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Grand Unified Theories in Higher Dimensions:
From the Heterotic String to Randall-Sundrum
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Advisor: Gerald B. Cleaver, Ph.D.

We explore the phenomenology of effective field theories in two different cases.

First, we look at a mirror universe model, using an orbifold compactification of the

heterotic string, in the free fermionic approach. An expected non-chiral Pati-Salam

mirror universe model is transformed into a chiral model with enhanced hidden sector

gauge symmetry and reduced observable sector gauge symmetry: [SU(4)C×SU(2)L×

SU(2)R]O × [SU(4)C × SU(2)L × SU(2)R]H , is necessarily transformed into a chiral

[SU(4)C × SU(2)L]O × [SO(10)× SU(2)R]H .

Second, we look at a non-supersymmetric S̃U(5) theory built within the Randall-

Sundrum framework. We derive the low energy running of the couplings, and show

how the effects of the numbers and types of representations used for model building

can be constrained by looking at universal contributions from KK modes to the beta

functions. We show that the Yukawa couplings are, in general, exponentially small,

leading to an exponentially short proton lifetime.
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CHAPTER ONE

Introduction

1.1 The Standard Model of Particle Physics

The Standard Model of particle physics (SM) [2] is the culmination of four

decades of theoretical development and experimental verification. Barring some well-

hidden new physics, the final pieces of the SM should fall into place when the higgs

scalar is discovered in Geneva, by the end of this decade. By specifying a relatively

small number of parameters, one is able to understand the dynamics of particle in-

teractions at the electroweak scale, and the conditions in the universe up to its first

minutes of existence.

The gauge group of the SM is SU(3)C ×SU(2)L×U(1)Y —three (chiral) gener-

ations of fermions transform in the fundamental representations of the gauge group,

while the gauge bosons transform in the adjoint representations. Under SU(3)C ×

SU(2)L × U(1)Y , the particles transform as follows:

Quarks : QL = (3,2, 1/6) QR = (3̄,1, 1/3)

Leptons : LL = (1,2, 1/2) LR = (1,1,−1/2)

Gauge Bosons : g = (8,1, 0) W±, Z = (1,3, 1/2) ,

(1.1.1)

where the quantum numbers are given as (SU(3) rep, SU(2) rep, U (1) charge).

Breaking the SM to SU(3)C × U (1)em requires a complex higgs particle,

h =

 h+

h0

 , (1.1.2)

which transforms as (1,2, 1/2). The SM requires eighteen experimental inputs, like

masses of quarks, quark mixings and strengths of forces—once these are set, one is

able to make phenomenological predictions of astounding accuracy.

1
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It was realized, in 1973 [3], that the couplings of non-Abelian gauge theories

were energy dependent. In general, the renormalization group flow equation is given

by

d

d log [q/Λ]
g = β (g) , (1.1.3)

where the parameter Λ is an arbitrary energy scale, and the coupling is given by g.

We will generally choose Λ as a UV threshold, above which the runnings cannot be

extrapolated. This has been called “parameterizing our ignorance”, and corresponds

to an energy regime at which the physics is unknown to us. We will see examples of

this UV cutoff in several places in the following document.1

The function which characterizes the change of the coupling constant with in-

cident energy is called the beta function, β(g). The sign of the beta function will

tell us how the coupling constant evolves as a function of the energy, q. In a theory

like quantum electrodynamics, the beta function is positive. This means that as the

energy of the scattering experiment increases, so does the coupling constant. Because

the expansion in Feynman diagrams is a perturbation expansion, and only good for

values of the coupling constant (much) less than 1, these types of theories may only

be treated perturbatively in the IR limit—that is low energies and long distances.

Another class of quantum field theories are the finite field theories, whose beta

functions are zero. In two dimensions, one can formulate conformal field theories

(CFTs), which have the same beta function properties. These are of vital importance

to string theory, in which the world-sheet degrees of freedom are fields governed by

a 2-d CFT. There are, however, no physically important examples of 4-d finite field

theories.

1 We can also choose Λ to be an IR (low energy) cutoff, for example MZ . An IR cutoff
is customarily chosen when deriving the runnings of the SM beta functions, Equations (1.1.6).
Choosing Λ as MZ for the SM beta functions means that we are not able to know anything about
energies q . MZ .
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Finally, if the beta function is negative, the gauge theory is called asymptotically

free. This means that the low energy behavior may not be treated with perturbative

methods, but that we can apply those methods in the high energy limit. The most

relevant example of this class of field theories is quantum chromodynamics (QCD). At

low energies in QCD, perturbation theory breaks down, and one must use complicated

numerical techniques to get reasonable results [4].

The general form of the beta function for a non-Abelian gauge theory, with

symmetry SU(N), is given by

β (g) = − g3

16π2

[
11

3
N − 4

3
NfC (r)

]
+O

(
g5
)
, (1.1.4)

where C (r) is the Dynkin index of the fermion representation r [5], and Nf is the

number of fermions in the theory. The derivation of this equation is tedious but

straightforward, and will be done in Appendix A.2 To find the beta function for QCD,

we insert N = 3, Nf = 6 quarks and C (r) = 1/2 for the fundamental representation,

βQCD =
−7g3

16π2
+O

(
g5
)
. (1.1.5)

Now, we can integrate Equation (1.1.3) using the form of the beta function given

in Equation (1.1.4). We choose our Λ as the electroweak symmetry breaking scale,

MZ = 91.1876 ± 0.0021 GeV [6], because SU(3)C × SU(2)L × U(1)Y is only a good

gauge group above this energy. We will also make the substitution α = g2

4π
in natural

units, where ~ = c = 1. Then...

α−1
U(1) (E) ≡ α−1

1 = c1 +
b1
2π

log

[
E

Λ

]
(1.1.6a)

α−1
SU(2) (E) ≡ α−1

2 = c2 +
b2
2π

log

[
E

Λ

]
(1.1.6b)

α−1
SU(3) (E) ≡ α−1

3 = c3 +
b3
2π

log

[
E

Λ

]
. (1.1.6c)

2The case for Abelian symmetries is a bit easier, as the number of graphs we must compute
is smaller. The general form of the coupling constant’s dependence on energy is the same.
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Figure 1.1. The running of the couplings in the Standard Model. Note the approximate
unification around 1014−16 GeV.

The constants, ci, are boundary conditions, which we derive from experiments. We

know that α3 (MZ) ∼= 0.1187 ± 0.0020, α2 (MZ) ∼= 0.033961 ± 0.000006, and α1
∼=

0.017022± 0.000002 [6], and from Equation (1.1.4) we know b1 = 41/10, b2 = −19/6,

and b3 = −7. Using this information, we can plot how the coupling constants α−1
i

change with energy scale E, which we have done in Figure 1.1. It is important to

remember that we are looking at the plot of the inverse coupling constants. The

strong force, SU(3), starts out at around 0.1 and becomes weaker with increasing

energy scale. Conversely, the weakest force, the hypercharge, increases in strength as

energy scales increase. These forms of the couplings are essentially an experimental

prediction of the SM, assuming that there exists no intermediate scale matter—an

“intermediate-scale desert”. We will see that different theories tend to predict differ-

ent runnings of the couplings.

If we want to include exotic matter with mass greater than MZ (but smaller

than MPl ∼ 1018GeV in our models, we would have to go back and compute con-

tributions to the graphs in Appendix A. The contributions from this exotic matter
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will, in general, change the form of the renormalization group equations, and effect

the runnings near the new mass scale.

It is important to note that precision measurements of Equations (1.1.6) are

pretty limited in scope—that is, they have not been measured past the electroweak

symmetry breaking scale. The graphs in Figure 1.1 are extrapolations. This is one

exciting idea that the LHC will be looking at [7, 8]—the beta functions put strong

constraints on the type of matter that one can have in the theory. The existence of

any new matter or forces will change the running of the coupling above the related

mass scales for the δ bi, so any variation in the slopes of any of the lines in Figure

1.1 corresponds to new physics. We will try to parameterize the contributions of new

matter at some intermediate scale ΛI as

α−1
i = ci +

bi + δ bi
2π

log

[
E

ΛI

]
. (1.1.7)

1.2 The Shortcomings of the Standard Model

After twenty-five years of experimental tests of the SM, we have yet to find any

violations. There was some hope, earlier this year, that b-mixing experiments [9, 10],

which are extremely sensitive to new physics, would hint at something beyond the

SM, but the results only served to verify the SM prediction [11]. The best candidate

for a new physics event has been the observation of the muon anomalous magnetic

moment [12], which differs from the SM prediction by anywhere between 0.7 σ and

3.2 σ, depending on which experimental and theoretical values one compares [13].

Generally we consider any experimental result that differs from theory by more than

3 σ to be evidence of new physics, but because we don’t have a consensus on the

calculational end, we cannot be certain that we are seeing something new.

In spite of the tremendous successes of the SM, few accept that it is the final

theory. We will focus on five open questions that the SM has nothing to say about

[14]: the algebra question, the fermion question, the charge question, the gravity
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question, and the hierarchy problem. In general, these issues are all “naturalness”

arguments, borne from the assumption that the SM is an effective field theory of some

more fundamental framework. It is widely held that any satisfactory UV completion

of the SM should address all of these issues.

1.2.1 The Algebra Question

In particle physics, we have found that (spin 1
2
) fermions transform as represen-

tations of Lie groups [15], with (spin 1) bosons acting as generators and transforming

in the adjoint. For example, in QCD, the quarks transform in the fundamental (3)

of SU(3), while the gluons transform in the adjoint (8). The same is true for the

electroweak theory—fermions come in SU(2)× U(1) doublets (the fundamental rep-

resentation), and the W bosons transform in the adjoint. By definition, the gauge

bosons must transform as the adjoint representation (they are the generators of the

algebra), but it would be a grand coincidence if all of the fermions in the low energy

effective field theory just happened to transform as the fundamental representations.

What dictates the higgs transformation properties under the various groups?

The higgs is a color singlet and a doublet under SU(2). We know that, in order to

preserve SU(3)C × U (1)em in the low energy limit, the higgs must not break QCD,

and must transform as a singlet under SU(3)C . Electroweak symmetry breaking

seems to be unique in that the symmetry breaking is accomplished with a higgs in

the fundamental rep of SU(2). This is not a generic feature of symmetry breaking—

when we study grand unified theories in Chapter 2, we will see that the higgs scalars

lie in “very large” representations of the gauge group, generally adjoint or higher. Is

there a guiding principle which chooses the which representations the higgses live in?

Finally, why do we see the symmetries that we do—why is the effective lagrangian of

the SM invariant under the symmetry SU(3)c × SU(2)L × U(1)Y ?
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1.2.2 The Fermion Question

If we look at the masses of the fermions in the SM, we see the generational

structure taking shape. For example, the quark masses seem to follow mt,mb >>

mc,ms >> mu,md. If we look at the accepted experimental data [6], the masses

obey the (approximate) ratio 1 : 10−3 : 10−5. Further, if we associate the τ lepton

with the top/bottom, the µ lepton with the charm/strange and the electron with the

up/down, we see the same generational pattern: mτ >> mµ >> me.
3 Why does

such a pattern exist? And why are there exactly three generations? The SM does

not tell us how many generations we should observe—instead there are observational

constraints on the number of generations we have.

The conservation of B and L can be proved in the SM [17, 18], with its standard

particle content.4 We generally understand conserved charges as being protected by

some unbroken symmetry—for example, we know that electric charge is conserved in

low energy scattering experiments because it is protected by the U (1)em which exists

below the electroweak symmetry breaking scale. The B−L symmetry is “accidental”

in the sense that there is no symmetry in the SM which explicitly protects B − L,

but it is conserved anyway.

The fermionic sector of the SM also has other issues. We know that neutrinos

have mass [19], and aside from explicitly adding mass terms (that are necessarily

fine-tuned because of the estimated size of the neutrino mass) to the SM, the most

promising way to generate neutrino masses is the seesaw mechanism [20, 21], which

requires a (right-handed) neutrino singlet to work, and avoids fine tuning problems.

A light, left-handed, Majorana neutrino is naturally obtained when a right-handed

3 Although the neutrino masses are not known exactly, there is the possibility that they,
too, obey this approximate ratio. The current upper bounds on neutrino masses are mντ

<
18.2 MeV,mνµ

< 0.19 MeV,mνe < 3 × 10−3 MeV [6]. There are also stricter cosmological bounds
on the sum of the three neutrino masses,

∑
mν = 0.56+0.30

−0.26eV [16].
4Baryons are hadrons that contain three quarks—the proton and neutron are both assigned

baryon number of B = 1, thus each of the quarks have B = 1/3, and the anti-quarks have B = −1/3.
The electron has lepton number L = +1, and the positron has lepton number L = −1.
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(Majorana) neutrino has a large mass term. The mass terms for the neutrinos are

postulated to come from

L = −1

2
(ν̄L ν̄R)M

 νL

νR

+ h.c. (1.2.1)

The mass matrix is given by

M =

 mL
M mD

mD mR
M

 , (1.2.2)

where

mR
M >> mD >> mL

M . (1.2.3)

The eigenvalues of this matrix give the mass terms of the left-handed and right-handed

neutrinos:

mνL
∼
∣∣∣∣mL

M − m2
D

mR
M

∣∣∣∣ ,mνR
∼ mR

M . (1.2.4)

Either way, a massive left-handed neutrino means that the SM must be modified with

at least the addition of another lepton, with the same generational mixings as the

other leptons and the quarks.

Finally, the strong CP problem of QCD either represents a tremendous fine-

tuning of coupling constants, or a symmetry which we have not been clever enough

to discover. In general, all renormalizable, mass dimension 4, gauge invariant terms

that can be added to the lagrangian should be added. Of all of these possible terms

in the SM lagrangian, only one is not observed—that is the CP violating term of

QCD. Charge C, Parity P and Time Reversal T are all discrete symmetries of a

quantum field theory. The symmetry CP is maximally violated in the electroweak

model, but no violations have been found in the strong force. From the QCD field

strength tensor, we can make the following (renormalizable) combinations

LQCD ⊃ F ∧ ∗F + F ∧ F =
−1

4
TrFµνF

µν − Nfg
2θ

32π2
TrFµνF̃

µν , (1.2.5)
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where θ is the CP -violating angle. ∗F is the Hodge dual of F , and is given by

∗F = F̃ρσ = −1

2
εµνρσF

µν . (1.2.6)

One expects that

−Nfg
2θ

32π2
∼ −1

4

θ ∼ 8

Nfg2
∼ O

(
1

g2

)
. (1.2.7)

The best limits come from measurements of the electron’s dipole moment, and give

θ < 1.5 × 10−10 [22]. Why is QCD any different from the electroweak model, in

which CP is maximally violated? Why should CP violations be so small? There are

beautiful correlations between CP violations and the matter/anti-matter asymmetry

of the universe. The fact that we see only matter (versus a 50/50 mix of matter/anti-

matter) in this universe is a consequence of this CP violation [23].

1.2.3 The Charge Question

Another cosmic coincidence in the SM is the difference in charge between the

electron and the proton—the difference is less that 1 part in 10−20 [24]. There is

no mechanism predicting the charges of particles in the SM, just as there are not

predictions of masses or couplings in the SM. Charge quantization may be explained

by the condition that the SM be free from anomalies, and that a right handed neutrino

exists [25]. The right handed neutrino, however, is generally not considered part of

the SM.

1.2.4 The Gravity Question

Gravity is the most important force on scales larger than about 1 m, and on

scales on the order of the Planck length (∼ 10−35 m) but it is completely without

mention in the SM. Any attempts to quantize gravity in the way that we quantize the

(non-)Abelian symmetries in the SM leads to disastrous consequences. There have
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H

f

Figure 1.2. In general, the higgs will couple to all of the fermions in the theory. The one
loop graph is quadratically divergent.

been attempts to resum the graviton propagator [26], but the regimes in which gravity

becomes strong are still poorly understood, at best. This conflict can be understood

by noting that the gravitational scattering of two particles scales as (E/MPl)
2 at tree

level, which diverges for arbitrarily large energies. This divergence is a power-law

divergence, arising because the theory of gravity at large energies has no UV cutoff.5

Finally, the propagators of all of the other forces are spin one bosons, but the

(hypothetical) graviton must have spin two. This suggests that perhaps there is some

fundamental difference in the way we must treat the forces.

1.2.5 The Hierarchy Problem

In order for the electroweak symmetry breaking to be consistent, we must pos-

tulate the existence of a scalar higgs field. SU(2)L×U(1)Y is broken to U(1)em when

the higgs scalar takes on a vacuum expectation value (vev), which is dictated by the

minimum of some potential.6 The higgs vev, v, is related to the higgs mass mH

and the higgs self-coupling, λ, by v =

√
m2

H

λ
. The SM data give the higgs mass as

113+56
−40 GeV [6], giving a vev of around 174 GeV. We know that the higgs mass must

be larger than 114.4 GeV, via direct searches at Fermilab. The problem remains that

the SM offers no way to determine the shape of the higgs potential, and thus no way

to firmly predict the vev that the higgs field will take.

5 Gravity could, of course, be a low energy effective field theory of some larger theory, but
without some fundamental length, this is just a reductio ad infinitum—one could continue such
extensions forever.

6One can imagine a ball rolling down the side of a hill—the place where the ball eventually
comes to rest corresponds to the stable minimum where the higgs field will “settle”, or its vev.
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We can estimate the higgs mass by looking at the terms from mass renormal-

ization. The higgs will couple to all of the fermions in the theory, as in Figure 1.2,

and the higgs mass is quadratically divergent:

∆m2 = − g2

8π2
Λ2
UV . (1.2.8)

Λ is a UV cutoff, and is the scale at which the SM is violated—naturally the Planck

scale where gravity becomes strong. We know that the SM cannot hold at arbitrarily

high energies where gravity becomes important—this means that the UV cutoff should

be the Planck scale, 1018−19 GeV, if there is no new intermediate scale physics. This

calculation tells us that the higgs mass will scale as the UV cutoff, which cannot be

the case, because the higgs gains a mass at the electroweak scale, which we know

from experiments. There should, therefore, be some mechanism which protects the

higgs from gaining a vev before the electroweak scale.

1.2.6 Answers

Throughout this thesis, we will examine different ways to resolve these issues

in the context of model building. We will take the position that every quantum field

theory is some low energy effective approximation [27] of a higher theory, until we

understand the UV completion of the final theory. We will see that different model

building approaches are particularly well-suited for solving particular problems, at

the expense of introducing new problems.

There is one final, albeit bleak, possibility. It could be that the constants are

the way they are by chance, and there are no first principles from which they may

be derived—this is the natural paradigm if we accept that there is no UV completion

to the SM. We could accept the higgs mass as fine tuned, that renormalization is

the only way to solve our UV divergences, and realize that we are living in a very

narrow strip of the SM parameter space that allows us to exist [28]. We may be

forced to acknowledge that quantum gravity is too hard of a problem for us to solve,
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and that the energies involved are just too inaccessible. If precision measurements of

SM parameters continue to agree with theory as well as they have in the past—for

example, if we fail to find any new physics and only a single higgs at the LHC—and we

can find no evidence of anything new in our next generation cosmological experiments

[29], then this paradigm may be inevitable.

1.3 Supersymmetry and the Minimal Supersymmetric Standard Model

Supersymmetry (or SUSY) [30–33] has been shown to be the last possible sym-

metry that one can add to the S matrix. SUSY is the famous exception to the

Coleman-Mandula theorem [34], which assumes that:

(1) the S-matrix is based on a local, relativistic quantum field theory in four-

dimensional space-time,

(2) there are only a finite number of different particles associated with one-particle

states of a given mass, and

(3) there is an energy gap between the vacuum and the one particle states.

The theorem asserts that symmetries of the S-matrix are limited to the Poincaré

group, P , and some internal symmetries, which are semisimple Lie groups G, (with

additional U (1) factors) whose generators obey

[Ta, Tb] = ifabcTc. (1.3.1)

The Poincaré group contains the energy-momentum operator, Pi ≡ −i∂i, and the

Lorentz rotation generator, Jij, which obey the following algebra:

[Pi, Pj] = 0, (1.3.2a)

[Pi, Jjk] = gijPk − gikPj (1.3.2b)

[Jij, Jkl] = − (gikJjl + gjlJik − gijJkl − gilJjk) . (1.3.2c)
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The symmetries of the S matrix must be a direct product of the two groups, P⊗G—in

other words,

[Ta, Pk] = [Tb, Jij] = 0. (1.3.3)

Typically, Lie algebras are defined in terms of commutators, but SUSY avoids

the constraints of the Coleman-Mandula theorem by generalizing the idea of a Lie

algebra—super-Lie algebras are defined in terms of an anti-commutator. In the follow-

ing section, we first review supersymmetry, and then the supersymmetric extension

to the Standard Model.7

1.3.1 The Supersymmetry Algebra and Superspace

All of the symmetries in the SM are internal symmetries, in the sense of the

Coleman-Mandula theorem—that is, there exist operators which transform bosons

into bosons and fermions into fermions. Symmetries which relate bosons to fermions

are supersymmetries. The fundamental requirement of supersymmetry is that we

have corresponding fermionic (ψα) and bosonic (φ) states. The supersymmetry is

generated by an operator Qα, called the supercharge, which takes bosonic states into

fermionic states and fermioininc states into bosonic states.

First, note that Pm transforms in the (1
2
, 1

2
) representation of the Lorentz group,

SO(4) ∼= SU(2)L × SU(2)R. Now, the only symmetry generators consistent with the

Coleman-Mandula theorem are the Pm and the Jmn, which transform as (1, 0)⊕(0, 1),

and are the proper Lorentz transformations. The set of operators P and J generate

the Poincaré group. Dirac fields (and the supercharge, Q) always transform in the

(1
2
, 0) and the (0, 1

2
) representations [35]. The anti-commutator,

{
Qα, Q̄β̇

}
, must

transform as (
1

2
, 0

)
⊗
(

0,
1

2

)
∼
(

1

2
,
1

2

)
. (1.3.4)

7In what follows, we will need to develop some formalism, which is done in Appendix B.
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The only operator which lies in this representation is Pm, which has a space-time index

m. In order to take care of the spinor indices (and preserve Lorentz invariance), we

must have

{Qα, Q̄β̇} = 2σ m
αβ̇
Pm. (1.3.5)

The commutator of (1
2
, 1

2
) and (0, 1

2
) must be in a linear combination of (1

2
, 1)

and (1
2
, 0), but because the (1

2
, 1) representation of the Lorentz is reducible, we will

not consider it. Then, the indices tell us the correct form of the commutator:

[
σ m
αβPm, Q

α
]

= cQβ. (1.3.6)

We will state without proof that the constant c = 0, giving

[
σ m
αβPm, Q

α
]

= 0. (1.3.7)

This is equivalent to the statement that the supercharge is independent of the space-

time coordinates.

Finally, consider the anti-commutation of a supercharge with itself—two (0, 1
2
)

tensors must form a linear combination of (0, 0) and (0, 1). The (0, 1) generators

are linear combinations of the Jmn, but because the Q’s commute with the P ’s, so

must their anti-commutators. The Poincaré algebra, however, tells us that no linear

combination of Jmn commutes with Pm. The (0, 0) tensors correspond to internal

symmetries [35], and for N > 1 SUSY, we have

{Qαr, Qβs} = eαβZrs, (1.3.8)

where r, s run over the SUSYs (r, s = 1, 2, ...,N ). The central charges of the group, Z,

obey Zrs = −Zsr which is trivially zero for N = 1 SUSY. The e’s are Clebsch-Gordan

coefficients. Thus we have

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0. (1.3.9)
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The Equations (1.3.5), (1.3.7), and (1.3.9) comprise the N = 1 SUSY algebra. If one

wanted to study >1 SUSY, one would have to include new indices on the supercharges

Q.

It was realized, by Salam and Strathdee [36], that the space acted on by the

supersymmetry generator is a generalized version of the space on which Pm acts. Just

as Pm generates translations in R4, the Qα generate translations in superspace. Just

as the Poincaré algebra is described by commutation relations and acts on commuting

coordinates, the supersymmetry algebra is described by anti-commutation relations

and acts on anti-commuting coordinates—points in superspace are identified by z =(
xµ, θα, θ̄α̇

)
. The θ’s are the (anti-commuting) Grassman numbers, and are defined

as

{
θα, θβ

}
=
{
θ̄α̇, θ̄β̇

}
=
{
θα, θ̄β̇

}
= 0. (1.3.10)

The superspace coordinates also commute with the R4 coordinates:

[xµ, θα] =
[
xµ, θ̄α̇

]
= 0. (1.3.11)

Consider a function of the superfield coordinates, Φ
(
x, θ, θ̄

)
.8 Because of the

anticommutation relationships in Equation (1.3.10), we have θ1θ1θ2 = −θ1θ1θ2 = 0 —

any combination of more than two Grassman numbers will always be zero. Note that

we are allowed combinations like θθθ̄θ̄, because the spinor indices of each θ
(
θ̄
)

can

be different. The most general form of a superfield is given by

Φ
(
x, θ, θ̄

)
= f (x) + θφ (x)− iθ̄χ̄ (x)

+ θθm (x)− θ̄θ̄n (x)

− θσmθ̄vm (x) + θθθ̄λ̄ (x)

+ θ̄θ̄θψ (x) + θθθ̄θ̄d (x) . (1.3.12)

8From this point forward, we will (mostly) suppress the spinor indices.
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Now, suppose that we perform a transformation in superspace, such that

Φ
(
xm, θ, θ̄

)
→ Φ

(
xm + ξm, θ + ε, θ̄ + ε̄

)
, (1.3.13)

where ξm = −iεσmθ̄ + iε̄σ̄mθ is the general form of a translation in superspace for

xm. The superspace translations are generated by the Q’s, and we may write the

transformation as:

Φ →
(
εQ+ ε̄Q̄

)
Φ (1.3.14)

Inserting the definition of Φ into Equation (1.3.14), and using (1.3.13), we find

QαΦ = ∂θαΦ− iσ m
αα̇ θ̄

α̇∂mΦ (1.3.15a)

Q̄α̇Φ = −∂θ̄α̇Φ + iθασ m
αα̇ ∂mΦ. (1.3.15b)

By imposing different conditions on the general field Φ, we can construct the differ-

ent representations of the SUSY algebra, which will be useful when we construct a

supersymmetric field theory.

When working with internal symmetries in R4, we must define the notion of a

covariant derivative in order to ensure that the lagrangian transforms in such a way

as to leave the action invariant. In superspace, the super-covariant derivatives are

given by:

Dα = ∂θα + iσ m
αα̇ θ̄

α̇∂m, (1.3.16a)

D̄α̇ = −∂θ̄α̇ − iθασ m
αα̇ ∂m. (1.3.16b)

Because they are so similar to the Q’s, we might expect that the super-covariant

derivatives obey the same algebra. This is indeed the case: the differential operators

obey the same anti-commutator algebra that the supercharges do, and even anti-

commute with the supercharges:{
Dα, D̄β̇

}
= −2σ m

αβ̇
Pm (1.3.17a)

{Dα,Dβ} =
{
D̄α̇, D̄β̇

}
= 0 (1.3.17b)

{Dα, Qβ} =
{
D̄α̇, Q̄β̇

}
=
{
Dα, Q̄β̇

}
=
{
D̄α̇, Qβ

}
= 0 (1.3.17c)
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Referring to Equation (1.3.12), we see that the general superfield contains left-handed

fermionic fields φ and right-handed fermionic fields χ. If we separate the left- and

right-handed parts from Φ, we find:

DαΦL = 0 (1.3.18a)

D̄α̇ΦR = 0. (1.3.18b)

We can write ΦL and ΦR in a more compact form, choosing ym = xm + iθσmθ. Then

ΦL = A (y) +
√

2θψ (y) + θθF (y) (1.3.19a)

ΦR = A∗
(
y†
)

+
√

2θ̄ψ̄
(
y†
)

+ θ̄θ̄F ∗
(
y†
)
. (1.3.19b)

The F field, called an auxiliary field, will not appear in the effective field theory, and

will be eliminated using its equation of motion:

∂L
∂Fk

= Fk + λk +mikAi + gijkAiAj = 0, (1.3.20a)

∂L
∂F ∗k

= Fk + λ∗k +m∗
ikA

∗
i + g∗ijkA

∗
iA

∗
j = 0. (1.3.20b)

It is now quite clear that the chiral superfield relates a Weyl spinor (spin 1
2

fermion),

ψ with a complex (spin 0) scalar, A. Finally, the super-covariant derivatives are:9

DαΦL = ∂θαΦL + 2iσ m
αα̇ θ̄

α̇∂mΦL, (1.3.21a)

D̄α̇ΦR = −∂θ̄α̇ΦR, (1.3.21b)

Another representation of the SUSY algebra that we will use is the vector su-

perfield, V , defined to be real:

V = V †. (1.3.22)

Expanding in the Grassman parameters, the most general form of a vector superfield

9The spatial derivatives are taken with respect to y: ∂m = ∂
∂ym .
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is given by

V (x, θ, θ̄) = C(x) + iθχ(x)− iθ̄χ̄(x)

+
i

2
θθ[M(x) + iN(x)]− i

2
θ̄θ̄[M(x)− iN(x)]

− θσmθvm(x) + iθθθ̄[λ̄(x) +
1

2
σ̄m∂mχ(x)]

− iθ̄θ̄θ[λ(x) +
i

2
σm∂mχ̄(x)]

+
1

2
θθθ̄θ̄[D(x) +

1

2
�C(x)]. (1.3.23)

The component fields, C,D,M,N and the vector field vm are all real. In the Wess–

Zumino gauge, we set C, χ,M, and N to zero, thus removing much of the complexity

of Equation (1.3.23). The resulting vector superfield is given by

V = −θσmθ̄vm(x) + iθθθ̄λ̄(x)− iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x), (1.3.24)

As is typical, we have fixed the gauge and lost a manifest symmetry (supersymmetry).

This representation of the supersymmetry algebra relates a (spin 1) vector field, vm,

and a left-handed (spin 1
2
) fermion, λ. D is an auxiliary field like F , and will be

eliminated in the effective theory using its equation of motion:

Da − A†iT
a
ikAk = 0, (1.3.25a)

(Da)† − AiT
a
ikA

†
k = 0, (1.3.25b)

where T a = T a †. This vector superfield is invariant under a local gauge transforma-

tion [30]:

V → V + Φ + Φ†, (1.3.26)

and ensures a supersymmetric version of gauge invariance.

1.3.2 Supersymmetric Quantum Field Theories

Our supersymmetric quantum field theory will be built from the superfields that

we constructed in the last section. The superfields contain both bosonic and fermionic
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degrees of freedom—it is in this way that we will relate bosons to fermions in the

effective field theory. These fields live in superspace, and are acted on by the super-

covariant derivatives, D and D̄, defined in (1.3.16). The superspace is parameterized

by non–commuting Grassman coordinates, θ and θ̄.10

The lagrangian will be constructed from two parts—a part containing chiral

superfields and a part containing vector superfields. As always, we want the action to

be invariant under transformations of the lagrangian. By Gauss’ theorem, this means

that any transformation can change the lagrangian by, at most, a total derivative.

If we look at the way a chiral superfield transforms under the supersymmetry trans-

formation, Equation (1.3.14), we see that only the θθ (θ̄θ̄) components transform as

a total derivative. By direct multiplication, we see that the product of any number

of chiral superfields is also a superfield. Then we define a function P , called the

superpotential, which transforms as a total derivative under (1.3.14), as

P =

{
λiΦi +

1

2
mijΦiΦj +

1

3
gijkΦiΦjΦk

} ∣∣∣∣
θθ component

(1.3.27)

Note that we could, in general, have more terms in our superpotential. A quick check

of the mass dimensions of the higher order terms, however, shows that they are non-

renormalizable. As in non-supersymmetric quantum field theory, one could add such

non-renormalizable terms to the lagrangian—this is an interesting possibility, and

these higher order terms are of much interest in the heterotic, free-fermionic string

phenomenology that we will discuss later, in Chapter 3.

Now, consider the product Φ†Φ. By direct multiplication, one can show that

this product is not a superfield, however, the coefficients of the θθθ̄θ̄ term have the

correct transformation properties to be included in the lagrangian, namely the term

changes by an overall derivative.11

10In what follows, we will assume a supersymmetric, Abelian field theory, with coupling g.
11One can also count mass dimensions—in order to construct a renormalizable lagrangian, all

terms in that lagrangian must have mass dimension 4. The product Φ†Φ has mass dimension 2, and
θθθ̄θ̄ has mass dimension -2, thus the coefficient of this term must have mass dimension 4.
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The full chiral superfield lagrangian can then be expressed in terms of the su-

perpotential:

L = Φ†
iΦi

∣∣∣∣
θθθ̄θ̄

+
1

2

∑
i,k

{
∂2P

∂Φi∂Φk

ψiψk + h.c.

}
−
∑
i

∣∣∣∣ ∂P∂Φi

∣∣∣∣2 . (1.3.28)

In this lagrangian, we have eliminated the auxiliary fields F and D using Equations

(1.3.20) and (1.3.25).

In order to construct the vector lagrangian, we make the observation that it

must be gauge invariant. The only constituent fields of V which are gauge invariant

are λα and D. Let us use D and D̄ to define projection operators, that keep only the

λα from V :

Wα = −1

4
D̄D̄DαV,

W̄α̇ = −1

4
DDD̄α̇V. (1.3.29a)

By the commutation relationships in Equations (1.3.17), we immediately see that

D̄α̇Wβ = DαW̄β̇ = 0. (1.3.30)

This means that the W fields are chiral (cf Equations (1.3.18)). They are also gauge

invariant—under the gauge transformation (1.3.26):

Wα → −1

4
DDD̄α̇

(
V + Φ + Φ†)

= Wα −
1

4
D̄
{
D̄,D

}
Φ = Wα. (1.3.31)

If we were to write out the form of Wα, we would see that it contain the gauge

invariant fields D and λα, as well as the (gauge invariant) Abelian field strength:

vmn ≡ ∂mvn − ∂nvm. (1.3.32)

Again, by either looking at the transformation properties, or by counting mass

dimensions, one finds that the kinetic terms for a vector and spinor field are contained

in

W αWα

∣∣∣∣
θθ

= −2iλσm∂mλ̄−
1

2
vmnvmn +D2 +

i

4
vmnvlkεmnlk. (1.3.33)
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The D fields are eliminated using their equations of motion, (1.3.25). The kinetic

part of the vector lagrangian is, then:

Lkin =
1

4

{
WαWα

∣∣∣∣
θθ

+ W̄α̇W̄
α̇

∣∣∣∣
θ̄θ̄

}
. (1.3.34)

This is the only renormalizable term allowed in the vector lagrangian.

We will not derive the form of the non-Abelian supersymmetric lagrangian here,

but note that this can be done by looking at the chiral superfield transformations:

Φi → e−igTiΛΦi, (1.3.35)

and the vector superfield transformations:

Wα → eigΛWαe
−igΛ. (1.3.36)

The final, supersymmetric, gauge invariant, lagrangian has the form

L = Φ†
ie
−2gTV Φi

∣∣∣∣
θθθ̄θ̄

+
1

2

{
WαWα

∣∣∣∣
θθ

+ W̄α̇W̄
α̇

∣∣∣∣
θ̄θ̄

}
+

1

2

∑
i,k

{
∂2P

∂Φi∂Φk

ψiψk + h.c.

}

−
∑
i

∣∣∣∣ ∂P∂Φi

∣∣∣∣2 − 1

2

∑
a

∣∣∣∣∣ga∑
i

A†iT
aAi

∣∣∣∣∣
2

. (1.3.37)

The last line is the so-called “scalar potential”, consisting of the F terms and D

terms, which we have left explicit:

∣∣F i
∣∣2 =

∣∣∣∣ ∂P∂Φi

∣∣∣∣2 ,
|Da|2 =

1

2

∣∣∣∣∣ga∑
i

A†iT
aAi

∣∣∣∣∣
2

. (1.3.38)

1.3.3 The Minimal Supersymmetric Standard Model

In formulating a realistic (i.e., phenomenologically viable) supersymmetric ex-

tension to the SM, we must limit ourselves to N = 1 SUSY. There are tight exper-

imental limits on the masses of the supersymmetric particles, and if we had N > 1

SUSY, we would have observed it already. Further, we know the SM to be chiral.
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Higher SUSYs lead to transformation laws between left-handed fermions and their

right-handed partners, destroying chirality in the effective field theory—left-handed

and right-handed Majorana-Weyl spinors combine to form Dirac spinors. In N = 1

SUSY, there is one bosonic state for each SM fermion state, and one fermion for each

SM boson. This means that we must double the spectrum of the SM to incorpo-

rate SUSY12 —which is now called the Minimal Supersymmetric Standard Model, or

MSSM [37].

Because we have not observed such a symmetry in our experiments yet [6], we

must assume that the symmetry breaks at some scale above the electroweak scale.

The main motivation for SUSY, as we will see in Section 1.3.4, is that it solves the

hierarchy problem—if the SUSY breaking scale is very much above the electroweak

scale, then it can no longer protect the hierarchy. This means adding more parameters

to our theory, in the form of a SUSY breaking potential. In gauge mediated SUSY

breaking, the potential is communicated from a hidden sector by a “messenger” gauge

group, usually an additional (possibly anomalous) U(1) [38]. Alternately, gravity

could act as the messenger—this is known as gravity mediated SUSY breaking [39],

and requires a local formulation of SUSY, known as supergravity. Whatever the final

answer, the ultimate supersymmetry-breaking parameter cannot belong to any of

the MSSM supermultiplets—a D-term vev for U (1)Y does not lead to an acceptable

spectrum, and there is no candidate gauge singlet in the MSSM whose F-term could

develop a vev [40]. So, if we accept that nature is supersymmetric (and if we believe

string theory, this must surely be the case), then we must accept that the MSSM as

a priori incomplete.

The fermions in the MSSM are assigned to chiral superfields, and the spin one

bosons come from vector superfields. The superpartners (spartners) of the fermions

12 One might wonder whether the bosons and fermions in the SM satisfy supersymmetric
transformations. The answer is no—the particle spectrum of the SM does not have the correct
quantum numbers.
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Table 1.1. Particle Content of the MSSM. Reproduced from [1].

Superfield Bosons Fermions SU(3)C SU(2)L U (1)Y
Gauge
Ga gluon ga gluino g̃a 8 1 0
Vk weak W k (W±,W 0) wino, zino w̃k (w̃±, w̃0) 1 3 0

V′ hypercharge B (γ) bino b̃ (γ̃) 1 1 0
Matter

Li

Ei
sleptons

{
L̃i = (ν̃, ẽ)L
Ẽi = ẽcL

leptons

{
Li = (ν, e)L
Ei = ecL

1
1

2
1

−1
2

Qi

Ui

Di

squarks


Q̃i = (ũ, d̃)L
Ũi = ũcL
D̃i = d̃cL

quarks


Qi = (u, d)L
Ui = ucL
Di = dcL

3
3̄
3̄

2
1
1

1/3
−4/3

2/3

Higgs

H1

H2
Higgses

{
H1

H2
higgsinos

{
H̃1

H̃2

1
1

2
2

−1
1

are scalars (sfermions), and the spartners of the gauge bosons are fermions (gaugi-

nos). The higgs sector is now doubled—two higges live in chiral superfields and have

fermionic partners called the higgsinos. The particle content, quantum numbers and

naming conventions for the spartners are given in Table 1.1.

The superpotential for the MSSM is given by

PMSSM = yuUQHu − ydDQHd − yeELHe + µHuHd. (1.3.39)

The fields that make up this superpotential are chiral superfields, and the dimension-

less Yukawa couplings, y, are matrices in family space.

Note that this is not the most general form of a superpotential that one can

write. One could also add (gauge invariant, renormalizable) terms that violate con-

servation of lepton number or baryon number, and introduce flavor changing neutral

currents at unacceptable rates:

P∆L=1 =
1

2
λijkLiLjEk + λ′ijkLiQjDk + µ′iLiHu, (1.3.40a)

P∆B=1 =
1

2
λ′′ijkUiDjDk, (1.3.40b)
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(a) (b)

Figure 1.3. The running of the couplings in the Minimal Supersymmetric Standard Model.
The graph in Figure 1.3(a) has been magnified around the apparent unification scale, which
is an artifact of the thickness of the lines. In order to have perfect unification, we must rely
on GUT scale threshold effects, such as those calculated in Section 4.3.1.

where ijk are family indices. The couplings, λ, must either be exponentially sup-

pressed, or set to zero by some symmetry. Generally, phenomenologists invoke R

parity [40], a discrete symmetry of the MSSM, given by

PR = (−1)3(B−L)+2s , (1.3.41)

where s is the spin of the field in the supermultiplet. As a symmetry of the MSSM, all

of the interactions in the MSSM must respect R parity. This means that PR projects

the terms (1.3.40) out of the lagrangian. These terms are certainly an undesirable

feature of the MSSM—baryon and lepton number in the SM are conserved because

there exist no dimension 4 (or higher) operators that produce baryon or lepton decay.

Here we have crudely imposed some unnatural symmetry on the model to make it

match the low energy measurements.

The bi values (see Equation (1.1.7)) for the MSSM beta functions are [41]

b1 = 33
5

b2 = 1

b3 = −3.

(1.3.42)

The beta functions are plotted in Figure 1.3(a).
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The apparent unification of the forces at the energy scale ∼ 2.5 × 1016 GeV is

actually a trick, as seen in Figure 1.3(b). One generally relies on threshold effects to

save the day. The general form of a grand unified theory is

α−1 (E) = α−1
GUT +

bi
2π

log

[
E

MGUT

]
+ ∆i = α−1

GUT +
bi + δ bi

2π
log

[
E

Λ

]
. (1.3.43)

The ∆i’s are found by requiring that the beta functions agree with experiment at

MZ .

1.3.4 Answers from the MSSM

We set out several issues that a successful extension to the SM should ad-

dress in Section 1.2. What does the inclusion of SUSY do for us? First of all,

between spartner masses, new mixings and new Yukawa couplings, the MSSM has

124 free parameters. These free parameters correspond to experimental observables,

much like the aforementioned 18 free parameters of the SM. SUSY says nothing

about the algebra question—we can make supersymmetric quantum field theories

that have all kinds of gauge groups. Because there are fermionic superpartners of the

gauge bosons, we now have fermions transforming in the adjoint representations of

SU(3)C ×SU(2)L×U(1)Y . But now we also have a bunch of scalars transforming in

fundamental representations—we have introduced new particles and have (perhaps)

made our situation a bit more complicated. Further, we can change things in the

SM (like the number of generations, or the representations in which the fermions

transform) with no restrictions from SUSY. Finally, supersymmetry has no answers

for the fermion question, the charge question, or the gravity question.

The main motivation for SUSY is that it contains a mechanism to keep the higgs

mass at an acceptable value.13 The suppression of the higgs mass works because

the higgs couples to the new scalar sparticles that SUSY postulates, whose loop

13SUSY also contains a suitable dark matter candidate, but this is outside the scope of this
thesis [42, 43].
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H

Scalar

Figure 1.4. If our theory contains any extra scalars, the higgs receives radiative corrections
from the four-point interaction vertex.

contributions tend to cancel those in Equation (1.2.8). For example, when complex

scalars couple to the higgs (the sparticles of the MSSM) as in Figure 1.4, the higgs

mass gets corrected to a reasonable value [40]:

∆m2
H =

λS
16π2

[
Λ2
UV − 2m2

S log

(
ΛUV

mS

)
− ...

]
. (1.3.44)

But the hierarchy problem has been hidden in a new problem—namely the scale of

SUSY breaking. In order to protect the higgs mass, the SUSY breaking scale must

be somewhere around the electroweak breaking scale. The expected SUSY breaking

scale, by the same types of naive calculations that we used in estimating the higgs

mass, is around the Planck scale. The breaking of SUSY could be relegated to some

non-perturbative, Planckian regime, and thus listed under the gravity question, in

which case we don’t expect an answer from any perturbative formulation of quantum

field theory, supersymmetric or not. In this vein, the best hope is a local formulation

of SUSY, called supergravity, or SUGRA.

The near-unification of forces after the inclusion of SUSY, illustrated in Figure

1.3(a), is the strongest evidence that we should be studying some supersymmetric

unified theory—two random lines generally always intersect, but three random lines

almost never intersect at the same place. Threshold corrections ∼ 5% are sufficient to

achieve unification in SUSY, whereas one needs corrections ∼ 20% to get unification

in the SM. If one incorporates SUSY into some larger theoretical framework, such as

a GUT or string theory, one finds solutions to most of the problems mentioned in
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Section 1.2. It would be a grand coincidence if this near-unification were an accident,

and nature really respected SU(3)C × SU(2)L × U(1)Y at the highest energies.



CHAPTER TWO

Grand Unified Theories

The idea of unification is not a new one—Howard Georgi wrote down the first

version of an SU(5) Grand Unified Theory (GUT) in 1974 [44], and he even co-

discovered the embedding of the SM in SO(10), along with Fritzsch and Minkowski

in the same year [45, 46]. Let us first review the motivations for unification, the

possible unification scenarios, and then some specific examples.

2.1 General Arguments for Unification

Matter in our universe interacts according to the SM gauge group, SU(3)C ×

SU(2)L × U(1)Y . It is only logical to imagine how the three gauge groups of the SM

may be embedded into some larger gauge group. We are also quite encouraged when

we compute the coupling constant’s dependence on energy, and find that they tend to

a common value at an energy scale of around 1016 GeV, as in Figures 1.1 and 1.3(a).

The question is, can we address any of the other issues of the Standard Model by

postulating unification?

2.1.1 The Algebra Question

There is no answer to the algebra question in most GUTs. The breaking of

the GUT is chosen so that the low energy effective field theory contains the SM.

(The exception to this is the S̃U(5) partial GUTs—this situation is discussed in some

detail in Section 2.5.) We really just restate the gauge problem—we choose a GUT

symmetry so that we get desirable phenomenology. We will see this explicitly in the

following sections. This is known as model building from a bottom-up approach—

we look at (low energy) experimental data, and make an educated guess as to what

nature is like at higher energy scales, working through the problem backwards. Some

28
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could argue that traditional 4-d GUTs make this problem worse, as they need to

introduce another higgs (or a combination of new higgses) to break the grand unified

gauge group. Higgs vevs always correspond to free parameters of the theory, so

we run the risk of introducing too many degrees of freedom in our theory. The

fermions still transform in the fundamental reps of the gauge group, but sometimes

the bifundamental is needed. In this sense, the problem is not addressed at all.

2.1.2 The Fermion Question

GUTs typically do not address the generational structure of the SM. The viola-

tion of B − L, however, is a generic prediction of all GUTs, which tend to introduce

higher dimensional operators which can lead to proton decay. At the GUT scale,

there are tree level processes like Figure 2.1(a). The relevant term in the lagrangian

(after gauge fixing) is

L ∼ g2
5

{
ūγµu

(
gµν

k2 −M2
X

)
ēγνd

}
. (2.1.1)

For M2
X >> k2, we can write

L ∼ g2
5

M2
X

{ūγµugµν ēγνd} . (2.1.2)

The process is suppressed by two powers of the GUT scale, which is typically around

1016 GeV. Still, the experimental searches for proton decay [47] can provide strong

constraints on new physics—for example, the simplest versions of non-supersymmetric

and supersymmetric SU(5) are already ruled out [48]. Baryon “conservation” is

really baryon “longevity”, which is understood as a consequence of Equation (2.1.2).

Another generic prediction of GUTs is neutron oscillation, N ↔ N̄—current bounds

on this process are > 1.3×108 s [6]. Indeed, if we observe such things as proton decay

or neutron oscillation, we will have strong evidence of some grand unified theory.

The neutrino mass problem is elegantly addressed by many GUTs via the “see-

saw” mechanism [20, 21], which is generally incorporated quite naturally. Questions
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Figure 2.1. The operators which cause proton decay. In (a) we have the Feynman graph
which comes from the lagrangian. In (b), we have the effective graph, after integrating over
the X boson.

about number of generations and generational mass ratios are not generally addressed

within the framework of GUTs.

2.1.3 The Charge Question

Grand Unified Theories naturally explain the quantization of charge via anomaly

cancellation. The Pati-Salam GUTs even contain a natural definition of electric

charge [49]. This, along with the near-unification of the coupling constants at some

large energy scale MGUT (as in Figure 1.1), are perhaps the main motivation for

studying GUTs.

2.1.4 The Gravity Question

In general, the unification scale, MGUT ∼ 1016 GeV is much less than the Planck

scale, MPl ∼ 1018−19, where we believe gravity becomes important, so our understand-

ing of GUTs gives us no intuition about how to treat gravity at the relevant energy

scales. However, if we embed our GUTs in some larger framework, like string theory,

then we can quite naturally understand all of the issues associated with the gravity

question. On the other hand, in the heterotic string GUTs (as in Chapter Three),

all of the breaking occurs at the string scale. In this case, the gravity question is

answered by string theory.
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2.1.5 The Hierarchy Problem

The hierarchy problem is generally not addressed by GUTs. The higgs vevs

(both the electroweak higgs and the GUT higgs) are still free parameters in the theory,

and there exist no convincing arguments from which either of the higgs potentials

could be derived. On the contrary, it introduces another, smaller hierarchy between

the GUT scale (∼ 1016 GeV) and the Planck scale (∼ 1018−19 GeV)—why is there a

factor of > 100 difference between the Planck scale and the GUT scale? In our string

constructions, all of the symmetry breaking occurs at Mstr ∼ 5 × 1017 GeV [50].

We have investigated [51] some string based solutions to this question. Specifically,

Giedt’s “Optical Unification” proposal [52] gives conditions whereby Mstr = MGUT

by putting constraints on intermediate scale matter. This intermediate scale matter

changes the δbis in Equation (1.1.7) in such a way that all three lines intersect at one

point, at the Planck scale. This work is not included here.

Generally, model builders are content to invoke supersymmetry as a solution to

the hierarchy problem, which consequently solves some of the non-supersymmetric

GUT problems like proton decay. The idea is to embed the MSSM, as in Section

1.3.3 into a larger symmetry in the same manner as we embed the SM into a larger

symmetry. We do not discuss SUSY GUTs in this thesis, however, some may find the

review by Raby in [6] useful.

2.2 Candidates for Unification

What types of Lie Groups are suitable for embedding the SM? First, let’s look

at the four dimensional1 simple and exceptional groups which contain SU(3). This

rules out groups like SO(5)2 and SU(2)4, both of which do not contain SU(3) [5].

Further, we need complex representations for the fermions—this rules out SO(4),

SO(9), Sp(8), G2
2, and F4. We are left with SU(5)!

1Because the gauge group of the SM is four dimensional (SU(3)× SU(2)×U(1)), this is the
smallest dimension for a unified gauge group.
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But what other groups are suitable for unification? We will briefly discuss

SO(10) and E6 GUTs, but there are many more possibilities [53]. The most studied

GUTs are, by far, those based on the groups SO(10) and SU(5). The SU(5) GUTs

are discussed in some detail in the next section and the appendices—here we will

briefly review the breaking patterns of SO(10).

A generation of SM fermions fit into the 16 of SO(10). Higgsing to the SM

depends on the breaking pattern, but electroweak symmetry breaking is generally

accomplished by a higgs in the fundamental representation of the gauge group, as

is required by the standard Glashow-Weinberg-Salam theory. Generally, one breaks

SO(10) in one of four ways:

SO(10) → SO(6)× SO(4) [49],

→ SU(3)C × SU(2)L × SU(2)R × U(1) [54],

→ SU(5)× U(1) [54],

→ S̃U (5)× U(1)Ỹ [55].

(2.2.1)

Note that the last two breaking patterns are distinct, as will be demonstrated in

Section 2.5. The first option, the so-called Pati-Salam models, have some interesting

characteristics. For example, not only do they give a simple form of the electric

charge, but they naturally accommodate the see-saw mechanism, and they contain

a beautiful explanation of the chirality of the SM. We will discuss these types of

models, which will come up in the context of our string constructions, in Section

2.3. The second breaking pattern, often referred to as the Left-Right Symmetric (or

LRS) model, shares many of the same features as the first—the difference is how the

symmetries form the SM. In the first case, one observes that SO(6) and SO(4) are

isomorphic to SU(4) and SU(2)L × SU(2)R, respectively. The SU(4) then breaks to

SU(3)C ×U(1). The higgsing from SU(3)C × SU(2)L× SU(2)R×U(1) to the SM in

both cases is then achieved in the same manner. The third breaking pattern will not

be explored here, but, as already mentioned, the simplest versions of this model have
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been eliminated. We do note, however, that the breaking of SU(5) is discussed in

Section 2.4, and in more detail in Appendix C. The final breaking pattern of SO(10)

are the flipped SU(5) models of Barr and others [55, 56]. These will be explained in

Section 2.5, although their embeddings in SO(10) will not be discussed.

There has also been some exploration of the E6 models [57], which generally

break in one of two ways:

E6 → SO(10)× U(1)X [58],

→ SU(3)c × SU(3)L × SU(3)R [59].
(2.2.2)

The U(1)X has the interpretation of a family symmetry: family replication is achieved

naturally, which is one of the main motivations for embedding SO(10) in E6. In the

previous examples, one must add generational copies of the representations to the

spectrum—so, for example, in typical SO(10) constructions, one adds a copy of each

16 for each generation of fermions. The E6 models contain a natural resolution to

some of the issues associated with the fermion problem (see Section 1.2.2), but these

models will not be discussed any further.

2.3 Pati-Salam and Partial Unification

In Section 1.1, it was noted that unification of all forces in the SM required

threshold corrections on the order of about 20%. What if we only want to unify two

of the forces? So, for example, SU(2) and U(1) unify at about 1014 GeV, and we

could conceivably embed these forces into an extra SU(3), making the gauge group

SU(3)× SU(3)C at E & 1014 GeV. This partial unification creates a small hierarchy

between the masses of the partial GUT higgs and the GUT higgs, just as we saw

a hierarchy between the GUT higgs and the electroweak symmetry breaking higgs.

We might be willing to accept this new, smaller hierarchy if the partial unification

scheme does other things for us.
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The idea that only two of the forces unify at some intermediate scale is known

as partial unification. If some smaller gauge group, G is embedded into a single larger

gauge group, G, at some mass scale MI , then the coupling constants must obey

gG (MI) = gG (MI) . (2.3.1)

A less trivial case is when the generators of the smaller group G are a linear combi-

nation of the generators of several larger groups
∏

i Gi. For tai a generator of Gi, the

generators of G are given by

λbG =
∑
i,a

cbi,at
a
i , (2.3.2)

where a, b run over the dimensions of the respective groups. The matching condition

in this case is then

1

g2
G (MI)

=
∑
i,a,b

cbi,ac
b
i,a

g2
Gi

(MI)
(2.3.3)

Let us motivate the Pati-Salam constructions by noticing an asymmetry in the

SM gauge group, SU(3)C × SU(2)L × U(1)Y , and the SM spectrum, in Equation

(1.1.1). Left-handed particles seem to be treated preferentially—that is, the SM is

a chiral theory. Some would view this as a non-issue, just a statement about how

nature works, but we will see how addressing this issue of chirality can solve some of

the other issues that we had with the SM, as per Section 1.1.

Pati and Salam proposed, in 1974, that SO(10) contains SO(6) × SO(4) [49,

60, 61], now called the Pati-Salam Group, or PS. We have seen before that SO(4) is

isomorphic to SU(2)L × SU(2)R in the derivation of the Supersymmetry Algebra, in

Appendix B. Further, one can show that SO(6) ∼= SU(4). After higgsing from the

SO(10) GUT we have the intermediate gauge group

SU(4)C × SU(2)L × SU(2)R. (2.3.4)

The SU(4)C then breaks to QCD × U(1)B−L:

SU(3)C × SU(2)L × SU(2)R × U(1)B−L. (2.3.5)
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Besides the appealing feature of left-right symmetry, these models contain a

“natural” definition of the hypercharge quantum number, U(1)Y , of the SM, and

a natural explanation for conservation of the B − L quantum number (see Section

1.2.2). There is no derivation of the hypercharge quantum number in the SM, just an

ad hoc assignment of values. In the Pati-Salam models, the hypercharge is defined in

terms of the SU(2)L×SU(2)R isospins, and the B−L quantum number—the electric

charge is given by [62, 63]:

Q = I3L + I3R +
B − L

2
, (2.3.6)

which can be shown from Equation (2.3.3). Finally, the PS models contain a right-

handed neutrino, which gives small masses to the left-handed neutrinos via the seesaw

mechanism [20, 21].

As in the SM, the quarks and leptons come in doublets. In writing out the

quantum numbers under SU(2)L × SU(2)R × U(1)B−L, the symmetry between left-

handed and right -handed states is clear:

QL = (2,1, 1/3) QR = (1,2, 1/3)

LL = (2,1,−1) LR = (1,2,−1)

WL = (3,1, 0) WR = (1,3, 0) .

(2.3.7)

The covariant derivative is just a generalization of that of the Glashow-Weinberg-

Salam theory:

DLµ +DRµ ≡ 1

2
{∂µ − igLσ ·WLµ − igB−LYB−LBµ}L

+
1

2
{∂µ − igRσ ·WRµ − igB−LYB−LBµ}R . (2.3.8)

Notice that the covariant derivative is symmetric under L ↔ R when gL = gR—this

shows explicitly the equal treatment of left- and right-handed particles. The σ are

the generators of SU(2), and YB−L is the B − L quantum number.
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Higgsing to the SM is accomplished using a minimal higgs sector—two higgses

in the adjoint of SU(2)L × SU(2)R, ∆L and ∆R, and one scalar “bi-doublet”, φ:

∆L = (3,1, 2) , (2.3.9a)

∆R = (1,3, 2) , (2.3.9b)

ψ = (2,2, 0) . (2.3.9c)

The higgs gain vevs of the form:

〈∆L〉 =

 0 0

vL 0

 , 〈∆R〉 =

 0 vR

0 0

 , (2.3.10a)

〈φ〉 =

 κ 0

0 κ′

 eiα. (2.3.10b)

The scalars give the extra gauge bosons mass in the standard way: one can derive the

gauge boson masses by inserting the form of Equations (2.3.10) into the definition of

the covariant derivative, Equation (2.3.8). The gauge boson masses at the energy scale

where (2.3.5) is a good symmetry can then be found using the matching condition

that g2L (MLRS) = g2R (MLRS).

The upper limit on the mass of the Z ′ boson (from SU(2)R) is MZ′ > 860 GeV

at 95% confidence limit [6]. One can also put bounds on the mass of the extra WR

bosons from astrophysical observation. If the neutrinos have Majorana mass terms

(of the form mννLν̄L + h.c.), we can use data from SN1987a [64, 65] to constrain

MWR
& 1000 GeV. These bounds should be significantly improved if no evidence of

an extra Z ′ boson is found when the LHC data is analyzed, by the end of this decade.
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2.4 SU(5) Unification

It is well known that the SM matter fits into the 1, the 5 (χ) and 10 (ψ) reps

of SU(5) [44]:

χ̄ =



d̄1

d̄2

d̄3

e

νe


L

ψ =



0 ū3 −ū2 −u1 −d1

−ū3 0 ū1 −u2 −d2

ū2 −ū1 0 −u3 −d3

u1 u2 u3 0 −ē

d1 d2 d3 ē 0


L

ν̄e = 1 (2.4.1)

Traditionally, the breaking of SU(5) is achieved when some scalar field takes on a

vev. In the simplest example, a scalar Σ, transforming as the 24 (adjoint) of SU(5),

takes on a vev of the form

〈Σ〉 = v



−2
3

0 0 0 0

0 −2
3

0 0 0

0 0 −2
3

0 0

0 0 0 1 0

0 0 0 0 1


. (2.4.2)

This form of the vev for the scalar Σ is justified ex post facto—it leaves the gluons,

the W ’s and the B all massless and preserves the SM at energies much less than

MGUT , while giving the other 12 generators of SU(5) (the X’s and Y ’s) masses of

25
9
v2 ∼ MGUT .2 Finally, a higgs in the fundamental (5) representation achieves

electroweak symmetry breaking, giving the W± and the Z0 boson’s mass ∼ 100 GeV,

fourteen orders of magnitude smaller than the masses of the X and Y bosons.

2.5 S̃U(5) Unification

Flipped SU(5) [55, 56] (or S̃U(5)) unification has been studied extensively in the

context of string model building [66]. The first realistic examples of a string derived

2See Appendix C for details.
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MSSM came from SO(10) embeddings of S̃U(5), obtained from the free fermionic

heterotic string [67].

The fermions still fit into the 1, 5 and 10 reps of SU(5). The only difference is

that the neutrino and the electron, the up- and down-type quarks, and their respective

anti-particles, exchange places in the corresponding reps. So, we have

χ =



ū1

ū2

ū3

νe

e


L

, ψ =



0 d3 −d2 −d1 −u1

−d3 0 d1 −d2 −u2

d2 −d1 0 −d3 −u3

d1 d2 d3 0 −νe

u1 u2 u3 νe 0


L

, ē = 1. (2.5.1)

Two things are important here: First, it is immediately obvious that the hypercharges

of the fields in the reps (cf the 5 and the 1) do not trace to zero. This means that

we must add another generator (proportional to the identity) to ensure freedom from

anomalies. The actual gauge group of this model is

SU(5)× U(1)Ỹ . (2.5.2)

Under the S̃U(5) gauge group, the fermion reps transform as follows:

χ̄ = (5̄,−3/2) , ψ = (10, 1/2) , ē = (1, 5/2) . (2.5.3)

Second, because there is now a color singlet in the 10, we may use this non-adjoint

rep for higgsing the GUT. Historically, this represents the first time a representation

with a dimension less than that of the adjoint was used for symmetry breaking in any

GUT. We still need a higgs in the fundamental rep to accomplish the electroweak

symmetry breaking. The higgs reps transform as

H = (10, 1/2) , (2.5.4a)

h = (5,−1) . (2.5.4b)
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Much of the phenomenology, as well as many of the predictions of traditional

SU(5) GUTs, are altered in S̃U(5). It is well known that the standard prediction

for down-type quarks and their associated leptons in the standard SU(5) GUT is

md

me
= ms

mµ
. One way to address this (wrong) prediction is to add more GUT scale

higgses to the model, generating new mass terms. For example in the case of SU(5),

we can add a higgs in the 45 [68, 69]. This representation of the gauge group has the

property that

Hp
sq = −Hp

qs, (2.5.5a)
5∑
p=1

Hp
pq = 0. (2.5.5b)

The SU(5) lagrangian now contains new Yukawa couplings of the form

LY = λψ̄pH
p †
sq χsq + · · · (2.5.6)

If we let this higgs take on a vev of the form

〈
H i
i5

〉
=
−1

3

〈
H4

45

〉
= Λ, (2.5.7)

one can then show that this new theory, including the 45 higgs gives

me

mµ

=
1

9

md

ms

, (2.5.8)

which is quite well-satisfied by experiment.3

The other way that we might think to address this problem is to make the

observation that the mass ratio predictions are GUT-scale predictions, and we can

only observe the fermion masses around 1 GeV. The fermion mass at energy scale µ

is related to the fermion mass at energy scale M by

log
mf1 (µ)

mf2 (µ)
= log

mf1 (M)

mf2 (M)
+

∫ ∑
i

[
Y i
f1
− Y i

f2

] dµ′
µ′

(2.5.9)

3We could also add higgses in the 10 or 50 to fix this [14], and we have no a priori reason to
exclude these scalars from the theory, however, the attitude is often one of minimalism—we could
add as many free parameters to our theory as we like, but with enough free parameters, we could
model anything !
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The Y i’s are quantum numbers under some group Gi. In the case of the down and

strange quarks, and the electron and muon, the quantum numbers under SU(3)C ×

SU(2)L × U(1)Y will all be the same, so the ratio holds at all scales M < MGUT .

In S̃U(5) the problem is worse—because the neutrino has exchanged places with

the electron, the same product of representations (10 × 5 × 5 ⊃ 1) generate mass

terms for the neutrino mu

mνe
= ms

mνµ
. We will get realistic neutrino masses only when

we have a supersymmetric formulation of the theory. The current limits on neutrino

masses do not rule out this ratio, however, if one does insert Majorana mass terms

for the neutrino by hand into the SM, one runs into fine tuning problems.

We know that SU(5) ⊃ SU(3) × SU(2) × U(1). (We will denote this U(1) as

U(1)Y ′ .) The form of the S̃U(5) partial GUT suggests that U(1)Y ′ × U(1)Ỹ breaks

to U(1)Y . The matching condition for the coupling constants at mass scale M∗ is

1

g2
SU(3) (M∗)

=
1

g2
5 (M∗)

, (2.5.10a)

1

g2
SU(2) (M∗)

=
1

g2
5 (M∗)

, (2.5.10b)

1

g2
Y (M∗)

=
1/25

g2
5 (M∗)

+
24/25

g2
Ỹ

(M∗)
. (2.5.10c)

The form of 1
g2Y (M∗)

contains terms weighted by the generators of SU(5) (24), and the

generators of U(1), as per Equation (2.3.3).

The beta functions for the standard S̃U(5) are given by [56]:

α−1
SU(3) (MZ) = α−1

5 (M∗) +
1

2π

[
11− 4

3
Nf

]
log

MZ

M∗
, (2.5.11a)

α−1
SU(2) (MZ) = α−1

5 (M∗) +
1

2π

[
22

3
− 4

3
Nf −

1

6
NH

]
log

MZ

M∗
, (2.5.11b)

α−1
U(1) (MZ) = α−1

1 (M∗)−
1

2π

[
4

3
Nf +

1

10
NH

]
log

MZ

M∗
. (2.5.11c)

We can solve the Equations (2.5.10) and (2.5.11), usingM∗ ∼ 3×1015 GeV, α−1
5 (M∗) ∼=

1
37

, and α−1
1 (M∗) ∼= 1

41
. The beta functions are plotted in Figure 2.2, showing ex-

plicitly the partial unification at the intermediate scale, which we have chosen to be
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Figure 2.2. The running of the couplings in the minimal S̃U(5) model. We have chosen the
partial unification of SU(3)× SU(2) to occur at ∼ 3× 1015 GeV.

3× 1015 GeV. In general, this scale can be anywhere from 1014 GeV up to about 1017

GeV absent any Planck-scale threshold effects [70].



CHAPTER THREE

Heterotic Strings and Observable/Hidden Sector Symmetry

In this chapter, we present results from our investigation into the mirror uni-

verse proposal [71]. These models were constructed in the free-fermionic formulation

of the heterotic string. In Section 3.1 we will first review the bosonic string, and then

introduce the heterotic string and the GSO projections. The free-fermionic formu-

lations and applications to model building will be discussed next. An introduction

to the idea of mirror universes, along with an overview of our models is presented in

Section 3.2. We look more closely at the string scale symmetry breaking in Section

3.3. Finally, we comment on acceptable hypercharge definitions in Section 3.4.

3.1 A Brief Overview of String Theory

General relativity is a classical theory, as mentioned before in Section 1.2.4.

Attempts to quantize this theory have led to disastrous problems—for example, a

naive counting of the degree of divergence of the graviton propagator gives mass

dimension +4. This means that the one-loop corrections to the tree-level graviton-

graviton scattering amplitudes give quadratic divergences.

While there have been some other attempts to quantize gravity [72], string

theory [73, 74] is by far the most well-studied.1 Early on it was realized that there

were five consistent theories, with varying degrees of freedom—it was not until 1995

[75] that the dualities were recognized, and the long sought UV completion of string

theory, M-theory, began to take shape. The five theories (plus 11-d supergravity)

were realized as limits of this larger (11-dimensional) theory, whose details still are

not well-known.

1Steven Weinberg has said “I see all of the things that are wrong with the present situation,
but I still think string theory is the only game in town.”

42
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Because a full review of string theory is beyond the scope of this thesis, we

will concentrate our discussion on the two so-called “heterotic” string theories, whose

(space-time) gauge groups are SO(32) and E8 × E8, and which are most relevant to

our model building process. We will also attempt to make the distinction between

world-sheet degrees of freedom and space-time degrees of freedom explicit.

3.1.1 The Bosonic String

Let us briefly review the bosonic string theory, in order that we might introduce

some language that will be vital to further development. The bosonic string theory

is a toy theory—it is known to be inconsistent because of the presence of a state

of negative mass-squared, called a tachyon, and because it contains no fermions. It

will give us hints, however, about how to proceed in more complex cases. We will

start with a string (which can be either open or closed), propagating in flat space,

parameterized by Xµ. The index µ runs over the dimensions of space-time, upon

which we will put no constraints, for now. The string sweeps out a world-sheet,

defined by σ, a “space” coordinate and τ , a “time” coordinate. 2

If we were dealing with a particle, we could construct its action by looking at

its world-line, and then use the Euler-Lagrange equations to find the extrema of the

action, giving us the equations of motion. We will proceed in that manner here—the

simplest action, the Nambu-Goto action, depends only on the area of the world-sheet.

The induced metric of the world-sheet is given by

hab = ∂aX
µ∂bX

νgµν = ∂aX
µ∂bXµ. (3.1.1)

The indices a, b run over the world-sheet coordinates σ, τ . The Nambu-Goto action

2 It is often convenient to map the world-sheet coordinates to the upper-half complex plane,
also called the Teichmüller space: z = exp [σ + iτ ] and z̄ = exp [σ − iτ ]. The standard convention
for derivatives with respect to world-sheet coordinates is ∂ ≡ ∂

∂z and ∂̄ ≡ ∂
∂z̄ . When we deal with

closed strings, we call z a right-moving coordinate and z̄ a left-moving coordinate. In this chapter,
the over-bar (̄ ) will denote a left-moving degree of freedom.
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is given by:

SNG = − 1

2πα′

∫
W

dτdσ (− dethab)
1
2 , (3.1.2)

where W is the world-sheet. α′ is the string coupling, related to the tension in the

string by T = 1
2πα′

.

One can now ask about the symmetries of this action—that is, in what ways

can one change the lagrangian such that the action remains invariant. It turns out

that there are two such transformations:

(1) the isometry group of flat space-time, the Poincaré group in D-dimensions, cor-

responding to translations and Lorentz transformations, and

(2) two-dimensional (world-sheet) diffeomorphism invariance, which tells us that the

action does not depend on the manner in which we choose our coordinates.

Both (1) and (2) will ensure that we can always give our world-sheet a Lorentz metric,

called γ:

γab = diag (−+) . (3.1.3)

One can rewrite Equation (3.1.2) in terms of this Lorentzian metric:

SP = − 1

4πα′

∫
W

dτdσ (− det γab)
1
2 γab∂aX

µ∂bXµ. (3.1.4)

This is the Polyakov action, in which a new symmetry has become manifest—Weyl

invariance. This is essentially a scale-invariance of the world-sheet metric, which has

no analog in the Nambu-Goto action. It is also interesting to note that Equation

(3.1.4) is the action of D bosonic fields living in two dimensions—we will sometimes

call these “world-sheet bosons”, and they will be of vital importance to us shortly.

This fact, along with the appearance of scale-invariance, is closely tied to the fact

that a two-dimensional conformal field theory lives on the world-sheet, as was eluded

to in Section 1.1.
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One can now find the equations of motion by varying the Polyakov action:

∂a

{
(− det γab)

1
2 γab∂bX

µ
}
≡ (− det γab)

1
2 ∇2Xµ = 0. (3.1.5)

Here is where we will have to distinguish between open strings and closed strings. In

order to solve this (second order) differential equation for Xµ (τ, σ), we will need two

boundary conditions. Open strings are taken (by convention) with σ ∈ [0, π], and we

will consider von Neumann boundary conditions:3

∂σX
µ (τ, 0) = 0, ∂σX

µ (τ, π) = 0. (3.1.6)

If we are studying closed strings, σ ∈ (0, 2π], and we must have

∂σX
µ (τ, 0) = ∂σX

µ (τ, π) , (3.1.7a)

Xµ (τ, 0) = Xµ (τ, π) (3.1.7b)

Because we will not be dealing with any open string theories in what follows, we will

concentrate our discussion from here on the closed string solutions.

The closed string’s right- and left-moving modes decouple—Xµ (z, z̄) = Xµ
R (z)+

Xµ
L (z̄). If we express the equations of motion in z and z̄, the right- and left-moving

modes, we can solve the equations of motion using a Fourier transform.

Xµ
R (z) =

1

2
xµ − i

(
α′

2

)1/2

αµ0 log z + i

(
α′

2

)1/2∑
n6=0

1

n
αµnz

−n (3.1.8a)

Xµ
L (z̄) =

1

2
xµ − i

(
α′

2

)1/2

ᾱµ0 log z̄ + i

(
α′

2

)1/2∑
n6=0

1

n
ᾱµnz̄

−n (3.1.8b)

The αn’s and ᾱn’s are the Fourier expansion coefficients, and will have the interpreta-

tion of operators upon quantization. For now, they represent right- and left-moving

waves in the string. The zero-mode of the closed string is given by

αµ0 = ᾱµ0 =

√
α′

2
pµ, (3.1.9)

3 The open strings can also have Dirichlet boundary conditions—this led to an important
development in sting theory, namely the discovery of D(irichlet)-branes [76].
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The space-time vectors xµ and pµ correspond to the position and momentum of the

string—one can interpret these as center of mass quantities.

The classical Hamiltonian of the closed string can be found via the Legendre

transformation of the lagrangian, and is given by

H =
1

2

∞∑
n=−∞

[αµ−n · αnµ + ᾱµ−n · ᾱnµ] . (3.1.10)

From this point forward we will suppress the space-time index on the oscillator mode

when it is summed over. We can define the Virasoro operators (which can be derived

by imposing certain physical constraints on the energy-momentum tensors) in terms

of the oscillator modes as well:

Lm =
1

2

∞∑
n=−∞

αm−n · αn, (3.1.11a)

L̄m =
1

2

∞∑
n=−∞

ᾱm−n · ᾱn. (3.1.11b)

Note that the Hamiltonian is then

H = L0 + L̄0. (3.1.12)

The final point we will make, before quantization, is that using Xµ and its conjugate

momentum, Πµ, we can derive Poisson brackets for the oscillator modes α. Quantizing

the closed string is then reduced to promoting Poisson brackets to commutators and

coordinates to operators, à la Dirac. A much more sophisticated process is to use the

Feynman approach with path integrals.

Upon quantization of the string, we find

[αµm, α
ν
n] = [ᾱµm, ᾱ

ν
n] = mδm+n,0η

µν (3.1.13a)

[xµ, pν ] = iηµν ; [αµm, ᾱ
ν
n] = 0, (3.1.13b)

where we have suppressed factors of c and ~. Because the α’s do not commute, the

zero-mode Virasoro operator now has an extra term from an ordering ambiguity that
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looks quite dangerous:

L0 =
1

2
α2

0 +
∞∑
n=1

α−n · αn +
1

2
(D − 2)

∞∑
n=1

n. (3.1.14)

The last term can be expressed as the Riemann zeta function ζ (−1), which is not

analytic for negative integers. The problem is very similar as one that appears when

calculating scattering at one-loop in quantum field theory, where one obtains expres-

sions like Γ (0).4 By using similar regulation methods, one can sum the last term

of Equation (3.1.14), and find
∑∞

n=1 n = − 1
12

. We have several alternate derivations

of this result, so we should not dwell on this point too long. We will re-emphasize,

however, that we have done nothing different mathematically than to analytically

continue a function outside of its radius of convergence, a common procedure in the

process of dimensional regulation.

After quantization, the Virasoro algebra is given by:

[Lm, Ln] = (m− n)Lm+n +
D

12

(
m3 −m

)
δ0,m−n, (3.1.15a)[

L̄m, L̄n
]

= (m− n) L̄m+n +
D

12

(
m3 −m

)
δ0,m−n, (3.1.15b)[

Lm, L̄n
]

= 0. (3.1.15c)

where D is the dimension of space-time. Physical states are required to obey

(L0 − a) |φ〉 = 0, (3.1.16a)(
L̄0 − ā

)
|φ〉 = 0. (3.1.16b)

The value of the “normal ordering” constant a depends on the content of our theory.

For the bosonic string, the form of a is given by:

−a =
1

2
(D − 2)

∞∑
n=1

n =
D − 2

24
. (3.1.17)

By applying the requirement that the string action be Lorentz invariant, and then

looking at the commutation relations obeyed by the Lorentz generators, one can prove

that D = 26, and then that a = 1.

4See Appendix A for an example of such a calculation.
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The appearance of the tachyon is easy to see from here. The momentum was

defined in terms of the zero oscillator mode, in Equation (3.1.9). Using Equation

(3.1.14), we find, for the ground state |ψ〉:

(L0 − a) |ψ〉 =

(
α′

2
p2 +

∞∑
n=1

α−n · αn

)
|ψ〉 = 0. (3.1.18)

The ground state contains no oscillator modes, and using the mass-shell condition

M2 = −p2, we find

M2 = −2a

α′
= − 2

α′
. (3.1.19)

This was one of the original motivations for the abandonment of string theory as a

theory for strong gauge dynamics, in the early 1970’s. Along with a tachyon, the

theory contained an unexplained spin two boson—it took Green and Schwartz, and

Susskind, to reinterpret the failed competitor of QCD as a quantum theory of gravity.

3.1.2 The Heterotic String

In order to get fermions into the spectrum of bosonic string theory, we super-

symmetrize the (world-sheet) action, adding fermionic partners for each of the bosons.

When we do this, we find that the critical dimension is no longer 26—anomaly cancel-

lation and unitarity require that the superstring live in D = 10. The transformation

between the fermions and their bosonic superpartners is given by:

δXµ = iεψµ, (3.1.20a)

ψµ = εδ̄Xµ. (3.1.20b)

This is a world-sheet supersymmetry, and should not be taken to correspond to a

space-time supersymmetry. If, however, we make a GSO projection on the left- and

right-moving modes, we end up with a space-time supersymmetry.

The heterotic string theory [77] is a theory of a closed string. We will take the

left moving modes as the bosonic string, which live in 26 dimensions, and the right
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moving modes as the superstring, which live in 10 dimensions.5 We will take the left

moving sector of the string to be purely bosonic, and the right moving sector to be

a superstring. We want our string world-sheet to propagate in ten large space-time

dimensions (for now), so we will compactify 16 of the bosonic directions on a torus,

T 16.6 When we want to see what kind of low energy phenomena that we can get out

of string theory, we will compactify another six dimensions (or seven, if we’re dealing

with M-theory), leaving us with four large space-time directions.

Let us count the degrees of freedom—equivalently we could phrase this “let’s

count the bosons and complex fermions”. In the left-moving (bosonic) sector (denoted

by ∂̄), we have ten bosons (µ = 0, ..., 9) plus 32 real fermions (A = 1, ..., 32) = 16

bosons, and in the right-moving (supersymmetric) sector we have ten bosons and

their ten (real fermionic) superpartners. Note that the bosonic theory would have

had 26 bosons right out—we have “fermionized” some of the bosons! This does

not mean that we have added degrees of freedom to the theory—just that we have

reparameterized some of the bosons as fermions.7

The action of the heterotic string, as we expect from our counting exercise, is

given by

S =

∫
d2z

[
2

α′
∂Xµ∂̄Xµ + ψ̃µ∂̄ψ̃µ +

32∑
A=1

λA∂̄λA

]
, (3.1.21)

where the overbar (¯) denotes a left-moving coordinate, and the space-time coordinate

µ ∈ {0, ..., 9}. The λA’s are 32 real = 16 complex fermions from the left-moving sector,

and the ψ’s are the (10 real fermionic) superpartners of the right-moving bosons. As

per our convention, we see that Xµ is neither left-moving nor righ- moving, but left-

5 If you’re keeping track, this means that the string sees space-times of two different dimen-
sionalities, either 10 or 26, depending on which way the mode is propagating.

6In general, the term “compactify” (and its variants) will mean that we choose the topology
of a space dimension to be finite and periodic—in the present case, we have made 16 large space
dimensions finite with the ansatz that those directions are circular.

7See Section 3.1.4 for the continuation of this idea.
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moving and right-moving. The objects ∂̄Xµ and ∂Xµ are left- and right-moving

degrees of freedom, respectively.

The world sheet of the heterotic string has an SO (9, 1) × SO (32) symmetry.

The SO (9, 1) symmetry is just the Lorentz symmetry in 9+1 dimensions, and the

SO (32) is an internal (or, “worldsheet”) symmetry acting on the real left-moving

(internal) fermions, the λ’s. The SO (32) cannot be a space-time symmetry because

there are still unphysical tachyonic states in the bosonic sector—the tachyon has not

been destroyed in the process of fermionization, and still remains in the theory.

The SO(32) is an internal gauge symmetry, which acts on the 32 left-moving λ’s

when they all have the same boundary conditions. (A more subtle possibility is that

the λ’s do not obey the same boundary conditions: this is the case in the E8 × E8

heterotic string theory.) We can break the SO (32) symmetry by assigning different

boundary conditions to some of these fermions—for example, Lorentz invariance tells

us that fermions can either be periodic or anti-periodic, so we could assign some λ’s

even boundary conditions and some of them odd boundary conditions. Finally, it is

notable that the appearance of a non-Abelian internal symmetry is a purely stringy

effect. If we had been dealing with point particles, the internal symmetry would have

been Abelian—U(1)16. The appearance of non-Abelian space-time symmetries is a

post-diction of string theory—while we do not understand why we have a low energy

effective field theory which obeys SU(3)C × SU(2)L × U(1)Y , we are quite confident

that there exists a stringy vacuum with that symmetry.

3.1.3 The GSO Projection Operator

It is well-known that string theory is only consistent when we add world-sheet

fermions to the spectrum—bosonic string theory suffers from a state of negative mass

squared, called the tachyon (cf Equation (3.1.19)), which is most certainly a bad

thing for particle theory. It is only when we add fermions and a GSO projection
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[78] do we recover a tachyon-free theory, with space-time supersymmetry and gauge

symmetries. The GSO projection can also be motivated as a statement of modular

invariance, or as a statement of unitarity.

Complex world-sheet degrees of freedom can, in principle, have any boundary

conditions, whereas real world-sheet states are either periodic or anti-periodic. In the

Ramond (R) sector, the fermions have periodic boundary conditions and are called

Ramond fermions. The anti-periodic sector is called the Neveu-Schwartz (NS) sector,

and world-sheet fermions with anti-periodic boundary conditions are called Neveu-

Schwartz fermions. We will look at the cases of both Ramond and Neveu-Schwartz

boundary conditions for the left-moving states. In the supersymmetric (right-moving)

sector, we will first treat the Ramond case, and then the Neveu-Schwartz case.

For simplicity, let us assume that all of the internal (left-moving) λ̄A’s have the

same boundary conditions. The fermions λ̄ (with τ = constant) from each sector can

be written as follows:

λ̄AR (σ) =
∑
n∈ZZ

λ̄An e
−2inσ, (3.1.22a)

λ̄ANS (σ) =
∑

r∈ZZ+1/2

λ̄Ar e
−2irσ. (3.1.22b)

The λ̄An ’s are the fermionic equivalent of the bosonic ladder operators, which appeared

in the context of the bosonic string, Equation (3.1.8).8 Much like the Grassman

variables that were invoked when we introduced supersymmetry in Section 1.3, these

ladder operators obey anti-commutation relations:

{
λ̄Am, λ̄

B
n

}
= δABδm+n,0 ,

{
λ̄Ar , λ̄

B
s

}
= δABδr+s,0. (3.1.23)

We can separate L0 for the heterotic string into two parts—the zero-modes and

the non-zero modes. We absorb the higher oscillator modes into a number operator,

N . For the supersymmetric (right-moving) Ramond sector of the heterotic string, the

8We have used the over-bar (̄ ) to remind us that these are the the left-moving states.



52

number operator NR, in the light-cone gauge (µ = 1, ..., 8) is defined as:

NR =
∞∑
n=1

(αµ−n · αnµ + nψµ−n · ψnµ) . (3.1.24)

N̄ is defined differently for the (fermionic) R and NS sectors:

N̄R =
∞∑
n=1

(
ᾱµ−n · ᾱnµ + nλ̄A−nλ̄

A
n

)
, (3.1.25a)

N̄NS =
∞∑
n=1

ᾱµ−n · ᾱnµ +
∞∑

r∈Z+1/2

rλ̄A−rλ̄
A
r . (3.1.25b)

This number operator serves the same purpose as the familiar example from quantum

mechanics—it counts the level of the oscillator of the closed string. Now, L0 can be

put in the following form:

L0 =
p2α′

4
+NR, (3.1.26a)

L̄0 =
p2α′

4
+ N̄R,NS. (3.1.26b)

In the heterotic string, we have a similar statement about physical states as

Equations (3.1.16). The normal ordering constants depend on the content of our

theory: this was mentioned in Section 3.1.1. In general, we are dealing with bosonic

coordinates (X) and fermionic coordinates (λ̄, ψ). A bosonic coordinate contributes

a factor of 1/24 to a, an integrally moded fermionic coordinate (or Ramond fermion)

contributes a factor of -1/24, and a half-integrally moded fermionic coordinate (or

Neveu-Schwartz fermion) contributes a factor of 1/48. These contributions can be

derived from conformal field theory considerations—we are basically counting con-

tributions to the central charges of the conformal field theory which lives on the

world-sheet.9 In the supersymmetric (right-moving) sector, the contributions to a

from the bosonic coordinates and fermionic coordinates cancel—after choosing the

9 The general contribution, for any boundary condition is a = 1−12Q2

24 for complex world-
sheet fermions, and a = 1−12Q2

48 for real world-sheet fermions, where Q is a U(1) charge, defined in
Equation (3.1.45).
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light-cone gauge there are eight complex fermions and eight bosonic degrees of free-

dom (see Equation (3.1.21)), giving a = 0. In R and NS sectors, we have:

āR =
8

24
+

32

48
= −1, (3.1.27a)

āNS =
8

24
− 32

48
= 1. (3.1.27b)

In the supersymmetric (right-moving) sector, the physical state requirement, Equa-

tion (3.1.16), gives

p2 =
−4N

α′
= −M2. (3.1.28)

p2 = pµpµ is the (center of mass) space-time momentum of the string. Because N is

positive semi-definite, this tells us that p is a space-like Lorentz vector, and that no

tachyons are present. The lowest state is the massless one.

Next, combining the two Equations (3.1.16) gives the following relationship for

the massless states:

0 = NR + N̄R + 1, (3.1.29a)

0 = NR + N̄NS − 1. (3.1.29b)

Massless states must have NR = 0—that is, we expect them to be the lowest lying

states in the (right-moving) spectrum, and contain no oscillator modes. This implies

that N̄R = −1. Equations (3.1.25) tell us that N̄ is positive definite, thus there are

no massless states in the R sector.10

The condition that −N = N̄NS − 1 has some interesting consequences. NR

defined in Equation (3.1.24) has integer eigenvalues, whereas N̄NS has integer or

half-integer values (see, for example, Equation (3.1.25b)). The half-integer values

cannot, therefore, contribute to the physical spectrum, because there is no suitable

choice of right-moving state that would enable one to obtain NR = N̄NS − 1. This

10While the R sector contains no massless modes, we cannot just discard it outright. Unitarity
in one-loop scattering processes requires that we keep both sectors.
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condition forces us to discard states with odd numbers of λANS oscillators. This is

the R−NS sector of the heterotic string, and we will argue below that the physical

states we keep correspond to space-time fermions.

Next, let us treat the case where we assign the right-moving fermionsNS bound-

ary conditions. In this case, we have 8 bosonic degrees of freedom and eight NS

fermions, giving us a = 1
2
. The relationships between the left-moving and right-

moving number operators are given by

0 = NNS + N̄R +
1

2
, (3.1.30a)

0 = NNS + N̄NS −
3

2
. (3.1.30b)

Again, we find that there is no massless state in the R sector. In the NS sector, we

have a similar requirement as before: the values of N̄NS are limited to integer values

by the requirement that NNS is integrally valued. We find ourselves discarding half of

the candidate states because they are unphysical. This is the NS −NS sector of the

heterotic string, and we will argue below that the physical states we keep correspond

to space-time bosons.

Now we will make a connection between physical (space-time) states and all

of this oscillator counting. We will assign all states a quantum number F , called

“fermion number”, where

F = 2N mod 2 = 0, 1. (3.1.31)

There is one final observation to make: in the supersymmetric (right-moving) R

sector, there are consistency requirements that the vacuum have a spinor structure,

and thus has FV = 1. The fermion number of a particular state is then FR+FL+FV =

F .

In the R − NS sector, which gives space-time fermions, we have the condition

that

NR = 0 = N̄NS − 1. (3.1.32)
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Table 3.1. Summary of physical states in the heterotic string.

State Sector FR mod 2 FL mod 2 FV mod 2 F mod 2

Space-time bosons NS −NS 1 0 0 1
Space-time fermions R−NS 0 0 1 1

F for the right-moving (Ramond) states is FR = 0, while for the left-moving (Neveu-

Schwartz) states, FL = 2 = 0 mod 2, because we are limited to even numbers of

oscillator modes. In the NS −NS sector, which gives space-time bosons, we have

NNS −
1

2
= N̄NS − 1 = 0. (3.1.33)

The lowest level has FR = 1 and FL = 2 = 0 mod 2. These results are sumarized in

Table 3.1.3.

This is the GSO projection. We assign states a quantum number F which

essentially tells us how many λA’s and α’s make up each state, as well as the index

structure of the vacuum. We know that the physical states have F = 1 under this

symmetry, while unphysical states have F = 0. Because they are unphysical, they

cannot contribute to the low energy phenomenology, and are of no interest to us.

3.1.4 The Free-Fermionic Formulation

In Equation (3.1.21), we “fermionized” some coordinates in the left-moving

(bosonic) sector of the theory. In the free-fermionic formulation of the heterotic

string, we fermionize the rest of the internal bosons in the same vein—that is we turn

each boson into two real (or equivalently one complex) fermions. We can rewrite the

“free-fermionic” version of the heterotic string action, Equation (3.1.21). First, we

will choose the light-cone gauge. This eliminates two non-physical degrees of freedom

from the action and simplifies our calculations by eliminating the related ghosts, but
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destroys manifest Lorentz invariance. We write:

S =
2

α′

∫
d2z

{[ ∑
µ=+,−

∂Xµ∂̄Xµ + ψµ∂ψµ

]

+

[
9∑
j=4

∂Xj ∂̄Xj + ψj∂ψj

]

+
32∑
A=1

λA∂̄λA

}
. (3.1.34)

Now we will count left-moving (LM) and right-moving (RM) degrees of freedom, in

terms of real (Majorana-Weyl) fermions. We have:

Large Space Time Dim

{ ∑
µ=+,− ∂X

µ∂̄Xµ 4 LM + 4 RM∑
µ=+,− ψ

µ∂ψµ 2 RM

Compactified Dim

{ ∑9
j=4 ∂X

j ∂̄Xj 12 LM + 12 RM∑9
j=4 ψ

j∂ψj 6 RM

Bosonic Sector

{ ∑32
A=1 λ

A∂̄λA 32 LM.

(3.1.35)

We have left out the contributions of the right-moving (world-sheet) bosons Xµ, in

the first line above, as they do not contribute to the massless states. They do not

contribute to the massless spectrum, and thus are of no interest in the effective field

theory. Our ultimate goal is to rewrite all of the internal complex bosons in terms of

complex fermions—these are the states which contribute to the massless sector, and

thus the low energy phenomenology. The left-moving (world-sheet) bosons in the first

line of Equation (3.1.35) only contribute to the graviton (and gravitino) modes. They

do not effect the low energy phenomenology, and will be ignored in what follows. This

gives us a total of 20 LM + 44 RM = 64 states to reparameterize as fermions.

The fermions are split into two parts: those that parameterize the specific com-

pactification that we are working with, and those that give us space-time gauge sym-
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metries. First, the (6+6) compactified bosons get split into (12+12) real fermions:

9∑
j=4

∂Xj ∂̄Xj ≡
6∑

B,C=1

{
ȳB∂ȳB + ω̄C∂ω̄C

}
LM

+
6∑

B,C,D=1

{
yB∂̄yB + ωC ∂̄ωC

}
RM

. (3.1.36)

These fermions parameterize the compactified space-time dimensions. The topological

properties of the internal (six-dimensional) manifold govern much of the low energy

phenomenology, in terms of the number of supersymmetries that we expect. In the

specific class of compactifications that we will be interested in, our internal space is an

orbifolded torus, T 6/Z2×Z2, which ensure that we have N = 1 SUSY. Changing the

boundary conditions on these fermions will allow us considerable range in adjusting

the properties of the low energy effective field theories that we are working with.

The compactified fermions (spartners of the compactified bosons) from the right-

moving sector are renamed:

9∑
j=4

ψj∂ψj ≡
6∑

D=1

χD∂̄χD. (3.1.37)

The 32 left-moving λ’s are split into

32∑
A=1

λA∂̄λA ≡
6∑

D=1

ηD∂̄ηD +
5∑
I=1

ψI ∂̄ψI +
8∑

M=1

φM ∂̄φM . (3.1.38)

The χ’s and the η’s will govern the generational structure of our effective field theory—

they will become the generators of an Abelian (U(1)3) when we talk about our model

building processes. The five ψ’s will form the generators of the observable sector

SO(10). Finally, the eight φ’s will form the root lattice of the hidden sector E8,

which can then be broken down to some smaller symmetries.11

Now we can write down the full heterotic string action, in terms of free fermions,

where the y’s, ω’s, η’s and χ’s are (world-sheet) Majorana-Weyl spinors, while the

11 Note that we have not assigned boundary conditions just yet, so the space-time gauge
symmetry (after the GSO projection) is still technically SO(32). We will assign different boundary
conditions to the fermions in Section 3.1.5.
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φ’s and ψ’s are complex.

Sff =

∫
d2z

{
6∑

B,C,D=1

[
ȳB∂ȳB + ω̄C∂ω̄C + η̄D∂η̄D

]
+

8∑
M=1

φ̄M∂φ̄M +
5∑
I=1

ψ̄I∂ψ̄I

}
LM

+

∫
d2z

{
6∑

B,C,D=1

[
yB∂̄yB + ωC ∂̄ωC + χD∂̄χD

]
+
∑
µ=+,−

ψµ∂̄ψµ

}
RM

. (3.1.39)

Remember we have done nothing more than reparameterize our original action, Equa-

tion (3.1.21), in terms of a single specie, namely fermions. Because we have neither

gained nor lost any degrees of freedom (except in the choice of gauge), we are allowed

to do this—a check of the number of degrees of freedom in the action (3.1.39) and in

Equation (3.1.35) will prove this. Recall, also, that we are dealing with world-sheet

fermions, and not space-time fermions. In obtaining the latter, we must ensure that

no unphysical states survive in the IR limit, and this means choosing the correct GSO

projection.

3.1.5 The NAHE Set and Model Building

In order to construct a realistic, four-dimensional model from the free-fermionic

string, one must specify two things: first, a set of basis vectors {Vi}, which generate

a finite, additive Abelian group Ξ, and a GSO projection matrix, k [79–82].

Modular invariance will be the principle which we use to guide our model build-

ing. In order to understand what modular invariance is, we will consider the simplest

example—the torus. The torus is completely specified with a flat metric and a com-

plex structure, τ . A torus in the complex z plane is pictured in Figure 3.1. Each

point outside of the region T is equivalent to a point inside T by the equivalence

relations

z ∼ z + 2πn,

z ∼ z + 2πmτ, (3.1.40)

where n,m ∈ Z.



59

Figure 3.1. A torus in the complex plane. Each point outside of T is equivalent to a point
inside T by the equivalence relations in Equation (3.1.40).

The full family of equivalent tori, parameterized by their complex structure τ ,

are described by the modular transformations:

T : τ → τ + 1,

S : τ → −1

τ
. (3.1.41)

These transformations generate the group SL(2,Z). This group is defined as the

group of 2 × 2 matrices with integer elements with determinant of unity. The complex

structure modulus, τ , is invariant under

SL(2,Z) : τ → aτ + b

cτ + d
(3.1.42)

The moduli space of inequivalent tori M is the upper-half complex plane Mg (also

called the Teichüller space) modded out by the group SL(2,Z)—M∼= Mg/SL (2,Z),

which is shown in Figure 3.2. Modular invariance is the requirement that all tori with

the same complex structure modulus are equivalent, and therefore that the physical

properties of any model should be invariant under the SL(2,Z) equivalences.

It can be proved [79, 81] that modular invariance in the one loop vacuum to

vacuum polarization graph (O (g2
s)), along with an additional constraint from the two

loop graph, implies modular invariance to all orders in the perturbation expansion.
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Figure 3.2. The moduli space of the torus is M∼= Mg/SL (2,Z), where Mg is the Teichüller
space and is isomorphic to the upper half of the complex plane. All tori (specified by their
complex structure, τ) correspond to points in this space.

The one loop graph is always isomorphic to a torus (T 2), which has homotopy group

π1
∼= S1⊕S1, and thus has two non-contractible one cycles, denoted a and b.12 Upon

transport around either a or b, the fermion fields pick up a phase that is in general

complex:

a : ψ 7→ −eπiα(ψ)ψ, (3.1.43a)

b : ψ 7→ −eπiβ(ψ)ψ. (3.1.43b)

Real fermions must remain real under this transformation, and thus α (ψ) (β (ψ))

must be an integer so we don’t introduce a complex phase. Note that this is stricter

than the general constraint that the internal fermions be invariant under an SO(32)

rotation, and amounts to the requirement that we limit ourselves to the R −NS or

the NS −NS sectors of the heterotic string.

12In English, this means that there are two ways to wrap a piece of string around the surface
of a donut such that the loops cannot be shrunk to a point.
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Figure 3.3. The heavy black lines are the two non-contractible one-cycles on the torus. The
fact that one can find two one-cycles on the surface of the torus means that its homotopy
group is π1

∼= S1 ⊕ S1.

We can specify the boundary conditions on each of the 64 fermions from Equa-

tion (3.1.39) by choosing two 64 component vectors, called ~α and ~β, which will be

denoted as (
~α
~β

)
. (3.1.44)

Now, complex fermions, ψpc = ψr1 + iψr2 , form a charge lattice, Qα. For each 64

component boundary condition sector ~α, we have

(Qα)p =
αp
2

+ Fp, (3.1.45)

where F is the fermion number operator, as in Section 3.1.3. Fp has eigenvalues of

{0,−1} for real fermions and {0,±1} for complex fermions.

The one loop vacuum to vacuum partition function may be written as

Z =

∫
M

d2τ

[Im(τ)]2
ZB(τ τ)

∑
~α,~β

C

(
~α
~β

)
Z

(
~α
~β

)
, (3.1.46)

where M∼= Mg/SL (2,Z) is the moduli space of T 2, and is shown in Figure 3.2. The

C
(
~α
~β

)
are called the spin structure coefficients, or phase weights, and are generated
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by a finite, additive Abelian group, Ξ. We may define a basis of Ξ, {Vi}, such that

~α =
n∑
j=0

ajVj ∈ Ξ, aj ∈ Z,

~β =
n∑
i=0

biVi ∈ Ξ, bi ∈ Z. (3.1.47)

Then we can show that the phase weights obey [80]

C

(
~α
~β

)
= (−1)s~α+s~β exp

{
πi
∑
i,j

bi(kij − 1
2
Vi ·Vj)aj

}
. (3.1.48)

The s~α and s~β are the four dimensional space-time components of ~α and ~β (the bound-

ary conditions of ψ± and ψ̄± from Equation (3.1.39), and the ki,j are the components

of the GSO projection matrices, which were discussed in Section 3.1.3, and ensure

that no unphysical states survive in the low energy effective field theory.

Modular invariance imposes constraints on the basis vectors Vi and on the GSO

projection matrix k, with elements ki,j:

ki,j + kj,i = 1
2
Vi ·Vj mod(2), (3.1.49a)

Njki,j = 0, mod(2), (3.1.49b)

ki,i + ki,0 = −si + 1
4
Vi ·Vi mod(2). (3.1.49c)

One can rewrite Equations (3.1.49) in terms of {Vi} and show:

Ni,jVi ·Vj = 0, mod(4) (3.1.50a)

NiVi ·Vi = 0, mod(8) (3.1.50b)

The number of real fermions simultaneously periodic

for any three basis vectors is even. (3.1.50c)

Ni,j is the lowest common multiple of Ni and Nj, since Equation (3.1.50c) still applies

when two or more of the basis vectors are identical. Thus, each basis vector must

have an even number of real periodic fermions.
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Table 3.2. The NAHE Basis Set.

ψµ χ12 χ34 χ56 ψ̄1,...,5 η̄1 η̄2 η̄3 ψ̄′
1,...,5

η̄′
1

η̄′
2

η̄′
3

1 1 1 1 1 1,...,1 1 1 1 1,...,1 1 1 1
S 1 1 1 1 0,...,0 0 0 0 0,...,0 0 0 0
b1 1 1 0 0 1,...,1 1 0 0 0,...,0 0 0 0
b2 1 0 1 0 1,...,1 0 1 0 0,...,0 0 0 0
b3 1 0 0 1 1,...,1 0 0 1 0,...,0 0 0 0

y3,...,6 ȳ3,...,6 y1,2, ω5,6 ȳ1,2, ω̄5,6 ω1,...,4 ω̄1,...,4

1 1,...,1 1,...,1 1,...,1 1,...,1 1,...,1 1,...,1
S 0,...,0 0,...,0 0,...,0 0,...,0 0,...,0 0,...,0
b1 1,...,1 1,...,1 0,...,0 0,...,0 0,...,0 0,...,0
b2 0,...,0 0,...,0 1,...,1 1,...,1 0,...,0 0,...,0
b3 0,...,0 0,...,0 0,...,0 0,...,0 1,...,1 1,...,1

The NAHE set [66] is composed of 5 basis vectors which give excellent low energy

phenomenology [83]. The low energy theories, quite generally, are compactifications

on an orbifolded six-torus (T 6/Z2 × Z2). They have the gauge group SO(10) ×

SO(6)×E ′
8, N=1 (space–time) SUSY and 48 spinorial 16’s of SO(10), sixteen from

each sector b1, b2 and b3. The NAHE sector reduces the gauge symmetry in the

observable sector E8 to SO(10)× U(1)3, and does not affect initial hidden sector E ′
8

of the uncompactified 10-dimensional model. The U(1)3 are then embedded in an

enhanced SO(6)3. The five sectors are listed in Table 3.2.

3.1.6 Answers from String Theory

We have mentioned, in several places, that string theory is the most well-studied

candidate for a UV completion of particle physics. The appearance of a spin two

boson (a graviton), as well as large, non-Abelian groups and chiral fermions tell us

that string theory almost certainly contains a description of our universe. Further,

string theory requires space-time SUSY, and while there exist no real mechanisms

by which to predict the SUSY breaking scale, string theory is robust enough to offer
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several different possibilities. It is hoped that a full, non-perturbative formulation of

string theory would post-dict the values of the experimental inputs of the MSSM.

One of the biggest problems with M-theory, as it currently stands, is the ab-

sence of a mechanism which selects a vacuum—M-theory almost certainly contains a

description of our universe, but it seems that our universe is no more likely than any

of the other 10100−500 possible universes. Moreover, there may be many descriptions

of our universe that are nearly degenerate—that is, they may predict the same values

of fundamental constants to a precision beyond our present or future measurement

capabilities. This has been dubbed the landscape [84], and there is some debate as

to whether this is a problem or whether it as a new paradigm for physics.13

There are other problems with string theory which manifest themselves in cos-

mological observations. For example, if our universe continues in the current trend of

accelerating expansion, then the equations of motion tend toward an approximately

de-Sitter vacuum, however, such late-time solutions are quite difficult to construct

and do not appear to be a natural feature of M-theory. There has been some progress

along these lines [85], however, these constructions suffer from the seemingly univer-

sal landscape problem of M-theory, and the late-time evolution of the universe is still

considered an open question.

The emergence of a naturally small cosmological constant from M-theory seems

unlikely, and is perhaps the biggest problem facing the string community [86]. On

the other hand, anti-de Sitter vacua come about quite naturally as solutions to M-

theory [87], and one could consider this as a prediction of M-theory—that the current

inflationary trend will reverse, and that at some point in the history of the universe

the expansion will change course. In Chapter 4, we will look at specific constructions

of field theories on anti-de Sitter spaces.

13This was also a widely noticed problem with string theory, before Witten’s 1995 discovery
of dualities [75]. It was hoped that these dualities between the various string theories would solve
the problem of vacuum selection, but this has turned out not to be the case.
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3.2 Introduction to Free Fermionic Mirror Universes

In general string constructions, there exists quite naturally a hidden sector,

whose matter will only interact with the SM matter via gravity. Immediately, one

recognizes this hidden sector matter as a possible candidate for the so-called “dark

matter”, which composes somewhere around 24% of the universe [88]. In the string

model building process, the hidden sector arises much in the same way as the visi-

ble sector, with (possibly) non-chiral matter living in representations of non-Abelian

gauge groups, which were broken from some larger non-Abelian gauge group. Mo-

tivated by the science fiction texts, we ask the question: If the symmetry breaking

occurs in the same way between the hidden sector and the visible sector, what are

the consequences?

The mirror universe models have been proposed in the context of neutrino

physics (specifically by attempts to understand the nature of a sterile neutrino) and in

the context of superstring/M-theory [89–93]. As a means to reconcile the constraints

of big bang nucleosynthesis, the reheating temperature of the mirror universe after

inflation was postulated to be lower than that in the observable universe [89]. From

this it was shown that the asymmetric reheating can be related to a difference of

the electroweak symmetry breaking scales in the two sectors, as required for a mirror

solution to the neutrino puzzle. In such models it was shown that the baryon asym-

metry is greater in the mirror universe than in the observable universe and that the

mirror baryons could provide the dominant dark matter in the bulk universe [92].

These mirror universes have been with us all along—M-theory compactified on

a line segment gives exactly E8 × E8 heterotic string theory [94], in which the E8’s

do not interact.14 At the time of the preparation of this thesis, however, string-

derived quasi-realistic three generation mirror universe models in four-dimensions

have, to our knowledge, not been constructed. Rather, in typical quasi-realistic string

14 Indeed, our model can be pictured as such—the hidden and observable symmetry groups
can be thought of as confined to separate branes, on the boundary of some internal space.
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models, the ten-dimensional mirror symmetry15 is broken by compactification to four

dimensions. In free fermionic [79, 81] models, mirror symmetry breaking generally

results from corresponding asymmetric boundary conditions of observable and hidden

sector world-sheet fermions. In this chapter an obstacle to mirror model construction

in weakly coupled heterotic strings is discussed, which produces an interesting physical

effect in its own right. Mirror symmetry breaking can necessarily still occur with

symmetric boundary conditions. This will be demonstrated, and the implications for

such models will be considered.

During the string/M-derived mirror universe investigation, we found that even

when symmetric world-sheet fermion boundary conditions are imposed, breaking of

mirror symmetry is sometimes mandated by an asymmetry in the GSO projections.

Two example models demonstrate how GSO projections can necessitate mirror sym-

metry breaking of observable (O) and hidden sector (H) Pati-Salam [49] gauge groups

[SU(4)C × SU(2)L × SU(2)R]O × [SU(4)C × SU(2)L × SU(2)R]H . (3.2.1)

In the first example, the GSO projections reduce the observable sector gauge group

to

[SU(4)C × SU(2)L]O , (3.2.2)

by transferring SU(2)OR to the hidden sector. In the process the

[SU(4)C × SU(2)L]H (3.2.3)

subgroup of the hidden sector Pati-Salam gauge symmetry is enhanced to

[SO(10)]H . (3.2.4)

15Note that we are using this term somewhat outside of its standard usage in string theory—
“Mirror Symmetry”, in the context of Type IIa or Type IIb string theory, is a correspondence
between two Calabi-Yau manifolds of different complex structure. See [95] for a review of this
fascinating topic.



67

Table 3.3. Broken Mirror Model 1 GSO Matrix k

1 S b1 b2 b3 b′1 b′2 b′3 a a′

1 0 0 1 1 1 1 1 1 0 0
S 0 0 0 0 0 0 0 0 0 0
b1 1 1 1 1 1 0 0 0 0 1
b2 1 1 1 1 1 0 0 0 0 1
b3 1 1 1 1 1 0 0 0 0 1
b′1 1 1 0 0 0 1 1 1 1 0
b′2 1 1 0 0 0 1 1 1 1 0
b′3 1 1 0 0 0 1 1 1 1 0
a 0 0 0 0 0 0 0 0 1 *1
a′ 0 0 0 0 0 0 0 0 *0 1

Additionally, the initial shadow (S) sector (corresponding to charges carried by

both observable and hidden states) gauge group, [SU(2)3 × SU(3)× U(1)7]
S
, absorbs

[SU(2)R]H to become [SU(2)3 × SU(5)× U(1)6]
S

(see Table D.1)

The second example differs from the first in some of its ki,α matrix elements (and

corresponding ki′,α′). For model 2, the GSO projections reduce the observable sector

Pati-Salam gauge group to [SU(4)C × SU(2)R]O by alternately rendering SU(2)OL to

the hidden sector. The hidden sector [SU(4)C×SU(2)R]H subgroup of the Pati-Salam

group is similarly enhanced to [SO(10)]H . In this version, the shadow sector gauge

group remains of rank 12 and does not absorb SU(2)HL (see Table D.4).

These models make use of the free fermionic construction, and are an exam-

ple of NAHE based models reviewed previously in Section 3.1.4 (see Table 3.2). A

presentation of the gauge groups and GSO matrices for our two models, along with

tables listing the full matter states of both models are found in Appendix D.

3.3 Symmetry Breaking of Mirror Models

Mirror models with matching observable and hidden sector symmetries and

states may be created from NAHE-based models by adding mirror basis vectors, b′1,

b′2 and b′3, as defined in Table 3.5. Due to the symmetry between bi and b′i, these
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Table 3.4. Broken Mirror Model 2 GSO Matrix

1 S b1 b2 b3 b′1 b′2 b′3 a a′

1 0 0 1 1 1 1 1 1 0 0
S 0 0 0 0 0 0 0 0 0 0
b1 1 1 1 1 1 0 0 0 0 0
b2 1 1 1 1 1 0 0 0 0 0
b3 1 1 1 1 1 0 0 0 0 0
b′1 1 1 0 0 0 1 1 1 0 0
b′2 1 1 0 0 0 1 1 1 0 0
b′3 1 1 0 0 0 1 1 1 0 0
a 0 0 1 1 1 0 0 0 1 *1
a′ 0 0 0 0 0 1 1 1 *0 1

mirror vectors break the hidden sector E8 in the same manner as the NAHE set

breaks the observable sector E8 into SO(10)× U(1)3. Each b′i produces 16 copies of

16’s of the hidden sector SO(10).

The right-moving components of the bi and the b′i basis vectors that are simul-

taneously non-zero form a subset of {y, ω|ȳ, ω̄}1,··· ,6. That is, bi and b′i states will

both carry some {y, ω|ȳ, ω̄}1,··· ,6 “shadow sector” charges. Within the NAHE set the

only two bosonic sectors that can produce gauge states are 0 and 1+b1 +b2 +b3. All

observable and “shadow sector” SO (n) and U(1) generators, along with the hidden

sector 120 rep of SO (16) ∈ E8, originate in 0, while the hidden sector 128 rep of

SO (16) ∈ E8 originates in 1 + b1 + b2 + b3. The GSO projections from the mirror

sectors b′1, b′2, and b′3 remove the 128 rep of SO (16), reducing the hidden sector E8

symmetry to SO (16). Further, the mirror sectors reduce the hidden sector SO (16)

to an SO(10)×U(1)3 symmetry, matching the observable sector. (Similarly the GSO

projections of b1, b2, and b3 remove any adjoint contribution to the observable gauge

group from the 1 + b′1 + b′2 + b′3 sector.)

The hidden sector U(1)3 generation charges and the observable sector U(1)3

generation charges combine with the shadow sector charges in a like manner. Simul-

taneously, the b′i sector GSO’s reduce the SO(4)3 shadow sector symmetry to U(1)6.
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Table 3.5. The Mirror Set

ψµ χ12 χ34 χ56 ψ̄1,...,5 η̄1 η̄2 η̄3 ψ̄′
1,...,5

η̄′
1

η̄′
2

η̄′
3

b′1 1 1 0 0 0,...,0 0 0 0 1,...,1 1 0 0
b′2 1 0 1 0 0,...,0 0 0 0 1,...,1 0 1 0
b′3 1 0 0 1 0,...,0 0 0 0 1,...,1 0 0 1

y1,...,4 ȳ1,...,4 y5,6, ω1,2 ȳ5,6, ω̄1,2 ω3,...,6 ω̄3,...,6

b′1 1,...,1 1,...,1 0,...,0 0,...,0 0,...,0 0,...,0
b′2 0,...,0 0,...,0 1,...,1 1,...,1 0,...,0 0,...,0
b′3 0,...,0 0,...,0 0,...,0 0,...,0 1,...,1 1,...,1

The net result is a SU(3)× SU(2)3 × U(1)7 shadow sector symmetry, whose charges

are carried by representations of the observable SO(10) and of the hidden SO(10).

The additional SU(3) × SU(2)3 generators originate in several additional massless

gauge sectors formed from linear combinations of 1, bi, and b′i. All of these sectors

have massless vacua and only carry η̄i, η̄
′
i, and ȳ, ω̄ shadow charges. While most

massless gauge states from these sectors are projected out, a few are not. Those

that survive mix the SO(6)3 containing the η̄-charges carried by the observable states

and the shadow sector SO(6)3 containing the η̄′-charge carried by the hidden sector

states. Thus, at this stage mirror symmetry still exists, as should be expected. Note

in particular that k is invariant under exchange of bi with corresponding b′i.

To break each of the SO(10) to their corresponding Pati-Salam SO(6)×SO(4),

two additional sectors a and a′ are added to the model, where a and a′ are mirror sec-

tors, as shown in Table 3.5. The set of ten basis vectors {1,S,b1,b2,b3,b
′
1,b

′
2,b

′
3, a, a

′},

produce a model with mirror symmetry boundary conditions for the observable and

hidden sectors. However, an asymmetry necessarily develops among the GSO projec-

tions with the addition of a and a′. Although all new degrees of freedom of kα,β where

α ∈ {a, a′} and β ∈ {1,S,b1,b2,b3,b
′
1,b

′
2,b

′
3}, are chosen to be invariant under si-

multaneous exchange of primed and unprimed sectors for both α and β, symmetry
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Table 3.6. SO(10)× SO(10) Breaking and Generation Reduction

ψµ χ12 χ34 χ56 ψ̄1,...,5 η̄1 η̄2 η̄3 y, ȳ, ωω̄ ψ̄′
1,...,5

η̄′
1

η̄′
2

η̄′
3

a 1 1 1 1 0,0,0,1,1 1 1 1 ~0 0,0,0,0,0 0 0 0
a′ 1 1 1 1 0,0,0,0,0 0 0 0 ~0 0,0,0,1,1 0 0 0

breaking between ka,a′ and ka′,a occurs automatically. Only one of ka,a′ and ka′,a is a

degree of freedom; the other is specified by (3.1.49a). As Table 3.6 shows, a · a′ = 10,

which from (3.1.49a) yields

ka,a′ + ka′,a = 1 mod(2). (3.3.1)

Thus, ka,a′ and ka′,a cannot be equal (mod 2). Instead, either ka,a′ = 1 and ka′,a = 0

or vice versa (since all components of a and a′ are either anti-periodic or periodic).

The addition of a and a′ to the model generates several new massless gauge

sectors of the form a + a′ + .... However, in both model variations presented herein,

the GSO projections remove all possible gauge states from such sectors, except those

coming from a + a′. The a + a′ sector has all anti-periodic components except for

four periodic associated with the two complex fermions generating the observable

SO(4) = SU(2)L × SU(2)R and the two complex fermions generating the hidden

sector SO(4) = SU(2)L × SU(2)R. Thus, in the a + a′ sector, massless gauge states

require one anti-periodic fermionic (with Q = ±1) excitation.

The GSO projection from a acts on observable SO(4) spinors while a′ acts

on hidden SO(4) spinors. Since ka,a′ and ka,a′ differ by 1 (mod 2), so do ka,a+a′

and ka′,a+a′ . Thus, a state in the a + a′ sector survives both the a sector GSO

projections and a′ sector GSO projections if and only if its observable and hidden

SO(4) spinors have opposite chirality. That is, the net number of down spins among

the four spinors must be odd, implying that an a + a′ gauge state will either carry

observable SU(2)L ∈ SO(4) charge and hidden SU(2)R ∈ SO(4) charge or vice-versa.
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For model 1, the additional ki,a and ki,a′ require a + a′ states to always have

an even number of observable SO(4) −1
2

spins and an odd number of hidden SO(4)

−1
2

spins, linking observable SU(2)R ∈ SO(4) reps with hidden SU(2)L ∈ SO(4)

reps. The remaining GSO projections on a + a′ gauge states require the Q = ±1

anti-periodic fermion excitation charge to be from the hidden sector SO(6) ∼ SU(4).

Thus, the surviving a + a′ simple root connects observable SU(2)R roots with the

hidden sector SO(6) and SU(2)L roots, thereby regenerating a hidden sector SO(10):

[SU(2)R]O × [SO(6)× SU(2)L]H → [SO(10)]H (3.3.2)

as in Table D.1.

In addition, a sector 1 + b1 + b′1 + a gauge state with eight complex spinors

links the shadow gauge states with the hidden sector SU(2)R, increasing the shadow

sector gauge symmetry,

[
SU(3)× SU(2)3 × U(1)7

]S × (SU(2)R)H →
[
SU(5)× SU(2)3 × U(1)6

]S
. (3.3.3)

The final model 1 gauge group is, therefore,

[SU(4)× SU(2)L]O ×
[
SU(5)× SU(2)3 × U(1)6

]S × [SO(10)]H . (3.3.4)

While maintaining symmetry under exchange of primed and unprimed com-

ponents of k, model two differs from model 1 in some choices of ka,β and ka′,β for

β ∈ {1,S,b1,b2,b3,b
′
1,b

′
2,b

′
3}. Model 2 GSO projections require an odd number of

observable SO(4) −1
2

spins and an even number of hidden SO(4) −1
2

spins in the a+a′

sector. This links observable SU(2)L ∈ SO(4) reps with hidden SU(2)R ∈ SO(4) reps.

The remaining GSO projections again require the Q = ±1 anti-periodic fermion ex-

citation charge of an a + a′ simple root to be from the hidden sector SO(6). Thus,

for model 2 the gauge boson from a + a′ again regenerates a hidden sector SO(10):

[SU(2)L]O × [SO(6)× SU(2)R]H → [SO(10)]H . (3.3.5)



72

However, in model 2, no additional gauge state is produced to mix the shadow sector

with the hidden sector SU(2)L. The final model 2 gauge group is, therefore,

[SU(4)× SU(2)R]O ×
[
SU(3)× SU(2)3 × U(1)7

]S × [SO(10)× SU(2)L]H .(3.3.6)

For aesthetic reasons, we exchange the definitions of left and right-handedness in the

observable sector and of related SM states transforms this into

[SU(4)× SU(2)L]O ×
[
SU(3)× SU(2)3 × U(1)7

]S × [SO(10)× SU(2)L]H .(3.3.7)

3.4 Hypercharge Definitions

An important issue for these models is whether an acceptable definition of hy-

percharge can be found, since the conventional hypercharge is missing either its equiv-

alent TR3 contribution in model 1 or its equivalent TL3 contribution in model 2. In

standard NAHE-based models the hypercharge is formed as

Y = 1
3
Q̃C + 1

2
Q̃L, (3.4.1)

(for Y (QL) = 1
3

normalization), where Q̃C =
∑3

m=1Qψ̄m is the associated charge

trace of U(1)C ≡
[
ψ̄1∗ψ̄1 + ψ̄2∗ψ̄2 + ψ̄3∗ψ̄3

]
and Q̃L =

∑5
m=4Qψ̄m is the associated

charge trace of U(1)L ≡
[
ψ̄4∗ψ̄4 + ψ̄5∗ψ̄5

]
. Since SU(4)C → SU(3)C × U(1)B−L,

1
3
Q̃C = Q̃B−L, as Table 3.7 indicates. Similarly, since SO(4) = SU(2)L × SU(2)R →

SU(2)L × U(1)L, 1
2
Q̃L = 2TR3 . Thus,

Y = Q̃B−L + 2TR3 , (3.4.2)

which yields electromagnetic charge

Q̃EM = TL3 + 1
2
Y = TL3 + TR3 + 1

2
Q̃B−L. (3.4.3)

Hence, model 1 requires a replacement for TR3 , while model 2 needs a replacement for

TL3 .

Under SU(4)C × SU(2)L the SM SU(3)C × SU(2)L left handed reps combine

into



73

Table 3.7. Hypercharge Components for Broken Mirror Models

Q̃B−L 2TR3 2TL3 Q̃EM = TL3 + TR3 + 1
2
Q̃B−L

1
3
Q̃C

1
2
Q̃L = TL3 + 1

2
Y

QL
1
3

0 ±1 2
3
, −1

3

dcL −1
3

1 0 1
3

ucL −1
3

−1 0 −2
3

LL −1 0 ±1 0, −1
ecL 1 1 0 1
νcL 1 −1 0 0

• QL = (3,2)2TR
3 =0 ⊕ LL = (1,2)2TR

3 =0 → (QL)L = (4,2)2TR
3 =0,

• ecL = (1,1)2TR
3 =1 ⊕ dcL = (3,1)2TR

3 =1 → (dcec)L = (4,1)2TR
3 =1,

• νcL = (1,1)2TR
3 =−1 ⊕ ucL = (3,1)2TR

3 =−1 → (ucνc)L = (4,1)2TR
3 =−1.

Model 1 contains three generations of pairs of (qclc)ni = (4,1) states (with generation

index specified by i = 1 to 3, pair element index specified by n = 1, 2, and left-handed

index L implicit), where (qclc) denotes either (dcec) or (ucνc) (see Table D.2). These

states are also respective doublets under the three generation SU(2)i of the shadow

sector. As discussed, for a three generation model, the SU(2)i must be broken to the

generational U(1)i of standard NAHE models by additional GSO projections from

further sectors. When each SU(2)i is broken to U(1)i in this manner, one component

of each SU(2)i doublet is also projected out. If these additional GSO projections

can be chosen such that the up-spin component of SU(2)i for (qclc)n=1
i survives along

with the down-spin component of SU(2)i for (qclc)n=2
i , then for Y = Q̃B−L + 2 (T3)i

the (qclc)n=1
i become the (dcec)i states and the (qclc)n=2

i become the (ucνc)i states.

Under L↔ R exchange, the same process can be applied to create a consistent three

generation hypercharge for model 2.

For both models, this is the only possible choice for (qclc) hypercharge, since in

each model the extra Abelian charges carried by the (qclc)ni are independent of the



74

index n for each generation i. That is, no hypercharge definition involving only the

extra U(1)k could yield valid hypercharge for both (dcec) and (ucνc) reps. For model

1, this posses a difficulty for the MSSM Higgs. In model 1, the only additional SU(2)L

doublets are singlets under all SU(2)i. These are the pairs of states hni (n = 1, 2)

and the more exotic Hn
i , which are also 5 reps of SU(5)S. For a given generation

i, the extra U(1)k charges are independent of the index n. Thus, no hypercharge

definition could yield both a (Y = −1)-charged up-Higgs and a (Y = +1)-charged

down-Higgs from an hn=1
i and hn=2

i pair. Instead, a hypercharge definition is required

such that the U(1)k hypercharge contribution to QL and ql states is zero, while it is

+1 for at least one hni pair and -1 for at least one other hni′ pair. Applying the six QL

and (qclc) constraints prevents any U(1)k from appearing in a general hypercharge

definition. Thus, model 1 cannot provide a suitable definition for hypercharge, unless

the Cartan subalgebra of SU(5)S can contribute to the hypercharge ofHn
i components

after SU(5)S is broken.

In contrast, the MSSM Higgs of model 2 come in the standard hi and h̄i pairs

for each generation i. However, each hi and h̄i is also an SU(2)i doublet (see Table

D.5). Thus, if under SU(2)i breaking by GSO projections from additional sectors,

the SU(2)i up-spin component of hi survives and the SU(2)i down-spin component

of h̄i (or vice-versa) then hi becomes down-Higgs and h̄i becomes up-Higgs (or vice

versa). Thus, a viable hypercharge definition for model 2 is

Y = 1
2
Q̃B−L +

3∑
i=1

T i3. (3.4.4)

This would produce generational Higgs pairs, which is a common occurrence

in NAHE-based models. This often provides for mass hierarchy between generations

since the physical Higgs usually becomes a weighted (by several orders of magnitude)

linear combination of generational Higgs. MSSM matter states then couple differently

by generation to the physical Higgs, producing a large mass hierarchy, even when all

mass couplings in the superpotential are third order.
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Models 1 and 2 both contain an anomalous U(1)A, and it is unlikely that ad-

ditional basis vectors would change this for either model. In fact, additional sectors

generally increase the anomaly. For model 2 the charge traces of the seven U(1)k is

Tr ~Q = (0,−144, 96, 0, 0,−192, 0) . (3.4.5)

(as can be computed from Table D.5). Thus, the anomaly may be rotated into

UA = [−3Q2 + 2Q3 − 4Q6] (3.4.6)

for which the trace is 1392. The orthogonal

U ′2 = 2Q2 + 3Q3 (3.4.7)

U ′3 = −3Q2 + 2Q3 + (13/4)Q6 . (3.4.8)

become non-anomalous (traceless).

Model 2 is an example [96, 97] in which non-Abelian fields must necessarily take

on vevs to cancel the Fayet-Iliopoulos (FI) term,

ε ≡ g2
sM

2
P

192π2
TrQ(A) =

g2
sM

2
P

192π2
1392, (3.4.9)

generated in the UA D-term by the Green-Schwarz-Dine-Seiberg-Witten anomalous

U(1) breaking mechanism [98–100]. To see this, first note from Table D.5 that singlet

states Sn1 through Sn6 carry the non-anomalous charge Q1 = 3, while the remaining

singlets have Q1 = 0. Thus, D-flatness for U(1)1 cannot be maintained if only singlets

receive vevs and one or more of the fields Si1 through Si6 are among those that do.

Next, the singlets S7 and S̄7 do not carry anomalous charge (only Q4 and Q5 charge),

and so cannot help cancel the F-I term. The remaining singlets are simply S8 and S9,

and their vector partners of opposite charges. S8 carries anomalous charge QA = 4

and non-zero non-anomalous charges Q4 = 1, Q5 = 4, Q′
2 = 6, Q′

3 = −42, while

S9 carries anomalous charge QA = 4 and non-zero non-anomalous charges Q4 = −1,

Q5 = −4, Q′
2 = 6, Q′

3 = −42. S̄8 and S̄9 carry respective opposite charges. Thus,
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we see that no combination of S7,8,9 and S̄7,8,9 vevs can simultaneously cancel the

anomalous DA-term contribution from the trace of UA and keep the D-terms for Q′
2

and Q′
3 flat. Therefore, some non-Abelian fields must take on vevs in the process of

canceling the TrQA contribution to DA to maintain D-flatness. Of particular interest

is whether SU(2)i-charged fields take on vevs in the parameter space of flat directions.

Analysis of flat directions is, however, beyond the scope of this chapter.

3.5 Summary

This chapter has demonstrated, under certain conditions, mirror symmetry is

necessarily broken between observable and hidden sector gauge groups of heterotic

string models with mirror boundary conditions for observable and hidden sector

world-sheet fermions. The observable/hidden sector gauge group mirror breaking

occurs because of an unavoidable asymmetry in GSO projections. This effect can be

induced in free fermionic models though an observable/hidden sector mirror-like pair

of basis vectors, a and a′, with the properties that:

• Their vector sum yields new, independent gauge sectors (possibly after further

basis vectors are added) a + a′ + ....

• They do not overlap with non-zero components in the observable and hidden

sectors.

• Their inner product does not equal 0 mod(4).

Under these conditions the observable sector and hidden sector gauge states

from some a + a′ + ... sector (or sectors) will not be mirror images since the ob-

servable sector gauge states surviving the ka,a+a′+... GSO projections will be differ-

ent from the hidden sector gauge states surviving the corresponding ka′,a+a′+... GSO

projections. In the examples shown, starting with mirror Pati-Salam gauge groups

[SU(4)C × SU(2)L × SU(2)R]O× [SU(4)C × SU(2)L × SU(2)R]H , the observable sec-
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tor SU(2)R(L) was transformed to the hidden sector by this necessary asymmetry of

the GSO projections, enhancing the hidden sector gauge group to [SO(10)× SU(2)R]H .

This transference of gauge rank from the observable sector to the hidden sector acts

favorably for coupling strength renormalizations, allowing non-Abelian hidden sector

coupling strengths to run upward faster than observable sector coupling strengths

as energy scales run downward from the string scale, leading to the formation of

generally advantageous intermediate scale hidden sector condensates.



CHAPTER FOUR

Randall-Sundrum Unification

In this chapter, we study the novel aspects of unification within the Randall-

Sundrum (RS) proposal. We first briefly review the RS proposal in Section 4.1. In

Section 4.2 we look at models that have been constructed using RS, almost exclusively

based of SU(5). We present our model [101], based on S̃U(5) in Section 4.3. In

Section 4.3.1 we compute the beta function of our model, using the results of [102–

105]. Finally, we show in Section 4.3.3 that our model leads to an extremely small

lifetime for the proton if the Yukawa couplings are not fine-tuned.

4.1 An Introduction to the Randall-Sundrum Scenario

The Randall-Sundrum (RS) proposal [106, 107] represents a beautiful geomet-

rical solution to the hierarchy problem, outlined in Section 1.2.5. Specifically, by

embedding a four dimensional Minkowski space in a higher dimensional anti-de Sitter

(AdS) bulk, one is able to suppress the weak scale by a factor of e−kπrc , with k and

rc the warp factor and compactification radius, respectively. The normal argument

goes like this: suppose we have an AdS space, whose measure is given by

ds2 = e−2kzηµνdx
µdxν + dz2, (4.1.1)

where the fifth dimension (z) is an orbifolded circle (S1/Z2). Suppose also that we

have a bulk scalar in our theory, H, whose action is given by:

S ⊃
∫
d4x

∫ πrc

0

dz
√
−G

(
GMN∂MH

†∂NH +m2H†H
)
, (4.1.2)

where GMN is the full 5-dimensional metric and is given by

GMN = e−2kzdiag(−1,+1,+1,+1, e2kz) , (4.1.3a)

GMN = e2kzdiag(−1,+1,+1,+1, e−2kz). (4.1.3b)

78
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If our universe exists in the IR limit of (4.1.2), then we evaluate the action on the IR

brane, namely where z = πrc, and find

Seff ∼
∫
d4x

(
e−2kπrc∂µH†∂µH + e−4kπrcm2H†H

)
. (4.1.4)

Redefining the scalar field H → e−kπrcH we see

Seff ∼
∫
d4x

(
∂µH†∂µH + e−2kπrcm2H†H

)
. (4.1.5)

The mass parameter m (which is on the order of the Plank mass, as we expect from

dimensional analysis) is now weighted by the warp factor on the IR brane where we

would observe it, m→ me−kπrc , and can be tuned to give phenomenologically accept-

able values. The stabilization of the brane separation has already been addressed in

[108], so that the choice of

kπrc = log

[
MUV

MIR

]
∼ 11π (4.1.6)

is well-motivated.1

If we compare the MSSM with the RS proposal, we begin to see the advantages

of the latter. SUSY protects the higgs mass with 124 free parameters, whereas RS

only needs one, the warp factor kπrc, and the existence of a finite extra dimension, z.

Although, in some sense, the RS proposal is an alternative to SUSY, it can incorporate

SUSY—then the warp factor serves to protect the SUSY breaking scale, which in turn

protects the higgs mass.2 The SUSY breaking terms are generated on the UV brane,

and communicated (either gravitationally or via a “messenger” U(1)) to the IR brane.

These models will not be discussed in this thesis.

The presence of a compact extra dimension necessarily means that there will be

Kaluza-Klein modes [109, 110]. Calculating the shape of the wave-function in the fifth

1We see that the hierarchy problem has been replaced with a fine-tuning problem. This can
be seen from Equation (4.1.3)—the exponential factor is ∼ 10−15, while all the other entries in the
matrix are ∼ 1.

2Indeed, if we want to embed RS into string theory, then it must be consistent with SUSY.
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Figure 4.1. In the Randall-Sundrum scenario, one starts with a five dimensional anti-de
Sitter space. The fifth dimension, z, is an orbifolded circle, S1/Z2, with three-branes at the
orbifold fixed points, 0 and πrc. If we start with a circle of radius R, parameterized by the
angle θ, the Z2 discrete symmetry identifies θ with 2π − θ.

dimension is relatively straightforward, using the method of separation of variables.

If one varies the action, Equation (4.1.2), one finds that the equation of motion of

the scalar field H is given by:

∂2H + e2kz∂5

(
e−4kz∂5H

)
−m2

He
−2kzH = 0. (4.1.7)

To solve this differential equation, we express the higgs field as composed of two parts,

a four dimensional part (Φ (x)) and a one dimensional part (φ (z)):

H =
1

√
πrc

∑
n

Φ(n) (x)φ(n) (z) . (4.1.8)

The general solution for the zero mode, whose mass is given by m2 = ak2, for k the

warp factor, is given by

φ(0) (z) = c1e
(2−α)kz + c2e

(2+α)kz, (4.1.9)

where α =
√

4 + a. c1 and c2 are arbitrary constants. If one were to try to solve for the

arbitrary constants with simple von Neumann or Dirichlet boundary conditions, one
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would find that there is no zero mode solution [111]. We must modify the boundary

actions as with a mass term:

Sboundary =

∫
d4xdz

√
−g2bk [δ( z )−δ( z − πrc )] |H|2 , (4.1.10)

where b is a dimensionless number which parameterizes the boundary mass of the

field. The modified von Neumann boundary condition3 is given by

[
∂5φ

(0) − bkφ(0)
] ∣∣∣∣

0,πrc

= 0. (4.1.11)

The fields are assigned von Neumann (+) or Dirichlet (–) boundary conditions about

the branes at the ends of the AdS space. Equivalently, these are the parities under the

Z2 discrete symmetry which characterizes the orbifold. These boundary conditions

are specified in doublets, with the first entry corresponding to the UV brane, and the

second corresponding to the IR brane. Application of these new boundary conditions

across both of the orbifold fixed points to Equation (4.1.7) tells us that the scalar

zero modes with von Neumann boundary conditions must look like

φ(0) ∝ e−bkz. (4.1.12)

Note that the b values are not calculable from the low energy effective field theory,

just as quark masses are not calculable in the SM. These represent free parameters

of the theory, that will be constrained by experiments if the RS proposal is validated

in the future.

One can now add spin 1
2

fermions [112] and spin 1 bosons [113, 114] to the

spectrum in much the same way. In typical RS constructions, fermion fields are

allowed to live in the bulk, and the individual fields in each representation are allowed

to take on different boundary conditions. We find that the spin one bosons have flat

wavefunctions in the fifth dimension, for either von Neumann or Dirichlet boundary

conditions.

3A similar process can be followed to find modified Dirichlet boundary conditions.
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A spin 1
2

fermion whose wavefunction is symmetric about the Z2 × Z2 orbifold

symmetry has the general form:

Ψ5 ∼ e(
1
2
−c)kzψ4. (4.1.13)

Here, Ψ5 (ψ4) is the five- (four-) dimensional wavefunction. The c−values (c ∈ [0, 1])

dictate about which brane the wavefunction is localized, and thus the observed mass

in the low energy effective field theory. By picking numbers of O(1
2
), one is able to

generate mass hierarchies which are put into the standard model (SM) by hand.

4.2 Unification in Five Dimensions: The GUTs of Randall-Sundrum

The question of unification in RS models has been addressed in several places,

and in several different incarnations. The first examples of unification in RS were

based on SU(5) GUTs [115]. Supersymmetric SU(5) unification has been investigated

[116] and more recently, some detailed investigations of SO(10) GUTs were preformed

[117].

Generally, one first replaces the S1/Z2 orbifold with a new topology: S1/Z2×Z2.

One must now assign boundary conditions across each of the orbifold fixed points (at

0 and πrc), which correspond to parities about the branes. The breaking of the GUT

symmetry down to the SM is achieved by assigning different boundary conditions to

the fields appearing in the representation. In the five-dimensional bulk, the fields

respect the GUT symmetry, say SU(5). On the boundaries, the representations (and

thus the GUT symmetry) are broken by the orbifold parities—in general, no GUT

scale scalars are needed to break the symmetries.

Breaking the GUT symmetry with boundary conditions requires that one add

copies of representations to the spectrum since only fields with (+ +) boundary

conditions are physical, and the quarks and leptons (from the same generation) in

the SM come from different representations in the underlying symmetry group. So,
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taking one of the models in [115], one has

51 = L++
1 + d+−

1 (4.2.1a)

52 = L+−
1 + d++

1 (4.2.1b)

The SM states have (+ +) boundary conditions while the other fields have (+ –)

boundary conditions. While all of these models elegantly incorporate the features of

the RS proposal, they all suffer from this seemingly universal problem of representa-

tion proliferation. For example, the SO(10) model in ref. [117] required 6 copies of

each 16 for each generation! This is an issue associated with any model in which the

GUT symmetry is broken with boundary conditions.

This proliferation of representations does solve some problems. The experimen-

talists have given us strict bounds on the proton’s lifetime, τp > 6.7×1033 y [47], and

one must be wary of higher dimensional operators in the effective field theory which

violate these bounds. For example, in 5-d one could write the following operator

down (from 5× 5× 10× 10 ⊃ 1) [111]:∫
d4xdz

√
−GΨ5Ψ5Ψ10Ψ10

M3
5

. (4.2.2)

We can evaluate this integral on the IR brane, using (4.1.13)...

2k

M3
5

1

NiNjNkNl

eπkrc(4−c1−c2−c3−c4) − 1

4− c1 − c2 − c3 − c4

∫
d4xψ5ψ5ψ10ψ10, (4.2.3)

where

Ni =
1/2− ci

e(1−2ci)kπrc − 1
. (4.2.4)

The c−values are less than 1, making the coupling constant in the effective field

theory exponentially large. These operators are responsible for phenomena such as

proton decay, and such large couplings will cause proton lifetime to be exponentially

short. By requiring quarks and leptons to come from different generations, there exist

no physical (i.e. on the IR brane) quark-lepton mixing, unlike in traditional GUTs.
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It seems that there are no conventional baryon decay modes in this type of

model, so the prediction is that experiments like Super-Kamiokande [47] will never

see p→ leptons + mesons. If such decays were observed, then (to avoid fine tuning, as

per the RS paradigm) one would either have to find some other way to suppress these

processes, or accept the exponentially tuned Yukawa couplings required by terms like

(4.2.3). Finally, it should be noted that there have been investigations into breaking

the GUT by turning on the vev of a bulk scalar field [104, 115].

4.3 A S̃U(5) Model in the RS Scenario

In the following model, we consider a non-supersymmetric S̃U(5) partial GUT

living in the background of Equation (4.1.1). The breaking of S̃U(5) is accomplished

with one bulk scalar field, called Φ, that takes on a vev at some intermediate scale M∗.

Note that, in general, M∗ is less than the GUT scale, MGUT , but it is not completely

unreasonable that one push M∗ up to MGUT—this would eliminate the embedding of

S̃U(5) into some larger symmetry, like SO(10). We take a minimal matter content,

as in Equation (2.5.1).

SUSY S̃U(5) unification in extra dimensions has been studied in [118, 119], but

this analysis was in the presence of a flat extra dimension, on an orbifolded circle

(S1/Z2 × Z ′
2). The main difference between these two approaches is the form of

the Kaluza-Klein modes and their contributions to the β functions (see [102, 103]

for more details)—in the RS proposal the masses of the KK modes are solutions to

combinations of Bessel functions, whereas in the flat case

m2
n = m2 +

n2

R2
, (4.3.1)

for n = 0, 1, 2, .... Generally, one would like to unify the S̃U(5) theory in some higher

dimensional GUT, like SO(10). Here we will only work at the partial GUT level, and

leave the problem of SO(10) embedding to a future study [120].
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4.3.1 Gauge Coupling Renormalization

Calculating the one-loop corrections to the vacuum-to-vacuum polarizations is

relatively straightforward, and has been done for the (extremely popular) case of

scalar QED in several places [102–105]. The difference between the standard QFT

calculation and the RS1 calculation is the appearance of a tower of KK modes. For

fields that are even about the orbifold Z2×Z2 symmetry, the KK masses are solutions

to [111]

bα (mn) = bα
(
mne

πkrc
)
, (4.3.2)

where

bα (mn) = −
(
−r + s

2

)
Jα
(
mn

k

)
+ mn

k
J ′α
(
mn

k

)(
−r + s

2

)
Yα
(
mn

k

)
+ mn

k
Y ′
α

(
mn

k

) , (4.3.3)

and the constants are given by

α =


√

4 + a spin 0∣∣c± 1
2

∣∣ spin 1
2

√
1 + d spin 1

, r =


b spin 0

∓c spin 1
2

0 spin 1

, s =


4 spin 0

1 spin 1
2

2 spin 1

. (4.3.4)

In this study, we are concerned with fields which have (+ +) boundary conditions

on the Z2 × Z ′
2 orbifold symmetry—there are similar expressions for the odd case.

The constants a, b, c and d come from the wavefunction’s “boundary mass”, and

parameterize the field’s profile in the fifth dimension—for example, we have already

seen how c is defined in Equation (4.1.13). The constant a for a scalar field is given

by a ≡ m2
Φ

k2 , where mΦ is the five dimensional scalar mass. The constant b = 2 + α,

and d ≡ M2

k2 , where M is the gauge boson’s mass—possibly zero. Finally, n = 1, 2, . . ..

Before we begin, it can be shown [122] that the leading contribution to the

running of the couplings is logarithmic, as we find in the standard 4-d case—the

corrections should contain terms ∼ log
[
p
Λ

]
, as long as we consider the regime where

p << Λ . k, where p is some intermediate energy scale. The general form of the
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(a) (b) (c) (d)

(e) (f)

Figure 4.2. Possible graphs for calculating the massive contribution to the runnings of the
couplings, α−1

i . We must include contributions to the vector boson self-energy from fermions
(a), scalars (b), S̃U(5) gauge bosons (c), and ghosts (d). We also get contributions from
the fermion-fermion-boson counterterm (e) and the fermion self-energy (f). Note that we
must include the KK mode sum in each of the loops. Note that fields which lie in complete
representations of the GUT do not contribute to the differential runnings of the couplings.
These graphs were generated using [121].

running coupling constants in an RS background is given by [102–104]:

1

g2
i (p2)

=
1

kg2
5

+ ∆UV + ∆IR +
1

8π2

{
∆1−loop +

γi
24π3

Λπrc + bi log

[
Λ

p

]}
. (4.3.5)

The g5 is the bulk coupling constant, the ∆UV and ∆IR come from the couplings of the

Maxwell tensors localized on the branes, and the ∆1−loop are the one-loop contribu-

tions from the graphs in Figure 4.2–they arise because of the presence of Kaluza-Klein

modes in the spectrum. The linear divergences are regularization scheme dependant,

and cannot be calculated within our effective field theory. They are of O(M∗
k

) and

will be ignored in what follows.4 The last term is the familiar non-Abelian beta

function contributions.

In general, ∆UV , ∆IR and g5 are incalculable—they depend on some completion

of the theory (possibly string theory). We will take the incalculable parts of Equation

4Equivalently, one could include these contributions in the redefinition (4.3.6), as in [103].
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(4.3.5) to be [103]

1

kg2
5

+ ∆UV + ∆IR
∼=

1

g2
fSU(5)

+O
(

1

8π2

)
. (4.3.6)

Now, let’s compute the contribution of a massive scalar and its KK modes.

The relevant graphs are shown in Figure 4.2, (b). The Feynman rules for a scalar

transforming in an arbitrary representation of a non-Abelian symmetry are just a

straightforward modification of the rules for scalar QED. We take our bulk scalar

to have (+ +) boundary conditions. If we compute the amplitude of the graphs in

Figure 4.2, (b), we find that the one loop correction ∆scalar
1−loop (q2), for a massive scalar

and its KK excitations is given by:5

∆scalar
1−loop

(
q2
)

=
g2C (r)

(4π)
D
2

Γ

(
2− D

2

)∫ 1

0

dx
∑

KK modes

(
µ2

Kn

)2−D
2

(1− 2x)2 , (4.3.7)

where

Kn = m2
n + x (1− x)

(
−q2

)
≡ m2

n + χ2. (4.3.8)

C(r) is the Dynkin index of the representation of the scalar field. Sums of this form

have been evaluated in [104, 105], and Equation (4.3.7) can be shown to be equal to∑
n

K
D
2
−2

n =
1

2
+

(
D

2
− 2

)[
log [f (iχ)] + log

[
χπ

e
kπrc

2

k

]
+ logχ

]
+ O (D − 4)2 , (4.3.9)

where

χ =

√
x (1− x)2 (−q2). (4.3.10)

For our case, a 5-d bulk scalar with (+ +) boundary conditions whose zero mode has

mass mΦ, we have

f (mn) =
1

πα

(
ekπrc

k2

)α−1(
m2

Φ

m2
n

+
2 + α

2α− 2

)
. (4.3.11)

5As was mentioned above, if the only field in the theory is the zero mode (n = 0) scalar, then
the sum consists of just one term—reducing the integral then gives the standard result.
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Because we are interested in the effect on the low energy effective field theory (∼

TeV) due to the (massive) KK modes, we have used the asymptotic form of the Bessel

functions (mn → 0), and the fact that ekπrc >> 1 [104]. If we consider k >> mΦ,

we can use this form of (4.3.11) in (4.3.9) to evaluate the integral in Eq. (4.3.7), the

correction to the coupling is given by:

∆scalar
1−loop

(
q2
)

= −C (r)

6

{
(α− 1) kπrc + log

µ

k

}
. (4.3.12)

From this analysis, we can construct the full form of the (energy dependent)

SM couplings. Luckily, this “rather tedious” analysis has already been done, and

we will adapt these results to fit our purposes. The arbitrary mass scale which was

introduced in the regularization µ (cf Eq. 4.3.7) becomes M∗—the scale of partial

unification, and our cutoff. Using Equation (4.3.6), we find [103]:

α−1
i (p) =

1

α
fSU(5)

+O
(

1

2π

)
+

3
2

12π

{
−kπrc + log

k

M∗

}
+

5

24π
{22kπrc + 21 logM∗πrc}

+
bi
2π

log
M∗

p
+O

(
1

2π

M2
∗

k2

)
kπrc

+ 5− d threshold effects. (4.3.13)

The second line gives the contributions to the couplings from the massive scalar in the

bulk—if we wish to modify the spectrum of the theory by adding additional higgses,

we can add terms similar to these. The next line gives the contributions from the X

and Y gauge bosons of S̃U(5), and the next line is of the familiar form. Note that

the second two lines give a universal (to each of the beta functions, independent of

p) correction to α−1
fSU(5)

, suggesting that we take

α−1
eff = α−1

fSU(5)
+ ∆α−1. (4.3.14)
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The correction (∆α−1) is ∼ 45 for the model presented here, and we will take α−1
eff ∼

61.6

We also notice the familiar SM runnings in the fourth line. Because the fermions

form complete representations in the GUT, they have no contributions to the run-

nings. The SM gauge bosons, however, do contribute. They are given as...

U(1) b1 = 0

SU(2) b2 = −22
3

SU(3) b3 = −11.

(4.3.15)

The last O
(

1
2π

M2
∗

k2

)
kπrc are 5-d mass splittings that are calculable, but of sub-sub-

leading order and we do not calculate them here.

Finally, there are the 5-d threshold effects [115] that are assumed to give the

corrections needed for unification. In order to break S̃U(5), we need the bulk scalar

fields to take on vevs. This is done by choosing a suitable potential for the fields, with

minima at the desired mass scale. It is this 5-d potential that gives the threshold

corrections needed for unification.

We see that the leading logarithm in each term of Equation (4.3.13) is exactly

as expected, from [122]. Also notice that the terms proportional to kπrc are effects

due to KK modes. If we were to eliminate these states from the spectrum, we would

recover the standard form of a coupling constant plus threshold corrections.7

Let us compare the runnings of the couplings in our model to those of the SM. In

the S̃U(5) models, SU(5) ⊃ SU(3)C×SU(2)L. We take the effective SU(5) coupling,

6This value of α−1
eff has been chosen because we want a value for the partial GUT coupling

that is less than the value of α−1
U(1) (M∗), so we get unification of SU(2)× SU(3) before they unify

with U(1). See Figure 4.3 below.
7See, for example, [123].
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(a) (b)

Figure 4.3. SM beta functions in our model, with corrections from KK modes, GUT scalars,
and GUT-mass bosons. Note that the unification at M∗ ∼ 3× 1015 GeV is not exact—only
SU(3) and SU(2) unify here, as expected.

α−1
eff = 61. The runnings of SU(3) and SU(2) are given by

α−1
3 (E) = α−1

eff +
b3
2π

log
M∗

E
+
δb3
2π

log
M∗

E
, (4.3.16a)

α−1
2 (E) = α−1

eff +
b2
2π

log
M∗

E
+
δb2
2π

log
M∗

E
. (4.3.16b)

One can calculate the δbi’s needed for unification using α3 (MZ) ∼= 0.1187 ± 0.0020,

α2 (MZ) ∼= 0.033961± 0.000006, and α1
∼= 0.017022± 0.000002 [6], and find

SU(3) : δb3 ∼= 0.761, (4.3.17a)

SU(2) : δb2 ∼= 0.185. (4.3.17b)

These expressions are plotted in Figure 4.3, using k ∼ 1018 GeV and M∗ ∼ 3 × 1015

GeV. We have added threshold effects on the order of about 10% to the U(1)Y in the

SM, because we expect that the corrections to the coupling are of the same size as

those of the other graphs.

4.3.2 Constraining Randall-Sundrum GUTs

We will now briefly comment on an interesting contstraint revealed in our in-

vestigations of this model. It is hoped that the constraints shown here will be of use

to anyone wishing to construct Randall-Sundrum GUTs. Further, while it was not



91

Table 4.1. We look at the scalar content of various non-supersymmetric SU(5) construc-
tions, to get some idea of the representations that are important for model-building. As we
include larger and larger bulk scalar reps, the universal contributions to the beta functions
approach zero. Calculated here are the contributions from an adjoint (24) of gauge bosons,
and scalars in various reps.

Model Bulk Scalars
∑

r C(r) MGUT (GeV) k (GeV) ∆/2π
RSFSU5 10 1.5 3× 1015 1018 44.796

Georgi [44] 24 5 3× 1015 1018 38.956
Dorsner [124] 15,24 8.5 3× 1015 1018 33.143
HHM I [125] 24, 45 17 3× 1015 1018 19.026
HHM II [125] 45, 75 37 3× 1015 1018 -14.191

explicitly invesitgated, we believe that these constraints apply also to more general

5-d orbifold GUTs, as well as any construction that gives universal corrections to

the beta functions of the model. In general, the contributions to the beta functions

coming from the KK modes of the bulk scalars and the GUT gauge bosons are:

∆1−loop

2π
≡ C(r)

12π

{
−kπrc + log

k

M∗

}
+
C(N)

24π
{22kπrc + 21 logM∗πrc} . (4.3.18)

C(r) is the Dynkin index of the scalar field, and C(N) is the quadratic Casimir

operator of the algebra. In what follows, we will look exclusively at SU(5), where

C(N) = 5.

In some sense, the threshold effects due to the presence of a bulk scalar “com-

pete” with the corrections due to the SU(5) gauge bosons—they give contributions

of opposite sign. The scalar loops are weighted by their Dynkin index, a group the-

ory factor that depends on the representation in which the scalars transform. One

can compute these, or just look them up [5], and find that larger representations

(generally) have larger Dynkin indices.

The bulk field content of the model will govern the types of values that one can

obtain for M∗ and α−1
fSU(5)

, via universal contributions to the beta functions from the

bulk matter, as in Equation (4.3.14). Likewise, any constraints on α−1
fSU(5)

will tell

us the maximum contributions from KK threshold effects, as per [103]. Any effects
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from some higher unification scale, at MGUT , would still enter the beta function as a

correction to the effective α−1
eff , and be of the same form as Equation (4.3.13). This

will also put constraints on the size and number of bulk fields introduced in the GUT

model. In Table 4.1 we have looked at the scalar content of some 4-d SU(5) theories.

We note that these models were not built within the RS framework, but we have

looked at these examples to get an idea for the important scalar reps used in model

building.

In the model presented in this paper, the corrections due to scalars and vectors

are ∼ 45. Requiring that our threshold effects be on the order of 10% means that

55 . α−1
fSU(5)

. 62, which in turn forces 10 . α−1
fSU(5)

. 17. A more interesting case is

when the corrections due to the KK modes are negative, as in the case in the HHM II

model [125], and is the case when we include larger (or more) scalar reps in our models.

In this case, the value of α−1
SU(5) must be at least as large as the corrections coming

from the bulk scalar and vector representations in order to ensure the positivity of

α−1
eff , as per Equation (4.3.14). If we were to build an SU(5) RS GUT, placing the

matter content of HHM II [125] in the bulk, we could plot Equation (4.3.14), showing

where α−1
SU(5) becomes negative—see Figure 4.4. This gives the possibility of excluding

this model, based on estimates of the size of α−1
5 , or equivalently g5 from Equation

(4.3.6).

4.3.3 Proton Lifetime

As was mentioned in Section 4.2, without some exponential tuning of Yukawa

couplings, proton decay will be a problem as per Equation (4.2.3). We have solved

the hierarchy in the higgs sector of the model by introducing the warp factor, and we

must ask ourselves if we are willing to introduce another fine-tuning in the form of an

exponentially small Yukawa coupling. Ideally we would like to explain all things in

terms of O(1) parameters, and if we insist on using bulk scalar fields to break S̃U(5) ,
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Figure 4.4. A plot of Equation (4.3.14) for the model HHM II [125]. If we choose α−1
eff less

than 15, we get a negative value for α−1
SU(5), which is unphysical.

we may have to take a more creative approach, invoking some (possibly discrete) sym-

metry to protect baryons in the low energy effective field theory by forbidding terms

like Equation (4.2.3). If proton decays are observed in a next generation experiment,

we will almost certainly have to accept some fine tuning.8

Further, in the RS scenario, one must be careful to check all of the possible

decay modes of the proton—there will be new decays through KK mode exchange.

In general, the KK modes will have masses on the order of a few TeV. The SM

fermions may interact with these KK modes to violate bounds on proton decay, and

may even produce flavor changing neutral currents at an unacceptable rate [117].

The problem is not limited to RS GUTs, but also to the RS formulation of the SM

[111]. The only way to eliminate these problems is to break the GUT symmetry with

boundary conditions [115, 116], or invoke some discrete or global symmetry which

protects baryon and lepton number.

8We already accept such fine-tunings when dealing with the strong CP problem of QCD.
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In the standard S̃U(5) models, the predominant baryon decay operator is given

by [126]:

L ∼ g2
5

M2
∗

{
−d̄γµdūγµν + d̄γµuūγµ`

−} , (4.3.19)

where `− is a linear combination of the three (left-handed) leptons. The typical

calculation, using ` ∼ e, puts the S̃U(5) prediction for the proton lifetime

τp→e+π0 ∼ 1033−37 y, (4.3.20)

which safely evades the current lower bounds. Let us quickly estimate the proton

lifetime using our choice of constants, that is, α−1
eff ∼ 61 and M∗ ∼ 3×1015 GeV. Ellis,

Lopez and Nanopoulos [127] have estimated the lifetime of the proton in S̃U(5) via

the decay channel p→ e+π0:

τp→e+π0
∼= 1.5× 1033

(
M∗

1015 GeV

)4(
0.042

α5

)2

y. (4.3.21)

Using our values, M∗ = 3× 1015 GeV and α−1
eff = 55, we find

τp→e+π0 ∼ 8.0× 1035 y. (4.3.22)

Now, Equation (4.3.19) and Equation (4.2.3) give the same term in the effective

lagrangian. We may write:

L∆B 6=0 ∼
(

2k

M3
5

λ

NiNjNkNl

eδkπrc

δ

)
ψ̄5̄ψ5ψ̄10ψ10, (4.3.23)

where δ > 1 in general, and λ is some (dimensionless) coupling in the fundamental

theory. Comparing with Equation (4.3.19), with the replacement MPl → M∗, we

have9

g2
5 ∼

λ

NiNjNkNl

eδkπrc

δ
. (4.3.24)

9We will leave out factors of O(1), for comparison’s sake.
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Because the value of δ must be calculated from the UV completion of the theory, we

cannot determine an accurate value for the proton lifetime. We know, however, that

δ is O(1
2
), and using the relation between 4-d and 5-d mass scales, M5 is within two

or three orders of magnitude of M∗, along with the parameters from Section 4.3.1, we

find

λ ∼ 10−44, (4.3.25)

in order to match the predictions of the S̃U(5) GUTs. One can now see why we

were so cavalier with two or three orders of magnitude and a few numbers of order

1! We have created a fine tuning problem thirty orders of magnitude worse than the

QCD CP problem from Section 1.2.2. If there exists a (D=6) baryon decay term like

Equation (4.2.3) in the GUT, then the Yukawa coupling must be tremendously small

to keep the proton sufficiently long lived. Thus, one most likely must invoke discrete

symmetries to remove such finely tuned terms.

4.4 Summary

In this Chapter, we have shown how S̃U(5) partial unification is obtained in the

framework of the Randall-Sundrum proposal. The higgsing from S̃U(5)→SU(3)C ×

SU(2)L × U(1)Y was obtained by taking the minimal higgs sector, namely a bulk

scalar transforming in the 10 of SU(5). We derived the evolution of the coupling

constants on the IR brane, relying on threshold effects on the order of 10%, which

are motivated from the GUT symmetry breaking higgs potential. We showed how

the threshold effects from bulk fields produced a correction to the unification scale on

the IR brane, and were able to derive bounds on the higgs sector by arguing that the

five dimensional coupling must be positive. Finally, we showed that, with Yukawa

couplings of O (1), the proton decays much too fast—if this model is correct, we must

accept exponentially tuned O
(
ekπrc

)
couplings, or invoke some discrete symmetry

which prevents the term from occuring in the five-dimensional lagrangian. We have
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not discussed the anticipated problem of flavor changing neutral currents (FCNC) or

neutrino masses, but leave these to future investigations. Because violations of FCNC

bounds come from operators like Equation (4.2.3), we expect that we will experience

a similar fine-tuning problem as was experienced with proton decays. Finally, the

neutrino mass issue is expected to be resolved when a supersymmetric version of this

model is formulated [128].
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APPENDIX A

Derivation of the Beta Function for a non-Abelian Gauge Theory

To calculate the SM beta functions, we need to compute the contributions to

the gauge boson self energy to O (g2), and the corrections to the fermion propagator

to O (g3). The graphs we need to compute are the same graphs that are listed in

Figure A.1.

The counter-terms that we must calculate are given in Figure A.2. The form of

these counter-terms are given by

X = −i (q2gµν − qµqν) δ1

Y = igλaγµδ2

Z = ipµγµδ3.

(A.0.1)

The beta function for a non-Abelian gauge theory is given, to lowest order, by

β (g) = gΛ
∂

∂Λ

(
1

2
δ1 − δ2 + δ3

)
, (A.0.2)

where Λ is the renormalization scale.

A.1 The Corrections to the Boson Self Energy

The first graph is the fermion loop, in Figure A.1, (a). We will consider the

fermions (of mass m) to be in representation r of SU(N), generated by λa. The

(a) (b) (c) (d) (e) (f) (g)

Figure A.1. Graphs needed to compute the beta functions for non-Abelian gauge groups.
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X

X

X

= X

= Y

= Z

Figure A.2. The relevant counterterms for computing the beta function of a non-Abelian
gauge theory.

amplitude is given by:

(a) = iTr
[
λaλb

] (
q2gµν − qµqν

) −g2

(4π)D/2

×
∫ 1

0

dx 8x (1− x)
Γ
(
2− D

2

)
(m2 − x (1− x) q2)2−D/2 . (A.1.1)

Now, there will, in general, be a similar contribution for each of the fermions in

the theory. Further, we’re really only interested in the divergent parts of the above

expression—the logarithmic divergences are hidden in the denominator of the inte-

grand of Equation (A.1.1), and are always of the form Γ
(
2− D

2

)
/∆2−D/2, where ∆

is defined as

∆ = x (1− x) q2 (A.1.2)

∆ is a function of the momenta invariants, and can always be set to ∆ = Λ2 in these

calculations. The final contribution to the counterterm X is (taking Equation (A.0.1)

into consideration):

(a) =
g2

16π2

Γ
(
2− D

2

)
(Λ2)2−D/2

[
4

3
NfC (r)

]
. (A.1.3)
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The next task is to compute the boson and ghost loops, as in Figure A.1, (b),

(c), and (d). After a bit of algebra and a Wick rotation (b) can be expressed as,

(b) = ig2

(4π)D/2C2 (G)
∫ 1

0
dx 1

∆2−D/2

×

{
Γ
(
1− D

2

)
gµνq2

[
3
2
(D − 1) x (1− x)

]
+ Γ

(
2− D

2

)
gµνq2

[
1
2
(2− x)2 + 1

2
(1 + x)2]

− Γ
(
2− D

2

)
qµqν

[(
1− D

2

)
(1− 2x)2 + (1 + x) (2− x)

]}
.

(A.1.4)

The quantity C2 (G) is called the quadratic Casimir operator of the adjoint represen-

tation. For SU(N) algebras, we know C2 (G) = N . The next graph, in Figure A.1,

(c) is next. We do the same process with this graph—after we introduce a Feynman

parameter and Wick rotate, we find

(c) = ig2

(4π)D/2C2 (G)
∫ 1

0
dx 1

∆2−D/2

×

{
− Γ

(
1− D

2

)
gµνq2

[
1
2
D (D − 1) x (1− x)

]
− Γ

(
2− D

2

)
gµνq2

[(
D − 1) (1− x)2]}.

(A.1.5)

Finally, the ghost contribution to the process is given by

(d) = ig2

(4π)D/2C2 (G)
∫ 1

0
dx 1

∆2−D/2

×

{
− Γ

(
1− D

2

)
gµνq2

[
1
2
x (1− x)

]
− Γ

(
2− D

2

)
qµqν [x (1− x)]

}
.

(A.1.6)

Now, we integrate these three expressions, making the replacement ∆ → Λ2, as we did

in Equation (A.1.3). The sum of these four expressions gives the total contribution

to the beta function:

δ1 =
g2

16π2

Γ
(
2− D

2

)
(Λ2)2−D/2

[
5

3
N − 4

3
NfC (r)

]
. (A.1.7)
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A.2 The Corrections to the Fermion-Boson Vertex

The corrections to the fermion-boson vertex, as in Figure A.2 Y, are computed

in the same manner as the previous two examples. First, we’ll compute Figure A.1,

(e). The graph has three vertices, and enters at O (g3). After some algebra, we find

(e) =
ig3

16π2

[
C2 (r)− 1

2
C2 (G)

]
λaγµ

Γ
(
2− D

2

)
(Λ2)2−D/2 . (A.2.1)

The other graph which contributes is Figure A.1, (f). All said and done, we find

(f) =
ig3

16π2

[
3

2
C2 (G)

]
λaγµ

Γ
(
2− D

2

)
(Λ2)2−D/2 . (A.2.2)

Now, these two expressions combine to give the counterterm in Figure A.2 Y. After

a bit of Dirac algebra, and arranging of group theory factors, we find the form of Y :

δ2 =
g2

16π2

Γ
(
2− D

2

)
(Λ2)2−D/2 [N + C2 (r)] . (A.2.3)

A.3 The Corrections to the Fermion Propagator

The final graph which we must compute is the correction to the fermion self-

energy, Figure A.2, Z. The relevant graph is found in Figure A.1, (g). After going

through the usual procedure, we find:

(g) =
ig2

16π2
kµγ

µC2 (r)
Γ
(
2− D

2

)
(Λ2)2−D/2 , (A.3.1)

and comparing to Equation (A.0.1), we find

δ3 =
g2

16π2
C2 (r)

Γ
(
2− D

2

)
(Λ2)2−D/2 . (A.3.2)

A.4 The Complete One-Loop Result

We can now sum all three contributions, inserting Equations (A.1.7), (A.2.3),

and (A.3.2) into Equation (A.0.2), and find the desired result, namely

β (g) = − g3

16π2

[
11

3
N − 4

3
NfC (r)

]
+O

(
g5
)
. (A.4.1)



APPENDIX B

SUSY Formalism

We will specialize our discussion to N = 1 SUSY, wherein we have one bosonic

state for each fermionic state in the spectrum. N > 1 SUSY is of interest in some more

theoretical constructions, but is generally not of phenomenological importance—N =

4 Yang-Mills theory is very important in formulating the AdS/CFT correspondence

[129], for example, but such discussions are outside the scope of this work.

Consider1 a matrix M ∈ SL (2,C). The matrix, its complex conjugate M∗,

its transpose inverse
(
MT

)−1
and its hermitian conjugate inverse

(
M †)−1

are all

representations of SL (2,C)—they represent the action of the Lorentz group on two-

component Weyl spinors.

The two-component Weyl spinors transform as follows under M :

ψ′α = M β
α ψβ ; ψ̄′α̇ = (M∗) β̇

α̇ ψβ̇;

ψ′α = (M−1)
α
β ψ

β ; ψ̄′α̇ =
(
(M∗)−1)α̇

β̇
ψβ̇.

(B.0.1)

The Lorentz group in four dimensions is SO(4), which is isomorphic to SU(2)L ×

SU(2)R. Spinors are denoted with Greek indices2 —the dotted indices indicate

that the spinor transforms under the
(
0, 1

2

)
representation of the Lorentz group

(SU(2)L × SU(2)R), whereas undotted indices transform under the
(

1
2
, 0
)

conjugate

representation of the Lorentz group. Note that it is customary to give the Lorentz

“spins” of the tensors, as opposed to the representation, as was done for the SM states

in Equation (1.1.1).

The Dirac matrices, in the Weyl basis, are given by

γm =

 0 σm

σ̄m 0

 , (B.0.2)

1This section follows a similar development as in [130].
2Latin indices are space-time indices.
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where σ1, σ2, σ3 are the Pauli matrices, and

σ0 =

 −1 0

0 −1

 . (B.0.3)

Now, the Pauli matrices,3 plus σ0, form a basis for SL (2,C), and we may always

expand any hermitian matrix P as

P = Pmσ
m =

 −P0 + P3 P1 − iP2

P1 + P2 −P0 − P3

 (B.0.4)

for Pm real. The matrix P transforms as

P ′ = MPM †. (B.0.5)

We may write this out in terms of Equation (B.0.4), giving

σmP ′m = MσmPmM
†. (B.0.6)

This shows that the index structure of σm is

σmαα̇. (B.0.7)

Lorentz scalars can be formed from

ψαψα, ψ̄
α̇ψ̄α̇, and ψασmαα̇∂mψ

α̇ (B.0.8)

We denote a four-component Dirac spinor as

ΨD =

 χα

ψ̄α̇

 , (B.0.9)

and a Majorana spinor as

ΨM =

 χα

χ̄α̇

 . (B.0.10)

3Or, equivalently, the generators of SU(2) times a half.
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We can transform between the two spinor components using the ε tensor thusly:

ψα = εαβψβ, ψα = εαβψ
β, (B.0.11)

where ε21 = ε12 = 1, ε12 = ε21 = −1, ε11 = ε22 = 0, and εαβε
βγ = δγα. In general, the

two component spinors ψ and χ commute. Using the spinor summation convention:

ψχ ≡ ψαχα = −ψαχα = χαψα = χψ, (B.0.12)

with a similar expression for the complex conjugates of the ψ, χ fields.



APPENDIX C

Higgsing SU(5) and S̃U(5)

In this appendix, we will demonstrate how the higgs mechanism works when

breaking SU(5) or S̃U(5) down to the SM. Because we will need the covariant deriva-

tive for calculating the higgsing of S̃U(5),1 we list it here for the 10 [131].

DµΦ = ∂µΦ− ig

{
Aaµ

λa
2

Φ + ΦAaµ
λTa
2

}
− ig̃Ỹ B̃µΦ. (C.0.1)

The λa’s are the 24 generators of SU(5), and the Aaµ’s are the corresponding gauge

bosons. The extra U(1)Ỹ ’s gauge boson is denoted by B̃µ.

C.1 Higgsing SU(5)

In order to see how SU(5) is broken to the SM, we will look at the gauge kinetic

term for our scalar field, Σ:

L =

(
∂µσc −

ig

2
AaµλaΣc

)†(
∂µσc −

ig

2
AµaλaΣc

)
. (C.1.1)

The Aaµ’s are the (24) gauge bosons of SU(5), while the λa’s are the generators of

the group. One can multiply the matrices out directly, using the form of Σ given in

Equation (2.4.2). The matrix Aaµλa ≡ Ãµ is given by:

Ãµ =
1√
2



X
1

µ Y
1

µ

gluons X
2

µ Y
2

µ

X
3

µ Y
3

µ

X1
µ X2

µ X3
µ

W 3
µ√
2

+ 3Bµ√
30

W+
µ

Y 1
µ Y 2

µ Y 3
µ −W−

µ
W 3

µ√
2

+ 3Bµ√
30


. (C.1.2)

The cross terms cancel, and the gauge boson masses are given by:

Lmass =
g2v2

4

(
ÃµΣ

)† (
ÃµΣ

)
(C.1.3)

1It is quite difficult to find the proper form of this in the literature, so we have also listed it
here for posterity’s sake!
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The matrix multiplication is straightforward, and one finds

Lmass =
25

9
v2g2

3∑
i=1

(
X i
µX

i µ
+ Y i

µY
i µ
)
. (C.1.4)

There is a slightly more elegant way to arrive at this relationship, utilizing

some of the properties of the SU(5) algebra. First, we will note that the adjoint

representation of SU(N) obeys

λaΣb = fabcΣc,

[λa, λb] = fabcλc (C.1.5)

where the fabc are called the structure constants of the algebra. The generators obey

1

2
Tr {λaλb} =

1

2
Tr
{
λ†aλb

}
= δab. (C.1.6)

Now, we note that Equation (C.1.1) can be written as

L =
1

2
Tr
{
λ†cλk

}(
∂µσc −

ig

2
AaµλaΣc

)†(
∂µσk −

ig

2
Aµi λiΣk

)
. (C.1.7)

Using Equation (C.1.5), we may write this as

L =
1

2
Tr
{
λ†cλk

}(
∂µΣc +

ig

2
AaµΣbfabc

)†(
∂µΣk +

ig

2
Aµi Σjfijk

)
,

=
1

2
Tr

{
λ†c

(
∂µΣc +

ig

2
AaµΣbfabc

)†(
∂µΣk +

ig

2
Aµi Σjfijk

)
λk

}
. (C.1.8)

Using the definition of the algebra, Equation (C.1.5), we can write this as

L =
1

2
Tr

{(
∂µλcΣc +

ig

2
AaµΣbfabcλc

)†(
∂µλkΣk +

ig

2
Aµi Σjfijkλk

)}
. (C.1.9)

Again, using the SU(5) algebra, we can write

L =
1

2
Tr

{(
∂µλcΣc +

ig

2
[Aaµλa,Σbλb]

)†
×
(
∂µλkΣk +

ig

2

[
Aµj λj,Σkλk

])}
. (C.1.10)
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The mass term is now written as

Lmass =
g2

4
Tr

{[
Ãµ, Σ̃

]† [
Ãµ, Σ̃

]}
. (C.1.11)

Now, we will insert the form of the vev for Σ, and Equation (C.1.11) can be written

as (repeated indices are summed):

Lmass = |Aµik|
2 (Σk − Σi)

2 , (C.1.12)

where Σ = diag (Σ1, ...,Σ5). If we look at the form of the vev for Σ, we find that

(Σk − Σi)
2 = 25

9
or 0, and we find...

Lmass =
25

9
g2v2

3∑
i=1

(
X i
µX

i µ
+ Y i

µY
i µ
)
. (C.1.13)

C.2 Higgsing S̃U(5)

The higgsing of S̃U(5) is achieved in a similar manner as in the previous case.

The covariant derivative for the 10 is given by

DµΦ = ∂µΦ− ig

{
Aaµ

λa
2

Φ + ΦAaµ
λTa
2

}
− ig̃Ỹ B̃µΦ. (C.2.1)

Note that the actual gauge group of S̃U(5) is SU(5)×U(1). As in the previous case,

the terms which contribute to Lmass come from

Lmass =
g2

4

{
AaµλaΦ + ΦAaµλ

T
a

}† {
AµaλaΦ + ΦAµaλ

T
a

}
+ g̃2Ỹ 2B̃µB̃

µ |Φ|2 . (C.2.2)

We have to do a little work to find the correct form of Aµaλ
T
a , but looking at the form

of the generators of SU(5),2 , the gauge boson matrix, Equation (C.1.2) changes in a

simple way:

Aµaλ
T
a =

1√
2



X
1

µ Y
1

µ

gluons X
2

µ Y
2

µ

X
3

µ Y
3

µ

X1
µ X2

µ X3
µ

W 3
µ√
2

+ 3Bµ√
30

W−
µ

Y 1
µ Y 2

µ Y 3
µ −W+

µ
W 3

µ√
2

+ 3Bµ√
30


. (C.2.3)

2See, for example [14].
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One now finds that Equation (C.2.2) gives

Lmass ⊃ 1

6
v2g2

5

{
3

2
B2 + 6

3∑
i=1

(
X i
µX

i µ
+ Y i

µY
i µ
)}

+ g̃2v2B̃2. (C.2.4)



APPENDIX D

Broken Mirror Models: Gauge Groups and States

Table D.1. Broken Mirror Model 1 Gauge Group

Observable ψ̄1 ψ̄2 ψ̄3 ψ̄3 ψ̄5

SU(4)C 0 1 -1 0 0
1 0 -1 0 0
0 1 1 0 0

SU(2)L 0 0 0 1 -1

Shadow η̄1 η̄2 η̄3 ȳ1,3 ȳ2,4 ȳ5w̄1 ȳ6ω̄2 ω̄3,5 ω̄4,6 ψ̄′
4

ψ̄′
5

η̄′
1

η̄′
2

η̄′
3

SU(2)3 1
2

-1
2

0 0 1
2

0 -1
2

-1
2

1
2

0 0 -1
2

1
2

0
1
2

0 -1
2

1
2

0 -1
2

1
2

0 -1
2

0 0 -1
2

0 1
2

0 1
2

-1
2

-1
2

1
2

1
2

0 -1
2

0 0 0 0 -1
2

1
2

SU(5) 0 0 0 0 0 0 0 0 0 1 1 0 0 0
1
2

-1
2

0 0 -1
2

0 1
2

-1
2

1
2

0 0 1
2

-1
2

0
0 1

2
1
2

0 0 0 -1
2

0 -1
2

1
2

1
2

0 1
2

1
2

0 1
2

-1
2

-1
2

1
2

-1
2

0 1
2

0 0 0 0 1
2

-1
2

Hidden ψ̄1 ψ̄2 ψ̄3 ψ̄3 ψ̄5 ψ̄′
1

ψ̄′
2

ψ̄′
3

ψ̄′
3

ψ̄′
5

SO(10) 0 0 0 0 0 0 0 0 1 -1
0 0 0 1

2
1
2

0 0 -1 1
2

-1
2

0 0 0 0 0 0 1 -1 0 0
0 0 0 0 0 1 -1 0 0 0
0 0 0 0 0 1 1 0 0 0
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Table D.2. Broken Mirror Model 1 States

(4C , 2L)O (23, 5)S 10H 4Q1 4Q2 4Q3 4Q4 4Q5 4Q6

Singlets

S1 (1,1) (1,1,1,1) (1) 0 -12 -4 -36 128 80
S̄1 (1,1) (1,1,1,1) (1) 0 12 4 36 -128 -80
S2 (1,1) (1,1,1,1) (1) -4 4 4 -4 176 0
S̄2 (1,1) (1,1,1,1) (1) 4 -4 -4 4 -176 0
S3 (1,1) (1,1,1,1) (1) -4 16 8 32 48 -80
S̄3 (1,1) (1,1,1,1) (1) 4 -16 -8 -32 -48 80

Observable

QLn=1,2
1 (4,2) (1,1,1,1) (1) 0 -6 -6 6 -40 -80

QLn=1,2
2 (4,2) (1,1,1,1) (1) 0 0 -4 -56 0 0

QLn=1,2
3 (4,2) (1,1,1,1) (1) -6 0 0 0 0 0

qln=1,2
1 (-4,1) (2,1,1,1) (1) -2 -4 12 -12 24 -40

qln=1,2
2 (-4,1) (1,2,1,1) (1) 0 -12 8 -28 0 0

qln=1,2
3 (-4,1) (1,1,2,1) (1) 0 -6 10 -10 -64 -40

hn=1,2
1,a (1,2) (1,1,1,1) (1) 0 -6 -10 -50 -40 -80
hn=1,2

2,a (1,2) (1,1,1,1) (1) -6 -6 -6 6 -40 -80
hn=1,2

3,a (1,2) (1,1,1,1) (1) -6 0 -4 -56 0 0

Hn=1,2
1 (1,2) (1,1,1,5) (1) 2 -8 4 16 80 -16

Hn=1,2
2 (1,2) (1,1,1,5) (1) 2 10 10 -10 -8 -16

Hn=1,2
3 (1,2) (1,1,1,5) (1) 0 -6 6 14 -56 64
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Table D.3. Broken Mirror Model 1 States Continued

(4C , 2L)O (23, 5)S 10H 4Q1 4Q2 4Q3 4Q4 4Q5 4Q6

Shadow

F1 (1,1) (1,1,1,5) (1) 0 -12 -4 -36 -96 -16
F2 (1,1) (1,1,1,5) (1) -4 -8 0 -40 80 -16
F3 (1,1) (1,1,1,5) (1) -4 4 4 -4 -48 -96

Xn=1,2
1 (1,1) (2,1,1,1) (1) -2 -4 16 44 24 -40

Xn=1,2
2 (1,1) (2,1,1,1) (1) -2 2 18 -18 64 40

Xn=1,2
3 (1,1) (2,1,1,1) (1) -2 2 -14 14 112 -40

Xn=1,2
4 (1,1) (2,1,1,1) (1) -2 20 -8 -12 24 -40

Y n=1,2
1 (1,1) (1,2,1,1) (1) 0 -6 -18 -2 88 0
Y n=1,2

2 (1,1) (1,2,1,1) (1) 6 -12 8 -28 0 0
Y n=1,2

3 (1,1) (1,2,1,1) (1) 0 -6 14 -34 40 80
Y n=1,2

4 (1,1) (1,2,1,1) (1) -2 -4 -16 -4 -48 80

Zn=1,2
1 (1,1) (1,1,2,1) (1) -2 2 -14 14 -112 40

Zn=1,2
2 (1,1) (1,1,2,1) (1) 0 -6 14 46 -64 -40

Zn=1,2
3 (1,1) (1,1,2,1) (1) 0 18 -10 -10 -64 -40

Zn=1,2
4 (1,1) (1,1,2,1) (1) 6 -6 10 -10 -64 -40

U1 (1,1) (2,2,1,1) (1) -4 -8 0 40 -24 40
Ū1 (1,1) (2,2,1,1) (1) 4 8 0 -40 24 -40
U2 (1,1) (2,1,2,1) (1) -4 4 4 -4 -48 80
Ū2 (1,1) (2,1,2,1) (1) 4 -4 -4 4 48 -80
U3 (1,1) (1,2,2,1) (1) 0 -12 -4 44 24 -40
Ū3 (1,1) (1,2,2,1) (1) 0 12 4 -44 -24 40

Hidden

Tn=1,2
1 (1,1) (1,1,1,1) (16) -2 -16 0 0 0 0
Tn=1,2

2 (1,1) (1,1,1,1) (16) -2 2 6 -26 -88 0
Tn=1,2

3 (1,1) (1,1,1,1) (16) 0 0 4 -24 -24 0
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Table D.4. Broken Mirror Model 2 Gauge Group

Observable ψ̄1 ψ̄2 ψ̄3 ψ̄3 ψ̄5

SU(4)C 0 1 -1 0 0
1 0 -1 0 0
0 1 1 0 0

SU(2)R 0 0 0 1 1

Shadow η̄1 η̄2 η̄3 ȳ1,3 ȳ2,4 ȳ5w̄1 ȳ6ω̄2 ω̄3,5 ω̄4,6 η̄′
1

η̄′
2

η̄′
3

SU(2)3 1
2

−1
2

0 0 1
2

0 −1
2

−1
2

1
2

−1
2

1
2

0
1
2

0 −1
2

1
2

0 −1
2

1
2

0 −1
2

−1
2

0 1
2

0 1
2

−1
2

−1
2

1
2

1
2

0 −1
2

0 0 −1
2

1
2

SU(3) 1
2

−1
2

0 0 −1
2

0 1
2

−1
2

1
2

1
2

−1
2

0
1
2

0 −1
2

−1
2

0 −1
2

1
2

0 1
2

1
2

0 −1
2

Hidden ψ̄1 ψ̄2 ψ̄3 ψ̄3 ψ̄5 ψ̄′
1

ψ̄′
2

ψ̄′
3

ψ̄′
3

ψ̄′
5

SO(10) 0 0 0 0 0 0 0 0 1 1
0 0 0 1

2
−1

2
0 0 -1 1

2
1
2

0 0 0 0 0 0 1 -1 0 0
0 0 0 0 0 1 -1 0 0 0
0 0 0 0 0 1 1 0 0 0

SU(2)L 0 0 0 0 0 0 0 0 1 -1
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Table D.5. Broken Mirror Model 2 States

(4C , 2R)O (23, 3)S (10, 2R)H 4Q1 4Q2 4Q3 4Q4 4Q5 4Q6 4Q7

Singlets

Sn=1,2
1 (1,1) (1,1,1,1) (1,1) 12 0 -4 -8 16 0 0
Sn=1,2

2 (1,1) (1,1,1,1) (1,1) 12 0 -4 8 -16 0 0
Sn=1,2

3 (1,1) (1,1,1,1) (1,1) 12 0 0 -6 0 4 24
Sn=1,2

4 (1,1) (1,1,1,1) (1,1) 12 0 0 6 0 4 24
Sn=1,2

5 (1,1) (1,1,1,1) (1,1) 12 0 0 2 -16 4 -24
Sn=1,2

6 (1,1) (1,1,1,1) (1,1) 12 0 0 -2 16 4 -24
S7 (1,1) (1,1,1,1) (1,1) 0 0 0 8 32 0 0
S̄7 (1,1) (1,1,1,1) (1,1) 0 0 0 -8 -32 0 0
S8 (1,1) (1,1,1,1) (1,1) 0 0 8 4 16 8 0
S̄8 (1,1) (1,1,1,1) (1,1) 0 0 -8 -4 -16 -8 0
S9 (1,1) (1,1,1,1) (1,1) 0 0 8 -4 -16 8 0
S̄9 (1,1) (1,1,1,1) (1,1) 0 0 -8 4 16 -8 0

Observable

QLn=1,2
1 (4,2) (1,1,1,1) (1,1) -6 -2 -2 2 -16 0 -8

QLn=1,2
2 (4,2) (1,1,1,1) (1,1) -6 -2 -2 -2 16 0 -8

QLn=1,2
3 (4,2) (1,1,1,1) (1,1) -6 -2 2 0 0 4 16

qln=1,2
1 (-4,1) (2,1,1,1) (1,1) 6 -6 -2 0 0 -4 0

qln=1,2
2 (-4,1) (1,2,1,1) (1,1) 6 -6 2 -2 -8 0 0

qln=1,2
3 (-4,1) (1,1,2,1) (1,1) 6 -6 2 2 8 0 0

h1 (1,2) (2,1,1,1) (1,1) 0 -8 0 0 0 0 16
h̄1 (1,2) (2,1,1,1) (1,1) 0 8 0 0 0 0 -16
h2 (1,2) (1,2,1,1) (1,1) 0 -8 0 -4 8 0 -8
h̄2 (1,2) (1,2,1,1) (1,1) 0 8 0 4 -8 0 8
h3 (1,2) (1,1,2,1) (1,1) 0 -8 0 4 -8 0 -8
h̄3 (1,2) (1,1,2,1) (1,1) 0 8 0 -4 8 0 8

Hn=1,2
1 (1,2) (2,1,1,3) (1,1) 4 0 4 0 0 0 0

Hn=1,2
2 (1,2) (1,2,1,3) (1,1) 4 0 0 2 8 -4 0

Hn=1,2
3 (1,2) (1,1,2,3) (1,1) 4 0 0 -2 -8 -4 0

Bn=1,2
1 (6,1) (1,1,1,1) (1,1) 0 4 4 6 0 -4 -8

Bn=1,2
2 (6,1) (1,1,1,1) (1,1) 0 4 0 0 0 -8 16

Bn=1,2
3 (6,1) (1,1,1,1) (1,1) 0 4 4 -6 0 -4 -8
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Table D.6. Broken Mirror Model 2 States Continued

(4C , 2R)O (23, 3)S (10, 2R)H 4Q1 4Q2 4Q3 4Q4 4Q5 4Q6 4Q7

Shadow

Fn=1,2
1 (1,1) (1,1,1,3̄) (1,1) -4 -8 -4 0 0 0 16
Fn=1,2

2 (1,1) (1,1,1,3̄) (1,1) -4 -8 0 -6 0 4 -8
Fn=1,2

3 (1,1) (1,1,1,3̄) (1,1) -4 -8 0 6 0 4 -8
Fn=1,2

4 (1,1) (1,1,1,3̄) (1,1) -4 8 -4 0 0 0 -16
Fn=1,2

5 (1,1) (1,1,1,3̄) (1,1) -4 8 0 -2 16 4 8
Fn=1,2

6 (1,1) (1,1,1,3̄) (1,1) -4 8 0 2 -16 4 8

Fn=1,2
7 (1,1) (1,1,1,3) (1,1) -8 0 -8 0 0 0 0
F̄n=1,2

7 (1,1) (1,1,1,3̄) (1,1) 8 0 8 0 0 0 0
Fn=1,2

8 (1,1) (1,1,1,3) (1,1) -8 0 0 -4 -16 8 0
F̄n=1,2

8 (1,1) (1,1,1,3̄) (1,1) 8 0 0 4 16 -8 0
Fn=1,2

9 (1,1) (1,1,1,3) (1,1) -8 0 0 4 16 8 0
F̄n=1,2

9 (1,1) (1,1,1,3̄) (1,1) 8 0 0 -4 -16 -8 0

Xn=1,2
1 (1,1) (2,2,1,1) (1,1) -12 0 0 -2 -8 -4 0

X2 (1,1) (2,2,1,1) (1,1) 0 0 0 -4 8 0 -24
X3 (1,1) (2,2,1,1) (1,1) 0 0 0 4 -8 0 24

Y n=1,2
1 (1,1) (2,1,2,1) (1,1) -12 0 0 2 8 -4 0
Y2 (1,1) (2,1,2,1) (1,1) 0 0 0 4 -8 0 -24
Y3 (1,1) (2,1,2,1) (1,1) 0 0 0 -4 8 0 24

Zn=1,2
1 (1,1) (1,2,2,1) (1,1) -12 0 4 0 0 0 0

Z2 (1,1) (1,2,2,1) (1,1) 0 0 0 -8 16 0 0
Z3 (1,1) (1,2,2,1) (1,1) 0 0 0 8 -16 0 0

Hidden

Tn=1,2
1 (1,1) (1,1,1,1) (10,1) 0 -4 4 -2 16 -4 8
Tn=1,2

2 (1,1) (1,1,1,1) (10,1) 0 -4 4 2 -16 -4 8
Tn=1,2

3 (1,1) (1,1,1,1) (10,1) 0 -4 0 0 0 -8 -16

F̄n=1,2
1 (1,1) (1,1,1,3̄) (1,2) -4 -4 4 0 0 0 -16

F̄n=1,2
2 (1,1) (1,1,1,3̄) (1,2) -4 -4 0 -6 0 -4 8

F̄n=1,2
3 (1,1) (1,1,1,3̄) (1,2) -4 -4 0 6 0 -4 8

Dn=1,2
1 (1,1) (1,1,1,1) (1,2) 12 4 4 0 0 0 16

Dn=1,2
2 (1,1) (1,1,1,1) (1,2) 12 4 0 -2 16 -4 -8

Dn=1,2
3 (1,1) (1,1,1,1) (1,2) 12 4 0 2 -16 -4 -8
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