
ABSTRACT

Analytic Modeling and Applications of Barotropic Flows over Sloping Topographies
Using Similarity Solutions

Ruy Ibanez Amador, M.S.M.E

Chairperson: Joseph Kuehl, Ph.D.

The continental slope is a region in the ocean that consists of a strong sloping

topography. The slope acts as a barrier to large scale geophysical transport, but

small scale mechanisms are not well understood. Studies are mostly limited to large

scale simulations and spatially limited field measurements. I developed an analytic

method to obtain a base flow field for regions of the continental slope. Using scaling

arguments, I reduce the system to the leading order dynamical balances and apply a

similarity method to find solutions of the flow. It is possible to retain the nonlinear

terms for a special case, which provides insight into the base nonlinear dynamics of

the flow. I show that the solutions are relevant to regions of the continental slope

using bathymetry data from the National Oceanic and Atmospheric Administration.
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CHAPTER ONE

Introduction

In this work I present an analytic model for oceanographic flows over a sloping

topography. There are various regions in the ocean for which this model is valid. I will

focus on the continental slope, which is a section in the ocean that has a strong slope

and connects the outer edge of the continental shelf to the deep ocean floor. Figure

1.1 is a diagram that shows different sections of the ocean’s topography, including the

continental slope.

Figure 1.1. Source: Wikimedia Commons

The scale of the ocean causes flows to behave in a manner that differs from

everyday flows we observe outside boundary layers. The large size of the ocean causes

viscous effects to be of little importance. In addition the rotation of the Earth, im-

parts a condition for currents to conserve their depth. In other words, a parcel of
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fluid will tend to follow along topographic features. This phenomena is formalized

in the statement of conservation of potential vorticity, which is a consequence of the

Earth’s rotation. This suggests that the continental slope acts as a barrier of material

transport between the outer edge of the continental shelf and the deep ocean floor.

Motivation

Ocean currents play an important role in various phenomena across multiple

disciplines, such as climate science, weather science, marine science, energy, etc. The

scale and complexity of the ocean make it very difficult to model using simple meth-

ods. The most commonly used methods for studying ocean currents are observational

programs and/or numerical simulations. These methods are resource intensive, and

thus can only provide limited results. Observations (Maier et al., 2016) require expen-

sive equipment and have limited range in their data sampling. Computational models

(Nguyen, Morey, Dukhovskoy, & Chassignet, 2015) require large amounts of computa-

tional power and suffer from imperfect understanding of flow initial conditions, flow

parameters and physics. In this work, I present an analytic mathematical method

to model large scale ocean flows with a sloping topography. My results can be used

to model the regions analyzed in the previously cited studies, but with minimal re-

sources. The transport mechanisms around the continental slope of materials (Maier

et al., 2016), energy (Jia Wang, 2003) and wildlife (John, Mittelstaedt, & Schulz,

1998) are not well understood. Studies are limited in resources and have been focused

away from understanding the base physics of the phenomenon. My analytic model

opens the possibility to study transport around the continental slope using analytic

Lagrangian methods. It can also help develop better numerical models by providing

a low order approximation for initialization of numerical simulations.
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CHAPTER TWO

A Mathematical Description of the Ocean

In this chapter I derive a mathematical description of the ocean. Using scaling

analysis I determine the relevant equations which model the dynamics of geophysical

flows over the continental slope. I also provide an introduction to the mathematical

techniques that I use to solve the final system of equations.

Scale Analysis of the Ocean

In the continental slope, the bottom topography has a strong slope that con-

nects the continental shelf to the abyssal ocean. I am interested in constructing a

mathematical description of this sloping region. Figure 2.1 is a surface plot of to-

pographic data near the Florida coast. It is easy to visually identify the continental

slope due to its rapid change in depth, relative to the size of the ocean.

Longitude W (deg)

Latitude N (deg)

Figure 2.1: Surface plot of the ocean topography near the Florida coast. The green region
indicates land.
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I can reduce the complex features of real world topographies to determine the

dominant components. In essence, I am simplifying the domain to an idealized de-

scription based on the scaling arguments. Figure 2.2 is a sketch of what the simplified

domain may look like and indicates the dominant scales that were taken into account.

While the figure shows a linear, ramp-like topography, it is not limited to that specific

shape.

Figure 2.2: Sketch of the domain. U is the stream velocity scale, Ω is the frame rotation
scale, ho is the depth scale, L is the downstream length scale and Lc is the cross-stream
length scale.

Typical length scales for sections of the continental slope are 

Downstream length scale L: O(105) m

Cross-stream length scale Lc: O(103) m

Depth length scale ho: O(103) m

Stream velocity scale U : O(10−1) m/s

Rotational scale Ω: O(10−4) rad/s

Viscosity scale ν: O(10−6) m2/s

4



The Equations of Motion

Based on the scales for the problem, I now seek the equations that describe the

fluid motion. I start with the Navier-Stokes equations in vector form (U = (u, v, w))

with no external forces (equation 2.1) and the continuity equation (equation 2.2).

∂U

∂t
+ U · ∇U = −∇P

ρ
+ ν∇2U (2.1)

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z
= 0 (2.2)

The first assumption I make is that the fluid is homogeneous and incompressible,

in other words, density is constant. This is known as the barotropic approximation.

The continuity equation then takes the following form

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.3)

Coriolis Effect

In geophysical flows the Coriolis effect, caused by the Earth’s rotation, has an

important role in the dynamics. The domain is a small inertial frame on the large

rotating body that is the earth. Figure 2.3 is a sketch of the domain on the rotating

spherical earth. To determine the influence of the rotating frame on the dynamics, I

must modify the Navier-Stokes equations by transforming to a rotating frame. I find

that additional terms are introduced into the Navier-Stokes equations.

Consider a rotating frame whose rotation is defined by the vector Ω, which is

constant and a position vector of constant magnitude A. The position vector A is in

5



Figure 2.3: A sketch of the Earth as a sphere and the domain of our problem. The Earth’s
rotation is defined by the vector Ω.

the rotating frame. The velocity of A is given by Ω×A = (dA
dt

)I , where the subscript

I denotes the velocity defined from the fixed frame.

Figure 2.4. Vector A on a rotating frame with a rotation vector Ω

Now consider an arbitrary (not necessarily constant) vector B in a rotating

frame. If I perform the same transformation, then the velocity of the vector in the

fixed frame is given by (dB
dt

)I = (dB
dt

)R + Ω× B where the I subscript represents the

fixed frame and R is the rotating frame. With this transformation I can implement

the rotating frame effects into the Navier-Stokes equations.

The change in velocity of a parcel of fluid in the rotating frame is described by

UI = UR + Ω×R (2.4)

6



where UI is the velocity in the fixed frame, R is the position and UR is the

velocity in the rotating frame

Applying the same transformation again to equation 2.4 gives

(
dUI
dt

)I = (
dUI
dt

)R + Ω× UI (2.5)

which can be rewritten as

(
dUI
dt

)I = (
dUR
dt

)R +
dΩ

dt
×R + Ω× (

dR

dt
)R + Ω× (UR + Ω×R) (2.6)

Note that the time derivative of Ω is zero, since the rotation of the earth is

constant, so it simplifies to

(
dUI
dt

)I = (
dUR
dt

)R + 2Ω× UR + Ω× (Ω×R) (2.7)

There are two added terms in the final equation. 2Ω×UR is the Coriolis accel-

eration and Ω × (Ω × R) the centrifugal acceleration. So, introducing the rotational

effects into the Navier-Stokes equations gives

∂U

∂t
+ U · ∇U = −∇P

ρ
+ ν∇2U − 2Ω× U − Ω× (Ω×R) (2.8)

The method I used to arrive at this equation is the same procedure presented

in Pedlosky (1979).

Let us analyze the centrifugal term Ω×(Ω×R). The centrifugal force is parallel

to that of gravity, and the order of magnitude of the centrifugal force Ω2Rearth ≈

10−4 is much smaller compared to that of gravity. Thus, it is possible to neglect the

centrifugal force. This is standard in the study of geophysical flows, as the centrifugal

term rarely is of a relevant magnitude.

Now I perform scale analysis to determine the dominant components of the

equations and further simplify our model. Let us first write the Navier-Stokes equation

7



in a scaled form. As an example of scaled form of ∂u
∂x

is U
L

, this means that the order

of magnitude of the partial derivative of the velocity over space will be approximately

of the order of the velocity scale over the length scale. Applying this to equation 2.8

and neglecting the centrifugal term gives

[
U

T

]
+

[
U2

L

]
= −

[
P

ρL

]
+

[
ν
U

L2

]
− [2ΩU ] (2.9)

I choose to neglect the time dependent term, as I am interested in finding

steady solutions to the base flow. Thus, only the advective acceleration is retained. By

multiplying by L
U2 I obtain the scale of the right hand terms relative to the advective

acceleration.

1 = −
[
P

ρU2

]
+
[ ν

UL

]
−
[
2

ΩL

U

]
(2.10)

Plugging in typical scales for the ocean gives

O(1) = −
[
P

ρU2

]
+O(10−9)−O(102) (2.11)

The Coriolis term scales inversely to the order of U
ΩL
≈ 10−2, this number is

called the Rossby number Ro. Since the inverse of the Rossby number is big in 2.11,

the dominant term in the equations is the Coriolis term. Also, note that the viscosity

term is very small, it scales with the inverse Reynolds number Re = UL
ν

. This means

that the viscous forces play a small role in the interior flow dynamics.

It is important to emphasize the spherical geometry of the Earth. The domain

is a Cartesian box on the surface of a spherical rotating frame, as seen in figure 2.3.

The domain is defined in such a way that the x, y and z axis represent east-west,

north-south and up-down respectively. I have to project the rotation vector Ω to the

Cartesian domain, giving Ω = (0, |Ω|cosφ, |Ω|sinφ), where φ is the azimuthal angle

(latitude).
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The Coriolis force acts using a cross product on the velocity. Thus, splitting

this term by component gives the following Coriolis accelerations components

ax = wΩy − vΩz (2.12)

ay = −wΩx + uΩz (2.13)

az = vΩx − uΩy (2.14)

where each subscript denotes the dimensional component. Note that Ωx = 0

and in the context of ocean flows, the vertical components of the velocity and Coriolis

acceleration are very small. Thus, I simplify the Coriolis accelerations to

ax = −vΩz (2.15)

ay = uΩz (2.16)

az = 0 (2.17)

With these approximations I can now express the Earth’s rotation effects on

the Navier-Stokes equations with a single constant f = 2|Ω|sinφ. Now that I have

determined the dominant Coriolis terms, I analyze the effects on the dynamics by

studying a dominated Coriolis flow, thus all terms are dropped from Navier-Stokes

except for pressure and the Coriolis force

−fv = −∂P
∂x

(2.18)

fu = −∂P
∂y

(2.19)

0 = −∂P
∂z

(2.20)

This approximation shows that the pressure gradient in the vertical direction

is 0, which suggests that the vertical velocity is constant and approximately 0, which

9



is consistent with the assumptions I made earlier. The two dimensional flow is bal-

anced by pressure gradients. This approximation is called ”geostrophic flow” and

demonstrates some of the special characteristics in dynamics in ocean flows.

The Sloping Bottom and Continuity Equation

Since I have assumed that the flow has constant density and is incompressible,

the continuity equation is defined as ∇ · U = 0. However, I must take into account

that the model has a sloping bottom. The bottom is impenetrable which adds another

condition that must be satisfied. The sloping bottom will force fluid to move in the

vertical direction as shown in figure 2.5. I can describe the induced vertical velocity

as

w = u
∂b

∂x
+ v

∂b

∂y
(2.21)

Recall from the geostrophic balance that w = 0, thus the continuity equation

can take the form

u
∂b

∂x
+ v

∂b

∂y
= 0 (2.22)

The result is that the flow aligns itself with isobaths, even in the presence of

obstacles, the flow will go around to preserve the same fluid thickness.

Now let us consider a more general case where w 6= 0. I can integrate the conti-

nuity equation ∇ ·U with respect to z since the horizontal velocities are independent

of z.

(
∂u

∂x
+
∂v

∂y
)

∫ b+h

b

dz + [w]b+hb = 0 (2.23)

Solving for w at each limit and combining gives

10



Figure 2.5: The bottom elevation is defined by b, h is the depth, the surface elevation is
defined as hs, which are displacements of the fluid top boundary from a reference height H.

∂hs
∂t

+
∂hu

∂x
+
∂hv

∂y
= 0 (2.24)

Where hs = h + b−H. The convenient aspect of this new continuity equation

is that the dependency on w has been eliminated by introducing a layer transport

dependent on hu and hv.

Vorticity Equations

The definition of relative vorticity is ω = ∂v
∂x
− ∂u

∂x
. Let us explore how adding the

rotational effects change the vorticity equation of the model system. It was established

that the Coriolis force plays an important role, because of this the flow becomes

flattened about the plane orthogonal to the rotation vector as shown in equations

2.18 to 2.20. In that approximation I neglected all components of the acceleration

for simplification purposes, but to understand the effects on the vorticity I retain the

acceleration terms, giving the following set of equations

11



Figure 2.6: The image shows two columns of equivalent potential vorticity. Conservation is
achieved by stretching and compressing the rotating column.

du

dt
− fv = −∂P

∂x
(2.25)

dv

dt
+ fu = −∂P

∂y
(2.26)

0 = −∂P
∂z

(2.27)

Where d
dt

is the material derivative ∂
∂t

+ u ∂
∂x

+ v ∂
∂y

Taking the curl of the equations gives

d

dt
(f +

∂v

∂x
− ∂u

∂y
) + (

∂u

∂x
+
∂v

∂y
)(f +

∂v

∂x
− ∂u

∂y
) = 0 (2.28)

which can be rewritten as

d

dt
(f + ω) + (

∂u

∂x
+
∂v

∂y
)(f + ω) = 0 (2.29)

Equation 2.29 shows that the vorticity equation includes the constant planetary

vorticity f in addition the relative vorticity. To better illustrate the consequences of

12



this, consider a column of fluid whose cross-section is given by dS and height by h.

Because the fluid is incompressible, it is possible to write conservation of volume as

d

dt
(h dS) = 0 (2.30)

Assuming h is constant over dS, I rewrite using equation 2.23 as

d

dt
dS = (

∂u

∂x
+
∂v

∂y
)dS (2.31)

This shows that a column of fluid under the influence of a rotating frame tends

to expand and reduce its height or contract and increase its height. Looking back at

the vorticity equation 2.29 one can start noticing similarities with 2.31. Combining

equations 2.28 and 2.31 gives

d

dt
(f + ω)dS = 0 (2.32)

then combining 2.30 and 2.32 yields

d

dt
(
f + ω

h
) = 0 (2.33)

The equation shows that the quantity f+ω
h

has to be conserved. This quantity

is called the potential vorticity q and will be useful for our analysis later.

The Ekman Layer

In the scale analysis I determined that the viscosity term plays a small role on

the dynamics, because the order of the viscous term in the Navier-Stokes equations is

small. The viscous scaling parameters in equation 2.10 are equivalent to the inverse

Reynolds number Re. In our problem Re = UL
ν
≈ 500. Typical fluid analysis suggests

that the viscous forces in the flow are negligible compared to the inertial forces.

However, if the viscous forces are neglected, information about the dynamics near the

boundary layer would be lost.
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I use a modified viscosity called Eddy viscosity νE. The order of the eddy

viscosity is much greater than the molecular viscosity ≈ 10−2. I calculate the Ekman

number which is the ratio of the viscous forces to the Coriolis forces.

Ek =
νE

ΩH2
≈ 10−4 (2.34)

The Ekman number is small, which suggests that the vertical shear plays a

small role in the interior flow equations. As I mentioned previously, it is not possible

to neglect the viscous effects close to the bottom boundary, so I calculate the length

where the viscosity is relevant with d =
√

νE
f

. This region of which is dominated by

the viscous effects in a rotating fluid is called the Ekman layer, which is an analog to

boundary layers in other fluid mechanics studies.

Following the approach in Cushman-Roisin and Beckers (2008), let us analyze

the flow in the Ekman layer using the Navier-Stokes equations

−f(v − v̄) = νE
∂2u

∂2z
(2.35)

f(u− ū) = νE
∂2v

∂2z
(2.36)

Note the flow equations are composed of two parts, the interior flow which is

defined by ū and v̄, and the flow near the bottom which is described by u and v.

Note that the interior flow fields are constant with z. The boundary conditions for

this problem are

u(z = 0) = 0 (2.37)

v(z = 0) = 0 (2.38)

u(z =∞) = ū (2.39)

v(z =∞) = v̄ (2.40)
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The solution to these equations is

u = ū+ e−
z−b
d (Acos(

z − b
d

) +Bsin(
z − b
d

)) (2.41)

v = v̄ + e−
z−b
d (Bcos(

z − b
d

)− Asin(
z − b
d

)) (2.42)

Where A and B are constants that are determined by the boundary conditions

(no slip and interior flow), b is the height terrain elevation and d is the Ekman layer

thickness. From the continuity equation, note that there is a non-zero divergence

w =
d

2
(
∂v

∂x
− ∂u

∂y
) (2.43)

thus there is an Ekman suction which is given by

∇ · ΠE = −d
2

(
∂v

∂x
− ∂u

∂y
) (2.44)

Final Equations

Note that from this point forward all subscripts of t, x and y represent partial

derivatives. For example (4f
k

)x = ∂
∂x

(4f
k

). Beginning with the following equations of

motion for the model:

ut + u
∂u

∂x
+ v

∂u

∂y
− fv = −1

ρ

∂P

∂x
+ ν

∂2u

∂x2
+ ν

∂2u

∂y2
+ ν

∂2u

∂z2
(2.45)

vt + u
∂v

∂x
+ v

∂v

∂y
+ fu = −1

ρ

∂P

∂y
+ ν

∂2v

∂x2
+ ν

∂2v

∂y2
+ ν

∂2v

∂z2
(2.46)

∂hs
∂t

+
∂hu

∂x
+
∂hv

∂y
+∇ · ΠE = 0 (2.47)

At this point it is convenient to rewrite the equations in such a way that includes

a kinetic energy term e = u2 + v2 and letting p = P
ρ

.
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ut − (f +
∂v

∂x
− ∂u

∂y
)v = −(p− e)x + ν∇2u (2.48)

vt + (f +
∂v

∂x
− ∂u

∂y
)u = −(p− e)y + ν∇2v (2.49)

∂hs
∂t

+
∂hu

∂x
+
∂hv

∂y
+∇ · ΠE = 0 (2.50)

These equations will be the foundation of my analysis, Kuehl and Sheremet

(2014) and Kuehl (2014).

Vorticity-Transport Equation

Equations 2.48 to 2.50 describe the barotropic dynamics of geophysical flows.

To further simplify the problem, I can reduce the number of equations by taking the

curl of the momentum equations. In other words, I take the partial derivative with

respect to x for the equation of v and subtract the partial derivative with respect to

y of u, giving the following equation

ωt+
∂

∂y
((f+

∂v

∂x
− ∂u
∂y

)v)+
∂

∂x
((f+

∂v

∂x
− ∂u
∂y

)u) = −(p−e)xy+(p−e)xy+ν∇2ω (2.51)

The energy and pressure terms cancel, reducing to

ωt +
∂

∂y
((f + ω)v) +

∂

∂x
((f + ω)u) = ν∇2ω (2.52)

Rewriting this equation by multiplying the inner terms by h
h

gives

ωt +
∂

∂y
(
(f + ω)

h
hv) +

∂

∂x
(
(f + ω)

h
hu) = ν∇2ω (2.53)

Note that the terms inside the derivatives are the potential vorticity q = (f+ω)
h

.

So, I rewrite this equation using a transport function ψ(x, y), which is defined as

ψx = hv and ψy = −hu
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ωt +
∂

∂y
(qψx)−

∂

∂x
(qψy) = ν∇2ω (2.54)

It is possible to rewrite this equation in the more compact form

ωt + J(ψ, q) = q(h)t − q
d

2
ω + ν∇2ω (2.55)

Where J(ψ, ω) is the Jacobian of the equation defined as

J(ψ, q) = qyψx − qxψy (2.56)

Also note

q(h)t − q
d

2
ω = q(ψxy − ψyx) (2.57)

I introduced through the definition of the continuity equation and by substi-

tuting terms, an Ekman suction term −q d
2
ω for the viscosity sub-layers. This is the

vorticity-transport equation, it has been shown to be a good model for topographically

controlled flows, such as the one I study by Zavala and van Heijst (2002).

Recall that the relative vorticity ω = ∂v
∂x
− ∂u

∂y
, written in form of the transport

equation, is

ω = (
ψx
h

)x + (
ψy
h

)y (2.58)

ω =
ψxx
h
− hxψx

h2
+
ψyy
h
− hyψy

h2
(2.59)

Using scaling analysis, on can see that the terms divided by h2 are much smaller

than the others. Thus, I can approximate relative vorticity as

ω =
ψxx
h

+
ψyy
h

(2.60)

In our solutions I will make the approximation that the term ψxx
h

is dominant. I

justify this approximation using scale analysis, as the cross-stream length scale is
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much smaller than the streamwise. Thus, the second order derivative of y is much less

important than x.

ω =
ψxx
h

(2.61)

Plugging back to equation 2.55 gives

ωt + J(ψ, q)− q(h)t = −(f + ω)

h

d

2
ω (2.62)

I make the final simplification by dropping the ω2 term on the right hand side,

and neglecting the time derivative terms and seeking a solution to the steady case.

J(ψ, q) = −fd
2h
ω (2.63)

This is the form of the vorticity-transport equation I will seek solutions to.

Similarity Solutions

I attempt to find solutions to the vorticity-transport equation using a similarity

solution. In the process I rewrite the equation of two spatial coordinates f(x, y) as

f(η(x, y)). The goal is to rewrite the equation of multiple variables I want to solve

in terms of a single nondimensional variable. The challenge is to find the proper

similarity variable η, such that it will reduce the complexity of the problem to a

solvable one. Similarity solutions work because the flow behavior scales spatially or

temporally. This means that the similarity variable relates geometric similarities of

the boundaries or dynamic similarity between flow fields Granger (1995). In this

work I have geometric similarity of boundaries. After finding a similarity variable

that works, I perform a transformation of coordinates of the partial derivatives. Since

the equations have partial derivatives of x and y I use chain rule to rewrite in terms

of the similarity variable η
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∂ψ(x, y)

∂y
=
∂ψ(η)

∂y
=
∂ψ′(η)

∂η

∂η

∂y
(2.64)
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CHAPTER THREE

Solutions to the Model Equations

In this chapter, I will seek solutions the equations that were derived in chapter

2. I will be looking at two special cases and will expand the two dimensional interior

flow solution to a three dimensional model by inclusion of the assumed Ekman layer.

Expanding Jet Solution

To model the continental slope I consider a domain where the mid-depth, ho, is

located at x = 0, the shallow side is in the positive x direction and the deep side on

the negative. I define the depth with a function h = ho − αxy−γ. Kuehl (2014) first

found an analytic solution to this topography for a special case of an expanding jet

of fluid, I will follow the same procedure in this section.

Earlier I derived the equations necessary for modeling the flow in a region of the

ocean with a sloping bottom. The resulting equation 2.63 describes the interior flow.

I need to define the boundary conditions to solve the equation and I must define the

boundary conditions in terms of transport to apply them to the vorticity-transport

equation.

ψ(∞, y) = Q (3.1)

ψ(−∞, y) = 0 (3.2)

ψ(x, 0) = Qerf(x) (3.3)

Equations 3.1 and 3.2 impose a condition that there must be a flow in the

direction of y which is defined by the total transportQ. While the boundary conditions

extend to infinity, this can be thought of as a long distance relative to the scale of the
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problem. The boundary condition 3.3 works as a source for the flow to be initialized,

while this is an unphysical condition, I can choose the proper y and x boundaries to

limit ourselves to solutions of physical relevance. Figure 3.1 is a sketch of the domain

I have constructed

Figure 3.1: A diagram of the domain. The origin of the coordinate system, the three bound-
ary conditions and the expected general flow field form is shown.

With the boundary conditions defined, I now turn to the vorticity-transport

equation in the simplified form I derived in chapter 2.

J(ψ, ω) = −df
2

ψxx
h2

(3.4)

Expanding the Jacobian gives

J(ψ, ω) = −hy
fψx
h2
− ψxψxxy

h2
+ 2hy

ψxψxx
h3

+ hx
fψy
h2
− ψyψxxx

h2
− 2hx

ψyψxx
h3

(3.5)

The terms divided by h3 will be of much smaller order than the rest, so I can

drop those and obtain

J(ψ, ω) = −hy
fψx
h2
− ψxψxxy

h2
+ hx

fψy
h2
− ψyψxxx

h2
(3.6)
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I assume that the dominant terms in the equation are the linear ones, and that

the equation to solve is

hx
fψy
h2
− hy

fψx
h2

= −df
2

ψxx
h2

(3.7)

Note that equation 3.7 is similar to that of the heat equation Tt = λTxx. For

the special case where the equation can be reduced to equation 3.8. Previous studies

have found solutions of the form ψ = erf(Λx), where Λ is some constant (Pijush

K. Kundu, 2011). These solutions are obtained using a similarity variable approach,

which encourages us to try the same.

hx
fψy
h2

= −df
2

ψxx
h2

(3.8)

I use a similarity variable to transform equation 3.7 to a simpler, solvable form.

The similarity variable is defined as

η = x(ky)n (3.9)

Where k and n are constants. Rewriting equation 3.7 using a normalized trans-

port function

g(η) =
ψ(x, y)

Q
(3.10)

where

gx = g′ηx = g′(ky)n (3.11)

gy = g′ηy = g′nx(ky)n−1 (3.12)

gxx = g′′(ky)2n (3.13)

Where the primes indicate derivatives with respect to η. Substituting into equa-

tion 3.7 gives
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−hy
fQgx
h2

+ hx
fQgy
h2

= −d
2

Qgxx
h2

(3.14)

hx
fQg′nx(ky)n−1

h2
− hy

fQg′(ky)n

h2
= −df

2

Qg′′(ky)2

h2
(3.15)

Substituting h = ho − αxy−γ and analyzing, I find solutions to the differential

equation under the following conditions

n = −1 + γ

2
(3.16)

k = (
α

2d
)

1
2n (3.17)

−1 ≤ γ < 1 (3.18)

The solution takes the form of

ψ = Q[
erf(η) + 1

2
] (3.19)

In Kuehl (2014) it was found that the value of γisrelatedtoshapeoftheflow.γ >

−1 results in an expanding flow to of the solution. For γ ≤ −1 the increased slope

would produce a compressing jet. In the next section I present my approach for the

compressing jet case.

Compressing Jet Solution

In the previous section I presented an analytic solution for an expanding jet

of fluid over a sloping topography. In this section, I present d a solution for the

compressing jet case. The domain is essentially the same, but condition 3.3 changes

to

ψ(x,∞) = Qerf(x) (3.20)

23



Figure 3.2: Plot of the velocity field and the transport. The contour lines represent transport
isolines. The velocity field is normalized by the maximum velocity.

Note that in this case the boundary conditions is a sink instead of a source.

This means that the solution will have to converge towards a singularity downstream.

Like in the previous case, I also distance myself from the limits of the domain, as they

lose physical significance. Figure 3.3 shows a sketch of the domain.

Additionally, I know from Kuehl’s study that I will be looking for a topography

of the form h = ho − αxy−γ where γ < −1. Now I go back to the vorticity-transport

equation but retain the nonlinear terms.

−hy
fψx
h2
− ψxψxxy

h2
+ hx

fψy
h2
− ψyψxxx

h2
= −fd

2

ψxx
h2

(3.21)
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Figure 3.3: Sketch of the domain. U is the stream velocity scale, Ω is the frame rotation
scale, ho is the depth scale and L is the plane length scale.

In this analysis I use a similarity variable of the form

η = Cxayb (3.22)

Where a, b and C are constants. Like in the previous solution, I define a nor-

malized transport function g(η) = ψ(x, y)/Q and substitute it into equation 3.21

−hyfgx − gxgxxy + hxfgy − gygxxx = −fd
2
gxx (3.23)

Then I perform the same operations as with the previous solution. Expanding

the derivative terms gives

gx = aCxa−1ybg′ (3.24)

gy = bCxayb−1g′ (3.25)

gxx = a2C2x2(a−1)y2bg′′ + a(a− 1)Cxa−2ybg′ (3.26)

gxxx = (a3C3x3(a−1)y3b)g′′′+

3g′′(aCxa−1yb)(a(a− 1)Cxa−2yb)

+g′(a(a− 1)(a− 2)Cxa−3yb)

(3.27)
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gxxy = g′′′(a3C3x3(a−1)y3b)

+3g′′(η)(aCxa−1yb)(a(a− 1)Cxa−2yb)

+g′(η)(a(a− 1)(a− 2)Cxa−3yb)

(3.28)

Substitute these equations into equation 3.23

hx/Q(fg′Cxabyb−1)− hy/Q(fg′Caxa−1yb)

+Q−2((g′)2C2a2(a− 1)x2a−3by2b−1

−(g′)2C2a(a− 1)(a− 2)x2a−3by2b

+g′g′′C3a3x3a−3by3b−1

−g′g′′C3a2(a− 1)x3a−3by2b((a− 1)x−1 + 2yb−1)

+g′g′′′C4a3x4a−4by4b−1 − g′g′′′C4a3x4a−4by4b−1)

= −fd/2[g′Ca(a− 1)xa−2yb + g′′(Caxa−1yb)2]

(3.29)

The terms of g′g′′′ cancel, leaving only the terms of (g′)2 and g′g′′ for the non-

linear part. If I let a = 1 the terms of (g′)2 become zero. This assumption is related

to linear sloping of the topography in x.

hxfg
′xbyb−1 − hyfg′yb + 2Qg′g′′by3b−1 = −fd/2g′′y2b (3.30)

The equation is greatly reduced, and if I let b = 1 it furthers simplifies to

hxfg
′xy−2 − hyfg′y−1 + 2Qg′g′′ = −fd/2g′′ (3.31)

By inspection I note that if I introduce a topography of the form h = ho−αxy3,

which also satisfies the condition of γ < −1, I am able to eliminate all variables x

and y, and obtain a differential equation in terms of η

4α

dC2
ηg′ + g′′ +

2QC

fd
g′g′′ = 0 (3.32)
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I rearrange and define the constants A = dC2

4α
and B = QC3

2fα
for easier manipu-

lation, which results in

ηg′ + Ag′′ +Bg′g′′ = 0 (3.33)

It is then clear that B scales the nonlinear component, while A the linear. I solve

equation 3.33 by using substitution and separation of variables. I define a substitution

variable κ = g′ and manipulate

ηκ+ Aκ′ +Bκκ′ = 0 (3.34)

ηκ+ A
dκ

dη
+Bκ

dκ

dη
= 0 (3.35)

(A+Bκ)dκ = −(ηκ)dη (3.36)

A+Bκ

κ
dκ = −(η)dη (3.37)

Integrating both sides gives

− (Bκ+ Aln [κ]) =
η2

2
+m (3.38)

where m is a constant of integration. It is possible to solve for κ using a special

function W (η) called the Lambert-W function, see appendix A for more detail about

the Lambert-W function. Solving for κ gives

κ =
AW (B

A
e−

2m+η2

2A )

B
(3.39)

Recall that κ = g′ is a sudo velocity, so to obtain the transport equation I must

integrate equation 3.39. Since this equation cannot be integrated analytically, I limit

myself to the linear case B = 0. To study this case I take the limit of equation 3.39

as B goes to 0

lim
B→0

g′ = e−
2m+η2

2A (3.40)
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Integrating gives us the transport function for the linear equation

g =

√
Aπ

2
e−

m
A erf(

η√
2A

) + n (3.41)

where n is some constant of integration. Applying the boundary conditions 3.1

and 3.2 to 3.41 tells us that n = 1
2

and m = A ln(
√

2Aπ) giving the transport equation

g =
1

2
erf(

η√
2A

) +
1

2
(3.42)

This linear solution has the same form to that of the expanding jet case when

A = 1
2
, but this solution is for a different set of conditions. Thus, I have successfully

expanded the set of cases one can study using analytic methods.

Now, let us examine the case where the nonlinear term B is retained. Equation

3.39 cannot be integrated with an analytic method, but I need to obtain the transport

in order to apply the boundary conditions to find m. I use numerical methods solve

this part of the problem. The first thing to note is that the boundary conditions are

defined at infinite distances, this is accounted for in the numerical approach by using

a large domain in the process, which works as an approximation to infinite conditions.

First, I integrate equation 3.39 using a trapezoidal method and with an initial guess

for m. The boundary condition 3.1 is met (this means the added integration constant

is equal to 0), but the boundary condition 3.2 is dependent on the value of m. To find

m I use an iterating scheme that searches for the appropriate value of m so that all

boundary conditions are met. Once I find m, the problem is completely solved. I can

now describe the interior flow, while keeping the nonlinear effects.

To confirm the validity of the approach, I numerically solve the nonlinear case

using the MATLAB bvpsolve function and a shooting forward Euler method. I find

good agreement for small ratios of B
A
< 0.1. For higher ratios, the methods became

unstable, but the analytic approach is still solvable using the method I described for

any value of B
A

.
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While the transport equation does not have a full analytic solution, I find that

the velocity field can be described in an analytic form.

ψx = hv = Q
dg

dη

dη

dx
(3.43)

ψy = −hu = Q
dg

dη

dη

dy
(3.44)

converting the similarity variable back to x and y coordinates gives

v = Q
g′Cy

h
(3.45)

u = −Qg
′Cx

h
(3.46)

I compare the nonlinear solution to the linear to check that the numerical

method converges to the linear case as I decrease B. Figure 3.4 shows a comparison of

different ratios of B
A

and the linear case. This comparison also demonstrates the effects

of the nonlinear terms in the dynamics. As the nonlinear term becomes bigger, the

width of the jet slowly increases. This is related to the inertial term in the equations

of motion.

So far I have ignored the constant C in the similarity variable. This constant is

related to the rate of contraction of the flow field and scales the linear and nonlinear

component. If C > 1 then the nonlinear term is scaled up, and the linear down and

if C < 1 the opposite happens. When plotting the linear solution and the nonlinear

solution, one can see that the effect of the nonlinear component is to slow down the

rate of contraction of the jet, as seen in figure 3.5.

Extension of Solutions

I can extend both solutions to describe the flow field from the bottom boundary

to the interior flow by using the Ekman layer solutions. Recall that equations 2.39 and

2.40 need the interior flow velocities to be solved. So, the solutions found in section
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Figure 3.4: A plot of the normalized transport solution in similarity variable space. There
are four lines plotted. One is the linear solution (B = 0) and the other three have the value
of B/A in the legend, where A = 1.

3.1 and 3.2 give the values of ū and v̄. Then by plugging in these values to equations

2.39 and 2.40, a flow field that takes into account the Ekman layer effects is obtained.

The vertical velocity w can be determined by integrating the following equation

∂w

∂z
= e( b−z

d
)[(
∂v̄

∂x
− ∂ū

∂y
)sin(

z − b
d

)

+
1

d

∂b

∂x
([ū− v̄]cos(

z − b
d

) + [ū+ v̄]sin(
z − b
d

)

+
1

d

∂b

∂y
([ū+ v̄]cos(

z − b
d

) + [ū− v̄]sin(
z − b
d

))]

(3.47)

Since ū and v̄ are independent of z integrating gives

w = e
b−z
d (−[

∂b

∂x
(ū− v̄) + d(

∂v̄

∂x
− ∂ū

∂y
)cos(

z − b
d

)− (
∂b

∂x
+
∂b

∂y
)(ū+ v̄)sin(

z − b
d

))

(3.48)

Note from equations

ψx = hv (3.49)
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Figure 3.5: Plot of the velocity field and the transport. The contour lines represent transport
isolines. The velocity field is normalized by the maximum velocity

∂v̄

∂x
=

∂

∂x
(
ψx
h

) =
ψxx

h
− hx

ψx
h2

(3.50)

which in terms of the normalized transport equation using the similarity variable is

∂v̄

∂x
=
ψxx
h
− hx

ψx
h2

=
Qa2C2y2g′′

h
− hx

QCyg′

h2
(3.51)

and for ū

−∂ū
∂y

= − ∂

∂y
(
ψy
h

) =
ψyy
h
− hy

ψy
h2

(3.52)

Which can also be solved using the solutions I found. At this point all that is needed

is to plug in the values from the solution. Thus, I have created a three dimensional
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model that accounts for all dominant forces with the effects introduced by viscosity

through the Ekman layer.
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CHAPTER FOUR

Applications

In this chapter I use bathymetry data from the National Oceanic and Atmo-

spheric Administration (NOAA) ETOPO1 database to estimate flow fields in portions 

of the continental slope using a code I developed in MATLAB. I analyze large sections 

of the ocean and use the MATLAB code to determine regions where the analytic solu-

tions are applicable. In other words, I search for regions that satisfy the topographic 

constraints (can be described using a topographic function h = ho − αxy−γ ). I will 

present two cases, one for the sections of the continental slope along the Florida coast 

and a region of strong sloping near the Norwegian coast.

MATLAB Code

To start the analysis, I download topographic data from the NOAA ETOPO1 

database. The data file is in the form of an .xyz file which contains coordinates and 

depth. The data samples I analyze are typically larger than 300 km by 300 km, 

because of this the raw data file is too big and impossible to process due to memory 

constraints. In order to convert the data size into something manageable, the code 

reduces the resolution of the topography by reading a limited number of grid points. 

This results in loss of some of the finer features of the topography, but retain the large 

scale shape of the slope which is what I am interested in. With the reduced data, the 

code applies a thin-plate interpolation surface fit. This generates a single continuous 

function that can give the depth at any point in x and y, with this function it becomes 

much easier to process and search for regions of interest.

Now that the data is easy to process, I manually input the middle depth ho

of the region of interest. The code identifies the points that define the isobath line
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for ho. From the physics of the flow, I expect the mean flow to approximately follow

isobath lines due to conservation of potential vorticity. Because the flow follows the

isobath I can define the origin of the x axis (x = 0) to be located at ho. Thus the

coordinate system is defined such that the ho isobath is the streamwise direction and

orthogonal lines are the cross-stream distance.

The code calculates the points that define orthogonal lines to the isobath to find

the local slope in the x direction. The orthogonal lines have a length which is manually

inputted to ensure they capture the entire continental slope region. In other words,

the orthogonal lines will extend from the continental shelf to the basin. Inserting the

x and y points that define the orthogonal lines into the surface fit I generated earlier

gives the depth h at each point of the orthogonal line. Then the code applies a linear

fit of the form h(x) = αxx+β of h versus x at each orthogonal line. This line fit gives

the local slope in the x direction αx, note that β has to be ho because I have defined

h(0) = ho. The code has defined αx and can relate it to a position in y by calculating

the distance between each orthogonal line center. Then the code fits curves to αx

versus y which give the change of the slope in x in the streamwise direction, i.e. as a

function of y. The curves fitted to αx versus y are of the form αx(y) = αy(y − yo)−γ,

where yo is a shift in the y direction and γ is the constant related to the topographic

constraint of the analytic solutions. If the code finds a good fit for a value of γ and

satisfies the topographic constraints, then it has found a section of the ocean in the

data set where the flow field can be calculated using the analytic solutions.

To obtain the topographic function from the fitted function, to the form h(x, y) =

αxy−γ − ho as defined in the analytic solutions, I need to use the fit parameters αx

and yo. Recall that the first fitted line defines h(x) = αxx − ho at a specific point

in y. The code also determined a curve that defines αx as a function of y. So, by

combining both functions I can write h(x, y) = αy(y − yo)−γx − ho, which with the

appropriate selection of y it can be rewritten as h(x, y) = αyy ∗−γ x−ho, thus αy = α.
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The appropriate selection of y is a shift in the coordinate, so y∗ = y − yo, where y∗

is the appropriate downstream coordinate.

The code is available for download online at www.ruyibanez.com .

Examples

From the examples I present, it will be clear that there are many cases in the

ocean where the topography is approximately h = ho − αxy, (γ = −1). For the

contracting solution if α is very small it will result in nearly uniform flow fields, as

a consequence the flow fields may not appear contracting or expanding to the eye in

the examples, since the effects are very subtle. And for γ = 1 in the expanding jet

solution it results in a uniform flow. The Ekman effects are captured in the flow field

and is shown by the spiraling of the velocity in near the bottom.

Gulf of Mexico

Applying the MATLAB code to a section of the continental slope region off the

Florida coast. The analyzed region is located at 86.2o west, 82.9o west, 29.7o north

and 23.9o north and I choose the middle depth to be ho = 1250 m. Figure 4.1 shows

the points that are sampled to determine αx

Figure 4.2 shows the αx versus y plot. It shows multiple regions where a solution

can be applied. I present the solution for the region with the slope α = 1.5 ·10−6 m−1.

I apply the expanding jet solution with the Ekman layer expansion. The parameters

I use are the following

x = −7.5 km to 7.5 km

y = 21 km to 63 km

ho = 1250 m

νE = 10−2 m/s2
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Figure 4.1: Shown is a map of the region of interest near the Florida coast. The red dots
symbolize the locations that are sampled for orthogonal αx fits. The length of the sample
is shown in some cases as the black orthogonal lines.

Q = 106 m2/s

The resulting velocity field is plotted in figure 4.3.

Norwegian Coast

I look at a sloping region by the Norwegian coast located at 3.6o east, 12.4o

east , 64.6o north and 68.5o north. I perform the same procedure as with the Florida

coast. For brevity I will only show the equivalent figures to the previous analysis.

The parameters I use are the following

x = −10 km to 10 km
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Figure 4.2: The blue line is a linear fit, so it shows a region that can be described as
h = ho − αxy. The black line is a cubic fit, which means it the region can be described as
h = ho − αxy3. The labels indicate the value of α and the range of y∗ for each fit

Figure 4.3: Resulting velocity field and topography for the region of interest in the Florida
coast. All axis are in meters.
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Figure 4.4: Shown is a map of the region of interest near the Florida coast. The red dots
symbolize the locations that are sampled for orthogonal αx fits. The length of the sample
is shown in some cases as the black orthogonal lines.

y = 385 km to 400 km

ho = 900 m

νE = 10−2 m/s2

C = 10−2 m−2

Q = 107 m2/s

α = 6.3 · 10−19 m−3

38



Figure 4.5: The blue line is a linear fit, so it shows a region that can be described as
h = ho − αxy. The black line is a cubic fit, which means it the region can be described as
h = ho − αxy3. The labels indicate the value of α and the range of y∗ for each fit

Figure 4.6: Resulting velocity field and topography for the region of interest in the Norwegian
coast. All axis are in meters.
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CHAPTER FIVE

Conclusion

Summary

I have found an analytic solutions using similarity variables for flow fields with

sloping sections in the ocean. I constructed the model by determining the dominant

dynamics using scaling arguments, thus simplifying the equations of motion so that

I am able to obtain solutions of the base flow in special cases. These special cases

are related to the topographic geometry and I proved in the applications section that

these geometries can be commonly found in regions of the ocean. The compressing

jet solution provides insight into the effects of the nonlinear inertial terms in the

equations. I find that the inertia tends to resist a change in the flow field. The effects

may or may not be of relevance depending on the parameters of the specific domain,

which means that for slower flows the linear solution can be a good approximation.

This solution shows the consistency of using the methods Kuehl (2014) used for

the expanding jet. It is possible that by modifying the similarity variable I can find

solutions to other special cases. Finally, I expanded the two dimensional solutions

into a three dimensional base flow solution that accounts for the low order viscous

effects.

Future Work

While the analytic solution shows properties that are consistent with the prop-

erties of geophysical flows in the ocean, I cannot guarantee that the approximation is

accurate until I have observational and/or experimental data. At the time of writing, I

am building a rotating tank experiment which will be able to replicate the conditions

I studied in this analytic work.
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In the introduction I emphasized the importance of the understanding the mech-

anisms of transport in the ocean. One of the benefits that the analytic solutions

provide, are that one can use Lagrangian methods to find analytic characteristics

of transport. I have performed preliminary calculations using lobe dynamics as in

Samelson and Wiggins (2000) and found that the implementation of the Ekman ef-

fects into the flow solutions generate mixing regions along the ho isobath, which can

be a mechanism of transport between the shallow and deep side of the topography.

This needs to be studied further, it could be an important result, as these topographic

conditions are typically considered barriers of transport to the dynamics of potential

vorticity.

41



APPENDICES

42



APPENDIX A

Lambert W function

Following Corless, Gonnet, Hare, Jeffrey, and Knuth (1996), the Lambert W

function, also known as the product log, is the inverse function

f−1(xex) = W (x) (A.1)

The function is described by an infinite series

W (x) =
∞∑
k=1

(−k)k−1xk

k!
(A.2)

In our solution we require to solve an equation of the following form

aln(x) + bx = −y
2 + c

2
(A.3)

if we exponentiate both sides

xaebx = e−
y2+c

2 (A.4)

Now take the power of 1
a

of both sides

xe
b
a
x = e−

y2+c
2a (A.5)

Multiplying by b
a

on both sides allows us to use the W Lambert definition

b

a
xe

b
a
x =

b

a
e−

y2+c
2a (A.6)

Which using the definition gives

b

a
x = W (

b

a
e−

y2+c
2a ) (A.7)
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APPENDIX B

Matlab Code

Contents

• Define h o

• depth Adjustment (for lakes)

• Plotting range

• Data reader

• Conversion

• centering x and normalzing everything

• Fitting thinplateinterp

• Scaling operation for roatation this function has been removed, it is redun-

dant.

• Normalized plot of region

clc

clear all

close all

Define h o

follow = 1800;

% follow = 900;

% follow = 100;

depth Adjustment (for lakes)

zadj = 0;

% zadj = 183; % Coast line height
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Plotting range

clines = -20:-15:-500;

clines = -300:-500:-4000;

% clines = -300:-150:-1800;

Data reader

reading xyz file

fileID = uigetfile(’.../*.xyz’);

file_name = fileID;

xyzreader(fileID) % This function just reads an xyz file and converts it to something matlab can handle

load(’A’)

x = double(A(:,1));

y = double(A(:,2));

z = double(A(:,3))-zadj;

% center coordinates of section

thetaavg = mean([max(x) min(x)]);

phiavg = mean([max(y) min(y)]);

disp(’coordinates x:’)

West = min(x)

East = max(x)

disp(’coordinates y:’)

South = min(y)

North = max(y)
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Conversion

x-length y-length Convert to cartesian

theta_1 = min(x);

theta_2 = max(x);

phi_1 = 90-min(y);

phi_2 = 90-max(y);

Earth_radius = 6367;

theta_delta = abs(max(x)-min(x));

phi_delta = abs(max(y)-min(y));

x_length = [Earth_radius*cosd(theta_1)*sind(phi_1) Earth_radius*cosd(theta_2)*sind(phi_1) Earth_radius*cosd(theta_1)*sind(phi_2) Earth_radius*cosd(theta_2)*sind(phi_2)];

y_length = [Earth_radius*sind(theta_1)*sind(phi_1) Earth_radius*sind(theta_2)*sind(phi_1) Earth_radius*sind(theta_1)*sind(phi_2) Earth_radius*sind(theta_2)*sind(phi_2)];

z_length = [Earth_radius*cosd(phi_1) Earth_radius*cosd(phi_1) Earth_radius*cosd(phi_2) Earth_radius*cosd(phi_2)];

for i = 1:4

R_vector(i,:) = [x_length(i),y_length(i),z_length(i)];

end

% As a note: 1-NW 2-NE 3-SW 4-SE

Sx = norm(R_vector(2,:)-R_vector(4,:))

Sy = norm(R_vector(1,:)-R_vector(2,:))

centering x and normalzing everything

x = x - min(x);

x = x/max(x);
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x = x - max(x)/2;

y = y - min(y);

y = y/max(y);

y = y - max(y)/2;

Fitting thinplateinterp

A = [x y z]*rotz(0);

x = (A(:,1));

y = (A(:,2));

z = (A(:,3));

T = table(x,y,z);

f = fit([T.x, T.y],T.z,’thinplateinterp’);

Scaling operation for roatation this function has been removed, it is redundant.

Rx = [-Sx/2 -Sx/2 Sx/2 Sx/2];

Ry = [-Sy/2 Sy/2 -Sy/2 Sy/2];

Rz = [1 1 1 1];

SRA = [Rx’ Ry’ Rz’];

% x and y scales in kilometers

Sx = abs(SRA(1,1))+abs(SRA(2,1));

Sy = abs(SRA(1,2))+abs(SRA(2,2));

lx = linspace(-0.5,0.5,250);

ly = linspace(-0.5,0.5,250);

%

X = meshgrid(lx,lx);

Y = meshgrid(ly,ly)’;
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Z = f(X,Y);

Normalized plot of region

figure(1)

hold on

view(2)

contour(X,Y,Z,clines,’ShowText’,’on’,’linewidth’,1);

SSplot = contour(X,Y,Z,[-follow -follow],’ShowText’,’on’,’linewidth’,3);

xlabel(’x’)

ylabel(’y’)
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APPENDIX C

MATLAB - .xyz Reader

function xyzreader(fileID)

fileID = fopen(fileID);

C = textscan(fileID,’%f32 %f32 %f32’);

A = cell2mat(C);

A = A(1:round(length(A))*.001:round(length(A)),:);

size(A)

save(’A’)

fclose(’all’);

end

Not enough input arguments.

Error in xyzreader (line 2)

fileID = fopen(fileID);
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APPENDIX D

MATLAB - Orthogonal Line Procedure

Contents

• Orthogonal lines

• Traveled

• Fitting

• Plot orthogonal lines

• Plot Center Points

• Flip to fit

Orthogonal lines

l =.05;

% StartT = round(.025*length(SSplot));

% EndT = round(.7*length(SSplot));

StartT = round(.05*length(SSplot));

EndT = round(.95*length(SSplot));

Ref = 1;

for i = StartT:round(.0025*length(SSplot)):EndT
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Before = SSplot(:,i-1);

Center(:,Ref) = SSplot(:,i);

After = SSplot(:,i+1);

Tang = After-Before;

Orth = null(Tang’);

Orthv(:,:,Ref) = Orth*linspace(-l/2,l/2,100)+Center(:,Ref);

Orthz(:,Ref) = f(Orthv(1,:,Ref),Orthv(2,:,Ref));

CrossL(Ref) = sqrt((Sx*1000)^2*(Orthv(1,100,Ref)-Orthv(1,1,Ref))^2+(Sy*1000)^2*(Orthv(2,100,Ref)-Orthv(2,1,Ref))^2);

Ref = Ref+1;

end

Traveled

Traveled(1) = 0;

for i = 2:length(Center)

Moved = (Center(:,i)-Center(:,i-1));

Moved = norm([Moved(1)*Sx*1000 Moved(2)*Sy*1000]);

Traveled(i) = Moved+Traveled(i-1);

end

Fitting

for i = 1:length(Center)

LLC = linspace(-CrossL(i)/2,CrossL(i)/2);

ZZC = Orthz(:,i);

[zlfit,zlfitp] = fit(LLC’,ZZC,’poly1’);
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rsqx(i) = zlfitp.rsquare;

alphax(i)=zlfit.p1;

end

Plot orthogonal lines

figure(1)

for i = 1:length(Center)

hold on

plot(Orthv(1,:,i),Orthv(2,:,i),’k-’)

end

Plot Center Points

figure(1)

hold on

plot(Center(1,:),Center(2,:),’r.’,’markersize’,12)

plot(Center(1,1),Center(2,1),’b.’,’markersize’,18)

Flip to fit

flipper = input(’flip? yes = 1 no = 0: ’);

if flipper == 0

figure(9)

hold on

plot(Traveled,alphax,’r-’,’linewidth’,1.5)

% plot(alpha,’r-’,’linewidth’,1)

plot(Traveled,alphax,’k.’,’markersize’,14)

% plot(alpha,’r.’,’markersize’,12)

end
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if flipper == 1

figure(9)

hold on

plot(Traveled,fliplr(alphax),’r-’,’linewidth’,1.5)

% plot(alpha,’r-’,’linewidth’,1)

plot(Traveled,fliplr(alphax),’k.’,’markersize’,14)

% plot(alpha,’r.’,’markersize’,12)

end

disp(’average cross distance’)

avgCrossL = mean(CrossL)

clear Ref
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APPENDIX E

MATLAB - Fitting

Contents

• Traveled,alphax

• Pause

• Normalize section

• Fit to normalized coordinates

• Linear Fitting

• Sqrt Fitting

• Cubic Fitting

Traveled,alphax

if flipper == 0

alpha_fit = alphax;

end

if flipper == 1

alpha_fit = fliplr(alphax);

end

Pause

figure(10)

hold on

plot(alpha_fit,’r-’,’linewidth’,1)

plot(alpha_fit,’k.’,’markersize’,12)
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pause

XC(1) = input(’min? ’);

XC(2) = input(’max? ’);

Normalize section

alpha_i = alpha_fit(XC(1):XC(2));

alpha_i_min = 0; % DO NOT SHIFT ALPHA IT WILL ADD AN X TERM

% alpha_i_min = min(alpha_i);

alpha_i_delta = max(alpha_i)-min(alpha_i);

alpha_n = (alpha_i-alpha_i_min)/alpha_i_delta;

% alpha_i_delta = 0;

% alpha_n = alpha_i;

y_i = Traveled(XC(1):XC(2));

y_i_min = min(y_i);

y_i_delta = max(y_i)-min(y_i);

y_n = (y_i-min(y_i))/y_i_delta;

% y_i_min = 0;

figure(12)

hold on

plot(y_n,alpha_n,’r-’,’linewidth’,1)

plot(y_n,alpha_n,’k.’,’markersize’,12)
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Fit to normalized coordinates

Linear Fitting

[linear_fit,linear_fit_p] = fit(y_n’,alpha_n’,’poly1’);

if linear_fit_p.rsquare < .98

disp(’confidence for linear case too low’)

else

figure(12)

plot(y_n,linear_fit(y_n),’b-’,’linewidth’,2)

disp(’confidence for linear is good’)

new_y = linspace((0 + linear_fit.p2)*y_i_delta,(1 + linear_fit.p2)*y_i_delta,length(y_i));

fin_alpha = linear_fit.p1/y_i_delta*alpha_i_delta;

alpha_x_fin=fin_alpha*new_y+alpha_i_min;

figure(9)

hold on

plot(new_y-min(new_y)+y_i(1),alpha_x_fin,’b-’,’linewidth’,2)

alpha_string = num2str(fin_alpha)

yo_string = num2str([new_y(1) new_y(end)])

xl = y_i(round(.5*length(y_i)));

yl = alpha_x_fin(round(.5*length(alpha_x_fin)));

xly = y_i(round(.4*length(y_i)));

yly = alpha_x_fin(round(.4*length(alpha_x_fin)));

% txt1 = [’\alpha = ’ alpha_string];

% text(xl,yl,txt1)
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% txt2 = [’y* = ’ yo_string];

% text(xly,yly,txt2)

finx = meshgrid(linspace(-avgCrossL/2,avgCrossL/2));

finy = meshgrid(linspace(min(new_y),max(new_y)))’;

finz = (fin_alpha*finy+alpha_i_min).*finx-follow;

figure(66)

surf(finx,finy,finz)

% contour(finx,finy,finz)

end

Sqrt Fitting

ft1 = fittype(’a*(x+b)ˆ.5’,’coefficients’,{’a’,’b’}); [sqrt fit,sqrt fit p] = fit(y n’,alpha n’,ft1);

if cubic fit p.rsquare< .99 disp(’confidence for Sqrt case too low’) else plot(y n,cubic fit(y n),’g-

’,’linewidth’,2) disp(’confidence for Sqrt is good’) new y = linspace((0 + cubic fit.b)*y i delta,(1

+ cubic fit.b)*y i delta,length(y i)); fin alpha = cubic fit.a/y i deltaˆ.5*alpha i delta;

alpha x fin=fin alpha*new y.ˆ.5+alpha i min;

figure(9)

plot(y_i,alpha_x_fin,’b-’,’linewidth’,1.5)

finx = meshgrid(linspace(-avgCrossL/2,avgCrossL/2));

finy = meshgrid(linspace(min(new_y),max(new_y)))’;

finz = (fin_alpha*finy.^.5+alpha_i_min).*finx-follow;

figure(66)

surf(finx,finy,finz)

end
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Cubic Fitting

ft1 = fittype(’a*(x+b)^3’,’coefficients’,{’a’,’b’});

[cubic_fit,cubic_fit_p] = fit(y_n’,alpha_n’,ft1);

if cubic_fit_p.rsquare < .98

disp(’confidence for cubic case too low’)

else

figure(12)

plot(y_n,cubic_fit(y_n),’g-’,’linewidth’,2)

disp(’confidence for cubic is good’)

new_y = linspace((0 + cubic_fit.b)*y_i_delta,(1 + cubic_fit.b)*y_i_delta,length(y_i));

fin_alpha = cubic_fit.a/y_i_delta^3*alpha_i_delta;

alpha_x_fin=fin_alpha*new_y.^3+alpha_i_min;

figure(9)

plot(new_y-min(new_y)+y_i(1),alpha_x_fin,’g-’,’linewidth’,2)

alpha_string = num2str(fin_alpha)

yo_string = num2str([new_y(1) new_y(end)])

xl = y_i(round(.5*length(y_i)));

yl = alpha_x_fin(round(.5*length(alpha_x_fin)));

xly = y_i(round(.4*length(y_i)));

yly = alpha_x_fin(round(.4*length(alpha_x_fin)));

txt1 = [’\alpha = ’ alpha_string];

text(xl,yl,txt1)

txt2 = [’y* = ’ yo_string];
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text(xly,yly,txt2)

finx = meshgrid(linspace(-avgCrossL/2,avgCrossL/2));

finy = meshgrid(linspace(min(new_y),max(new_y)))’;

finz = (fin_alpha*finy.^3+alpha_i_min).*finx-follow;

figure(66)

surf(finx,finy,finz)

end

59



REFERENCES

Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J., & Knuth, D. E.
(1996). On the lambertw function. Advances in Computational Mathematics , 
5 (1), 329–359. Retrieved from http://dx.doi.org/10.1007/BF02124750 doi: 
10.1007/BF02124750 

Cushman-Roisin, B., & Beckers, J.-M. (2008). Introduction to geophysical fluid
dynamics. Academic Press.

Granger, R. A. (1995). Fluid mechanics. Dover.

Ibanez, R. (2017). Matlab ocean topography id. Retrieved from
https://ruyibanez.wordpress.com/
bathymetry-solver-and-analytic-sloping-barotropic-flow-solver/

Jia Wang, F. J. S., Moto Ikeda. (2003). A theoretical, two-layer, reduced-gravity
model for descending dense water flow on continental shelves/slopes. Journal
of Geophysical Research, 108 (C5).

John, H.-C., Mittelstaedt, E., & Schulz, K. (1998). The boundary circulation along
the european continental slope as transport vehicle for two calanid copepods
in the bay of biscay. Oceanologica Acta, 21 (2), 307 - 318. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0399178498800170 doi:
http://dx.doi.org/10.1016/S0399-1784(98)80017-0

Kuehl, J. (2014). An analytic solution for barotropic flow along a variable slope
topography. Geophysical Research Letters , 41 .

Kuehl, J., & Sheremet, V. (2014). Two-layer gap-leaping oceanic boundary currents:
experimental investigation. Journal of Fluid Mechanics , 740 , 97-113.

Maier, K. L., Brothers, D. S., Paull, C. K., McGann, M., Caress, D. W., & Conrad,
J. E. (2016). Records of continental slope sediment flow morphodynamic
responses to gradient and active faulting from integrated {AUV} and {ROV}
data, offshore palos verdes, southern california borderland. Marine Geology , -.
Retrieved from
http://www.sciencedirect.com/science/article/pii/S0025322716302304 doi:
http://dx.doi.org/10.1016/j.margeo.2016.10.001

Nguyen, T., Morey, S. L., Dukhovskoy, D. S., & Chassignet, E. P. (2015, 4).
Nonlocal impacts of the loop current on crossslope nearbottom flow in the
northeastern gulf of mexico. Geophysical Research Letters , 42 (8), 2926–2933.
Retrieved from http:https://dx.doi.org/10.1002/2015GL063304 doi:
10.1002/2015GL063304

Pedlosky, J. (1979). Geophysical fluid dynamics. Springer-Verlag.

Pijush K. Kundu, D. R. D., Ira M. Cohen. (2011). Fluid mechanics (fifth ed.).
Academic Press.

60

Sandra_Harman
Sticky Note



Samelson, R., & Wiggins, S. (2000). Lagrangian transport in geophysical jets and
waves. Springer.

Zavala, L., & van Heijst, G. (2002). Ekman effects in a rotating flow over bottom
topography. Journal of Fluid Mechanics , 471 , 239-255.

61




