
ABSTRACT

Java Bytecode Compilation for

High-Performance, Platform-Independent Logical Inference

Ashish Arte

Mentor: David B. Sturgill, Ph.D.

Automated reasoning systems are powerful computer programs capable of solv-

ing complex problems. They are characterized as computationally intensive having

high performance requirements. Very few reasoning systems have been implemented

in Java so far; its performance is regarded as an impediment to its use as a pro-

gramming language for computationally intensive applications such as automated

reasoning. In this thesis we discuss techniques that motivate the use of Java as the

underlying platform to design a framework for high-performance logical inference.

The techniques are centered around the idea of using a specialized compiler that can

generate Java classes which contain Java bytecodes customized for performing rea-

soning efficiently. The benefit of generating bytecodes customized for logical inference

is reflected in the improved performance observed from the experiments conducted.

Copyright c© 2005 by Ashish Arte

All rights reserved

TABLE OF CONTENTS

LIST OF FIGURES vii

LIST OF TABLES x

ACKNOWLEDGMENTS xi

DEDICATION xii

1 Introduction 1

1.1 Inference in First-Order Logic . 2

1.1.1 Syntax and Semantics . 2

1.1.2 Using First-Order Logic . 4

1.1.3 Forward and Backward Chaining 6

1.1.4 Factors Affecting Performance Of Logical Deduction 9

1.2 Logical Reasoning Systems in Java 10

1.2.1 The Java Logic Interpreter . 11

1.2.2 The Logic-to-Java Compiler 12

1.2.3 The Logic-to-Bytecode Compiler 12

1.3 Document Overview . 13

2 Related Work 14

2.1 First-Order Reasoning and Resolution 14

2.1.1 Resolution Principle . 14

2.1.2 Unification . 15

2.1.3 Resolution-Refutation . 18

2.1.4 Resolution Strategies . 21

2.1.5 Model Elimination . 23

2.1.6 Logic Programming Paradigm 26

2.1.7 Warren Abstract Machine . 28

iii

2.2 First-Order Logic Theorem Provers 30

2.2.1 Prolog Technology Theorem Provers 30

2.2.2 Theorem Provers in Java . 32

3 Logical Inference In Java 35

3.1 System Architecture . 35

3.1.1 Java Representation of Logic Formulae 35

3.1.2 Generic Unification . 38

3.1.3 Efficient ME Extension . 40

3.1.4 Efficient ME Reduction . 44

3.1.5 Search Mechanism . 45

3.1.6 System Components . 47

3.2 Java Logic Interpreter . 48

3.2.1 Preprocessor . 48

3.2.2 Inference Engine . 50

3.3 Execution as Logical Inference . 52

3.3.1 Mechanism for ME Extension 52

3.3.2 Compiling Rule Instances . 55

3.3.3 Logic-to-Java Compiler Architecture 65

3.4 Refinements . 67

3.4.1 Identical-Ancestor Pruning Rule 67

3.4.2 Rule Indexing . 69

3.4.3 Rule Caching . 70

4 The Java Inference Engine 72

4.1 Compiling for Java Virtual Machine 72

4.1.1 Java Virtual Machine Architecture 72

4.1.2 Java Class File Format . 77

iv

4.1.3 JVM Instruction Set . 79

4.2 Logic-to-Bytecode Compiler . 83

4.2.1 Compiling Java Classes . 84

4.2.2 System Components . 96

4.3 Refining Compiled Logic . 96

4.3.1 Bytecode Refinements . 97

4.3.2 Dereference Loop Refinements 101

4.3.3 Stack-Based Term Decomposition 105

5 Evaluation 116

5.1 Test Problem Suite . 116

5.1.1 Class 1: Long-Skinny Proof Trees 117

5.1.2 Class 2: Fat-Bushy Proof Trees 118

5.1.3 Class 3: Long Variable Bindings 119

5.1.4 Class 4: Complex Terms . 120

5.1.5 Class 5: Propositional Logic 122

5.1.6 Test Environment . 123

5.2 Configuring the Logic-to-Bytecode Compiler System 124

5.2.1 Rule Caching . 124

5.2.2 Bytecode Refinements . 126

5.2.3 Dereference Loop Refinements 130

5.2.4 Stack-based Term Decomposition 130

5.2.5 Efficient Logic-to-Bytecode Compiler Configuration 132

5.3 Interpreted versus Compiled Execution 134

5.4 Standard versus Specialized Compiler 136

5.5 Experiment With TPTP Problem Suite 138

v

6 Conclusion 141

6.1 Future Work . 143

BIBLIOGRAPHY 146

vi

LIST OF FIGURES

1.1 Logical Connectives . 3

1.2 Derivation Techniques Illustration Axioms 4

1.3 Forward-Chaining Technique Proof Tree 5

1.4 Backward-Chaining Technique Proof Steps 8

1.5 Backward-Chaining Proof Tree . 9

2.1 Example Terms Illustrating Unification 15

2.2 Blocks World Domain Example . 19

2.3 Axioms Representing Blocks World 20

2.4 Proof Tree Illustrating Resolution-Refutation 21

2.5 Use Of Resolution-Refutation To Answer Questions 22

2.6 Model Elimination Proof Sample Clauses 25

2.7 Proof Tree Illustrating Model Elimination 26

3.1 Java Class Representation of First-Order Logic Constructs 36

3.2 Pseudocode of Occurs Check Algorithm 39

3.3 ME Extension Modeled As Tree Expansion 41

3.4 ME Reduction Modeled As Tree Operation 42

3.5 ME Reduction Pseudocode . 45

3.6 The Java Logic Interpreter System Components 48

3.7 Clause Set To Illustrate The Java Logic Interpreter Proof Process . . 49

3.8 First Two Proof Steps Of Java Logic Interpreter 50

3.9 Last Two Proof Steps Of Java Logic Interpreter 51

3.10 Procedures Generating Java Code To Build Rules 55

3.11 Java Code Generated To Build A Rule 57

3.12 Procedures Generating Rule’s Inference Instructions 59

vii

3.13 Inference Instructions Generated As Java Code 64

3.14 The Logic-to-Java Compiler System Components 65

3.15 Contrapositives Of A Clause Set . 66

3.16 Clause Set To Illustrate Identical-Ancestor Pruning Rule 67

3.17 Proof Illustrating Identical-Ancestor Pruning Rule 68

4.1 Internal Architecture Of the Java Virtual Machine 73

4.2 JVM Local Variables Section . 75

4.3 JVM Operand Stack Usage . 76

4.4 Java Class File Format . 77

4.5 Method’s Bytecode Stream . 81

4.6 Inference Instructions Generated As Java Bytecodes 96

4.7 The Logic-to-Bytecode Compiler System Components 97

4.8 Efficient Variable Allocation Refinement 98

4.9 Store and Fetch Refinement . 99

4.10 Duplicate Load Elimination Refinement 100

4.11 Mnemonics Of A While Loop . 102

4.12 Techniques To Implement Dereference Loop 103

4.13 Tree representation of a term . 105

4.14 Unification modeled as concurrent tree traversal 106

4.15 Stack-Based Term Decomposition - A 111

4.16 Stack-Based Term Decomposition - B 112

4.17 Stack-Based Term Decomposition - B 114

5.1 The Class 1 Clause Set And Goals . 116

5.2 Proof Illustrating Class 1 Long-Skinny Tree 117

5.3 The Class 2 Clause Set And Goals . 118

5.4 Proof Illustrating Class 2 Short-Bushy Trees 119

viii

5.5 The Class 3 Clause Set And Goals . 120

5.6 Proof Illustrating Class 3 Long Chains Of Variable Bindings 121

5.7 Term Illustrating Class 4 Problems 122

5.8 The Class 4 Clause Set And Goals . 123

5.9 Plot To Evaluate Rule Caching . 126

5.10 Plot To Evaluate Bytecode Refinements 128

5.11 Plot To Evaluate Stack-Based Term Decomposition 132

5.12 Plot Of Java Logic Interpreter v/s Logic-to-Java Compiler System . . 136

5.13 Plot Of Logic-to-Java Compiler v/s Logic-to-Bytecode Compiler . . . 138

5.14 Plot For TPTP Problem Library . 139

ix

LIST OF TABLES

5.1 Test Results For Rule Caching . 125

5.2 Test Results For Bytecode Refinements 127

5.3 Test Results For All Dereference Loop Implementations 129

5.4 Test Results For Stack-Based Term Decomposition 131

5.5 Test Results For Efficient Logic-to-Bytecode Compiler Configuration 133

5.6 Test Results For Java Logic Interpreter and Logic-to-Java Compiler . 135

5.7 Test Results For Standard Compiled And Custom Compiled 137

x

ACKNOWLEDGMENTS

I gratefully acknowledge my advisor, Dr. David Sturgill, whose expertise in this

field helped me improve my technical knowledge as well as my writing abilities. He

took a lot of trouble to read my thesis over and over again, improving it each time. I

really appreciate his patience, which enabled me to put my research in writing. This

thesis would not have been possible without his inspiration.

I extend a special thanks to my committee members Dr. Hamerly, Dr. Marks,

for taking time to read my thesis at such short notice. I would also like to thank all

the faculty and the ever-helpful staff of the computer science department for providing

us an excellent environment to study computer science. I take this opportunity to

thank my colleagues at Open Sky Software, Jean, Steve, Paul and Henry, for their

encouragement and support and allowing me to make those countless trips to Baylor

during office hours.

Finally, thank you to Laxmi, who now has a special place in my life, whose

motivation has helped me complete this thesis.

xi

To my parents, who have always been the source of inspiration and support. I can

never thank you enough for your sacrifice and love.

xii

CHAPTER ONE

Introduction

Logic is concerned with the principles of reasoning and valid inference. Au-

tomated reasoning deals with the mechanization of formal reasoning using logical

principles and notations. Automated reasoning systems are powerful computer pro-

grams capable of solving complex problems. They solve problems irrespective of

the problem domain, thus allowing people from various fields to take advantage of

general-purpose automated reasoning systems (Bundy 1999). For example, hardware

engineers use automated reasoning systems to validate circuit designs, compiler de-

signers use automated reasoning principles to perform runtime validation of programs,

and mathematicians use them to solve complex problems from mathematical domains

(van Caneghem and Warren 1986).

In spite of their power, very few application domains extensively use general-

purpose automated reasoning systems. One reason for this is that automated rea-

soning systems are not intuitive and do not learn easily from past problem solving

experience. Another important factor that inhibits the widespread use of automated

reasoning systems is the high degree of computation overhead involved in automated

deduction (David A. Plaisted 2000). Two common approaches to compensate for this

overhead are to design systems that execute faster and to introduce parallelization in

the system. The design of our reasoning system provides a suitable platform for em-

ploying both these approaches for automated reasoning. Its architecture-independent

Java-based implementation provides support for parallel processing in heterogeneous

environments. Its execution speed is improved by exploiting the similarities between

the operational principles of a powerful reasoning strategy and those of Java’s runtime

environment. A specialized compiler is designed that exploits the similarities by gen-

erating Java bytecodes customized for the logical reasoning domain. Java programs

1

2

typically incur more overhead than native-compiled languages like C++. Refinements

introduced for the custom generated bytecodes expedite the inference operations em-

ployed by the reasoning system, to compensate for some of Java’s runtime overhead.

1.1 Inference in First-Order Logic

Our reasoning system performs logical reasoning on problems defined in first-

order logic. The two issues faced when selecting a language are expressiveness and

complexity of reasoning. Languages that are very expressive are accompanied by

very complex inference procedures, while languages that allow efficient inference are

not very expressive. First-order logic balances these two issues relatively well. This

section presents an informal introduction to first-order logic with the help of an ex-

ample that uses family relationships as its domain. For a more formal definition of

first-order logic refer to the collection of papers in (Cartwright and McCarthy 1979).

1.1.1 Syntax and Semantics

The domain of family relationships includes facts such as “Homer is the father of

Lisa” and “Marge is the wife of Homer.” Clearly, the objects in our domain are people.

In first-order logic such objects are represented by constant symbols. We employ the

convention of starting constant symbols with a lower-case letter. For example, homer ,

marge, and lisa can be used to represent the family members Homer, Marge, and Lisa

respectively. First-order logic uses function symbols to describe the relation between

different domain objects. Each function symbol refers to a many-to-one mapping

between objects in the domain. For example, function symbol father(lisa), could be

used to represent “Father of Lisa.” Variables in first-order logic stand for arbitrary

constants and allow us to make general statements about the domain. For instance,

father(X) can be used to generalize father(lisa) to represent father of any object X.

Terms in first-order logic are expressions composed of constant symbols, variables,

3

Not ¬
And ∧
Or ∨
Is Implied By ←
Implies →
For All ∀
There Exists ∃

Figure 1.1. Logical Connectives

function symbols, and terms themselves. For example, t and f(t1, ..., tn) are terms

where each ti is a term.

Another basic element of first-order language is the predicate. Predicates cap-

ture relationships between domain objects. Just like function symbols, predicates

can take arguments. Predicates combine terms into statements called literals. For

example, the literal loves(marge, lisa) can be used to say Marge loves Lisa. A more

general statement: loves(mother(X), X) can be used to say every mother loves her

child. In both these examples, loves is a predicate symbol.

A logic formula is either a literal, negated literal, or two literals joined by one

of the logical connectives And, Or, or Is Implied By. Figure 1.1 summarizes the

symbols used for the logical connectives in place of their English variants. Logical

formulae allow us to make statements about the relation between the truths of various

literals. For example, the formula: elder(X, Y) ∨ elder(Y, X) ∨ same age(X, Y) can

be used to say that either X is elder than Y , Y is elder than X, or X and Y are of the

same age. Here elder(X, Y) is called the subformula of elder(X, Y) ∨ elder(Y, X) ∨

same age(X, Y)

Variables in first-order logic have a special characteristic that they are either

free or bound . A variable is a free variable if the truth-value of the formula in which

it is used depends upon the value of the variable. Conversely, if the truth-value of

a formula does not depend upon the values taken by a variable, then it is a bound

4

A1. ∀X man(X)→ likes(X, donuts) - All men like donuts.
A2. ∀X, ∀Y likes(X, Y) ∧ man(X)→ eats(X, Y) - All men eat everything they like.
A3. ∀X, ∀Y, ∀Z is off (tv) ∧ at home(X) ∧

plays(Y, Z)→ listens(X, Z)
- If X is at home, and Y plays Z
and the tv is off, then X listens to
Z.

A4. ∀X, ∀Y, ∀Z listens(X, Y) ∧ eats(X, Z) →
happy(X)

- X is happy if X listens to Y and
X eats Z.

A5. man(homer) - Homer is a man.
A6. at home(homer) - Homer is at home.
A7. plays(lisa, saxophone) - Lisa plays saxophone.
A8. is off (tv) - TV is off.

Figure 1.2: Facts from a domain, used to demonstrate the logical deduction procedure in
first-order logic, represented as axioms. First-order logic representation of each axiom along
with the description of the fact it represents.

variable. For example, in: ∀X p(X)→ r(X, Y) X is a bound variable and Y is free.

A logical formula is said to be true if the relation referred to by the predicate

symbol holds between the objects referred to by its arguments. A formula connected

by And is a conjunction. This formula is true if each of its subformulas are true,

otherwise it is false. A formula connected by Or is a disjunction. The formula is true

if any one of its subformulas are true, and false otherwise. A formula prefixed by Not

is true if and only if the formula is false. A formula connected by Is Implied By

is called an implication. Implications are also known as rules or if-then statements.

For example, R← (P ∨Q) is an implication, where P ∨Q is its premise and R is its

conclusion. It means that if either P , Q, or both are true then R is true.

A formula under the scope of the universal quantifier ∀ is true if its subformulae

are true for all assignments of the variable to entities in the domain. A formula under

the scope of the existential quantifier ∃ is true if its subformulae are true for at least

one assignment of the variable to an entity in the domain.

1.1.2 Using First-Order Logic

Using the terminology just introduced, Example 1.1 illustrates how to logically

derive a new formula from a set of logical formulae called axioms. Axioms capture the

5

plays(lisa,saxophone)

man(homer)

happy(homer)

listens(homer, saxophone)

likes(homer,donuts)

is_off(tv)

at_home(homer)

eats(homer, donuts)

[X/homer Y/lisa Z/saxophone]

[X / homer]

[X/homer Y/donuts]

[X/homer Y/saxophone Z/donuts]

man(homer)

man (X) ∧ likes(X,Y) → eats(X,Y)

listens(X,Y) ∧ eats(X, Z) → happy(X)

man(X) → likes(X,donuts)

is off(tv) ∧ at home(X) ∧ plays(Y,Z) → listens(X,Z)

Figure 1.3: A forward-chaining proof tree to show happy(homer) is true. At each inference
step, the axiom appearing in an oval is a fact and the axiom in the box is the derived
conclusion. Variables replaced and the values they replace are shown enclosed in brackets.

basic facts about a domain and define other concepts in terms of the basic facts. For

example, in Figure 1.2 the first axiom can be used to represent the sentence all men

like donuts and the second axiom to represent the sentence all men eat everything

they like. This collection of axioms that describe the problem domain is called the

theory .

Example 1.1: Consider the set of axioms of Figure 1.2 as true statements

about the domain. Our goal is to logically derive that the formula happy(homer)

is true. The proof involves just four steps. In the first step, we use the axiom

A1 and replace variable X with the constant symbol homer to generate the for-

mula man(homer) → likes(homer , donuts). Here we derive a specialized instance

of a general formula by replacing one of its variables with a value. Since it is

known from axiom A5 that man(homer) is true, we can logically deduce that the

formula likes(homer , donuts) is true. In the second step, we replace variables X

6

and Y of axiom A2 with values homer and donuts respectively to generate the for-

mula likes(homer , donuts)∧man(homer)→ eats(homer , donuts). Using the formula,

likes(homer , donuts) ,derived in step 1 and the truth of axiom A5, we logically de-

duce that eats(homer , donuts) is true. In the third step, we replace variable X with

homer , Y with lisa, and Z with saxophone in axiom A3 to generate the formula

at home(homer) ∧ plays(lisa, saxophone) ∧ is off (tv) → listens(homer , saxophone).

We then use the truth of axioms A6, A7, and A8 to logically derive that

listens(homer , saxophone) is true. In the fourth and final step, we replace variables

X with homer , Y with saxophone, and Z with donuts in axiom A4 to generate the

formula listens(homer , saxophone)∧eats(homer , donuts)→ happy(homer). Since we

know that listens(homer , saxophone) and eats(homer , donuts) are true, we can logi-

cally conclude that happy(homer), which is our goal, is also true. In this manner, we

logically derive a new fact by replacing variables in the general axioms of the theory

with specific values. Figure 1.3 shows the proof in a tree-shaped form.

A set of axioms logically implies a goal if, in every interpretation which assigns

each of the axioms true, the goal is also assigned true. Logical implication is semi-

decidable in first-order predicate logic. This means that if a goal follows from a set of

axioms, there is an automated procedure which can determine that fact. In addition,

any such procedure will not terminate for some combination of goal and axioms.

A first order proof procedure is complete if, for a set of axioms and a goal it

eventually returns true when the axioms logically imply the goal. A first order proof

procedure is sound if it never returns true for goals which are not logical implications

of the axioms.

1.1.3 Forward and Backward Chaining

The proof procedure of Example 1.1 proceeds from the basic axioms towards the

desired goal, deriving new formulae along the way. This technique is called forward-

7

chaining and is usually used when deriving conclusions based on new facts added to

the theory. Forward-chaining is appropriate in situations where each new formula

generated by the axioms of the theory contributes towards proving the goal. How-

ever, in practice it has certain limitations: First, forward-chaining uses an inference

mechanism which may generate new formulae at each stage of the proof. This data-

driven strategy is not directed towards solving any particular problem and makes

forward-chaining unsuitable when there is a goal to prove. Second, it may be difficult

to predict which of the new formulae or combination of formulae will lead towards

proving the goal. An alternative approach is to start with the goal and attempt to

find evidence to prove the goal. This strategy is called backward-chaining . Given

a goal to prove, the backward-chaining strategy will first check to see if the goal

matches the existing axioms in the theory. If it does, then that goal is proved. If it

doesn’t, then it will look for axioms whose conclusions match the goal. Choosing one

such axiom, it attempts to prove any facts in the preconditions of the axiom using

backward-chaining by setting these facts as new goals to prove.

Example 1.2: Figure 1.4 shows the steps for deriving happy(homer) is true, from

the axioms of Figure 1.2, using backward-chaining. The tree should be read depth-

first and left to right. The derivation begins by looking in the set of axioms for an

axiom which matches exactly with the goal happy(homer). The set does not contain

such an axiom. Replacing variable X by homer in axiom A4, could help us prove the

goal. However, to prove happy(homer) by replacing X by homer , we have to prove

that eats(homer , Y) and listens(homer , Z) are true. Thus, in order to prove the goal,

we now have to prove two new goals or more precisely two new subgoals. Figure 1.4(a)

shows the derivation step that generates these subgoals. We continue the derivation

with the subgoal eats(homer , Y). Again, the input set does not contain a direct match

for this subgoal. However, we can use axiom A2 to prove it if we replace X by homer .

As seen in Figure 1.4(b), this substitution generates two more subgoals man(homer)

8

man(homer)

man(homer)

plays(lisa,saxophone)

X/homer

happy(homer)

X/homer

X/homer

likes(homer,Y)

Y/donuts

eats(homer, Z)

listens(homer, Y)

Y/lisa, Z/saxophoneX/homer

is_off(tv) at_home(homer)

Figure 1.4 (A)

Figure 1.4 (B)

Figure 1.4 (C)

eats(homer, Z) listens(homer, Y)
man (X) ∧ likes(X,Y) → eats(X,Y)

man (X) ∧ likes(X,Y) → eats(X,Y)

is off(tv) ∧ at home(X) ∧ plays(Y,Z) → listens(X,Z)

is off(tv) ∧ at home(X) ∧ plays(Y,Z) → listens(X,Z)

man(X) → likes(X,donuts)

listens(X,Y) ∧ eats(X, Z) → happy(X)

Figure 1.4: Each derivation step performed during a backward-chaining proof represented
as a tree. The root of each tree is a conclusion to be derived. The nodes are the premises
that derive the goal. The substitution associated with each node is written below the goal.

and likes(homer , Y). Axiom A5 of the theory confirms that man(homer) is true and

so we proceed to the subgoal likes(homer , Y). To prove this subgoal, we use axiom

A1 and replace variable X by homer and Y by donuts. This substitution generates

another subgoal man(homer). But man(homer) is one of the given axioms of the

theory, axiom A5. Therefore, likes(homer , donuts) is true. Since, man(homer) and

likes(homer , donuts) are true, logically implies that eats(homer ,Y) is true when Y

is donuts. We then proceed to the subgoal listens(homer , Z) derived in the first step.

To prove this subgoal, we use axiom A3 and replace X by homer , Y by lisa and Z by

saxophone. This substitution further generates three new subgoals at home(homer),

9

X/homer

X/homer
Y/lisa, Z/saxophoneX/homer

X/homer

plays(lisa,saxophone) man(homer)

man(homer)

is_off(tv) at_home(homer)

happy(homer)

eats(homer, Z)

Y/Z Z/Y

likes(homer,Y)

Y/donuts

listens(homer, Y)
is off(tv) ∧ at home(X) ∧ plays(Y,Z) → listens(X,Z) man(X) ∧ likes(X,Y) ∧ eats(X,Y)

man(X) → likes(X,donuts)

listens(X, Y) ∧ eats(X, Z) → happy(X)

Figure 1.5: The proof tree for deriving happy(homer). The root of each tree is the subgoal
to be derived. Subgoals are shown enclosed in ovals. The nodes are the facts used to derive
each subgoals. Facts from the theory are shown enclosed in boxes.

plays(lisa, saxophone) and is off (tv). Each of these subgoals is true since they are

the facts stated by axioms A6, A7 and A8 respectively as shown in Figure 1.2. The

truth of these axioms implies that listens(homer , Z) is true when Z is lisa. Thus, we

prove that the two subgoals listens(homer ,Y) and eats(homer ,Z) are true, implying

that our original goal happy(homer) is true when Y is donuts and Z is saxophone.

Figure 1.5 shows the completed proof tree.

1.1.4 Factors Affecting Performance Of Logical Deduction

Examples 1.1 and 1.2 use the inference rule that given two logical formulae

p(a) and p(X) → q(X), if p(a) is true it implies that q(a) is also true. The key to

this derivation is the unification operation, that makes the two formulae p(a) and

p(X) identical by replacing the variable X with value a. A typical proof procedure

10

performs numerous substitutions in its attempts to unify terms. Thus, unification is

performed a large number of times (Baader and Snyder 2001). As the complexity of

the problem increases, the number of unifications performed also increases. Hence,

an unification implementation forms an important factor for improving performance.

If we formulate the process of finding a truth of a goal, such as in Example 1.2,

as a search process then the proof of Figure 1.5 is the solution to a search problem.

Just like any search problem, a complex theory with a large number of axioms could

result in long proofs as well as introduce large branching factor, which makes proving a

goal a complex search problem. Therefore, the use of a smart search procedure which

never overlooks a solution but avoids unnecessary search where possible is another

important factor in determining the efficiency of the proof procedure. These factors

and many more make automated-theorem proving a time and resource consuming

process (Bundy 1999).

1.2 Logical Reasoning Systems in Java

Our reasoning system is designed to perform efficient reasoning in first-order

logic. It is a sound and complete reasoning system for full first-order logic. The

main proof procedure is based on Model Elimination (ME) and is implemented using

Prolog-style compilation technique. The proof process is realized as a search proce-

dure based on backtracking. Completeness of the search procedure is guaranteed by

performing depth-first iterative-deepening bounded search (Stickel 1986).

The system, with its implementation in Java, is designed to exploit the sim-

ilarities between the operating principles of Java runtime environment and logical

deduction procedures. We choose an interpreted approach whereby inference steps

are compiled into executable Java Virtual Machine (JVM) instructions, rather than

a full-compilation which compiles into native machine code. While the interpreted

approach of an abstract machine cannot match execution of natively compiled ma-

11

chine code in terms of efficiency, this approach provides a higher degree of portability.

This allows us to build a framework for a system that can potentially perform logical

reasoning, in parallel, on a network of computers, independent of their underlying

architecture.

1.2.1 The Java Logic Interpreter

As a first step towards developing an efficient logical reasoning system in Java,

we design the Java Logic Interpreter . Our main goal in designing this elementary rea-

soning system is to develop an efficient representation for first-order logical formulae

in Java. The preprocessor incorporated within the Java Logic Interpreter performs

this task. It first converts the logic formula that describes a problem into clauses

and then represents each clause with a separate Java class. In order to generate this

representation it utilizes specially designed Java classes for each type of first-order

logic construct. Using these Java classes the preprocessor builds an in-memory rep-

resentation of each clause from the theory. A Java-based inference engine operates

on this representation of the clauses to prove goals based on the Model Elimination

inference procedure.

In addition to generating an efficient representation of logic formulae in Java,

the Java Logic Interpreter is characterized by its implementation of a generalized

unification procedure. This procedure takes as input two first-order terms and at-

tempts to unify them. For instance, in the first step of Example 1.2, given the

goal happy(homer) and the axiom listens(X ,Y) ∧ eats(X, Z)→ happy(X), the gen-

eralized unification procedure interprets the terms happy(homer) and happy(X) to

replace variable X from the axiom with homer . Replacing the variable X by the con-

stant symbol homer derives listens(homer ,Y) ∧ eats(homer , Z)→ happy(homer), a

specialized instance of the axiom. The generalized unification procedure is composed

of a set of instructions that attempt to unify any pair of first-order terms and hence

12

is designed to be generic in nature. At each inference step, the Java Logic Interpreter

invokes this generalized unification procedure to derive new facts or conclusions.

1.2.2 The Logic-to-Java Compiler

The inference procedure implemented by the Java Logic Interpreter interprets,

at runtime, the structure of every pair of terms at each inference step. This process

is similar to the execution of interpreted programming languages, which is inherently

slow. Our second reasoning system, called the Logic-to-Java Compiler , overcomes

this drawback. The Logic-to-Java Compiler consists of a sophisticated logic compiler.

For each clause in the theory, the logic compiler generates customized inference in-

structions based on the structure of the clause’s literals. The instructions implement

specific steps to unify a literal with any term at runtime. To generate customized in-

ference instructions for each clause at compile time, the logic compiler represents each

literal from every clause with a separate Java class. This class contains instructions to

build the structure of the literal and the clause when the Java class is instantiated at

runtime. In addition, the each Java class also contains an inference method consisting

of precompiled instructions to unify the literal, the class represents, with any term.

At runtime, the Logic-to-Java Compiler attempts to unify a subgoal term and a literal

term by invoking the literal’s customized inference method. Thus, by precompiling

inference instructions for each literal, the Logic-to-Java Compiler performs much of

the computation once at compile time, which the Java Logic Interpreter otherwise

preforms repeatedly at runtime. This approach of executing precompiled inference

procedures instead of employing generalized unification steps allows the Logic-to-Java

Compiler implement an efficient inference procedure.

13

1.2.3 The Logic-to-Bytecode Compiler

While designing the Logic-to-Java Compiler we noticed that there is a natural

correspondence between the execution principles of Java runtime environment and the

ME inference procedure. Therefore, we extended the design of Logic-to-Java Compiler

to develop our third system, called the Logic-to-Bytecode Compiler . The Logic-to-

Bytecode Compiler has an enhanced logic compiler which directly generates Java

classes, instead of the two step approach employed by the logic compiler of Logic-

to-Java Compiler. The logic compiler of Logic-to-Java Compiler generates a Java

class in two steps. It first generates a Java source file representing the literal and its

clause and then using a standard Java compiler compiles the source file into a binary

Java class used by its inference procedure at runtime. The alternative approach, of

directly generating binary Java classes to represent each literal and its class, employed

by the Logic-to-Bytecode Compiler not only eliminates the need for a standard Java

language compiler, but also allows it to introduce machine-level refinements within

each custom-generated inference procedure. Generating refined inference instructions

allows the Logic-to-Bytecode Compiler to derive proofs efficiently and compensate

for some of Java’s runtime overhead, at the same time maintaining portability of the

system across different platforms.

1.3 Document Overview

In the next chapter, we discuss various concepts related to the Model Elimina-

tion inference procedure necessary to understand our reasoning systems. Chapter 3

describes the design and operation of the Java Logic Interpreter and Logic-to-Java

Compiler. Subsequently, in Chapter 4, we present the design of the Logic-to-Bytecode

Compiler along with the Java bytecode optimizations we introduced. We conclude

the report with an assessment of our work and an outlook to the future of automated

reasoning with Java.

CHAPTER TWO

Related Work

In this chapter, we present an introduction to the automated reasoning paradigm

that forms the basis of Model Elimination, the inference procedure employed by our

three systems. We also briefly describe some existing Model Elimination implemen-

tations from the perspective of developing an efficient reasoning system for first-order

logic.

2.1 First-Order Reasoning and Resolution

Automated reasoning systems use a variety of inference mechanisms. Some use

natural deduction techniques (similar to those used by humans), while others employ

machine-oriented techniques. We restrict our discussions to the inference mechanisms

necessary to understand our reasoning system.

2.1.1 Resolution Principle

In 1965, Robinson introduced the resolution inference principle, a single machine-

oriented inference rule for deriving proofs in first-order logic (Robinson 1965a). It is

a powerful principle in the sense that it alone, as a single inference principle, forms

a complete reasoning system for first-order logic. The resolution procedure is an

algorithm that identifies whether a formula is valid using the resolution inference

principle.

The resolution procedure applies to only those logical formulae which are ex-

pressed as a conjunction of clauses. A clause is a disjunction of positive and negative

literals. The resolution inference principle has the following form:

(α ∨ β)(¬β ∨ γ)

(α ∨ γ)

14

15

i) x(1)
ii) x(1)
iii) x(Y)
iv) x(Z)

Figure 2.1. Example Terms Illustrating Unification

where (α∨β) and (¬β∨γ) are two clauses, representing arbitrary disjuncts of literals.

The above rule says that for two clauses (α∨β) and (¬β∨γ), if one of the literals from

clause (α ∨ β) matches with the negation of a literal from the other clause (¬β ∨ γ),

then we can infer a third clause (α∨ γ), which is a disjunction of all the literals from

the two clauses except for the two complementary literals β and ¬β. The derived

clause (α∨γ) is called the resolvent . The literals β and ¬β are called resolving literals.

This rule known as ground resolution is suitable only for propositional logic. Before

we present the version of the resolution inference rule suitable for first-order logic, we

introduce unification.

2.1.2 Unification

Unification is a fundamental concept behind the resolution inference rule for

first-order predicate logic. It is a process that establishes whether two logical terms

can be made syntactically equivalent to one another through variable substitution.

Here is a simple example: Terms (i) and (ii) of Figure 2.1 are the same, so we say

that they unify.

Now consider the two terms (ii) and (iii). In this case, the terms are not

identical; however, if we replace the variable Y with 1 then the two terms unify. This

replacement, represented as Y/1, is called a binding where the variable Y binds to

the value 1. Finally we consider the terms (iii) and (iv). Again, these terms are

not equivalent. We could unify them by making arbitrary bindings like Y/1, Z/1.

However, a more general binding like Y/Z would allow us to unify the terms (iii) and

16

(iv) without making any unnecessary commitment on the values for these variables.

A binding list is a set of bindings of the form Vi/ti, where V1,V2, . . . , Vn are

variables and t1,t2, . . . , tn are terms. The result of applying a binding θ to a term k,

denoted as kθ, is a term obtained by replacing every occurrence of variable V in k

by term t, for each V/t pair in θ. A term k is an instance of a term j if there is a

binding list θ such that k = jθ. A term k is a common instance of terms j1 and j2 if

there are substitutions θ1 and θ2 such that k = j1θ1 and k = j2θ2. A term k is more

general than a term j if j is an instance of k but k is not an instance of j. A unifier

of two terms k1 and k2 is a binding θ that makes the terms identical, k1θ = k2θ. If a

unifier of two terms exists, then the terms are said to unify . A most general unifier

(MGU) of two terms k1 and k2 is a binding θ that unifies k1 and k2 such that the

common instance k1θ is as general as any other common instance of k1 and k2. That

is, for any other unifier θ′ of k1 and k2, k1θ is as general as k1θ
′ and k2θ

′.

When two terms j and k are to be unified, they are compared. If they are both

constants then the result of the unification is a success if they are equal, else it is

a failure. If j and k are variables then j binds to k or vice versa and unification

succeeds. If j is a variable and k a term and if j occurs in k then unification fails,

otherwise j binds to k and unification succeeds. If j and k are terms of the form

fx(x1, x2, . . . xn) and fy(y1, y2, . . . yn), then they unify if their functors fx and fy are

identical, both the terms have same number of parameters and the ith parameter of

term j successfully unifies with ith parameter of k. For instance, consider the uni-

fication of two terms grandFather(X, Y) and grandFather(bob, Z). Their unification

begins by comparing the predicate symbol grandFather of the two terms. This sym-

bol is identical in the two terms, hence unification proceeds to each sub-term of the

two terms. The first sub-term pair is X and bob resulting in the binding X/bob.

Next, we bind variable Y to Z. Since there are no more sub-terms and each of the

sub-terms unified successfully, the unification of two terms grandFather(X, Y) and

17

Algorithm 2.1: Unification

Input: Two arbitrary first-order terms j, k to be unified
Output: θ, the most general unifier of j and k, or failure.

Algorithm: Unify (j,k)
Initialize θ to be empty.
Case:

If j and k are two identical constants or variables:
return success

Else If j is a variable that does not occur in k:
bind j to k and insert (j/k) into θ
return success

Else If k is a variable that does not occur in j:
bind k to j insert (k/j) into θ
return success

Else If j is f(y1, y2, .., yn), k is f(z1, z2, .., zn):
for i = 1 to n

result = Unify(yi, zi)
if result is failure

return failure
return success

Else
Return failure

End Case

grandFather(bob, Z) succeeds with (X/bob, Y/Z) as the MGU.

Algorithm 2.1 is the recursive unification algorithm to determine the MGU for

any two first-order terms (Robinson 1965a). An important thing to note in it is the

unification of a variable that occurs within a term. A variable X occurs in a term e if,

X is variable that binds to a term e containing the variable X. If we attempt to bind

X and e, the binding results in a cyclic structure which may cause the unification to

loop for ever. Hence, the algorithm performs an occurs check before binding a variable

to a term, to ensure that the variable does not occur within the term. The occurs

check , if performed for all variables at each reasoning step, can affect the speed of the

18

inference process. Implementation of occurs check is necessary for the completeness.

2.1.3 Resolution-Refutation

The general resolution inference rule for first-order logic states that given two

variable disjoint clauses 1 (C1 ∨ l1) and (¬l2 ∨C2), where C1 and C2 are disjunctions

of literals and l1 and l2 are literals, we deduce resolvent (C1 ∨C2)θ from (C1∨ l1) and

(¬l2 ∨C2), where θ is the MGU of the two complementary unifiable literals l1 and l2.

(C1 ∨ l1)(¬l2 ∨ C2)

(C1 ∨ C2)θ

A clause in first-order logic is valid if and only if at least one of its literals is true.

Thus, an empty clause is always false, since it has no true literal. A special case of

the resolution rule is when C1 and C2 are empty. In this case, the resolution inference

rule applied to the complementary unifiable literals l1 and l2 yields an empty clause,

indicating that the input clause set consisting of clauses (C1 ∨ l1) and (C2 ∨ ¬l2) is

an invalid clause set. Robinson proposed the use of this technique of detecting an

invalid input clause set by deriving an empty clause to prove theorems in first-order

logic using resolution.

Accordingly, in order to prove a goal from an input clause set T , we negate

the goal and add it to T . Let us call this new set of clauses T1. Applying resolution

to the clause set T1, we attempt to derive an empty clause. If the resolution yields

an empty clause, we can deduce that the negation of the goal is invalid. Since it

is known that the clause set T itself is valid, by contradiction, we can say that the

goal statement is a valid clause of the theory T . This process of proving theorems by

contradiction using resolution is called resolution-refutation(Robinson 1965a). The

resolution-refutation inference procedure is sound , meaning that it will not deduce

an empty clause if the input clause set is valid. It is also complete, in that it will

always derive an empty clause for every invalid input clause set (Robinson 1965a).

1 Two clauses are variable disjoint if they share no common variables

19

e

db

a

c

Figure 2.2. Blocks World Domain Example

A straightforward resolution-refutation proof procedure proceeds as follows. If

there are n input clauses, temporarily designate clause n as the focus clause. Begin by

resolving the focus clause n against each of the clauses until a resolvent is obtained.

This resolvent clause, labeled n+1, becomes the new focus clause. This clause is now

resolved against all the other clauses until another resolvent is obtained. This becomes

the new focus clause and the pattern continues. If an empty clause is obtained at

any stage, the refutation is successful. Otherwise, if some focus clause m obtained

by resolving clause m − 1 with some clause j creates no new clause, the procedure

backtracks. Then the clause m− 1 is relabeled as the focus clause and clause m− 1 is

resolved against those clauses not previously tried, beginning with clause j + 1. The

first retained resolvent is labeled m + 1. Clause m + 1 now becomes the focus clause

and the process continues. To illustrate this procedure consider a simple domain from

the blocks world shown in Figure 2.2. This domain consists of five blocks a, b, c, d,

and e arranged in two stacks. The first stack has blocks a, b, and c, where block b is

placed on c and a is on b. In the second stack block d is placed on block e.

The blocks world translates into the axioms shown in Figure 2.3(a). To prove

something interesting, we add the axioms of Figure 2.3(b) which reflect some possible

relationships between the blocks. For example, the axiom (iv) defines predicate above

that is true for any two blocks X and Y if X is above Y in a stack of blocks.

20

i) on(a, b)
ii) on(b, c)
iii) on(d, e)

(a) Axioms From The Blocks World .

iv) ∀X, Y ¬on(X, Y) ∨ above(X, Y)
v) ∀X, Y, Z ¬on(X, Y) ∨ above(Y, Z) ∨ above(X, Z)

(b) Axioms Defining Properties Of Blocks World.

Figure 2.3. Axioms Representing Blocks World

We now use the resolution-refutation proof procedure to answer the question “is

a above c ?” Since resolution is a refutation procedure, we try to prove that the clause

above(a, c) is a valid clause of the input set by proving that when the set of clauses

of Figure 2.3 are combined with the negation of above(a, c), that is ¬above(a, c), they

derive an empty clause.

Figure 2.4 shows this proof. In the first step we resolve the goal ¬above(a, c)

with axiom (v) to get the resolvent (¬on(a, Y) ∨ ¬above(Y, c)). We then resolve

this resolvent with axiom (i) to derive ¬above(b, c). In the third step, we resolve

¬above(b, c) with axiom (iv) to derive ¬on(b, c).Finally, we use axiom (ii) to derive

an empty set. Since the resolution yields an empty clause, we deduce that the negation

of the goal above(a, c) is invalid. Thus, by contradiction, we can say that the goal

statement is a valid clause of the blocks world.

In addition to proving a goal, the resolution-refutation proof procedure also gen-

erates additional information. For example, as resolvents are generated, the variables

in the goal statement are instantiated in a way that reflects the reasoning process.

Thus, in the process of proving a goal, a resolution proof procedure also constructs

(via a sequence of unifications) terms which express more information. To illustrate

how this works, we use the set of clauses from Figure 2.3 to find a block which is

21

[b/Y]

[b/X, c/ Y]

[a/X, c/Z]

()

(on(a,b))

on(b,c)

(¬above(a,c))

(¬above(b,c))

(¬on(b,c))

(¬on(X,Y) ∨ above(X,Y))

(¬on(X,Y) ∨ above(Y,Z) ∨ above(X,Z))

(¬on(a,Y) ∨ ¬above(Y,c))

Figure 2.4: A resolution-refutation proof that proves above(a, c) follows from the facts
of Figure 2.3. Each step in the proof derives a new fact by resolving two complementary
unifiable literals from existing facts. Variable substitutions for each step are shown enclosed
in brackets.

above block c. To do this, we prove that ∃Wabove(W, c) is a consequence of our

input clauses. Similar to Figure 2.4, its derivation begins by negating above(W, c).

The derivation, shown in Figure 2.5, results in an invalid set when W binds to a.

Thus, by contradiction, we understand that there must be a block above c and the

binding of variable W to a shows that a is in fact such a block.

2.1.4 Resolution Strategies

Deriving proofs by resolution-refutation generates a large number of interme-

diate resolvents. Typically, most of these resolvents are redundant since they do not

help to prove the goal. Generating such resolvents utilizes lot of computational re-

sources, thereby affecting the performance of the proof procedure (Shinghal 1992).

Resolution-based reasoning systems commonly employ various strategies that reduce

unnecessary deductions. One such strategy removes redundant clauses as soon as

they appear in a derivation. Another strategy is to remove specific clauses in the

22

[a/X, c/Z]

()

[b/X, c/ Y]

[a/W, b/Y]

(on(a,b))

on(b,c)

(¬above(W,c)) (¬on(X,Y) ∨ above(Y,Z) ∨ above(X,Z))

(¬on(W,Y) ∨ above(Y,c))

(¬above(b,c)) (¬on(X,Y) ∨ above(X,Y))

(¬on(b,c))

Figure 2.5: A resolution-refutation proof that proves ∃Wabove(W, c) is a consequence of
the facts of Figure 2.3. Derivation of the empty set and its resulting binding of variable W

to a shows that there exists a block above c and a is that block.

presence of more general ones by a process known as subsumption (Robinson 1965b).

However, unrestricted subsumption does not preserve the completeness of resolution.

Instead of removing redundant clauses, some strategies prevent their generation

in the first place. The set-of-support strategy is one of the most powerful strategies

of this kind (Wos, Robinson, and Carson 1965). Hyper-resolution is another strategy

that reduces the number of intermediate resolvents by combining several resolution

steps into a single inference step (Robinson 1983). Linear resolution, introduced by

Loveland, is a strategy that restricts the kinds of derivations that are constructed

and thus is a restriction on resolution (Loveland 1970, Luckham 1970). Similar to

resolution-refutation, linear resolution starts by considering the negation of the goal

clause as the focus clause. At each step the focus clause is resolved with another

clause which is either an input clause or an ancestor of the focus clause, and the new

resolvent becomes the focus clause. Such refutations are called linear because they

consist of a single linear sequence of steps from the goal to the empty clause.

With the exception of unrestricted subsumption, all the strategies mentioned

23

so far preserve completeness. However, certain strategies are designed to compromise

completeness for efficiency. Unit resolution and input resolution are two such refine-

ments of linear resolution (Loveland 1968). In the former, one of the resolved clauses

is always a single literal; in the latter, one of the resolved clauses is always selected

from the original set to be refuted. Neither strategy is complete. Another strategy,

called ordered resolution, imposes a form of partial ordering on the predicate symbols,

terms, literals, or clauses occurring in the deduction. It treats clauses not as sets of

literals but as sequences of linearly ordered literals. Ordered resolution is extremely

efficient but, like unit and input resolution, is not complete.

Most resolution-based reasoning systems adopt one of these strategies or com-

bine some of them to improve the efficiency of the proof procedure. Some strategies

improve certain aspects of the deduction process at the expense of others. The choice

of a strategy is often subject to the nature of the problem domain or the structure of

the clauses in the theory. Next, we present a brief overview of the linear resolution

strategy based on which we designed our reasoning system.

2.1.5 Model Elimination

The Model Elimination (ME) procedure was defined by Donald Loveland in

1968. The first major implementation of ME was completed by Fleisig et al (Loveland

et al. 1974). Since then many reasoning systems have used ME as their underlying

inference mechanism. A more detailed description of ME can be found in (Loveland

1968).

Like resolution, ME is also a refutation procedure that proves the validity of a

logical formula by contradiction. It is a linear input procedure which can be viewed

as a restriction of resolution, requiring that one of the two clauses that generates a

resolvent be the clause most recently generated, and the other be a clause which is

already present in the proof tree, such as an ancestor or a clause from the input clause

24

set. ME differs from resolution in its representation of clauses. In resolution a clause

is a set of literals and a logic formula is a set of clauses. In ME a clause is a chain, an

ordered list of literals. A formula consisting of n input clauses is represented by at

least n input chains. Literals in a chain are either B-literals or A-literals. An A-literal

is one that has been used in a derivation and may participate later in the derivation.

Initially all literals in the input chains are classified as B-literals. An empty chain

denotes an empty clause. Any processing on a chain during ME derivation occurs

only on the leftmost literal of the chain.

We now discuss some terms related to chains necessary to understand the ME

derivation. A chain is admissible if and only if it is preadmissible and the leftmost

literal in the chain is a B-literal. If l is the leftmost literal in a chain C, then C - {l}

is the chain C with the leftmost occurrence of l removed. A chain is preadmissible if

and only if:

(1) complementary literals are separated by an A-literal.

(2) no B-literal is to the left of an identical A-literal

(3) no A-literal is identical or complementary to another A-literal.

ME defines two basic operations, extension and reduction, for deriving conclu-

sions. Extension is like resolution, which joins an input chain to the left of the chain

under consideration if the leftmost B-literal of the chain unifies with the complement

of some literal of the input chain. The new chain is the instantiation of the current

chain by the unifier with the unifying literal of the input chain dropped, and the other

unifying literal promoted to A-literal. The instantiated literals added to the chain are

classified as B-literals. For example, let C1 be an admissible chain and let C2 be an in-

put chain. If there exists a MGU σ of the leftmost literal l1 of C1 and the complement

of any literal l2 of C2, then the extension operation extends C1 by C2 to form chain

C3 by promoting the leftmost literal of C1σ to an A-literal and placing (C2 − l2)σ to

25

1) p(X) ∨ ¬q(Y)
2) ¬p(W) ∨ r(U)
3) ¬p(a) ∨ ¬r(T)
Goal: p(a) ∨ q(Z)

Figure 2.6. Model Elimination Proof Sample Clauses

the left. Thus, all literals in C3 retain their type except the complementary unifiable

literal which is changed to an A-literal. If the resulting chain is not preadmissible

then the extension is considered invalid. Otherwise, if the chain is a preadmissible

chain with an A-literal leftmost(i.e., nonadmissible) then the leftmost A-literals are

removed back to the leftmost B-literals, which then yields an admissible chain. The

reduction operation removes the leftmost B-literal of a chain under consideration if

it can be unified with the complement of an A-literal (its ancestor) of the chain. The

new chain is the instantiation of the current chain by the unifier with the leftmost

B-literal missing. Again, all A-literals to the left of the first B-literal are removed.

To illustrate the ME proof procedure, consider the sample set of clauses adapted

from (Loveland 1968). Figure 2.7 shows the proof tree for this example to prove

the goal p(a) ∨ q(Z). In the first step, the proof procedure performs the extension

operation by unifying the leftmost B-literal q(Z), from the initial chain q(Z) ∨ p(a),

with ¬q(Y) from the first clause. This operation joins the shortened input clause

to the left of the chain and promotes the unifying literal q(Z) from B-literal to A-

literal resulting in a modified chain which is the modified goal. We denote A-literals

by enclosing them in [] brackets. In the second step, it performs an extension by

unifying the leftmost B-literal p(X) with ¬p(W) from the second axiom. This results

in a new chain r(U)∨[p(X)]∨[q(Z)]∨p(a). Next, the procedure performs an extension

operation to unify the literal r(U) with ¬r(T) from the third axiom to derive a new

chain ¬p(a)∨[r(U)]∨[p(X)]∨[q(Z)]∨p(a). Note that each of the first three derivation

steps results in a chain such that the leftmost literal is a B-literal. Observing that

26

Step [1]

Step [2]

Step [3]

Step [5]

Step [6]

Step [7]

Step [4]}

extension with axiom 1

extension with axiom 2

extension with axiom 3

extension with axiom 3

extension with axiom 2

reduction and removing A−literals

p(a)

()

reduction

removing A−literals

q(Z) ∨ p(a)p(X) ∨ ¬q(Y)

¬p(W) ∨ r(U) p(X) ∨ [q(Z)] ∨ p(a)

¬p(a) ∨ ¬r(T) r(U) ∨ [p(X)] ∨ [q(Z)] ∨ p(a)

¬p(a) ∨ [r(U)] ∨ [p(X)] ∨ [q(Z)] ∨ p(a)

[r(U)] ∨ [p(a)] ∨ [q(Z)] ∨p(a)

¬p(a) ∨ ¬r(T)

¬p(W) ∨ r(U) ¬r(T) ∨ [p(a)]

¬p(X) ∨ [¬r(T)] ∨[p(a)]

Figure 2.7: A ME proof that proves the goal ¬q(Y) follows from the facts of Figure 2.6. A-
literals are enclosed in square brackets. All other literals are B-literals. Each extension step
attempts an unification with complementary literals from an input chain and the designated
chain. Each reduction step attempts an unification of a B-literal and its complementary
ancestor A-literal.

the chain obtained after the third step contains a B-literal ¬p(a) that can be unified

with the complement of an A-literal [p(X)] generated in step 2, the fourth step of the

proof procedure performs a reduction operation. This reduction operation results in

a chain where all leftmost literals are A-literals reducing the chain to p(a). In the

fifth step, the proof procedure unifies the literal p(a) with the literal ¬p(a) from the

third clause to derive a new chain by performing an extension. Again it performs

an extension operation by unifying the literal ¬r(T) from the chain with the literal

r(T) from the second clause. Finally, it performs a reduction operation on the chain

derived in the sixth step and eliminates all the A-literals to derive an empty clause.

27

2.1.6 Logic Programming Paradigm

While implementing a theorem prover based on Model Elimination, it is pos-

sible to take advantage of existing systems. One such system is Prolog, by far the

most popular logic programming language used as a reasoning system. Prolog is

characterized by its very high efficiency.

Theorem proving in Prolog is different from resolution theorem proving, where

the primary focus is on determining whether or not a given set of clauses is valid

using refutability. In Prolog, the focus is on answer extraction, which means deriving

an answer to a query made in the context of a program. This alternate viewpoint

is drawn from the general observation that an answer that can be computed using a

problem-specific algorithm can also be determined by a proof procedure that uses the

axioms of a theory and models the problem as a theorem to be proven. Thus, Prolog

programs seek a constructive proof of an existentially quantified theorem where the

existential variables are instantiated so as to make the theorem true (Kowalski 1986).

Prolog’s answer extraction begins with a modification of the first-order lan-

guage. A logic program in Prolog is a set of formulae composed from a subclass of

first-order formulae called Horn clauses. A Horn clause is a disjunction of literals

containing at the most one positive literal. A definite clause is a Horn clause with

a single positive literal. It has the form A1 ∨ ¬A2 ∨ . . .¬An, where A1 is the single

positive literal, also called the head literal and the remaining literals are negative

literals. The query is a negative Horn clause composed of only negative literals. In

Prolog, the problem format is of the form P ⊃ Q, where P is the program made up

of a set of definite Horn clauses and Q is the query of the form ∃x (Q1 ∧Q2 ∧ . . . Qn),

where ∃x means the existential closure of all variables in the expression it quantifies.

The proof procedure of Prolog is a restriction of Model Elimination. It is

structured as linear resolution for Horn clauses by eliminating the ME reduction rule.

This leaves only ME-extension as an inference rule, which makes no use of A-literals.

28

This eliminates the need for two types of literals – A-literals and B-literals. Since there

are no A-literals, ME-extension is simply the binary resolution inference rule. Thus,

within the Horn clause domain, ME collapses to a linear input resolution-refutation

procedure. This restriction of ME to Horn clauses is called SLD-resolution, for linear

resolution with a selection function for definite clauses. A detailed explanation of

the Prolog proof procedure can be found in (Kowalski 1986). The key statement

of soundness and completeness for Horn clause logic programming is that for SLD-

resolution every computed answer is correct and if a correct answer exists, then there

exists a finite SLD-resolution deduction which yields a computed answer.

The efficiency of Prolog is primarily due to compilation of the input clauses into

optimized inference instructions. This process consists mainly of generating special

procedures for unification with the head of each clause. Prolog implementations typ-

ically use one property of SLD-resolution in particular to achieve greater efficiency –

operations performed during SLD-resolution can be determined in advance depend-

ing on the structure of each clause. This information can be used for compiling the

Prolog input clauses into inference instructions for a virtual or actual machine. The

Warren Abstract Machine, which has an efficient realization for executing compiled

instances of Prolog programs, has become the basis for most commercial and research

Prolog implementations (Kaci 1991).

2.1.7 Warren Abstract Machine

There are primarily two main approaches to an efficient implementation of

Prolog: interpreted and native execution. In the interpreted approach, logic programs

are compiled into code for an abstract machine. The abstract machine interprets this

code at runtime to execute the programs. For the second approach, programs are

compiled directly into code understood by a target machine, which then directly

executes the program. Native code tends to be faster and interpreted code tends

29

to be more portable (Aho and Ullman 1977). In 1983, David Warren proposed the

design of an abstract machine called the Warren Abstract Machine (WAM) as an

execution model for Prolog based on the interpreted approach (Kaci 1991). Since

then WAM has become the de facto standard for Prolog implementation.

The WAM defines data structures for efficient representation of the elements of

a logic program. It represents logic terms as tagged words, where each word contains

a tag field and a value. The tag field contains the type of the term (constant, variable,

list or structure). The value field is used for many purposes depending upon the type

of term: it contains values of integers, address of unbound variables and compound

terms like lists or structures. Unbound variables are implemented as self-referential

pointers. When two variables unify, one of them is modified to point to the other.

Therefore, during derivation it may be necessary to follow a chain of pointers to access

a variable’s values.

The WAM defines a stack-based model to execute Prolog programs. It defines

four separate stacks – two for storing data-objects, one stack to support unification

and one stack to support the interaction of backtracking and unification. It also de-

fines two logical areas: one area acts as the code space and the other as a symbol table.

The WAM also defines a simple yet powerful instruction set designed specifically for

executing logic programs. For example, it has instructions like get, put, and unify to

perform unification. For backtracking, it has try, retry, and trust instructions and

for sequential control it has call, return and jump instructions. The data-structures,

four stacks, and simple instruction set together form the core of WAM. Warren de-

signed each element of the core to make use of as little memory as possible. The

abstract machine further classifies its available memory into registers, short-term

memory, long-term memory, and permanent memory for added efficiency. The exe-

cution model is optimized to make efficient use of each class of memory. The simple

design and specialized optimizations make WAM an extremely memory-efficient ma-

30

chine. A detailed design of the architecture of WAM and its operation can be found

in (Kaci 1991).

The Prolog proof procedure is complete only for definite clauses and not for full

first-order logic. Since our reasoning system needs to be complete for full first-order

logic, it does not make direct use of WAM or Prolog. Instead, we borrow various

concepts underlying the design of a Prolog compiler for WAM and the similarities

between the architecture of Warren Abstract Machine and the Java Virtual Machine

to design a high-performance reasoning system in Java, complete for full first-order

logic.

2.2 First-Order Logic Theorem Provers

In this section, we describe some of the first-order logic theorem provers which

closely resemble the system we designed in methodology and implementation. These

provers implement Model Elimination or its variant as their main inference procedure.

2.2.1 Prolog Technology Theorem Provers

The inference procedure of Prolog achieves high efficiency at the expense of

certain restrictions on the input language and incompleteness for full first-order logic.

However, it is possible to extend the Prolog technology to develop an efficient inference

mechanism for full first-order logic. We summarize some existing theorem provers that

extend the Prolog technology in this way.

2.2.1.1 Prolog technology theorem prover. The Prolog technology theorem

prover (PTTP) is an extension to Prolog which is complete for full first-order predicate

calculus (Stickel 1986). It differs from Prolog in its use of unification with the oc-

curs check for soundness, iterative-deepening search instead of unbounded depth-first

search to make the search strategy complete, and the addition of Model Elimina-

tion reduction rule to Prolog inferences which makes the inference system complete.

31

PTTP was shown to achieve a very high inference rate and demonstrated that for

some problems it was an alternative to other resolution-based implementations. The

PTTP system is implemented in Lisp and F-Prolog.

2.2.1.2 Prolog as an implementation language. The Model Elimination infer-

ence procedure and SLD-resolution have many similarities. Letz and Stenz (Letz

and Stenz 2001) made use of these similarities to directly implement pure ME in

Prolog. They developed a set of Prolog formulae written using the Prolog syntax.

These formulae explicitly overcame the incompleteness of Prolog for full first-order

logic. For instance, the formulae simulated the reduction operation of ME which is

absent in Prolog. The formulae did not implement sound unification, instead they

proposed the use of Prolog systems which provide the option for logic programming

with sound unification. In this manner, they combined the advantages of Prolog, its

high efficiency and execution of compiled formulae, with the completeness of ME to

perform logical reasoning in full first-order logic using Prolog. However, this approach

has one drawback - due to the limitations in Prolog, it is difficult to implement the

advanced pruning strategies typically employed by most Model Elimination-based

theorem provers.

2.2.1.3 Setheo and Partheo. Setheo (SEquential THEOrem prover) is a fully

automatic theorem prover designed to prove the unsatisfiability of formulae in first-

order logic (Ibens 1997). It is based on connection tableaux calculus, which is an

integration of tableaux calculus, Model Elimination, and the connection method.

PARTHEO is the parallel version of Setheo. It is another sound and complete or-

parallel theorem prover for first-order logic (Schumann and Letz 1990). Partheo con-

sists of a uniform network of sequential theorem provers communicating via message

passing. Each sequential prover is implemented as an extension of Warren’s abstract

machine. Partheo is written in C and runs on a network of 16 transputers. It achieves

32

higher inference rates with its use of parallelism. It performs a distributed search to

simultaneously explore the search space on multiple processors.

2.2.1.4 Meteor. Meteor is another Model Elimination theorem prover which

can execute in parallel and distributed modes (Astrachan. 1992). In addition to its

implementation of pure Model Elimination, Meteor uses a specialized search strategy

called caching and lemmaizing to search for proofs which otherwise are not easily

found using a depth-first iterative-deepening search strategy. Caching, as imple-

mented in Meteor, refers to a mechanism that optionally replaces the normal search

mechanism with a cache that has a lower computational cost, but yields identical

results to search. The objective of caching is to make effective use of results dis-

covered by past searches. Lemmaizing refers to using solutions or lemmas for proofs

which have already been proved, in order to shorten the presentation and develop-

ment of other proofs. Meteor stores certain previously proved solutions and uses

these solutions to augment a normal search mechanism in cases where the derivation

may require many inference steps. Caching is applicable only to theorems expressible

as a Horn clause set. However, lemmaizing can be used with both Horn and non-

Horn theorems. Caching and lemmaizing have enabled Meteor to prove theorems

previously unobtainable by top-down model elimination theorem provers. A more

complete explanation of caching and lemmaizing can be found in (Astrachan. 1992).

2.2.1.5 Protein. A PROver with a Theory Extension INterface (PROTEIN) is

a Prolog technology based first-order theorem prover over built-in theories (Baumgart-

ner and Furbach 1994). Along with the various refinements implemented in PTTP,

Protein supports a modification of the Model Elimination inference procedure which

does not require generation of contrapositives of the clauses.

33

2.2.2 Theorem Provers in Java

Automated theorem provers have been extensively researched for the past five

decades. With the advent of newer technologies and increasing computing power, new

reasoning strategies are being developed and modifications being made to existing

systems to exploit the features provided by newer technologies. One such technology,

the Java programming language, is becoming increasingly popular as a programming

language for scientific and engineering applications in research as well as industry.

Attempts are being made to develop inference systems in Java. We describe two

such systems developed to exploit various features provided by the Java language to

perform logical reasoning.

2.2.2.1 NetProlog. NetProlog is an implementation of Prolog in Java (Car-

valho, Pereira, and Julia 1999) . It is a logic programming system that generates

binary code executable on a Java Virtual Machine (JVM). For each logic predicate, it

generates a corresponding Java class which can be used in the same way as a regular

class generated for the JVM.

In order to generate a Java classes from an input clause set, the NetProlog

system uses an automatic data-flow inference procedure. This procedure, analyzes

the structure of the given clause set, performs error checking and identifies the data

associated with each predicate. For each predicate it then generates a corresponding

Java class. These clauses are then executed in a manner similar to Prolog’s inference

procedure to derive proofs.

2.2.2.2 Java Theorem Prover. Java Theorem Prover (JTP) is a Java-based

object-oriented modular architecture for hybrid reasoning (Fikes, Jenkins, and Frank

2003). It defines a library of general-purpose reasoning system components to support

rapid development of reasoners and reasoning systems. The JTP is currently one of

the few first-order reasoning systems implemented in Java.

34

The reasoning system in the JTP architecture consists of modules called rea-

soners. These reasoners are classified into two types depending upon their ways to

process queries: Backward-chaining reasoners and forward-chaining reasoners. Each

reasoner has two methods: acceptable method and process method. The acceptable

method decides if the goal is suitable for being processed by the reasoner, while the

process method implements the actual reasoning process by attempting to find the

proof for the goal. Each process method performs reasoning for the goal or the subgoal

based on Model Elimination inference strategy proposed by Loveland.

CHAPTER THREE

Logical Inference In Java

Our reasoning system is a ME-based theorem prover for full first-order logic. It

is developed over several versions, with enhancements applied to each version. The

first version is called the Java Logic Interpreter. It is an elementary reasoning system

designed with the goal of developing an efficient representation of logical formulae

in Java. The second system, the Logic-to-Java Compiler, has a logic compiler and

is the enhanced version of the Java Logic Interpreter. This chapter begins with a

discussion of the framework that serves as the foundation for these two reasoning

systems. This is followed by a detailed description of the Java Logic Interpreter and

the Logic-to-Java Compiler.

3.1 System Architecture

The ME inference procedure is a set of two operations, extension and reduc-

tion. The framework that serves as the foundation for our two systems facilitates

the efficient execution of these two operations. This framework is made up of several

components consisting of a Java representation of logical formulae, Java implementa-

tions of generic unification, ME extension and reduction, and a search strategy that

ensures the ME proof procedure is complete.

3.1.1 Java Representation of Logic Formulae

First-order logic has several different types of constructs such as constants,

variables, functions, and predicates. Each type of construct has certain properties

and exhibits certain behavior. Our framework represents each type of construct with

a separate Java class. Each Java class is a blueprint that defines the properties

and methods common to all objects of a certain type of construct. For example, the

35

36

Abstract Term

String value String name Constant functor

Constant Variable Tuple

Term[] parameters

Term termRef
abstact print ()

print () print () print ()
bind (Term t) get_No_Of_Parameters ()lookUp (String name)
Variable (String v) Tuple (Term[] t)

(a) The abstract class Term represents any term. The classes Constant, Variable and Tuple

represent constants, variable, and function and predicates respectively.

Term literal
boolean Sign

Literal Subgoal

Literal literal
boolean reduced

Rule parent

Clause
Subgoal[] literals

Literal (boolean sign, Term t)
getLiteral ()
getSign ()
print ()

Literal (boolean sign, Term t)
getLiteral ()
getSign ()
print ()

Clause (Literal[] literals)
getLiteral (int n)
getSize ()
print ()

(b) Java classes Literal, Subgoal and Clause representing literals, subgoals, and clauses

Figure 3.1. Java Class Representation of First-Order Logic Constructs

Constant class represents first-order logic constants. The following convention is used

to name the classes: the class name is the same as the first-order logic construct with

the first letter capitalized. The hierarchy of the Java classes mirrors the relation that

exists between first-order logic constructs. Figure 3.1(a) shows this class hierarchy.

At the top of the hierarchy is the abstract class Term. Constant extends Term

and contains a data member that stores the value of the constant symbol. For ex-

ample, to represent constants homer and lisa, we create two instances of Constant,

which store homer and lisa respectively as their data members. The Constant class is

such that it creates exactly one instance for each unique constant symbol in the input

clause set. This property facilitates an easy comparison of constant symbols without

37

having to retrieve and compare the actual values they represent. Accordingly, two

constants are considered identical if they are the same instance of Constant.

Variable, which also extends Term, has one data member that stores the name

of the variable. Our system represents all occurrences of a particular variable in

a single clause by exactly one instance of Variable. For example, in the term

p(X, s(s(X))), only one instance of Variable is created to represent the two oc-

currences of variable X. As a result, during the derivation if one occurrence of X

binds to a constant homer , then the other occurrence of X in the clause also reflects

this binding. On the other hand, a variable with the same name occurring in two

different clauses is represented by two different instances of the Variable class.

The class Tuple represents functions and predicates in first-order logic. Tuple,

which is also an extension of Term, has two data members: one representing the

functor and the other an array of Term instances representing the parameters of the

function symbol or the predicate. For example, to represent term likes(X, donuts), a

Tuple instance is created with likes as its functor and the Variable X and Constant

donuts as its parameters.

The Term class contains a data member called termRef . Hence, the three

classes Constant, Variable, and Tuple that inherit from Term also contain this data

member. When an instance of Constant, Variable, or Tuple is created, the termRef

data member in the instance refers to the Constant, Variable or Tuple instance

respectively. In case of a Constant and a Tuple, the value of termRef remains

unchanged. However, in case of a Variable instance, its termRef refers to the Term

that the variable binds to during unification.

Dereferencing is the process of identifying the value of the termRef data mem-

ber of a Term. Dereferencing a Constant and Tuple instance yield the respective

instances themselves. On the other hand, dereferencing a variable helps to identify

whether it is free or bound. If the termRef of a Variable instance refers to the

38

Variable instance itself, then the variable is free. Otherwise, the variable is bound

to the Term referenced by termRef. During a derivation, it is sometimes necessary

to traverse a chain of termRef references to dereference a variable. For example, at

a stage in the derivation, if a variable X is bound to another variable Y and Y is

bound to variable Z and Z is bound to a constant homer , then dereferencing X entails

traversing the chain of termRef references from the termRef of X to the termRef of

Y to the termRef of Z and finally terminating to obtain homer . The Literal class,

shown in Figure 3.1(b) is designed to represent literals. It has two data members:

the sign of the literal and a Term instance to represent the literal term.

3.1.2 Generic Unification

Unification is a key component of the two ME operations, extension and reduc-

tion. During extension, a literal term is unified with a complementary literal term

from the input clause set. During reduction, a literal term under consideration is

unified with one of its complementary ancestor terms.

While performing the two ME operations, it is necessary to avoid situations

where an unification between two terms builds an infinite structure. For example,

consider the unification between the terms data(Y, Y) and data(X, name(X)). In

the first step, we unify variables X and Y . Next, we unify Y with name(X), which

results in an attempt to unify X with name(X). This unification yields an attempt

to unify name(X) with name(name(X)) and so on. Such an unification, where a

variable binds to a term containing that variable, results in a cyclic structure. The

most common way in which this error might manifest itself is when the system tries to

print out the binding for Y . This usually results in an attempt to print an infinite term

name(name(name(name(name(... To avoid this circularity, it is necessary that when

attempting to unify a variable with a term, their unification should fail if the variable

occurs in that term. The unification algorithm we implement performs the occurs

39

occurrenceCheck(Variable var, Term term){

// Push the term under consideration on a stack

while (term.termRef != term) // Dereference the variable
term = term.termRef

}

while (term) {

term = stack.pop ()

}

// If Variable var occurs in Term term then return true

// Perform occurs check for each parameter of Term

// Pop the stack for next Term

return false // Variable var does not occur in Term term. Return failure.

for (i = 1 to no of parameters)
stack.add (tuple.body(i))

if (term instanceof Tuple)

return true
if (term == var)

stack.push (term)

term = stack.pop ()

Figure 3.2. Pseudocode to determine whether or not a variable occurs in a term

check when attempting to unify an unbound variable and a term. The algorithm to

perform this check is shown in Figure 3.2. It takes as input a Variable instance

var and a Term instance term. The result of the algorithm indicates whether the

variable occurs in the term or not. The algorithm begins by dereferencing term. If

the dereferenced term is an instance of a Constant then var does not occur in term.

If the dereferenced term is an instance of a Variable, then var occurs in term if var

and term are the same instance of Variable. Otherwise, if the dereferenced term is

a Tuple, then the algorithm checks if var occurs in any of the tuple’s parameters.

During the course of a derivation, unification is performed numerous times,

as part of either the extension or the reduction operation. Our implementation of

the unification algorithm performs the occurs check on each attempt of unifying a

variable and a term. This can result in numerous invocations of the occurs check

algorithm. Even though this could affect the performance, our algorithm implements

it to guarantee completeness.

40

Given two Terms t1 and t2 to be unified, our Java implementation of the generic

unification algorithm explained in Chapter 2 the algorithm proceeds as follows:

(1) Dereference t1 to yield term X and dereference t2 to yield term Y .

(2) Determine the types of term X and term Y .

(3) If X and Y are Constants, then they are identical if they are each represented

by the same instance of Constant, and their unification succeeds. Otherwise

their unification fails.

(4) If X is an unbound Variable and Y is a Term, then the algorithm binds

variable X to term Y if X does not occur in Y .

(5) If Y is an unbound Variable and X is a Term, then the algorithm binds

variable Y to term X, if Y does not occur in X.

(6) If X and Y are both Tuples, then the algorithm first checks if they have

identical functors and the same number of parameters. If the functors differ

or if they do not have the same number of parameters or both, then the

unification fails. Otherwise, the algorithm checks if each ith parameter from

X unifies with the corresponding ith parameter from Y . If this is the case,

the unification succeeds.

(7) For any other case the unification fails.

3.1.3 Efficient ME Extension

A chain in ME has a natural mapping to a tree (Letz, Schumann, Bayerl,

and Bibel 1992). Each literal from a chain maps to a non-root node in the tree.

For example, the chain q(Z) ∨ p(a), consisting of two literals, maps onto a tree as

shown in Figure 3.3(a), where the two literals p(a) and q(Z) form the two nodes.

Based on this mapping, ME extension and reduction can be modeled in terms of tree

41

q(Z) p(a)

(a) ME chain q(Z) ∨ p(a) modeled as a tree, where the two B-literals q(Z) and p(a) form the
leaf nodes of the tree. The B-literals are enclosed in squares.

p(a)

p(a) r(W)

p(a)q(Z) q(Z)

[Y/Z, X/a]

¬ q(Y) ∨ p(X) ∨ r(W)

(b) ME extension modeled as tree expansion, where the instantiated literals p(X) and r(W)
from an input chain form two new branches of the unifying literal. The input chain is shown
above the arrow. Variables replaced and the values they replace are shown enclosed in brackets.
The promoted A-literal q(Z) is enclosed in a circle and B-literals are enclosed in squares.

Figure 3.3. Chain modeled as a tree and me extension as tree expansion

operations. The ME extension operation, which expands a chain by attaching the

instantiated literals to the chain and promoting the unifying literal to an A-literal, can

be modeled as expanding a tree. Each instantiated literal from an input chain forms

a new branch of the node representing the newly promoted A-literal. For example,

ME extension of the two chains q(Z) ∨ p(a) and p(X) ∨ r(W) ∨ ¬q(Y) results in a

new chain p(X) ∨ r(W) ∨ [q(Z)] ∨ p(a), where [q(Z)] is the promoted A-literal and

p(X) and r(W) are the instantiated literals. This operation maps onto the tree shown

in the Figure 3.3(b) where the instantiated literals p(X) and r(W) forms two new

branches of the node representing the A-literal q(Z).

The ME reduction operation, which removes a B-literal if it unifies with a

complement of an A-literal in the chain, can be modeled as closing a branch. A

42

r(b) q(Z)

p(a)

[X / a]

¬ r(T)

¬ p(W)

Figure 3.4: ME Reduction where the leaf node p(W) unifies with its ancestor p(a), modeled
as closing a branch. The arrow pointing from p(W) to p(a) shows this ME reduction.

branch is considered to be closed if there exist two complementary unifiable nodes

in the branch, one of which is a leaf node. For example, ME reduction of the chain

¬p(a)∨[r(U)]∨[p(X)]∨[q(Z)] causes the literal ¬p(a) to unify with the complementary

A-literal [p(X)], resulting in the new chain [r(U)] ∨ [p(a)] ∨ [q(Z)]. This operation

maps onto a tree as shown in Figure 3.4 where the arrow pointing from p(W) to p(a)

shows the branch closed due to ME reduction. Note that ME extension can also result

in the closing of a branch when a literal unifies with a unit clause from the input set.

At the start of an ME proof procedure, all the chains consist of B-literals. At

each step, the proof procedure performs either ME extension or ME reduction on the

leftmost B-literal of the goal chain under consideration. Extension adds new B-literals

to the chain and reduction removes a pair of complementary A and B-literals from

the chain. For each new B-literal attached to the chain, the proof procedure has to

43

perform extension or reduction to prove it. The proof procedure halts when the goal

is reduced to an empty chain.

Our systems’ implementation of ME is based on the tree representation of ME

chains. At the start of the proof procedure, the literals from the goal form the leaf

nodes of the proof tree. The proof procedure considers each leaf node in the tree

as a subgoal of the original goal and attempts to prove it by employing extension

or reduction. Extension of a node can result in a new set of leaf nodes, one for

each instantiated literal, all having the extended node as their parent. The proof

procedure treats each instantiated literal as a subgoal and proceeds to prove each

subgoal. Reduction of a subgoal with a complementary ancestor on its branch closes

that branch of the tree. Thus, a subgoal is considered proved if it unifies with a

complementary ancestor or if it unifies with a unit clause from the input set in which

case no new subgoals are generated. The proof procedure halts when it proves every

subgoal in the tree.

For an efficient implementation of this tree-based ME proof procedure, our

framework represents a clause by a Java class Clause. Since the proof procedure

considers each instantiated literal from a clause as a subgoal, our framework represents

each literal in a clause with a Subgoal instance. The Subgoal class consists of two

data members. The first one, a Literal instance, represents a clause literal and the

second data member, a flag, identifies whether the subgoal is proved by ME reduction.

Figure 3.1(b) shows the Java class representation of the Clause and the Subgoal.

Given a set of input Clauses and a subgoal to prove, the ME extension im-

plemented by our proof procedure begins by examining a Clause from the input

clause set. It attempts to unify a Subgoal with a complementary Literal from the

Clause with the subgoal. If the unification fails, it either goes onto the next Subgoal

with a complementary Literal of that Clause or, if there are no more Subgoals

in the Clause, it considers the next Clause from the input set. If the unification

44

succeeds, the subgoal under consideration is extended by the remaining instantiated

Subgoals of the clause, with the Subgoal with the unifying Literal omitted. The

proof procedure proceeds by attempting to prove each instantiated Subgoal.

3.1.4 Efficient ME Reduction

During the proof process, before attempting an extension, the ME proof pro-

cedure always attempts ME reduction of each subgoal. The ME reduction operation

states that a subgoal can be removed if it unifies with the complement of any of its an-

cestors in the proof tree. In order to access a subgoal’s ancestors, the proof procedure

needs an effective mechanism to easily traverse a branch of proof tree. Therefore,

the implementation of the Subgoal class is modified to add a third data member,

a reference to its parent Clause. Figure 3.5 shows our algorithm to perform ME

reduction. It is similar to traversing a linked list, where each node in the list is the

ancestor Subgoal. At each step in the traversal, an unification between the current

Subgoal and its complementary ancestor is attempted to determine if the subgoal can

be reduced. The unique design of the Clause and Subgoal classes allows the proof

procedure to efficiently traverse the ancestors of each subgoal. In order to reach the

ancestor of the subgoal, our algorithm looks up the reference to the Subgoal that uni-

fied with the parent Clause of the Subgoal under consideration. Next, it attempts to

unify these two Subgoals. If the unification fails, the algorithm continues traversing

up the branch until it either finds a complementary unifiable ancestor or reaches the

root, at which point it cannot attempt further reductions with the subgoal. At any

point if the unification succeeds, the algorithm marks the current Subgoal as reduced

and then proceeds with the proof.

45

me_reduction (Subgoal subgoal) {

}

Subgoal par_sub

Rule parent

while(parent) {

}

parent = subgoal.parent

par_sub = parent.subgoal

Literal par_literal = par_sub.literal

Literal goal_literal = subgoal.literal

if(par_literal.sign != goal_literal.sign)

subgoal.reduced = false

parent = par_sub.parent

// Local variables

// Get the parent Rule of the Subgoal under consideration

// Get the Subgoal the parent last unified with

// Get its literal

// Get the literal for the subgoal

// Verify that the parent is complementary

if(Unify(goal_literal.term, par_literal.term)) // Unify the literal with the subgoal under consideration

subgoal.reduced = true // If they successfully unify then mark the current Subgoal reduced

else

// Otherwise continue traversing up

Figure 3.5: Pseudocode of ME Reduction to determine if a subgoal unifies with one of
its ancestors. The unique design of the Clause and Subgoal classes makes traversing a
Subgoal’s ancestors efficient.

3.1.5 Search Mechanism

In our discussion so far, we considered that at each inference step there is

only one clause that contained a literal complementary to the subgoal literal and

the unification between the subgoal and such a literal always succeeded. However, an

input clause set can contain more than one clause with a literal that is complementary

to the subgoal. Thus, at any point in the proof if unification between the subgoal

under consideration and a clause fails, we can always choose another clause and

continue with the proof. If we formulate the problem of finding a proof as a search

process, then the proof of the subgoal is the solution to the search problem. This

means that deriving a proof is actually a process of searching for a proof by executing

a series of inference steps. As the system searches for a proof, it can run into a scenario

46

where the unification between the subgoal and all the available clauses fails. In such

a scenario, the proof process backtracks to the parent subgoal of the subgoal under

consideration. It attempts the unification of this parent subgoal with those clauses

from the input set with which it has not attempted unification so far. If no such clause

exists, it further backtracks to its parent subgoal and the process continues. Thus,

in order to develop an automated reasoning system, we have to design the system

such that it can perform a proof search by selecting valid clauses and appropriate

inference operations and then executing inference steps. Such a system must also

have an effective backtracking mechanism.

Although ME is a complete proof procedure in that there is always an ME

derivation of an empty clause from an invalid set of input clauses, a complete search

strategy must be employed to ensure that such a derivation is found. Thus, we

need a search strategy that explores the entire search space of possible solutions

to find a proof. The simplest search strategy that will always find a solution is

breadth-first search (BFS). BFS explores the search space completely on one level

before proceeding to the next level. The main drawback of BFS is that the memory

required for the search grows exponentially with the search depth. Another approach

is the depth-first search (DFS), whose space complexity is only linear in the search

depth. However, DFS may not terminate if the search goes down an infinitely long

branch. If it does find a solution at a higher depth first, it ignores a possibly better

solution closer to the root of the search tree. Hence, we use a strategy called iterative-

deepening , which combines the advantages of DFS and BFS (Korf 1985). The idea is

to perform a series of depth-first searches, each with a depth-limit that is greater than

the previous iteration, until a proof is found. In other words, first search the entire

breadth in a depth-first manner to depth one, then search the entire breadth in a

depth-first manner to depth two and so on. Iterative-deepening has minimal storage

requirements, being in essence a depth-first strategy. At the same time it guarantees

47

that the proof will always be found.

Our reasoning system has two data structures that maintain information needed

to perform iterative-deepening search. The first data structure, referred to as the

goal stack , stores the subgoals that need to be proved. At the start of the proof,

the goal stack has just one element - the goal to be proved. At each step, our proof

procedure pops a subgoal off the goal stack, and performs ME extension or reduction

on it. In case of a successful extension, it pushes the new subgoals onto the goal

stack. After a successful reduction, the proof procedure continues by popping the

next subgoal off the goal stack. The proof process terminates when there are no more

subgoals on the goal stack or the search procedure reaches the upper-bound of the

depth-limit. In case an ME extension or reduction fails, the search process needs

to backtrack to that ancestor in the search tree whose successful extension spawned

the current failed search path. The second data structure, referred to as the trail ,

facilitates this backtracking. It is implemented by the Trail class. During each

unification, the Trail records information, such as all the variable bindings created

for the extension or reduction, sufficient to restore the goal stack to its state prior

to the unification. At any point in the proof, if the search path fails, the reasoning

system uses the information stored in the Trail to restore the state of the goal stack.

As it backtracks, the Trail helps to undo the variables bindings related to the failed

search.

3.1.6 System Components

Our system has three primary components: a preprocessor , an inference engine,

and an output module. The preprocessor consists of a parser that accepts as input a set

of clauses representing a logic formula, analyzes each clause, and represents it in Java

using the specially designed Java classes. The inference engine uses these Clauses

to derive proofs using the two ME operations. The proof is realized as a search

48

Inference
Engine

Proof
Display

FOL
Clauses Parser

Preprocessor

Clause Instances
Goal

Figure 3.6. The Java Logic Interpreter System Components

procedure based on backtracking. The output module gives the user information

about the result of the proof. The control flow between the three components is

shown in Figure 3.6.

3.2 Java Logic Interpreter

The Java Logic Interpreter is a simple implementation of an ME based the-

orem prover. The primary aim in designing this elementary system is to build a

framework suitable for developing a high-performance reasoning system in Java. For

this section, we use the clauses in Figure 3.7 and the goal: ¬eats(ziggy , fish), which

means “Does ziggy eat fish?”, to explain the features of the Java Logic Interpreter.

The preprocessor, inference engine and output module together form the Java Logic

Interpreter.

3.2.1 Preprocessor

The main function of the preprocessor is to generate a Java representation of the

given set of input clauses. In order to generate such a representation we have a parser

in our preprocessor. The parser takes as input the set of clauses and analyzes each

clause individually. It generates the Java representation for each clause in four steps.

In the first step it tokenizes each clause using logical connectives as its delimiters.

This step splits the clause into its literals. In the second step, the parser tokenizes

each literal into its sign and a term. In the third step, the parser classifies each

49

term. If the term starts with a lower-case letter and has no parameters, the parser

i) cat(ziggy)
ii) ¬cat(X) ∨ likes(X, fish)
iii) ¬cat(X) ∨ ¬likes(X, Y) ∨ eats(X, Y)

Figure 3.7. Clause Set To Illustrate The Java Logic Interpreter Proof Process

recognizes that it is a constant. If the term starts with a upper-case letter and has

no parameters, the parser identifies it as a variable. In all other cases, the parser

classifies the term as a tuple and repeats the third step to classify the tuple’s functor

and parameters. Once the parser has classified each term, in the fourth step it creates

their Java representations using the Java classes designed for the various first-order

logic constructs.

We illustrate this process for the clause ¬cat(X)∨likes(X, fish) of Figure 3.7. In

the first step, the parser splits the clause into two literals, ¬cat(X) and likes(X, fish).

In the second step, it splits literal ¬cat(X) into negative and cat(X) and likes(X, fish)

into positive and likes(X, fish). In the third step, it classifies cat(X) as a tuple with

cat as its functor and X as its parameter, where X is a variable. Similarly, it classifies

likes(X, fish) as a tuple having likes as its functor and X, fish as its parameters, where

X is a variable and fish is a constant. It represents cat by an instance of Constant,

X by an instance of a Variable and instantiates a Tuple to represent the term

cat(X). Next, it represents likes and fish by two Constant instances. However, it

does not create a Variable instance for X from likes(X, fish), since one was already

created for the first occurrence of X in the clause. The parser then instantiates a

Tuple to represent likes(X, fish). It creates two Literal instances, one for cat(X)

with a negative sign and another for likes(X, fish) with a positive sign. Finally, it

instantiates a Clause containing the two Literal instances. The parser repeats this

process for every clause from the input set. The collection of Clause instances is

known as the Theory.

50

[X/ziggy, Y/fish]

[Step 1]

[Step 2]

¬eats(ziggy, fish) ¬eats(ziggy, fish)

¬cat(ziggy)¬cat(ziggy) ¬likes(ziggy, fish)

cat(ziggy)

cat(ziggy)

eats(X, Y) ∨ ¬cat(X) ∨ ¬likes(X, Y)

¬eats(ziggy, fish)

¬eats(ziggy, fish)

¬likes(ziggy, fish)¬cat(ziggy)

¬likes(ziggy, fish)

Figure 3.8: Tree representation of the first two steps taken by the Java Logic Interpreter to
prove the goal eats(ziggy ,fish). At each step, the subgoal under consideration is shown in
bold. Subgoals that are proved are enclosed in ovals and all other subgoals are enclosed in
boxes.

3.2.2 Inference Engine

The inference engine takes as input the Theory generated by the parser and the

goal eats(ziggy, fish). It employs the ME inference procedure to refute the negated

goal ¬eats(ziggy , fish), by contradiction.

(1) Unifying ¬eats(ziggy, fish) with the literal eats(X, Y) from the third clause

binds X to ziggy and Y to fish. This ME extension, shown in Figure 3.8,

creates two new subgoals ¬cat(ziggy) and ¬likes(ziggy, fish).

(2) The inference engine attempts to unify the subgoal ¬cat(ziggy) with clause (i)

from the Theory. The unification succeeds but this ME extension, as shown

in Figure 3.8, does not generate any new Subgoals. Hence, the inference

engine proceeds to the next subgoal ¬likes(ziggy , fish).

(3) Identifying that the clause (ii) could help prove this Subgoal, the inference

engine extends the Subgoal by unifying the literals ¬likes(ziggy , fish) and

likes(X, fish). This generates yet another subgoal, ¬cat(ziggy).

51

[Step 3]

[Step 4]

X/ziggy

cat(ziggy)

likes(X, fish) ∨ ¬cat(X)

cat(ziggy)

¬likes(ziggy, fish)

¬likes(ziggy, fish)¬cat(ziggy)

¬eats(ziggy, fish)

¬cat(ziggy)

¬ cat(ziggy) ¬likes(ziggy, fish)

¬cat(ziggy)cat(ziggy)
cat(ziggy)

¬cat(ziggy)

cat(ziggy)

¬cat(ziggy) ¬likes(ziggy, fish)

¬cat(ziggy)cat(ziggy)

¬eats(ziggy, fish)¬eats(ziggy, fish)

¬eats(ziggy, fish)

Figure 3.9: Tree representation of the steps taken by the Java Logic Interpreter to prove
the goal eats(ziggy ,fish). Proving the negation of the goal and the generated subgoals to
be true reduces the negated goal to an empty clause. This proves that the negation of the
goal is invalid, thus proving the goal by contradiction.

(4) For the Subgoal ¬cat(ziggy), as shown in Figure 3.9 the inference engine

repeats the process of step 2 by unifying it with Clause (i).

(5) Since each subgoal is proved and there are no more Subgoals to prove,

the inference engine determines that the proof process for the negated goal

¬eats(ziggy, fish) is complete. Therefore, inference engine, by contradiction,

concludes the goal eats(ziggy, fish) to be proved.

The Java Logic Interpreter gets its name from its interpreted mode of operation. At

each unification step, it interprets the structure of the two terms it attempts to unify

them. This process is similar to the execution of interpreted programming languages.

52

3.3 Execution as Logical Inference

For each extension and reduction operation the Java Logic Interpreter performs

the unification by invoking the generic unification algorithm. The input restriction

of ME guarantees that for each extension operation, one of the literals is always from

the input clause set. For each clause, since its structure is known even before the

actual proof procedure begins, the steps the generic unification algorithm would take

for a possible extension with any subgoal can be predicted in advance. The Java

Logic Interpreter does not make use of this advance knowledge. Hence, we design our

second reasoning system, the Logic-to-Java Compiler , which takes advantage of the

compile-time knowledge of the structure of each clause to implement an efficient ME

extension operation.

3.3.1 Mechanism for ME Extension

The ME extension operation is similar to a Prolog inference operation with

sound unification. The efficiency of Prolog is primarily due to the compilation of the

input clauses, which are Horn clauses, into optimized inference instructions. This

process mainly consists of compiling a sequence of instructions which implement uni-

fication with the heads of the Horn clauses. We borrow this concept underlying the

efficiency of the Prolog interpreter and adapt it to implement efficient ME exten-

sion for full first-order logic. The architecture of the Logic-to-Java Compiler includes

a logic compiler which generates optimized inference instructions for each Clause,

similar to Prolog.

The first step in adapting Prolog’s technique to implement efficient ME exten-

sion, since ME is not restricted to definite clauses, is to create a representation for

a clause that maintains completeness for full first-order logic. For this purpose, the

logic compiler generates contrapositives for each clause as follows: for every literal in a

clause, the logic compiler generates a rule with that literal as the head , and the rest of

53

the clause as the body . For example, given a clause: ¬cat(X) ∨ likes(X, fish), which

can be taken to mean that all cats like fish, the logic compiler generates two con-

trapositives ¬cat(X) ∨ likes(X, fish) and likes(X, fish) ∨ ¬cat(X). To perform ME

extension, the inference engine of the Logic-to-Java Compiler examines a rule to see

if only the term in its head literal is complementary to the subgoal term. If it is, the

inference engine attempts to unify the head literal with the subgoal. If the unification

succeeds, the inference engine attaches the body literals of the clause, instantiated

by the unifier, to the unifying literal of the subgoal. It then proceeds to prove the

newly instantiated literals by considering them as subgoals. This step of attempting

the unification of a subgoal with the head literal of a rule is known as applying a rule.

If the unification fails or the term in the head literal is not complementary to the

subgoal term, the inference engine moves onto the next rule.

The next step in adapting Prolog’s technique for efficient ME extension involves

creation of custom inference routines. For each rule in the theory, the logic compiler

generates a sequence of instructions that implement ME extension with that rule.

These instructions implement the unification of any subgoal with a rule’s head term

and in the event of a successful unification, extend the subgoal based on the depth-first

search strategy.

In order to generate the customized unification instructions, the logic compiler

uses the compile-time knowledge of the structure of the rule’s head term. It analyzes

the structure of the term to lay out a set of steps that could unify the head term

with any subgoal term. It generates these steps by translating the iterative steps

of the generic unification algorithm into sequential steps. For example, if the head

term is p(a, X), the steps it lays out are as follows: first, determine the type of the

subgoal term. For a subgoal term that is a tuple, it lays out instructions to verify

that the subgoal term is a tuple with functor p and two parameters. Then, for each

parameter of the head term’s tuple the logic compiler lays out instructions to unify

54

that parameter with a corresponding parameter from the subgoal term. In case the

subgoal term that is a variable, the logic compiler lays out the steps to verify that

the variable is free and then unify it with the head term. For all other cases, the logic

compiler generates steps to return failure. Thus, for each term appearing in the head

term of a rule, the logic compiler generates unification steps based on the type of the

term, taking into account that the type of the corresponding subgoal term can be a

constant, variable, or a tuple.

In the Java Logic Interpreter, a subgoal can unify with any one of the literals

from an input clause during an extension operation. As a result, the Java Logic

Interpreter cannot predict which literal from a clause will participate in an extension

and which literals will be instantiated. On the other hand, the Logic-to-Java Compiler

always attempts unification with the head literal of a rule. In the event of a successful

unification, the new subgoals always consists of the body literals of the rule. Thus,

in addition to unification steps for each rule, the logic compiler also lays out steps to

extend a subgoal. These steps push the body literals, which will be instantiated by

the unification, onto the goal stack in a depth-first manner.

The logic compiler represents each rule with a separate Rule class. Each Rule

class has two data members, one to represent the head literal and another to repre-

sent the body literals. The logic compiler compiles the sequence of unification and

extension steps it generates for each rule into Java code and embeds it into a method,

called the apply method, within each Rule class. Thus, by generating a customized

apply method for each rule, the Logic-to-Java Compiler performs much of the com-

putation, such as determining the functor and the number of parameters of the head

term, type of each term in the head term and determining the subgoals to push on the

goal stack, once at compile time. In contrast, the generic unification algorithm of the

Java Logic Interpreter performs these steps repeatedly at runtime for each attempt

of ME extension.

55

write(" public Rule_n extends Rule ")

emitHead (head, varMap)

emitBody (body, varMap);

procedure emitConstructor(Literal head, Literal [] body)
Map varMap = new HashMap();

write (" constructHead ")

write (" head = new Literal ("+ head.sign +", t)")

emitTerm (head.term, varMap)

procedure emitHead (Literal head, Map varMap)

procedure emitBody (Literal [] body, Map varMap)

write ("Literal literal = new Literal (" + body[i].sign + " , t) ")
emitTerm (body [i].term, varMap)

write (" constructBody ")

for i = 0 to body.length

write (" body [i] = new Subgoal(literal) ")

emitTerm (tuple.getParameter (i), varMap)
for (i = 0 to tuple.noOfParameters())

varMap.put(term.print(), term.print());

if (term is a Variable)

if (term is Tuple)

Tuple tuple = (Tuple)term

emitTerm (tuple.functor, varMap)

write("Term functor = t ")

write ("Term[] params = new Term ["+ tuple.noOfParameters() +"])

write (" params [i] = t ")

write(" t = new Tuple (functor, params) ")

procedure emitTerm (Term term, Map varMap)

// Generate code that ensures only one instanc of Constant is created

write (" t = new Variable (" + term.print() + ") ")
if (!exists)

boolean exists = varMap.get(term.print()) == null

else
write (" t = " + (String)varMap.get(term.print()))

write (" t = new Constant.lookup (" + term.print() + ") ")

if (term is a Constant)

// When term is a Variable ensure that only one is instantiated

Figure 3.10: Procedures used by the Logic-to-Java Compiler to generate Java code to build
a rule in the memory

This process of generating customized extension steps for the input clause set

via rules permits efficient ME extension, without sacrificing completeness. Compiling

the customized extension steps into an executable Java method allows the Logic-

to-Java Compiler to expedite each ME extension operation. The following section

describes the compilation procedure employed by the logic compiler.

3.3.2 Compiling Rule Instances

The standard technique of generating a Java class is to first generate a Java

source file and then compile it into a Java class using a standard Java compiler. The

logic compiler of the Logic-to-Java Compiler also follows the same technique. Taking

the Clause instances generated by the parser as input, the logic compiler generates

a separate Java source file for each rule, containing Java code that can create an

instance of the rule in the memory and the rule-specific apply method.

56

3.3.2.1 Constructor. To create an instance of a rule in the memory from a

Java class, its Java source file must contain Java code to build the literals that make

up the rule. Each literal is a term with a sign. Hence, to build a literal the source

file must contain Java code to build the term structure of each literal. In its simplest

form, a term can be a constant. To build a constant, the Java source file will have

code that instantiates a Constant. If the term is a variable, the Java source file

will have code to instantiate a Variable. If the term is a tuple, then in addition to

code that instantiates a Tuple, the Java source file will also have code to instantiate

the tuple’s functor, and each of its parameters. We design a recursive procedure

called emitTerm which is responsible for generating Java code to build the term in

memory based on the structure of the term. For instance, if the term is a constant,

emitTerm generates code to instantiate a Constant. If the term is a variable, the

procedure generates code to instantiate a Variable. If the term is a tuple, the

process is slightly different. The emitTerm procedure first generates code to build

the tuple’s functor. Since each parameter is also a term, emitTerm then invokes itself

recursively to generate the Java code to build each parameter. Lastly, it generates

code to create an instance of Tuple. The emitTerm procedure ensures that exactly

one instance of Constant is created for each unique constant in the input clause

set. It also ensures that exactly one instance of Variable is created for each unique

variable in a clause. In this manner, the emitTerm method generates code to build

all the terms in each rule. The constructor method of each Java source file contains

the Java code to build the rule. We designed a procedure called emitConstructor

which generates the constructor method of each rule’s Java class. For the sake of

simplicity, we designed two separate methods that generate code to build the rule’s

head and body. The emitHead procedure generates Java code to instantiate the head

literal, and the emitBody procedure generates Java code to instantiate the Subgoal

instances for the body literals. As seen in Figure 3.10, the emitConstructor method

57

public class Rule_1 extends Rule {

// Local variables

// Generate references to represent the head literal and body literal of the rule.

// Build the list of SUBGOALS

 // Build the HEAD

Literal head;
Subgoal [] body;

Rule_1(){

}

}

constructHead ();

Term [] params = { t_2, t_3 };

t_4 = new Constant("cat");
Term [] params = { t_2 }

Term t_6 = new Tuple(functor, params);
Literal literal = new Literal (false, t_6)

constructBody ();

Term functor = t_4

body [0] = new Subgoal(literal);

constructBody () {

}
constructHead () {

t_2 = new Variable("X");
t_3 = new Constant("fish");
Term functor = t_1

Term tuple = new Tuple (functor, params);

Term t_1

t_1 = new Constant("likes");

Term t_2
Term t_3
Term t_4

head = new Literal(true, tuple);

/**

**/

 Rule class file to represent the rule: All cats like fish.

}

likes(X, fish) V ¬ cat(X)

Figure 3.11. Code generated to build the rule likes(X,fish) ∨ ¬cat(X) in memory.

generates the Java code by invoking the methods emitHead and emitBody. It should

be noted that for readability the procedures shown in Figures 3.10 and 3.12 show

steps relevant to this report and do not include details that read and write to actual

Java source files.

We illustrate the process of generating the Java code for building a rule with

the help of an example. Consider the rule likes(X, fish)∨¬cat(X). Figure 3.11 shows

the Java code generated by the logic compiler for this rule. The logic compiler be-

gins generating the code by invoking the emitConstructor procedure which invokes the

emitHead procedure to generate the Java code for the head literal. The emitHead be-

gins by invoking emitTerm to first generate code to instantiate the term likes(X, fish).

The emitTerm procedure identifies that this term is a Tuple and first generates code

58

to instantiate the functor likes. For each of the tuples two parameters X and fish

emitTerm invokes itself. When invoked for the term X, it identifies that the term is

a variable and generates the Java code to instantiate a Variable. When invoked the

second time for the term fish, emitTerm procedure identifies that it is a constant and

generates the Java code to instantiate a Constant. Finally, emitHead concludes by

generating Java code to instantiate a positive Literal. Following emitHead, emit-

Constructor invokes the emitBody procedure to generate Java code for the body literal

cat(X) of the rule. The emitBody procedure follows a similar process like emitHead to

generate the Java code for each body literal of the rule. The emitTerm when invoked

for the variable X from the body, does not generate code to create an new instance of

Variable representing X, since it is the second occurrence in the clause. Instead, it

simply refers to the previously created Variable instance for X. The emitBody pro-

cedure differs from emitHead in that it generates Java code to instantiate Subgoals for

each body literal to facilitate the use of that literal as a subgoal during the derivation

process.

3.3.2.2 Apply method. The Java class for a rule consists of a constructor method

used to build the rule and the apply method to apply the rule. While generating the

Java source file for a rule, the logic compiler effectively uses the available knowledge

about the structure of the head literal to create the apply method for the rule. For

each rule it unfolds the unification steps that the generic unification procedure would

follow to unify the rule with any subgoal and incorporates them as Java code into the

apply method.

The input to the generic unification procedure is a pair of terms whose type

is not known. To unify these terms, the procedure contains instructions that take

into account every combination of the types of input terms such as constant and

variable, two constants and so on. The logic compiler of the Logic-to-Java Compiler

59

if (term is a Constant)

if (term is a Variable)

if (term is Tuple)

matchConstant (term)

matchVariable(term)

matchTuple (term)

procedure emitUnify (Term term)

procedure emitApply (Literal head)

write(" public apply (Subgoal sg) ")

emitUnify (head.term)

procedure matchVariable (Term term)

if(first occurrence of Variable)

write(" term.bind(goal) ")

else
// Unify variable after performing occurs check

write(" if (Unify (term, goal)) ")

write (" if (goal is Tuple) ")

write(" if (term.functor == goal.functor) ")

for (i = 0 to term.body.length)

write (" Term tbody = tuple.body [" i "] ")

emitUnify(term.body [i])

procedure matchTuple (Term term)

procedure matchConstant (Term term)

write (" if (goal != term) { ")

write(" if goal is Variable ")

write(" goal.bind(term) ")

write(" else ")

write(" return false ")

write(" if (! occurrenceCheck (term, goal)) ")

Figure 3.12: Procedures the Logic-to-Java Compiler uses to generate inference instructions
based on the type and the structure of the head term known at compile-time.

is aware that the head literal of any rule is always a predicate, represented by a

Tuple instance. Moreover, the logic compiler is also aware of the types of first-order

constructs that comprise the Tuple. Specifically, it knows that the Tuple’s functor is

a Constant and knows that each parameter is either a Constant, Variable or Tuple.

Each of these types require a different sequence of steps to unify with the types of

terms found in the subgoal. Therefore, for each type of term in the head literal, the

logic compiler predicts the sequence of unification steps with any subgoal, which we

summarize below.

• Constants: Consider the case where the term from the head literal is a con-

stant C and is attempting to unify with a subgoal term T . The first step is

60

to dereference T . If dereferencing T yields a constant, it can unify with C

if C and the constant T are identical. If dereferencing T yields a variable,

then bind the variable T to the constant C. In any other case, the unification

between C and term T fails.

• Variables: Consider the case where the term from the head literal is a variable

V . In order to unify V with a term T from the subgoal, the first step is to

dereference V . However, for the first occurrence of V in the head literal, it is

safe to assume that V is unbound and so it does not have to be dereferenced.

Also, the occurs check for V and T need not be performed and V can bind

to T . For the subsequent occurrences of V in the head literal, it is necessary

to perform the dereferencing as well as the occurs check before attempting to

unify it with T .

• Tuples: Consider the case where the term from the head literal is a tuple F

unifying with a subgoal term T . The first step is to dereference the subgoal

term T . If dereferencing T yields a variable, then verify that the variable

does not occur in F . If the variable occurs in F , the unification fails. If the

variable does not occur in F , then bind the variable T to tuple F . Now, if

dereferencing T yields a tuple, it is necessary to perform additional checks for

the two tuples to successfully unify: whether T and F have the same functor,

same number of parameters, and starting from the first parameter of F and

T , verify that each parameter of F unifies with the corresponding parameter

of T .

We design three procedures matchConstant, matchVariable, and matchTuple,

shown in Figure 3.12, which implement the steps described for unifying a constant,

a variable, and a tuple respectively. In addition, we create a procedure emitUnify,

which examines the structure of each term of the rule head and accordingly invokes

61

one of these three methods. The logic compiler generates the apply method for a rule

by invoking a procedure called emitApply, which takes as input the head literal and

invokes emitUnify to generate the Java code for unification.

Figure 3.13 shows the Java code generated by the logic compiler for the head

term p(a, q(X, Y), X) of a rule. The rule provides an excellent example of various

combinations of terms that can appear in the head term of a rule. To generate this

rule’s apply method, the logic compiler invokes emitApply with the Literal instance

representing p(a, q(X, Y), X) as its input. The emitApply invokes emitUnify with the

literals’ term p(a, q(X, Y), X) as its input. EmitUnify procedure identifies this term as

a Tuple and invokes the matchTuple procedure. The matchTuple procedure generates

instructions to compare the functor symbol p with the functor of subgoal term, to

compare the number of parameters of tuple head and the subgoal term, and then

for each of its three parameters a, q(X, Y) and X invokes emitUnify. The procedure

emitUnify when invoked for the first parameter a, identifies that the parameter is a

Constant and invokes the matchConstant procedure. This procedure generates in-

structions to unify the constant with a subgoal term accounting for the case that it

could be another constant or a variable. For the second parameter q(X, Y), the emi-

tUnify procedure identifies it as a Tuple and invokes matchTuple. Again, matchTuple

generates instructions to match the functor q, to compare the number of parame-

ters, and then for the two parameters X, Y invokes emitUnify. The matchVariable

procedure when invoked for each of these variables identifies that they are the first

occurrences of X and Y and generates instructions to bind them to a term from the

subgoal without dereferencing or performing the occurs check. Finally, for the third

parameter of the head term p(a, q(X, Y), X), the emitUnify procedure identifies that

it is a variable and invokes matchVariable. This procedure identifies the second occur-

rence of variable X and generates instructions to perform the dereferencing and the

occurs check first before unifying it with the third parameter of a subgoal.

62

public boolean apply (Subgoal sg, Trail trail) {

Term subgoal = sg.term ;

TrailNode point = trail .snapshot ();

Variable var ;

Term term;

{

Tuple tuple = (Tuple)subgoal ;

// Instructions to unify ’a’

{ // Retrieve the first parameter from subgoal term

term = tuple.body[0] ; ///////// Code

while (term.termRef != term) { // generated

term=term.termRef; // by

} // matchConstant

// Match if they are identical constants // for constant

if ((term!=termFor a)) { // ’a’

// if the constants dont match //

// check if the subgoal is a variable //

if (term instanceof Variable) { //

// Bind the subgoal term variable to constant a //

var = (Variable) term ; //

var.bind(t 2, trail); //

} //

// First parameter does not match. return failure //

else { //

trail .backtrack(point); //

return false; //

} //

} //

} /////////

// Match the tuple q(X,Y). /////////

{// Retrieve the second parameter // Code

term = tuple.body[1] ; // generate

63

while (term.termRef != term) { // by

term=term.termRef; // matchTuple

} // for the tuple

// Compare if the terms are identical // ’q(X,Y)’

if (term!= term for q x y) { //

// if the terms are not matching then //

// they can be Variables or Tuples //

if (term instanceof Variable) { //

// Bind after performing checks //

if (!occurrenceCheck (term,term for q x y)) { //

var = (Variable) term ; //

var.bind(term for q x y, trail); //

} //

else { //

trail .backtrack (point); //

return false; //

} //

} // Both terms are tuples //

else if (terminstanceof Tuple) { //

Tuple tuple 1 = (Tuple) term; //

// Compare their functors //

if (tuple 1 .functor != functor q) { //

trail .backtrack (point); //

return false; /////////// Code

} // generated

else { // X and Y are first occurrences // by

{ // Bind X to subgoal term without checking // matchVariable

term = tuple 1.body[0] ; // for first ’X’

term X.bind(term, trail); ///////////

} // Code generated

{// Bind Y to subgoal term without checking // by

term = tuple 1.body[1] ; // matchVariable

64

term Y.bind(term, trail); // for first ’Y’

} // ///////////

} //

} //

else { // Terms do not match. Return failure //

trail .backtrack(point); //

return false; //

} //

} //

} //

{ // Second occurrence of X //

// Unify only after performing checks. //

term = tuple.body[2] ; /////////// Code generated

if (!unify (term, term X, trail)) { // by

trail .backtrack(point); // matchVariable

return false; // for second

} // occurrence of

} // ’X’

} ///////////

// Push the subgoal to the goal stack // Code to push

for (int j = 0; j < body.length; j++) // instantiated

goalstack.push(body[j]); // subgoals on

// Prepare for ME reduction. // goal stack

subgoal.rule = this; ///////////

return true;

}

Figure 3.13: Java code of the apply method for the head term p(a, q(X,Y), X) of a rule

generated by logic compiler using the three methods matchConstant, matchVariable, and

matchTuple

65

Parser
Logic

Compiler
Rules As

Java Source Files

Java
Compiler

FOL
Clauses

Preprocessor
Rule Instances

Goal

Proof
Display

Inference
Engine

Figure 3.14. The Logic-to-Java Compiler System Components

Generating the apply method completes the process of creating a Java source file

for the rule likes(X, fish)∨¬cat(X). In this manner, the logic compiler generates Java

source files for all the rules. Next, it compiles them using a standard Java compiler

to generate corresponding Java class files. During the proof process, the inference

engine of the Logic-to-Java Compiler applies a rule by invoking its apply method.

When the inference engine invokes the apply method, the underlying Java Virtual

Machine executes it to perform ME extension. Thus, creating rule-specific apply

methods provides the Logic-to-Java Compiler with the ability to generate compiled

machine-level inference instructions that are directly executable at runtime.

3.3.3 Logic-to-Java Compiler Architecture

The Logic-to-Java Compiler has the same underlying framework as that of the

Java Logic Interpreter – it has the same parser, inference engine, and output module.

It differs from the Java Logic Interpreter in two respects. The first is its modified pre-

processor. The preprocessor of the Logic-to-Java Compiler has two phases: a parsing

phase and a compilation phase. In the parsing phase, the preprocessor accepts as in-

put a set of clauses and generates Clause instance for each clause. In the compilation

phase, the logic compiler analyzes the clauses to generate rules. It generates a Java

class for each rule containing the rule-specific apply method. The second difference

66

1) cat(ziggy)
2) ¬cat(X) ∨ likes(X, fish)
3) likes(X, fish) ∨ ¬cat(X)
4) ¬cat(X) ∨ ¬likes(X, Y) ∨ eats(X, Y)
5) ¬likes(X, Y) ∨ eats(X, Y) ∨ ¬cat(X)
6) eats(X, Y) ∨ ¬cat(X) ∨ ¬likes(X, Y)

Figure 3.15. Contrapositives Of A Clause Set

is the compiled, rather than interpreted nature of execution of the inference engine,

which is a consequence of having rule-specific apply methods. Figure 3.14 shows the

control flow between the four components of the Logic-to-Java Compiler.

3.3.3.1 Preprocessing. The input to the preprocessor of the Logic-to-Java

Compiler is the set of clauses. In its parsing phase, the preprocessor analyzes these

clauses and generates as output instances of Clause, one for each clause. In the com-

pilation phase, the logic compiler takes the Clause instances as input, analyzes each

clause and generates rules. Figure 3.15 shows all the contrapositives the logic compiler

would generate for the clause set of Figure 3.7. Next, the logic compiler generates

a Java source file containing Java code to build the rule and inference instructions

to apply the rule. Lastly, the logic compiler invokes a standard Java compiler to

compile the Java representation of each rule into Java class files. It then instantiates

each Rule class to form the Theory which is used by the inference engine.

3.3.3.2 Proof steps. The inference engine takes the Theory and the goal to be

proved as input. It employs the ME inference procedure to prove the goal. It operates

on the negated goal in order to prove it by contradiction. At each ME extension step,

during the proof process, the inference searches for a rule with a complementary

predicate in the head. When it finds such a rule, the inference engine invokes the

rule’s apply method for the goal under consideration. The underlying JVM then

67

i) ¬q(X, Y) ∨ p(X, Y)
ii) ¬r(a, b) ∨ ¬s(Y, c(Z)) ∨ q(Y, Z)
iii) ¬t(a) ∨ ¬p(X, Y) ∨ s(X, c(Y))
iv) t(a)
v) r(a, b)
vi) ¬s(a, Z)

Figure 3.16. An input clause set to illustrate identical-ancestor pruning rule.

executes the compiled instructions inside the apply method to either return failure or

generate new subgoals.

3.4 Refinements

The main goal in designing the Java Logic Interpreter is to develop a framework

to perform logical reasoning for first-order logic in Java. However, the inference pro-

cedure of the Java Logic Interpreter is inherently slow, owing to its interpreted nature.

The reasoning procedure implemented by Logic-to-Java Compiler shows significant

performance improvement over Java Logic Interpreter. This section presents some

refinements implemented in the Logic-to-Java Compiler in order to further improve

its performance without sacrificing the completeness of its proof procedure.

3.4.1 Identical-Ancestor Pruning Rule

There are several optimizations that can be applied to the search mechanism

without affecting its completeness. Many of these optimizations are implicit in the

original definition of ME as proposed by Loveland (Loveland 1968). The most widely

used of these is the identical-ancestor pruning rule (IAPR).

In the course of deriving a proof for a particular subgoal S, if the proof procedure

identifies that a subgoal G2 is identical to any one of its ancestors G1 in the proof

tree, then the proof procedure discards G2 and can initiate backtracking to proceed

to the next subgoal. Discarding G2 is justified because:

68

[X/Y, Y/Z]

[X/a, Y/b]

[DISCARD]

[X/Y, Y/Z]

[X/a, Y/b]

[Z/s(b)]

r(a, b)

t(u)

¬ q(X, Y)

¬ r(a, b)

¬ t(u)

¬ p(a, b)

¬ s(a, s(b))

¬ p(a, b)

¬ r(a, b)

¬ p(a, b)

¬ s(a, s(b))

r(a, b)

¬ q(a, b)

¬ s(a, Z)

Figure 3.17: The tree representation of the steps taken by the Logic-to-Java Compiler to
prove the goal p(a, b). The arrow pointing from the second occurrence of p(a, b) to its
ancestor subgoal p(a, b) indicates ¬s(a, s(b)) cannot be proved using rule (iii). The subgoal
is eventually proved via rule (vi).

• There is no proof of G2 in the search for the given theory.

• Whether or not there is a proof of G1 using G2, there will be an equivalent

proof of G1 elsewhere in the search without using G2.

This technique of pruning the search space below G2 is called IAPR (Astrachan and

Stickel 1992). To illustrate this concept let us consider the proof of the negation of

goal p(a, b) using clause set shown in Figure 3.16.

Applying the first rule ¬q(X, Y)∨ p(X, Y) to the subgoal ¬p(a, b) produces the

subgoal ¬q(a, b) by binding X to a and Y to b. Next, applying ¬r(a, b)∨¬s(Y, c(Z))∨

q(Y, Z) to the subgoal ¬q(a, b) generates two new subgoals ¬r(a, b) and ¬s(a, c(b)).

Working on the ¬r(a, b) subgoal first, rule (v) of the clause set confirms that ¬r(a, b)

is true and we proceed to the subgoal s(a, c(b)). Rule (iii) could help us prove this

subgoal if we bind X to a and Y to b. This step generates two new subgoals ¬t(a)

69

and ¬p(a, b). Again, the rule (vi) t(a) confirms that the subgoal ¬t(a) is true and we

can proceed to the subgoal ¬p(a, b). However, this subgoal is identical to its ancestor

subgoal, ¬p(a, b). Hence, applying the identical-ancestor pruning rule for the second

occurrence of the ¬p(a, b) we initiate backtracking to discard the rule (iii) to prove

s(a, c(b)). Another rule, (vi) can help us prove the subgoal s(a, c(b)). Apply rule (vi)

to the subgoal binds variable Z to c(b). Since there are no more subgoals to prove

for the original subgoal ¬p(a, b), we conclude that the goal is proved. Figure 3.17(a)

shows the proof before initiating backtracking due to IAPR and Figure 3.17(b) shows

the final proof.

3.4.2 Rule Indexing

At each ME extension step, the inference engine has to search for a Rule whose

head term is complementary to the subgoal. If the Theory contains a large number

of Rules, a linear search of the entire Theory for such a Rule will be inefficient. We

implemented two enhancements to speed up the search for a rule with the head term

that is complementary to the subgoal term.

The first is a grouping of Rules based on the structure of their head term. The

logic compiler uses an index to perform the grouping of Rule instances. The key of

this index consists of the sign of the head term, its functor symbol, and the number

of parameters. The logic compiler groups together Rule instances with the same key.

It organizes all the Rule instances into a data structure, containing one entry for

each unique key in the Theory. At runtime, in order to find a Rule instance with a

head term that can be unified with the subgoal term, the inference engine looks up

the data structure with a key consisting of the sign opposite to that of the subgoal

term, the functor symbol of the subgoal term and the same number of parameters.

This lookup yields an index into the data structure, which the inference engine uses

to obtain a set of Rules, all of which have the head terms complementary to the

70

subgoal term. The inference engine attempts ME extension only on this set of Rules,

instead of performing a linear search of the entire theory.

The second enhancement is the addition of a new data member in the Subgoal

class. This data member stores the value of its key – the sign of the literal the Subgoal

represents, its functor symbol, and the number of parameters. The advantage of this

enhancement is, to find the set of Rules that might unify with a given Subgoal.

At runtime the inference engine does not have to construct the key for any Subgoal

since it is already available inside the Subgoal instance. These two enhancements are

collectively called rule indexing .

3.4.3 Rule Caching

Consider the proof of a subgoal S, using a theory consisting of rules R1 . . . Rn.

To prove the subgoal S, the inference engine looks up the theory for a rule that

is complementary unifiable with S. Let R1 be such a rule. The inference engine

makes a copy of rule R1 and uses it to perform an ME extension. Let this extension

operation generate subgoals S1, S2, and S3. Let S1 be proved using rule Rx and S2

be proved using rule Ry. These two operations use the copies of Rx and Ry from

the theory. Now consider the case where the inference engine cannot prove subgoal

S3. In this case the inference engine back tracks and attempts to prove subgoal

S with another rule. The backtracking operation leaves the inference engine with

the instances of rules R1, Rx, and Ry. These Rule instances need not be discarded

since they may be useful later in the proof process. The Logic-to-Java Compiler

maintains a Cache of such Rule instances. The cache also implements rule indexing

where, given a key, the cache returns the matching Rule instances. During the proof

process, the inference engine first looks up the cache for the set of Rules with the

key complementary to the Subgoal under consideration. It applies each of these

Rules until one of them successfully unifies with the Subgoal. If none of the Rules

71

available in the cache successfully unify with the Subgoal or if there are no Rules in

the cache, the inference engine looks up the Theory for the next available Rule with

the complementary key. The Theory then creates a new instance of that Rule and

the proof procedure continues. This caching of Rule instances reduces the overhead

of creating and deleting unused Rule objects.

CHAPTER FOUR

The Java Inference Engine

This chapter presents the architecture of our third reasoning system, the Logic-

to-Bytecode Compiler. It details various refinements implemented for this system.

4.1 Compiling for Java Virtual Machine

The Logic-to-Bytecode Compiler is characterized by a specialized logic compiler

that generates Java classes without using a standard Java compiler. Designing such

a compiler requires a thorough understanding of the architecture of the Java Virtual

Machine (JVM). Our discussion of the JVM in this chapter is brief, but sufficient to

understand the architecture of the logic compiler.

4.1.1 Java Virtual Machine Architecture

The JVM is a computer designed to load binary Java class files and execute the

instructions, called bytecodes, that they contain. It is called virtual because it is an

abstract computer defined by a specification. Various vendors provide concrete im-

plementations of the JVM that adhere to this specification and each Java application

runs inside a run-time instance of such an implementation. The JVM specification

describes the behavior of a virtual machine instance in terms of subsystems, memory

areas, data types, the Java class file format, and instructions (Lindholm and Yellin

1999). Figure 4.1 shows a block diagram of the JVM that includes the major sub-

systems and memory areas described in the specification. A runtime instance of the

JVM is created when a Java application starts. Each JVM has a class loader sub-

system which is responsible for loading classes and interfaces. A discussion of the

class loader subsystem is beyond the scope of this report. To execute an application,

the JVM organizes its memory into several runtime data areas. These data areas

72

73

native method
interface

method
area

heap Java
Stacks

PC
registers

native
method
stacks

execution
engine

class
loader

subsystem

runtime data areas

native
method
libraries

Java class files

Figure 4.1: The internal architecture of the JVM. It is primarily divided into the class loader
subsystem which loads the Java class files, the memory needed to execute a program orga-
nized into several runtime data areas, and the execution engine, a mechanism responsible
for executing the instructions contained in the methods of loaded classes.

store items like instructions, information extracted from loaded class files, instanti-

ated objects, method parameters, local variables, intermediate computation results,

and return values associated with the application. Some runtime areas are unique

to individual threads in the JVM, while others are shared among all the threads of

an application. The method area and heap area are two runtime data areas that all

threads of an application share. When the JVM loads a class file, it uses the method

area to store the binary data contained in the class. The JVM uses the heap area to

place all objects instantiated as it executes an application.

When an application starts executing, its initial class starts a thread inside the

JVM. Each new thread receives its own Program Counter (PC) register and Java

stack . The value of the PC register indicates the next instruction to be executed.

The Java stack is composed of stack frames. Each frame stores the state of one

method invocation such as its local variables, parameters with which the method was

74

invoked, and its return values. When a thread invokes a method, the JVM pushes a

new frame for the method onto that thread’s Java stack. When a method completes,

the JVM pops and discards the frame for that method. Each stack frame has three

parts: local variables, operand stack , and frame data.

The local variables section of a Java stack frame is an array of words. This

array stores the parameters to the method and the local variables defined in the

method. The parameters to the method are stored before the local variables in the

array. The JVM accesses and modifies the local variables stored in the array by using

an index. Values of type int, float, reference, and returnAddress occupy one

entry each in the local variables array. Values of type byte, short, and char are

converted into int before being stored in the local variables array. Values of type

long and double occupy two consecutive entries in the array. Figure 4.2(a) shows a

method runInstanceMethod which accepts three parameters and declares two local

variables. Figure 4.2(b) shows the local variables section of the method’s Java stack

frame. The first parameter in the local variables array is of type reference. This is

a reference to the instance that encapsulates the method runInstanceMethod. The

second is a character which is stored as an int in the local variables array. The

third value in the array is a double type which occupies two consecutive entries. The

fourth value is the Object O which is passed as a reference to the method. Since all

objects in Java reside in the heap, the local variables and the operand stack always

contain only object references and never an actual image of the object. Following the

method’s parameter in the local variables array are the two local variables, boolean

b and float f, stored in the order of their declaration.

The operand stack is also organized as an array of words. The JVM uses the

operand stack as its work space, since it does not have registers. This approach was

taken by Java’s designers to keep the JVM instruction set compact and to facilitate

implementation on a variety of architectures. The JVM instruction set consist of

75

public int runInstanceMethod(char c, double d, Object O) {
boolean b;
float f ;
return 0;
}

(a) Java code for an instance method that accepts three parameters, defines two local variables
and returns 0.

PARAMETER

float f

boolean b

Object O

double d

char c

hidden this

INDEX

6

5

4

2

1

0 reference

int

double

reference

int

float

TYPE

(b) Arrangement of the method’s parameters and the local variables on the local variables
section of its stack frame.

Figure 4.2: Declaration of a simple Java method used to demonstrate the arrangement of
its parameters and local variables in the local variables section of its Java stack frame

instructions to manipulate the operand stack. These instructions pop values from

the operand stack, operate on them, and then push the result back on the stack.

Figure 4.3 shows how a JVM uses the operand stack to add two local variables of

type int and store the result in a third local variable. In this sequence of bytecodes,

the first two instructions, iload_0 and iload_1, push the integers stored in the local

variable array at positions zero and one onto the operand stack. The iadd instruction

performs the addition by popping these two integer values, adding them, and pushing

their result back onto the operand stack. The fourth instruction, istore_2, pops the

result of the addition off the stack top and stores it into the local variable array at

position two.

76

iload 0 // push the integer in the local variable 0
iload 1 // push the integer in the local variable 1
iadd // pop two integers , add them, push the result
istore 2 // pop int, store into local variable 2

Figure 4.3: Mnemonics generated by a Java compiler to add two local variables that contain
integers and store the result integer in a third local variable.

In addition to the local variables and the operand stack, the Java stack frame

includes frame data. This portion of the Java stack stores data to support con-

stant pool resolution, normal method return, and exception dispatch. The constant

pool contains entries for constants such as literal strings, final variable values, class

names, and method names associated with the class or interface defined in a class

file. Whenever the JVM encounters instructions that refer to an entry in the constant

pool, it uses the frame data’s pointer to the constant pool to access this information.

Aside from constant pool resolution, the frame data assists the JVM with processing

normal method completion by restoring, from the Java stack, the stack frame of the

method from which the current method was called. If a method throws an exception,

the JVM uses the exception table referenced by the method’s frame data to determine

how to handle the exception.

At the core of any JVM implementation is its execution engine. This is respon-

sible for executing the Java bytecodes contained in the methods of loaded Java classes.

The JVM specification defines the behavior of the execution engine in terms of its

instruction set. Concrete implementations can use a variety of techniques such as

interpretation, just-in-time compilation, native execution in silicon, or a combination

of these techniques to execute the instructions. A run-time instance of the execution

engine is a thread. Each thread of a running Java application is a distinct instance

of the virtual machine’s execution engine. In Section 4.1.3 we present an overview of

the most commonly used instructions in our reasoning systems.

77

Type Name Count

u4 magic 1

u2 minor version 1

u2 major version 1

u2 constant pool count 1

cp info constant pool constant pool count

u2 access flags 1

u2 this class 1

u2 super class 1

u2 interfaces count 1

u2 interfaces interfaces count

u2 fields count 1

field info fields fields count

u2 methods count 1

method info methods methods count

u2 attributes count 1

attribute info attributes attribute count

Figure 4.4: The table shows the ordered list of items that can appear in a class file. Items
appear in the table in the order in which they appear in the class file. Each item has a
type, name, and count. Type is either a name or one of the primitive unsigned bytes u1,
u2, u4, and u8. The count indicates the number of items that appears in the class file.

4.1.2 Java Class File Format

The Java class file is a precisely defined binary file format for Java programs.

Each class file represents a complete description of one Java class or interface. There

is no way to put more than one class or interface into a single class file. The precise

definition of the class file format ensures that any Java class file can be loaded and

correctly interpreted by any JVM, no matter which system produced the class file or

which system hosts the virtual machine. Figure 4.4 shows the major components of

the class file in their order of appearance.

magic number or 0xCAFEBABE is the first four bytes of very Java class file. The

magic number helps the JVM to distinguish Java class files from non-Java

files.

78

minor version and major version are the next four bytes of the class file. The JVM

uses these numbers to identify the format to which a particular class file

adheres.

constant pool count and constant pool contain the number of entries in the con-

stant pool and constants such as literal strings, variable values, class names,

and method names associated with each Java class respectively.

access flags store several pieces of information about the class or the interface de-

fined in the file. For example, this field indicates whether the file defines a

class or an interface and whether it is public or abstract.

this class and super class contain the fully qualified names of the class or inter-

face and the fully qualified name of the class’s superclass respectively. Both

this class and super class serve as indices into the constant pool.

interface count and interfaces denote the number of direct superinterfaces of this

class or interface and an array of indexes, respectively. Each entry in the

interfaces array is an index into the constant pool that refers to the fully

qualified name of the interface.

fields count and fields describe the number of fields and the fields defined in a class

respectively. Fields is a list of variable-length field info tables, one for each

field. Each field info table contains a field’s information such as name, de-

scriptor, and modifiers.

methods count and methods denote the number of methods and the methods ex-

plicitly defined in the class. The methods are described in a list of method info

tables. Each method info table contains several pieces of information about

the method, including the name, return type, and its argument types.

79

attributes count and attributes describe the number of attribute info tables appear-

ing in the attributes list. Attributes come in many varieties. The JVM defines

nine types of attributes. To correctly interpret Java class files, all JVM im-

plementations must recognize three of these attributes Code, ConstantValue

and Exceptions. The Code attribute contains a variable-length code attribute

table which defines the bytecode sequence and other information for every

method defined in the class. The variable-length Exceptions attribute lists

the exceptions that a method may throw. The fixed-length ConstantValue

attribute appears in field info tables for fields that have a constant value.

The detailed structure of the Java class file format is described in the Java Virtual

Machine Specification. It is essential for any compiler that generates Java classes

to conform to the Java class format. There are libraries and APIs available which,

given a set of mnemonics, opcodes, and operands, translate them into binary Java

class fields. The Logic-to-Bytecode Compiler uses the Jikes library provided by IBM

to output the actual class files corresponding to the Rule instances generated by the

logic compiler (Philippe Charles and Dave Shields and Vadim Zaliva).

4.1.3 JVM Instruction Set

The JVM specification defines the abstract specification of the Java virtual

machine’s execution engine in terms of an instruction set. For each instruction, it

defines what an implementation should do when it encounters the instruction as it

executes the bytecodes, but says very little on the actual implementation of the

instruction.

The central focus of the instruction set is the operand stack. Most instructions

push values, pop values, or both as they perform their functions. For example, to

divide one local variable by another, the JVM must push both onto the stack, perform

the division, and then store the result back in a local variable. Several goals guided

80

the instruction set’s stack-centered design approach. Platform independence was one

of the major goals. The stack-centered approach was chosen instead of the register-

centered approach to facilitate efficient implementation of the JVM on architectures

with few or irregular registers. This feature of the instruction set makes it easier to

implement a JVM on a wide variety of host architectures.

Another motivation for Java’s stack-centered instruction set is that compilers

usually use a stack-based architecture to pass an intermediate, compiled form of a

program to a linker/optimizer. The Java class file, which in many ways is similar

to the Unix .o or Windows .obj file emitted by a C compiler, actually represents

an intermediate, compiled form of a Java program. Hence, the stack-centered ap-

proach enables compilers to introduce runtime optimizations in conjunction with the

execution engine’s optimizations such as just-in-time compilation and adaptive opti-

mization.

Another goal that guided the design of the instruction set was compactness.

Compactness is important because it facilitates speedy transmission of class files

across networks. The total number of opcodes is small enough so that opcodes occupy

only one byte each. Lastly, the instruction set is designed keeping in mind Java’s

security model by providing the ability for bytecode verification. All bytecodes are

analyzed and their integrity verified before they are executed to guarantee robustness

and security.

A method’s bytecode stream is a sequence of instructions for the JVM. Each

instruction consists of a one-byte opcode followed by zero or more operands. The

opcode indicates the operation to be performed. Operands supply additional infor-

mation needed by the JVM to perform the operation specified by the opcode. The

opcode itself indicates whether or not it is followed by operands and what form the

operands take. Many instructions take no operands and therefore consist only of

an opcode. For some opcodes, in addition to the operands that trail the opcode, a

81

public static void doMathForever(){
int i = 0;
for(;;)

i += 1;
i ∗= 2;

}

(a) Java code for the method doMathForever which indefinitely performs two mathematical
operations of adding 1 to a locally defined integer and then multiplying it by 2.

// Bytecode Stream: 03 3b 84 00 01 1a 05 68 3b a7 ff f9
// Disassembly:
// Method void doMathForever()
// Left column: offset of instruction from beginning of method
| // Center column: instruction mnemonic and operands
| | // Right column: comment
0 iconst_0 // 03
1 istore_0 // 3b
2 iinc 0, 1 // 84 00 01
5 iload_0 // 1a
6 iconst_2 // 05
7 imul_0 // 68
8 istore_0 // 3b
9 goto 2 // a7 ff f9

(b) Method doMathForever()’s bytecode stream disassembled into mnemonics

Figure 4.5: The bytecodes of the method doMathForever() disassembled into JVM
mnemonics as they would appear in a binary Java class file.

JVM may refer to data stored in other runtime data areas. When the JVM executes

an instruction, it might use entries in the constant pool, entries in current frame’s

local variables array, or values sitting on top of the method’s operand stack. Each

type of opcode in the instruction set has a mnemonic. In typical assembly language

style, streams of Java bytecodes can be represented by their mnemonics followed by

optional operand values.

For an example of a method’s bytecode stream consider the method doMathForever()

of Figure 4.5(a). The method defines an integer as a local variable and manipulates

82

it by adding 1 to it and then multiplying it by 2. The stream of bytecodes for

doMathForever() can be disassembled into the mnemonics shown in Figure 4.5(b).

The JVM specification does not define any official syntax for representing a method’s

mnemonics. The code shown is a representation similar to the output of the javap

program of Sun’s Java 2 SDK. The first instruction, iconst_0, pushes the integer

0 on the operand stack. Instruction istore_0 stores this value in local variable 0.

Next, the instruction iinc increments the local variable 0 by 1. The fourth instruc-

tion, iload_0, pushes the value in the local variable 0 on the operand stack. Then,

the instruction iconst_2 pushes the number 2 on the stack. Instruction imul_0 then

multiplies the two integers leaving their result on the stack top. Instruction istore_0

stores the result in the local variable 0. This addition and multiplication operation

repeats when the instruction goto 2 executes. Note that the jump address for the

goto instruction is given as an offset from the beginning of the method. It causes the

JVM to jump to the instruction at offset two (the iinc instruction). The actual value

of the instruction’s operand in the bytecode stream is minus seven. To execute this

instruction, the JVM adds minus seven to the current contents of the PC register.

The result is the address of the iinc instruction at offset two.

The JVM instruction set has 255 instructions. The logic compiler needs only

a small subset of these instructions to generate the Java class for each rule. We

summarize the most commonly used instructions below:

Load and Store Instructions : The load and store instructions transfer values be-

tween local variables and the operand stack of a JVM frame. For example,

instruction iload pushes an integer value held in a local variable onto the

operand stack. Instruction astore_<n> pops a reference to an object or array

off the stack and stores it in local variable <n>, where <n> is 0, 1, 2 or 3

a local variable number.

83

Arithmetic Instructions : The arithmetic instructions compute a result that is

typically a function of two values on the operand stack, pushing the result

back on the operand stack. For example, the iadd instruction adds two

integers currently on the operand stack.

Object Creation and Manipulation : The instruction new is one of the most

commonly used instructions to create a new class instance. The instructions

to create a new array are also used often, especially while instantiating a

Tuple with parameters.

Operand Stack Management Instructions : These instructions, such as pop,

dup, and swap, directly manipulate the operand stack.

Control Transfer Instructions : In the apply method of many rules, conditional

branch instructions like ifeq or unconditional branch instructions like goto

are also used.

Method Invocation and Return Instructions : Method invocation instructions

such as invokespecial are used to invoke methods.

The JVM’s execution engine runs by executing bytecodes, one instruction at

a time. This process takes place for each thread of the application running in the

JVM. An execution engine fetches an opcode and if the opcode has operands, it also

fetches the operands. The engine executes the action requested by the opcode and

its operands before proceeding to the next opcode. Execution of bytecodes continues

until a thread completes, either by returning from its starting method or by not

catching a thrown exception.

4.2 Logic-to-Bytecode Compiler

Our second reasoning system, the Logic-to-Java Compiler, operates by creating

Rule instances for each rule and generating rule-specific inference routines based on

84

the structure of each rule head. We adapt this technique of creating specialized infer-

ence routines for each rule from Prolog. In Prolog, the routines are compiled to run

on an instance of the Warren abstract machine (WAM), which defines a close map-

ping between the terminology of logical deduction and execution of Prolog programs.

The WAM’s instruction set is optimized for logical deduction. As a result, Prolog

programs executing on a WAM exhibit high efficiency.

The JVM and the WAM have similar stack-based architectures. However, unlike

Prolog, we cannot optimize the JVM’s instruction set for logical deduction to achieve

efficiency similar to Prolog. This is because the Logic-to-Java Compiler uses a stan-

dard Java compiler to compiler Rule instances into corresponding Java classes. A

standard Java compiler is designed for use in a variety of domains, not just logical de-

duction. Our solution is to design our third reasoning system, the Logic-to-Bytecode

Compiler. The Logic-to-Bytecode Compiler has an enhanced logic compiler which

translates a rule into a compiled binary Java class file, instead of a Java source file as

generated by the Logic-to-Java Compiler. This process not only eliminates the need

to compile the Java source files with a standard Java compiler, but also allows us to

introduce bytecode-level refinements that take advantage of the stack-based operating

principles of the JVM.

4.2.1 Compiling Java Classes

The logic compiler of the Logic-to-Bytecode Compiler generates a class for a rule

by directly writing Java bytecodes to the Java class file. Generating Java classes in this

manner does not change the function performed by each class of a rule. The advantage

is that it allows us to refine the execution of the inference instructions of each rule in

a manner that takes advantage of the stack-based execution principles of the JVM.

To generate Java class files with this technique, we modify the procedures used by

the logic compiler of the Logic-to-Java Compiler to generate class files. Similar to the

85

Logic-to-Java Compiler the emitConstructor of the Logic-to-Bytecode Compiler also

uses three procedures to generate a rule’s constructor. The emitHead procedure now

generates bytecodes, instead of Java code, to instantiate a Literal for the head literal.

Similarly, the emitBody procedure generates bytecodes to instantiate the body literals

of a rule. Finally, the emitTerm procedure shown in Figure 4.2.1, which both emitHead

and emitBody invoke, generates bytecodes to build the terms of each literal. The

three procedures emitHead, emitBody, and emitTerm internally rely on the Jikes API

to generate the actual bytecodes. This API consists of various classes and methods

which accept as input JVM instruction mnemonics and operands for the desired

instructions. They translate these mnemonic opcodes and their operands into their

corresponding bytecodes and write them into a binary class file. Hence, procedures

like emitTerm supply the mnemonics and operands for each JVM instruction of the

constructor and the apply method of a rule to the Jikes API, which outputs the

corresponding binary Java class files.

procedure emitTerm(Term term) {

if (term is Constant){

// Push class reference from local variable 0

encode(opc aload 0)

// Push the constant’s value onto stack

encode(opc ldc,((Constant)term).getValue())

/∗ Call the static method lookup of class Constant

to generate an unique instance of the constant ∗/

encode(opc invokestatic ,findMethod(”Constant”,”lookup”,”(java.lang.String)”)

// Set the result as a value to a field 1

encode(opc putfield , field 1)

}else if (term is Variable){

// Push class reference from local variable 0

encode(opc aload 0);

// Create a new object reference of class Variable

encode(opc new, findClass(”Variable”));

86

// Make a copy of reference on stack

encode(opc dup)

// Push the variable ’s name on stack

encode(opc ldc,((Variable)term).getName())

// Invoke Variable’s constructor method

encode(opc invokespecial,findMethod(”Variable”,”<init>”,”(java.lang.String)”))

//Assign object reference on the stack as a value to a field

encode(opc putfield , field 1)

}else if (term is Tuple){

Tuple tuple = (Tuple)term;

// Generate term for the functor

emitTerm (tuple.functor);

// For each of the tuple ’s parameter invoke emitTerm.

for (int i = 0; i < tup.body.length; i++)

emitTerm(tuple.body[i]);

// Push the number of parameters of the tuple on the stack

encode(opc bipush, tuple.body.length);

// Create a new array object of class Term

encode(opc anewarray, findClass(”Term”));

// Push references to all the tuple ’s parameters on the stack.

for (int i = 0; i < tup.body.length ; i++) {

encode(opc dup);

// push the index of the parameter

encode(opc bipush, i);

// put the class reference on the stack.

encode(opc aload 0);

// Push the field ’s reference on the stack that stores the parameter

encode(opc getfield , paramter i);

// store the Term in the array location at the index

encode(opc aastore);

}

87

// Store the array reference temporarily

encode(opc astore 1);

encode(opc aload 0);

encode(opc new, findClass(”Tuple”));

encode(opc dup);

encode(opc aload 0);

encode(opc getfield , functor);

encode(opc aload 1);

encode(opc invokespecial,

findMethod(”Tuple”,”void”,”<init>”,”(Term,Term[])”)) ;

encode(opc putfield , local term);

}

}

In order to generate the instructions to build the head literal of a rule, the

emitHead procedure first invokes the emitTerm procedure. The emitTerm procedure

accepts a Term as input and generates appropriate instructions based on the type of

term. If the term is a constant, the instructions generated by emitTerm are:

// Push class reference from local variable 0

aload 0

// Push the string string onto the stack

ldc <String constant >

//

// Call the static method lookup of Constant class to

// generate an unique instance of the constant

// The result is available on the stack.

//

invokestatic Constant.lookup(<String>)

// Set the result as a value to a field constant

putfield <constant>

88

If the term is the first occurrence of a variable, the mnemonics generated by emitTerm

are:

// Push class reference from local variable 0

aload 0

// Create a new object reference of class Variable

new <Variable>

// Make a copy of reference on stack

dup

// Push the string representing the variable on stack

ldc <String variable>

// Invoke variable ’s constructor method

invokespecial variable

// Assign object reference on the stack as a value to a field variable

putfield <variable>

For the second and the subsequent occurrence of a variable in a term, the compiler

ensures that the instructions refer to the previously created variable instance by

generating following set of instructions.

// Push class reference from local variable 0

aload 0

// Retrieve the previously create variable instance.

getfield <variable>

If the term is a tuple, emitTerm first generates mnemonics for the functor. Next,

it generates the mnemonics for each of the term’s parameters by invoking itself and

then organizes the mnemonics for all the parameters into an array. Lastly, emitTerm

generates the following mnemonics for the tuple:

// Push class reference from local variable 0

aload 0

// Create a new object reference of class Tuple

new <class Tuple>

// Make a copy of the object reference

89

dup

// Push another class reference from local variable 0

aload 0

//

// Push reference from of the field that stores the functor.

getfield <functor>

// Push another class reference from local variable 0

aload 0

// Push reference to the array that store the parameters.

getfield <parameters>

// Invoke the Tuple’s constructor with the operands

// available on the stack top

// invokespecial Tuple

// Assign the instantiated object Tuple to a field tuple

putfield <tuple>

In this manner, emitTerm generates the instructions to build all the terms of a head

literal. The emitHead procedure then generates instructions to instantiate a Literal.

The emitBody procedure also follows a similar process. For each literal in the body,

it first invokes emitTerm to generate the instructions to build the term and then gen-

erates the instructions to instantiate a Subgoal for the literal. Thus, emitConstruc-

tor uses the emitHead and emitBody procedures to generate every rule’s constructor

method.

After generating JVM instructions for the constructor, the logic compiler gen-

erates the instructions for each rule’s apply method. Similar to the Logic-to-Java

Compiler, the logic compiler of the Logic-to-Bytecode Compiler uses the knowledge

about the structure of the rule head to create the apply method. For each rule, it

unfolds the unification steps that the generic unification algorithm would follow and

incorporates the corresponding Java bytecodes in the apply method. The matchCon-

stant, matchVariable, and matchTuple procedures still use the same guidelines as the

90

Logic-to-Java Compiler to predict the unification steps for a constant, variable, or tu-

ple with each possible type of subgoal term. The procedure matchConstant generates

JVM instructions to unify a constant appearing in the head term. The procedure

matchVariable generates JVM instructions to unify a variable appearing in the term

of the head literal. It generates different sets of instructions based on the variable’s

occurrence in the term. Since the logic compiler is aware of the complete structure

of a rule at compile time, it is able to distinguish the first occurrence of a variable.

matchVariable uses this knowledge, combined with the fact that the first occurrence

of a variable in a rule head will always be unbound, to skip the variable dereferencing

and the occurs check operations for the first occurrence of a variable. Similarly, since

the logic compiler can also distinguish subsequent occurrences of a variable, match-

Variable uses the knowledge that such an occurrence may be bound to a term and

generates instructions to dereference the variable and perform the occurs check.

The procedure matchTuple is used to generate JVM instructions to unify tuples

appearing in the term of the head literal. For each tuple, it first generates a set of

instructions which verify that the corresponding subgoal term is also a Tuple and

both the tuples have matching functors and the same number of parameters. Note

that for the rule head, matchTuple does not generate instructions to match the func-

tor and number of parameters with those in the subgoal term. These instructions

are avoided due to the rule index refinement, explained in Section 3.4.2, incorporated

in the Logic-to-Bytecode Compiler. Also, matchTuple does not explicitly generate

unification instructions for each parameter of a tuple. Instead, for each parameter it

invokes emitUnify, which examines the type of that parameter and generates appro-

priate unification instructions. The following listing shows the mnemonics generated

by the logic compiler for the apply method of the head term p(a, q(X, Y), X)) of a

rule.

91

Method boolean apply(Subgoal, Trail)

0: aload 1

1: getfield <Field Subgoal.term> // Extract the subgoal term

4: astore 3 // Store term in second variable

5: aload 2 //

6: invokevirtual <Method Trail.snapshot> // Take a snapshot of the trail

9: astore 4

11: aload 3 // Load subgoal term and

12: checkcast <class Tuple> // cast it to a tuple

15: astore 7 // Store it in local variable 7

17: aload 7

19: getfield <Field Tuple.body> // Load tuple’s body reference

22: iconst 0 // Load first parameter

23: aaload

24: astore 6

26: aload 6 ///////// Dereferencing

28: getfield <Field Term.termRef> // loop to dereference

31: aload 6 // the first parameter

33: if acmpeq 46 //

36: aload 6 //

38: getfield <Field Term.termRef> //

41: astore 6 //

43: goto 26 ////////

46: aload 6

48: aload 0

49: getfield <Field Constant ’a’> // Retrive head term − Constant ’a’

52: if acmpeq 91 // Compare it with dereferenced

55: aload 6 // first parameter.

57: instanceof <Class Variable> // Verify that the dereferenced

60: ifeq 83 // parameter is a Variable

63: aload 6

92

65: checkcast <Class Variable> // Cast dereferenced parameter

68: astore 5 // to a variable and store

70: aload 5

72: aload 0

73: getfield <Field Constant ’a’> // Retrieve head term − Constant ’a’

76: aload 2 // Bind Subgoal variable

77: invokevirtual <Method variable.bind(TermTrail)> // to head term ’a’

80: goto 91

83: aload 2

84: aload 4

86: invokevirtual <Method Trail.backtrack()> // Backtrack if the subgoal term

89: iconst 0 // does not unify with Constant ’a’

90: ireturn

91: aload 7

93: getfield <Field Tuple.body[]> // Load the second parameter

96: iconst 1 // from tuple

97: aaload

98: astore 6 /////// Dereferencing loop

100: aload 6 // to dereference

102: getfield <Field Term.termRef> // the second parameter

105: aload 6 //

107: if acmpeq 120 //

110: aload 6 //

112: getfield <Field Term.termRef> //

115: astore 6 //

117: goto 100 ///////

120: aload 6

122: aload 0

123: getfield <Field term> // Retrieve head term q(X,Y)

126: if acmpeq 261 // Compare it with subgoal term

129: aload 6 // Determine if the subgoal term

93

131: instanceof <class Variable> // is a Variable

134: ifeq 177

137: aload 6

139: aload 0

140: getfield <Field term> // Perform an occurs check to determine

143: invokestatic <Method occurrenceCheck(Term,Term)> // if the subgoal variable

146: ifne 169 // does not occur in head term q(X,Y)

149: aload 6

151: checkcast <Class Variable> // Occurs check fails ,

154: astore 5 // so cast the subgoal term to Variable

156: aload 5

158: aload 0

159: getfield <Field term> // Retrieve head term q(X,Y)

162: aload 2

163: invokevirtual <Method Variable.bind(Term,Trail)> // Bind variable to head term q(X,Y)

166: goto 261

169: aload 2

170: aload 4

172: invokevirtual <Method Trail.backtrack(TrailNode)> // Occurs check succeeds, backtrack

175: iconst 0

176: ireturn

177: aload 6

179: instanceof <Class Tuple> // Determine if second parameter is Tuple

182: ifeq 253

185: aload 6

187: checkcast <Class Tuple>

190: astore 8

192: aload 8

194: getfield <Field Tuple.functor> // Extract the tuple ’s functor

197: aload 0

198: getfield <Field functor> // Retrieve head term’s functor ’q’

201: if acmpeq 212

94

204: aload 2

205: aload 4

207: invokevirtual <Method Trail.backtrack(TrailNode)> // Functors don’t match, backtrack

210: iconst 0

211: ireturn // Functor’s match &

212: aload 8 // both have two parameters

214: getfield <Field Tuple.body[]> //

217: iconst 0 // Retrieve the tuple ’s first parameter

218: aaload //

219: astore 6

221: aload 0

222: getfield <Field Variable> // Retrieve head term − Variable ’X’

225: aload 6

227: aload 2 // First occurrence of variable ’X’

228: invokevirtual <Method Variable.bind(Term,Trail)> // Bind variable ’X’

231: aload 8 // to first parameter

233: getfield <Field Tuple.body[]>

236: iconst 1 // Retrieve tuple ’s second parameter

237: aaload

238: astore 6

240: aload 0

241: getfield <Field Variable> // Retrieve head term − Variable ’Y’

244: aload 6

246: aload 2 // First occurrence of the variable ’Y’

247: invokevirtual <Method Variable.bind(Term,Trail)> // Bind variable ’Y’ to second parameter

250: goto 261

253: aload 2

254: aload 4

256: invokevirtual <Method Trail.backtrack(TrailNode)>

259: iconst 0

260: ireturn

261: aload 7

95

263: getfield <Field Tuple.body[]> // Retrieve tuple ’s third parameter

266: iconst 2

267: aaload

268: astore 6

270: aload 6

272: aload 0

273: getfield <Field Variable> // Retrieve variable ’X’

276: aload 2 // Second occurrence of variable ’X’

277: invokestatic <Method unify(Term,Term,Trail)>// so unify variable ’X’ & third parameter

280: ifne 291 // after performing all the checks

283: aload 2

284: aload 4

286: invokevirtual <Method Trail.backtrack(TrailNode)> // Unification fails, so backtrack

289: iconst 0

290: ireturn

291: iconst 0

292: istore 7

294: iload 7 //////// The unification head term

296: aload 0 // and the subgoal term succeeds.

297: getfield <Field body:Subgoal> // Push the resulting instantiated

300: arraylength // body literals on the goal stack .

301: if icmpge 324 //

304: getstatic <Field Prover.goalStack> //

307: aload 0 //

308: getfield <Field body:[]> //

311: iload 7 //

313: aaload //

314: invokevirtual <Method goalstack.push(Subgoal)>

317: pop //

318: iinc 7, 1 //

321: goto 294 ////////

96

324: aload 1

325: aload 0

326: putfield <Field Subgoal.parent> // Set current rule instance

329: iconst 1 <Return true> // as subgoal ’s parent

330: ireturn // return success

Figure 4.6: Bytecodes generated by the Logic-to-Bytecode Compiler for the apply method

of head term p(a, q(X,Y), X). These instructions are equivalent to bytecodes generated by

compiling the apply method shown in Figure 3.13 using a standard Java compiler.

4.2.2 System Components

The Logic-to-Bytecode Compiler has the same underlying framework as that of

the Logic-to-Java Compiler. The logic compiler of the Logic-to-Bytecode Compiler

differs in its technique of generating a rule’s Java class file. It directly generates a class

for a rule by writing Java bytecodes representing the Java code to the Java class file.

Figure 4.7 shows the control flow between the components of the Logic-to-Bytecode

Compiler. The input to the preprocessor is a set of input clauses. In its parsing

phase, the preprocessor analyzes these clauses and generates as output instances of

Clause, one for each clause. In the compilation phase, the logic compiler takes the

Clause instances as input, analyzes each clause, and generates rules. Then, for each

rule the logic compiler generates a Java class file containing bytecodes representing

the JVM instructions to build the rule and inference instructions to apply the rule.

These Java class files form the Theory which is then used by the inference engine.

4.3 Refining Compiled Logic

Our design of the Logic-to-Bytecode Compiler’s logic compiler is motivated by

the need to exploit the similarities between the stack-based architecture of the JVM

and the logical deduction domain. To this end, our first step is to have the logic

97

FOL
Clauses

Preprocessor Proof
Display

Inference
Engine

Rule Instances

Goal

Rules As

Java Classes

Logic
CompilerParser

Figure 4.7. The Logic-to-Bytecode Compiler System Components

compiler directly write bytecodes to class files. The code listing of Figure 4.6 gener-

ated by the Logic-to-Bytecode Compiler’s logic compiler is not refined to exploit the

similarities, and is essentially equivalent to the code generated by the Logic-to-Java

Compiler with a standard Java compiler. This section discusses various limitations

within this code and the refinements we designed to overcome these limitations.

4.3.1 Bytecode Refinements

Our first set of refinements are the bytecode refinements. These refinements

are characterized by the fact that they each provide savings of only a few bytes at a

time.

4.3.1.1 Efficient variable allocation. The JVM stores the local variables for

each method in the local variables array in the method’s stack frame. These variables

are addressed by an index, with the first local variable stored at index zero. The JVM

permits 64k local variables to be declared in a single method. The JVM instruction

set includes generalized two-byte instructions to access any of these 64k variables.

However, the instruction set also provides single-byte instructions to access the local

variables of a method stored in locations 0 through 3 in the local variables array.

98

0: aload 2 // Load parameter Trail from variable 2
1: invokevirtual <Method Trail.snapshot> // Take a snapshot
4: astore 4 // Store it in local variable 4
6: aload 1 // Load subgoal from variable 1
7: getfield <Field Subgoal.Term> // Extract subgoal term
10: astore 3 // Store term reference in variable 3
11: aload 3

Figure 4.8: List of swapping instructions to illustrate the efficient variable allocation refine-
ment implemented by the Logic-to-Bytecode Compiler.

The code listing of Figure 4.6 shows the bytecodes generated for a sample apply

method that takes two parameters Subgoal and Trail. Consider the set of instruc-

tions labeled 0 through 19 in the Figure 4.6. These instructions indicate that with a

standard Java compiler local variables 1, 2, and 3 store references to Subgoal instance,

Subgoal’s Term and the Trail, respectively. The array location zero is occupied by a

reference to the object that executes the method. Neither of these references are used

frequently throughout the method. On the other hand, the instructions labeled 17,

19, 261 indicate that reference to the Tuple’s body is frequently pushed and popped

off the operand stack. Similarly, the instructions labeled 24, 26, 98, 100, indicate that

local variable 6 is frequently used to store and load results of a dereference opera-

tion. In this sequence of bytecodes the two most frequently used variables are always

accessed with the 2-byte instructions, since array positions 1 through 3 are occupied

by the two parameters and the reference to the subgoal’s term. The logic compiler of

the Logic-to-Bytecode Compiler is designed to make effective use of the single-byte

instructions provided to access the local variables 0 through 3. Examining the code

listing generated by a standard Java compiler to apply a rule, we observed that the

most frequently used variables are usually the reference to the subgoal term’s body

and the variable used to store the result of a dereference operation. We incorporated

this knowledge into the logic compiler so that it generates the bytecodes for each

rule’s apply method in such a way that these frequently used variables are stored in

99

18: aload 3 // Load parameter from variable 3
19: checkcast <Class Tuple> // Cast it to Tuple class
22: dup // Make a copy on the stack
23: astore 8 //
25: getfield <Field Tuple.body[]> // Reference to tuple’s body

Figure 4.9. Successive store and load instructions replaced by dup and store instructions.

the first four array locations and are therefore accessible by the single-byte instruc-

tions. Figure 4.8 shows the swapping instructions for the method of Figure 4.6. These

swapping instructions free-up the local variables 1 and 2 which the logic compiler uses

to access the two most frequently used variables: reference to the subgoal’s body and

the result of the dereference operation.

4.3.1.2 Store followed by fetch. In a rule’s Java class there are a number of

occasions when an intermediate result is stored in a local variable and is immediately

pushed on the stack for the next operation. For example, consider the instructions

labeled 15, 17 or 24, 26 shown in Figure 4.6. These instructions store the data on the

operand stack in a local variable and immediately fetch it in the next step. Such a

store-fetch instruction pair can be replaced by a dup-store instruction pair, which re-

tains a copy of the object on the stack, thereby saving on the fetch instruction. Since

the fetch is a three-byte instruction, replacing it with the two-byte dup instruction

saves one byte. While a single byte saving may not seem significant, the store-fetch

instruction pairs occurs frequently in the apply method of each rule compiled by stan-

dard Java compilers. Thus, saving a single byte for each replacement of store-fetch

pair with dup-store results in compact code. Figure 4.9 shows the modified bytecode

sequence generated by Logic-to-Bytecode Compiler for the instruction pair 15, 17 of

Figure 4.6.

100

19 getfield <Field Term. body[]> // Load reference to a Tuple’s body
22 dup // Make a copy of this reference ,
23 iconst 0 // and retain original on the stack
24 aaload // Use the copy to access the first parameter
.
.
.
62 dup // Make a second copy of the tuple’s body reference
63 iconst 1 // Use it to access the second tuple ’s parameter
64 aaload

.

.

.
168 iconst 2 // Finally use the original copy to access
169 aaload // the third and final parameter of the tuple

Figure 4.10: Replacing duplicate data load instructions with load-and-dup pair of instruc-
tions to eliminate duplicate data load instructions.

4.3.1.3 Eliminating duplicate loads. Consider the set of instructions labeled 17

through 22, 91 through 96, and 261 through 266 from Figure 4.6. These instructions

load a reference to a Tuple’s body every time the tuple’s parameters need to be

accessed. The reference to a tuple’s body is never modified in an apply method.

Moreover, these instructions operate on data not stored in the first four locations of

the local variables array. As a result, each load of the tuple’s reference requires a

two-byte instruction. If the compiler is aware of such operations, it can avoid the two

loads by simply duplicating the variable on the stack via a single-byte dup instruction

when it is first loaded, thereby saving one byte. The Logic-to-Bytecode Compiler is

designed to replace the duplicate load instructions by a load-dup pair. It applies

this refinement while generating instructions for a rule’s apply method. Figure 4.10

shows the refined bytecodes generated by Logic-to-Bytecode Compiler to replace the

multiple instructions to load tuple reference.

101

4.3.2 Dereference Loop Refinements

Loops and control instructions are one of the promising sources of optimization

in any program. The Logic-to-Bytecode Compiler applies some refinements to the

loops used extensively during ME extension. One example is the while loop that

contains instructions to dereference terms. Since the logic compiler does not have

knowledge about the types of subgoal terms, it generates the dereference loop to

dereference each subgoal term encountered. This makes the dereference loop one of

the most frequently executed set of instructions during extension. To understand the

refinements the logic compiler implements for the dereference loop, let us consider

a while loop implemented in Java shown in Figure 4.11(a). Figure 4.11(b) shows

the mnemonics for the bytecodes that a standard Java compiler generates for this

while loop. An interesting point to note in this sequence is the placement of the

conditional jump instruction if_icmplt, which represents the test condition i < 100.

Instructions generated by a standard Java compiler place the instruction for the test

condition i < 100 after the loop body. In our attempt to improve the efficiency

of this loop we find that it is possible to rearrange the placement of the dereference

loop test condition in six different ways, based on the contents of the operand stack.

Each placement of the loop test condition affects the performance of the dereference

loop in a different way. Figure 4.12 shows these implementations. The mnemonic

sequence shown in Figure 4.12(Loop Std) is generated by the standard Java compiler

and starting with Figure 4.12(Loop 1) are our five alternative implementations of the

dereference loop.

The mnemonic sequence for the dereference loop generated by a standard Java

compiler, shown in Figure 4.12(Loop Std), is characterized by the placement of the

conditional jump instruction if_acmpne <offset>. This instruction compares the

two objects currently on the operand stack. If the two objects are equal, the execu-

tion proceeds to the next instruction. Otherwise, the control jumps back to the offset

102

void whileLoop(){
int i = 0;
while(i < 100){

i++;
}
}

(a) Java code for a while loop that iterates from 1 to 100

0 iconst 0 // Push the number zero on the stack
1 istore 1 // Pop number zero from the stack into local

variable 1
2 goto 8 // Jump to offset 8
5 iinc 1 1 // Increment local variable 1 by 1
8 iload 1 // Push data from local variable 1
9 bipush 100 // Push the value 100
11 if icmplt 5// Check if local variable is less than 100

// and jump to 5 to continue

(b) Mnemonic sequence of a while loop that iterates from 1 to 100

Figure 4.11: Java code of a while loop and its mnemonics generated by a standard Java
Compiler.

label b and again executes the loop. There are various drawbacks in this particular se-

quence of mnemonics in the context of the dereference operation. First, the execution

of the loop begins with a jump instruction goto, which requires the JVM to execute

a jump even before it executes the body of the loop. Second, before executing the

conditional jump instruction if_acmpne, the loop loads the term twice from the local

variable: first to dereference the variable and then again to use it for the comparison

operation. We make the following refinements to eliminate these drawbacks.

For the second drawback, the duplicate loading of the variable, we modify

the compilation technique of the Logic-to-Bytecode Compiler to replace the load-

dereference-load-compare sequence of mnemonics by a load-dup-dereference-compare

sequence of mnemonics as shown in Figure 4.12(Loop 1). Now, when the execution

reaches label b, instead of performing two load instructions, it makes a copy of the

103

label_a:

label_b:

label_a:

label_b:

astore term
goto label_b
aload term
getfield term.termRef
astore term

getfield term.termRef
aload term
if_acmpne label_a

aload term

astore term

dup
aload term

getfield term.terRef
if_aeq label_b
aload term
get term.termRef
astore term
goto label_a....

// Store term in local variable term
// Jump to instruction at label_b
// Load term from local variable
// Dereference the term
// Store the new term in local variable term

// Load term from local variable
// Dereference the term
// Load term from local variable
// Compare the two terms
// Jump to label_b if they are not equal

// Store data in local variable term

// Make a copy of the term on stack
// Load data from local variable rm

// Dereference the term

// Otherwise, load term from local variable
// Dereference the term
// Store the dereferenced term
// Jump to label_b and repeat the loop

// If the two terms are equal jump to label_b

label_a:

label_b:

astore term
goto label_b
aload term
getfield term.termRef
astore term

if_acmpne label_a

aload term
dup
getfield termRef

// Store the new term in local variable term

// Store term in local variable term
// Jump to instruction at label_b
// Load term from local variable
// Dereference the term

// Load term from local variable

// Compare the two terms
// Jump to label_b if they are not equal

// Copy the term on the stack
// Dereference the stack top

Loop Std Loop 1

Loop 2

label_b:

label_a: dup
dup
getfield term.termRef
if_acmeq label_b
getfield term.termRef
goto label_a
...
...

// Make a copy of the term on the stack

// Dereference the stack top
// Jump to label_b if the terms are qual
// Dereference the stack top
// Jump to label_a to repeat

// Make a second copy on the stack

dup // Duplicate the term on stack

// term available on stack

label_a:
label_b:

goto label_b
getfield term.termRef
dup
dup
getfield term.termRef
if_acmpneq label_a
dup
astore

// Jump to label_b
// Dereference the stack top
// Make a copy of the term
// Make another copy of therm
// Dereference the stack top
// Jump to label_a if the two terms are not equal
// Make a copy of the term
// Store the term locally for future reference

// term available on stack

// term available on stack// term available on stack

// term available on stack
// term available on stack

getfield term.termRef // Dereference the variable
// Make a copy of the dereferenced term

// below the second term from top
if_acmpneq label_a // Jump to label_a if the terms are not equal

label_a:

dup_x1

Loop 3

Loop 4 Loop 5

// Insert the dereferenced term

Figure 4.12: Dereference loop implementations studied to achieve efficient execution of
dereferencing operation.

term on the stack and accesses the term’s termRef field to prepare for the comparison.

To overcome the first drawback of the while loop, we modify the Logic-to-Bytecode

Compiler to create a second implementation of the dereference loop as shown in Figure

4.12 (Loop 2). It generates instructions to replace the goto – if_acmpne instruction

pair with if_aeq to eliminate the unconditional jump executed due to goto. Even

though the sequence of instructions of Figure 4.12(Loop 2) eliminates the extra jump

104

instruction, the loop begins with a store and load pair of instructions. To overcome

this drawback, we further modify the Logic-to-Bytecode Compiler to create the third

implementation of the dereference loop as shown in Figure 4.12(Loop 3).

The Loop 3 implementation replaces the store-load instruction pair with a dup-

store pair. This placement allows us to include a dup instruction that makes a copy

of the term to be dereferenced on the stack and manipulate it on the stack without

storing the intermediate results. Only the final result is stored once the dereferencing

completes, thus minimizing the load and store instructions. The execution of the

third implementation of the dereference loop begins by first loading the term from a

local variable, dereferencing it using the operand stack without storing intermediate

results locally, and ends by storing the result in a local variable. Thus, the instructions

surrounding the dereference loop are load and store.

In the fourth implementation, shown in Figure 4.12(Loop 4), we modified the

Logic-to-Bytecode Compiler such that it does not generate the load and store in-

structions surrounding the dereference loop. Instead, it generates the instructions

preceding the dereference loop so that they leave a copy of the term under consider-

ation on the operand stack. The dereference loop dereferences this term using only

the operand stack, without storing intermediate results locally. Finally, instead of

storing the dereferenced result locally, this implementation of the loop leaves it on

the stack, making it available for the next set of instructions in the apply method.

This eliminates the load and store surrounding the dereference loop.

The fifth implementation, shown in Figure 4.12(Loop 5), is the refined version

of the fourth implementation. It uses a dup_x1 instruction, which duplicates the

dereferenced term on the stack and inserts the duplicate before the existing term

on the stack. For example, if the two terms on the stack are X and Y , where Y

is the term obtained by dereferencing X, the dup_x1 would make a copy of Y on

the stack and insert this copy below the second term, X, on the stack. The last two

105

p

a X

Figure 4.13: Tree representation of a tuple p(a,X), where p is the root, and a and X are
leaf nodes.

implementations of the dereference loop are designed to support the stack-based term

decomposition refinement, explained next.

4.3.3 Stack-Based Term Decomposition

The JVM is stack-oriented, with most operations taking one or more operands

from the stack or pushing results back onto the stack. While the refinements described

so far, such as bytecode and dereference loop, enable the Logic-to-Bytecode Compiler

to generate compact code, they do not exploit the stack-based architecture of the

JVM. A first-order logic term can be visualized as a tree. For instance, constants and

variables can be viewed as trees with only a root node and no child nodes. A tuple

can be viewed as a tree whose root is the functor and whose child nodes represent the

tuple’s parameters. Figure 4.13 shows the tree representation of the tuple p(a, X),

with p as the root and constant a and variable X as child nodes. Accordingly, the

unification of two terms can be modeled as a concurrent depth-first traversal of the

trees representing the two terms. At each step in the traversal, unification of the

corresponding terms in the tree is performed. For example, as shown in Figure 4.14

the unification of terms p(a, X) and p(Y, Z) involves traversing the trees for these two

terms simultaneously. In the first step, the traversals accesses the two functors and

attempts to match them. Since they match, the traversals proceeds to the left most

106

a X

X

a

Y Z

Y

pp

pp

Z

p p

a

X Z

[Step 1]

[Step 2]

[Step 3]

Y

Figure 4.14: Concurrent traversal of two trees representing two terms p(a,X) and p(Y,Z).
Nodes marked in bold are the terms being unified at each step.

node in each tree, a and Y respectively. Their unification succeeds. In the last step,

the traversals attempt to unify the two remaining terms X and Z. This unification

also succeeds. In a similar manner, the unification of a head term with a subgoal

term, attempted during an ME extension operation, can be modeled as a concurrent

depth-first traversal of the trees representing the two terms.

The structure of a rule’s head term is known at compile time. Hence its depth-

first traversal is also known at compile time. For example, traversing the head term

p(a, b, s(W)) in a depth-first manner is equivalent to accessing the Term instance for p,

followed by accessing a, b, and s(W) in that order. The logic compiler translates the

107

depth-first traversal steps of a head term into instructions that retrieve each element

of the head term in the depth-first order and places them in the rule’s apply method.

In contrast, the structure of a subgoal term is not known in advance. Hence, the

instructions generated by the logic compiler, which must take into account all possible

types of subgoal terms, are not tailored to perform a depth-first traversal of the sub-

goal term efficiently. For example, consider the instructions from Figure 4.6 labeled 11

through 90, executed by the JVM for the unification of a head term p(a, q(X, Y), X)

with any subgoal term. It first stores the subgoal term as a tuple in a local vari-

able. The JVM immediately loads the tuple’s body reference on the operand stack

to retrieve the tuple’s first parameter. This parameter could be any one of constant,

variable, or a tuple. So the JVM first dereferences it. It then stores the dereferenced

term in another local variable. This dereferenced term is immediately reloaded onto

the stack. The JVM then loads the constant a on the stack, and compares the two

instances. If this comparison fails, the JVM again reloads the dereferenced term on

the stack to determine if its a Variable. If it identifies that the term is a Variable,

the JVM reloads the constant a on the stack and binds the variable to the term a.

Performing a stack-based depth-first traversal of the subgoal term can eliminate

the repeated load-store instructions. The same set of instructions could be: store the

subgoal term as a tuple locally in the apply method. Load the tuple’s body reference

on the operand stack and make a copy of the reference and use it to retrieve the

first parameter using this reference. Dereference the first parameter. Make a copy

of the dereferenced term on the stack. Load the constant a and compare it with the

dereferenced term available on the stack. If they are identical, the two term unify. If

they do not match, then make a second copy of the dereferenced term on the stack

and use it to determine if is a Variable. If the JVM identifies the term as a variable,

then load the constant a and bind variable, using the dereferenced term available on

the operand stack, to the constant a to complete the unification.

108

The ability to generate bytecodes allows the logic compiler to use the operand

stack, provided by the JVM for each method, to implement a stack-based depth-first

traversal of the subgoal term at compile-time. In addition, the rich set of stack-

manipulating instructions provided by the JVM are made available for the logic com-

piler to implement an efficient traversal of the subgoal term. This technique of laying

out the abstract steps at compile-time that perform a stack-based depth-first traversal

of a subgoal term at runtime is called stack-based term decomposition.

The logic compiler of the Logic-to-Bytecode Compiler is designed to generate

instructions for each rule that unify a head term with a subgoal term by performing a

concurrent depth-first traversal of the two terms. It translates the depth-first traversal

steps of a head term into instructions that retrieve each element of the head term in

the depth-first order. The instructions to perform a stack-based term decomposition

of the subgoal term make use of the JVM operand stack and its stack-manipulating in-

structions. The main caveat to the stack-based term decomposition using an operand

stack is, the state of the operand stack should be properly restored after the traversal

completes. Restoring the state of the stack is easy when the subgoal term successfully

unifies with the head term. However, at any stage in the traversal, if the unification

between the corresponding terms fails, all the terms on the operand stack should be

popped off to restore the stack to its state prior to the unification. To handle such

cases, the logic compiler uses the compile-time knowledge of the structure of the head

term to accurately estimate the number of elements on the operand stack at each

step in the traversal and generates instructions to pop those elements. Specifically,

it uses the depth of each node in the tree for the head term to predict the number

of references on operand stack. For example, consider the instructions generated for

the head term p(a, q(X, Y), X). Figure 4.15 shows the tree for this head term. If the

unification of any of the terms a, q(X, Y), or X with the corresponding subgoal term

fails, then pop one term. Since the depth of these terms is one, the logic compiler

109

predicts that there will be one reference on the stack, the reference to a tuple. Sim-

ilarly, to handle the case where the unification of either X or Y could fail, the logic

compiler generates instructions to pop two terms off the operand stack, since X and

Y are at depth two.

To understand the unification of two terms using stack-based term decompo-

sition, consider the unification of the head term p(a, q(X, Y), X) with the subgoal

p(W, q(Z, Z), s(W)). Figures 4.15, 4.16, and 4.17 illustrate the unification. The

first column of these figure shows the instructions generated to unify the head term

p(a, q(X, Y), X) with any subgoal. The second and third columns of the Figures 4.15

and 4.16 show the tree representations of the head term and the subgoal term respec-

tively at each unification step. Each leaf node in these trees represents a variable or a

constant. Each non-leaf node represents a functor of a tuple, having branches point-

ing to the nodes representing each of its parameters. Variables occurring more than

once in the same term are represented by a single node with two or more branches

pointing to it. The nodes in the head term and subgoal term trees marked in bold

are the nodes currently visited and represent the pair of terms being unified. The

instructions to unify them appear in the first column alongside the two trees and the

contents of the operand stack at the start of the unification step appear in the fourth

column. We walk through each step of the unification illustrated in the figure.

(1) The first step verifies that the head term and the subgoal term have the same

functor and same number of parameters. The use of the rule index to obtain

a rule whose key matches the subgoal’s key eliminates the need to explicitly

do these verifications. This step results in a reference to an array containing

the parameters of the subgoal tuple p being pushed onto the operand stack.

(2) The traversal proceeds to the first parameter in the subgoal and the constant

a in the head term. A copy of the array reference currently on the stack top

is created. This reference is popped off the stack and used to retrieve the first

110

parameter of the subgoal tuple p, which is pushed onto the operand stack.

This term is dereferenced and compared with the constant a from the head.

Since they do not match, the type of the dereferenced term is verified to be a

variable. Since W is a variable, it is bound to the constant a, causing W to

be popped off the operand stack. At the end of this step, the operand stack

contains the array reference to the parameters of subgoal tuple p.

(3) A copy of the array reference on the stack top is created and then popped off

the stack to retrieve the second parameter q(Z, Z). This parameter is pushed

onto the operand stack and dereferenced. The dereferenced term is identified

as a tuple and a reference to the tuple q(Z, Z) is pushed on the stack. It is

verified that q(Z, Z) has two parameters, since the next term from the head

to be unified, q(X, Y), is also a tuple with two parameters. Next, the functor

q from q(Z, Z) is pushed onto the stack and popped off to compare with the

functor q from the head term. Since the two functors match, step 3 concludes

with the array reference to the parameters of the subgoal tuple p and the

reference to the tuple q(Z, Z) left on the stack.

(4) This step begins by popping the reference to the tuple q(Z, Z) off the stack

to retrieve a reference to the array containing the two tuple parameters Z

and Z and placing it on the stack. A copy of this array reference is created

on the operand stack and popped off to retrieve the first parameter Z. This

parameter is pushed on onto the operand stack to be unified with the first

parameter X of tuple q(X, Y) from the head term. Since this is the first

occurrence of X in the head term, X is bound to the subgoal parameter Z

without performing dereferencing and an occurs check. The unification step

pops Z off the stack, leaving two values on the operand stack – the bottom

one is the array reference for the parameters of subgoal p(W, q(Z, Z), s(W))

and the top one is the array reference for the parameters of tuple q(Z, Z).

111

p

a q

YX

p

W

sq

Z

p

a q

YX

p

W

q

Z

s

 19 getfield #88 <Field Term body[]>
 16 checkcast #52 <Class Tuple>
 // Push subgoal tuple array

X

p

a q

Y

q

Z

s

p

W

p(W,q(Z,Z),s(W))

[W,q(Z,Z),s(W)]

[W,q(Z,Z),s(W)]

Operand Stack

 82 aload_1
 83 instanceof #37 <Class Variable>
 86 ifeq 116
 89 aload_1
 90 aload_0
 91 getfield #57 <Field Term sub_3>
 94 invokestatic #101 <Method boolean occurrenceCheck(Term, Term)>
 97 ifne 232
 100 aload_1
 101 checkcast #37 <Class Variable>
 104 aload_0
 105 getfield #57 <Field Term sub_3>
 108 aload 5
 110 invokevirtual #95 <Method void bind(Term, Trail)>
 113 goto 168

Bytecode Subgoal TermHead Term
Method boolean apply(Subgoal, Trail)
 0 aload_2
 1 dup
 2 astore 5

 7 astore 6
 9 aload_1
 10 dup
 11 astore 4
 13 getfield #85 <Field Term t>

 4 invokevirtual #82 <Method TrailNode snapshot()>

 // Match subterm a

 // Match subterm q(X,Y)
 62 dup
 63 iconst_1
 64 aaload
 65 dup
 66 getfield #91 <Field Term next>
 69 dup_x1
 70 if_acmpne 65
 73 dup
 74 astore_1
 75 aload_0
 76 getfield #57 <Field Term sub_3>

 22 dup
 23 iconst_0
 24 aaload
 25 dup
 26 getfield #91 <Field Term next>
 29 dup_x1
 30 if_acmpne 25
 33 dup
 34 astore_1
 35 aload_0
 36 getfield #31 <Field Term sub_2>
 39 if_acmpeq 62
 42 aload_1
 43 instanceof #37 <Class Variable>
 46 ifeq 232
 49 aload_1
 50 checkcast #37 <Class Variable>
 53 aload_0
 54 getfield #31 <Field Term sub_2>
 57 aload 5

[Step 1]

[Step 2]

[Step 3]

 59 invokevirtual #95 <Method void bind(Term, Trail)>

 79 if_acmpeq 168

Figure 4.15: The bytecodes and the state of the operand stack that compare the func-
tors p, bind W to a during the unification of the two terms p(a, q(X,Y), X) and
p(W, q(Z,Z), s(W)). The first column of these figure shows the bytecode mnemonics gener-
ated for the head term. The second and third columns show the tree representations of the
head term and the subgoal term respectively at each unification step. The nodes marked
in bold represent the pair of terms being unified.

112

[Z,Z]

[W,q(Z,Z),s(W)]

[Z,Z]

[W,q(Z,Z),s(W)]

[W,q(Z,Z),s(W)]

p

W

q

Z

s

p

W

q

Z

s

p

W

q

Z

s

Subgoal Term

p

a q

YX

p

a q

YX

p

a q

YX

Head Term

 178 invokestatic #109 <Method boolean unify(Term, Term, Trail)>
 181 ifne 187

 // Match second occurrence of X
 168 iconst_2
 169 aaload
 170 astore_1
 171 aload_1
 172 aload_0
 173 getfield #44 <Field Variable sub_5>
 176 aload 5

Bytecode

[Step 4]

[Step 5]

 116 aload_1
 117 instanceof #52 <Class Tuple>

 141 dup
 142 iconst_0
 143 aaload
 144 astore_1
 145 aload_0
 146 getfield #44 <Field Variable sub_5>
 149 aload_1
 150 aload 5

 // Match subterm X

 // Match subterm Y

 156 aaload
 157 astore_1
 158 aload_0
 159 getfield #48 <Field Variable sub_6>
 162 aload_1
 163 aload 5

 155 iconst_1

 152 invokevirtual #95 <Method void bind(Term, Trail)>

 165 invokevirtual #95 <Method void bind(Term, Trail)>

 120 ifeq 232

[Step 6]

Operand Stack

 123 aload_1
 124 checkcast #52 <Class Tuple>
 127 dup

 131 aload_0
 132 getfield #35 <Field Term sub_4>
 135 if_acmpne 231
 138 getfield #88 <Field Term body[]>

 128 getfield #105 <Field Constant functor>

Figure 4.16: Stage in the unification of the two terms p(a, q(X,Y), X) and
p(W, q(Z,Z), s(W)) that illustrate the state of the operand stack when the bytecodes unify
q(X,Y and q(Z,Z) and bind X to s(W). The first column of these figure shows the byte-
code mnemonics generated for the head term. The second and third columns show the tree
representations of the head term and the subgoal term respectively at each unification step.
The nodes marked in bold represent the pair of terms being unified.

113

(5) To unify the second parameter of tuple q(Z, Z), which is also the last, with the

second parameter Y of tuple q(X, Y) from the head term, the array reference

at the stack top is popped off the stack and used to retrieve the second

parameter Z. Again, since it is the first occurrence of Y in the head term,

Y is bound to the subgoal parameter Z, without performing dereferencing

and an occurs check. At the end of this step, the stack contains the array

reference for the parameters of subgoal p(W, q(Z, Z), s(W)).

(6) This step unifies the last parameter X of the head term with the last param-

eter s(W) of the subgoal term. The array reference at the top of the stack is

popped off the stack and used to retrieve the third parameter s(W). Since

this is the second occurrence of X in the head term, it is verified that X does

not occur in s(W) before binding X to s(W). This step successfully com-

pletes the unification between the head term p(a, q(X, Y), X) and the subgoal

term p(W, q(Z, Z), s(W)), with the operand stack empty.

(7) The last step considers the result of the unification. If the unification suc-

ceeds, the instructions from offset 184 through 230, shown in Figure 4.17,

execute. They push the body of the rule onto the goal stack and return

success.

(8) The logic compiler generates a special set of instructions to handle the case

where the unification can fail. In order to restore the state of the operand

stack at any stage in the unification, the logic compiler adds pop instructions

at the end of each apply method. The number of pops generated is equal

to the the depth of the tree representation of the head term. Instead of

placing one or more pop instructions in each portion of the apply method

that handles the failed unification of a term,the logic compiler simply places

a jump instruction that shifts the execution to the pop instructions placed

114

//

//

//

//

// When unification fails

// pop exact number of references

// on the operand stack

// and return failure

// When unification succeeds

// push the instantiated subgoals

// on the goal stack

// and return success

//

//

//

//

////////////

////////////

////////////

////////////

Operand StackBytecode Subgoal TermHead Term
 // Success

 184 goto 233
 187 iconst_0
 188 istore 7
 190 goto 213
 193 getstatic #115 <Field java.util.ArrayList gs>
 196 aload_0
 197 getfield #74 <Field Subgoal body[]>
 200 iload 7
 202 aaload
 203 invokevirtual #121 <Method boolean add(java.lang.Object)>
 206 pop
 207 iload 7
 209 iconst_1
 210 iadd
 211 istore 7
 213 iload 7
 215 aload_0
 216 getfield #74 <Field Subgoal body[]>
 219 arraylength
 220 if_icmplt 193
 223 aload 4
 225 aload_0

 229 iconst_1
 226 putfield #125 <Field Rule r>

 230 ireturn

 // Failure

 231 pop
 232 pop
 233 aload 5
 235 aload 6
 237 invokevirtual #129 <Method void unwind(TrailNode)>
 240 iconst_0
 241 ireturn

//

//

//

//

//

//

Figure 4.17: Instructions generated to handle success or failure of the unification. Instruc-
tions labeled 184 through 230 push the instantiated subgoals on the goal stack and return
success. The instructions labeled 231 through 241 are the pop instructions generated to
restore the state of the operand stack when the unification fails. The number of pop in-
structions generated, two, is equal to the the depth of the tree representation of a rule’s
head term.

at end. The address of the jump instruction ensures that the number of pop

instructions executed restore the operand stack to its state before the failure.

This technique leads to an overall decrease in the number of instructions ex-

ecuted to apply a rule. While stack-based term decomposition utilizes the operand

stack for the depth-first traversal of the subgoal term, it uses the stack in a slightly

different manner from most stack-based depth-first traversals. Usually, stack-based

depth-first traversals operate by pushing all the child nodes of a certain non-leaf node

onto the stack before processing them. In contrast, stack-based term decomposition

115

pushes a reference to a non-leaf node on the stack. It then repeatedly uses this refer-

ence to access each of its children one at a time instead of pushing all of them onto the

stack. This approach is chosen in order to accommodate the JVM’s implementation

of the operand stack in register-centric architectures. In register-centric architectures

the JVM’s operand stack is maintained in the main memory. This implementation

results in excess memory transactions to push and pop data between local variables

and the operand stack and again between the operand stack and the CPU regis-

ters. Our technique of loading the child nodes one at a time minimizes the memory

transactions, while still exploiting the stack-based nature of the JVM for unification.

CHAPTER FIVE

Evaluation

This chapter describes the evaluation of our three reasoning systems. Our

evaluation is based on the results obtained by testing each reasoning system with two

suites of problems. The first suite is made up of problems that we designed to test

the behavior of our reasoning systems under various conditions. The second suite

consists of problems from the TPTP problem library (Sutcliffe, Suttner, and Yemenis

1994). The TPTP is a large collection of first-order logic problems which serve as a

common suite for evaluation and comparison of reasoning systems.

5.1 Test Problem Suite

1) match(bb, bb, bb)
2) ¬match(bb, Y, Z) ∨match(bb, s(X, Y), s(X, Z))
3) ¬match(X, s(1, Y), Z) ∨match(s(0, X), Y, Z)
4) ¬match(X, s(0, Y), Z) ∨match(s(0, X), Y, Z)

(a) Class 1 input clause set

Goal G11: ¬match(s(0, s(0, s(0, s(0, s(0, s(0, s(0, s(0, s(0, s(0, s(0, bb))))))))))),
Y, s(0, s(1, s(0, s(1, s(0, s(1, s(0, s(1, s(0, s(1, s(0, bb))))))))))))

Goal G12: ¬match(s(0, s(0, s(0, s(0, s(0, s(0, s(0, s(0, s(0, s(0, s(0, s(0, bb)))))))))))),
Y, s(0, s(1, s(0, s(1, s(0, s(1, s(0, s(1, s(0, s(1, s(0, s(0, bb)))))))))))))

Goal G13: ¬match(s(0, s(0, s(0, s(0, s(0, s(0, s(0, s(0, s(0, s(0, s(0, s(0, s(0, bb))))))))))))),
Y, s(0, s(1, s(0, s(1, s(0, s(1, s(0, s(1, s(0, s(1, s(0, s(1, s(0, bb))))))))))))))

(b) Class 1 goal set used in the evaluation.

Figure 5.1: The class 1 clause set and goals designed to generate long-skinny proof trees.
The tree is skinny because the proof is found on a single branch of the tree.

Our test suite is designed to test the effectiveness of the proof process and

the refinements implemented in our reasoning systems. It consists of five classes of

116

117

[X/0, Y/bb, Z/bb]

[X/0, Y/s(0,bb), Z/s(0,bb)]

[X /bb, Y/s(0,bb), Z/s(0,s(0,bb))]

[X /s(0,bb), Z/s(0,s(0,bb))]

match(s(0, s(0,bb)), Y, s(0,s(0,bb)))

match(s(0,bb), s(0, Y), s(0,s(0,bb)))

match(bb, s(0, s(0, Y)), s(0, s(0, bb)))

match(bb, s(0, bb), s(0, bbl))

match(bb, bb, bb)

Figure 5.2: An example of a long-skinny proof tree derived for the goal
match(s(0, s(0, bb)), Y, s(0, s(0, bb))) from the Class 1 clause set of Figure5.1(a).

problems. Each class of problems has an input clause set and three goals to be proved.

Our aim is to record the execution time of each reasoning system as it proves the goals

from all five classes of problems.

5.1.1 Class 1: Long-Skinny Proof Trees

Our first class of problems is designed to observe the performance of the iterative-

deepening strategy, a combination of breadth and depth-first search strategies, used

in our reasoning systems to find the proof for a subgoal. Specifically, the first

class of problems is designed such that the proof is found by traversing deep down

on a single branch of a proof tree. To achieve this, the input clause set for this

class of problems consists of simple clauses, each having at the most two literals.

Figure 5.1(a) shows the input clause set used in our evaluation. Consider the proof

tree for match(s(0, s(0, bb)), Y, s(0, s(0, bb))), shown in Figure 5.2. Since each clause

has at the most two literals, each ME extension step generates a single subgoal, caus-

ing every node in the proof tree to have exactly one branch and making the proof

118

1) guess(bb, Z)
2) check(bb, bb)
3) ¬check(Y, Z) ∨ check(s(X, Y), s(X, Z))
4) ¬guess(X, s(0, Y)) ∨ ¬guess(X, s(0, Y)) ∨ ¬guess(X, s(0, Y)) ∨ guess(s(0, X), Y)
5) ¬check(Y, Z) ∨ ¬guess(X, Y) ∨ ¬check(Y, Z) ∨ ¬guess(X, Y)∨
¬check(Y, Z) ∨ ¬guess(X, Y) ∨ ∨match(X, Y, Z)

(a) Class 2 input clause set designed to generate fat-bushy proof trees

Goal G21: ¬match(s(0, s(0, s(0, bb))), Y, s(0, s(0, s(0, bb))))
Goal G22: ¬match(s(0, s(0, s(0, s(0, bb)))), Y, s(0, s(0, s(0, s(0, bb)))))
Goal G23: ¬match(s(0, s(0, s(0, s(0, s(0, bb))))), Y, s(0, s(0, s(0, s(0, s(0, bb))))))

(b) Class 2 goal set used in the evaluation.

Figure 5.3. The Class 2 Clause Set And Goals

tree skinny. Finding the proof therefore requires the proof procedure to traverse the

entire depth of the single branch of this tree. We use the goals G11, G12, and G13

shown in Figure 5.1(b) for all our evaluations.

5.1.2 Class 2: Fat-Bushy Proof Trees

Class 2 problems are also designed to test the performance of the iterative-

deepening search strategy. They test the cases when the proof is found at a shallow

depth in the proof tree, but only after traversing the entire breadth of the proof

tree. To generate such proof trees, the input clause set of Class 2 problems, shown

in Figure 5.3(a), consists of clauses which generate several subgoals at each ME

extension step. For example, when a subgoal term ¬guess(s(0, bb), Y) unifies with

the head term guess(s(0, X), Y) from the fourth clause, it generates three subgoals

¬guess(bb, s(0, Y)), ¬guess(bb, s(0, Y)), and ¬guess(bb, s(0, Y)). This characteristic

contributes to the breadth of the proof tree. Figure 5.4 shows one such proof tree

for the goal match(s(0, s(0, bb)), Y, s(0, s(0, bb))), based on the input clause set of

Figure 5.3(a). This proof tree is fat and bushy, because it has a shallow depth, the

119

match(s(0,bb),Y,s(0,bb))

guess(bb,s(0,Y))guess(bb,s(0,Y)) guess(bb,s(0,Y))

guess(s(0,bb),Y)

check(Y,s(0,bb))

check(bb,bb) check(bb,bb)check(bb,bb)

guess(bb,s(0,Y))guess(bb,s(0,Y)) guess(bb,s(0,Y))

guess(s(0,bb),Y) check(Y,s(0,bb))

check(bb,bb) check(bb,bb)check(bb,bb)

guess(bb,s(0,Y))guess(bb,s(0,Y)) guess(bb,s(0,Y))

guess(s(0,bb),Y)

check(Y,s(0,bb))

check(bb,bb) check(bb,bb)check(bb,bb)

Figure 5.4: A short-bushy proof tree derived for the goal guess(s(0, X), Y) from the Class
2 clause set of Figure 5.3(a). This tree is fat and bushy, because it has a shallow depth, the
root has 8 children, and all the other nodes except the leaf nodes have at least one child.

root has 8 children, and all the other nodes except the leaf nodes have at least one

child. All our evaluations use the input clause set of Figure 5.3(a) to prove the goals

G21, G22, and G23 shown in Figure 5.3(b).

5.1.3 Class 3: Long Variable Bindings

Class 3 problems are geared towards observing the performance of the derefer-

ence loop. To this end, the Class 3 clauses, shown in Figure 5.5(a), contain terms

such that during dereferencing, the dereference loop goes through a large number

of iterations. Figure 5.6 shows a proof tree to illustrate this concept. Consider

the unification step which binds subgoal variable X2 to the term bb from the literal

match(bb, s(X, Y), s(X, Z)) clause of (14). Before binding variable X2 to the term bb,

the variable X2 is dereferenced. Dereferencing E yields variable X1, which itself is

bound to variable X. Dereferencing variable X yields the constant bb. Thus, derefer-

encing X2 yields the constant bb which is identical to the constant bb from the clause

(14). Thus, dereferencing X2 requires four iterations of the dereference loop. Proving

the three goals G31, G32, and G33, defined for the clause set of Figure 5.5(a), entails

several deferencing operations allowing us to observe the effect on the performance.

120

1) r1(E) ∨ ¬u1(E)
2) q1(D) ∨ ¬t1(D)
3) t1(s(0, s(0, s(0, s(0, s(0, s(0, s(0, bb))))))))
4) u1(s(0, s(1, s(0, s(1, s(0, s(1, s(0, bb))))))))
5) q2(D) ∨ ¬t2(D)
6) r2(E) ∨ ¬u2(E)
7) t2(s(0, s(0, s(0, s(0, s(0, s(0, s(0, s(0, bb)))))))))
8) u2(s(0, s(1, s(0, s(1, s(0, s(1, s(0, s(0, bb)))))))))
9) q3(D) ∨ ¬t3(D)

10) r3(E) ∨ ¬u3(E)
11) t3(s(0, s(0, s(0, s(0, s(0, s(0, s(0, s(0, s(0, bb))))))))))
12) u3(s(0, s(1, s(0, s(1, s(0, s(1, s(0, s(1, s(0, bb))))))))))
13) guess(bb, bb, bb)
14) match(bb, s(X, Y), s(X, Z)) ∨ ¬guess(bb, Y, Z)
15) match(s(0, X), Y, Z) ∨ ¬match11(X, s(1, Y), Z)
16) match11(X, s(1, Y), Z) ∨ ¬match12(X, s(1, Y), Z)
17) match12(X, s(1, Y), Z) ∨ ¬match(X, s(1, Y), Z)
18) match(s(0, X), Y, Z) ∨ ¬match1(X, s(0, Y), Z)
19) match1(X1, s(0, Y 1), Z1) ∨ ¬match2(X1, s(0, Y 1), Z1)
20) match2(X2, s(0, Y 2), Z2) ∨ ¬match(X2, s(0, Y 2), Z2)
21) s(G, H, I) ∨ ¬match(G, H, I)
22) p1(B) ∨ ¬r1(C) ∨ ¬q1(A) ∨ ¬s(A, B, C)
23) p2(B) ∨ ¬r2(C) ∨ ¬q2(A) ∨ ¬s(A, B, C)
24) p3(B) ∨ ¬r3(C) ∨ ¬q3(A) ∨ ¬s(A, B, C)

(a) Class 3 input clause set designed to generate long chains of variable bindings during deriva-
tion.

Goal G31: ¬p1(S)
Goal G32: ¬p2(S)
Goal G33: ¬p3(S)

(b) Class 3 goal set used in the evaluation.

Figure 5.5. The Class 3 Clause Set And Goals

5.1.4 Class 4: Complex Terms

Stack-based term decomposition uses the JVM’s operand stack to perform a

runtime depth-first traversal of each subgoal term. Class 4 problems are geared

towards observing the performance of our reasoning systems when the JVM’s operand

stack is extensively used by stack-based term decomposition. This can be achieved

by having complex literals, such as a tuple with several parameters each of which is

a tuple, in the input clause set. Figure 5.8(a) shows the Class 4 clause set we use for

our evaluation. Consider the tree representation shown in Figure 5.7 of the subgoal

121

[G/s(0,bb), H/B, I/s(0,bb)]

[X/bb, Y/H, Z/I]

[X1/X, Y1/Y, Z1/Z]

[X2/X1, Y2/Y1, Z2/Z1]

[X/0, X2/bb, Y2/bb, Z/bb]

[Y/bb, Z/bb]

D/s(1,bb)

C/E

E/s(0,bb)

A/D

¬u(E)

¬u(s(0,bb))

¬ p(S)

¬q(A)

¬t(s(1,bb))

¬ s(s(0,bb), B,s(0,bb))

¬ match(s(0,bb), B,s(0,bb))

¬ match1 (bb,s(0,B),s(0,bb))

¬ match2(bb,s(0,B),s(0,bb))

¬ guess(bb,B,bb)

guess(bb,bb,bb)

¬ r(C)

¬t(D)

¬ match(bb, s(0,B), s(0,bb))

Figure 5.6: Proof tree derived from the Class 3 problem set of Figure 5.5(a) to illustrate
the presence of long chains of variable bindings.

¬p(e(EE, aa(BB, cc(DD))), f(FF, l(a(BB), CC)), l(a), m(b)). The stack-based term

decomposition of this subgoal term results in considerable use of the operand stack.

Consider the stage in the unification when the JVM attempts to unify the term DD

with a term from a rule head. To access this term, a reference to the tuple p is placed

on the stack before decomposing the tuple into its functor p and parameters. Now,

since each of the parameters is also a tuple, a reference to the tuple e is pushed onto

the operand stack. This process is repeated for the tuples aa, cc, and finally the

term DD. In all, performing the stack-based decomposition of the subgoal term DD

involves storing five tuple references on the operand stack. Figure 5.8(b) shows the

three goals G41, G42, and G43, defined for the clause set of Figure 5.8(a), which we

use for our evaluations.

122

p

a

l

b

me

EE aa

BB cc

f

FF l

BB

a CC

DD

Figure 5.7: Tree representation of a subgoal term
¬p(e(EE, aa(BB, cc(DD))), f(FF, l(a(BB), CC)), l(a),m(b)) used to illustrate a complex
term. Decomposing such a complex term on the JVM operand stack, pushes as many as
five term references on the stack. Such terms are used to evaluate the performance of
stack-based term decomposition.

5.1.5 Class 5: Propositional Logic

Class 5 problems consist of clauses in propositional logic. Every clause in propo-

sitional logic is a declarative sentence which is either true or false but never both.

Hence, these clause do not contain variables. Unlike the class 3 problem set, which

generated long chains of variable bindings, the class 5 clauses do not generate any

bindings due to the absence of variables in the clause set. As a result, the class 5

problems are useful to observe the performance of our system when the unification

operation does not generate any variable bindings. Unlike the clause sets belonging

to other classes of problems, we do not generate clauses for Class 5 clause sets. In-

stead, we use three problems from the TPTP problem library (Sutcliffe, Suttner, and

Yemenis 1994). The first problem is problem number PUZ014-1.p from the puzzles

123

1) p(e(EE, aa(BB, cc(DD))), f(FF, l(a(BB), CC)), l(a), m(b))
2) p(e(EE, aa(BB, cc(DD))), f(FF, l(a(BB), CC)), s(X), t(Y, Y)) ∨
¬p(e(EE, aa(BB, cc(DD))), f(FF, l(a(BB), CC)), X, Y)

3) p(e(EE, aa(BB, cc(DD))), f(FF, l(a(BB), CC)), U, V, r(s(U), t(V, V))) ∨
¬p(e(EE, aa(BB, cc(DD))), f(FF, l(a(BB), CC)), U, V)

4) p(e(EE, aa(BB, cc(DD))), f(FF, l(a(BB), CC)), U, V, x(T)) ∨
¬p(e(EE, aa(BB, cc(DD))), f(FF, l(a(BB), CC)), U, V, T)

5) ¬p(e(EE, aa(BB, cc(DD))), f(FF, l(a(BB), CC)), U, V, T)

(a) Class 4 input clause set containing literals with complex terms.

Goal G41: ¬p(c(CC, l(LL, n(O))), dd(aa(BB, cc(DD))), e(EE, aa(BB, cc(DD))),
f(FF, l(a(BB), CC)), s(s(s(s(s(Q))))), T, x(x(Z)))

Goal G42: ¬p(c(CC, l(LL, n(O))), dd(aa(BB, cc(DD))), e(EE, aa(BB, cc(DD))),
f(FF, l(a(BB), CC)), s(s(s(s(s(s(Q)))))), T, x(x(Z)))

Goal G43: ¬p(c(CC, l(LL, n(O))), dd(aa(BB, cc(DD))), e(EE, aa(BB, cc(DD))),
f(FF, l(a(BB), CC)), s(s(s(s(s(s(s(Q))))))), T, x(x(Z)))

(b) Class 4 goal set used in the evaluation.

Figure 5.8. The Class 4 Clause Set And Goals

problem domain (Lusk and Overbeek 1985). The other two problems are SYN003-

1.006.p and SYN004-1.007.p from the syntactic problem domain (Plaisted 1982). For

all the tests, we record the execution time to solve each of these three problems.

5.1.6 Test Environment

We execute our tests on an 800 MHz, Pentium III, dual-processor system with

one gigabyte of RAM. The system is shared between multiple users. The Java version

used for the evaluations is 1.4.0. During an evaluation we record the execution time

taken by reasoning system under consideration for each of the 15 goals consisting of

three goals from each of the five classes of problems in the test suite. Each recorded

execution time is the average over 20 executions for that goal. This is done to account

for the variations in the execution times due to other processes that utilize CPU cycles

and memory.

124

5.2 Configuring the Logic-to-Bytecode Compiler System

The logic compiler designed for the Logic-to-Bytecode Compiler system imple-

ments four refinements; rule caching, bytecode refinements, dereference loop refine-

ments, and stack-based term decomposition. We test the effect of each of these re-

finements individually on the performance of the Logic-to-Bytecode Compiler system.

The results of these tests are used to create a configuration of the Logic-to-Bytecode

Compiler system, having some combination of these refinements that gives the best

performance.

5.2.1 Rule Caching

The Logic-to-Bytecode Compiler system maintains a cache of Rule instances

created during the course of a proof procedure. Its inference engine always searches

the cache for the required Rule instance, instantiating a new instance only if it is not

in the cache. This reduces the overhead on Java’s runtime environment and should

benefit the performance of the inference engine. It should be noted that the rule

caching refinement is included in all three reasoning systems. Since it provides equal

performance benefits in all three systems, we restrict a discussion of its benefits to

the Logic-to-Bytecode Compiler system. We run a set of tests to observe the effect of

rule caching on the performance of the Logic-to-Bytecode Compiler system. Table 5.1

lists the execution time in seconds of the Logic-to-Bytecode Compiler system to prove

the 15 goals without and with rule caching. Each execution time for a goal is the

average over 20 executions for that goal. The table is divided horizontally into five

parts, with one part for each class of problems. Each part consists of three rows,

with one row for each goal in that class of problems. The first column indicates the

problem class. The second column contains an identifier for a goal. The third and

fourth columns are the execution times in seconds of the Logic-to-Bytecode Compiler

system to prove the goal, without and with rule caching respectively. For each goal,

125

Table 5.1: Execution times of Logic-to-Bytecode Compiler system in seconds to prove the
test suite goals, without and with rule caching.

Problem Goal Without With
Class Identifier Caching Caching

S
k
in

n
y G11 21.83 10.887

G12 48.281 24.985
G13 108.472 57.904

B
u
sh

y G21 6.088 2.218
G22 35.752 13.770
G23 392.293 148.850

L
on

g G31 16.552 8.018
G32 41.866 21.318
G33 114.436 61.079

C
om

p
le

x G41 7.583 3.905
G42 12.692 6.929
G43 20.336 11.768

P
ro

p G51 17.127 6.03
G52 0.216 0.087
G53 0.317 0.134

the lesser execution time is marked in bold. An execution time marked bold in the

fourth column indicates a performance benefit due to rule caching. For example, the

entry for goal G11 in column four is in bold, since the Logic-to-Bytecode Compiler

system proves the goal in 10.887 seconds with rule caching and in 21.83 seconds

without rule caching. A comparison of the execution times in the third and fourth

columns shows that the Logic-to-Bytecode Compiler proves all the goals in lesser

time when rule caching is incorporated. Hence, we conclude that the rule caching

refinement benefits the performance of the Logic-to-Bytecode Compiler system.

The performance improvement due to rule caching is also illustrated with the

graph shown in Figure 5.9. The graph has a total of fifteen data points, one for each

goal in our test suite. Each data point is a solution for a goal, averaged over 20

executions. The X-coordinate for a data point is the execution time in seconds taken

by the Logic-to-Bytecode Compiler system to prove the goal without rule caching.

126

 10

 100

 10 100

Ex
ec

ut
io

n
Ti

m
es

 o
f I

n
Se

co
nd

s
W

ith
 R

ul
e

C
ac

hi
ng

Execution Times of In Seconds Without Rule Caching

Solution time
y=0.39x + 3.3

Figure 5.9: Performance improvement of the Logic-to-Bytecode Compiler system when
rule caching is incorporated. The Y-axis shows the Logic-to-Bytecode Compiler system’s
execution times in seconds with rule caching to prove goals in the test suite while the X-axis
shows its execution times in seconds without rule caching to prove the same goals. Both
axes use a logarithmic scale.

The Y-coordinate for a data point is the execution time in seconds taken by the

Logic-to-Bytecode Compiler system to prove the goal with rule caching. We draw a

line of best-fit that best represents the data in the graph. The equation of this line is

y = 0.39x+3.3. From this equation, we can conclude that for each goal, the execution

time of the Logic-to-Bytecode Compiler system with rule caching is approximately

0.4 times the execution time for the same goal without rule caching, confirming that

rule caching yields a performance improvement in the Logic-to-Bytecode Compiler

system.

5.2.2 Bytecode Refinements

Bytecode refinements that can be done in the Logic-to-Bytecode Compiler sys-

tem are of two types - elimination of store-fetch and duplicate loads. We evaluate

the collective effect of these refinements on the Logic-to-Bytecode Compiler system’s

performance. For this evaluation we configure the Logic-to-Bytecode Compiler sys-

127

Table 5.2: Execution times of the Logic-to-Bytecode Compiler system in seconds to prove
the test suite goals, without and with bytecode refinements.

Problem Goal Without With
Class Identifier Refinement Refinement

S
k
in

n
y G11 10.887 10.848

G12 24.985 24.912
G13 57.904 57.419

B
u
sh

y G21 2.218 2.211
G22 13.770 13.748
G23 148.850 147.631

L
on

g G31 8.018 8.058
G32 21.318 21.331
G33 61.079 61.149

C
om

p
le

x G41 3.905 3.911
G42 6.929 7.017
G43 11.768 11.772

P
ro

p G51 6.030 6.032
G52 0.087 0.086
G53 0.134 0.135

tem with both the bytecode refinements and use it to prove the 15 goals from our test

suite. We record the execution time in seconds taken to prove each goal. The execu-

tion time recorded for a goal is the average over 20 executions for that goal. Table 5.2

is a listing of the execution times for each goal without and with bytecode refinements.

In both cases, rule caching is incorporated in the Logic-to-Bytecode Compiler system.

Similar to Table 5.1, this table has five horizontal groups, one for each class of prob-

lems. Each row corresponds to the execution times for a goal. The first two columns

are for the problem class and the goal identifier. The third and fourth columns con-

tain the execution time in seconds for a goal, without and with bytecode refinements

respectively. The lesser execution times are marked in bold. Observing the execution

times with bytecode refinements in column four of Table 5.2 we notice a small dif-

ference in the execution times. For example, the Logic-to-Bytecode Compiler system

needs 10.887 seconds to prove goal G11 without bytecode refinements, and 10.848

128

 1

 10

 100

 1 10 100

Ex
ec

ut
io

n
Ti

m
es

 In
 S

ec
on

ds
 W

ith
 B

yt
ec

od
e

R
ef

in
em

en
ts

Execution Times In Seconds Without Any Refinements

Solution time
y=0.99x + 0.086

Figure 5.10: The effect of using bytecode refinements on the performance of the Logic-to-
Bytecode Compiler system. The Y-axis shows the Logic-to-Bytecode Compiler system’s
execution times in seconds with bytecode refinements to prove goals in the test suite on a
logarithmic scale. The X-axis shows execution times of the Logic-to-Bytecode Compiler in
seconds without bytecode refinements for the same goals, also on a logarithmic scale.

seconds to prove it with bytecode refinements - a small benefit of only 0.039 seconds

from incorporating bytecode refinements. Some other entries in the table, such as

for goal G22 and G23 also exhibit the same characteristic. We find that for some

goals, incorporating bytecode refinements leads to an increase in the time taken by

the Logic-to-Bytecode Compiler system to prove the goal. For example, the Logic-to-

Bytecode Compiler system takes 21.318 seconds to prove goal G32 without bytecode

refinements, but needs 21.331 seconds to prove it with bytecode refinements, clearly

illustrating a performance degradation caused by incorporating the refinements.

We plot the execution times of Table 5.2 in the graph of Figure 5.10. The X-axis

of this graph corresponds to the execution time in seconds of the Logic-to-Bytecode

Compiler system without bytecode refinements and the Y-axis corresponds to the

execution time in seconds with bytecode refinements. The graph has a total of fifteen

data points, where each data point represents the solution to a goal from our test

129

Table 5.3: Listing of the execution times in seconds to prove the test suite goals, when
the Logic-to-Bytecode Compiler system uses each of the six versions of the dereference loop.

Problem Goal Standard Loop Loop Loop Loop Loop
Class Identifier Version 1 2 3 4 5

S
k
in

n
y G11 10.887 10.838 10.821 10.972 10.958 10.804

G12 24.985 24.705 24.732 24.964 24.911 24.706
G13 57.904 57.821 57.86 57.645 57.479 57.831

B
u
sh

y G21 2.218 2.208 2.210 2.219 2.215 2.211
G22 13.770 13.785 13.759 13.817 13.836 13.724
G23 148.850 147.960 147.235 148.532 148.787 147.353

L
on

g G31 8.018 8.039 8.007 7.977 7.993 8.014
G32 21.318 21.375 21.309 21.246 21.298 21.288
G33 61.079 61.299 60.949 61.070 60.900 60.881

C
om

p
le

x G41 3.905 3.916 3.899 3.912 3.898 3.901
G42 6.929 6.952 6.959 7.02 6.998 6.96
G43 11.768 11.748 11.75 11.875 11.827 11.75

P
ro

p G51 6.03 6.023 6.192 6.191 6.204 6.2
G52 0.087 0.086 0.085 0.085 0.086 0.084
G53 0.134 0.134 0.134 0.134 0.134 0.134

suite, averaged over 20 executions. We draw a line of best-fit, that passes through

most of the data points in the graph. The equation of this line is y = 0.99x + 0.086.

From this equation we can see that if the Logic-to-Bytecode Compiler system needs

10 seconds to prove a goal without the bytecode refinements, it will need 9.98 seconds

to prove the same goal with the bytecode refinements – not a noticeable decrease in

execution time with the bytecode refinements.

Although our test results indicate that bytecode refinements do not provide a

noticeable performance improvement and in some cases even degrade the Logic-to-

Bytecode Compiler system’s performance, we do not discard them. We retain them

to examine the effect on the performance of the Logic-to-Bytecode Compiler system

when bytecode refinements are combined with the other refinements.

130

5.2.3 Dereference Loop Refinements

The dereference loop refinements focus on the implementation of the while loop

used to dereference terms during unification. We create five different versions of this

loop, each containing refinements intended to reduce the time taken by the Logic-to-

Bytecode Compiler system to execute the loop. We test these five versions separately

in order to find the most efficient one. The system must prove each of the 15 goals

in our test suite for six versions of the dereference loop - the five refined versions

we created and the dereference loop generated by a standard Java compiler. Rule

caching is incorporated into the Logic-to-Bytecode Compiler system for all the tests.

We record the execution time in seconds taken by the Logic-to-Bytecode Compiler

system to prove each goal, with each version of the loop. The execution time recorded

for a goal is the average over 20 executions for that goal. Table 5.3 lists the execution

times in seconds for each goal and for all six versions of the dereference loop. Each

row of the table lists the problem class and the goal identifier in the first and second

columns respectively. The remaining columns list the execution times for each loop

version, starting with the loop generated by the standard Java compiler and then each

of the five loop versions we created. In each row, the lowest execution time is marked

in bold. On comparing the execution times for the six loop implementations, it is

clear that we don’t have a clear winner – each loop implementation performs well for

a few goals, but there is no single implementation that causes the Logic-to-Bytecode

Compiler system to prove all or even a majority of the goals faster than any other

implementation. Even so, we do not discard this refinement.

5.2.4 Stack-based Term Decomposition

As in the tests we have discussed so far, we use the 15 goals from our test

suite to test the effect of stack-based term decomposition on the performance of the

Logic-to-Bytecode Compiler system. Once again, the Logic-to-Bytecode Compiler

131

Table 5.4: Listing of the execution times in seconds of the Logic-to-Bytecode Compiler
system to prove the test suite goals, with stack-based term decomposition and without it.

Problem Goal Without With
Class Identifier Stack-based Stack-based

Decomposition Decomposition

S
k
in

n
y G11 10.887 10.9

G12 24.985 24.941
G13 57.904 57.906

B
u
sh

y G21 2.218 2.223
G22 13.770 13.81
G23 148.850 148.958

L
on

g G31 8.018 8.153
G32 21.318 21.67
G33 61.079 62.188

C
om

p
le

x G41 3.905 3.888
G42 6.929 6.934
G43 11.768 11.708

P
ro

p G51 6.03 6.152
G52 0.087 0.087
G53 0.134 0.136

system has rule caching incorporated. It proves the 15 goals without stack-based

term decomposition and with stack-based term decomposition incorporated and we

record all the execution times. The execution time recorded for each goal is the

average over 20 executions for that goal. Table 5.4 lists these execution times in

seconds for the fifteen goals. The layout of the table is similar to Table 5.1 with

five horizontal sections, one for each class of of problems. Each row contains the

execution time in seconds for a goal, without the stack-based term decomposition

and with it. In each row, the lesser execution time is marked in bold. The execution

times in the third and fourth columns clearly show the effect of stack-based term

decomposition on the Logic-to-Bytecode Compiler system. The majority of values

in the third column marked in bold mean that the execution time without stack-

based term decomposition is less than the execution time with it, meaning that the

132

 10

 100

 10 100

Ex
ec

ut
io

n
Ti

m
e

In
 S

ec
on

ds
 W

ith
 S

ta
ck

-b
as

ed
 T

er
m

 D
ec

om
po

si
tio

n

Execution Time In Seconds Without Any Refinements

Goal
y=1.006x + 0.08

Figure 5.11: Effect on the performance of the Logic-to-Bytecode Compiler system by using
the stack-based term decomposition refinement. The Y-axis shows the Logic-to-Bytecode
Compiler system ’s execution times in seconds with the refinement, to prove goals in the
test suite. The X-axis shows execution times of the Logic-to-Bytecode Compiler system in
seconds without the refinement for the same goals. Both axes use a logarithmic scale.

inclusion of the stack-based term decomposition refinement leads to a performance

degradation.

5.2.5 Efficient Logic-to-Bytecode Compiler Configuration

So far from our tests we know that bytecode refinements and stack-based term

decomposition do not yield substantial improvement in the Logic-to-Bytecode Com-

piler system’s performance and in some cases cause the performance to degrade. We

also know that there is no single implementation of the dereference loop that performs

better than the rest. These are outcomes obtained by testing the Logic-to-Bytecode

Compiler system separately with each refinement. We conduct experiments to see if

combining one or more of these refinements yields better performance. To test each

combination of refinements, we use the 15 goals from our test suite and record the ex-

ecution time of the Logic-to-Bytecode Compiler system to prove each goal. From our

experiments, we find that with a combination of rule caching, bytecode refinements,

133

Table 5.5: A listing of the execution times in seconds of the Logic-to-Bytecode Compiler
system to prove the test suite goals. The Logic-to-Bytecode Compiler system’s execution
times when it uses each individual refinement and when it uses the combination of all the
refinements.

Problem Goal With With With With
Class Identifier Rule Bytecode Stack-based Refinements

Caching Refinements Decomposition Combined

S
k
in

n
y G11 10.887 10.848 10.900 10.752

G12 24.985 24.912 24.941 24.571
G13 57.904 57.419 57.906 56.748

B
u
sh

y G21 2.218 2.211 2.223 2.178
G22 13.770 13.748 13.81 13.551
G23 148.850 147.631 148.958 145.747

L
on

g G31 8.018 8.058 8.153 7.948
G32 21.318 20.331 21.67 21.140
G33 61.079 61.149 62.188 60.57

C
om

p
le

x G41 3.905 3.911 3.888 3.866
G42 6.929 7.017 6.934 6.937
G43 11.768 11.772 11.708 11.740

P
ro

p G51 6.03 6.032 6.152 5.978
G52 0.087 0.086 0.087 0.087
G53 0.134 0.135 0.136 0.134

the fifth implementation of the dereference loop and stack-based term decomposition,

the Logic-to-Bytecode Compiler system proves the 15 test suite goals faster with than

any other combination. The results of our test for this combination of refinements

is shown in Table 5.5. Each row of this table lists the problem class and the goal

identifier in the first and second columns respectively. The remaining columns list the

execution times of the Logic-to-Bytecode Compiler system with each individual re-

finement and with the combination of refinements that executes the fastest. Looking

at the data in the table, it is clear that with the combination of refinements, the Logic-

to-Bytecode Compiler system proves goals faster than almost all of the refinements

taken individually. In order to understand this counter-intuitive result, consider the

following scenario: During the unification process, the logic compiler dereferences a

134

subgoal before attempting to unify it. When a subgoal term is dereferenced, the

result of the dereferencing is stored into local variables from the stack and is imme-

diately reloaded to perform stack-based decomposition of that term. This requires

generating instructions that store the dereferencing results in the local variables and

reloading them onto the stack at the start of unification for the subgoal term. Such

extra instructions to reload values that were on the stack cause the unification, and

consequently, the entire proof to take longer to execute. However, combining the fifth

implementation of the dereference loop with bytecode refinements causes the deref-

erencing result to be retained on the stack. As the result is already on the stack,

stack-based term decomposition does not generate instructions to load it. Since the

dereferencing results are retained on the stack for every dereferenced subgoal term, it

leads to an overall reduction in the number of instructions. This in turn reduces the

time taken for unification, resulting in a reduced time to prove the goal. For all our

remaining tests with the Logic-to-Bytecode Compiler system, we use the the combi-

nation of rule caching, the fifth version of the dereference loop, bytecode refinements

and stack-based term decomposition.

5.3 Interpreted versus Compiled Execution

Our next set of tests compare the performance of the Java Logic Interpreter

system with the Logic-to-Java Compiler system. We first record the execution time of

the Java Logic Interpreter system to prove the 15 goals from our test suite. Next, we

record the execution time of the Logic-to-Java Compiler system to prove the same set

of goals. The execution time recorded for each goal is the average over 20 executions

for that goal. The Table 5.3 shows these execution times. The table contains one

row for each goal. Each row has four columns. The column indicates the problem

class, the second column contains the goal identifier and last two columns contain

the execution time in seconds for the Java Logic Interpreter system and the Logic-

135

Table 5.6: Listing of the execution times in seconds for the Java Logic Interpreter system
and the Logic-to-Java Compiler system to prove the test suite goals.

Problem Goal Interpreted Compiled
Class Identifier Execution Execution

S
k
in

n
y G11 20.227 10.793

G12 46.183 24.766
G13 106.68 57.646

B
u
sh

y G21 12.502 2.211
G22 30.999 13.787
G23 231.58 147.863

L
on

g G31 11.391 8.032
G32 29.846 21.283
G33 84.805 60.981

C
om

p
le

x G41 195.163 3.878
G42 239.347 6.904
G43 265.003 11.786

P
ro

p G51 7.249 6.904
G52 0.113 0.087
G53 0.18 0.133

to-Java Compiler system. In each row, the lesser execution time is marked in bold.

All the values in column 4 are marked in bold, indicating that the Logic-to-Java

Compiler system needs less time than the Java Logic Interpreter system to prove all

the goals. For example, for goal G11 the Java Logic Interpreter system needs 20.227

seconds, whereas the Logic-to-Java Compiler system needs only 10.793 seconds to

prove the same goal. The large reduction in execution times with the Logic-to-Java

Compiler system clearly indicates that its compiled approach is more efficient than

the interpreted approach of the Java Logic Interpreter system.

The superior performance of the Logic-to-Java Compiler system is also illus-

trated with the graph shown in Figure 5.12. This graph has 15 data points, each

representing the solution to a goal from our test suite, averaged over 20 executions.

The X-coordinate for a data point is the execution time in seconds taken by the Java

Logic Interpreter system to prove the goal. The Y-coordinate for a data point is the

136

 1

 10

 100

 1 10 100

Ex
ec

ut
io

n
Ti

m
es

 In
 S

ec
on

ds
 O

f L
og

ic
-to

-J
av

a
C

om
pi

le
r

Execution Times In Seconds Of Java-Logic Interpreter

Goal
y=0.16x + 11.48

Figure 5.12: Comparison of the performance of the Logic-to-Java Compiler system and
the Java Logic Interpreter system. The Y-axis shows the Logic-to-Java Compiler system’s
execution times in seconds to prove goals in the test suite, on a logarithmic scale. The
X-axis shows execution times of the Java Logic Interpreter system in seconds for the same
goals, also on a logarithmic scale.

execution time in seconds taken by the Logic-to-Java Compiler system to prove the

goal. We draw a best-fit line that passes through most of the data points in the

graph. The equation of this line is y = 0.16x + 11.48. The equation and the graph

show that the compiled execution performs better than the interpreted execution of

the Java Logic Interpreter.

5.4 Standard versus Specialized Compiler

Our final test compares the performance of the Logic-to-Java Compiler system

and the Logic-to-Bytecode Compiler system. Similar to all the previous tests, we use

the 15 goals from our test suite. We first record the execution time of the Logic-to-

Java Compiler system to prove each of the 15 goals. Next, we record the execution

time of the Logic-to-Bytecode Compiler system for the same set of goals. The execu-

tion time recorded for each goal is the average over 20 executions for that goal.

137

Table 5.7: Listing of the execution times in seconds for the Logic-to-Java Compiler system
and the Logic-to-Bytecode Compiler system to prove the test suite goals.

Problem Goal Java Bytecode
Class Identifier Compiler Compiler

S
k
in

n
y G11 10.893 10.752

G12 24.766 24.571
G13 57.646 56.748

B
u
sh

y G21 2.221 2.178
G22 13.787 13.551
G23 147.863 145.747

L
on

g G31 8.032 7.948
G32 21.283 21.140
G33 60.981 60.57

C
om

p
le

x G41 3.878 3.866
G42 6.904 6.937
G43 11.786 11.740

P
ro

p G51 5.980 5.978
G52 0.087 0.087
G53 0.133 0.134

Table 5.7 contains the results for this test. This table has an identical format

to Table 5.3, except that the two rightmost columns now list the execution times for

the Logic-to-Java Compiler system and the Logic-to-Bytecode Compiler system re-

spectively. A glance at the two rightmost columns tells us that the Logic-to-Bytecode

Compiler system has lower execution times than the Logic-to-Java Compiler system

for almost all the goals. We also see that the difference between the execution times

is not substantial. For example, for goal G11 the execution times of the Logic-to-Java

Compiler system and the Logic-to-Bytecode Compiler system differ only by 0.141 sec-

onds. However, the existence of a difference between the execution times is sufficient

to validate our hypothesis that a specialized logic compiler, rather than a standard

Java compiler, enables us to incorporate refinements that improve the performance.

The graph of Figure 5.13 is a plot for the data in Table 5.7. The X-axis corre-

sponds to the execution time in seconds of the Logic-to-Java Compiler system and the

138

 1

 10

 1 10

Ex
ec

ut
io

n
Ti

m
es

 In
 S

ec
on

ds
 O

f L
og

ic
-to

-B
yt

ec
od

e
C

om
pi

le
r

Execution Times In Seconds Of Logic-to-Java Compiler

Goal
y=0.98x + 0.07

Figure 5.13: Comparison of the performance of the Logic-to-Bytecode Compiler system
and the Logic-to-Java Compiler system. The Y-axis shows the Logic-to-Bytecode Compiler
system’s execution times in seconds to prove goals in the test suite. The X-axis shows
execution times of the Logic-to-Java Compiler system in seconds for the same goals. Both
axes use a logarithmic scale.

Y-axis corresponds to the execution time of the Logic-to-Bytecode Compiler system.

Similar to the graph of Figure 5.12, this graph also has a total of fifteen data points,

where each data point represents the solution to a goal from our test suite, averaged

over 20 executions. We draw a line of best-fit that passes through most of the data

points in the graph. The equation of this line is y = 0.98x + 0.07.

5.5 Experiment With TPTP Problem Suite

In addition to our test suite, we test the Logic-to-Java Compiler system and

the Logic-to-Bytecode Compiler system with several problems described in the TPTP

problem library (Sutcliffe, Suttner, and Yemenis 1994). The TPTP problem library

is a library of problems for Automated Theorem Proving (ATP) systems. The li-

brary contains problems from various domains such as logic, mathematics, geometry,

computer science, and engineering. These problems serve as a common suite for

evaluation and comparison of ATP systems.

139

0.01

0.1

1

10

100

0.01 0.1 1 10 100

Ti
m

e
re

qu
ire

d
by

 L
og

ic
-to

-B
yt

ec
od

e
C

om
pi

le
d

(s
ec

)

Time required by Logic-to-Java Compiled (sec)

Problem
l(x)

Figure 5.14: The performance of the Logic-to-Bytecode Compiler system compared to the
Logic-to-Java Compiler system when both solve the same set of problems from the TPTP
library. The Y-axis shows the Logic-to-Bytecode Compiler system’s execution times in
seconds to solve the problems. The X-axis shows execution times of the Logic-to-Java
Compiler system in seconds for the same problems. The data points are plotted on a
logarithmic scale.

For each problem in the TPTP library, we assign the Logic-to-Java Compiler

system and the Logic-to-Bytecode Compiler system exactly one minute in which to

solve a problem. We record the execution times for only those problems that both the

Logic-to-Java Compiler system and the Logic-to-Bytecode Compiler system solved in

one minute. The graph of Figure 5.14 shows a plot of these execution times in seconds,

with the Logic-to-Java Compiler system’s execution times represented on the X-axis

and the Logic-to-Bytecode Compiler system’s on the Y-axis. In our analysis of this

graph, we ignore problems solved in under 0.1 seconds by both the systems since

values under 0.1 seconds are too small to compare. Each data point in the graph is

the solution time in seconds for proving a goal, averaged over 20 executions for that

goal.

Analyzing the graph, we observe that most data points appear slightly below

the diagonal y = x. This indicates that the performance of the Logic-to-Bytecode

140

Compiler system is slightly better than the Logic-to-Java Compiler system. In addi-

tion, the small vertical cluster of data points between x = 0.1 and x = 0.2 indicates

that a particular set of problems from the TPTP library respond especially well with

the Logic-to-Bytecode Compiler system. Overall, the graph supports our hypothe-

sis that a specialized logic compiler, instead of a standard Java compiler will enable

us to incorporate refinements into the bytecodes generated, thereby yielding better

performance.

CHAPTER SIX

Conclusion

Automated reasoning systems are powerful programs capable of solving com-

plex problems from a wide variety of domains. However, the high computational

overhead incurred by such systems inhibits their widespread use. Java, with its plat-

form independence and support for parallelization, seems particularly suited to build

reasoning systems that overcome this computational overhead. Our thesis is moti-

vated by the drawbacks in existing Java-based automated reasoning systems. Our

aim is to develop an automated reasoning system in Java for full first-order logic that

exploits the similarities between Java’s architecture and logical deduction techniques.

The emphasis throughout is on designing an efficient system that takes advantage of

Java’s support for building architecture-independent applications, without sacrificing

the completeness of the proof procedure.

Our first reasoning system, the Java Logic Interpreter, focuses on creating a Java

representation for logical formulae and the implementation of an inference procedure

based on Model Elimination. The Java representation is designed to efficiently per-

form the two ME operations, extension and reduction. The Java Logic Interpreter’s

proof process is realized as a search procedure based on backtracking. Complete-

ness is guaranteed by performing a depth-first, iterative-deepening search. The Java

Logic Interpreter is characterized by its generic inference procedure which analyzes

the structure of each input clause at each inference step. This technique is similar to

the execution of interpreted programming languages, making the proof process of the

Java Logic Interpreter inherently slow.

The design of our second reasoning system, the Logic-to-Java Compiler, is based

on the hypothesis that execution of compiled logic is faster than interpreted execu-

tion. The architecture of the Logic-to-Java Compiler includes a logic compiler that

141

142

has three features designed to collectively speed up the proof process. First, the logic

compiler creates rules for each input clause to efficiently perform ME extension, with-

out sacrificing completeness. Second, the creation of rules enables the logic compiler

to generate rule-specific inference procedures in advance, by utilizing the compile-time

knowledge of the structure of the rule. Third, at runtime, the proof process of the

Logic-to-Java Compiler executes these precompiled rule-specific inference routines at

each inference step, instead of interpreting the structure of input clauses.

The analysis of the performance of the Java Logic Interpreter versus the Logic-

to-Java Compiler shows a large reduction in the time for proving goals with the Logic-

to-Java Compiler. This reduction is primarily due to the time saved by eliminating

the need to analyze the structure of each rule at runtime, made possible by the

execution of compiled inference instructions for each rule. The superior performance

of the Logic-to-Java Compiler system also confirms the hypothesis that execution of

compiled logic is faster than interpreted execution.

The Logic-to-Java Compiler uses a standard Java compiler to compile the rule-

specific inference procedures into executable methods. A general-purpose Java com-

piler cannot customize Java classes to exploit the similarities between Java’s archi-

tecture and the unification procedure. The design of our third system, the Logic-

to-Bytecode Compiler, is based on the hypothesis that a specialized compiler, rather

than a standard compiler, provides ability to incorporate refinements that improve

the performance. The Logic-to-Bytecode Compiler has a custom logic compiler which

translates the Java representation of each rule directly into a Java class. Its knowl-

edge of the structure of the each rule, along with the ability to directly generate Java

classes enables it to incorporate the bytecode refinements, dereference loop refine-

ments, and stack-based term decomposition. These refinements map the stack-based

logical inference process of the Logic-to-Bytecode Compiler to the execution principles

of Java’s runtime environment.

143

The analysis of the Logic-to-Java Compiler versus the Logic-to-Bytecode Com-

piler reveals that the Logic-to-Bytecode Compiler needs less time than the Logic-to-

Java Compiler system to prove goals, though the difference between the execution

times is small. The small difference can be primarily attributed to the implementa-

tion of the stack-based JVM on a register-centric processor. Implementing the JVM’s

operand stack and local variables array on a register-centric processor introduces a

hardware abstraction layer that maps the local variables array and the operand stack

to CPU registers. Thus, moving data between the stack and local variables trans-

lates to moving data between registers (Hsieh, Gyllenhaal, and mei W. Hwu 1996).

The refinements incorporated in the Logic-to-Bytecode Compiler are designed to re-

tain results on the operand stack, thereby minimizing the data transfer instructions

between the stack and local variables. The JVM can only use a limited number of

registers for the mapping of the operand stack. If the number of elements on the

operand stack directly map to the number of CPU registers, the data transfer be-

tween local variables and the stack is efficient. As the number of elements on the

operand stack increases, there are not enough registers to store all the elements on

the stack. This in turn introduces extra instructions to manipulate those elements of

the operand stack which cannot be mapped to registers. These additional operations,

necessitated by the use of CPU registers to implement the operand stack, offset the

effects of refinements geared towards making effective use of the operand stack.

6.1 Future Work

Our thesis does not explore all the possible refinements that can be made to

improve the Logic-to-Bytecode Compiler’s performance. Rather, our objective is to

motivate the use of specialized compilers by demonstrating the performance gains that

can be achieved by using them. The small decrease in the time taken by the Logic-

to-Bytecode Compiler to prove goals, as compared to the Logic-to-Java Compiler, is

144

sufficient to demonstrate this. In future, a different approach can be taken in designing

refinements that take into consideration the optimizations implemented by the JVM

to compensate for the inadequate support provided by the underlying architectures

for its stack-based operational principle. Another area worth exploring is to observe

the performance of the Logic-to-Bytecode Compiler on a Java processor (McGhan

and O’Connor 1998). A Java processor is an execution model that implements the

JVM in silicon to directly execute Java bytecodes. Java processors are tailored to

the JVM, providing hardware support for features such as stack processing, multi-

threading, and garbage collection. Our reasoning system could potentially perform

much better with such an execution model tailored specifically to the JVM than with

register-centric architectures, making the Java processor a model worth testing our

Logic-to-Bytecode Compiler with.

An important topic barely touched upon in this thesis, is the introduction of

parallelization in the logical reasoning process using Java. Logical deduction in first-

order logic offers various form of parallelism, such as and-parallelism, or-parallelism,

and unification parallelism, depending on which operations are transformed into par-

allel operations (Gupta, Pontelli, Ali, Carlsson, and Hermenegildo 2001). The Java

platform supports several paradigms for high-performance parallel and distributed

computing (Getov, Hummel, and Mintchev 1998). Its portable programming lan-

guage provides extensive support to perform high-performance network parallel com-

puting (Ferrari 1998). Because of its platform independence and uniform interface for

parallel computing, the Java platform provides an attractive environment in which

to explore the use of parallelization in logical reasoning using Java.

Developing the three reasoning systems and studying their performance demon-

strates that Java is suited to developing automated reasoning systems. Even though

Java programs typically exhibit more overhead than natively compiled programs, Java

provides excellent features to compensate for this overhead. The performance gain

145

achieved by the refinements incorporated in the Logic-to-Bytecode Compiler indicates

that the major impediment to the use of Java for computationally intensive applica-

tions like automated deduction – the performance – is not intrinsic to Java and can

be solved using various refinement techniques.

Can automated reasoning systems be implemented in Java? Is Java suitable

for the computationally intensive domain of logical reasoning? Does Java provide

support to overcome the computational overhead inherent to automated reasoning

systems? This thesis provides answers to some of these questions. We sincerely hope

the discussion presented may contribute to others who ask the same questions.

146

BIBLIOGRAPHY

(1999). NetProlog: a logic programming System for the Java Virtual Machine.

Aho, A. V. and J. D. Ullman (1977). Principles of Compiler Design. Addison-
Wesley.

Astrachan., O. L. (1992). METEOR: Exploring model elimination theorem prov-
ing. Technical Report Technical report DUKE–TR–1992–22.

Astrachan, O. L. and M. E. Stickel (1992). Caching and lemmaizing in model
elimination theorem provers. In Conference on Automated Deduction, pp. 224–
238.

Baader, F. and W. Snyder (2001). Unification theory. In J. Robinson and
A. Voronkov (Eds.), Handbook of Automated Reasoning, Volume I, pp. 447–
533. Elsevier Science Publishers.

Baumgartner, P. and U. Furbach (1994). PROTEIN: A PROver with a theory
extension INterface. In Conference on Automated Deduction, pp. 769–773.

Bundy, A. (1999). A survey of automated deduction. Lecture Notes in Computer
Science 1600, 153–173.

Cartwright, R. and J. McCarthy (1979). First order programming logic. In Pro-
ceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages, pp. 68–80. ACM Press.

David A. Plaisted, Y. Z. (2000). The Efficiency of Theorem Proving Strategies: A
Comparative and Asymptotic Analysis. Friedrich Vieweg and Sohn.

Ferrari, A. (1998). JPVM: network parallel computing in Java. Concurrency:
Practice and Experience 10 (11–13), 985–992.

Fikes, R., J. Jenkins, and G. Frank (2003). Jtp: A system architecture and com-
ponent library for hybrid reasoning. In Proceedings of the Seventh World Mul-
ticonference on Systemics, Cybernetics, and Informatics, pp. 1–6.

Getov, V., S. F. Hummel, and S. Mintchev (1998). High-performance parallel
programming in Java: exploiting native libraries. Concurrency: Practice and
Experience 10 (11–13), 863–872.

Gupta, G., E. Pontelli, K. A. M. Ali, M. Carlsson, and M. V. Hermenegildo (2001).
Parallel execution of prolog programs: a survey. Programming Languages and
Systems 23 (4), 472–602.

147

Hsieh, C.-H. A., J. C. Gyllenhaal, and W. mei W. Hwu (1996). Java bytecode
to native code translation: the caffeine prototype and preliminary results. In
MICRO 29: Proceedings of the 29th annual ACM/IEEE international sympo-
sium on Microarchitecture, Washington, DC, USA, pp. 90–99. IEEE Computer
Society.

Ibens, O. (1997). The setheo system (system description). In WLP, pp. 0–.

Kaci, H. A. (1991). Warren’s Abstract Machine: A Tutorial Reconstruction. Mass.:
MIT Press.

Korf, R. E. (1985). Depth-first iterative-deepening: an optimal admissible tree
search. Artif. Intell. 27 (1), 97–109.

Kowalski, R. (1986). Logic for problem-solving. Amsterdam, The Netherlands, The
Netherlands: North-Holland Publishing Co.

Letz, R., J. Schumann, S. Bayerl, and W. Bibel (1992). Setheo: a high-performance
theorem prover. J. Autom. Reason. 8 (2), 183–212.

Letz, R. and G. Stenz (2001). Model elimination and connection tableau proce-
dures. pp. 2015–2112.

Lindholm, T. and F. Yellin (1999). The Java Virtual Machine Specification.
Addison-Wesley Professional.

Loveland et al. (1974). An implementation of the model elimination proof proce-
dure. Journal of the ACM (JACM) 21 (1), 124–139.

Loveland, D. W. (1968). Mechanical theorem-proving by model elimination. Jour-
nal of the ACM (JACM) 15 (2), 236–251.

Lusk, E. and R. Overbeek (1985). Non-Horn Problems. Journal of Automated
Reasoning 1 (1), 103–114.

McGhan, H. and M. O’Connor (1998). Picojava: A direct execution engine for java
bytecode. Computer 31 (10), 22–30.

Philippe Charles and Dave Shields and Vadim Zaliva. The jikes research virtual
machine project.

Plaisted, D. (1982). A Simplified Problem Reduction Format. Artificial Intelli-
gence 18, 227–261.

Robinson, J. A. (1965a). A machine-oriented logic based on the resolution principle.
Journal of the ACM (JACM) 12 (1), 23–41.

Robinson, J. A. (1965b). A machine-oriented logic based on the resolution princi-
ple. J. ACM 12 (1), 23–41.

148

Robinson, J. A. (1983). Automatic deduction with hyper-resolution. In J. Siek-
mann and G. Wrightson (Eds.), Automation of Reasoning 1: Classical Papers
on Computational Logic 1957-1966, pp. 416–423. Berlin, Heidelberg: Springer.

Schumann, J. and R. Letz (1990). PARTHEO: A high-performance parallel theo-
rem prover. In Conference on Automated Deduction, pp. 40–56.

Shinghal, R. (1992). Formal Concepts in Artificial Intelligence: Fundamentals,
Chapter 3, pp. 34. Chapman and Hall Computing.

Stickel, M. E. (1986). A Prolog technology theorem prover: Implementation by an
extended Prolog compiler. In J. H. Siekmann (Ed.), Proceedings of the Eighth
International Conference on Automated Deduction, Volume 230, Berlin, pp.
573–587. Springer-Verlag.

Sutcliffe, G., C. Suttner, and T. Yemenis (1994). The TPTP problem library.
In A. Bundy (Ed.), Proc. 12th Conference on Automated Deduction CADE,
Nancy/France, pp. 252–266. Springer-Verlag.

van Caneghem, M. and D. H. D. Warren (1986). Logic programming and its appli-
cations. Ablex Publishing Corp.

Wos, L., G. A. Robinson, and D. F. Carson (1965). Efficiency and completeness of
the set of support strategy in theorem proving. J. ACM 12 (4), 536–541.

	Permission.pdf
	Permission1.pdf
	Permission2.pdf
	Permission3.pdf

