jags.model(file="~/diss/graph/final/exds_in.txt",

data=data, inits=inits, n.chains =1, n.adapt = 200)

burn.in<-7000
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samps <- coda.samples(ss.sim, parameters, thin=10, n.iter = 20000)

ss.sim<-summary(window(samps,start = burn.in))

ave.beta1[i] = ss.sim$statistics[1, 1]

coverage.beta1[i]<-(b1 >= ss.sim$quantiles[1,1])&

(b1 <= ss.sim$quantiles[1,5])

length.beta1[i] = ss.sim$quantiles[1,5]-ss.sim$quantiles[1,1]

b1ub[i]<-ss.sim$quantiles[1,5]

b1lb[i]<-ss.sim$quantiles[1,1]

ave.beta2[i] = ss.sim$statistics[2, 1]

coverage.beta2[i]<-(b2 >= ss.sim$quantiles[2,1])&

(b2 <= ss.sim$quantiles[2,5])

length.beta2[i] = ss.sim$quantiles[2,5]-ss.sim$quantiles[2,1]

ave.beta3[i] = ss.sim$statistics[3, 1]

coverage.beta3[i]<-(b3 >= ss.sim$quantiles[3,1])&

(b3 <= ss.sim$quantiles[3,5])

length.beta3[i] = ss.sim$quantiles[3,5]-ss.sim$quantiles[3,1]

ave.beta4[i] = ss.sim$statistics[4, 1]

coverage.beta4[i]<-(b4 >= ss.sim$quantiles[4,1])&

(b4 <= ss.sim$quantiles[4,5])

length.beta4[i] = ss.sim$quantiles[4,5]-ss.sim$quantiles[4,1]

ave.eta1[i] = ss.sim$statistics[5, 1]
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coverage.eta1[i]<-(a1 >= ss.sim$quantiles[5,1])&

(a1 <= ss.sim$quantiles[5,5])

length.eta1[i] = ss.sim$quantiles[5,5]-ss.sim$quantiles[5,1]

ave.eta2[i] = ss.sim$statistics[6, 1]

coverage.eta2[i]<-(a2 >= ss.sim$quantiles[6,1])&

(a2 <= ss.sim$quantiles[6,5])

length.eta2[i] <-ss.sim$quantiles[6,5]-ss.sim$quantiles[6,1]

ave.lambda[i]<-ss.sim$statistics[7, 1]

coverage.lambda[i]<-(lambda >= ss.sim$quantiles[7,1])&

(lambda <= ss.sim$quantiles[7,5])

length.lambda[i]<-ss.sim$quantiles[7,5]-ss.sim$quantiles[7,1]

## Censored rate

cens.rate[i]<-round(1-sum(event)/n, 2)

}

return(cbind(ave.beta1,coverage.beta1,length.beta1,

ave.beta2,coverage.beta2,length.beta2,

ave.beta3,coverage.beta3,length.beta3,

ave.beta4,coverage.beta4,length.beta4,

ave.eta1, coverage.eta1, length.eta1,

ave.eta2, coverage.eta2, length.eta2,

ave.lambda, coverage.lambda, length.lambda,

b1lb, b1ub, cens.rate))

}

cs<-c(0.31, 0.61, 0.91)

115



res<-array(0, dim=c(length(cs),24))

ptm <- proc.time()

for (i in 1:length(cs)){

## Call the self-defined function

res[i,]<-colMeans(exds(40,1000,100,5,-0.3,-1,0.3,0.005, 1.4 ,

-1.3, -1.6, cs[i],104))

}

proc.time() - ptm

## External validation with binary unmeasured confounder

## This is jags code

model{

for(i in 1:n){

for (k in 1:J){

d[i,k]~dpois(delta[i,k])

delta[i,k]<-((min(dur[i],a[k+1])-a[k])*step(dur[i]-a[k]))*lam[k]*

exp(beta[1]*x1[i]+beta[2]*z1[i]+beta[3]*z2[i]+beta[4]*z3[i]

+lambda*u[i])

}

u[i]~dbern(pu[i])

logit(pu[i])<-eta[1]+eta[2]*x1[i]

}

for(j in 1:2){

w10[j]~dbin(pu.tilde[j], x0[j])

logit(pu.tilde[j])<-eta[1]+eta[2]*x10[j]
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}

# informative prior

for(k in 1:J){lam[k]~dgamma(0.01,0.01)}

for(l in 1:4){beta[l]~dnorm(0,0.1)}

for(l in 1:2){eta[l]~dnorm(0,0.1)}

lambda~dnorm(0, 0.1)

}

B.5 Internal Validation with Binary Unmeasured Confounders

##############################################################

## Internal validation with binary unmeasured confounder

## n=1000; m=100;

## Censoring rates: 30%, 60% and 90%

##############################################################

library("rjags")

## Interal and binary unmeasured confounder

inbin<-function(m, n, n.tilde, J, b1, b2,b3, b4, lambda,a1,a2,

csr, seed){

set.seed(seed)

# vectors to store results

ave.beta1 = rep(NA, m)

coverage.beta1 = rep(NA,m)

length.beta1 = rep(NA,m)

## Keep the 95% of beta1, which is treatment exposure

b1lb<-rep(NA, m) # Low bound of beta1

b1ub<-rep(NA, m) # Upper bound of beta1
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ave.beta2 = rep(NA, m)

coverage.beta2 = rep(NA,m)

length.beta2 = rep(NA,m)

ave.beta3 = rep(NA, m)

coverage.beta3 = rep(NA,m)

length.beta3 = rep(NA,m)

ave.beta4 = rep(NA, m)

coverage.beta4 = rep(NA,m)

length.beta4 = rep(NA,m)

ave.lambda = rep(NA, m)

coverage.lambda = rep(NA,m)

length.lambda = rep(NA,m)

ave.eta1 = rep(NA, m)

coverage.eta1 = rep(NA,m)

length.eta1 = rep(NA,m)

ave.eta2 = rep(NA, m)

coverage.eta2 = rep(NA,m)

length.eta2 = rep(NA,m)

cens.rate=rep(NA, m)
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# hazard of censoring

for(i in 1:m){

x1<-rbinom(n, 1, 0.4)

z1<-rbinom(n, 1, 0.08)

z2<-rbinom(n, 1, 0.24)

z3<-rnorm(n, mean=61, sd=4)

## Data is similar to Connors(1996)

u<-rbinom(n,1,1/(1+exp(-(cbind(1,x1))%*%c(a1,a2))))

# Generate the survival time

uni<-runif(n, 0, 1)

## Suppose the survival time follow Weibull distribution

time<-1/(0.13)*log(1-(0.13*log(uni))/(0.0035*

exp(b1*x1+b2*z1+b3*z2+b4*z3+lambda*u)))

## Defined the different censor rate

limit<-0

repeat{

cens.t<- runif(n,0, limit)

dur<- pmin(time,cens.t)

event <- (dur==time)*1

limit<-limit+0.01

if (1-sum(event)/n<=csr){

break

}
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}

x1.tilde<-rbinom(n.tilde, 1, 0.4)

z1.tilde<-rbinom(n.tilde, 1, 0.08)

z2.tilde<-rbinom(n.tilde, 1, 0.24)

z3.tilde<-rnorm(n.tilde, mean=61, sd=4)

u.tilde<-rbinom(n.tilde,1,1/(1+exp(-(cbind(1,x1.tilde))%*%c(a1,a2))))

uni.tilde<-runif(n.tilde, 0, 1)

## Suppose the survival time follow Weibull distribution

time.tilde<-1/(0.13)*log(1-(0.13*log(uni.tilde))/(0.0035*

exp(b1*x1.tilde+b2*z1.tilde+b3*z2.tilde+b4*z3.tilde+lambda*u.tilde)))

limit<-0

repeat{

cens.tilde<- runif(n.tilde,0, limit)

dur.tilde<- pmin(time.tilde,cens.tilde)

event.tilde <- (dur.tilde==time.tilde)*1

limit<-limit+0.01

if (1-sum(event.tilde)/n.tilde<=csr){

break

}

}

## creating the boundaries of

quan<-quantile(dur,seq(0,1,length=J+1))
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a<-rep(0,J+1)

for(t in 2:J){

a[t]<-quan[t]

}

a[1]<-0

a[J+1]<-100*quan[J+1]

## The event in different intervals

d<-array(0, dim=c(n,J))

for(h in 1:n){

for (k in 1:J){

d[h,k]<-event[h]*((dur[h]-a[k])>=0)*((a[k+1]-dur[h])>0)

}

}

d.tilde<-array(0, dim=c(n.tilde,J))

for(h in 1:n.tilde){

for (k in 1:J){

d.tilde[h,k]<-event.tilde[h]*((dur.tilde[h]-

a[k])>=0)*((a[k+1]-dur.tilde[h])>0)

}

}

## The last interval should be infinite

parameters<-c( "beta", "eta", "lambda")

data<-list( n=n,J=J,d=d, dur=dur, a=a, z1=z1,z2=z2,x1=x1, z3=z3,

u.tilde=u.tilde, n.tilde=n.tilde, x1.tilde=x1.tilde,

z1.tilde=z1.tilde,z2.tilde=z2.tilde, z3.tilde=z3.tilde,
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dur.tilde=dur.tilde, d.tilde=d.tilde)

inits<-list(beta=c(rnorm(4,0,1)),lam=c(rgamma(J,1,2)), eta=c(rnorm(2,0,1)),

lambda=rnorm(1))

inits<-list(inits)

ss.sim<-jags.model(file="~/diss/graph/final/inds_in.txt",data=data,

inits=inits, n.chains =1, n.adapt = 200)

burn.in<-7000

samps <- coda.samples(ss.sim, parameters, n.iter = 20000)

ss.sim<-summary(window(samps, thin=10,start = burn.in))

ave.beta1[i] = ss.sim$statistics[1, 1]

coverage.beta1[i]<-(b1 >= ss.sim$quantiles[1,1])&

(b1 <= ss.sim$quantiles[1,5])

length.beta1[i] = ss.sim$quantiles[1,5]-ss.sim$quantiles[1,1]

b1ub[i]<-ss.sim$quantiles[1,5]

b1lb[i]<-ss.sim$quantiles[1,1]

ave.beta2[i] = ss.sim$statistics[2, 1]

coverage.beta2[i]<-(b2 >= ss.sim$quantiles[2,1])&

(b2 <= ss.sim$quantiles[2,5])

length.beta2[i] = ss.sim$quantiles[2,5]-ss.sim$quantiles[2,1]

ave.beta3[i] = ss.sim$statistics[3, 1]

coverage.beta3[i]<-(b3 >= ss.sim$quantiles[3,1])&

(b3 <= ss.sim$quantiles[3,5])

length.beta3[i] = ss.sim$quantiles[3,5]-ss.sim$quantiles[3,1]
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ave.beta4[i] = ss.sim$statistics[4, 1]

coverage.beta4[i]<-(b4 >= ss.sim$quantiles[4,1])&

(b4 <= ss.sim$quantiles[4,5])

length.beta4[i] = ss.sim$quantiles[4,5]-ss.sim$quantiles[4,1]

ave.eta1[i] = ss.sim$statistics[5, 1]

coverage.eta1[i]<-(a1 >= ss.sim$quantiles[5,1])&

(a1 <= ss.sim$quantiles[5,5])

length.eta1[i] = ss.sim$quantiles[5,5]-ss.sim$quantiles[5,1]

ave.eta2[i] = ss.sim$statistics[6, 1]

coverage.eta2[i]<-(a2 >= ss.sim$quantiles[6,1])&

(a2 <= ss.sim$quantiles[6,5])

length.eta2[i] <-ss.sim$quantiles[6,5]-ss.sim$quantiles[6,1]

ave.lambda[i]<-ss.sim$statistics[7, 1]

coverage.lambda[i]<-(lambda >= ss.sim$quantiles[7,1])&

(lambda <= ss.sim$quantiles[7,5])

length.lambda[i]<-ss.sim$quantiles[7,5]-ss.sim$quantiles[7,1]

cens.rate[i]<-round(1-sum(event)/n, 2)

}

return(cbind(ave.beta1,coverage.beta1,length.beta1,

ave.beta2,coverage.beta2,length.beta2,

ave.beta3,coverage.beta3,length.beta3,

ave.beta4,coverage.beta4,length.beta4,
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ave.eta1, coverage.eta1, length.eta1,

ave.eta2, coverage.eta2, length.eta2,

ave.lambda, coverage.lambda, length.lambda,

b1lb, b1ub, cens.rate))

}

cs<-c(0.31, 0.61, 0.91)

res<-array(0, dim=c(length(cs),24))

ptm <- proc.time()

for (i in 1:length(cs)){

res[i,]<-colMeans(inbin(40,1000,100,5,-0.3,-1,0.3,0.005, 1.4 ,

-1.3, -1.6, cs[i],104))

}

proc.time() - ptm

##############################################################

## Binary unmeasured confounder

## This is jags code

##############################################################

## Model the main study data

model

{

for(i in 1:n){

for (k in 1:J){

d[i,k]~dpois(mu[i,k])

mu[i,k]<-(min(dur[i],a[k+1])-a[k])*step(dur[i]-a[k])*

lam[k]*exp(beta[1]*x1[i]+beta[2]*z1[i]+beta[3]*z2[i]+beta[4]*z3[i]

+lambda*u[i])

}
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u[i]~dbern(pu[i])

logit(pu[i])<-eta[1]+eta[2]*x1[i]

}

## Modeling validation data

for(j in 1:n.tilde){

for (m in 1:J){

d.tilde[j,m]~dpois(mu.tilde[j,m])

mu.tilde[j,m]<-(min(dur.tilde[j],a[m+1])-a[m])*

step(dur.tilde[j]-a[m])*lam[m]*

exp(beta[1]*x1.tilde[j]+beta[2]*z1.tilde[j]+beta[3]*

z2.tilde[j]+beta[4]*z3.tilde[j]+lambda*u.tilde[j])

}

u.tilde[j]~dbern(pu.tilde[j])

logit(pu.tilde[j])<-eta[1]+eta[2]*x1.tilde[j]

}

# prior information

for(k in 1:J){lam[k]~dgamma(0.01,0.01)}

for(l in 1:4){beta[l]~dnorm(0,0.1)}

for(l in 1:2){eta[l]~dnorm(0,0.1)}

lambda~dnorm(0,0.1)

}

B.6 Naive Model with Binary Unmeasured Confounders

#######################################################

## Naive model, ignoring binary unmeasured confounder

## n=1000; m=100;
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## Censoring rates: 30%, 60%, 90%

#######################################################

library(rjags)

nds<-function(m, n, J, b1, b2,b3,b4, lambda,a1,a2,cs,seed){

set.seed(seed)

## Vectors to store results

ave.beta1 = rep(NA, m)

coverage.beta1 = rep(NA,m)

length.beta1 = rep(NA,m)

## Keep the 95% of beta1, which is treatment exposure

b1lb<-rep(NA, m) # Low bound of beta1

b1ub<-rep(NA, m) # Upper bound of beta1

ave.beta2 = rep(NA, m)

coverage.beta2 = rep(NA,m)

length.beta2 = rep(NA,m)

ave.beta3 = rep(NA, m)

coverage.beta3 = rep(NA,m)

length.beta3 = rep(NA,m)

ave.beta4 = rep(NA, m)

coverage.beta4 = rep(NA,m)

length.beta4 = rep(NA,m)

cens.rate<-rep(NA, m)
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for (i in 1:m){

x1<-rbinom(n, 1, 0.4)

z1<-rbinom(n, 1, 0.08)

z2<-rbinom(n, 1, 0.24)

z3<-rnorm(n, mean=61, sd=4)

## Data is similar to Connors(1996)

u<-rbinom(n,1,1/(1+exp(-(cbind(1,x1))%*%c(a1,a2))))

# Generate the survival time

uni<-runif(n, 0, 1)

## Suppose the survival time follow Weibull distribution

time<-1/(0.13)*log(1-(0.13*log(uni))/(0.0035*

exp(b1*x1+b2*z1+b3*z2+b4*z3+lambda*u)))

## Defined the different censor rate

limit<-0

repeat{

cens.t<- runif(n,0, limit)

dur<- pmin(time,cens.t)

event <- (dur==time)*1

limit<-limit+0.01

if (1-sum(event)/n<=cs){

break

}

}

## Data driven intervals

127



quan<-quantile(dur,seq(0,1,length=J+1))

a<-rep(0,J+1)

for(t in 2:J){

a[t]<-quan[t]

}

a[J+1]<-100*quan[J+1]

## Observed data

d<-array(0, dim=c(n,J))

for(h in 1:n){

for (k in 1:J){

d[h,k]<-event[h]*((dur[h]-a[k])>=0)*((a[k+1]-dur[h])>0)

}

}

data<-list(n=n,J=J,d=d, dur=dur,a=a,x1=x1, z1=z1,z2=z2, z3=z3)

parameters<-c("beta")

inits<-list(beta=c(rnorm(4,0,1)), lam=c(rgamma(J,1,2)))

inits<-list(inits)

jag.sim<-jags.model(file="~/diss/graph/final/nds_in.txt",data=data,

inits=inits,n.chains =1, n.adapt = 200)

burn.in<-7000

samps <- coda.samples(jag.sim, parameters, n.iter = 20000)

ss.sim<-summary(window(samps, start = burn.in))

ave.beta1[i] = ss.sim$statistics[1, 1]

coverage.beta1[i]<-(b1 >= ss.sim$quantiles[1,1])&

(b1 <= ss.sim$quantiles[1,5])
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length.beta1[i] = ss.sim$quantiles[1,5]-ss.sim$quantiles[1,1]

b1ub[i]<-ss.sim$quantiles[1,5]

b1lb[i]<-ss.sim$quantiles[1,1]

ave.beta2[i] = ss.sim$statistics[2, 1]

coverage.beta2[i]<-(b2 >= ss.sim$quantiles[2,1])&

(b2 <= ss.sim$quantiles[2,5])

length.beta2[i] = ss.sim$quantiles[2,5]-ss.sim$quantiles[2,1]

ave.beta3[i] = ss.sim$statistics[3, 1]

coverage.beta3[i]<-(b3 >= ss.sim$quantiles[3,1])&

(b3 <= ss.sim$quantiles[3,5])

length.beta3[i] = ss.sim$quantiles[3,5]-ss.sim$quantiles[3,1]

ave.beta4[i] = ss.sim$statistics[4, 1]

coverage.beta4[i]<-(b4 >= ss.sim$quantiles[4,1])&

(b4 <= ss.sim$quantiles[4,5])

length.beta4[i] = ss.sim$quantiles[4,5]-ss.sim$quantiles[4,1]

## Censored rate

cens.rate[i]<-round(1-sum(event)/n, 2)

}

return(cbind(ave.beta1,coverage.beta1,length.beta1,

ave.beta2,coverage.beta2,length.beta2,

ave.beta3,coverage.beta3,length.beta3,

ave.beta4,coverage.beta4,length.beta4,

b1lb, b1ub, cens.rate))
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}

cs<-c(0.31, 0.61, 0.91)

res<-array(0, dim=c(length(cs),15))

ptm <- proc.time()

for (i in 1:length(cs)){

res[i,]<-colMeans(nds(40,1000,5,-0.3,-1,0.3,0.005, 1.4 ,

-1.3, -1.6, cs[i],104))

}

proc.time() - ptm

########################################################

## Naive model, ignoring binary unmeasured confounder

## This is jags code

## Model the main study data

model

{

for(i in 1:n){

for (k in 1:J){

d[i,k]~dpois(mu[i,k])

mu[i,k]<-(min(dur[i],a[k+1])-a[k])*step(dur[i]-a[k])*lam[k]*

exp(beta[1]*x1[i]+beta[2]*z1[i]+beta[3]*z2[i]+beta[4]*z3[i])

}

}

## Modeling validation data

for(k in 1:J){lam[k]~dgamma(0.01,0.01)}

for(l in 1:4){beta[l]~dnorm(0,0.1)}

}
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