
ABSTRACT

Bayesian Models for Discrete Censored Sampling and Dose Finding

Jessica E. Pruszynski, Ph.D.

Chairperson: John W. Seaman, Jr., Ph.D.

We first consider the problem of discrete censored sampling. Censored bino-

mial data may lead to irregular likelihood functions and problems with statistical

inference. We consider a Bayesian approach to inference for censored binomial prob-

lems and compare it to non-Bayesian methods. We include examples and a simu-

lation study in which we compare point estimation, interval coverage, and interval

width for Bayesian and non-Bayesian methods.

The continual reassessment method (CRM) is a Bayesian design often used in

Phase I cancer clinical trials. It models the toxicity response of the patient as a func-

tion of administered dose using a model that is updated as data accrues. The CRM

does not take into consideration the relationship between the toxicity response and

the proportion of the administered drug that is absorbed by targeted tissue. Not

accounting for this discrepancy can yield misleading conclusions about the maxi-

mum tolerated dose to be used in subsequent Phase II trials. We will examine,

through simulation, the effect that disregarding the level of bioavailability has on

the performance of the CRM.
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CHAPTER ONE

Introduction

In this dissertation, we investigate Bayesian models for two different problems.

We propose models for interval censored counts and compare our approach with a

maximum likelihood method. We then consider the problem of sub-bioavailability

and its effect on the performance of the continual reassessment method (CRM), a

Bayesian dose finding design.

In Chapters 2 and 3, we consider the problem of discrete censored sampling.

When we have precise count data, point and interval estimates are easily obtained.

However, when we only have censored count data, the derivation of the point and

interval estimates becomes more complex. There are three possibilities for the cen-

sored likelihood: right-censored, left-censored, and interval-censored. The only one

of these possibilities that yields a regular likelihood is the interval-censored case.

Because there are problems in interpreting the estimates associated with the irreg-

ular likelihood, we focus most of our work on the interval-censored likelihood.

Focusing mainly on the binomial distribution, we calculate the maximum like-

lihood estimates and likelihood intervals associated with the censored likelihood. We

also derive the posterior and marginal distributions and obtain Bayesian point and

interval estimates for the binomial distribution. We also consider several examples

using the Poisson and negative binomial distributions.

After deriving these point and interval estimates, we conduct a simulation

experiment in order to compare the performance of the frequentist and Bayesian

estimates for the interval-censored binomial likelihood. In our simulation, we cal-

culate these estimates and compare their performance across different values of the

parameter, different Bernoulli sample sizes, and different censoring interval widths.
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In our comparison between the two paradigms, we focus on the bias of the point

estimates and the width and coverage of the interval estimates.

In Chapter 4, we investigate how low bioavailability levels can influence the

performance of the CRM. It is generally accepted in the literature that the Bayesian

CRM outperforms the standard 3 + 3 method for dose finding. We conduct a

simulation experiment to investigate whether that remains reasonable when sub-

bioavailability is a known issue. In our comparison between the CRM and the 3 + 3

method, we specifically consider the proportion of trials where the correct dose is

selected and the number of patients assigned to each of the possible doses in a single

trial. In addition to comparing the CRM and the 3 + 3 method, we also conduct a

simulation experiment to determine how different models of the CRM perform under

low bioavailability conditions.

It has been shown that there is a maximum dose that patients can absorb into

the body before the system is completely saturated. We consider how the knowledge

of this maximum absorbable dose could affect the performance of the CRM. If the

knowledge of this dose can significantly shorten the duration of a Phase I trial, in

which the CRM is generally used, then more effort should be made into investigating

this prior to the start of the trial.
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CHAPTER TWO

The Interval Censoring Problem for the Binomial, Negative Binomial, and

Poisson Distributions

In many clinical trials, study participants are generally evaluated for the event

of interest at the time of their enrollment in the trial and again at several subsequent

scheduled times. If the clinical investigators can only monitor the event of interest

at these scheduled times, being able to estimate the event incidence per unit of time

becomes a central issue in the trial. For example, in an oncology clinical trial, we

might schedule patients for monthly visits in order to determine the amount of tu-

mor shrinkage every month. As long as the patients in the trial do not miss their

regularly scheduled appointments, we are able to record any changes in tumor size

that took place over the last month.

However, patients missing scheduled appointments is a typical problem in

many clinical trials. As a result, interval-censored event-time data will arise in

trials where clinical investigators are only able to monitor the event of interest at

irregular times. When there is this interval-censored data, it becomes much more

difficult to estimate the event incidence in the desired time period.

Interval censoring was a problem in AIDS Clinical Trials Groups Study 181,

as discussed in Shardell et al. (2007). This trial was a natural history study of

cytomegalovirus (CMV) infection in the population of HIV-infected patients. A lab-

oratory test was scheduled every 12 weeks to determine the onset of CMV shedding

in the blood. Several of the trial participants were monitored irregularly due to

missed or rescheduled appointments. As a result of these missed appointments, the

shedding times were only known within an interval of adjacent months as depicted

in Figure 2.1.

3



Figure 2.1: Interval Censored Data in Clinical Trials

In this figure, there are three distinct time periods: the time period before

shedding occurs, the time period in which shedding occurs, and the time period

after shedding occurs. Because the patient missed appointments, an exact time

period for the shedding could not be determined. The goal of the study discussed in

Shardell et al. (2007) was to estimate the distribution of time to CMV shedding in

blood. This is a well-studied problem in survival analysis. See, for example, Klein

and Moeschberger (2003).

In this dissertation we are also interested in interval censoring but for counts

instead of times. For example, suppose a drug is well known to to produce dizziness

as a side effect. In a Phase IV study, patients taking this drug (at a given dose) are

asked if they have experienced dizziness in the last week. In the survey instrument,

respondents can mark one of “yes”, “no”, or “not sure” in response to this question.

Suppose, in a sample of 100 respondents, we obtain the counts 50, 40, and 10 for

“yes”, “no”, and “not sure,” respectively. Then one could model the results as a

binomial random variable with a value between 50 and 60. Alternatively, patients

may be asked the number of days they experienced dizziness within two hours of

taking the drug. Some may be able to answer precisely, such as four days, while

4



others can only provide an interval, such as 2 to 4 days. How can such information

be used to estimate the probability of this adverse event? Chapters 2 and 3 of this

dissertation concern problems of this kind.

2.1 The Censored Binomial Distribution

Suppose x ∼ binomial (n, θ) where n is the Bernoulli sample size and θ is

the parameter we are interested in estimating. The likelihood function for this

distribution, given x, is

L (θ|n, x) =

(
n

x

)
θx (1− θ)n−x .

If we observe precise values of x, point and interval estimates can be easily obtained

using familiar calculations.

Now suppose that we know the value of the Bernoulli sample size, n, but only

know that x falls in the interval [j, k], where, with probability one, j ≥ 0 and k ≤ n.

That is, instead of observing x directly, we can only observe j and k. Thus, the

likelihood becomes

L (θ|n, j, k) =
k∑
x=j

(
n

x

)
θx (1− θ)n−x . (2.1)

The likelihood in (2.1) should not be confused with that of a binomial sample.

Here the data point consists of j and k and corresponds to an unseen binomial count

from a Bernoulli sample of size n.

Pawitan (2001) and Frey and Marrero (2008) consider the censored binomial

count problem. Both take a maximum likelihood approach. In this chapter and

the next, we consider both maximum likelihood and Bayesian solutions. In this

chapter, we develop the basic models and study their properties. In Section 2.2, we

study the regularity of the censored likelihood. In Section 2.3, we consider statistical

inference in the frequentist paradigm and derive the maximum likelihood estimator

and the likelihood intervals. In Section 2.4, we consider statistical inference in the

Bayesian paradigm and derive the posterior and marginal distributions, the posterior

5



moments, and the credible intervals. In Section 2.5, we look at point and interval

estimates for the censored negative binomial and Poisson distributions. In Chapter

3, we conduct simulation experiments to study the behavior of the censored binomial

model.

2.2 Regularity of the Censored Likelihood

There are three different types of likelihoods we can potentially encounter

when working with censored binomial counts. There can either be an upper bound

where we know x ≤ k, a lower bound where we know x ≥ j, or an interval where

we know j ≤ x ≤ k, each with probability one. We first consider the case of the

upper bound, and compare its likelihood function to a likelihood function where the

precise value of x is known.

Pawitan (2001) cites an example where 100 seeds were planted, and it is known

only that x ≤ 10 seeds germinated; that is we do not know the exact number of

seeds that germinated. From (2.1) the likelihood is

L (θ|100, 0, 10) = P (x ≤ 10)

=
10∑
x=0

(
100

x

)
θx (1− θ)100−x .

Suppose another 100 seeds are planted, and we know that exactly 5 seeds germinated.

In this case the likelihood is

L (θ|x = 5) = P (x = 5)

=

(
100

5

)
θ5(1− θ)100−5.

We compare the two likelihood functions in Figure 2.2. As Pawitan notes (2001, p.

40) the case for x < 11 is not regular and leads to difficulties in the interpretation

of pure likelihood intervals. The exact case poses no such problems.

6



Figure 2.2: Comparing the Censored Likelihood to the Precise Likelihood

As a further illustration, suppose we have a Bernoulli sample of n = 5. In

Figure 2.3 we compare the likelihoods for observing x ≤ 2, x ≥ 3, and 1 < x < 4.

Note that the first two are not regular, and the last is.

In general, when the censoring interval includes 0, the likelihood for θ will be

decreasing, and when it contains n, the likelihood will be decreasing. This is evident

from (2.1) since for fixed θ, the function L(θ|n, j, k) is the probability that a random

variable, x, distributed binomial(n, θ), is in the interval [j, k]. Viewed in this way,

P (0 ≤ x ≤ k|θ) decreases as θ increases for fixed k < n. Similarly, for fixed j > 0,

P (j ≤ x ≤ n|θ) will increase as θ increases.

In what follows, we will often assume that the observed value, x, is such that

0 < j ≤ x ≤ k < n, as it is only in that case that the likelihood analysis yields

reasonable interval estimates; i.e. interval estimates that admit an interpretation

from the frequentist point of view. As we shall see, the Bayesian analysis is not

constrained in this way.

7



Figure 2.3: Comparing the Three Censoring Scenarios

2.3 Statistical Inference in the Frequentist Paradigm

We now consider the derivation of both point and interval estimates from the

frequentist perspective. We begin with the maximum likelihood estimator derived

in Frey and Marrero (2008).

2.3.1 Maximum Likelihood Estimation

We consider the likelihood function in (2.1). In the case where j = 0 and

k < n, then the MLE, θ̂, is 0 since it is the only solution that satisfies L(θ̂|n, j, k) = 1.

Alternatively, if j > 0 and k = n, then θ̂ = 1. Therefore, Frey and Marrero (2008)

focus on the more interesting case where 0 < j < k < n.

Using the well-known relationship between the binomial and beta distributions

(David and Nagaraja, 2003), Frey and Marrero (2008) proceed as follows. We can

8



rewrite the likelihood as

L (θ|n, j, k) = Ip(j, n− j + 1)− Ip(k + 1, n− k)

=

∫ θ

0

n!

(j − 1)!(n− j)!
yj−1(1− y)n−jdy

−
∫ θ

0

n!

k!(n− k − 1)!
yk(1− y)n−k−1,

where Ip represents the incomplete beta function,

Ip(a, b) =
1

B(a, b)

∫ p

0

ta−1(1− t)b−1dt,

and where B(a, b) is the beta function.

Note that the likelihood above is the difference of two incomplete beta func-

tions. Differentiating, we obtain

dL

dθ
=

n!

(j − 1)!(n− j!)
θj−1(1− θ)n−j − n!

k!(n− k − 1!)
θk(1− θ)n−k−1.

After setting dL
dθ

= 0 and factoring the derivative, we find that θ̂ must satisfy

n!θ̂j−1
(

1− θ̂
)n−k−1


(

1− θ̂
)k−j+1

(j − 1)!(n− j)!
− θ̂k−j+1

k!(n− k − 1)!

 = 0. (2.2)

There are three possible solutions to (2.2). Either θ̂ = 0, θ̂ = 1, or θ̂ satisfies(
1− θ̂

)k−j+1

(j − 1)!(n− j)!
=

θ̂k−j+1

k!(n− k − 1)!
.

Since we have three possible solutions, we consider which one maximizes the likeli-

hood. We find that θ̂ = 0 and θ̂ = 1 satisfy L(θ̂|n, j, k) = 0 and thus minimize the

likelihood. Therefore, θ̂ must satisfy(
θ̂

1− θ̂

)k−j+1

=
k!(n− k − 1)!

(j − 1)!(n− j)!
.

9



This implies that

θ̂

1− θ̂
=

(
k!(n− k − 1)!

(j − 1)!(n− j)!

)1/(k−j+1)

=

(
j(j + 1) · · · k

(n− j)(n− j + 1) · · · (n− k)

)1/(k−j+1)

=

{(
j

n− j

)(
j + 1

n− j − 1

)
· · ·
(

k

n− k

)}1/(k−j+1)

.

After taking the natural logarithm of both sides, we find that

log

(
θ̂

1− θ̂

)
=

1

k − j + 1

k∑
i=j

log
i/n

1− i
n

. (2.3)

We now consider an example. Let n = 20 and suppose x is known to be in the

interval [1, 3]. The likelihood function can be seen in Figure 2.4.

Figure 2.4: Likelihood Function for n = 20 and 1 ≤ X ≤ 3

Using Equation 2.3,

log
θ̂

1− θ̂
=

1

3− 1 + 1

[
log

1/20

19/20
+ log

2/20

18/20
+ log

3/20

17/20

]
= −2.292,

10



which implies that

θ̂ =
exp(−2.292)

1 + exp(−2.292)

= 0.092. (2.4)

2.3.2 Likelihood Intervals

We are often interested in communicating statistical information using only

the likelihood function. If this likelihood function is regular, then presenting the

MLE and its associated standard error is often sufficient (Pawitan, 2001). However,

if the likelihood is not reasonably regular, this may be infeasible since the standard

error may not be well defined.

In the cases where the likelihood is not regular, we can construct interval

estimates directly from the likelihood function. This method is due to R.A. Fisher

- see Pawitan(2001, p. 35) and references therein.

Suppose the random vector x = (x1, x2, . . . , xn) has independent components

with likelihood L(θ|x) where θ = (θ1, θ2, . . . , θp) ∈ Θ. Let θ̂ be a unique MLE for θ

given x. For a fixed constant c, the likelihood interval is defined as{
θ ∈ Θ :

L(θ|x)

L(θ̂|x)
> c

}
. (2.5)

Choosing the cutoff value, c, becomes a central question when utilizing likeli-

hood intervals. In his development of the method, Fisher leaves the selection of the

cutoff point open, but does suggest that parameter values with less than 1/15 (or

6.7%) likelihood should be considered suspicious. However, this qualification is not

appropriate for every situation. Probabilistic calibration, with a frequentist inter-

pretation, is the most commonly used means of determining the value of c (Pawitan,

2001). This approach requires that the likelihood be approximately regular.

11



Suppose, for example, the vector of observations, x, constitutes an IID sample

from a N (θ, σ2) distribution. It can be shown that

log
L (θ|x)

L(θ̂|x)
= − n

2σ2
(x̄− θ)2, (2.6)

where θ̂ = x̄, the sample mean. We know x̄ ∼ N (θ, σ2/n). Therefore,

n

σ2
(x̄− θ)2 ∼ χ2

1. (2.7)

Multiplying both sides of (2.6) by −2 gives us Wilk’s likelihood ratio statistic:

W ≡ 2 log
L
(
θ̂|x
)

L (θ|x)
∼ χ2

1. (2.8)

The result in (2.8) is, of course, exact for normal sampling. It can be used

when sampling from other distributions as long as the corresponding likelihood is

approximately regular. This allows a method of confidence interval calibration for a

wide range of data models.

Thus, suppose we have an approximately regular likelihood, L(θ|x), for a pos-

sibly vector-valued parameter, θ, and based on a data vector, x. Suppose θ̂ is a

unique MLE for θ. We have, for fixed θ,

P

(
L(θ|x)

L(θ̂|x)
> c

)
≈ P

(
2 log

L(θ̂|x)

L(θ|x)
< −2 log c

)

= P
(
χ2

1 < −2 log c
)
. (2.9)

Therefore, we can use (2.9) to choose c. For some 0 < α < 1, we have

c = exp

(
−1

2
χ2

1,1−α

)
, (2.10)

where χ2
1,1−α is the 100(1− α) percentile of χ2

1. Therefore, we have

P

(
L(θ|x)

L(θ̂|x)
> c

)
≈ P

(
χ2

1 < χ2
1,1−α

)
= 1− α.
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By using this method to select c, the likelihood interval is an approximate 100(1−

α)% confidence interval for θ. For example, if α = 0.05, (2.10) will yield c = 0.15.

It is important to note that when we use this methodology to calibrate the

likelihood, we are no longer using pure likelihood inference. Because we calibrated

the likelihood using the sampling distribution of θ̂, we are now using inference based

on the repeated sampling paradigm.

If the likelihood, L(θ|x) is not regular, then we interpret the interval as a pure

likelihood interval. If this is the case, we are unable to calibrate the likelihood and

characterize the uncertainty associated with the interval estimate. It is because of

this that we will only consider the interval-censored binomial likelihood function

when we construct likelihood intervals. The right and left censored binomial like-

lihoods are clearly irregular, and, for the purposes of the dissertation, we will only

consider the case of a regular likelihood when using non-Bayesian methods.

As an illustration, we now construct a likelihood interval for the scenario where

n = 20 and x ∈ [1, 3]. As we saw in Figure 2.4, the likelihood function appears to be

reasonably regular. We are interested in obtaining a 95% interval, so we set c = 0.15.

This is depicted in Figure 2.5.

The likelihood interval consists of all values of θ that satisfy

L(θ|20, 1, 3)

L(θ̂|20, 1, 3)
> c.

From (2.4), we know that θ̂ = 0.092, and using that MLE, we find that

L
(
θ̂|n = 20, j = 1, k = 3

)
= 0.749.

Therefore, the likelihood interval for this example consists of all values of θ that

satisfy ∑3
x=1

20!
x!(20−x)!

θx (1− θ)20−x

0.749
> 0.15.
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Figure 2.5: The Likelihood Function with c = 0.15

Using numerical methods, we find that the likelihood interval is (0.006, 0.297). Since

the likelihood function is regular, we can interpret this interval as we would any 95%

confidence interval.

2.4 Statistical Inference in the Bayesian Paradigm

We now propose a Bayesian solution to the censored count problem. Consider

again the likelihood

L (θ|k) =
k∑
x=j

(
n

x

)
θx (1− θ)n−x .

As we saw in Figure 2.3, this likelihood is not regular when j = 0 or k = n. In the

former case the MLE is 0 and in the latter it is 1. There is no distribution that will

give us a reasonable value for the standard error of this estimator. In addition, we

are unable to interpret any likelihood interval estimates as there is no probabilistic

foundation for calibrating the likelihood. However, we can easily derive a Bayesian

model for this case, and any other censoring interval.
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2.4.1 Derivation of the Posterior Distribution

Consider the likelihood function in (2.1) and suppose we let θ ∼ beta(a, b) be

our prior distribution. Then, the posterior distribution is

π (θ|j ≤ x ≤ k) ∝

[
k∑
x=j

(
n

x

)
θx (1− θ)n−x

]
1

B(a, b)
θa−1 (1− θ)b−1

=
1

B(a, b)

k∑
x=j

(
n

x

)
θx+a−1 (1− θ)n−x+b−1 , (2.11)

where B(a, b) is the beta function and both a and b are positive. The marginal

distribution is

m(j, k) =

∫ 1

0

1

B(a, b)

k∑
x=j

(
n

x

)
θx+a−1 (1− θ)n−x+b−1 dθ

=
1

B(a, b)

∫ 1

0

k∑
x=j

(
n

x

)
θx+a−1 (1− θ)n−x+b−1 dθ

=
1

B(a, b)

k∑
x=j

(
n

x

)∫ 1

0

θx+a−1 (1− θ)n−x+b−1 dθ

=
1

B(a, b)

k∑
x=j

(
n

x

)
B(x+ a, n− x+ b). (2.12)

2.4.2 Posterior Moment Derivation

We now derive the form of the pth moment of the posterior distribution in

(2.11). We have

E (θp|j ≤ x ≤ k) =

∫ 1

0

∑k
x=j

(
n

x

)
θpθx+a−1 (1− θ)n−x+b−1

∑k
x=j

(
n

x

)
B(x+ a, n− x+ b)

dθ

=

∫ 1

0

∑k
x=j

(
n

x

)
θx+a+p−1 (1− θ)n−x+b−1

∑k
x=j

(
n

x

)
B(x+ a, n− x+ b)

dθ

=

∑k
x=j

(
n

x

)
B(x+ a+ p, n− x+ b)

∑k
x=j

(
n

x

)
B(x+ a, n− x+ b)

. (2.13)
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Thus, the posterior mean is

E (θ|j ≤ x ≤ k) =

∑k
x=j

(
n

x

)
B(x+ a+ 1, n− x+ b)

∑b
x=a

(
n

x

)
B(x+ a, n− x+ b)

. (2.14)

The posterior variance is

V ar(θ|j ≤ x ≤ k) = E
(
θ2|x

)
− [E (θ|x)]2

=

∑k
x=j

(
n

x

)
B(x+ a+ 2, n− x+ b)

∑b
x=a

(
n

x

)
B(x+ a, n− x+ b)

−


∑k

x=j

(
n

x

)
B(x+ a+ 1, n− x+ b)

∑b
x=a

(
n

x

)
B(x+ a, n− x+ b)


2

. (2.15)

In our earlier example, where x ∈ [1, 3] and n = 20 the MLE was 0.092. If we

use a beta(1, 1) prior for θ, then the posterior mean, from (2.14), is 0.097.

As we discussed in Section 2.3, if x ∈ [0, j], the MLE will be 0, and when

x ∈ [k, n], the MLE will be 1. We consider two censoring scenarios for our next

example: x ∈ [0, 2] and x ∈ [3, 5] where n = 5. Using a beta(1, 1) prior on θ, we ex-

amine the plots of these two posterior distributions in Figure 2.6. We now calculate

the posterior means for both of these distributions using (2.14). For x ∈ [0, 2], we

find the posterior mean to be 0.286; for x ∈ [3, 5], we find the posterior mean to be

0.714. At the least, the Bayesian estimates have the virtue of not being zero or one.

We now consider examples with interval censored likelihoods and more infor-

mative priors. We investigate six different prior distributions and consider their

effect on the resulting posterior mean. Suppose we have reasonable information that

the true value of θ is around 0.25. We set the mean of the prior distribution to

be 0.25 and construct three prior distributions with standard deviations 0.05, 0.10,

and 0.20. For the second set of prior distributions, we consider the possibility that
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Figure 2.6: Posterior Distributions for x ∈ [0, 2] and x ∈ [3, 5] where θ ∼ beta(1, 1)

the true value of θ is 0.50 and construct prior distributions using the same standard

deviations as in the first three prior distributions. Using these means and standard

deviations, we obtain six beta distributions as seen in Table 2.1.

Table 2.1: Prior Distributions for Binomial Examples

Prior Distribution Prior Mean Prior SD

beta(18.5, 55.5) 0.25 0.05

beta(4.4, 13.3) 0.25 0.10

beta(0.9, 2.8) 0.25 0.20

beta(49.5, 49.5) 0.50 0.05

beta(12, 12) 0.50 0.10

beta(2.6, 2.6) 0.50 0.20
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In the following examples, we will consider the likelihood when n = 5 and x ∈ [1, 3].

Refer to Figure 2.7 for plots of the likelihood, prior distributions, and resulting pos-

terior distributions.

Using Equation 2.14, we calculate the posterior mean for these six distribu-

tions displayed in Figure 2.7. The results are displayed in Table 2.2.

Table 2.2: Posterior Means for x ∈ [1, 3] and n = 5

Prior Distribution Posterior Mean

beta(18.5, 55.5) 0.254

beta(4.4, 13.3) 0.266

beta(0.9, 2.8) 0.299

beta(49.5, 49.5) 0.497

beta(12, 12) 0.488

beta(2.6, 2.6) 0.459

These posterior means are as one would expect when using these particular

prior distributions. When the standard deviation of the prior is very small, the

posterior mean will be very close to the prior mean. However, as the standard

deviation of the prior increases, the posterior mean begins to deviate from the prior

mean, shrinking toward the MLE.

2.4.3 Bayesian Credible Intervals

We now consider obtaining interval estimates for the censored binomial prob-

lem in the Bayesian paradigm. To this end, we construct 95% equal-tailed credible

sets. To do this, we must solve the following two integrals for y and z, respectively:
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∫ y

0

π(θ|x)dθ = 0.025 (2.16)

and ∫ z

0

π(θ|x)dθ = 0.975. (2.17)

For example, suppose again that x ∈ [1, 3] when n = 5. We place a beta(1, 1)

prior distribution on θ, and then compare it to the likelihood interval obtained for

this same example. Using (2.16) and (2.17), we find the 95% credible interval for

θ to be (0.074, 0.831). The true value for θ is contained within this interval with

95% probability. The likelihood interval for θ for this same example is (0.026, 0.872).

As we would expect when using a uniform prior distribution, the two intervals do

not appear to be significantly different although the Bayesian interval is slightly

narrower.

We next consider the censoring interval x ∈ [0, 2] when n = 5. We did not

calculate a likelihood interval for this example because there was no probabilistic

foundation for calibration and interpretation. A Bayesian analysis with a beta(1, 1)

prior yields the credible interval (0.013, 0.708).

Now suppose x ∈ [3, 5] when n = 5. Again using a beta(1, 1) prior distribution,

we obtain the credible interval (0.292, 0.987).

We now calculate credible intervals using the prior distributions in Table 2.1

for the case where x ∈ [1, 3] and n = 5. The prior distributions and posterior

distributions can be seen in Figure 2.7. The credible intervals are listed in Table 2.3.

Because the integrals become increasingly complex with the more informative priors,

we are not able to solve the integral directly. Instead, we use numerical methods to

solve the integrals and obtain the limits of the credible intervals.

20



Table 2.3: Binomial Credible Intervals for x ∈ [1, 3] and n = 5

Prior Distribution 95% Credible Interval

beta(18.5, 55.5) (0.164, 0.357)

beta(4.4, 13.3) (0.102, 0.473)

beta(0.9, 2.8) (0.042, 0.672)

beta(49.5, 49.5) (0.4, 0.594)

beta(12, 12) (0.305, 0.673)

beta(2.6, 2.6) (0.151, 0.781)

In the previous example, we can see that there was very little updating from the

prior distribution due to the relatively flat likelihood. We now consider a likelihood

function when x ∈ [1, 3] and n = 20. Using the prior distributions in Table 2.1, we

consider the plots of the posteriors in Figure 2.8.

Using Equation 2.14, we calculate the posterior mean for these six distributions

displayed in Figure 2.8. The results are displayed in Table 2.4.

Table 2.4: Posterior Means for x ∈ [1, 3] and n = 20

Prior Distribution Posterior Mean

beta(18.5, 55.5) 0.223

beta(4.4, 13.3) 0.176

beta(0.9, 2.8) 0.119

beta(49.5, 49.5) 0.439

beta(12, 12) 0.333

beta(2.6, 2.6) 0.193

Posterior updating is much more in evidence here, in contrast to the n = 5

case. Shrinkage toward the MLE can be seen in all six examples. Corresponding
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credible intervals are provided in Table 2.5. Given the larger Bernoulli sample size,

these are considerably narrower than those in Table 2.3.

Table 2.5: Binomial Credible Intervals for x ∈ [1, 3] and n = 20

Prior Distribution 95% Credible Interval

beta(18.5, 55.5) (0.143, 0.312)

beta(4.4, 13.3) (0.068, 0.317)

beta(0.9, 2.8) (0.015, 0.0.291)

beta(49.5, 49.5) (0.351, 0.529)

beta(12, 12) (0.2, 0.479)

beta(2.6, 2.6) (0.058, 0.376)

2.5 Mixed Precise and Interval Data

Suppose a daily administered oral drug has dizziness as a possible side effect

within two hours of consumption. After a short period of time on the drug, a patient

is asked how many days he or she experienced such dizziness. Some patients are able

to provide a precise count, but others can only reply with a range of possible events.

Thus, suppose after two weeks on the drug, a sample of ten patients provides the

following data.

Table 2.6: Patients Reporting Drug Side Effects

Patient Days Dizzy Patient Days Dizzy

1 2 6 3-6

2 3 7 3

3 3-4 8 4

4 3 9 5

5 2-3 10 2-4
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When we have a mixture of precise and interval data as seen in Table 2.6, we

have two alternatives for the likelihood. We can either incorporate both types of

data into our likelihood function, or we can combine the data into one censoring

interval. Here we consider both options.

Suppose we combine the data into one censoring interval. Of the 140 patient-

days, dizziness was reported in at least 30 (20 + 3 + 2 + 3 + 2) and as many as 37

(20 + 4 + 3 + 6 + 4) days. Thus, the likelihood becomes

L(θ|140, 30, 37) =
37∑

x=30

(
140

x

)
θx(1− θ)140−x.

Using this likelihood, we find that the MLE for θ is 0.29 and the likelihood inter-

val is (0.167, 0.321). We also calculate the Bayesian estimates using a beta(1, 1)

prior distribution. We find the posterior mean is 0.2429 and the credible interval is

(0.17, 0.323).

Alternatively, we can incorporate both precise and interval data into the like-

lihood function. To do this, we multiply the precise likelihood and the interval

censored likelihood together:

L(θ|n,y, j,k) =

[
p∏
i=1

ki∑
x=ji

(
n

x

)
θx(1− θ)n−x

][
p∏
i=1

(
n

yi

)
θyi(1− θ)n−yi

]
.

Using numerical methods, we find that the MLE and likelihood interval are 0.2359

and (0.169, 0.313), respectively. Using a beta(1, 1) prior, the corresponding posterior

mean and credible interval are 0.2398 and (0.171, 0.316). We find that the point

and interval estimates derived when using the interval-censored likelihood are very

similar to the point and interval estimates derived when using both precise and

interval data, for this example.

2.6 Other Distributions

We have derived frequentist and Bayesian interval estimates for the binomial

distribution with censored counts. We now consider the censored data problem for
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the negative binomial and Poisson distributions, and calculate interval estimates for

multiple examples using these two distributions.

2.6.1 Negative Binomial Distribution

Let x have a negative binomial distribution with parameters θ and r, denoted

NegBin(θ, r), with probability mass function

f(x) =

(
x− 1

r − 1

)
θr(1− θ)x−r,

where x is the number of trials until the rth success and θ is the probability of

success. The censored likelihood function is

L(θ|j ≤ x ≤ k) =
k∑
x=j

(
x− 1

r − 1

)
θr(1− θ)x−r. (2.18)

Suppose we now let θ ∼ beta(a, b) so that the posterior distribution is

π (θ|j ≤ x ≤ k) ∝

[
k∑
x=j

(
x− 1

r − 1

)
θr(1− θ)x−r

] [
1

B(a, b)
θa−1 (1− θ)b−1

]

=
k∑
x=j

1

B(a, b)

(
x− 1

r − 1

)
θr+a−1(1− θ)x−r+b−1. (2.19)

The marginal distribution is

m(j, k) =

∫ 1

0

k∑
x=j

1

B(a, b)

(
x− 1

r − 1

)
θr+a−1(1− θ)x−r+b−1dθ

=
1

B(a, b)

k∑
x=j

(
x− 1

r − 1

)∫ 1

0

θr+a−1(1− θ)x−r+b−1dθ

=
1

B(a, b)

k∑
x=j

(
x− 1

r − 1

)
B(r + a, x− r + b). (2.20)

The pth posterior moment is

E (θp|x) ∝
∫ 1

0

k∑
x=j

1

B(a, b)

(
x− 1

r − 1

)
θpθr+a−1 (1− θ)x−r+b−1 dθ

=
k∑
x=j

(
x− 1

r − 1

)∫ 1

0

θp+r+a−1 (1− θ)x−r+b−1 dθ

=
k∑
x=j

(
x− 1

r − 1

)
B(p+ r + a, x− r + b).
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Dividing by the marginal distribution in (2.20), we obtain

E (θp|x) =

∑k
x=j

(
x− 1

r − 1

)
B(p+ r + a, x− r + b)∑k

x=j B(r + a, x− r + b)
(2.21)

As an example, suppose we observe x ∈ [7, 10] where r = 1. We plot this

likelihood and a cutoff value of c = 0.15 in Figure 2.9.

Figure 2.9: Negative Binomial Likelihood where x ∈ [7, 10] and r = 1

Using numerical methods, we find that the MLE of this distribution, θ̂, is 0.12 and

using that, find the likelihood interval to be (0.007, 0.44). If we place a beta(1, 1)

prior on θ, and using (2.21), we calculate a posterior mean of 0.198 and a Bayesian

credible interval of (0.027, 0.485). Both intervals have similar coverage, but the

Bayesian interval is slightly wider.

We now look at several examples of posterior means and credible intervals

using the negative binomial likelihood displayed in Figure 2.9. We will consider the

six beta distributions listed in Table 2.1. The likelihood function, prior distributions,
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and resulting posterior distributions can be seen in Figure 2.10. The six different

posterior credible intervals are listed in Table 2.7.

Table 2.7: Negative Binomial Posterior Means and Credible Intervals

Prior Distribution Posterior Mean 95% Credible Interval

beta(18.5, 55.5) 0.237 (0.027, 0.485)

beta(4.4, 13.3) 0.209 (0.078, 0.382)

beta(0.9, 2.8) 0.16 (0.020, 0.409)

beta(49.5, 49.5) 0.473 (0.379, 0.568)

beta(12, 12) 0.408 (0.245, 0.582)

beta(2.6, 2.6) 0.272 (0.078, 0.537)

The Bayesian model performs as expected, with more shrinkage toward the MLE as

the prior variability increases.

2.6.2 Poisson Distribution

Let x ∼ Poisson(θ) with probability mass function

f(x) =
θx exp(−θ)

x!
.

The censored likelihood function is

L (θ|j ≤ x ≤ k) =
k∑
x=j

θx exp(−θ)
x!

. (2.22)

Suppose we now let θ ∼ gamma(α, β) so that the posterior distribution is

π (θ|j ≤ x ≤ k) =

[
k∑
x=j

θx exp(θ)

x!

][
βα

Γ(α)
θα−1 exp(−βθ)

]

=
k∑
x=j

βα

Γ(α)

θx+α−1 exp(−θ − βθ)
x!

=
βα

Γ(α)

k∑
x=j

θx+α−1 exp(−θ(β + 1))

x!
. (2.23)
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The marginal distribution is

m(j, k) =

∫ ∞
0

βα

Γ(α)

k∑
x=j

θx+α−1 exp(−θ(β + 1))

x!
dθ

=
βα

Γ(α)

k∑
x=j

∫ ∞
0

θx+α−1 exp(−θ(β + 1))

x!
dθ

=
βα

Γ(α)

k∑
x=j

Γ(x+ α)

(β + 1)x+α

1

x!
. (2.24)

The pth posterior moment is

E (θp|j ≤ x ≤ k) ∝ βα

Γ(α)

k∑
x=j

∫ ∞
0

θpθx+α−1 exp (−θ(β + 1))

x!
dθ

=
βα

Γ(α)

k∑
x=j

1

x!

∫ ∞
0

θx+α+p−1 exp (−θ(β + 1))dθ

=
βα

Γ(α)

k∑
x=j

1

x!

Γ(x+ α + p)

(β + 1)x+α+p
.

Dividing by the marginal, we obtain

E (θp|j ≤ x ≤ k) =

∑k
x=j

1
x!

Γ(x+α+p)
(β+1)x+α+p∑k

x=j
Γ(x+α)

(β+1)x+α
1
x!

. (2.25)

Suppose we observe the interval [3, 5]. The resulting likelihood and cutoff at

c = 0.15 are displayed in Figure 2.11. Using numerical methods, we find the MLE

and likelihood interval for θ to be 3.9 and (1.1, 9.5), respectively.

We now calculate Bayesian credible intervals for this Poisson likelihood using

four different prior distributions. Suppose we have reasonable information that the

true value of θ is approximately 5. We allow the mean of the prior distribution

to be 5 and construct a prior distribution whose mode is 4. We then consider the

scenario where we believe the true value of θ is 2. We construct a prior distribution

whose mean is 2 and mode is 1. For the last two prior distributions, we consider

the possibility that the true value of θ is 10 and construct prior distributions using

standard deviations 1 and 2. A summary of these prior distributions is given in

Table 2.8.
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Figure 2.11: Poisson Likelihood where x ∈ [3, 5]

Table 2.8: Prior Distributions for Poisson Examples

Prior Distribution Prior Mean Prior SD

gamma(2, 1) 2 1.41

gamma(5, 1) 5 2.24

gamma(100, 10) 10 1

gamma(25, 2.5) 10 2

We plot each of these prior distributions, the likelihood function, and the resulting

posterior distributions in Figure 2.12.
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Figure 2.12: Likelihood, Prior and Posterior Distributions for Poisson Examples

The four different posterior means and credible intervals are listed in Table 2.9.

As expected, posterior means shrink toward the MLE as prior standard deviations

increase and posterior interval width decreases as prior standard deviations decrease.

Table 2.9: Poisson Means and Credible Intervals

Prior Distribution Posterior Mean 95% Credible Interval

gamma(2, 1) 2.84 (0.93, 5.762)

gamma(5, 1) 4.48 (1.962, 7.968)

gamma(100, 10) 9.495 (7.74, 11.39)

gamma(25, 2.5) 8.39 (5.54, 11.67)
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CHAPTER THREE

Small Sample Interval Sampling for the Binomial Distribution

In the previous chapter, we derived both frequentist and Bayesian point and

interval estimates for three discrete distributions where censored sampling was an

issue. We considered several individual examples using the binomial, negative bino-

mial, and Poisson distributions. We noted several things regarding these examples.

For the binomial distribution, the results obtained using the MLE derived in Frey

and Marrero (2008) and the posterior mean that we derived were comparable. Also,

we noted that the frequentist and Bayesian interval estimates were markedly similar

although the credible intervals tended to be slightly narrower than the corresponding

likelihood intervals.

In this chapter, we conduct a simulation experiment in order to compare the

performance of the Bayesian and frequentist estimators based on censored binomial

counts. We compare the accuracy of the MLE and posterior mean as well as the

width and coverage of the likelihood and credible intervals. In our simulation, we

consider seven different true values of the parameter, θ. We look at how these dif-

ferent values of θ and varying Bernoulli sample sizes affect the point and interval

estimates.

3.1 Data Generation

The likelihood function for the censored binomial distribution is

L (θ|n, j, k) =
k∑
x=j

(
n

x

)
θx (1− θ)n−x . (3.1)

As a function of θ for fixed n, j, and k, this is the likelihood function of θ. However,

if θ and n are both fixed, then (3.1) becomes the joint distribution of j and k.
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Therefore, (j, k) has the distribution

f(j, k|n, θ) =
k∑
x=j

(
n

x

)
θx (1− θ)n−x . (3.2)

We generate values of (j, k) using a multinomial distribution with cells whose prob-

abilities are generated by (3.2). The support of this multinomial distribution must

be such that j ≤ k − 1 where j ≥ 0 and k ≤ n. Consider the case where n = 5, as

depicted in Figure 3.1.

Figure 3.1: Cells of the Multinomial Distribution for n = 5

The upper triangular region holds all the possible combinations of j and k

that could constitute the censoring interval. There are
(
n−1

2

)
pairs in the support

of this distribution. As we discussed in detail in the previous chapter, if j = 0 or

k = n, the resulting likelihood is irregular. In order to restrict the simulations to

those producing regular likelihood functions, we exclude any values of j and k that

lie on the boundaries of this upper triangular region. Therefore, only pairs lying in
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the interior of the triangle displayed in Figure 3.1 would be considered in a simulation

for the case of n = 5.

We are able to compute the probability of each pair in the support of this

multinomial distribution using (3.2). In order to generate values of (j, k) that will

produce regular likelihood functions, we need a distribution for

(j, k)|0 < j ≤ k − 1 < n.

In order to produce this distribution, we must divide (3.2) by the marginal proba-

bility

m ≡ P (0 < j ≤ k − 1 < n|θ, n)

=
n−1∑
k=2

k−1∑
j=1

k∑
x=j

(
n

x

)
θx (1− θ)n−x .

In the case of n = 5, this marginal probability is the sum of the probabilities in the

interior of the upper triangular region displayed in Figure 3.1.

Suppose n = 5 and that we set θ = 0.25. For this example, there are six

possible combinations of j and k that would produce a regular likelihood function.

These pairs and their conditional probabilities are displayed in Table 3.1.

Table 3.1: Multinomial distribution of (j, k) for n = 5 and θ = 0.25

j k f(j, k|n = 5, θ = 0.25)/m Simulated Proportion of (j, k)

1 2 0.22 0.2194

1 3 0.25 0.2482

1 4 0.26 0.257

2 3 0.12 0.1175

2 4 0.12 0.1262

3 4 0.03 0.0317
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Table 3.1 also reports the proportion of pairs in each category for a simulated

sample of size 10,000. The simulation frequencies are very close to what the theo-

retical probabilities would predict for 10,000 simulated pairs.

Before we begin the simulation experiment, we consider the plots of the six

possible likelihood functions that could be produced in the simulation. According

to the multinomial distribution in Table 3.1, the intervals [1, 3] and [1, 4] have the

greatest probability of being selected in the simulation when the true value of the

parameter, θ is 0.25. However, when we look at the likelihood plots in Figure 3.2, the

MLE is approximately 0.4 when X ∈ [1, 3] and 0.5 when X ∈ [1, 4]. Therefore, we

should expect to see some degree of bias in our simulated point estimates, especially

when using a uniform prior on θ.

3.2 Simulation Methodology

In our simulation, we calculate the maximum likelihood estimate, posterior

mean, posterior standard deviation, likelihood interval, and credible interval for

various values of θ, Bernoulli sample sizes, and censoring interval widths. The

calculations for the MLE, posterior mean, and posterior standard deviation use the

development from Chapter 2, specifically equations (2.3), (2.14), and (2.15).

While simulating the point estimates is fairly straightforward, simulating the

interval estimates is more complicated. We first consider the simulation of the

likelihood interval. We create a vector of 10,000 equally spaced values of θ ranging

between 0 and 1. For each of these values of θ, we calculate the likelihood:

L (θ|j ≤ X ≤ k) =
k∑
x=j

(
n

x

)
θx (1− θ)n−x .

This calculation results in 10,000 points of the likelihood function. Recall that the

likelihood interval consists of all values of θ that satisfy

L (θ|j ≤ x ≤ k)

L
(
θ̂|j ≤ x ≤ k

) > c.
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Since we have assured ourselves of obtaining a regular likelihood in the simulation,

we can obtain a 95% interval by setting c = 0.15. Therefore, we collect all values of

θ that are associated with values of the normalized likelihood that are greater than

0.15 and place them into a vector. The minimum and maximum value in this vector

are the lower and upper bound of the likelihood interval, respectively.

We now consider the calculation of the Bayesian credible interval. As discussed

in the previous chapter, the limits of the 95% credible interval are found by solving∫ y

0

π (θ|n, j, k) = 0.025 (3.3)

and ∫ z

0

π (θ|n, j, k) = 0.975. (3.4)

In the simulation, we place a beta(1, 1) prior distribution on θ. Therefore, the

posterior distribution will be

π (θ|n, j, k) =

∑k
x=j

(
n

x

)
θx (1− θ)n−x

∑k
x=j

(
n

x

)
B(x+ 1, n− x+ 1)

.

Note that this distribution is a polynomial in θ. Consequently, the integrations

needed to construct interval estimates are straight forward. For example, consider

the posterior for n = 5 and the observation [1, 2]. The resulting posterior is

π (θ|x) =

(
5

1

)
θ1(1− θ)4 +

(
5

2

)
θ2(1− θ)3

∑2
x=1

(
n

x

)
B(x+ 1, 5− x+ 1)

(3.5)

= h[θ − 2θ2 + 2θ4 − θ5], (3.6)

where

h =
15∑2

x=1

(
n

x

)
B(x+ 1, n− x+ 1)

.
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Because the posterior can be written as a polynomial, we are able to obtain the

exact integral of the posterior. For example,∫ y

0

π(θ|n, j, k)dθ = h[θ − 2θ2 + 2θ4 − θ5].

Therefore, the solution (3.3) and (3.4) is the solution to

h[θ − 2θ2 + 2θ4 − θ5] = 0.025

and

h[θ − 2θ2 + 2θ4 − θ5] = 0.975.

By using this method, finding the limits of the credible interval becomes a matter

of finding roots of polynomials.

3.3 Simulation Results

In the simulation, we consider the effect of sample size and the true value of

the parameter, θ, on the point and interval estimates. Bernoulli sample sizes of

5, 10, and 20 are studied in the simulation. We also consider seven different true

values of θ: 0.05, 0.10, 0.25, 0.5, 0.75, 0.90, and 0.95. For the Bayesian estimates, we

place a beta(1, 1) prior distribution on θ. In addition, we investigate the extent to

which restricting the width of the censoring interval to 3 improves point and interval

estimates. Each simulation consists of 10,000 replications. We then calculate the

mean and standard deviation of those 10,000 estimates.

We first consider the case where θ = 0.05 and the censoring interval width

is unrestricted. The simulation results are presented in Figure 3.3 and in Table

A.1. In this figure, the horizontal bars represent the means of the lower and upper

bounds of the likelihood and credible intervals produced in the simulation. The

points represent the means of the MLEs and the posterior means. The variability in

these estimates is shown by the grey boxes, which cover plus or minus one simulation

standard deviation.
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Figure 3.3: Simulation Results for θ = 0.05 - Unrestricted Censoring Intervals

As expected, both the MLE and the posterior mean are extremely biased. As

the sample size increases, the point estimates do begin to decrease, but they do

not come anywhere close to the true value of the parameter. Estimation of small

probabilities with small samples is, of course, problematic in general and not helped

by the presence of interval censoring. We also considered the case of θ = 0.01 and

found similar results.

Interval estimation of θ, both with frequentist and Bayesian methods, is also

poor in this small probability case. Both types of intervals are very wide and improve

only marginally as n increases.

In addition to the problems with the bias, note that the simulation standard

deviation increases as the Bernoulli sample size increases. In order to investigate

this, we consider the distribution of the censoring interval width, k− j, for all three

Bernoulli sample sizes. We also calculate the mean and standard deviation of k− j.
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The relative frequency distribution for 10,000 replications of k − j when n = 5 are

displayed below.

Figure 3.4: Relative Frequency Distribution of k − j when n = 5

The mean and standard deviation for k − j when n = 5 are 1.9804 and 0.805,

respectively. Based on the results in Figure 3.4, the the distribution of k− j appears

to be nearly uniform. We consider the distribution of k − j for n = 10.

The mean and standard deviation of k− j when n = 10 are 4.366 and 2.233,

respectively. The distribution of k − j appears to be nearly uniform. We next look

at the distribution of k − j when n = 20. The results are below.

The mean and standard deviation of k − j when n = 20 are 9.267 and 5.065,

respectively. Again, the distribution of k − j is roughly uniform. This distribution

explains the increasing simulation standard deviation. As n increases, the support
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Figure 3.5: Relative Frequency Distribution of k − j when n = 10

of the distribution of (j, k) in (3.2) increases in cardinality and with nearly equal

probability for the added pairs.

Because of this association between simulation standard deviation and the

censoring interval width, we consider restricting the width of the censoring interval.

We select 3 as the maximum width of the interval because 3 is the largest width

available for the case where n = 5.

We now consider the case where θ = 0.05 and the censoring interval is re-

stricted to 3. The results for this simulation are seen in Figure 3.7 and Table A.2.

There are several notable differences in the simulation results when the censoring

interval width is restricted to 3. First, all of the likelihood and credible intervals

contain θ = 0.05. In addition, all of the intervals are much narrower than they were

when the censoring interval width was unrestricted. This is particularly true for

n = 20. However, it is interesting to note that the interval width of the Bayesian

and likelihood intervals does not seem to differ significantly.
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Figure 3.6: Relative Frequency Distribution of k − j when n = 20

The point estimates are still biased; however, at n = 20, the MLE and the pos-

terior mean are 0.108, and 0.148, respectively. The bias appears to have decreased

significantly when we restrict the censoring interval. By restricting the censoring in-

terval to 3, we are eliminating the majority of the possible censoring intervals when

n = 10 and n = 20. When we do this, we are eliminating intervals that contain

values of x unlikely to produce θ = 0.05. Therefore, narrower intervals and less

biased point estimates are to be expected.

We now consider the case for θ = 0.25 and the censoring interval width is

unrestricted. The simulation results are seen in Figure 3.8 and Table A.5.

Here all of the intervals contain the true value of the parameter, θ = 0.25. Fur-

thermore, all of the Bayesian credible intervals are slightly narrower than the like-

lihood intervals, and both intervals become progressively narrower as the Bernoulli

sample size increases. Both the MLE and posterior mean are still positively biased,

but again, that is not surprising.
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Figure 3.7: Simulation Results for θ = 0.05 - Restricted Censoring Intervals

We now consider the case of θ = 0.25 where the width of the censoring interval

is restricted to 3. The simulation results are displayed in Figure 3.9 and Table A.6.

The resulting likelihood and credible intervals contain the true value of θ.

Not surprisingly, the intervals produced from the restricted censoring intervals are

significantly narrower than the intervals produced from the unrestricted censoring

intervals. The likelihood and credible intervals did not appear to differ significantly

in width and coverage, again not surprising given that we have used a beta(1, 1)

prior. In addition, the bias in the point estimates decreases as the sample size in-

creases. When n = 20, the MLE and posterior mean are very close to 0.25.

There is clearly a problem with bias in the point estimates. We consider the

case where θ = 0.25. Suppose we think, a priori, that θ is less than 0.40 with high

probability. We construct a prior distribution, both with a mean of 0.3 and a stan-

dard deviation of 0.21. Using this criteria, we obtain the following prior distribution:

beta(1.18, 2.76).

We calculate posterior means using this beta(1.19, 2.76) prior distributions.

We consider the case where n = 20 and we have the observation [1, 4]. We calculate
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Figure 3.8: Simulation Results for θ = 0.25 - Unrestricted Censoring Intervals

a posterior mean of 0.152 when we use the beta(1.19, 2.76) prior distribution. As

this example illustrates, it is possible to reduce the large bias present in the point

estimates by using somewhat more informative prior distributions.

Although the point estimates are biased in these simulations, the majority of

the intervals do contain the true value of the parameter. In addition, the inter-

vals become narrower and the point estimates becomes slightly less biased as the

Bernoulli sample size is increased. This can also be seen in the simulation results

for θ = 0.10, 0.50, 0.75, and 0.90, and 0.95. These results can be found in Appendix

A.
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Figure 3.9: Simulation Results for θ = 0.25 - Restricted Censoring Intervals

Figure 3.10: Posterior Distributions for n = 20 and x ∈ [1, 4]
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CHAPTER FOUR

The Effect of Bioavailability on the Continual Reassessment Method

The primary goal of a Phase I trial is to accurately determine the appropriate

dose of a compound for use in subsequent phases of the clinical trial. Here the focus

is on safety rather than efficacy. A safe dosage level will be estimated by increasing

this dose from a nominal, safe level that can be tolerated by members of a sample

from the target population. This dose is commonly known in the literature as the

maximum tolerated dose (MTD). It is assumed that the compound’s efficacy will

increase with observed toxicity.

Several statistical methods have been designed for the purpose of estimating

the MTD. Among the more commonly recognized methods are the standard 3 + 3

design and the Bayesian continual reassessment method.

The more traditional method used in Phase I trials is the 3 + 3 design. In this

method, toxicity is defined as a binary event. When the 3 + 3 design is utilized,

patients are treated in groups of 3. The algorithm will escalate and de-escalate the

allotted dose, depending on how many toxicities are experienced in each group of

patients. The MTD is chosen as the highest dose assigned with the lowest toxicity

rate. Due to its simplicity, this method is generally preferred by clinicians. However,

it has been demonstrated that the 3 + 3 method tends to select doses with toxicities

significantly less than the desired toxicity rate. For more information on the 3 + 3

method see, for example, Garrett-Mayer (2006).

4.1 Introduction to the Continual Reassessment Method

In order to use the continual reassessment method (CRM) for a Phase I study,

the clinician must specify, prior to the start of the trial, how patients are expected
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to respond to the compound. This is done either by specifying a particular level

of toxicity response for each of the discrete dose levels or by specifying certain

percentiles of toxicity response if there are continuous dosages available. Using this

prior model and the desired rate of toxicity, we can estimate the initial dose to be

administered to the first cohort of patients. Once this dose is administered to the

first group of patients, their toxicity response is recorded and the model is updated

using their response. This cycle will continue until either the maximum sample size

is attained or a stopping rule for the trial is utilized.

The CRM utilizes statistical models that explain the relationship between dose

level and experienced toxicity. Among the models that have been used to explain this

relationship are the one and two parameter logistic, the one parameter power, the

hyperbolic, and the arctangent models. Althugh all of these models are commonly

used in the literature, the logistic models are by far the most frequently used in

practice. For a more comprehensive overview of the CRM, including the advantages

and disadvantages of this method, refer to Eisenhauer et al. (2006).

In this chapter, we examine the effect of bioavailability on the performance of

the CRM. In Section 4.2, we introduce the concept of bioavailability and its impact

on clinical trials as seen in the medical literature. In Section 4.3, we compare the

performance of the one parameter logistic model of the CRM to the standard design.

In Section 4.4, we discuss the power model and compare its performance to that of

the standard design and the one parameter logistic model. In Section 4.5, we discuss

the possibility of a maximum absorbable dose and how the knowledge of this dose

could impact the performance of the CRM.

4.2 Bioavailability and the CRM

Use of the CRM requires a few assumptions regarding the relationship between

the administered dose and the toxicity response. It is widely assumed in the medical
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and statistical literature that efficacy will increase as the dosage increases. Since

bioavailability is not accounted for in the CRM, it is also implicitly assumed that

the targeted tissue receives the administered dose in full. If the drug under trial is

administered intravenously, then this level of drug absorption, or bioavailability, will

be 100%. However if the compound is administered orally, bioavailability will vary

more from patient to patient than if the compound were administered intravenously.

For more information on bioavailability, specifically in cancer studies, refer to Tozer

and Rowland (2006).

It has been shown that ignoring bioavailability can severely compromise the

performance of the CRM. To illustrate the effect of ignoring bioavailability, con-

sider the administration of midazolam for the purpose of sedation before cardiac

catheterization as described in Fabre et al. (1998). In this study, the CRM was used

to determine the appropriate dose of midazolam to administer to infants prior to

the procedure. The reported bioavailability ranged from 15% to 27%. As a result of

the low bioavailability, the patients did not display the level of sedation required for

the procedure, and the CRM continuously increased the dosages until the maximum

available dose was recommended for 15 of the 16 patients in the trial. However, even

this maximum dose was shown to be ineffective, primarily due to the low bioavail-

ability displayed in the patients. Clearly, the CRM is not robust to the effects of

bioavailability.

Oncology patients enrolled in a Phase I clinical trial are generally terminally

ill, and have exhausted all of their treatment options. As a result, their exhibited

bioavailability is often significantly lower than healthy patients. Consider, for exam-

ple, etoposide, which is indicated for small-cell lung cancer, testicular cancer, and

various lymphomas. Hande et al. (1993) studied the bioavailability of two doses of

etoposide. When a dose of 100 mg was administered to 11 patients, a mean bioavail-

ability of 76% with a standard deviation of 22% was observed. However, when a
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dose of 400 mg was administered to 6 patients, a mean bioavailability of 48% with

a standard deviation of 18% was observed. It is important to note in this example

that bioavailability does not necessarily increase with the dosage level. In particu-

lar, dose proportionality need not hold (i.e., doubling the dose need not double the

availability).

4.3 Comparing the One Parameter Logistic Model to the Standard Design

4.3.1 The CRM and the Standard Design

There has been substantial work in comparing the performance of the CRM

and the 3 + 3 design. While the 3 + 3 design is more familiar to clinicians and

much easier to understand and implement, there are distinct disadvantages to its

use. There have been numerous studies indicating that it yields poor estimates of

the true MTD, resulting in an incorrect dose level for the later phases of the clinical

trial. In fact, it has been shown that the 3 + 3 method will generally treat a high

percentage of patients outside of the therapeutic range (Potter, 2006). As a result

of this, the 3 + 3 method often recommends low and ineffective doses for future

trials. Also, the 3 + 3 design is unable to use all the available information in its dose

selection procedure. It only considers data collected from the current cohort, and

ignores any responses that have been collected earlier in the trial.

In contrast, the CRM has many advantages that recommend its use for Phase

I studies. It has been shown to treat a higher proportion of patients at doses closer

to the correct MTD (Iasonos et al., 2008). Unlike the 3 + 3 design, it provides

an estimate of the MTD using formal statistical methods, and thus allows for the

description of the uncertainty about the dose level selection. In addition to incorpo-

rating the data for the current cohort of patients and all previous cohorts, the CRM

can also use any prior information and beliefs the clinicians might have about the

compound under study (Garrett-Mayer, 2006).
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When these methods are implemented, it is generally assumed that there is

100% bioavailability in the patient population. However, as noted, this is known to

be problematic, for example, when considering oncology patients enrolled in a Phase

I trial. In our first simulation, we will compare the performance of the 3 + 3 method

and the CRM when the effect of bioavailability is recognized.

4.3.2 The One-Parameter Logistic Model

We begin our simulation studies by comparing the one-parameter logistic

model of the CRM to the standard 3 + 3 trial design. The one-parameter logistic

model is the most commonly used of the various CRM models in both the literature

and in practice. It is defined as

P (y = 1|x = dose) =
exp(α0 + βx)

1 + exp(α0 + βx)
, (4.1)

where y = 1 indicates the occurrence of a severe toxic response and x is the dose

level. This response is often referred to a dose limiting toxicity (DLT).

When this model is utilized, the value of the intercept is fixed at α0 = 3 and

the slope parameter is allowed to vary. This constant intercept is chosen in order

to obtain a vague prior such that the a priori Bayesian 95% credible intervals for

the probability of dose limiting toxicity at each individual dose covers as much of

the (0, 1) interval as possible (O’Quigley and Chevret, 1991). As a result of this

constraint, the intercept is often fixed at 3 in both the literature and in practice. As

can be seen in the figure below, when the intercept is fixed at 3, the 95% credible

intervals do extensively cover the (0, 1) interval when an exponential prior on β with

parameter 1 is utilized.

4.3.3 Problems with the Two-Parameter Logistic Model

One alternative to this one-parameter logistic model is the two-parameter lo-

gistic model in which both the slope and intercept parameters are allowed to vary.
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Figure 4.1: Prior Credible Intervals for the Probability of Dose Limiting Toxicity

However, this model is infrequently used for various reasons. Although the one-

parameter logistic model is less flexible than the two-parameter logistic model, it

often performs better in regard to the correct selection of the MTD. For example,

O’Quigley et al. (1990), showed that the one-parameter model selected the correct

MTD 57% of the time, and the two-parameter model selected the correct MTD only

48% of the time. Intuitively, one would think that the two-parameter model would

be more accurate due its greater flexibility. However, because of the small sample

sizes in a Phase I trial, there is not enough data to adequately update two parame-

ters. Adding the extra parameter makes the model unidentifiable.

Shu and O’Quigley (2008) discuss the convergence problems associated with

the two-parameter CRM. The initial cohort of patients in a Phase I clinical trial

normally consists of three patients. Convergence to a single dose level is problem-

atic when using the two-parameter model since three patients would not provide

enough data to update the values for both parameters. As a result, both O’Quigley
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et al. (1990) and Shu and O’Quigley (2008) strongly recommend the use of the

one-parameter CRM model over the two-parameter CRM model. In addition, they

recommend that additional rules be incorporated into the CRM to control for skip-

ping dose levels. Because the CRM tends to rapidly converge to the true MTD,

there is a tendency to skip multiple dose levels in that process. This is generally

not allowed in practice because most clinicians would feel extremely uncomfortable

skipping several dose levels of an untried compound. For our study, we will only

consider the one-parameter models where dose levels can only increase in increments

of one.

4.3.4 Simulating Bioavailability

In order to account for bioavailability in the CRM, we create a multiplicative

factor in the one parameter dose model so that

P (DLT |x) =
exp (3 + βγx)

1 + exp (3 + βγx)
,

where β is the real-valued slope of the regression model, x > 0 is the administered

dose, and γ is the bioavailability coefficient, which is restricted to (0, 1]. This coeffi-

cient, γ, represents the proportion of the drug that is absorbed into the bloodstream

of the patient. The product of this coefficient and the administered dose will repre-

sent the effective dose for that patient. Using this effective dose and the true dose

response model, we are able to determine the true toxicity rate of the effective dose.

In the simulation, we assume bioavailability varies among patients. To model

this, we take γ to have a beta distribution with mode at the availability percentage,

u. We denote this random variable by γu. For our simulation, we are interested in

the response of the CRM to five different levels of bioavailability, u: 35%, 65%, 75%,

90%, and 99%. For each of these values of bioavailability, we construct a beta distri-

bution with mode γu, from which values are drawn to represent the bioavailability of

each patient in the trial. For example, consider the case of 35% bioavailability. For
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this case, we constructed a distribution where the mode occurs at 0.35 and where

95% of the possible values will be greater than 0.2. Using these qualifications, we

find the following distribution for γ0.35:

γ0.35 ∼ beta (7.3057, 12.7106) .

In the same way, we construct distributions for the other four levels of bioavailability,

as summarized in Table 4.1.

Table 4.1: Beta(r,s) Distributions for Bioavailability Coefficients

Bioavailability Level r s

35% 7.3057 12.7106

65% 20.9967 11.7675

75% 9.6284 3.8761

90% 5.3842 1.4871

99% 88.28 1.8816

When the standard design is used in simulation, we have a set of dose levels

and corresponding true probabilities of toxicity. The only way to simulate the effect

of bioavailability on the standard design is to take a randomly generated value from

one of the beta distributions in Table 4.1 and multiply it by the true probability of

toxicity.

4.3.5 Adjusting for Bioavailability

We begin our simulation by specifying the true dose response scenario if

bioavailability is 100%.

53



Table 4.2: True Dose Response Scenario for 100% Bioavailability

Dose Level Administered Dose P(DLT)

1 100 0.01

2 200 0.10

3 300 0.25

4 400 0.45

5 500 0.65

6 600 0.75

The probability of an individual patient experiencing DLT decreases as the

level of bioavailability decreases. We are interested in determining what the true

value of the MTD is with this change in toxic response. Using the one-parameter

logistic model and the beta distributions for bioavailability listed in Table 4.1, we

first consider a plot of the true dose response curve adjusted for bioavailability levels

of 99%, 90%, 75%, 65%, and 35%. With the target toxicity rate set at 25%, we

can see that the value of the MTD increases rapidly as the level of bioavailability

decreases. When the level of bioavailability is 99%, the true value of the MTD is

approximately 300 mg, or dose level 3. However, when the level of bioavailability

drops to 65%, the true value of the MTD increases to approximately 500 mg, or dose

level 5.

Since bioavailability will vary across subjects, the MTD will vary as well.

Indeed, we can write xMTD as a function of γu; for a target toxicity rate, p, the

solution of

log

(
p

1− p

)
= α + βγuxMTD

is

xMTD =
1

βγu

[
log

(
p

1− p

)
− α

]
, (4.2)
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Figure 4.2: Logistic Dose Response Curves Adjusted for Bioavailability

where α and β are intercept and slope of the true dose response model, respectively.

So, for fixed α, β, and p, we have

E (xMTD) = E

(
1

γu

)
1

β

[
log

(
p

1− p

)
− α

]
(4.3)

and

V ar (xMTD) = V ar

(
1

γu

)
1

β2

[
log

(
p

1− p

)
− α

]2

. (4.4)

Now, we can use the fact that (Gupta and Nadarajah, 2004) if y ∼ beta(a, b), then

E

(
1

yr

)
=
B(a− r, b)
B(a, b)

, for r = 1, 2, . . . and a > r. (4.5)

Therefore,

µMTD ≡ E (xMTD)

=
B(a− 1, b)

B(a, b)

1

β

[
log

(
p

1− p

)
− α

]
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and

σMTD ≡
√
V ar (xMTD)

=

[
B(a− 2, b)

B(a, b)
−
(
B(a− 1, b)

B(a, b)

)2
]

1

β2

[
log

(
p

1− p

)
− α

]2

.

Consider the case of 65% bioavailability where γ0.65 ∼ beta (20.99, 11.77) and

p = 0.25. Then,

µMTD =
1.589

0.00891

[
log

(
0.25

1− 0.25

)
− (−3.93841)

]
= 506.4

and

σMTD =
√
V ar (XMTD)

=
√

(0.049) (1.015× 105)

= 70.6.

Using the same methodology, we calculate the expected value and standard

deviation of the MTD at the other levels of bioavailability. The results are listed in

Table 4.3.

Table 4.3: Expected Value of the MTD Using the Logistic Model

Level of Bioavailability Distribution Mode SD µMTD σMTD

35% beta(7.31,12.71) 0.35 0.105 960.7 341.0

65% beta(20.99,11.77) 0.65 0.082 506.4 70.6

75% beta(9.63,3.88) 0.75 0.118 462.0 93.4

90% beta(5.38,1.49) 0.90 0.147 427.1 117.0

99% beta(88.28,1.88) 0.99 0.015 332.7 12.6
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4.3.6 Simulation Results

We now consider the results from our simulation. We examine the effect of

five levels of bioavailability on the performance of both the one-parameter logistic

model of the CRM and the standard 3 + 3 design. Specifically, we are interested in

the probability of selecting the expected MTD and the average number of patients

assigned to each dose in a hypothetical Phase I trial.

For each of the five levels of bioavailability, the simulation was replicated 500

times. This represents the occurrence of 500 Phase I trials. We begin with 99%

bioavailability because the results we see should be similar to those obtained in the

100% case. We then consider smaller levels of bioavailability. The results for the

case of 99% bioavailability can be seen in Figures 4.3 and 4.4.

Figure 4.3: Dose Selection for 99% Bioavailability

It is clear from these simulation results that the CRM greatly outperforms

the standard 3 + 3 design in multiple ways. We first consider how often the design

selects the expected MTD to recommend for future Phase I trials. The expected
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Figure 4.4: Number of Patients Assigned to Each Dose Level for 99% Bioavailability

MTD under 99% bioavailability is the third dose level. Anythng less than this dose

level is considered sub-therapeutic. The CRM correctly selected the third dose level

68% of the time, but the 3 + 3 design selected the third dose level only 37.8% of the

time. In addition, the 3 + 3 recommended a sub-therapeutic dose in 53.8% of the

trials while the CRM recommended a sub-therapeutic dose in only 12% of the trials.

In the simulation, we also tracked the average number of patients assigned to

each of the six dose levels over the 500 trials. The CRM trials in our simulation have

a fixed sample size of thirty patients admitted into the trial, while the trials that use

the 3 + 3 design have an average of 16.122 patients admitted into the trial. In the

CRM trials, an average of 12.98 patients were treated at the expected MTD while

only an average of 4.9 patients were treated at the expected MTD in the 3+3 trials.

Because of the different number of patients enrolled in these two types of trials, we

are unable to make a direct comparison regarding sample sizes. However, we can

conclude that the CRM treats a greater proportion of patients at the expected MTD
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than the 3 + 3 design does. The CRM assigns 43.3% of patients in a hypothetical

trial to the expected MTD while the 3 + 3 assigns 30.4% of patients to the expected

MTD.

The main goal of the Phase I trial is to select the MTD for use in latter phases

of the study. A dose that is lower than the MTD is likely to be less effective while a

dose that is higher than the MTD will lead to an unacceptably high toxic response

in patients. From these results, the CRM outperforms the standard design at 99%

bioavailability. The CRM is more likely to recommend the correct dosage, and it

treats a greater number of patients at therapeutic doses when compared to the 3+3.

Thus, as expected, the results for 99% bioavailability are similar to those al-

ready in the literature comparing the 3 + 3 method and the CRM. We will now

compare the two designs when the patient population experiences 65% bioavailabil-

ity. The results for this scenario can be seen in Figures 4.5 and 4.6.

Figure 4.5: Dose Selection for 65% Bioavailability
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Figure 4.6: Number of Patients Assigned to Each Dose Level for 65% Bioavailability

At this lesser bioavailability, the differences between the 3 + 3 method and

the CRM become even more pronounced. The CRM is clearly accomodating for

the low bioavailability by selecting higher doses than it did when there was 99%

bioavailability in the patient population. Out of the 500 simulated trials, the CRM

selected the third dose level 24.8% of the time, the fourth dose level 30.4% of the

time, and the fifth dose level 28.4% of the time. However, the 3 + 3 does not appear

to be accomodating the lower bioavailability by consistently selecting higher dose

levels. It selects the third dose level 42% of the time, the fourth dose level 25.6% of

the time, and the fifth dose level 6% of the time.

From Table 4.3, we know that the expected MTD at 65% bioavailability is

506.4 units with a standard deviation of 70.6. This is equivalent to the fifth dose

level. The CRM selected this dose level 28.4% of the time while the 3 + 3 only

selected this dose level 6% of the time. Based on these results, we can conclude that

60



the one-parameter logistic model of the CRM outperforms the 3 + 3 design when we

account for lower bioavailability.

It is interesting to see how the designs are allocating patients to the six dose

levels. The 3 + 3 design is allocating very few patients to the higher dose levels.

It is, in fact, assigning fewer than five patients to the fourth, fifth, and sixth dose

levels, which are in the therapeutic range. The CRM, on the other hand, assigns

more patients to these therapeutic doses, making it more likely that a therapeutic

dose will be recommended for use in the future phases of the trial.

Similar results are seen when we consider bioavailability levels of 90%, 75%,

and 35%. The results for these scenarios can be found in Appendix B.

4.4 The CRM Power Model

The logistic models, in particular the one defined in (4.1), are the most com-

monly used models when the CRM is used in Phase I trials. However, there are

other models that should be considered as potential alternatives. Paoletti and Kra-

mar (2009) performed a literature review of 33 Phase I oncology trials that used the

CRM. Of those 33 trials, 10 used a logistic model and 6 used a one-parameter power

model, as defined below. They claim that for certain dose response scenarios, the

power model will outperform the logistic model as well as the 3 + 3 design.

In the previous simulation, we saw that the one-parameter logistic model per-

forms well in the presence of low bioavailability levels. We now compare it to the

power model, and determine which model performs better when we account for

sub-bioavailability.

4.4.1 The Power Model

The one-parameter power model generally takes the form

P (DLT |x) = xa, (4.6)
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where x is the dose level and a is the parameter of interest. There is no restriction

on the range of a, but the dose level must be recoded such that the dose levels

are in the (0, 1) interval (Paoletti and Kramar, 2009). In the Bayesian CRM, an

exponential prior with parameter one is typically used as the prior for a. We use

the same methodology as in the first simulation to simulate values of bioavailability.

Therefore, we use the following power model for our simulation:

P (DLT |x) = (γux)a , (4.7)

where γu represents the level of bioavailability centered at u as defined in Section

4.3.

4.4.2 Adjusting for Bioavailability

For our simulation, we use the same DLT scenario as in Table 4.2. We are

interested in determining how the true value of the MTD changes when the level

of bioavailability decreases. Using the one-parameter power model and the beta

distributions given in Table 4.1, we consider the dose response curves adjusted for

the five levels of bioavailability. As we saw with the one-parameter logistic model,

bioavailability has an impact on the dose-response models. In order to determine

how much bioavailability is affecting the value of the MTD when the power model

is used, we calculate the expected value of the MTD, adjusting for the effect of

bioavailability.

The MTD is now a random variable; for a target toxicity rate, p, the solution

of

p = k (γux)a

is

xMTD =
1

γu
a

√
p

k
, (4.8)
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Figure 4.7: Power Dose Response Curves Adjusted for Bioavailability

where k and a are the coefficient and exponent of the true power model, respectively.

Therefore,

µMTD = E (xMTD)

= E

(
1

γu

)
a

√
p

k
(4.9)

and

σMTD = V ar (XMTD)

=

√
V ar

(
1

γu

)(
a

√
p

k

)2

. (4.10)

Again, we can use (4.5) to calculate the expected value of the MTD under the five

bioavailability scenarios. Using (4.9) and (4.10), we calculate the expected value and

standard deviations of the MTD at each of the levels of bioavailability.
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Table 4.4: Expected Value of the MTD Using the Power Model

Level of Bioavailability Distribution Mode SD µMTD σMTD

35% Beta(7.31,12.71) 0.35 0.105 1000.4 355.1

65% Beta(20.99,11.77) 0.65 0.082 527.0 73.6

75% Beta(9.63,3.88) 0.75 0.118 480.8 96.9

90% Beta(5.38,1.49) 0.90 0.147 444.3 121.5

99% Beta(88.28,1.88) 0.99 0.015 338.9 5.3

4.4.3 Simulation Results

We first compare the performance of the power model to that of the standard

3+3 design. For each of the five levels of bioavailability, the simulation was replicated

500 times. This represents the occurrence of 500 Phase I trials. The results for 99%

bioavailability can be seen below in Figures 4.8 and 4.9.

Figure 4.8: Dose Selection for 99% Bioavailability
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Figure 4.9: Number of Patients Assigned to Each Dose Level for 99% Bioavailability

In Figure 4.8, we consider the accuracy of the two designs. The CRM power

model clearly performs better than the 3 + 3. When the power model is used, the

CRM correctly chooses the expected MTD, which is the third dose level, 56.6% of

the time. Also, a sub-therapeutic dose level was selected as the MTD only 1.4%

of the time. The 3 + 3 only selected the expected MTD 37.8% of the time, and a

sub-therapeutic dose was selected 52.2% of the time.

We also looked at the dose assignments in Figure 4.9. Out of 30 participat-

ing patients in each trial, an average of 11.53 were assigned to the correct dose.

There were relatively few patients assigned to the lower dose levels. The 3 + 3, on

the other hand, did not assign that many patients to a particular dose. The CRM

demonstrates rapid convergence to a particular dose because of the relatively large

number of patients assigned to the third dose level. However, the 3 + 3 design does

not demonstrate the same level of convergence.
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Again, these results are not surprising for this high level of bioavailability.

Given results reported by Paoletti and Kramar (2009) indicating that the power

model performs well compared to the logistic model in the CRM, it is expected that

the power model-based CRM will outperform the 3 + 3 method.

We now consider how the power model performs when the level of bioavail-

ability is only 65%. The results for 65% bioavailability can be seen in 4.10 and 4.11.

The CRM power model continues to outperform the standard design at this

Figure 4.10: Dose Selection for 65% Bioavailability

lower level of bioavailability. In Table 4.4, we found the expected MTD at 65%

bioavailability to be 527.0 mg with a standard deviation of 73.6. This is equivalent

to the fifth dose level. The CRM power model selects this dose 56.6% of the time

while the 3 + 3 design selects this level only 6% of the time. More importantly,

the CRM model selected a sub-therapeutic dose 21.2% of the time while the 3 + 3

selected a sub-therapeutic dose 94% of the time.
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Figure 4.11: Number of Patients Assigned to Each Dose Level for 65% Bioavailability

We now compare the dose level assignments. In the CRM, an average of 9.19

patients were assigned to the fifth dose level in each of the trials. The 3 + 3 only

assigned an average of 1.9 patients to the fifth dose level in each trial. Based on

these simulation results, the CRM power model is clearly superior to the standard

design when we account for sub-bioavailability.

We conclude, not surprisingly, that the CRM power model outperforms the

standard design. However, we are also interested in comparing the power and logistic

models under sub-bioavailability. To compare the performance of the two models,

we look at the accuracy of the dose selection through the following MTD error plots.

A negative value on the horizontal axis indicates that a lower dose than the true

MTD was selected while a positive value indicates that a higher dose was selected.

A value of zero indicates that the expected MTD was selected. We consider the

bioavailability levels of 99% and 65%.
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Figure 4.12: MTD Error Plot for 99% Bioavailability

Figure 4.13: MTD Error Plot for 65% Bioavailability
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When we have 99% bioavailability in the patient population, the logistic model

appears to be performing slightly better than the power model. It is more likely to

select the correct dose level to recommend as the MTD. Also, the power model

exhibits a greater frequency of recommending a more toxic dose than is appropriate.

However, when we decrease the level of bioavailability to 65%, the power model

performs much better than the logistic model. The power model is much more

likely to select the correct MTD, and also does not exhibit a high frequency of

recommending sub-therapeutic doses.

MTD error plots comparing the logistic and power model for the remaining

bioavailability scenarios can be found in Appendix D.

4.5 Bioavailability: A Maximum Absorbable Dose

In Hande et al. (1993), an oncolytic drug was studied at various doses. Prior

to the bioavailability study, the physicians thought that the bioavailability would in-

crease as the dose increases. However, the study found that the mean bioavailability

for a 100 mg dose was 76% and 48% for a 400 mg dose. Since these results con-

tradicted the phyisicians’ prior beliefs, they performed an additional bioavailability

study and found that the maximum dose the body can absorb is 250 mg. Instead

of a constant rate of bioavailability, we now look at how the CRM responds when

there is a maximum absorbable dose.

We use the same doses and probabilities of toxicity as given in Table 4.2.

Consider the following model used to simulate the data:

logit [P (Y = 1|x)] = 3 + βx.

We allow the maximum absorbable dose, denoted by η, to be random variable and

consider three different distributions for η: η ∼ Normal(300, 50), η ∼ Normal(300, 75),

and η ∼ Normal(500, 50). If the assigned dose is greater than the maximum dose,

then the simulated toxicity outcome will be based on the maximum absorbed dose.
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The typical sample size for a Phase I trial is 30 patients. However, if certain

conditions are met, the trial can be stopped early. How does the CRM performs if

it is “aware” of the maximum absorbable dose and is allowed to stop early?

For our simulation, we allow the CRM to stop early if six patients have been

treated at the same dose, and the seventh patient is assigned that same dose. This

is the typical stopping rule employed in Phase I clinical trials (Ahn, 1998). For

each maximum absorbable dose, we compare two properties. First, we want to know

if there is a significant reduction in sample size if the stopping rule is employed.

Second, we want to know if the MTD is still correctly selected if the sample size is

reduced.

We first consider the case where η ∼ N(300, 75).

Figure 4.14: Dose Selection with 30 Patients - η ∼ N(300, 75)
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Figure 4.15: Dose Selection with an Average of 14.79 Patients - η ∼ Normal(300, 75)

The CRM appears to be adjusting for the maximum absorbable dose by recom-

mending slightly higher dose levels. However, even in the cases where the stopping

rule is employed, it still recommends the correct MTD the majority of the time.The

remaining results for this simulation can be found in Appendix E.

4.6 Discussion

In this chapter, we have looked at the effect of bioavailability on the perfor-

mance of the CRM and the 3 + 3 design. It is clear that accounting for the effect

of bioavailability can have an important impact on the value of the MTD that is

recommended for use in future trials. Based on our results and because of the im-

portance of this recommended dose, performing bioavailability studies prior to the

onset of the Phase I trial would benefit the effectiveness and efficiency of the trial.

We also found that the power model-based CRM outperforms the logistic

model-based CRM when the bioavailability is low. We plan on further investigating
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the reasons for this performance.

When the stopping rule is employed under the maximum absorbable dose sce-

nario, the sample size for the trial is significantly reduced to between 13-15 patients.

In a Phase I trial, the goal is to reach the MTD as quickly as possible in order to

avoid treating patients at either ineffective or toxic doses. While we do not know

what precisely what is causing this reduced sample size, it is possible that if the

bioavailability of the drug has been studied prior to the onset of the trial, this in-

formation can be incorporated into the trial design and the MTD can be selected

much more quickly.
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APPENDIX A

Censored Binomial Simulation Results

Table A.1: Simulation Results for θ = 0.05 - Unrestricted Censoring Intervals

n = 5 n = 10 n = 20

Estimate Mean SD Mean SD Mean SD

MLE 0.404 0.093 0.324 0.119 0.285 0.129

Posterior Mean 0.436 0.063 0.365 0.097 0.322 0.117

Posterior SD 0.206 0.02 0.182 0.041 0.164 0.057

Likelihood Interval Lower Bound 0.032 0.024 0.024 0.024 0.02 0.02

Likelihood Interval Upper Bound 0.870 0.088 0.743 0.171 0.658 0.225

Bayesian Interval Lower Bound 0.079 0.024 0.063 0.027 0.052 0.025

Bayesian Interval Upper Bound 0.832 0.071 0.722 0.142 0.637 0.196

Likelihood Interval Width 0.839 0.083 0.719 0.167 0.638 0.222

Bayesian Interval Width 0.753 0.059 0.659 0.128 0.585 0.182
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Table A.2: Simulation Results for θ = 0.05 - Restricted Censoring Intervals

n = 5 n = 10 n = 20

Estimate Mean SD Mean SD Mean SD

MLE 0.361 0.084 0.188 0.055 0.108 0.04

Posterior Mean 0.408 0.057 0.248 0.045 0.148 0.035

Posterior SD 0.195 0.012 0.130 0.01 0.079 0.008

Likelihood Interval Lower Bound 0.034 0.031 0.021 0.022 0.016 0.017

Likelihood Interval Upper Bound 0.825 0.069 0.52 0.065 0.306 0.052

Bayesian Interval Lower Bound 0.077 0.03 0.046 0.023 0.03 0.018

Bayesian Interval Upper Bound 0.796 0.056 0.538 0.055 0.332 0.047

Likelihood Interval Width 0.792 0.056 0.499 0.049 0.29 0.037

Bayesian Interval Width 0.719 0.038 0.492 0.036 0.302 0.03

Figure A.1: Simulation Results for θ = 0.10 - Unrestricted Censoring Intervals
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Table A.3: Simulation Results for θ = 0.10 - Unrestricted Censoring Intervals

n = 5 n = 10 n = 20

Estimate Mean SD Mean SD Mean SD

MLE 0.413 0.102 0.344 0.124 0.31 0.129

Posterior Mean 0.442 0.068 0.38 0.099 0.342 0.115

Posterior SD 0.205 0.02 0.182 0.039 0.166 0.054

Likelihood Interval Lower Bound 0.038 0.035 0.035 0.036 0.032 0.032

Likelihood Interval Upper Bound 0.873 0.089 0.756 0.166 0.68 0.212

Bayesian Interval Lower Bound 0.085 0.033 0.074 0.037 0.066 0.035

Bayesian Interval Upper Bound 0.835 0.072 0.734 0.139 0.657 0.186

Likelihood Interval Width 0.835 0.082 0.721 0.16 0.647 0.21

Bayesian Interval Width 0.75 0.059 0.66 0.122 0.591 0.171

Figure A.2: Simulation Results for θ = 0.10 - Restricted Censoring Intervals
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Table A.4: Simulation Results for θ = 0.10 - Restricted Censoring Intervals

n = 5 n = 10 n = 20

Estimate Mean SD Mean SD Mean SD

MLE 0.379 0.10 0.213 0.076 0.137 0.058

Posterior Mean 0.42 0.067 0.268 0.062 0.174 0.052

Posterior SD 0.195 0.012 0.133 0.01 0.084 0.009

Likelihood Interval Lower Bound 0.042 0.041 0.032 0.035 0.03 0.029

Likelihood Interval Upper Bound 0.835 0.074 0.545 0.082 0.342 0.071

Bayesian Interval Lower Bound 0.084 0.039 0.057 0.036 0.045 0.03

Bayesian Interval Upper Bound 0.804 0.060 0.56 0.069 0.364 0.064

Likelihood Interval Width 0.793 0.055 0.513 0.053 0.312 0.044

Bayesian Interval Width 0.72 0.038 0.502 0.039 0.32 0.035

Table A.5: Simulation Results for θ = 0.25 - Unrestricted Censoring Intervals

n = 5 n = 10 n = 20

Estimate Mean SD Mean SD Mean SD

MLE 0.447 0.115 0.40 0.131 0.382 0.131

Posterior Mean 0.465 0.076 0.422 0.101 0.4 0.11

Posterior SD 0.204 0.018 0.182 0.035 0.167 0.047

Likelihood Interval Lower Bound 0.057 0.054 0.068 0.064 0.078 0.065

Likelihood Interval Upper Bound 0.889 0.083 0.796 0.147 0.738 0.181

Bayesian Interval Lower Bound 0.102 0.049 0.106 0.006 0.112 0.064

Bayesian Interval Upper Bound 0.85 0.069 0.769 0.124 0.712 0.16

Likelihood Interval Width 0.833 0.077 0.728 0.139 0.659 0.179

Bayesian Interval Width 0.748 0.055 0.664 0.107 0.6 0.146
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Table A.6: Simulation Results for θ = 0.25 - Restricted Censoring Intervals

n = 5 n = 10 n = 20

Estimate Mean SD Mean SD Mean SD

MLE 0.425 0.128 0.305 0.126 0.256 0.099

Posterior Mean 0.45 0.085 0.342 0.102 0.28 0.089

Posterior SD 0.195 0.011 0.14 0.01 0.097 0.009

Likelihood Interval Lower Bound 0.064 0.059 0.079 0.073 0.099 0.065

Likelihood Interval Upper Bound 0.859 0.08 0.632 0.115 0.475 0.106

Bayesian Interval Lower Bound 0.105 0.054 0.104 0.07 0.114 0.064

Bayesian Interval Upper Bound 0.826 0.068 0.635 0.1 0.486 0.098

Likelihood Interval Width 0.795 0.052 0.553 0.053 0.376 0.044

Bayesian Interval Width 0.721 0.036 0.530 0.039 0.372 0.037

Figure A.3: Simulation Results for θ = 0.50 - Unrestricted Censoring Intervals
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Table A.7: Simulation Results for θ = 0.50 - Unrestricted Censoring Intervals

n = 5 n = 10 n = 20

Estimate Mean SD Mean SD Mean SD

MLE 0.501 0.122 0.501 0.136 0.5 0.13

Posterior Mean 0.501 0.081 0.05 0.103 0.05 0.106

Posterior SD 0.204 0.018 0.182 0.030 0.168 0.04

Likelihood Interval Lower Bound 0.085 0.073 0.133 0.107 0.166 0.121

Likelihood Interval Upper Bound 0.917 0.073 0.868 0.107 0.834 0.120

Bayesian Interval Lower Bound 0.127 0.062 0.166 0.094 0.197 0.10

Bayesian Interval Upper Bound 0.874 0.062 0.835 0.094 0.803 0.109

Likelihood Interval Width 0.831 0.074 0.735 0.119 0.668 0.15

Bayesian Interval Width 0.747 0.053 0.669 0.092 0.606 0.122

Figure A.4: Simulation Results for θ = 0.50 - Restricted Censoring Intervals
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Table A.8: Simulation Results for θ = 0.50 - Restricted Censoring Intervals

n = 5 n = 10 n = 20

Estimate Mean SD Mean SD Mean SD

MLE 0.5 0.141 0.502 0.164 0.498 0.118

Posterior Mean 0.5 0.094 0.502 0.133 0.498 0.107

Posterior SD 0.195 0.011 0.145 0.007 0.107 0.004

Likelihood Interval Lower Bound 0.101 0.076 0.210 0.122 0.287 0.103

Likelihood Interval Upper Bound 0.899 0.076 0.793 0.122 0.711 0.104

Bayesian Interval Lower Bound 0.139 0.067 0.225 0.11 0.293 0.097

Bayesian Interval Upper Bound 0.861 0.067 0.777 0.11 0.705 0.097

Likelihood Interval Width 0.798 0.05 0.583 0.039 0.424 0.018

Bayesian Interval Width 0.722 0.035 0.552 0.029 0.412 0.015

Figure A.5: Simulation Results for θ = 0.75 - Unrestricted Censoring Intervals
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Table A.9: Simulation Results for θ = 0.75 - Unrestricted Censoring Intervals

n = 5 n = 10 n = 20

Estimate Mean SD Mean SD Mean SD

MLE 0.552 0.114 0.6 0.131 0.618 0.131

Posterior Mean 0.535 0.076 0.578 0.102 0.6 0.11

Posterior SD 0.205 0.019 0.182 0.035 0.167 0.046

Likelihood Interval Lower Bound 0.11 0.083 0.203 0.147 0.262 0.178

Likelihood Interval Upper Bound 0.944 0.054 0.933 0.064 0.922 0.066

Bayesian Interval Lower Bound 0.149 0.069 0.23 0.125 0.287 0.158

Bayesian Interval Upper Bound 0.899 0.048 0.895 0.06 0.887 0.064

Likelihood Interval Width 0.834 0.077 0.731 0.139 0.66 0.176

Bayesian Interval Width 0.749 0.056 0.666 0.107 0.6 0.143

Figure A.6: Simulation Results for θ = 0.75 - Restricted Censoring Intervals
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Table A.10: Simulation Results for θ = 0.75 - Restricted Censoring Intervals

n = 5 n = 10 n = 20

Estimate Mean SD Mean SD Mean SD

MLE 0.57 0.13 0.698 0.123 0.746 0.099

Posterior Mean 0.547 0.086 0.66 0.1 0.722 0.088

Posterior SD 0.195 0.011 0.14 0.01 0.096 0.009

Likelihood Interval Lower Bound 0.138 0.081 0.37 0.113 0.527 0.106

Likelihood Interval Upper Bound 0.934 0.061 0.922 0.071 0.902 0.065

Bayesian Interval Lower Bound 0.172 0.069 0.367 0.098 0.516 0.097

Bayesian Interval Upper Bound 0.893 0.056 0.897 0.068 0.887 0.064

Likelihood Interval Width 0.796 0.052 0.552 0.053 0.375 0.044

Bayesian Interval Width 0.721 0.036 0.53 0.039 0.371 0.036

Figure A.7: Simulation Results for θ = 0.90 - Unrestricted Censoring Intervals
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Table A.11: Simulation Results for θ = 0.90 - Unrestricted Censoring Intervals

n = 5 n = 10 n = 20

Estimate Mean SD Mean SD Mean SD

MLE 0.587 0.1 0.656 0.123 0.691 0.130

Posterior Mean 0.557 0.067 0.62 0.098 0.66 0.115

Posterior SD 0.206 0.019 0.182 0.039 0.165 0.054

Likelihood Interval Lower Bound 0.126 0.087 0.243 0.165 0.323 0.213

Likelihood Interval Upper Bound 0.962 0.034 0.965 0.036 0.967 0.032

Bayesian Interval Lower Bound 0.164 0.071 0.265 0.138 0.345 0.187

Bayesian Interval Upper Bound 0.915 0.032 0.926 0.037 0.934 0.036

Likelihood Interval Width 0.836 0.081 0.723 0.16 0.644 0.21

Bayesian Interval Width 0.751 0.058 0.661 0.122 0.588 0.172

Figure A.8: Simulation Results for θ = 0.90 - Restricted Censoring Intervals
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Table A.12: Simulation Results for θ = 0.90 - Restricted Censoring Intervals

n = 5 n = 10 n = 20

Estimate Mean SD Mean SD Mean SD

MLE 0.623 0.099 0.785 0.077 0.862 0.059

Posterior Mean 0.582 0.067 0.731 0.062 0.826 0.052

Posterior SD 0.195 0.012 0.133 0.011 0.084 0.009

Likelihood Interval Lower Bound 0.166 0.073 0.454 0.082 0.658 0.071

Likelihood Interval Upper Bound 0.959 0.04 0.968 0.035 0.97 0.03

Bayesian Interval Lower Bound 0.197 0.06 0.439 0.07 0.636 0.064

Bayesian Interval Upper Bound 0.916 0.038 0.942 0.036 0.955 0.031

Likelihood Interval Width 0.793 0.055 0.514 0.054 0.312 0.044

Bayesian Interval Width 0.72 0.038 0.503 0.039 0.319 0.036

Figure A.9: Simulation Results for θ = 0.95 - Unrestricted Censoring Intervals
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Table A.13: Simulation Results for θ = 0.95 - Unrestricted Censoring Intervals

n = 5 n = 10 n = 20

Estimate Mean SD Mean SD Mean SD

MLE 0.596 0.093 0.672 0.12 0.716 0.129

Posterior Mean 0.564 0.063 0.631 0.097 0.679 0.117

Posterior SD 0.206 0.02 0.183 0.041 0.164 0.057

Likelihood Interval Lower Bound 0.129 0.088 0.25 0.171 0.344 0.225

Likelihood Interval Upper Bound 0.968 0.024 0.976 0.023 0.981 0.019

Bayesian Interval Lower Bound 0.167 0.071 0.273 0.142 0.365 0.197

Bayesian Interval Upper Bound 0.921 0.024 0.937 0.026 0.948 0.025

Likelihood Interval Width 0.839 0.083 0.726 0.167 0.637 0.223

Bayesian Interval Width 0.753 0.059 0.664 0.128 0.583 0.183

Figure A.10: Simulation Results for θ = 0.95 - Restricted Censoring Intervals
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Table A.14: Simulation Results for θ = 0.95 - Restricted Censoring Intervals

n = 5 n = 10 n = 20

Estimate Mean SD Mean SD Mean SD

MLE 0.642 0.081 0.812 0.055 0.892 0.04

Posterior Mean 0.594 0.055 0.752 0.045 0.852 0.036

Posterior SD 0.194 0.012 0.131 0.01 0.079 0.008

Likelihood Interval Lower Bound 0.177 0.068 0.48 0.065 0.694 0.053

Likelihood Interval Upper Bound 0.967 0.029 0.979 0.022 0.948 0.017

Bayesian Interval Lower Bound 0.206 0.055 0.462 0.055 0.668 0.047

Bayesian Interval Upper Bound 0.924 0.028 0.954 0.023 0.97 0.019

Likelihood Interval Width 0.79 0.056 0.499 0.049 0.29 0.037

Bayesian Interval Width 0.718 0.038 0.493 0.036 0.301 0.03
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APPENDIX B

Bioavailability Simulation Results for the One Parameter Logistic Model

B.1 90% Bioavailability

Figure B.1: Dose Selection for 90% Bioavailability

Figure B.2: Number of Patients Assigned to Each Dose Level for 90% Bioavailability
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B.2 75% Bioavailability

Figure B.3: Dose Selection for 75% Bioavailability

Figure B.4: Number of Patients Assigned to Each Dose Level for 75% Bioavailability
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B.3 35% Bioavailability

Figure B.5: Dose Selection for 35% Bioavailability

Figure B.6: Number of Patients Assigned to Each Dose Level for 35% Bioavailability
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APPENDIX C

Bioavailability Simulation Results for the One Parameter Power Model

C.1 90% Bioavailability

Figure C.1: Dose Selection for 90% Bioavailability

Figure C.2: Number of Patients Assigned to Each Dose Level for 90% Bioavailability
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C.2 75% Bioavailability

Figure C.3: Dose Selection for 75% Bioavailability

Figure C.4: Number of Patients Assigned to Each Dose Level for 75% Bioavailability
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C.3 35% Bioavailability

Figure C.5: Dose Selection for 35% Bioavailability

Figure C.6: Number of Patients Assigned to Each Dose Level for 35% Bioavailability
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APPENDIX D

Error Plots Comparing the One Parameter Logistic and Power Models

Figure D.1: MTD Error Plot - 90% Bioavailability

Figure D.2: MTD Error Plot - 75% Bioavailability
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Figure D.3: MTD Error Plot - 35% Bioavailability
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APPENDIX E

Results from the Maximum Absorbable Dose Scenario

Figure E.1: Dose Selection with 30 Patients - η ∼ Normal(300, 50)

Figure E.2: Dose Selection with an Average of 13.89 Patients - η ∼ Normal(300, 50)

95



Figure E.3: Dose Selection with 30 Patients - η ∼ Normal(500, 50)

Figure E.4: Dose Selection with an Average of 14.45 Patients - η ∼ Normal(500, 50)
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