
ABSTRACT

Experimental Investigation of a Time Scales-Based Stability Criterion over Finite
Time Horizons
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Feedback control systems that employ large area networks or other unpre-

dictable or unreliable communications protocols between sensors, actuators, and

controllers may experience non-uniform sampling characteristics. Previous work by

Poulsen, et. al. [1] gives a criterion for exponential stability of non-uniformly dis-

cretized feedback control systems, assuming sample periods drawn from a known

statistical distribution. However, the given stability theorem assumes an infinite time

horizon. This work therefore examines the exponential stability criterion experimen-

tally, over a finite time horizon, on a 2nd-order servo mechanism as well as a system

with higher-order dynamics.
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CHAPTER ONE

Background

1.1 Motivation and Outline

When a linear, time invariant dynamical system on continuous time is digitally

controlled via sample-and-hold with equally spaced samples, the equivalent discrete-

time dynamical system is also linear and time invariant. However, if the underly-

ing sample-and-hold time base is non-uniform the discretized system coefficients are

sample-time dependent. Despite this additional layer of complexity, several stability

results are given in the literature [1, 3–7], including a sufficient condition that ensures

“exponential stability almost surely” if the sample times are drawn from distributions

of known mean and variance. The limitation of these results is that their conclusions

depend on the assumption of an infinite time horizon. Practical control designs must

achieve good results over finite time horizons.

This thesis is organized as follows:1

Chapter One provides the necessary background material in control theory, sta-

bility theory and dynamic equations on time scales (DETS). We present a stability

criterion that we later use in Chapters Two and Four to analyze the behavior of closed

loop control systems on non-uniform time domains.

Chapter Two examines how an experimental 2nd-order servo system (Figure 2.1)

behaves under state feedback control with stochastically generated sample times over

a 15-second time horizon. We then compare the experimental results with the stability

criterion.

Chapter Three is a derivation of the solution to the Euler-Bernoulli partial dif-

ferential equation. This chapter builds physical and mathematical intuition for the

1 Large portions of this work are taken from papers [8, 9] the author submitted to the ASME
DSCC 2015 conference and the ASEE GSW 2016 conference.
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model identified in Chapter Four.

Chapter Four presents the results of an experiment similar to the one described

in Chapter Two. This experiment, however, uses a flexible beam instead of a rigid

arm, making the dynamics more difficult for analysis.

1.2 Control Theory

Control theory is an interdisciplinary field of engineering and mathematics that

describes the behavior of dynamical systems and there is a large body of literature

on the subject [2, 10, 11]. In general, a system can be described using the following

differential equation

ẋ(t) = f(x, t, u),

where x, t and u are the state, time, and input of the system, respectively and where

ẋ = dx
dt

. If f is linear, the following equation describes the dynamics of a single-input

system and is known as the state space model,

ẋ(t) = A(t)x(t) +B(t)u(t), (1.1)

where x : R → Rn, A : R → Rn×n and B : R → Rn×m. The vector x(t) represents

the state and A describes the internal dynamics of the system. Notice the time

dependence of the A and B matrices. In general, the dynamics of a system will

depend on t. A time-invariant system is one whose A and B coefficients do not

depend explicitly on time; that is, given an input u(t) and an output y(t), a time

shifted input u(t+ ∆t) will produce a time shifted output y(t+ ∆t). In other words,

time shift does not change the dynamics of a time-invariant system. The state space

representation of an LTI system is as follows:

ẋ(t) = Ax(t) +Bu(t). (1.2)

In reality, most systems are non-linear and a linear approximation must be determined

for the region of operation [12]. Once a system has been modeled, we can use control
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theory techniques to force the system to produce a desired output, provided certain

conditions are met. A system’s control signal is often generated by a computer,

meaning it changes at uniform, discrete times rather than continuously. In this case,

we use the following difference equation [10] to approximate the system dynamics

x(nT + T )− x(nT )

T
= Ax(nT ) +Bu(nT ), (1.3)

where T is the time step size and n is a positive integer. Note that A and B in

(1.3) are not the same as A and B in (1.2). But (1.3) is only applicable in cases

where the control signal is applied at constant intervals. Of interest in this work

are systems which produce (or sample) signals at irregular intervals. For example,

unlike QNX and certain Linux distributions, Microsoft Windows is not a real time

operating system, meaning that for many applications it cannot reliably produce a

control signal with the minimum required latency to stabilize certain systems [6, 13].

Systems such as these can be modeled by a more general class of equations called

dynamic equations on time scales. In fact, (1.2) and (1.3) are both special cases of

this more general class. Time scales will be discussed more later.

To make the context of this paper more clear, we should distinguish between

“hard” and “soft” real time systems. Hard real time means that the consequences

of a missed timing deadline are unacceptable and thus, missing a timing deadline is

considered a system failure. Examples of hard real time systems are pace-makers,

air traffic control systems, etc. We are more concerned with soft real time systems;

that is, systems whose timing requirements are not so strict as to preclude missing

“some” deadlines. Failure to meet a limited number of timing deadlines results in a

degradation of service quality, but not total failure. We are interested in how missing

timing deadlines affects the stability of such a system, which basically means how

“well behaved” the system is.
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1.3 Stability Theory

In an LTI system on continuous time, stability can easily be determined by check-

ing if the eigenvalues of the system matrix A of (1.2) are in the left half of the complex

plane. But for nonlinear and time-variant systems, pole-placement arguments are no

longer valid; some time-variant systems have constant poles in the right half plane

and are stable, while other systems may have poles completely contained in the left

half plane and yet be unstable. Furthermore, when considering an LTI system, stabil-

ity is a trait of the system itself. But in the non-LTI case, a system may be stable at

some points in the state space and yet unstable at others [2]. The concept of stability

is much more complex when dealing with non-LTI systems. Here, we will discuss

stability intuitively and then present a few more formal stability definitions.

Any point where the state will remain constant (ẋ = 0) is known as an equilibrium

point. Points A - G in Figure 1.1 are all equilibrium points. These points can be

classified as stable, neutral, or unstable. The ball in Figure 1.1 is currently at point

C where it is free to roll in either direction. Points between B and D are considered

neutrally stable because any small disturbance between those points will cause the

ball to roll to a new position and stay there. In contrast, points A and F are called

unstable equilibrium points because any slight perturbation will cause the ball to roll

down the slope. Points E and G are stable points; if the ball is disturbed at one of

these points, it will eventually return, provided the disturbance was not too great.

Note that for linear systems, the origin is always an equilibrium point [2].

Figure 1.1. Various equilibrium points [2]
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The following definitions [2, 12] assume that the equilibrium point is at the origin.

If not, the equilibrium point can be translated to the origin through a change of

coordinates.

Definition 1.1 (Lyapunov Stability). The origin is a stable equilibrium point if for

any given value ε > 0, there exists a number δ(ε, t0) > 0 such that if ‖x(t0)‖ < δ,

then the resultant motion x(t) satisfies ‖(x(t)‖ < ε for all t > t0.

This type of stability is also known as “start close, stay close” stability.

Definition 1.2 (Asymptotic stability). The origin is an asymptotically stable equi-

librium point if it is Lyapunov stable and in addition, there exists a number δ′(t0) > 0

such that whenever ‖x(t0)‖ < δ′(t0) the resultant motion will satisfy limt→∞ ‖x(t)‖ = 0.

Definition 1.3 (Exponential stability). The origin is an exponentially stable equi-

librium point if it is asymptotically stable and in addition, there exists α < 0 and

C > 0 such that ‖x(t)‖ < C exp (αt) for all t.

When state feedback is used to control a system, this means that the state influ-

ences the control input so that the system input signal will be proportional to the

discrepancy between the desired state and the current state. In many cases the de-

sired state is identically zero, so we can express the input as u(t) = −Kx(t), where K

is commonly referred to as the gain matrix. This equation is called the control law.

The state equation can now be rewritten as

ẋ(t) = [A−BK]x(t). (1.4)

1.4 Dynamic Equations on Time Scales

We now turn our attention to DETS. Originally introduced in 1988 by Stefan

Hilger in his Ph.D. dissertation [14], DETS is a branch of mathematics that allows

for powerful analysis on systems whose domains are of non-uniform step size. Up

until now, the systems we have presented have been either continuous or uniformly
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discrete. The theory of DETS allows for much more general analysis. It can describe

systems that operate on a time scale of any general non-uniform time domain, be it

continuous, discrete, multiples of Z (denoted by hZ), non-uniform, or even stochastic

[1]. A time scale, denoted by T, is defined as any arbitrary nonempty closed subset

of the real numbers [15]. Examples of time scales include R, hZ, PαT and T.

R

hZ

PαT

T

Figure 1.2. Examples of Time Scales

Given t ∈ T, the successor of t is denoted by σ(t) and is known as the forward

jump operator. It is defined as

σ(t) := inf {x ∈ T : s > t} . (1.5)

For example,

σ(1) = 2, (1.6)

σ(2) = 3, (1.7)

... (1.8)

σ(t) = t+ 1. (1.9)

Likewise the backward jump operator, ρ(t), gives the previous value of t and is defined

as

ρ(t) := sup {s ∈ T : s < t} . (1.10)

The graininess function (step size) of a domain is defined as

µ(t) := σ(t)− t. (1.11)
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In the cases of T = Z and T = R, the graininess function simplifies to µ(t) ≡ 1 and

µ(t) ≡ 0, respectively.

A modified definition of the derivative is required for time scales calculus:

f∆(t) =
f(t+ µ(t))− f(t)

µ(t)
. (1.12)

Notice that in the limit as µ(t) approaches zero, this is equivalent to the derivative

on R. The derivative on Z is found simply by using µ(t) ≡ 1:

f∆(t) =
f(t+ 1)− f(t)

1
= f(t+ 1)− f(t) = ∆f(t), (1.13)

where ∆ is the usual forward difference operator.

We will now derive the product rule for time scales and then show that it is

consistent with that of R and Z. By definition of the derivative, we have

(f(t)g(t))∆ =
f(t+ µ(t))g(t+ µ(t))− f(t)g(t)

µ(t)
. (1.14)

Adding and subtracting f(t+ µ(t))g(t) gives us

(f(t)g(t))∆ =
f(t+ µ(t))g(t+ µ(t))− f(t+ µ(t))g(t) + f(t+ µ(t))g(t)− f(t)g(t)

µ(t)
,

(1.15)

which can be rewritten as

(f(t)g(t))∆ =
f(t+ µ(t)) [g(t+ µ(t))− g(t)]

µ(t)
+
g(t)[f(t+ µ(t))− f(t)]

µ(t)
, (1.16)

which simplifies to

(f(t)g(t))∆ = f(t+ µ(t))g∆(t) + g(t)f∆(t) = f(σ(t))g∆(t) + g(t)f∆(t). (1.17)

Note that

f(σ(t))g∆(t) + g(t)f∆(t) = g(σ(t))f∆(t) + f(t)g∆(t). (1.18)

The Hilger complex plane is important for analyzing regions of stability for systems

operating on non-uniform time domains, and it comprises the following sets:
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Definition 1.4. For h > 0, we define the following:

The Hilger complex numbers: Ch :=

{
z ∈ C : z 6= −1

h

}
(1.19)

The Hilger real axis: Rh :=

{
z ∈ Ch : z ∈ R and z > −1

h

}
(1.20)

The Hilger alternating axis: Ah :=

{
z ∈ Ch : z ∈ R and z < −1

h

}
(1.21)

The Hilger imaginary circle: Ih :=

{
z ∈ Ch :

∣∣∣∣z +
1

h

∣∣∣∣ =
1

h

}
(1.22)

(1.23)

Re z

Im z

z

θ

Reµ(t)(z)

◦
ı Imµ(t)(z)

−1/µ(t)

θ = Imµ(t)(z)

Figure 1.3. The Hilger complex plane

Definition 1.5. Let h > 0 and z ∈ Ch. Define the Hilger real part of z as

Reh(z) :=
|zh+ 1| − 1

h
. (1.24)

and the Hilger imaginary part of z as

Imh(z) :=
arg(zh+ 1)

h
. (1.25)

Definition 1.6. For h > 0, let Zh be the strip

Zh :=
{
z ∈ C : −π

h
< Im(z) ≤ π

h

}
. (1.26)
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We can then define the cylinder transformation ξh : Ch → Zh by

ξh(z) =
1

h
Log(1 + zh). (1.27)

The cylinder transform is a mapping from the Hilger complex plane to the strip Zh.

Points that lie within the Hilger circle are mapped into the left half of Zh.

Re z

Im z

−1/µ(t)

Hµ(t)
ξµ(t)

ξ−1
µ(t)

Re z

Im z

Figure 1.4. Cylinder Transform Mapping

1.5 Stability on Time Scales

We will now discuss recent contributions made to the theory of DETS. A fun-

damental question of DETS is what region of the complex plane results in stability

of

x∆(t) = λx(t), t ∈ T, λ ∈ C. (1.28)

We will denote that region by

S(T) := {λ ∈ C | 1.28 is exponentially stable}. (1.29)

Pötsche et al. have shown [3] that (1.28) is exponentially stable if λ ∈ S(T) where

S(T) = {λ ∈ C | lim sup
T→∞

1

T − t0

∫ T

to

lim
s↘µ(t)

ln |1 + sλ|
s

∆t < 0}. (1.30)

In essence, (1.30) states that exponential stability requires that the average value of

the cylinder transformation of the system eigenvalues must have a negative Hilger

real part. This region is sufficient and necessary for exponential stability, but it is

difficult to calculate in general.
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As Gard et al. [16] have noted, an easily calculable subset of the region of expo-

nential stability can be described as

Hmin :=

{
z ∈ Cµmax : |z +

1

µmax
| < 1

µmax

}
, (1.31)

which follows directly from considering that the Hilger circle corresponding to the

longest µ will be the smallest. This region is very conservative, however, and while it

is sufficient for exponential stability, it is much smaller than necessary. To calculate

S(T), Davis et al. have reduced (1.30) to the following more tractable inequality [17],

which can handle discrete time scales and a finite number of graininesses:

N∏
k=1

|1 + µkλ|dk < 1, (1.32)

where dk is the weight corresponding to graininess µk. For example, if the time scale

is periodic and has graininess

{1, 2, 2, 1, 2, 2, . . .}, (1.33)

then the graininesses are µ1 = 1 with d1 = 1 and µ = 2 with d2 = 2. The region

described by (1.32) can be regarded as a weighted geometric mean of the individual

Hilger circles [17]. To see this, take the natural logarithm of (1.32). Using the rules

of logarithms, we then have

N∑
k=1

dk ln |1 + µkλ| < 0. (1.34)

Multiplying by µk/µk gives us

N∑
k=1

dkµk
ln |1 + µkλ|

µk
=

N∑
k=1

dkµkξµk < 0. (1.35)

So criterion (1.32) is logically equivalent to a requirement that the average value of

the cylinder transformation ξµk for each graininess, µk, has a negative Hilger real

part. Poulsen has generalized [1] the criterion from (1.30) to one that applies to the

stochastic µ-varying dynamic equation:

x∆ = λ(µ(t))x. (1.36)
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By stochastic, we mean that the time scale is not known in advance. Therefore the

criterion now contains a probability density function f(µ). And because the time scale

is stochastic, we have to qualify what we mean by stability. We now say exponential

stability almost surely because satisfaction of the criterion ensures stability with a

probability equal to one. The criterion is as follows:∫ T

0

f(µ) ln |1 + µλ(µ)|dµ < 0, (1.37)

where f is the probability density function of the graininess µ and T is the upper

limit of f . Note the similarity to (1.34). Indeed, the only differences are that

(1) the weight dk is now a probability density function,

(2) λ may now depend on µ,

(3) and the summation is now an integral because we are assuming there are an

infinite number (i.e. a continuous distribution) of graininesses.

We will use this criterion later in Chapters Two and Four to determine the stability

of experimental systems for various probability density functions. It is important to

note that this criterion is not associated with a static region of stability when λ varies

according to µ.

Poulsen has also found the largest Hilger circle that will fit into S(T) [7]. The

circle has curvature

δ =
E[µ2]

E[u]
(1.38)

in the stochastic case and

δ = lim sup
τ→∞

∫ τ
to
µ(s)∆(s)

τ − t0
,

in the deterministic case. Pole placement within this region, Hδ, is sufficient to ensure

mean square exponential stability (MSES). It is known as the osculating circle because

it is the largest circle that shares curvature with S(T).

11



For a concrete example of the regions of stability discussed in this chapter, consider

a system x∆(t) = λx(t), t ∈ T operating on a stochastic time scale T where the

graininess is distributed according to a die roll. That is, let

Pr(µk = x) =
1

6
, x ∈ {1, 2, 3, 4, 5, 6} (1.39)

where Pr(µk = x) is the probability that the kth graininess will be x seconds. We

can generate the time scale by repeatedly rolling the die. For example, if a 3 is rolled

then the next graininess is 3 seconds. Assuming we have a system operating on this

time scale, the discussed stability regions can be found and are shown in Figure 1.5.

-0.8 -0.6 -0.4 -0.2 0
-0.4

-0.2

0

0.2

0.4

Im

Re

HminHδS(T)

Figure 1.5. Regions of stability for the stochastic time scale
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CHAPTER TWO

SRV-02 Experiment

This chapter published as: Matthew Mosley, Ian Gravagne, Dylan Poulsen, and
John Davis. Experimental investigation of a time scales-based stability criterion

over finite time horizons. In Proceedings of the ASME 2015 Dynamic Systems and
Control Conference. American Society of Mechanical Engineers, ASME, October

2015.

In this chapter we examine how an experimental 2nd-order servo system (Fig-

ure 2.1) behaves under state feedback control with stochastically generated sample

times over a 15-second time horizon. We then compare the experimental results with

the stability criterion.

2.1 Overview of Experiment

The system is a Quanser Rotary Servo Base Unit (SRV02) connected to a PC

running Windows 7 and QUARC R© version 2.4, connected via an amplifier, a breakout

board, and a Quanser Q4 card. Operation is as follows:

(1) The simulation is launched from Simulink.

(2) At t = 1, the servo begins moving the arm to a specified angle, using state

feedback which is sampled on some time scale.

(3) The servo arm either

(a) settles to the specified angle or

(b) continues to oscillate for the duration of the experiment.

Intuitively we can predict that as the graininess is increased, the system will be

less likely to stabilize. Eventually the graininess will increase to the point where the
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system arm will spin out of control without settling to the desired position. We ran

two sets of experiments. The first was with constant graininess; the second was with

graininess distributed according to beta and gamma distributions.

θ

Figure 2.1. SRV-02

2.2 System Identification

To estimate the dynamics of this system on continuous time, we used MATLAB

and Simulink to find the parameters of the following first order transfer function

θ̇(s)

V (s)
=

b

s+ a
, (2.1)

where θ̇(s) is the angular velocity of the arm, and V (s) is the input motor voltage.

We found the parameters to be a = 6.598 and b = 11.37. The system was then

transformed into the following state space representation, with the states chosen as

x1(t) = θ(t) and x2(t) = θ̇(t).

ẋ(t) = Ax(t) +Bu(t), (2.2)

y(t) = Cx(t) (2.3)
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Figure 2.2. The amplifier

Figure 2.3. The breakout-board
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where

A =

0 1

0 −a

 , B =

0

b

 (2.4)

C =

[
1 0

]
, (2.5)

and t ∈ R. Figure 2.4 shows the open loop step response of the system.

0 1 2 3 4 5

−1

0

1

Time (s)

θ̇(
t)

(r
ad

/
s)

Actual θ̇(t)
Estimation

Figure 2.4. The open loop step response of the system in (2.2), simulated and actual.

2.3 Discretization

We want to investigate the stability of this system when the control signal grain-

iness is distributed according to a known probability density function, including the

case where the variance is zero.

First, we discretize the system onto a time scale, T, using the control law

u(t) = Kx(t),

where K = [−3.5 0]. As in [18], we define the discretized system as

x∆(t) := [A(µ(t)) + B(µ(t))K]x(t), t ∈ T, (2.6)
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where

A(µ(t)) = expc (µ(t)A)A, (2.7)

B(µ(t)) = expc (µ(t)A)B, (2.8)

where expc is the exponent cardinal [18] and is defined as

expc (X) := I +
1

2
X +

1

6
X2 + ...+

1

n!
Xn−1, (2.9)

which can be rewritten in the following closed form

expc (X) := (exp (X)− I)X−1, (2.10)

provided that X−1 exists. Since A is singular, we appeal to the Cayley-Hamilton

theorem to evaluate expc (µ(t)A) [2].

Theorem 2.1 (Cayley-Hamilton Theorem). Every matrix satisfies its own charac-

teristic equation [2].

Since expc (z) is analytic, it can be expressed as a power series and its terms

regrouped such that

expc (z) = ∆(z)
∞∑
k=0

βkz
k +R(z), (2.11)

where ∆(z) is the characteristic equation and R is a polynomial of degree less than

or equal to n− 1. Substituting µ(t)A for z and using that ∆(µ(t)A) = 0, we have

expc (µ(t)A) = R(µ(t)A) = α0 + α1(t)µ(t)A. (2.12)

We can solve for the coefficients α0 and α1 by using

expc (µ(t)λi) = R(µ(t)λi) = α0 + α1(t)µ(t)λi, (2.13)

where λi are the eigenvalues of the system matrix A. We can now compute A and B

for the discretized system. Note that in general, the coefficient α1(t) is a function of

time.
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2.4 Time Scale with Constant Graininess

When µ is constant, the discretized system loses its time-dependency:

A = expc (µA)A (2.14)

B = expc (µA)B (2.15)

Experiments were conducted on the SRV-02 servo at constant graininess. At a rela-

tively low constant graininess, the system displays some overshoot (Figure 2.5), but

the system is stable1 since the poles are contained within the Hilger circle [15]. As

the graininess increases, the complex poles approach the real axis and eventually

converge, after which one pole leaves the Hilger circle, resulting in system instability

(Figure 2.6). The maximum graininess for which the system is stable is 630 ms, where

one of the system poles lies on the edge of the Hilger circle.

−15 −10 −5 0

−5

0

5

Poles for µ = 150 ms

0 1 2 3 4 5 6 7
−1

0

1

Error between θref and actual θ for µ = 150 ms

Error (θref − θ)
Time Scale

Figure 2.5. At µ = 150 ms, there is little oscillation and the response is stable since
the poles are inside the Hilger circle. As µ increases, the poles move nearer to the
edge of the circle.

1 We recognize that the mathematical definition of stability would require observation for infinite
time. But since this is an experiment, we use a finite time horizon of 15s, after which we make
judgments about stability of the system response.
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Poles for µ = 635 ms
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−5
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5
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Error (θref − θ)
Time Scale

Figure 2.6. At µ = 635 ms, one pole is outside the Hilger circle, so the system is now 
unstable (the response oscillates back and forth throughout the entire time horizon).

2.5 Time Scales with Non-Uniform Graininess

In order to operate the system on a non-uniform discrete time scale, we placed the 

Simulink system model (Figure 2.7) inside of a triggered subsystem block (Figure 2.8). 

The “From Workspace” block in Figure 2.8 contains a timeseries object that stores a 

sequence of numbers that represent points in time at which the subsystem is triggered. 

The graininesses of this time scale are generated by standard MATLAB functions for 

beta and gamma distributions. This timeseries object that contains the time scale 

is created before the system is run. This way, the statistics of the time scale can be 

checked and compared to the desired statistics before system operation.

As mentioned before, we cannot appeal to a static region of stability if we allow the 

graininess µ(t) to be time-dependent. But if µ(t) is a random variable from a known 

continuous statistical distribution, we can make use of the criterion mentioned in 

Chapter One to determine whether a distribution with a given mean and variance will 

stabilize the closed loop system. Restated here, the criterion says that the equilibrium
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Figure 2.7. Simulink block diagram subsystem

Figure 2.8. The “Triggered Subsystem” block contains the model shown in Figure 2.7.
The “time scale” block contains an object representing the points in time at which
the subsystem is triggered.

of (2.6) will be exponentially stable if

max
i

∫ T

0

f(µ) log |1 + µλi(µ)|dµ < 0, (2.16)

where f(µ) is the probability density function by which µ is distributed, and λi(µ) is

the ith eigenvalue of the system matrix, [A(µ) + B(µ)K]. Note that T = 1 for beta

distributions and T =∞ for gamma distributions. We use an integral here instead of

a summation, even though we have a finite number of graininesses. For our purposes

this is justifiable because the number of possible graininesses is high enough so that

their distribution can be approximated continuously. In this work, we will investigate

time scales with µ(t) drawn from beta and gamma distributions. The criterion of

(2.16) only ensures “exponential stability almost surely”[1]. This is a relatively weak
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stability criterion and does not guarantee that the error will settle immediately.

Mathematica was used to compute the left hand side of (2.16) for beta and gamma

distributions, where the mean was held at 400 ms and the variance was varied from

0 to 0.070 s2. The values of the LHS of (2.16) are displayed in Figure 2.9. As can be

seen from this plot, systems whose µ’s fall on beta and gamma distributions become

unstable at variances of 0.052 s2 and 0.063 s2, respectively. However, since we are

only looking at a finite time horizon, this does not imply that every experimental

trial below these critical values will exhibit convergent behavior. Likewise, not every

trial with variance greater than these values will destabilize.

To investigate exponential stability on a time scale experimentally, we

(1) Initialize 100 randomly generated time scales for a given distribution with a

given mean and variance.

(2) Apply a step input to the system and observe the step response error for each

time scale.

(3) Record the proportion of failures vs. successes.2

The results of this experiment are summarized in Figure 2.10. The success rate for a

beta distribution with a variance of 0.052 s2 (the critical value) is about 80%. In [19],

it is shown that the SRV-02 system is guaranteed mean square exponential stability

up until a variance of 0.020 s2. Mean square exponential stability is a much stronger

stability criterion based on Lyapunov theory, and therefore it is an indicator of greater

performance. Indeed, Figure 2.10 indicates that 98% of the simulations succeed when

the variance is 0.020 s2. See Figures 2.11 and 2.12 for a comparison between the

experimental results and the output of the stability criterion.

The plots in Appendix A result from applying a step input to the system for

five different time scales, in which the graininess is distributed according to a beta

distribution with a mean of 400 ms and a given variance. When the variance is

2 An individual trial is deemed a success when the last three samples of the time scale have less
than 5% error.
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0.01 s2, the responses are consistently stable. Increasing the variance to 0.08 s2

results in approximately half the responses being stable, whereas only about 20% of

step responses are stable at a variance of 0.12 s2.
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Figure 2.9. The left hand side of (2.16) for beta and gamma distributions
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Figure 2.10. 15-second stabilization success rates (percentage of trials that stabi-
lized) for the closed-loop servo system on beta and gamma distributions with mean
graininess of 400 ms.
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Figure 2.11. Comparison of left hand side of (2.16) and experimental results for the
beta distribution.
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Figure 2.12. Comparison of left hand side of (2.16) and experimental results for the
gamma distribution.
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CHAPTER THREE

Euler-Bernoulli Model Solution

This chapter published as: Matthew D Mosley, Ian A Gravagne, and John M Davis.
A solution of the euler- bernoulli flexible rotating arm. In Proceedings of the

American Society for Engineering Education Gulf Southwest Conference (ASEE
GSW). American Society for Engineering Education, ASEE, March 2016.

The planar one-degree-of-freedom flexible arm is a canonical problem for students

and researchers investigating novel feedback control algorithms, as well as PDE nu-

merical and theoretical solution methods. The purpose of this chapter is twofold:

first, it serves to build intuition for the model identified in Chapter Four. Second,

this chapter shows that modeling the flexible arm can serve as a pedagogical tool for

undergraduate PDE instructors. Generally, researchers have approached the prob-

lem via either energy methods (e.g. Hamilton’s principle [20]) which are generally

intractable to undergraduates, or by eigenfunction expansion. Eigenfunction expan-

sion is an approach tractable to undergraduates; however, researchers traditionally do

not handle the nonhomogeneous boundary conditions in manner consistent with typ-

ical undergraduate instruction. Here, we outline the solution in a way that parallels

typical PDE instruction regarding nonhomogeneous boundary conditions, namely, to

convert the nonhomogeneous boundary problem into a homogeneous boundary prob-

lem by adding an appropriate (nonhomogeneous) forcing term to the field equation.

This idea is motivated by Duhamel’s principle and can often be seen in textbooks,

illustrated using the heat equation [21].

3.1 Problem Setup

Following [22], the Euler-Bernoulli model is used to model the dynamics of the flex-

ible beam. This model yields the following partial differential equation and boundary

conditions:
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y(4)(x, t) +
ρ

EI
ÿ(x, t) = 0, t > 0, 0 < x < L, (3.1a)

y(0, t) = 0, t > 0, (3.1b)

y′′(L, t) = 0, t > 0, (3.1c)

Jÿ′(0, t)− EIy′′(0, t) = τ(t), t > 0, (3.1d)

mÿ(L, t)− EIy′′′(L, t) = 0 t > 0, (3.1e)

where y(x, t) is the deflection of the beam and the other parameters are listed in

Table 4.1. Boundary condition (3.1d) is non-homogeneous, so we assume the solution

can be decomposed [21] into the following two parts:

y(x, t) = w(x, t) + v(x, t) (3.2)

where w(x, t) is the solution to a second boundary-value-problem (BVP), and v(x, t)

is a function that we introduce in order to homogenize the boundary conditions of

that BVP. Substituting (3.2) into (3.1) yields the following:

w(4)(x, t) +
ρ

EI
ẅ(x, t) = −v(4)(x, t)− ρ

EI
v̈(x, t), t > 0, 0 < x < L, (3.3a)

w(0, t) + v(0, t) = 0, t > 0, (3.3b)

w′′(L, t) + v′′(L, t) = 0, t > 0, (3.3c)

J (ẅ′(0, t) + v̈′(0, t))− EI (w′′(0, t) + v′′(0, t)) = τ(t), t > 0, (3.3d)

m (ẅ(L, t) + v̈(L, t))− EI (w′′′(L, t) + v′′′(L, t)) = 0, t > 0, (3.3e)

If we define

f(x, t) := −v(4)(x, t)− ρ

EI
v̈(x, t) (3.4)
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and choose the following conditions for v(x, t):

v(0, t) = 0 (3.5a)

v′′(L, t) = 0 (3.5b)

Jv̈′(0, t)− EIv′′(0, t) = τ(t) (3.5c)

mv̈′(L, t)− EIv′′′(L, t) = 0 (3.5d)

then the boundary value problem in (3.3) is transformed into

w(4)(x, t) +
ρ

EI
ẅ(x, t) = f(x, t), 0 < x < L, t > 0, (3.6a)

w(0, t) = 0, t > 0, (3.6b)

w′′(L, t) = 0, t > 0, (3.6c)

Jẅ′(0, t)− EIw′′(0, t) = 0, t > 0, (3.6d)

mẅ(L, t)− EIw′′′(L, t) = 0, t > 0, (3.6e)

which is a partial differential equation with homogeneous boundary conditions, but

with a forcing function f(x, t). Thus, the non-homogeneity is transferred from the

boundary conditions to the field equation.

3.2 The Forcing Function

The forcing function is some polynomial in x, scaled by the hub torque τ(t). To

calculate f(x, t), we first find v(x, t). The only restriction on v(x, t) is that it must

satisfy the boundary conditions in (3.5). We assume that v(x, t) is separable:

v(x, t) = g(x)τ(t). (3.7)

where τ(t) is the hub torque and we choose g(x) as

g(x) = c5x
5 + c4x

4 + c3x
3 + c2x

2 + c1x+ c0, (3.8)
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where the coefficients cn are found by translating the conditions in (3.5) into the

following conditions for g:

g(0) = 0 (3.9a)

g′′(L) = 0 (3.9b)

Jg′(0)τ̈(t)− [EIg′′(0) + 1] τ(t) = 0 (3.9c)

mg(L)τ̈(t)− EIg′′′(L)τ(t) = 0 (3.9d)

From (3.9c) and (3.9d), we also have that

g′(0) = 0 (3.10a)

EIg′′(0) + 1 = 0 (3.10b)

g(L) = 0 (3.10c)

g′′′(L) = 0 (3.10d)

Normally this would not be mathematically justifiable, but from a physical perspec-

tive we know that we have arbitrary control of τ and τ̈ . Therefore there is no fixed

relationship between them and so it follows that the coefficients in (3.9c) and (3.9d)

must be 0. Application of these boundary conditions yields a solution for g(x), plotted

in Figure 3.1.

3.3 The Eigenfunctions

The method of eigenfunction expansion begins by finding the eigenfunctions for

the unforced (homogeneous) system [23], i.e. equation (6a) with f(x, t) = 0:

w(4)(x, t) +
ρ

EI
ẅ(x, t) = 0. (3.11)

We assume that the solution w(x, t) is separable and has the form

w(x, t) =
∞∑
n=0

Xn(x)Tn(t). (3.12)

Substituting this into the PDE for a particular n and rearranging gives

EIX
(4)
n (x)

ρXn(x)
= − T̈n(t)

Tn(t)
= ω2

n. (3.13)
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Figure 3.1. The function g(x) represents a distributed forcing function that would
displace the beam into the same shape as the application of a boundary hub torque.

which yields the following ODE:

X(4)
n − β4

nXn = 0, (3.14)

where

β4
n =

ρω2
n

EI
. (3.15)

We assume that the eigenfunctions Xn(x) have the following form

Xn(x) = an cos βnx+ bn sin βnx+ cn cosh βnx+ dn sinh βnx (3.16)

and we translate the boundary conditions from (3.6) into the following:

X(0) = 0 (3.17a)

X ′′(L) = 0 (3.17b)

Jω2X ′(0) + EIX ′′(0) = 0 (3.17c)

mω2X(L) + EIX ′′′(L) = 0 (3.17d)
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Taking the first three derivatives of (3.16) and using (3.17) yields a system of four

equations, represented by the following matrix equation:

Z(β)



an

bn

cn

dn


=



0

0

0

0


(3.18)

where

Z(β) =



1 0 1 0

− cosβL − sinβL coshβL sinhβL

−1 Jβ3/ρ 1 Jβ3/ρ

sinβL+ m
ρ
β cosβL − cosβL+ m

ρ
β sinβL sinhβL+ m

ρ
β coshβL coshβL+ m

ρ
β sinhβL


(3.19)

In order to solve for an, bn, cn and dn, we find β for which Z(βn) is singular. Ignoring

the trivial solution, we assume an, bn, cn, dn non-zero. For each βn, the coefficients

an, bn, cn, dn can be computed numerically by finding the null-space of Z(βn).

3.3.1 When β = 0

When β = 0, we have a different form for X0(x). Since we have that

X
(4)
0 = 0, (3.20)

we assume that X0(x) is a 3rd order polynomial.

X0(x) = ax3 + bx2 + cx+ d. (3.21)

Again, we use the boundary conditions in (3.17) (with ω = 0) and get that a = b =

d = 0 and c is a free variable. Without loss of generality we will let c = 1. Then the

eigenfunction for β = 0 is

X0(x) = x. (3.22)
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3.4 Solution Via Orthogonality

Henceforth, we assume that f(x, t) 6= 0, so it is no longer true that T̈ + ω2T = 0.

From [22] we have the following orthogonality condition on the eigenfunctions:

∫ L

0

ρXr(x)Xn(x)dx+mXr(L)Xn(L) + JX ′r(0)X ′n(0) =


0 n 6= r

Mr n = r

(3.23)

and it follows from (3.12) that∫ L

0

w(x, t)ρXr(x) = Tr(t)Mr −
∞∑
n=0

Tn(t)mXr(L)Xn(L)−
∞∑
n=0

Tn(t)JX ′r(0)X ′n(0)

(3.24)

Recall that the field equation is

w(4)(x, t) +
ρ

EI
ẅ(x, t) = f(x, t). (3.25)

Multiplying each side by Xr(x) and integrating gives us∫ L

0

Xr(x)[w(4)(x, t) +
ρ

EI
ẅ(x, t)]dx =

∫ L

0

Xr(x)f(x, t)dx. (3.26)

Rewrite (3.26) as∫ L

0

EIXr(x)w(4)(x, t)dx+

∫ L

0

ρXr(x)ẅ(x, t)dx =

∫ L

0

EIXr(x)f(x, t)dx. (3.27)

Using integration by parts four times on the first term and using boundary conditions

from (3.6) and (3.17), we get

mXr(L)ẅ(L, t) + JXr(0)ẅ′(0, t) + Jω2X ′r(0)w′(0, t) +mω2X(L)w(L, t)+∫ L

0

EIX(4)
r w(x, t)dx+

∫ L

0

ρXr(x)ẅ(x, t)dx =

∫ L

0

EIXr(x)f(x, t)dx (3.28)

where we have from (3.24) that∫ L

0

EIX(4)
r w(x, t)dx = ω2

r

∫ L

0

ρXrw(x, t)dx (3.29)

= ω2
r

[
TrMr −

∞∑
n=0

TnmXr(L)Xn(L)−
∞∑
n=0

TnJX
′
r(0)X ′n(0)

]
(3.30)
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and∫ L

0

ρXr(x)ẅ(x, t)dx =
d2

dt2

∫ L

0

ρXrw(x, t)dx (3.31)

= T̈rMr −
∞∑
n=0

T̈nmXr(L)Xn(L)−
∞∑
n=0

T̈nJX
′
r(0)X ′n(0) (3.32)

We see that substituting (3.12), (3.30) and (3.32) into (3.28) results in

(
T̈r(t) + ω2Tr

)
Mr =

∫ L

0

EIXr(x)f(x, t)dx. (3.33)

Now, substituting in (3.4) and (3.7) gives us

(
T̈r(t) + ω2Tr

)
Mr = −τ(t)EI

∫ L

0

Xr(x)g(4)(x)dx− τ̈(t)ρ

∫ L

0

Xr(x)g(x)dx. (3.34)

If we perform integration by parts four times on

EI

∫ L

0

Xr(x)g(4)(x)dx, (3.35)

using the boundary conditions from (3.9) and (3.17), we get

ω2
r

∫ L

0

ρXr(x)g(x)dx−X ′r(0). (3.36)

If we then define

Ar =

∫ L

0

ρXr(x)g(x)dx, (3.37)

we can simplify (3.34) to the following:

(
T̈r(t) + ω2

rTr(t)
)
Mr = −τ(t)

(
ω2
rAr −X ′r(0)

)
− τ̈(t)Ar. (3.38)

Taking the Laplace transform and rearranging terms gives us

Tr(s) = −τ(s)

(
Ar
Mr

− X ′r(0)

Mr(s2 + ω2
r)

)
. (3.39)

Making use of (3.12) and (3.2) gives us

y(x, s) = g(x)τ(s)− τ(s)
∞∑
r=0

Xr(x)

(
Ar
Mr

− X ′r(0)

Mr(s2 + ω2
r)

)
(3.40)
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Proceeding formally, if we expand g(x) using the eigenfunctions Xr(x) as its basis,

we can define gr such that

g(x) =
∞∑
r=0

grXr(x). (3.41)

Then

gr =

∫ L
0
ρXr(x)g(x)dx∫ L

0
ρX2

r (x)dx+mX2
r (L) + J (X ′r(0))2

=
Ar
Mr

(3.42)

Using (3.42), equation (3.40) can now be written as

y(x, s) = τ(s)

(
g(x)−

∞∑
r=0

grXr(x)

)
+ τ(s)

∞∑
r=0

Xr(x)X ′r(0)

Mr(s2 + ω2
r)

(3.43)

and (3.41) implies that

y(x, s)

τ(s)
=
∞∑
r=0

Xr(x)X ′r(0)

Mr(s2 + ω2
r)

(3.44)

Since X0(x) = x,

y(x, s)

τ(s)
=

x

M0s2
+
∞∑
r=1

Xr(x)X ′r(0)

Mr(s2 + ω2
r)
. (3.45)

If we take the spatial derivative of (3.45) and evaluate it at zero, then we have a

transfer function that relates the motor torque to the motor hub angle:

y′(0, s)

τ(s)
=

1

M0s2
+
∞∑
r=1

(X ′r(0))2

Mr(s2 + ω2
r)
. (3.46)

Similarly, if we take the 2nd-derivative of (3.45) with respect to t and evaluate it at

L, then we have a transfer function that relates the motor torque to the acceleration

experienced by the tip of the beam:

ÿ(L, s)

τ(s)
=

L

M0

+ s2

∞∑
r=1

Xr(L)X ′r(0)

Mr(s2 + ω2
r)
. (3.47)

Figures 3.2 and 3.3 display the locations of the first several poles and zeros for the

transfer functions in (3.46) and (3.47), respectively, using the parameters in Table 4.1.
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Figure 3.2. Poles and zeros for the transfer function in (3.46).
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Figure 3.3. Poles and zeros for the transfer function in (3.47).
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CHAPTER FOUR

Flexible Arm Experiment

In this chapter we present results from a stability experiment for a flexible beam

system. This experiment is very similar to that from Chapter 2, but this system has

much more interesting dynamics due to higher order vibrational modes. We then

compare the results to the stability criterion and note that they are in agreement.

4.1 Description of System

The system comprises a thin flexible aluminum yardstick (which we refer to as the

beam) clamped to the end of a DC motor, shown in Figures 4.1 and 4.2. The input

to the system is the motor torque and the output is the hub angle. Since torque is

related to current by the relationship

τ(t) = ktI(t), (4.1)

where τ(t) is the torque, kt is the motor torque constant and I(t) is the motor current,

the input torque is controlled directly by adjusting the amount of current applied.

This was accomplished using the transconductance amplifier shown in Figure 4.3. See

Table 4.1 for the physical parameters of the beam.

Table 4.1. Physical parameters of the flexible beam system.

Parameter Value
Total Length L (m) 0.94

Height (m) 0.029
Thickness (m) 0.003

Mass of End Effector m (g) 1.27
Mass Linear Density ρ (kg/m) 0.1553
Young’s Modulus E (N/m2) 6.895× 1010

Cross-Sectional Area Moment of Inertia I (m4) 6.525× 10−11

Motor Hub Moment of Inertia J (kg-m2) 0.01
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Figure 4.1. The flexible arm system

Figure 4.2. Accelerometer attached to tip
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Figure 4.3. The transconductance amplifier

The feedback configuration for the system is shown in Figure 4.4. In addition to

the motor hub angle, the tip velocity is also fed back to the input in order to more

effectively damp out the tip vibrations.

4.2 System Identification

The system was identified using standard frequency response techniques. Two

transfer functions were estimated. The first is

H1(s) :=
θ(s)

τ(s)
, (4.2)

which relates the input motor torque to the hub angle of the motor. Figure 4.5 shows

the measured frequency response data and the frequency response of the estimated

transfer function. Figure 4.6 is a plot of the poles and zeros of this estimated system.

A list of the poles and corresponding damping ratios and frequencies is shown in

Table 4.2.

37



Figure 4.4. Block diagram of the closed loop system
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Figure 4.5. Frequency response for H1(s)
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Figure 4.6. The poles and zeros for H1(s). The poles and zeros from the system
derived in Chapter 3 are also presented for comparison. Although both models have
the alternating pole-zero pattern along the imaginary axis, the model estimated from
the frequency response data exhibits some damping (Note the scale of the x-axis is
one-hundredth the scale of the y-axis).

Table 4.2. Frequency information for H1(s)

Poles Damping Ratio Frequency (rad/s)
0 N/A N/A

-0.200 N/A N/A
-0.448 ± j44.7 0.01 44.7
-1.26 ± j140 0.009 140
-3.26 ± j296 0.011 296
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Table 4.3. Frequency information for H2(s)

Poles Damping Ratio Frequency (rad/s)
-0.589 ± j44.7 0.0132 44.7
-3.92 ± j142 0.0276 142
-4.85 ± j295 0.0165 295

The second transfer function is

H2(s) :=
α(s)

τ(s)
, (4.3)

which relates the input motor torque to the acceleration experienced by the tip of

the flexible beam. Figure 4.7 shows the frequency response data for this system, and

Figure 4.8 is a plot of the poles and zeros for the estimated transfer function. A list

of the poles and corresponding damping ratios and frequencies is shown in Table 4.3.
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Figure 4.7. Frequency response for H2(s)
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Figure 4.8. Poles and zeros for H2(s). The main discrepancy between the estimated
and mathematical models is in the placement of the zeros.
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gate pair is located slightly outside the Hilger circle, resulting in an unstable system.
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4.3 Time Scale Experiments

In order to discretize the closed loop system, the two transfer functions H1 and H2

were converted to a state space representation using MATLAB. The state matrices

were then discretized using the same procedure described in Section 2.3. Stability

experiments were then performed for the flexible arm system, using both uniform and

non-uniform time scales.

4.3.1 Uniform Time Scales

For this portion of the experiment, only uniform discrete time scales were used.

The results of using four different graininesses are described here. The same gain

values are used in each case:

K1 = −100, K2 = 1500. (4.4)

The step responses for the first two discretized systems and their corresponding pole

plots are shown in Figure 4.10. These two responses are fairly similar except that the

system running on a 45 ms sampling time is oscillating back and forth at the frequency

corresponding to the single pole outside the Hilger circle. The system discretized

on 48 ms has all its poles contained within the corresponding Hilger circle, so the

48 ms step response is stable. What is interesting to note here is that increasing the

graininess actually results in a more stable system. This may seem counterintuitive

since the system described in Chapter 2 was stable for low graininesses and unstable

for higher graininesses. The reason for this is simple: The feedback signal is formed

from the tip velocity and hub angle, both of which are oscillating at some vibrational

mode of the beam. So for small graininesses, it is not surprising that this feedback

signal excites the system. Increasing the graininess of the time scale has the side-effect

of sampling the feedback signal at a lower rate. As the graininess is increased further,

eventually the feedback signal becomes aliased into a signal with lower frequency

components that do not excite any of the system modes.
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Figure 4.10. The system responses (top) and pole plots with corresponding Hilger
circles (bottom).

Figure 4.11 shows the next two step responses and their corresponding pole loca-

tions. In this pair of responses, the system is stable at 1.28 s, but unstable when the

graininess is increased further to 1.30 s. Here the instability is simply a result of an

insufficient control rate. On comparing the two responses associated with 45 ms and

1.30 s, we note that they are both unstable, but the second oscillates at a much lower

frequency. This is because the pole outside the Hilger circle for the 45 ms system

corresponds to a frequency of about 6 Hz, whereas the unstable pole for the 1.30 s

discretized system corresponds to a frequency of approximately 1 Hz.

System stability can also be determined analytically by appealing directly to the

cylinder transform (1.27), without plotting eigenvalues in the Hilger complex plane.

The system is stable if and only if the cylinder transforms of all eigenvalues are

negative. Figure 4.12 shows the cylinder transforms of five eigenvalues of the flexible

arm system as functions of the graininess. These five eigenvalues were chosen because

they are the only ones that have cylinder transforms that are greater than zero for
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Figure 4.11. The system responses (top) and pole plots with corresponding Hilger
circles (bottom).

some µ. Thus for stability analysis purposes, these are the only interesting ones. The

transform associated with the third eigenvalue, λ3(µ) is greater than zero for the small

interval [0 s, 0.047 s], indicating that the system is unstable for these sampling rates.

This transform is also greater than zero for the interval [1.291 s, 1.335 s] indicating

instability for those sampling rates as well. This is in agreement with the results

shown in Figure 4.10 and Figure 4.11.

4.3.2 Non-Uniform Time Scales

To determine whether the system discretized on non-uniform time scales is stable,

we appeal to the criterion in (1.37), reproduced here for convenience:

max
i

∫ T

0

f(µ) ln |1 + µλi(µ)|dµ < 0. (4.5)

Let us examine (4.5) more closely. The integrand of (4.5) is a probability density

function (PDF), f , multiplied by the cylinder transform of the ith eigenvalue of the

discretized system matrix. This integrand can be thought of as a weighted sum of
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Figure 4.12. Output of the cylinder transformation for five eigenvalues as functions
of µ. On the interval [0,0.047], C(λ3(µ)) is greater than zero and thus the system will
be unstable at this sampling rate.

the output of the cylinder transform, where the weighting factor is determined by the

PDF. So if the PDF has an expected value for which the cylinder transform greater

than 0, and the variance is exceedingly small, then it is likely that the integral will

also be greater than zero. This intuition is confirmed by Figure 4.14, which traces

the output of the stability criterion for a mean of 0.030 s as the variance is increased

from 4× 10−4 s2 to 14× 10−4 s2.

4.3.2.1 Experimental Results A stability experiment similar to the one presented

in Chapter 2 was then performed on the flexible arm system. This time however, the

experiment was carried out only on time scales whose graininesses were distributed

according to gamma distributions. The mean was held constant at 0.030 ms and
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Figure 4.13. Output of the cylinder transformation for five eigenvalues as functions
of µ. There are ranges of µ that produce instability at [1.165, 1.183], [1.291, 1.335]
and [1.344, ∞ ]

.

the variance took on values from 5 × 10−4 s2 to 10.3 × 10−4 s2. The percentage

of stable responses was recorded for each variance. The results of this experiment

are summarized in Figure 4.14. Again, the result here is counterintuitive because it

demonstrates that a system with more variance in the sampling rate can sometimes

be more stable than one with little to no variance. The reasoning is similar to the

above discussion: with little to no variance, the sinusoidal feedback signal excites the

vibrational modes of the beam. But when variance is introduced to the sampling rate,

the resulting sampled control signal no longer contains those excitatory frequencies,

and thus the response is stable.
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A second experiment was performed at a higher mean of 1.2 s with the variance

ranging from 1 × 10−8 s2 to 0.5 s2. The results are shown in Figure 4.15 and they

indicate that the responses do tend to be less stable as variance is increased. However,

due to the nature of performing experiments on finite time horizons, many responses

that should be stable are misclassified as unstable. This is likely due to the relatively

short experiment time being insufficient for the response to stabilize.
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Figure 4.14. Comparison of criterion output with experimental results. Black dotted
line is ideal success rate (Ideally, 100% of trials should be stable for variances greater
than 6.52× 10−4s2 and 0% should be stable for variances less than 6.52× 10−4s2).

4.3.2.2 Simulated Results The primary reason that the actual success rate does

not track the ideal success rate more closely is the finite time horizon constraint.

To see the effect that this constraint has on the results, we now show the results of

executing simulations on much longer time horizons than in the previous experiment.

Figure 4.16 shows the results of simulating the system with a mean step size of 30
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Figure 4.15. Comparison of criterion output with experimental results. The data
doesn’t line up quite as nicely as before because there are many responses misclassified
as unstable since they don’t settle during the finite time horizon.

ms with time horizons of 50 s and 500 s. Figure 4.17 shows the same thing but with

a mean step size of 1.2 s.

4.4 Conclusions

This thesis presents experimental results from two different closed loop feedback

control systems with sampling times distributed according to known statistical dis-

tributions. For both systems, the results illustrate that the “exponential stability

almost surely” criterion of [1] is a reasonable predictor of stabilizing behavior over

finite time horizons; however, the results also indicate that time scales with variance

and mean near the limit of the criterion may not reliably stabilize the system, yielding

unacceptable performance in some cases. One possible way to ensure better perfor-

mance is to design for a more conservative stability criterion, such as “mean square

exponential stability”[19].
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Figure 4.16. Results of simulated responses, using a 50 s time horizon and a 500 s
time horizon with a mean step size of 30 ms. As the time horizon is increased, there
are less “false negatives” since the responses have sufficient time to settle to a steady
state.
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Figure 4.17. Same as Figure 4.16 but with mean step size of 1.2 s.
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APPENDIX A

System Responses for SRV-02 Experiment

The following plots show the system response error for beta distributions with a

mean of 400 ms.
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Figure A.1. The system responses have a 99% success rate when the time scale has a
variance of 0.01 s2
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Figure A.2. The system responses have a 55% success rate when the time scale has a
variance of 0.08 s2
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APPENDIX B

MATLAB Code

Listing B.1. system identification.m

% Get data from scope and put it in data objects

close all;

t = Data (: ,1); v = Data (: ,2); theta = Data (: ,3); theta_dot = Data (: ,4);

t = circshift(t,2); t(1) = 0; t(2) = 0.002; % force t to start at time 0

Ts = t(2)-t(1); % graininess in ms according to model configuration parameters

% put data in iddata objects

datat = iddata(theta ,v,Ts);

datat.InputName = ’Voltage ’; datat.OutputName = ’Theta ’;

datat.InputUnit = ’Volts ’; datat.OutputUnit = ’rads’;

datatd = iddata(theta_dot ,v,Ts);

datatd.InputName = ’Voltage ’; datatd.OutputName = ’Theta Dot’;

datatd.InputUnit = ’Volts’; datatd.OutputUnit = ’rads per second ’;

% estimate new 1st order transfer function for theta_dot.

tf_theta_dot = tfest(datatd ,1);

simplot(tf_theta_dot , datat , datatd , t);

% Compare original transfer function output using new input data

B = 1.2;

C = 1.7;

a = 3.881; b = 9.475;

tf_theta_dot = tf([B*b],[1 C*a]);

theta_dot_est = simplot(tf_theta_dot , datat , datatd , t);

% print results of system identification to csv

Mat = [t theta_dot theta_dot_est ];

dlmwrite(’system_ident.csv’, Mat);

Listing B.2. simplot.m

function theta_dot_est = simplot( tf_theta_dot , datat , datatd , t )

% This function does a linear simulation for the provided transfer

% functions and then superimposes the measured data

% multiply denominator by s to get tf_theta

[num ,den] = tfdata(tf_theta_dot ); den{1} = [den{1} 0];

tf_theta = tf(num ,den);

figure (1); clf

theta_dot_est = lsim(tf_theta_dot , datatd.InputData , t); % simulate tf_theta_dot with data
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theta_dot_est = circshift(theta_dot_est ,2); theta_dot_est (1:2)=0;

plot(t, theta_dot_est , t, datatd.OutputData );

legend(’simulated theta dot’,’actual theta dot’);

end

Listing B.3. simulate model.m

clear; close all;

my_setup (); % load necessary constants for servo operation

tstart = tic ();

Mean = 0.400; dist = ’B’; totalSims = 5;

simtime = 15; assignin(’base’, ’simtime ’, simtime );

fileID = fopen(’test.txt’,’w’);

fprintf(fileID ,’%7s %18s\n’, ’Var(s)’, ’Percent Success ’);

fclose(fileID );

set_param(0, ’CacheFolder ’, fullfile(’C:’,’Quanser ’,’QuaRC_simulations ’,’timescale_tests ’,’servosim ’));

set_param(0, ’CodeGenFolder ’, fullfile(’C:’,’Quanser ’,’QuaRC_simulations ’,’timescale_tests ’,’servosim ’));

count = 1; % counter for storing results into vector

for Variance = 0.120:0.010:0.120

success = 0; fail = 0;

for simNumber = 1: totalSims

init_time_scale(Mean , Variance , dist , simtime );

disp(’Building model ...’)

slbuild(’servosim ’) % build model

set_param(gcs ,’SimulationCommand ’,’connect ’); % connect to target

set_param(’servosim ’,’SimulationCommand ’, ’start ’) % start the simulation

fprintf(’Starting simulation No. %.0f\n’, simNumber );

pause(simtime +3); % wait for simulation to finish

% Get data from scope and compute error

t{simNumber} = Data (: ,1); desired_theta = Data (: ,2); v = Data (: ,3); theta = Data (: ,4);

e{simNumber} = theta - desired_theta;

plot_data ();

if ( abs(e{simNumber }(end -2: end)) < 0.05 ) % check if error for past 3 samples has been less than 0.1

title(’Success ’)

success = success + 1;

fprintf(’Success !\n’);

else

title(’Fail’);

fail = fail + 1;

fprintf(’Fail!\n’);

end

fprintf(’Percentage of stable simulations: %.2f\n’, 100* success/simNumber)

end
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csvData = padcat(zeros (38,1), t{1}, e{1}, t{2}, e{2}, t{3}, e{3}, t{4}, e{4}, t{5}, e{5});

dlmwrite(’plot_data_120.csv’, csvData ); % write plot data to a csv file

results(count ,:) = [Variance , 100* success/totalSims ];

fileID = fopen(’test.txt’,’a’);

fprintf(fileID ,’%7.3f %12.2f\n’, results(count ,:));

fclose(fileID );

count = count + 1;

end

fprintf(’Time elapsed is %.2f minutes\n’, toc(tstart )/60);

figure (2); clf;

plot(results (:,1), results (:,2))

Listing B.4. init time scale.m

function time_scale = init_time_scale(M, V, dist , simtime)

%INIT_TIME_SCALE This function initializes a new time scale for a given mean and

%variance

% d is the number of time scale points

% choose from constant graininess , uniform distribution , beta distribution ,

% and gamma distribution

disp(’Initializing new time scale ...’)

n = simtime *3; % set number of time scale points to 3 * simulation time (just to be safe)

switch dist

case ’C’ % constant graininess

mu = M*ones(1,n);

case ’U’ % uniform distribution

a = M - sqrt (3*V);

b = M + sqrt (3*V);

mu = (b-a).* rand(n,1) + a;

assert(a>=0, ’Minimum graininess cannot be negative ’) % assert that minimum is nonnegative time

case ’B’ % beta distribution

% get shape parameters

a = ((1-M)/V-1/M)*M^2;

b = a * (1/M - 1);

mu = betarnd(a,b,n,1);

% check if mu has mean and variance close enough to the desired

% mean and variance

while abs(mean(mu) - M) > 0.001 || abs(var(mu) - V) > 0.001

mu = betarnd(a,b,n,1);

end

case ’G’ % gamma distribution (random number = gamma (k, theta))

% mean = k*theta , var = k*theta ^2

k = M^2/V;

theta = V/M;

mu = gamrnd(k, theta , n, 1);

while abs(mean(mu) - M) > 0.001 || abs(var(mu) - V) > 0.001

mu = gamrnd(k, theta , n, 1);
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end

otherwise

error(’Please select a valid distribution for discretization.’);

end

time_scale = timeseries(’Time Scale ’); % initialize timeseries object

time (1) = mu(1);

data (1) = -1;

for j = 2:n

time(j) = time(j-1) + mu(j); % create time scale points from graininesses

data(j) = (-1)^j; % make every other element positive for sake of trigger

end

time_scale.Time = time ’;

time_scale.Data = data ’;

time_scale.UserData = mu; % store the graininess in userdata

assignin(’base’, ’time_scale ’, time_scale ); % assign in workspace so that simulink can see it

end
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Listing B.5. plot data.m

disp(’Plotting data ...’)

% set to 1 if uniform graininess or 0 if distribution

opt = 0;

% plot with time scale points shown on x axis

% get plot number

n = floor ((simNumber -1) / 5) + 1;

figure(n);

if (opt)

subplot (2,1,1);

Ts = t(2)-t(1); % get the step size ( only if uniform graininess)

else

p = mod(simNumber -1 ,5);

subplot (5,1,p+1); % plot data in jth subplot

end

stairs(t{simNumber},e{simNumber });

hold on

plot(t{simNumber}, 0, ’k.’) % plot the time scale

% if (simNumber == 1)

% legend(’Reference Theta ’,’Theta ’,’Control Signal ’);

% if opt

% str = sprintf(’Discretized System Response for mu = %.f ms’, Ts *1000);

% else

% str = sprintf(’Discretized System Response for mean = %.f ms and var = %.f ms’, mean , var);

% end

% title(str);

% end

if(opt)

plot_hilger (); % plot hilger circle and poles

end

Listing B.6. plot hilger.m

% plot hilger circle and poles

subplot (2,1,2)

circle (-1/Ts ,0,1/Ts); hold on;

a = 6.598; b = 11.37;% from the tf identification

k = 3.5; % gain

poles = discretize(a,b,k,Ts); % get the pole locations for the discretized system

r = real(poles );

im = imag(poles);

plot(r(1),im(1),’k*’,r(2),im(2), ’k*’) % plot the poles

plot ([-1/Ts -1/Ts], [-1/Ts 1/Ts], ’k:’); % plot the vertical line
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axis(’square ’); x = xlim; % get the x axis limit

plot ([0 x(1)], [0 0], ’k:’); % plot the x-axis

str = sprintf(’Poles for mu = %.f ms’, Ts *1000);

title(str)

FigHandle = figure (1);

set(FigHandle , ’Position ’, [100, 100, 670, 520]);

Listing B.7. circle.m

function circle(x,y,r)

%x and y are the coordinates of the center of the circle

%r is the radius of the circle

%0.01 is the angle step , bigger values will draw the circle faster but

%you might notice imperfections (not very smooth)

ang =0:0.01:2* pi;

xp=r*cos(ang);

yp=r*sin(ang);

plot(x+xp,y+yp);

end

Listing B.8. discretize.m

function poles = discretize(a,b,k,mu)

%DISCRETIZE find the poles of the discretized system

% This function takes as argument the transfer function representation of

% the system , the gain , and the graininess. It discretizes the system and

% then returns the poles of that discretized system

% chosen for states x1 = theta and x2 = theta dot

A = [0 1; 0 -a]; B = [0 b]’; C = [1 0]; D = [0];

sys = ss(A,B,C,D); % our open loop system

K = [k 0];

Bn = [0 0]’;

% Now to discretize on constant graininess

% To find A and B we make use of the Cayley -Hamilton Theorem

% Since expc(mu*A) = R(mu*A) = a1 + a2*x, then we can solve for a1 and a2

% in the following system of equations:

% -- expc(eval1) = alph0 + alph1*eval1

% -- expc(eval2) = alph0 + alph1*eval2

alph0 = 1;

tmp = (exp(-a*mu)-1)/(-a*mu) - 1;

alph1 = tmp/ -a;

expc = alph0*eye (2) + alph1*A;

sA = expc*A;

sB = expc*B; % Discretized B matrix

sysd = ss(sA-sB*K,Bn ,C,D); % our discretized system with A = sA -sB*K

poles = vpa(pole(sysd )); % poles *should* be in the LHP

end
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[3] Christian Pötzsche, Stefan Siegmund, and Fabian Wirth. A spectral charac-
terization of exponential stability for linear time-invariant systems on time
scales. Discrete Contin. Dyn. Syst., 9:1223–1241, 2003.

[4] Dylan R Poulsen, John M Davis, and Ian A Gravagne. Observer based feedback
controllers on stochastic time scales. IEEE Proc. SSST, pages 104–107, 2013.

[5] Dylan R Poulsen, John M Davis, and Ian A Gravagne. Stochastic time scales:
quadratic lyapunov functions and probabilistic regions of stability. In IEEE
Proceedings of the 45th Meeting of the Southeastern Symposium on System
Theory, Baylor University, pages 98–103, 2013.

[6] Dylan R Poulsen, John M Davis, and Ian A Gravagne. Is deterministic real time
control always necessary? a time scales perspective. In ASME 2014 Dynamic
Systems and Control Conference. American Society of Mechanical Engineers,
2014.

[7] Dylan R Poulsen. Stability and Control on Stochastic Time Scales. Ph.d. disser-
tation, Baylor University, 2015.

[8] Matthew D Mosley, Ian A Gravagne, and John M Davis. A solution of the
euler-bernoulli flexible rotating arm. In Proceedings of the American Society
for Engineering Education Gulf Southwest Conference (ASEE GSW), number
132. American Society for Engineering Education, ASEE, March 2016.

[9] Matthew D Mosley, Ian A Gravagne, Dylan R Poulsen, and John M Davis.
Experimental investigation of a time scales-based stability criterion over fi-
nite time horizons. In Proceedings of the ASME 2015 Dynamic Systems and
Control Conference Ame [24].

[10] Richard C Dorf and Robert H Bishop. Modern control systems. Pearson
(Addison-Wesley), 12 edition, 1998.

[11] Lotfi Asker Zadeh and Charles A Deoser. Linear system theory. Robert E.
Krieger Publishing Company, 1976.

59



[12] Morris W Hirsch, Stephen Smale, and Robert L Devaney. Differential equations,
dynamical systems, and an introduction to chaos, volume 60. Academic press,
2013.

[13] Wael F Asaad and Emad N Eskandar. Achieving behavioral control with mil-
lisecond resolution in a high-level programming environment. Journal of
neuroscience methods, 173(2):235–240, 2008.

[14] Stefan Hilger. Ein maßkettenkalkül mit anwendung auf zentrumsmannig-
faltigkeiten. PhD thesis, 1989.

[15] Martin Bohner and Allan Peterson. Dynamic equations on time scales: An
introduction with applications. Springer Science & Business Media, 2001.

[16] T Gard and J Hoffacker. Asymptotic behavior of natural growth on time scales.
Dynamic Systems and Applications, 12(1/2):131–148, 2003.

[17] John M Davis, Ian A Gravagne, RJ Marks, and Billy J Jackson. Regions of ex-
ponential stability for lti systems on nonuniform discrete domains. In System
Theory (SSST), 2011 IEEE 43rd Southeastern Symposium on, pages 37–42.
IEEE, 2011.

[18] Ben Allen. Experimental investigation of a time scales linear feedback control
theorem. Master’s thesis, Baylor University, 2007.

[19] Dylan R Poulsen, Ian A Gravagne, and John M Davis. Numeric and analytic
investigations of mean-square exponential stability for stochastically timed
systems. In Proceedings of the ASME 2015 Dynamic Systems and Control
Conference Ame [24].

[20] Christopher D Rahn. Mechatronic control of distributed noise and vibration.
Springer, 2001.

[21] John M. Davis. Introduction to Applied Partial Differential Equations, chapter 2,
pages 67–68. W. H. Freeman and Company, 2012.

[22] Chung-Feng Jeffrey Kuo and Lin Shu-Chyuarn. Modal analysis and control of a
rotating euler-bernoulli beam part i: Control system analysis and controller
design. Mathematical and computer modelling, 27(5):75–92, 1998.

[23] Stanley J Farlow. Partial differential equations for scientists and engineers.
Courier Corporation, 2012.

[24] Proceedings of the ASME 2015 Dynamic Systems and Control Conference, Oc-
tober 2015. American Society of Mechanical Engineers, ASME.

60




