
 

ABSTRACT 

Bayesian Evaluation of Surrogate Endpoints 

Chunyao Feng 

Mentor: John W. Seaman Jr., Ph.D. 

 
To save time and reduce the size and cost of clinical trials, surrogate endpoints are 

frequently measured instead of true endpoints.  The proportion of the treatment effect 

explained by surrogate endpoints (PTE) is a widely used, albeit controversial, validation 

criteria.  Frequentist and Bayesian methods have been developed to facilitate such 

validation.  The former does not formally incorporate prior information; a critical issue 

since confidence intervals on PTE is often unacceptably wide.  Both the Bayesian and 

frequentist approaches may yield estimates of PTE outside the unit interval.  

Furthermore, the existing Bayesian method offers no insight into the prior used for PTE, 

making prior-to-posterior sensitivity analyses problematic.  We proposed a fully 

Bayesian approach that avoids both of these problems.  We also consider the effect of 

interaction on inference for PTE.  As an alternative to the use of PTE, we develop a 

Bayesian model for relative effect and the association between surrogate and true 

endpoints, making use of power priors. 
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CHAPTER ONE 

Basic Concepts in Surrogate Endpoints Evaluation 

 
The purpose of this dissertation is to introduce new Bayesian approaches for 

evaluating surrogate endpoints.  In this chapter, we review basic concepts regarding 

surrogate endpoint evaluation and common issues in the validation process.  We develop 

a new Bayesian approach, using conditional priors, to estimate PTE (the proportion of 

treatment effects explained by surrogate endpoints) in Chapter 2.  We shall study the 

basic properties of the conditional prior method and compare it with currently available 

methods.  In Chapter 3, simulation studies are conducted to further explore properties of 

the conditional prior approach.  Prior-to-posterior sensitivity analyses are performed as 

well.  In Chapter 4, we study the effect of interaction on the estimation of PTE.  There we 

make use of Bayesian model comparison techniques.  Finally, in Chapter 5, we explore 

the Bayesian analysis of relative effect (RE) and association (ρ) between surrogate 

endpoints and true endpoints after adjustment for treatment.  They are considered as 

alternatives to PTE.  For making use of historical data we derive power prior structures 

for RE and ρ.  Examples are given to illustrate Bayesian inferences for PTE, RE and ρ 

using the power prior structure.  

 
1.1. Introduction to Surrogate Endpoints 

Clinical trials designed to demonstrate an endpoint such as mortality reduction are 

typically long and costly.  Surrogate endpoints are outcomes that reflect an ultimate 

endpoint of clinical interest but which are observable earlier.  They may or may not be of

 
1 



 

 

2

interest in themselves.  For example, reductions in cholesterol are known to be associated 

with mortality benefits in cardiac health.  Blood pressure as a risk factor in strokes and 

heart attacks is another example.  Bone mineral density is used as a surrogate for bone 

fracture risk.  CD-4 lymphocyte levels serve as a surrogate endpoint in trials concerning 

HIV infection.   

 
1.1.1 Why Use a Surrogate Endpoint 

Molenberghs, Burzykowski, and Alonso (2004) provided definitions of true 

endpoints, biomarkers, and surrogate endpoints.   A true endpoint is “a characteristic or 

variable that reflects how a patient feels, functions, or survives”.  A biomarker is “a 

characteristic that is objectively measured and evaluated as an indicator of normal 

biological processes, pathogenic processes, or pharmacologic responses to a therapeutic 

intervention”.  The U.S. Food and Drug Administration (FDA) defined a surrogate 

endpoint as “a laboratory measurement or physical sign that is used in therapeutic trials 

as a substitute for a clinically meaningful endpoint that is a direct measure of how a 

patient feels, functions, or survives and is expected to predict the effect of the therapy”.   

Therefore, a surrogate endpoint is usually viewed as a biomarker.  A biomarker, however, 

is not necessarily a surrogate endpoint unless it is “validated”.  How to validate a 

biomarker remains a controversial subject.  

Molenberghs et al. (2004) summarized the following motivations for the use of 

surrogate points: 

• Surrogate endpoints may be easier and more convenient to measure;  

• Surrogate endpoints can be observed more frequently;  
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• Surrogate endpoints are less subject to competing risks and less affected by other 

treatments;  

• Surrogate endpoints can improve the early decision-making process and reduce the 

time to assess clinically important outcomes. 

Despite the attractive benefits of using surrogate points in clinical trials, 

researchers still have to face some major challenges:    

• Do surrogate endpoints reflect the real clinical outcomes?   

• Is it feasible to obtain precise and reliable surrogate endpoints?   

• Will the study of surrogate endpoints be possible if the evaluation procedures are not 

acceptable to the patients? 

These issues have a bearing on the validity of a surrogate endpoint. 

 
1.1.2 A Valid Surrogate Endpoint 

Use of a surrogate endpoint can reduce the size and length of clinical trials.  

Despite this potential, there is no widely accepted agreement about what constitutes a 

valid surrogate endpoint.  Prentice (1989) provided two sufficient conditions for a valid 

surrogate endpoint.  First, a valid surrogate endpoint needs to have a powerful and 

consistent association with the clinical endpoint of interest.  This requires that the 

changes in surrogate endpoints correlate with changes in the true endpoints.  This is 

necessary but not sufficient.  Indeed, it is one of the most common misunderstandings 

that strong correlation between surrogate variables and clinical variables is adequate to 

validate a surrogate.  Fleming and DeMets (1996) illustrated this with a graphic similar to 

that in Figure 1.  
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Figure 1.  Why strong correlation is not sufficient for a valid surrogate endpoint.  Here  
---------- indicates an unintended beneficial effect and  − ⋅ − ⋅ − ⋅ − ⋅ − indicates an 
unintended negative effect.  Adapted from Fleming & DeMets (1996). 

 

Suppose the disease process influences the risk of the true endpoints through 

multiple pathways.  If the proposed surrogate endpoint lies in only one of the pathways 

and the intervention does not actually affect all the pathways, the effect of treatment on 

the true endpoint could be over- or under-estimated by relying on the effect of the 

proposed surrogate.  

The second requirement for a valid surrogate endpoint is that it must fully capture 

the net effect of the intervention on the true endpoint.  This requirement is much more 

difficult to satisfy and verify than the first requirement.   

It is not feasible to prove that a marker is a valid surrogate by conducting statistical 

analyses to verify Prentice’s (1989) criteria.  Therefore, to interpret these two 

requirements, Prentice provided four operational criteria in the same paper:  

1. The surrogate endpoint has to be in the pathway and capture the effect of treatment;   

2. The treatment has to have a biological effect on the true endpoint; 

3. The surrogate has a significant impact on the true endpoint;   

4. The full treatment effect has to be reflected by surrogate. 

 
Disease 

Intervention 

Surrogate 
Endpoint 

True clinical 
endpoint 
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Prentice (1989) used the following regression equations to model these four 

criteria: 

                               E(S|T) = μ′ + αT                                                            (1.1) 

                                    E(E|T) = μ + βT                                                             (1.2) 

                                    E(E|S) = μE + γES                                                           (1.3) 

                                    E(E|T, S) = μγ + βγT + γS                                               (1.4) 
where E(⋅|⋅) denotes conditional expectation, T is used to denote the treatment effect, S 

represents surrogate endpoint and E means true or “final” endpoint. 

The effect of the treatment on the surrogate is modeled by (1.1) and the parameter 

of interest is α.  Similarly, the effect of the treatment on the true endpoint is reflected by 

β in (1.2).  The effect of the surrogate on the true endpoint is represented by γE.  The first 

three operational criteria require testing the significance of three parameters, α, β and γE.  

The last criterion requires that βγ be non-significant.  This raises a conceptual difficulty. 

   
1.2 PTE, RE and ρ 

 
1.2.1 Definitions 

Freedman, Graubard, and Schatzkin (1992) argued that the non-significance of βγ 

does not prove that the effect of treatment upon the true endpoint is fully captured by the 

surrogate.  Therefore, he proposed a new criterion to evaluate a surrogate endpoint: the 

proportion of treatment effect explained by surrogate endpoint (PTE).   PTE is defined as 

                                                     
β
βγ

−=
β
βγ−β

= 1PTE
                                          (1.5) 

where β and βγ are from (1.2) and (1.4).   
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They can be obtained by fitting these equations simultaneously.  A perfect 

surrogate endpoint can account for all mechanisms of actions.  With PTE < 1, the 

surrogate endpoint explains only part of the treatment effect on the true endpoint.  A 

“good” surrogate is one that explains a large proportion of the treatment’s effect on the 

true endpoint. 

Buyse and Molenberghs (1998) proposed alternative criteria to PTE for the 

evaluation of surrogate endpoints.  Suppose S and E follow a bivariate normal 

distribution with means (1.1) and (1.2) and variance-covariance structure 

2

2
SS SE

SE EE

⎡ ⎤σ σ
⎢ ⎥
⎢ ⎥σ σ⎣ ⎦

. 

Define the relative effect (RE) to be  

RE β
=

α
. 

RE evaluates “the effect of treatment T on the true endpoint E relative to that of treatment 

effect on surrogate endpoints”.  Additionally, “the association between surrogate 

endpoint and true endpoint after adjustment for treatment” is the correlation given by 

2 2
.SE

SS EE

σ
ρ =

σ σ
 

A joint model for S and E given T affords simultaneous estimation of RE and ρ. 

 
1.2.2 Fieller’s Theorem to Calculate Confidence Limits for PTE and RE 

Maximum likelihood methods can be used to estimate PTE, RE and ρ.  Fieller’s 

theorem or the delta method can be used to obtain confidence limits for RE (Henson, 

1975), with the former typically being preferred. 
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Burzykowski, Molenberghs and Buyse (2005) provided (1 − α)% confidence 

limits for PTE using Fieller’s theorem: 

2
1 B B AC

A
± −

−  

where  

2 2
/ 2
2

/ 2

ˆ ˆ( )
ˆ ˆ ˆ ˆ( )

A z Var

B z Cov
α

γ α γ

= β − β

= ββ − ββ
 

and 

2 2
/ 2

ˆ ˆ( )C z Varγ α γ= β − β  

and zα/2 is the 100(1 − α/2) percentile of the normal distribution.  Similarly, the (1 − α)% 

confidence limits for RE is: 

2B B AC
A

± −
 

where 

2 2
/ 2

2
/ 2

ˆ ˆ( )
ˆ ˆˆ ˆ( , )

A z Var

B z Cov
α

α

= α − α

= αβ − α β
 

and 

2 2
/ 2ˆ ˆ( )C z Varα= β − β  

 
1.3 Advantages of Bayesian Approaches in Surrogate Endpoints Evaluation 

A Bayesian analysis of surrogate endpoints avoids the potential difficulties 

associated with frequentist hypothesis testing and maximum likelihood estimation.  For 

example, in the frequentist approach, one initially tests for interaction between T and S.  
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Interaction is assumed to be zero if one fails to reject the hypothesis of no interaction.  

We shall see in Chapter 4 that this is problematic in the presence of small but practically 

significant interaction.  As another example, maximum likelihood estimation routinely 

produces estimates of PTE that are outside the unit interval.  

Producing a posterior distribution on PTE, RE, or ρ, conditional on available data, 

enables us straight-forward conclusions such as “The posterior probability that PTE > 

0.75 is 0.85”.  Cowles (2002) summarized three advantages of Bayesian approaches to 

surrogate endpoint validation:  

1. Estimating variances of parameters needed by Fieller’s method or the delta method 

can be very difficult, especially with small sample sizes;  

2. The Bayesian approach allows improvement of precision in estimation by introducing 

prior information; 

3. Complex models are easily fit using Markov chain Monte Carlo (MCMC) methods.   
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CHAPTER TWO 

Bayesian Evaluation of Surrogate Endpoints Using PTE 

 
As discussed in Chapter 1, to reduce time, size and cost of clinical trials, surrogate 

endpoints are often measured instead of true endpoints.  Surrogate endpoints are 

intermediate biomarkers that can be measured easier and earlier.  However, an invalid 

surrogate endpoint may not provide reliable evidence about effects of the intervention on 

true endpoints.   Freedman, Graubard, and Schatzkin (1992) suggested focusing on the 

proportion of the treatment effect explained by surrogate endpoints (PTE) as one 

validation criterion for surrogate endpoints.  A good surrogate endpoint should be able to 

explain a large portion of the treatment effect.   

This chapter considers criteria for validating surrogate endpoints based on PTE.  

Section 2.1 details the frequentist and Bayesian inferences for PTE.  Advantages and 

disadvantages of PTE are also discussed in this section.  We propose the conditional prior 

approach to improve PTE estimation in Section 2.2.  In Section 2.3, simulations are 

conducted to compare our conditional prior approach with frequentist methods and a 

Bayesian method proposed by Cowels (2002).  We investigate the induced prior structure 

for PTE and its influence on the posterior distribution in Section 2.3.   

 
2.1. Introduction to PTE 

In this section, we introduce both frequentist and Bayesian methods for estimating 

PTE.  Weaknesses inherent in current PTE estimation methods are also detailed in this 

section. 
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2.1.1 Inferences for PTE 

PTE is intuitively attractive due to its simplicity.  Denote by E the true biological 

endpoint, such as HIV infection or a bone fracture.  Let T be the treatment effect and let S 

be a surrogate endpoint, such as CD4 counts or bone mineral density measurements.  

Consider the models    

E(E|T, S) = μγ + βγT + γS        (2.1) 

and          

         E(E|T)= μ + βT      (2.2) 

The proportion of the treatment effect explained by a surrogate endpoint is defined as: 

PTE = 1 γβ
−

β
.      

 Freedman, et al. (1992) proposed a maximum likelihood estimator for PTE.  

Cowles (2002) introduced a Bayesian method to estimate PTE in a general linear model 

framework.  We consider both in detail in subsequent sections. 

 
2.1.2 Maximum Likelihood Estimation of PTE 

PTE is the most widely used criterion due to its simplicity and ease of 

interpretation.  The closer PTE is to 1, the better the surrogate endpoint.  Frequentist 

methods use a maximum likelihood estimator (MLE) of PTE.  Since PTE is a ratio of two 

parameters, its confidence limits can be obtained either by Fieller’s theorem or by the 

delta method.  Herson (1975) provided details on the use of Fieller’s theorem and the 

delta method to calculate significance intervals for such ratios. 

Freedman et al. (1992) proposed the first statistical method to estimate PTE by 

modeling two logistic regression equations simultaneously: 
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Logit[P(E  = 1|T = j)] = μ + τj 
and 

Logit[P(E  = 1|S = si; T  = j)] = μ + σi + τja 
  

 

where E is the binary response, T is the binary treatment indicator, μ is the overall mean, 

τj is the effect of the jth treatment (j = 0, 1), σi is the effect of the ith marker level (i = 1, 

2,… k), and τja is the effect of the jth treatment adjusted for the effect of the marker.  The 

authors estimated PTE as 

1

1

ˆ
1

ˆ
a

FGSPTE τ
τ

= −  

where 1ˆ aτ and 1τ̂  are MLE’s for 1aτ and 1τ , respectively.  They suggested that a surrogate 

be considered valid if the lower 95% confidence limit exceeds a pre-chosen critical value, 

say 0.75.   

Lin, Fleming and DeGruttola (1997) estimated PTE in another context.  A Cox 

proportional hazards model was used to model the time to occurrence of a clinical 

endpoint.  If T is the treatment indicator variable and S(t) is a vector of covariates 

representing the history of the surrogate marker, the two models of interest are 

and  

1

1

10

( )
20

                                  ( | ) ( )    
                                        

                                  ( | , ) ( ) ,                                a

T

T S t

E T t e

E T S t e

β

β +γ

λ = λ

λ = λ

 

where λ10(t) and λ20(t) are the baseline hazard functions.  Under this model PTE may be 

estimated as  

1

1

ˆ
1 ˆ

a
LFDPTE β

β
= −  
 

Freedman, et al. (1992) and Lin, et al. (1997) used either the delta method or 

Fieller’s theorem to compute their confidence intervals for PTE.  This results in 
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considerably wide intervals unless the unadjusted treatment effect is highly significant.  

One way to define “highly significant” in this context is to require that  β1/SE(β1) be 

greater than 4, which is a very strong condition. 

 
2.1.3 Cowles’ Bayesian Method for Estimation of PTE 

Cowles (2002) proposed estimation of PTE in the context of a generalized linear 

model.  Let Ei be the clinical outcome of the ith patient, i = 1, …, n.  We assume E1,…, En 

are independently distributed from an exponential family with density function of the 

form 

( )
( ; , ) exp ( , )

( )
i i i

i i i
E b

f E c E
a

θ − θ⎧ ⎫
θ φ = + φ⎨ ⎬φ⎩ ⎭

 

Let zi be the vector of covariates for subject i, β be a vector of coefficients and g 

be the “canonical link” which is a monotonic and differentiable function.  We can rewrite 

the expectation of Ei as a function of zi:  

E(Ei) = g−1(zi
Tβ).                                            

To compute PTE, the “full model” is defined to be the model which includes the 

surrogate marker: 

                                                   E(Ei|Si,Ti) = g−1(μγ + βγTi + γSi)       (2.3) 

where Ti is the treatment indicator and Si is the marker value.  The “reduced” model omits 

the marker term from equation (2.3): 

    E(Ei|Ti) = g−1(μ + βTi).       (2.4)      

If both the full and reduced models hold, then PTE is estimated as  

                                                    
ˆ

1 ˆPTE γβ
β

= −    .                    (2.5) 
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Furthermore, if both the full model and the reduced model hold, they are related 

implicitly as  

   1 1( ) ( ) ( | , , )i i i S Sg T g T S f S T dS− −
γ γμ+β = μ +β + γ μ β∫ ,    (2.6) 

where function f(⋅) models the association between surrogate endpoint and treatment 

effect and has the following relation: 

E(S|T) = f −1(μS + βS Ti). 

The joint posterior distribution for (μγ, βγ, γ, β) can be divided into two factors: A 

marginal joint posterior distribution for parameters in the full model and a conditional 

posterior distribution based on the full model using (2.6), 

 ( , , , | , , ) ( , , | , , ) ( | , , , , , )p E T S p E T S p E T Sγ γ γ γ γ γμ β γ β = μ β γ β μ β γ  .   (2.7) 

Typically, this posterior will not be of closed form.  Markov chain Monte Carlo (MCMC) 

methods enable samples to be drawn from otherwise intractable posterior distributions in 

Bayesian modeling.   At convergence, the MCMC simulation produces a sequence of 

values from the joint posterior.  Pairs of values for (β, βγ) from this sequence can then be 

used to construct the posterior distribution of PTE.   

 
2.1.4 Disadvantages of PTE 

For a small clinical trial with rare number of clinical events, the interval estimates 

for PTE will be wide.  That is, PTE is highly variable.  Large random trials or a meta-

analysis of many related trials can improve interval estimation for PTE.   Burzykowski, 

Molenberghs and Buyse (2005) pointed out that, even with large numbers of 

observations, the denominator of PTE (the effect of treatment upon the true endpoint) 

will be estimated with little precision.  Otherwise, a surrogate endpoint would not be 
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needed.  In addition, estimates of PTE might not be in the unit interval if the direction of 

the treatment effect, T, on the true endpoint, E, is reversed after adjustment for the 

surrogate endpoint, S.  In this instance, it will be difficult to interpret PTE since it is 

supposed to be a proportion.   

Despite these shortcomings, PTE is still widely used, principally due to its 

simplicity.  Maximum likelihood estimation (as presented above) remains the most 

widely employed method for providing inferences about PTE.  Researchers have 

proposed several non-Bayesian methods to improve estimation of PTE including 

Freedman (2001), Li Z, Meredith and Hoseyni (2001), Wang and Taylor (2002), and 

Chen, Wang and Snapinn (2003).   

The Bayesian approach developed by Cowles (2002) also presents difficulties.  As 

noted above, she mentioned ruling out interaction before proceeding with her Bayesian 

analysis.  However, she did not suggest a Bayesian method for doing so.  Also, utilizing 

diffuse priors can produce posterior estimates of PTE that are not in the unit interval.  In 

the next section, we introduce a new Bayesian approach based on a conditional prior 

structure.  Our approach is free of the problems outlined above. 

 
2.2. Conditional Prior Approach 

Cowels (2002) introduced two prior structures for the parameters in the model 

defined by (2.3) and (2.4)—locally uniform priors and informative normal priors, the 

latter based on historical data.  In her application, a Cox proportional hazards model (a 

special case of equation (2.3)) was built.  For comparison, she calculated a frequentist 

estimator for PTE using the method in Lin et al. (1997). 
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In her Bayesian approach for estimating PTE, she first assumed a locally uniform 

prior structure on all model coefficients.  She also used an informative multivariate 

normal-Wishart prior on the parameters from the full model based on historical data.        

 Cowels noted that posterior estimates of PTE might be outside the unit interval 

when using non-informative priors.  The use of non-informative priors also yields 

unacceptably wide interval estimates of PTE.  Motivated by these problems we have 

developed the conditional prior structure introduced in the next section. 

 
2.2.1 Assumptions 

There are two assumptions underlying our conditional prior method.   

1. After adjusting for the effect of a surrogate endpoint, the treatment’s effect on the true 

endpoint is no larger than the overall treatment effect.  Theoretically, the overall 

treatment effect can be separated into two parts: the effect explained by the surrogate 

and the effect attributed to other factors associated with the treatment.  It is therefore 

reasonable to assume, in models (2.1) and (2.2), that |βγ| ≤ |β|. 

2. Adjusting for the surrogate will not change the direction of the treatment effect on the 

true endpoint.  That is, 0 ≤ βγ ≤ β or β ≤ βγ ≤ 0. 

In the conditional prior structure we detail below, let p(β) be the prior distribution 

for β.  We construct a prior, p(βγ | β), conditional on β. 

 
2.2.2 Conditional Prior Structure for β and βγ 

We considered two families of distributions as candidates for our conditional 

prior structure.  Since Cowels (2002) used a normal prior structure for β and βγ, we 
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considered truncated normal distributions in one approach.  In our second approach, we 

used beta distributions because of both their flexibility in shape and their finite support.   

 
2.3 A Small Sample Simulation Study 

To investigate the efficacy of using either truncated normal distributions or beta 

distributions for our conditional prior structure, we conducted a small simulation study 

involving a small sample size of only 40 patients.  We chose this small size in this 

preliminary study to highlight certain problems with the maximum likelihood approach.  

Larger, more realistic sample sizes are considered in Chapter 3. 

 
2.3.1 Data Generation 

We begin by comparing our conditional priors, based on either truncated normal 

or beta distributions, to the use of diffuse normal priors in Cowles (2002).  To this end a 

small simulation study was conducted.  Forty patients, half in the treatment group and 

half in the control group, were simulated 100 times.  Values of the surrogate endpoint, S, 

were generated from a normal distribution with mean 1 for the treatment group and mean 

−1 for control group.  Both were given a variance of 1.  The treatment indicator variable, 

T, equals to −0.5 for control group and 0.5 for treatment group.  The true endpoint, E, 

was simulated from a Poisson distribution with mean exp(βγT + γS).  Hence, the 

likelihood function, l1, for model (2.1) is: 

     1 1 1
1

( , , | , , ) [ log( ) log( )]
n

i i i i
i

l E Eγ γ
=

μ β γ = −μ + μ −∑E T S  ,  (2.8) 

where E ≡ (E1,…,En) is the vector o0 true endpoint values, T ≡ (T1,…,Tn) is the vector of 

treatment indicator values, S ≡ (S1,…,Sn) is the vector of surrogate endpoint values, and  
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μ1i = μγ + βγTi + γSi. 

The likelihood function, l2, for (2.2) is:  

  2 2 2
1

( , | , ) [ log( ) log( )]
n

i i i i
i

l
=

μ β = −μ + μ −∑E T E E ,   (2.9) 

where μ2i = μ + βTi.  In our simulation study, we used SAS to generate data using βγ = 

0.75 and γ = 0.375, yielding PTE = 0.5.  The SAS program is included in Appendix B.1. 

With our conditional prior structure, the posterior distributions have the form 

1( , | , ) ( , | , ) ( ) ( )p l p pμ β ∝ μ β β μE T E T    (2.10) 

and 

2( , , | , , ) ( , , | , , ) ( | ) ( )p l p pγ γ γ γ γ γμ β γ ∝ μ β γ β β μE T S E T S          (2.11) 

For our applications these posterior distributions were not of closed form.  This would 

typically be the case in practice.  For this reason we used MCMC methods, implemented 

with the software package WinBUGS (Spiegelhalter, Thomas, Best, and Lunn 2003).  To 

facilitate writing simulations requiring MCMC methods, the R2WinBUGS package 

provides convenient functions to call WinBUGS from R.  It automatically writes the data 

and scripts in a format readable by WinBUGS for processing in batch mode.  After the 

WinBUGS process has finished, it is possible either to read the resulting data into R or to 

use the facilities of the coda package for further analyses of the output (Sturtz, Ligges and 

Gelman, 2005).   
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2.3.2 Prior Structure for β and βγ 

As in Cowles’ (2002) model, we take μ, μγ, and γ to have independent, diffuse 

normal priors, specifically, N(0, 100,000).  We studied three prior structures for β and 

βγ in the simulation study.   

Let N[υ, ϖ](μ, σ2) be a normal distribution with mean μ and variance σ2 that is 

truncated and scaled to have finite support [υ, ϖ], υ < ϖ.  This distribution has density 

( )
2

2
[ , ]2

| , , , exp ( )
2

u v
h xf x u v I x

⎧ ⎫− μ⎪ ⎪⎛ ⎞μ σ = −⎨ ⎬⎜ ⎟σ⎝ ⎠⎪ ⎪πσ ⎩ ⎭
 

where Ι[υ,ϖ](ξ) is the indicator function and  

2
1

2
1 exp .

2

v

u

xh dx−
⎧ ⎫− μ⎪ ⎪⎛ ⎞= −⎨ ⎬⎜ ⎟σ⎝ ⎠⎪ ⎪πσ ⎩ ⎭

∫  

Lunn (2003) developed an add-in component for WinBUGS to sample from the truncated 

normal distribution.   

Denote by beta[u, v](a, b) a beta density translated and scaled to have support [u, v], 

u < v.  This distribution has density 

( )
1

1 1( )| , , , ( ) ( )
( , )

a b
a bv uf x a b u v x u v x

B a b

− −
− −−

= − −  

ωηερε 

1
1 1

0
( , ) (1 ) .a bB a b t t dt− −= −∫  

The three prior structures for β and βγ used in our simulation are as follows: 

(1) Diffuse normal structure:   β ~ N(0, 100,000), βγ ~ N(0, 100,000) 

(2) Truncated Normal structure:  β ~ N[0, 1000](0, 100,000), βγ ~ N[0, β](0, 100,000) 
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(3) Generalized beta structure:  β ~ beta[0, d] (a, b), βγ ~ beta[0, β] (f, g), 

where a, b, d, f, and g, are to be specified. 

The truncated diffuse normal prior structure in (1) is close to a uniform 

distribution on the interval [0, 1,000].  In our study, we used a = b = f = g = 3 and d = 5.  

The motivations for choosing such values will be discussed in the next section.   

Each of the three prior structures detailed above induces a prior on PTE.  In 

Section 2.4 we shall identify the exact distribution of the induced prior for PTE under 

prior structures (1) and (3).  (It will turn out that prior structure (2) is not very useful.)   

We used the SAS GENMOD procedure to fit the Poisson regression of E|T and 

E|T, S simultaneously.  The maximum likelihood estimators (MLE’s) for β and βγ were 

estimated.  The MLE for PTE is the ratio of MLE’s for βγ and β in model (2.1) and (2.2).  

The SAS program is included in Appendix C.1.     

The posterior distributions, (2.10) and (2.11), under prior structure (3) appears to 

be intractable.  As noted earlier, we used the WinBUGS package to implement MCMC 

methods for obtaining the posterior distributions.  R Codes for these models are included 

in Appendix D.1, D.2 and D.3.  WinBUGS model is included in Appendix E.1.   

For each of the 100 samples, we based our conclusions on 10,000 iterations each 

from two chains beginning with dispersed starting values and a burn in of 1000 iterations 

per chain.  For convergence diagnostic purposes, we computed Gelman-Rubin statistics 

and examined autocorrelation plots.  We found no problems with convergence. 

 
2.3.3 Simulation Results 

  Posterior kernel density plots typical of those obtained in this simulation study 

are exhibited in Figure 2.  In Figure 2(a), note that the posterior for PTE using diffuse 
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normal priors has support outside of [0, 1].  The truncated normal and beta conditional 

priors do not suffer from this problem, as can be seen in Figures 2(b) and 2(c).   

In this simulation, PTE = 0.5.  The posterior modal values in all three plots are 

seen to be less than this true value.  Understanding this discrepancy depends on 

understanding the role prior information has played in the posterior.  We shall address 

this issue in the next section. 
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        (a) Using diffuse normal prior           (b) Using truncated normal prior     (c) Using beta prior 

Figure 2. Posterior distribution of PTE using diffuse normal prior structure. 

 
In Table 1 we compare the four methods based on 100 simulated data sets.  The 

first row shows the mean and median of the 100 MLE estimators.   Of the 100 MLE’s 

computed, 45 were outside of the unit interval.  While this is in part due to the small 

sample size, we shall see in the next chapter that, even with larger sample sizes, the MLE 

frequently produces estimates outside the unit interval.  The remaining rows indicate the 

mean and median of the 100 posterior medians for the PTE using three different prior 

structures as well as the 95% percentiles for the 100 posterior median PTE’s.  Analysis 

with the diffuse normal also produced estimates of PTE outside [0,1], with 49 out of 100 
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simulations doing so.  Again, this is partly due to the small sample size and, again, we 

shall see that even larger sample sizes can yield such results. 

For the truncated normal prior structure, βγ is restricted to be no larger than β and 

both parameters are assumed to be positive.  Under the truncated normal and the 

conditional beta prior structure, the posterior for PTE has unit interval support.  The 

posterior means and medians for PTE were close to the true value than the MLE or the 

means and median under either diffuse normal. 

   
Table 1. Comparison of simulation results.  True PTE = 0.5.  Entries are the mean and percentiles 

of the posterior median and mean for the 100 samples. 
 

Interval Type mean 2.5% median 97.5% 
MLE 0.06 

 
−0.02 0.051 0.11 

Diffuse normal                                 median 
       mean 

0.57 
−3.47 

 

0.70 
−22.3 

0.60 
0.21 

2.06 
11.08 

Conditional truncated normal           median 
mean 

0.50 
0.50 

 

0.33 
0.37 

0.53 
0.52 

0.58 
0.55 

Conditional beta                               median 
mean 

0.51 
0.51 

0.40 
0.41 

0.528 
0.524 

0.57 
0.55 

 
  

  The widths of 95% credible sets for PTE for the 100 samples are exhibited in 

Figure 3.  Not surprisingly, the more informative conditional beta priors yield relatively 

tighter intervals, but intervals for all methods are quite wide, as is typical for PTE.  With 

larger sample sizes, the interval widths are narrower, but not satisfactorily so, as we shall 

see.  (Confidence interval widths are also typically quite wide but are not depicted here.)   

Of course, better results may be obtained by increasing prior precision or the size 

of the trial.  One may also combine several studies in a meta-analysis.  We consider 

larger simulated samples in Section 3.2.  Additionally, we look at a method for using 

historical data in fitting informative priors in Section 3.3. 
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(a) Using diffuse normal prior  (b) Using truncated normal prior   (c) Using conditional Beta prior 
 

Figure 3. Histograms of the confidence interval widths from the 100 simulated samples. 
   
 
It appears that there is little to be gained by using conditional truncated normal 

priors over conditional beta priors.  We chose to focus on conditional beta priors in the 

rest of the dissertation. 

 
2.4 Induced Prior Structure for PTE 

In the simulation study, we placed a prior structure on β and βγ thereby inducing a 

prior on PTE.  Knowing the induced prior for PTE will allow us to gauge prior-to-

posterior changes.  Furthermore, distinguishing the relationship between prior for β and 

βγ and prior for PTE can help us to elicit the prior parameters.   

In this section, we consider the induced prior for PTE based on two prior 

structures for β and βγ: conditional beta priors and diffuse normal priors.   

 
2.4.1 Induced Prior for PTE—Ratio of Two Dependent Beta Distributions (β ≥ βγ ≥ 0) 

The conditional beta prior structure, β ~ beta[c, d](a, b) and  βγ | β ∼ beta[e, β](f, g), 

yields the prior densities 

          
1 1 1( ) ( ) ( )( ) ,   

( ,  )

a d a bd c c df
B a b

− − − −− β − −β
β =    (2.12)  
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where c < β < d, and 

                    
1 1 1( ) ( ) ( )

( | ) ,   
( ,  g)

f g f ge e
f

B f

− − − −
γ γ

γ
β − β − β −β

β β =   (2.13) 

where a < e < βγ < β. 

From (2.12) and (2.13), we can derive the joint distribution for β and βγ: 

1 1 1

1 1 1

( ) ( ) ( )
( , )

( ,  g)

( ) ( ) ( )              ,   
( ,  b)

f g f g

a b a b

e e
f

B f

d c c d
B a

− − − −
γ γ

γ

− − − −

β − β − β −β
β β =

− β − −β
×

       (2.14) 

where c < e < βγ < β and c < β < d. 

We now derive the induced prior for PTE.  For simplicity in these derivations, let 

P ≡ PTE = 1 − βγ/β.  Let W = β so that βγ = (1 − P)W.  After applying the Jacobean of 

transformation, we obtain 

     

1 1 1

1 1 1

| | ( ) ((1 ) ) ( (1 ) )( , )
( ,  g)

( ) ( ) ( )               ,   
( ,  b)

f g f g

a b a b

W W e P W e W P Wf P W
B f

d c c d
B a

− − − −

− − − −

− − − − −
=

− β − −β
×

 (2.15) 

where 0 < P < 1 and c < W < d.  The Jacobean matrix is  

1 0
(1 )

W PJ W
P W

W P
γ γ

∂β ∂β
∂

= = =
∂β ∂β − −
∂ ∂

. 
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After some simple algebra (2.15) becomes  

1 1 1 1

1
1 1 1

1( , ) ( ) (1 ) | | ( )
( ,  ) ( ,  )

( ) ( ) .
1

a b g f f g

f
g a b

f P W d c P P W W e
B f g B a b

eW W W c d W
P

− − − − − −

−
− − −

= − − −

⎛ ⎞× − − −⎜ ⎟−⎝ ⎠

           (2.16) 

There are two scenarios in calculating the induced prior for PTE: 

Scenario 1:  c = e = 0, which means β ~ beta[0, d](a, b) and  βγ | β ~ beta[0, β](f, g) and 

 

1 1 1 1 1(1 ) ( ) ( ) ( )( , ) ,   
( ,  b) ( ,  )

g f a b a bP P d W d Wf P W
B a B f g

− − − − − −− −
=                  (2.17) 

 

By integrating out W in (2.17), it is easy to show that P follows a standard beta 

distribution with shape parameter g and f, that is,   

[0, ] [0, ] [0,1]~ beta ( , ) and | ~ beta ( , ) 1 ~ beta ( , ).d a b f g g fγ β
γ

β
β β β ⇒ −

β
 

It may seem that the prior for PTE is independent of the prior for β.  In fact, the 

shape parameters f and g used in the prior for βγ are highly dependent on the prior 

structure for β.  If we have the prior information for β, the induced prior for PTE depends 

on β through βγ since   

( | ) fE
f gγβ β = β

+
 

and 

2( | ) .
( 1)( )

fgVar
f g f g

βγ β = β
+ + +
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Methods for the elicitation of shape parameters for beta distributions have been 

considered, for example, by Chaloner and Duncan (1983).   Choices for scale parameters 

are discussed in the next section.   

Scenario 2: When c ≠ 0 and e ≠ 0, the induced prior for PTE must be determined by 

simulation methods.  

 
2.4.2 Induced Prior for PTE—Ratio of Two Dependent Beta Distributions (β ≤ βγ ≤ 0) 

In the case of β ≤ βγ ≤ 0, β ~ beta[c, d](a, b) and  βγ|β ∼ βeta[β, ε](f, g), their density 

functions are: 

1 1 1( ) ( ) ( )( ) ,
( ,  )

a d a bd c c df
B a b

− − − −− β − − β
β =     

where c < β < d and                    

1 1 1( ) ( ) ( )( | ) ,
( ,  g)

f g f ge ef
B f

− − − −

γ
− β βγ − β − βγ

β β =  

where β < βγ < e.  We can derive the joint distribution for β and βγ: 

          
1 1 1

1 1 1

( ) ( ) ( )
( , )

( ,  g)

( ) ( ) ( )              ,   
( ,  )

f g f g

a b a b

e e
f

B f

d c c d
B a b

− − − −
γ γ

γ

− − − −

− β β − β − β
β β =

− β − − β
×

       

where β < βγ < e and c < β < d.  

Again, let P ≡ PTE = 1 − βγ/β and W = β so that βγ = (1 − P)W.  We have: 

[ ] [ ]1 11

1 1 1

| | ( ) (1 ) (1 )
( , )

( ,  g)

( ) ( ) ( )               ,   
( ,  )

f gf g

a b a b

W e W P W W e P W
f P W

B f

d c W c d W
B a b

− −− −

− − − −

− − − − −
=

− − −
×

                  

where 0 < P < 1 and c < W < d.  The Jacobean matrix is  
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1 0
| |

(1 )
W PJ W

P W
W P

γ γ

∂β ∂β
∂

= = =
∂β ∂β − −
∂ ∂

. 

When d = e = 0, which means β ~ beta[c, 0](a, b) and  βγ|β ~ beta[β, 0](f, g) 

1 1 1 1 1(1 ) ( ) ( ) ( )( , ) ,   
( ,  b) ( ,  )

f g b a a bP P W W c cf P W
B a B f g

− − − − − −− − − −
=                     (2.18) 

Integrating out W in (2.18) we obtain P ~ beta[0,1](f, g).  Hence, the induced prior 

distribution for PTE follows a standard beta with shape parameter f and g.  That is 

[ ,0] [ ,0] [0,1]~ beta ( , ) and | ~ beta ( , ) 1 ~ beta ( , ).c a b f g f gγ β
γ

β
β β β ⇒ −

β
 

 
2.4.3 Example Using Conditional Beta Priors and the Induced Prior on PTE 

For this example we simulated a data set with 200 patients.  Half of the patients 

were allocated to be in the treatment group and half in control group.  Values for the 

surrogate endpoint, S, were generated from a normal distribution with mean 1 and 

variance 1 for the treatment group.  Values of S for the control group were assumed to 

follow a normal distribution with mean −1 and variance 1.  The treatment indicator 

variable, T, is set to −0.5 for the control group and 0.5 for the treatment group.  The true 

endpoint, E, is simulated from a Poisson distribution with mean exp(βγT + γS), where 

βγ = 0.75 and γ = 0.375, yielding PTE = 0.5.  All coefficients other than β and βγ are 

assumed to follow the diffuse normal prior N(0, 100,000).   

In this example we used the conditional priors  

β ∼ beta [0, 5] (5, 6) 

and     βγ | β ∼ beta [0,β] (2, 7). 
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It follows that  

PTE ~ beta [0,1] (7, 2). 

This is a relatively optimistic prior structure for PTE with a mean of 0.78.   R-

code that was used to simulate induced prior for PTE is attached as Appendix D.6. 

The prior and posterior distributions for PTE are graphed in Figure 4.  In our 

example, the MLE is 0.41 and the mode of the posterior is about 0.577.  The mean and 

median of the posterior are 0.569 and 0.572, respectively.  The mode, mean, and median 

of the posterior are quite close to the true value of 0.5, despite the overly optimistic prior 

given to PTE.   

 

 

— simulated prior for PTE ---- derived induced prior for PTE ….posterior for PTE 
Figure 4. Prior and posterior for PTE. 

 

2.4.4 Induced Prior for PTE -- Ratio of Two Independent Normal Distributions 

Suppose ( )2~ 0, XX N σ and ( )2~ 0, YY N σ  and X is independent of Y.  Their joint 

distribution is  

2 2

2 2

1( , ) exp
2 2 1X Y X Y

x yf x y
⎧ ⎫⎛ ⎞⎪ ⎪= − +⎨ ⎬⎜ ⎟πσ σ σ σ⎪ ⎪⎝ ⎠⎩ ⎭
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The distribution of U  = X/Y is, of course, Cauchy with density 

    
( )22

1( ) ,X Y

X Y

p u u
u

σ σ
= − ∞ < < ∞

π + σ σ
.  (2.19) 

In the case of σX  = σY, p(u) becomes to be a standard Cauchy distribution, thereby 

placing a concentration of probability around zero.   

In our example, β ~ N(0, 100,000), βγ ~ N(0, 100,000) and the prior for PTE is 

Cauchy with location parameter 1, scale parameter 1, and density   

  2

1 1( ) ,
(1 ) 1

p PTE PTE
PTE

= − ∞ < < ∞
π − +

.  (2.20) 

The median and mode of this prior for PTE is 1 with undefined mean and variance.  That 

is, using a diffuse normal prior structure for β and βγ, the induced prior for PTE is 

centered at 1 and has support (−∞, ∞), as depicted in Figure 5.  Hence, it is not surprising 

that the posterior estimates for PTE under this prior are often outside [0, 1].  This is 

hardly appropriate as a prior for PTE.   

 

2 1 0 1 2 3 4
0

0.1

0.2

0.3

.35

0.032

p PTE( )

42− PTE  
Figure 5. Induced Prior for PTE using diffuse normal prior for β and βγ.  
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2.5  Support for Uniform Prior 

The conditional prior structure uses β ~ beta[0, d](a, b) and βγ|β ~ beta[0, β](f, g) in 

this section.  We would like to investigate the relation between the support of the prior on 

β, determined by d, and the posterior of PTE.  To this end we shall use the same data 

generated for use in Section 2.4.3.  R-code is attached as Appendix D2 and WinBUGS 

Model is included as Appendix E1.  

Figure 6 exhibits the relationship between features of the posterior and the upper 

bound, d, on the support of β in the conditional beta prior (3) introduced in Section 2.3.2.  

The posterior mean, median and 95% credible set for PTE are all shown in the plot.  It is 

obvious that small values of d will profoundly influence the posterior of PTE.  Use of 

such values should be based on very reliable prior knowledge.  In general, it is 

recommended that d be given a relatively large value and the analyst should perform a 

prior-to-posterior sensitivity analysis.  If both β and βγ are negative, the impact of the 

lower bound c on posterior estimation needs to be studied in a similar fashion.   

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7 8 9 10

d

median mean 2.50% 97.50%
  

Figure 6. The posterior for PTE as a function of the bound, d, in β ~ beta[0, d](a, b). 



 

 30

CHAPTER THREE 

Simulation Study 

 
In Chapter 2, we discussed Bayesian inference for PTE using conditional prior 

distributions.  There we illustrated use of the method with a small simulation study, 

demonstrating, among other things, that the posterior for PTE using conditional priors 

will have the unit interval for support, unlike other existing methods.    

After introducing the models used in this chapter’s simulations in Section 3.1, we 

turn to the use of conditional priors in Section 3.2.  Their performance is examined in a 

simulation using small (n = 40) and moderate (n = 200) sample sizes. 

It was also seen in the last chapter that interval estimates of PTE are typically 

wide, regardless of the method used.  This is a well-known problem with using PTE to 

assess surrogate markers.  Burzykowski, Molenberghs and Buyes (2005) pointed out that 

there is substantial uncertainty about PTE if the treatment effect upon the true endpoint is 

small, especially for small clinical trial.  Increasing the size of a study is one obvious way 

to counter this problem.  Another is to combine studies in a meta-analysis.  In Section 

3.3, we present simulated examples in which informative priors are constructed from 

historical data, thereby narrowing subsequent posterior credible sets on PTE.   

In Section 3.4 we consider prior-to-posterior sensitivity analyses.  This is very 

important given the large data model variance component typically encountered in 

practice.  Related MCMC convergence issues appear in Appendix A. 
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3.1 Introduction 

As in Chapter 2, let E denote the true endpoint, T represent the treatment 

indicator, and let S be the surrogate endpoint.  We relate E, T, and S with the models 

           E(E|T, S) = μγ + βγT + γS       (3.1) 

and          

                  E(E|T) = μ + βT.              (3.2) 

In our simulated data sets, we generate values of E using a Poisson distribution 

with mean 

λ = exp{βγT + γS},  

for various values of βγ and γ.  As before, the binary treatment indicator is defined as 

       
0.5
0.5 ,

treatment
T

control
⎧

= ⎨−⎩
 

and we suppose S follows a normal distribution, conditional on the value of T: 

S|T = −0.5 ~ N(−0.5, 0.5) 

and 

S|T = 0.5 ~ N(0.5, 0.5). 

Poisson regression models were fit for E vs. T and S and E vs. T.  We used SAS 

PROC GENMOD to fit the Poisson regression to obtain MLE’s for β and βγ, denoted by 

β̂  and ˆ
γβ , respectively.  The SAS code we used is in Appendix C.1.  Assuming that 

models (3.1) and (3.2) hold simultaneously, the MLE for PTE is then,  

                                            
ˆ

1 ˆPTE γβ
β

= − .       (3.3) 



 

 

32

 The Bayesian analyses in this chapter use MCMC methods as implemented in 

WinBUGS.  R Code to call WinBUGS for these models is included in Appendix D.1 and 

WinBUGS model is included in Appendix E.1.  The posterior distributions for β and βγ 

are derived from the joint posterior distributions for (μγ, βγ, γ) and (μ, β); that is, from  

1 1 0 0( , , | , , , ) ( , , | , ) ( | ) ( ) ( )p l p p pγ γ γ γ γ γμ β γ β ∝ μ β γ β β β μ γE S T E,S,T    (3.4) 
 

and  

2 2 0 0( , | ) ( , | ) ( ) ( )p l p pμ β ∝ μ β μ βE,T E,T      (3.5) 

 
where E, T, S, l1, and l2 are defined in (2.8) and (2.9). 

We used the following prior structure on the coefficients in models (3.1) and 

(3.2).  We placed independent diffuse normal distributions, N(0, 100,000), on each of 

coefficients μ, μγ and γ.  We used the following conditional priors on β and βγ: 

       β ~ beta[0, d](a, b), 

and 

[0, ]| ~ beta ( , )f gγ ββ β  

In Section 2.4 we showed that the induced prior for PTE follows a beta[0,1](g, f).  

We chose d = 5 using a sensitivity analysis like that described in Section 2.5. The choices 

for  a, b, f, and g are described below.   

 
3.2 Simulation Study 

 

3.2.1 Prior Structures 

In this section, we will simulate data sets to study the performance of the 

conditional prior approach for small and moderate sample sizes.  We also consider prior-
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to-posterior robustness.  The priors we consider are listed in Table 2, along with the 

corresponding induced priors for PTE.  The latter are graphed in the table as well as in 

Figure 7(a) and (b). 

 
Table 2. Prior structures for non-informative prior simulation. 

 
Prior Structure Inferences for PTE 

β and βγ β and βγ PTE 
     mean             var 
     mode             std. dev. 
     median 

Diffuse 
Normal 

β ~ N(0, 100,000) 
βγ ~ N(0, 100,000) 

 

PTE ~ Cauchy 

2 1 0 1 2 3 4
0

0.1

0.2

0.3

.35

0.032

p PTE( )

42− PTE  

undefined 
1 
1 

undefined 
undefined 

Uniform 
β ~ beta[0, 5](1, 1) 
βγ ~ beta[0, β](1, 1) 

 

PTE ~ beta[0,1](1,1) 

0 0.2 0.4 0.6 0.8
0.9985

0.999

0.9995

1

1.0005

1.001
1.001

0.999

dbeta x α, β,( )

10 x
1  

0.5 
0.5 
0.5 

1/12 ≈ 0.083 
0.289 

Beta 
Prior1 

β ~ beta[0, 5](2, 2) 
βγ ~ beta[0, β](1.42, 1.97) 

 

PTE ~ beta[0,1](1.97, 1.42) 

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5
1.438

0

dbeta x α, β,( )

10 x
1  

0.581 
0.698 
0.599 

1/18 ≈ 0.056 
0.235 

Beta 
Prior2 

β ~ beta[0, 5](2, 2) 
βγ ~ beta[0, β](2.58, 4.68) 

PTE ~ beta[0,1](4.68, 2.58) 

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

2.5
2.24

0

dbeta x α, β,( )

10 x
1  

 

0.645 
0.7 

0.659 

1/36 ≈ 0.028 
0.167 

 

 
 
The diffuse normal and uniform priors are relatively                        

non-informative, compared to the likelihood we ultimately employ.  The two beta priors 

are informative.  They were chosen so that the induced prior for PTE would have a mode 

of approximately 0.7 and a specified variance.  This reflects some optimism about the 

validity of the surrogacy, which is attenuated by the choice of variance for these priors.   

0                                                 1

0                                                   1 

0                                                  1
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Beta prior 1 uses a variance of 1/18.  In that case, the 0.025 and 0.975 percentiles 

are 0.119 and 0.959, respectively, and the prior probability that PTE is at least 0.7 is 

approximately 0.356.  For beta prior 2 the 0.025 and 0.975 percentiles are 0.294 and 

0.921, respectively, and the prior probability that PTE is at least 0.7 is approximately 

0.408. 

We take β ~ beta[0,5](2, 2).  The upper bound on the support of this beta 

distribution, d = 5, is chosen using a sensitivity analysis as discussed in Section 2.5.  The 

induced priors for PTE are shown in figure 7. 

 

 
0 0.2 0.4 0.6 0.8

0.5

1

1.5

2

2.5
2.24

1

p PTE 1, 1,( )

p PTE 1.97, 1.42,( )

p PTE 4.68, 2.58,( )

10 PTE  
                         (a) Cauchy prior                                          (b) Beta prior 

Figure 7. Induced priors for PTE. 

 
3.2.2 Small Sample Size (N = 40) 

To illustrate the performance of the conditional prior method with a small sample 

size, we simulated 40 patients, half in the treatment group and half in the control group.  

We generated 500 samples and used three “true” PTE values: 0.5, 0.7, and 0.9.   

As in Chapter 2, WinBUGS was used to implement MCMC methods for 

computing the posteriors.  In the first two scenarios (PTE = 0.5 and 0.7), two chains with 

dispersed initial values were used.  Each chain began with 1,000 burn-in iterations 

followed by a sample of 10,000.  No convergence problems were encountered.  In the 
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third scenario (PTE = 0.9) we began with the same burn-in iterations and sample 

iterations, using two chains.  However, on examining the autocorrelation plots, we 

detected problems with convergence of the chains.  These were overcome by increasing 

the length of the chain and sampling from every 10th iteration after burn-in.  In addition, 

we found it necessary in this scenario to reduce the variance in the independent normal 

priors to 10.     

We now turn to the results of these simulations, considering each value of PTE.   

 
PTE = 0.5  In this scenario, we generated 500 data sets each with 40 triples (Ei, Ti, Si) 

using βγ = 0.75 and γ = 0.375, yielding PTE = 0.5.  Note that the informative priors in 

Table 2 (beta priors 1 and 2) have means, medians, and modes exceeding 0.5 and are 

therefore somewhat optimistic in this context.  Table 3 displays averages of mean, 

median and 95% intervals of PTE estimations with four priors from 500 iterations 

respectively.  The table 3 summarizes features of the 500 PTE posteriors.  The numbers 

in the parenthesis indicate the 2.5% and 97.5% quantiles of the 500 estimators for PTE.  

It is apparent that MLE’s for PTE were frequently outside the unit interval and far 

from the true value PTE = 0.5.  For the MLE’s, the mean and median both tended to 

underestimate PTE.  Fully 35% of the MLE’s were outside the unit interval.   

For the diffuse normal prior Bayesian analysis, 26.8% of the posterior means were 

outside the unit interval.  Indeed, 95% of the lower credible set bounds were negative.  

Posterior means and medians underestimated PTE.  Interval estimates were wide. 

Bayesian analysis using conditional priors resulted in the posterior for PTE 

having support equal to the unit interval, by construction.  Hence, no point or interval 

estimates were outside [0, 1].  Again, interval estimates were wide, as anticipated.  Point 
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estimates were much closer to the true value of PTE, even for beta priors 1 and 2, which 

had the “optimistic” mode of 0.7.   

 
Table 3. Simulation results with four prior structures when true PTE = 0.5 and N = 40.  The 

average of the 500 MLE’s was 0.219 with 2.5% and 97.5% quantiles −0.686 and 2.056, 
respectively.  The median of the MLE’s was 0.453.  Table entries summarize posterior features 
for the Bayesian analyses.  Parenthetic entries are the 2.5% and 97.5% quantiles for 500 values. 

 
 

  95% equal tail credible interval 
Method mean 2.5% median 97.5% 
Diffuse 
Normal 

 

0.369 
(−1.117, 2.440) 

−1.131 
(−8.572, −0.113) 

0.471 
(−0.189, 1.396) 

1.329 
(0.691, 9.996) 

Uniform 0.502 
(0.315, 0.621) 

 

0.0298 
(0.0130, 0.0613) 

0.505 
(0.277, 0.670) 

0.967 
(0.797, 0.986) 

Beta 
Prior1 

 

0.583 
(0.420, 0.677) 

0.136 
(0.077, 0.203) 

0.598 
(0.406, 0.716) 

0.950 
(0.831, 0.974) 

Beta Prior 0.639 
(0.536, 0.694) 

0.303 
(0.231, 0.354) 

0.651 
(0.535, 0.713) 

0.912 
(0.840, 0.935) 
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         (a) Using diffuse normal priors           (b) Using conditional priors 
— using uniform prior for β and βγ;  ---- using conditional beta prior 1; …. using conditional beta prior 2. 

Figure 8. Posterior distributions for PTE. 

 
Bayesian analysis using conditional priors resulted in the posterior for PTE 

having support equal to the unit interval, by construction.  Hence, no point or interval 
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estimates were outside [0, 1].  Again, interval estimates were wide, as anticipated.  Point 

estimates were much closer to the true value of PTE, even for beta priors 1 and 2, which 

had the “optimistic” mode of 0.7.   

Figure 8 displays the posterior distributions for PTE with four prior structures.   

Results for other scenarios were similar. 

 
PTE = 0.7  In this scenario, we generated 500 data sets each with 40 triples (Ei, Ti, Si) 

using βγ = 0.375 and γ = 0.875, yielding PTE = 0.7.  Table 4 displays averages of mean, 

median and 95% intervals of PTE estimations with four priors from 500 iterations.  The 

numbers in parentheses are the 95% percentiles for the corresponding estimator in 500 

samples.   

 
Table 4. Simulation results with four prior structures when true PTE = 0.7 and N = 40.  The 

average of the 500 MLE’s was 0.746 with 2.5% and 97.5% quantiles 0.197 and 1.597, 
respectively.  The median of the MLE’s was 0.691.  Table entries summarize posterior features 
for the Bayesian analyses.  Parenthetic entries are the 2.5% and 97.5% quantiles for 500 values. 

 
 

  95% equal tail credible interval 
Method mean 2.5% median 97.5% 
Diffuse 
Normal 

0.657 
(0.080, 1.757) 

 

−0.291 
(−1.789, 0.497) 

0.688 
(0.188, 1.569) 

1.394 
(0.761, 4.618) 

Uniform 0.578 
(0.333, 0.732) 

 

0.0611 
(0.018, 0.183) 

0.604 
(0.310, 0.790) 

0.974 
(0.7695, 0.992) 

Beta 
Prior 1 

0.630 
(0.432, 0.745) 

 

0.189 
(0.089, 0.311) 

0.652 
(0.425, 0.783) 

0.957 
(0.791, 0.980) 

Beta 
Prior 2 

0.663 
(0.530, 0.731) 

0.338 
(0.242, 0.412) 

0.676 
(0.529, 0.750) 

0.918 
(0.810, 0.945) 

 

The 97.5% quantile of the MLE’s for PTE exceeded 1.  For the 500 MLE’s, the 

mean and median both were close to the true value of PTE (0.7).  Over 10% of the 

MLE’s for PTE were outside of the unit interval.  For the diffuse normal prior analysis, 
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over 22.4% of the posterior means were outside the unit interval.  However, posterior 

means and medians were close to the true PTE.   

By construction, all Bayesian point and interval estimates were within the unit 

interval.  In addition, there was less variability among the posterior estimates for PTE.  

Both priors were somewhat pessimistic in this example (means and medians less than 0.7, 

with modes equal to 0.7) so, not surprisingly, Bayesian point estimates somewhat 

underestimate the PTE.   

 
PTE = 0.9  In this scenario, we generate data using βγ = 0.375 and γ = 3.375, yielding 

PTE = 0.9.  In the MCMC simulation we used two chains with 1,000 burn-in iterations 

followed by 20,000 sample iterations.  We encountered serious convergence problems 

that are discussed in the Appendix A.   Parameters (μγ, μ, γ) were assumed to follow 

independent N(0, 10) priors instead of  the diffuse normal priors used earlier.  Table 5 

displays averages of mean, median and 95% intervals of PTE estimations with four prior 

structures used with the generated 500 data sets. 

MLE’s for PTE were close to the true value of PTE (0.9) and exhibited less 

variability in the 500 data sets compared to the results with N = 40.  About 4% of MLE’s 

PTE are greater than 1. 

With the diffuse normal prior structure, the posterior means for PTE were far 

from the true value PTE and a substantial number were outside the unit interval.  Equal-

tail credible sets based on the diffuse normal prior structure were equally poor and over 

20% of the corresponding posterior means for PTE fell outside [0,1]. 
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Table 5. Simulation result with four prior structures when true PTE = 0.9 and N = 40.  The 
average of the 500 MLE’s was 0.85 with 2.5% and 97.5% quantiles 0.676 and 1.055, 

respectively.  The median of the MLE’s was 0.890.  Table entries summarize posterior features 
for the Bayesian analyses.  Parenthetic entries are the 2.5% and 97.5% quantiles for 500 values. 

 
 

  95% equal tail credible interval 
Method mean 2.5% median 97.5% 
Diffuse 
Normal 

0.298 
(−4.982, 3.438) 

 

−2.416 
(−17.357, 0.359) 

0.465 
(−0.373, 1.660) 

1.875 
(0.748, 20.030) 

Uniform 0.853 
(0.608, 0.938) 

 

0.655 
(0.230, 0.816) 

0.863 
(0.630, 0.950) 

0.988 
(0.866, 0.998) 

Beta 
Prior 1 

0.784 
(0.687, 0.877) 

 

0.576 
(0.467, 0.669) 

0.791 
(0.698, 0.884) 

0.945 
(0.847, 0.977) 

Beta 
Prior 2 

0.765 
(0.640, 0.891) 

0.565 
(0.384, 0.768) 

0.773 
(0.647, 0.898) 

0.915 
(0.827, 0.977) 

 
 
Bayesian analysis using the conditional uniform prior structure yields posterior 

means and medians for PTE close to the true value (0.9).  Again, because the beta 1 and 

beta 2 priors are somewhat pessimistic, and since the sample is relatively small, posterior 

medians underestimated PTE.  However, credible sets based on either the beta 1 or beta 2 

prior were somewhat narrower than in the previous case.  It must be remembered, 

however, that the normal components of the joint prior had smaller variances here. 

 
3.2.3  Moderate Sample Size (N = 200)  

In this section we use the same prior structures as in Section 3.2.2 but we increase 

the sample size to 200.  We generated 100 data sets, each with 200 patients, equally 

divided into two treatment arms.  As before, Bayesian analyses are conducted in 

WinBUGS.  For convergence diagnostic purposes, we computed Gelman-Rubin statistics 

and examined autocorrelation plots.  There is no convergence problem presents in the 

first two scenarios.  Specifically, in the first two scenarios (PTE = 0.5 and 0.7), MCMC 
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simulations were based on two chains, beginning with a burn-in sample of 1,000 and a 

subsequent sample based on 10,000 iterations.  In the third scenario (PTE = 0.9) we again 

encountered convergence problems. As before, we increase the number of iterations from 

10,000 to 20,000 with 1,000 burn-in iterations for two chains.  We retained every 10th 

iteration after burn-in and discarded the rest.  The normal components of the joint prior 

structure were given variance 10, as in the case for PTE = 0.9 and N = 40.  

    
PTE = 0.5  In this scenario, we generated 100 data sets each with 40 triples (Ei, Ti, Si) 

using βγ = 0.75 and γ = 0.375, yielding PTE = 0.5.  Table 6 shows averages of mean, 

median and 95% intervals of PTE with the four priors described in Section 3.2.1. 

 
Table 6. Simulation results with four prior structures when true PTE = 0.5 and N = 200.  The 

average of the 100 MLE’s was 0.483 with 2.5% and 97.5% quantiles 0.0872 and 0.926, 
respectively.  The median of the MLE’s was 0.481.  Table entries summarize posterior features 
for the Bayesian analyses.  Parenthetic entries are the 2.5% and 97.5% quantiles for 100 values. 

 
 

                                                                      95% equal tail credible interval 
Method mean 2.5% median 97.5% 

Diffuse Normal 0.465 
(0.0482, 0.922)

 

−0.197 
(−0.886, 0.276)

0.484 
(0.0896, 0.928) 

0.999 
(0.604, 1.581)

Uniform 0.484 
(0.250, 0.716) 

 

0.0486 
(0.0117, 0.205)

0.487 
(0.223, 0.755) 

0.918 
(0.638, 0.987)

Beta Prior1 0.550 
(0.350, 0.724) 

 

0.161 
(0.0719, 0.323)

0.555 
(0.339, 0.752) 

0.905 
(0.702, 0.975)

Beta Prior2 0.610 
(0.468, 0.720) 

0.306 
(0.204, 0.429) 

0.614 
(0.465, 0.734) 

0.879 
(0.741, 0.936)

 
 

Here the MLE’s for PTE were inside of the unit interval but varied widely, albeit 

not as much as with N = 40.  About 3% of MLE’s for PTE were outside of [0,1].  The 

diffuse normal prior-based analysis performed poorly, with at least 3% of the posterior 

means being outside the unit interval.    
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The posterior means and medians from the Bayesian analyses are closest to the 

true value under the conditional uniform prior structure.  What is striking is the relatively 

small improvement in credible set width over the smaller sample case—compare to the 

results in Table 3.  Indeed, we saw little improvement in credible set width until 

historically driven informative priors were used, as will be seen in Section 3.3.       

 
PTE = 0.7  In this scenario, we generated 100 data sets each with 40 triples (Ei, Ti, Si) 

using βγ = 0.375 and γ = 0.875, yielding PTE = 0.7.  Table 7 shows averages of mean, 

median and 95% intervals for PTE under the four prior structures based on 100 samples 

when PTE = 0.7 and N = 200. 

 
Table 7. Simulation results with four prior structures when true PTE = 0.7 and N = 200.  The 

average of the 100 MLE’s was 0.711 with 2.5% and 97.5% quantiles 0.481 and 0.986, 
respectively.  The median of the MLE’s was 0.702.  Table entries summarize posterior features 
for the Bayesian analyses.  Parenthetic entries are the 2.5% and 97.5% quantiles for 100 values. 

 
 

                                                                      95% equal tail credible interval 
Method mean 2.5% median 97.5% 

Diffuse Normal 0.697 
(0.474, 0.984) 

 

0.167 
(0.134, 0.201)

0.364 
(0.482, 0.984) 

1.004 
(0.759, 1.336)

Uniform 0.679 
(0.466, 0.838) 

 

0.349 
(0.130, 0.552)

0.687 
(0.472, 0.861) 

0.947 
(0.752, 0.993)

Beta Prior1 0.682 
(0.502, 0.820) 

 

0.388 
(0.215, 0.552)

0.690 
(0.506, 0.839) 

0.928 
(0.760, 0.983)

Beta Prior2 0.685 
(0.547, 0.787)

0.438 
(0.314, 0.557)

0.692 
(0.549, 0.799) 

0.894 
(0.769, 0.950)

 
In contrast to small sample results presented in Table 4, the MLE’s in this case 

were much closer to the true value of PTE (0.7) and have less variability across the 100 

samples.  Furthermore, only one out of 100 data sets resulted in a negative MLE for PTE. 
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Once again, the diffuse normal prior approach faired poorly.  The posterior 

medians with diffuse normal priors were far from the true value (0.7) although its 

posterior means were close to 0.7.  About 18 out of 100 97.5% percentiles for posterior 

PTE’s were greater than 1. 

The posterior means and medians using the Bayesian analysis with conditional 

priors are much closer to the true value of PTE (0.7), even for the conditional uniform 

priors, which were centered on 0.5.   Credible set widths were narrower than for the N = 

40 case but, again, the improvement was not dramatic.  Indeed, even increasing the 

sample size to N = 500 has little effect.  To illustrate this, we generated 500 observations 

from the same model and used the same prior structure.  We computed 0.6855PTE = .  

Using WinBUGS we ran parallel chains with the same burn-in and sample length as 

described above.  The posterior mean for PTE was 0.6811.  The posterior 95% equal-tail 

credible set for PTE was [0.4619, 0.8828], with a median of 0.683.  Note that the credible 

set width is not much smaller than those in the simulation summarized in Table 4. 

 
PTE = 0.9  In this scenario, we generated 100 data sets with βγ = 0.375 and γ = 3.375, 

yielding PTE = 0.9.  Table 8 shows averages of mean, median and 95% intervals of PTE 

with four prior structures from 100 samples when PTE = 0.9 and N = 200. 

Compared with Table 5, the posterior means and medians from Bayesian analysis 

are much closer to the true value of PTE (0.9).  The posterior PTE is not dramatically 

affected by the pessimistic prior distribution.  Once again, analysis using diffuse normal 

distributions is poor.   About 35% of the upper bounds for 95% credible sets for posterior 

PTE are greater than 1.  All other methods performed relatively well in this scenario, 

including maximum likelihood.  Note that 95% quantiles for posterior means, medians, 
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and credible set endpoints are much narrower compared to Table 5.  In general, point and 

interval estimates for endpoints exhibited less variability in this scenario.   

 
Table 8. Simulation results with four prior structures when true PTE = 0.9 and N = 200.  The 

average of the 100 MLE’s was 0.894 with 2.5% and 97.5% quantiles 0.821 and 0.966, 
respectively.  The median of the MLE’s was 0.893.  Table entries summarize posterior features 
for the Bayesian analyses.  Parenthetic entries are the 2.5% and 97.5% quantiles for 100 values. 

 
 

      95% equal tail credible interval 
Method mean 2.5% median 97.5% 

Diffuse Normal 
 

0.891 
(0.819, 0.965) 

 

0.815 
(0.735, 0.898) 

0.892 
(0.820, 0.965) 

0.962 
(0.896, 1.038) 

Uniform 0.888 
(0.819, 0.953) 

 

0.815 
(0.733, 0.892) 

0.888 
(0.820, 0.956) 

0.960 
(0.896, 0.997) 

Beta Prior1 0.886 
(0.815, 0.946) 

 

0.812 
(0.730, 0.887) 

0.887 
(0.817, 0.949) 

0.954 
(0.893, 0.993) 

Beta Prior2 0.875 
(0.811, 0.933) 

0.803 
(0.725, 0.876) 

0.877 
(0.812, 0.935) 

0.941 
(0.886, 0.980) 

 

 
3.2.4 Conclusions 

The following conclusions are suggested by the small simulation studies 

summarized in the preceding sections.   

1. Point estimates for all methods were reasonably close to the true value of PTE, except 

for those derived using a Bayesian analysis with diffuse normal priors in the case of 

PTE = 0.9. 

2. All prior structures produced somewhat wide interval estimates, even when N = 200. 

3. Use of the MLE or a Bayesian analysis with diffuse normal priors is not advised.  

Estimates of PTE using these methods are routinely outside of the unit interval.   
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4. Increasing the sample size from 40 to 200 had, at best, only a moderate payoff in 

reducing interval widths.  Single samples of size 500 and 1000 produced only modest 

improvement. 

 
 

3.3 Informative Priors from Historical Data 

We have already noted that large randomized trials or meta-analysis of multiple 

trials will often be required for precise estimation of PTE (Molenberghs et al., 2005).  A 

possible alternative to either of these approaches is to use an appropriate historical study 

to fit conditional beta prior distributions.  This approach begins with relatively non-

informative priors on all parameters.  A joint posterior is derived using the historical data.  

This posterior becomes the prior for use with the current data.  We consider such priors in 

this section.  Related prior based on historical information, the so-called “power prior”, is 

examined in Section 5.3. 

 
3.3.1 Posterior Using Priors Based on Historical Data 

We simulated two historical data sets, for sample sizes of Nh = 20 and Nh = 100.   

The surrogate endpoints, S, in both historical data sets were simulated from a normal 

distribution with variance 2 and means 0.5 and −0.5 for the treatment and control groups, 

respectively.  The true endpoint, E, was simulated from a Poisson distribution with mean 

            λ = exp(μγ + βγT + γS) .       

As before, we have assumed models (3.1) and (3.2) hold simultaneously, resulting in the 

likelihood functions (2.8) and (2.9).  Thus, the historical data was generated from the 

same model (PTE = 0.7) used to produce data sets of size 40 and 200 for the simulations 

in the last section. 
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To obtain a posterior distribution using the historical data, we used relatively non-

informative priors.  Thus, coefficient parameters μ, μγ, and γ in models (3.1) and (3.2) 

were assumed to have independent diffuse normal priors, as in Section 3.1.  We assumed 

that β and βγ have conditional uniform prior distributions; that is, β ~ beta[0, d](1, 1) and 

βγ ∼ beta[0, β](1, 1).  We could have chosen d using a sensitivity analysis as was done in 

Chapter 2, but we opted instead to use an arbitrarily “large” value, setting d = 100.   

 
3.3.2 Prior Structures Based on Historical Data (Sample Size Nh = 20 and Nh = 100) 

Denote by θξ  and 2
θσ  the posterior mean and variance, respectively, of a 

parameter θ,  using the posterior based on historical data.  We fit a prior for use with the 

current data by matching moments.  Thus, for example, suppose 
Sμξ  and 2

Sμσ  are the 

posterior mean and variance of μS using the historical data.  Then we use the prior 

( )2~ ,
S SS N μ μμ ξ σ  with the current data.  Priors for the parameters γ, μ, and μγ are 

constructed in a similar fashion. 

The variance component τ is assumed to follow an inverse-gamma distribution.  

We construct the prior τ−1 ~ gamma(u, v) where (u, v) is the solution to the pair of 

equations uvτξ =  and 2 2.uvτσ =  

We use the prior β ~ beta[0, 100][a, b] with the current data, where 

2

2 2a β β

β β β

−σ μ
=

σ − μ + μ
    (3.6) 

and 
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2

2 2
( 1)

b β β

β β β

σ μ −
=

σ − μ + μ
    (3.7) 

Similarly, we take PTE ~ beta[0, 1][c, d], where  

2

2 2
PTE PTE

PTE PTE PTE
c

−σ μ
=

σ − μ + μ
   (3.8) 

and 

 
2

2 2
( 1)PTE PTE

PTE PTE PTE
d

−σ μ −
=

σ − μ + μ
   (3.9) 

The corresponding βγ prior structure is βγ ~ beta[0, β][d, c].  

Table 9 shows the priors constructed for parameters (γ, μ, μγ, μS, τ) in model (3.1) 

and (3.2), based on the historical data with sample size Nh = 20 and Nh = 100 as described 

above.     

 
Table 9. Prior structures and 95% intervals for parameters. 

 

Parameters γ 
normal 

μ 
normal 

μγ 
normal 

μS 
normal 

τ 
gamma 

mean 
variance 

0.83 
0.075 

1.431 
0.127 

0.176 
0.226 

0.285 
0.424 

9.36 
29.85 

Nh = 20 

95% 
interval 

(0.679, 
0.973) 

 

(1.165, 
1.66) 

(0.733, 
1.619) 

(−0.546, 
1.115) 

(130.1, 
484.8) 

mean 
variance 

0.847 
0.025 

1.53 
0.053 

0.15 
0.1 

−0.36 
0.23 

9.36 
29.85 

Nh = 100 

95% 
interval 

(0.798, 
0.896) 

(1.426, 
1.634) 

(−0.044, 
0.344) 

(−0.802, 
0.082) 

(130.1, 
484.8) 

 
 

Tables 10 and 11 summarize the prior structures for β and βγ constructed using 

the historical data using beta and normal priors.  The former were constructed using 

(3.6)-(3.9).  The latter were constructed by matching moments, much as with the other 
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model parameters with normal priors in Table 9.  We considered both informative normal 

priors and informative beta priors for β and βγ.  Normal and beta priors were selected to 

have similar 95% equal-tail intervals for β.  Since we constrained βγ to have support [0, 

β], the 95% equal-tail intervals for βγ under the normal prior and beta prior structure 

might be slightly different. 

   
Table 10. Normal prior structures for β, βγ and their 95% intervals. 

 
Normal prior    

β βγ 
mean 

variance 
1.57 
0.25 

0.67 
0.27 

Nh = 20 

95% intervals (1.08, 2.07) 
 

(0.138, 1.196) 

mean 
variance 

1.54 
0.106 

0.442 
0.113 

Nh = 100 

95% intervals (1.327, 1.745) (0.22, 0.663) 
 

Table 11.  Conditional beta prior structures for β, βγ and their 95% Intervals. 
 

Conditional Beta prior      
β βγ|β 

support 
shape parameters 

[0,5] 
(26.11, 56.88) 

[0, β] 
(2.43, 3.14) 

Nh = 20 

95% intervals (1.10, 2.09) (0.15,1.38) 
 

support 
shape parameters 

[0,5] 
(121.16, 281.38) 

[0, β] 
(15.11, 33.91) 

Nh = 100 

95% intervals (1.29, 1.73) (0.275, 0.686) 
 

Table 12 summarizes the induced prior for PTE and its 95% equal-tail intervals.  

The informative normal prior structure for β and βγ results in a Cauchy distribution for 

PTE.  The informative beta prior for β and βγ results in a standard beta distribution. 
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Table 12.  Induced prior structures for PTE and their 95% Intervals. 
 

 Induced prior for PTE 

 Prior structures for 
β and βγ  

support 
 shape parameters 95% intervals 

Informative normal (−∞, ∞) Cauchy (0.145, 0.914) Nh = 20 

Informative beta [0, 1] 
 

Beta(3.14, 2.43) 
 

(0.183, 0.903) 

Informative normal (−∞, ∞) Cauchy (0.143, 0.912) Nh = 100 

Informative beta [0, 1] Beta(33.91, 15.11) (0.558, 0.811) 
 

Figure 9 shows the induced prior for PTE using the conditional beta prior method 

and informative normal prior method, where inferences are from the historical sample 

with sizes 20 and 100.  Figure 9(a) displays the induced priors for PTE based on the 

historical data with sample size 20.  Similarly, Figure 9(b) indicates the induced prior for 

PTE based on the historical sample with size 100.  
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(a) For historical sample size 20  (b) For historical sample size 100 

—  normal prior ---- beta prior 
Figure 9. Induced informative priors for PTE with normal/beta structure. 

 
 

Clearly, even with an informative normal structure, the induced prior for PTE 

may have supports outside the unit interval.  By construction, the informative conditional 
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beta prior does not have this problem and therefore takes greater advantage of increased 

historical sample sizes.  This is illustrated in Figure 9(b). 

We combined the priors described above with data generated from the same 

model for “current” sample sizes of Nc = 40 and 200.  The “current” data with sample 

size 40 resulted in 0.8PTE =  while sample size 200 yielded 0.892PTE = . 

Table 13 contains the posterior summaries for PTE using informative prior 

structures.  “Normal” and “beta” refer to the priors structures in Tables 10-12.     

For the informative normal prior Bayesian analysis, the 97.5 percentile of 

posterior PTE exceeds 1.  The width of the 95% credible sets for PTE using an 

informative normal prior structure is substantially wider compared with the results using 

a conditional beta prior structure.  As the “current” sample size increases from 40 to 100, 

the posterior distribution for PTE is dominated by the likelihood.  The posterior mean and 

means for PTE are close to the MLE.   

 
Table 13. Posterior statistics for PTE with informative prior structures. 

 
 mean 2.5% median 97.5% Std 

normal 0.753 0.47 0.666 1.008 0.137 Nc= 40 

beta 0.721 0.480 0.729 0.917 0.113 

normal 0.88 0.766 0.842 0.995 0.058 

Nh = 20 

Nc = 200 

beta 0.858 0.753 0.860 0.950 0.05 

normal 0.755 0.498 0.76 0.992 0.125 Nc = 40 

beta 0.710 0.592 0.712 0.817 0.058 

normal 0.878 0.764 0.878 0.989 0.057 

Nh =100 

Nc = 200 

beta 0.787 0.705 0.788 0.861 0.039 
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Informative conditional beta priors were compared with conditional uniform 

priors in Table 14.  The results for Nh = 20 using the informative conditional beta prior 

were an improvement over the conditional uniform results for Nc = 40 in Table 3.3 with 

respect to interval width, with [0.377, 0.945] for the former and [0.0611, 0.974] for the 

latter (on average).  Improvement was less dramatic when compared to the conditional 

uniform prior results for N = 200 in Table 3.6: the (Nc = 20) informative conditional beta 

prior yielded [0.434, 0.957] while the conditional uniform prior yielded [0.349, 0.947] 

(on average) at this sample size.   

 
Table 14. Posterior credible sets for PTE using historical data for conditional beta priors 

compared to the conditional uniform priors.  Bounds for the latter are averages as reported in 
Tables 4 and 7. 

 

 
 
The results for Nh = 100 exhibit improvement to a greater degree over those for 

the uniform conditional prior summarized in Table 14.  As historical sample size 

increases, the widths for 95% credible sets decreased, as expected.  Since we computed 

prior parameters by matching posterior moments, we did not make use of other features 

of the “historical” posterior, such as the shape of the distribution.  In Chapter 5, we will 

Nc Prior Nh lower 95% upper 95% width 
40 beta 20 0.377 0.945 0.568 
  100 0.643 0.854 0.211 
  500 0.727 0.907 0.18 
  1000 0.747 0.881 0.134 
 uniform -- 

 
0.0611 0.974 0.913 

200 beta 20 0.434 0.957 0.523 
  100 0.626 0.846 0.220 
  500 0.790 0.920 0.130 
  1000 0.791 0.896 0.105 
 uniform -- 0.349 0.947 0.598 
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discuss a prior method based on historical that can make use of such additional 

information. 

 
3.4 Sensitivity Analysis 

This section, we will discuss the effect of shape parameters used for the β and βγ 

conditional beta prior distributions described in Section 3.2.1, that is, 

       β ~ beta[0, d](a, b), 

and 

      [0, ]| ~ beta ( , )f gγ ββ β . 

Specifically, we examine the effect of a, b, f, and g on posterior estimations of PTE.  In 

this sensitivity analysis, we arbitrarily set d = 100.  We chose four sets of values for the β 

priors and four sets for the βγ priors: 

(a, b) = (15, 46), (36, 46), (15, 66), (36, 66) 

           (3.10) 

 (f, g) = (1.5, 2), (3.5, 2), (1.5, 4), (3.5, 4) 

These shape parameters were selected to complement the informative (Nh = 20) 

conditional beta prior used in the last section.  The corresponding induced priors on PTE 

are summarized in Table 15 and graphed in Figure 10. 

In this study, we used the “current” data with size 40 and size 200 that were 

simulated in Section 3.3, in which PTE = 0.7.  We had 0.799PTE =  for Nc = 40 and 

0.826 for Nc = 200.  For each of the 16 combinations of shape parameters, we conducted 

MCMC simulations using WinBUGS.  In each case we used two chains with dispersed 

initial values beginning with 1,000 burn-in iterations and continued with 10,000 sample 
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iterations.  No convergence problems were encountered.  The 16 sets of prior structures 

are shown in the Table 16 along with corresponding posterior median PTE and 95% 

credible sets.   

 
Table 15.  Summary of induced PTE priors using the conditional beta priors in (3.10). 

 
Prior beta(g, f) mean median mode 95% interval 

1 (2, 1.5) 0.571 0.586 0.667 [0.118, 0.953] 

2 (2, 3.5) 0.364 0.346 0.286 [0.059, 0.759] 

3 (4, 1.5) 0.727 0.756 0.545 [0.33, 0.975] 

4 (4, 3.5) 0.533 0.756 0.857 [0.202, 0.848] 
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Figure 10.  Induced PTE priors using conditional beta priors in (3.10). 
 
 

The change of shape parameters for the conditional β, βγ priors did not 

dramatically affect the posterior distribution for PTE.    Figure 11 displays the posterior 

1 

3 4 

2 
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for PTE for four sets of βγ prior structures when the prior for β is fixed with shape 

parameters 15 and 46.  These were typical results.  As can be seen, some of the posterior 

modes and medians exceeded the true value of 0.7, however, all interval estimates 

contained 0.7.  Given the relatively wide range of priors considered, it appears the 

posteriors are relatively robust.   

 
Table 16. Posterior median and 95% credible set for PTE for different combinations of prior for 

β and βγ  with sample size 40. 
 
 

 beta[0, 100](15, 46) beta[0, 100](36, 46) beta[0, 100](15, 66) beta[0, 100](36, 66) 
beta[0, β](1.5, 2) 0.794 

(0.554, 0.961)1 
 

0.832 
(0.645, 0.968) 

0.796 
(0.556, 0.962) 

0.835 
(0.644, 0.969) 

beta[0, β](3.5, 2) 0.698 
(0.456 0.877)2 

0.758 
(0.567, 0.9) 

 

0.701 
(0.458, 0.88) 

0.759 
(0.568, 0.9) 

beta[0, β](1.5, 4) 0.825 
(0.605, 0.97)3 

0.792 
(0.672, 0.974) 

 

0.823 
(0.607, 0.969) 

0.851 
(0.67, 0.974) 

beta[0, β](3.5, 4) 0.734 
(0.517, 0.897)4 

0.849 
(0.672, 0.974) 

0.733 
(0.516, 0.894) 

0.776 
(0.595, 0.912) 

Note: the number on the upper corner of parenthesis in the first column denoted the number of prior 
structures in the figure 10. 
 

We repeated the robustness study with a sample of size 200 for which we 

computed 0.826PTE = .  Since Table 16 indicates that slight changes in the prior 

structure for β had little effect on the posterior,  we only considered two options for 

β priors in this study: beta[0, 100](15, 46) and beta[0, 100](66, 36).   Table 17 lists the 

posterior median PTE and its 95% credible sets with sample size 200.  Not surprisingly, 

with this increased sample size, posterior PTE inferences are more robust to the change 

of shape parameters in prior for βγ.  The 95% credible sets are narrower compared with 

those in Table 17. 
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Table 17. Posterior median PTE and 95% credible set for PTE for different combination 
of priors for β and βγ with sample size 200. 

 
 

 beta[0, 100](15, 46) beta[0, 100](66, 36) 
beta[0, β](1.5, 2) 0.818 

(0.677, 0.945)1 
0.852 

(0.735, 0.955) 
 

beta[0, β](3.5, 2) 0.771 
(0.633, 0.893)2 

0.811 
(0.699, 0.910) 

 

beta[0, β](1.5, 4) 0.830 
(0.695, 0.952)3 

0.857 
(0.744, 0.959) 

 

beta[0, β](3.5, 4) 0.784 
(0.678, 0.900)4 

0.820 
(0.706, 0.917) 

Note: the number on the upper corner of parenthesis in the first column denoted the number of prior 
structures in the figure 10 

 

Figure 12 exhibits the posterior for PTE when βγ has four prior structures and one 

fixed β prior structure (beta[0, 100](15, 46)).  With this moderate sample size, the posterior 

PTE are dominated by the likelihood.  Differences between posterior PTE’s with these 

four prior structures are not as large as those in Figure 11.  In short, with moderate 

sample size (Nc = 200), a slight change in prior parameters will not profoundly influence 

the posterior of the PTE.   
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Figure 12. Posterior density of PTE with four different βγ priors and one fixed β 
prior structure. Numbers refer to the priors labeled in Table 17.  The grey triangle 
marks the MLE, 0.826PTE = .  The open triangle marks the true value, PTE = 0.7. 
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CHAPTER FOUR 

 The Effect of Interaction on the Estimation of PTE 

 
This chapter focuses on modeling the uncertainty about interaction effects.  In 

Section 4.1, we discuss the impact of interaction on PTE estimation.  In Section 4.2 we 

use one example to illustrate modeling the uncertainty about the interaction effect.  More 

examples are used to illustrate the influence of interaction in Section 4.3.  In Section 4.4 

we attempt to characterize the effect interaction has on PTE estimation.  A joint model of 

interaction and PTE are developed in Section 4.5.  There we recommend modeling the 

interaction effect rather than assuming its absence after a hypothesis test.  We utilize 

Bayesian model comparison methods in Section 4.6 to compare models with and without 

interaction.   

 
4.1 The Effect of Assuming Interaction Is Absent When It Is Not 

Suppose we choose to leave the interaction term out of the model when, in fact, 

interaction is present in the data.  How will this situation affect estimation of PTE?   

Recall from Section 2.1 that PTE = 1 – βγ/β, where the coefficients are from the 

two linear models   

 E(E|T, S) = μγ + βγT + γS    (4.1) 

and 

E(E|T) = μ + βT.    (4.2) 
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If, in fact, there is interaction, the model should be  

            ( | , )E T S T S TSγ γ′ ′ ′= μ + β + γ + ηE                         (4.3) 

Note that if (4.3) is the true model (η ≠ 0) then we cannot speak of the “true” value of 

PTE as it is undefined.  Suppose we mistakenly attribute the interaction to the treatment.  

That is, (4.3) becomes   

( ) ( )| ,E T S S T Sγ γ′ ′ ′= μ + β + η + γE      (4.4) 

 and, implicitly, we assume that for all S,    

.Sγ γ′β + η = β      

Clearly, if γ γ′β ≈ β and η/β is small, we can write PTE(S) ≈ PTE for all S.  In general, 

however, PTE becomes a function of S: 

( ) 1 1 .
S

PTE S Sγ γ′ ′β + η β η
= − = − −

β β β
      (4.5) 

Therefore, PTE will be under-estimated when ηS > 0 and over-estimated when ηS < 0.     

Define 

     ( ) .h S Sη
=

β
     (4.6) 

If h(S) is small enough, it is reasonable to proceed as if interaction effect is 

absent.  However, in order for h(S) to be small for all S, the variability of S must be 

minimal.  This is itself problematic, since it brings into question whether a biomarker 

with such small variability could conceivably be a reasonable surrogate.  We return to 

this issue in Section 4.3.   
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If interaction is attributed to the surrogate, the situation is somewhat similar.  

However, the effect on estimation of PTE is not as direct, as the latter involves β and βγ, 

not γ. 

 
4.2 The Influence of Interactions on PTE Estimation  

Given the problematic nature of interaction, statistical analyses of surrogate 

endpoints typically begin by testing the hypothesis H0: η = 0, in model (4.3).  If this 

hypothesis is not rejected, the term is dropped from the model and the surrogate analysis 

proceeds under the assumption of no interaction.  For instance, Cummings, Black and 

Thompson (1998) used a proportional hazards ratio model that included treatment on the 

risk of clinical fractures, BMD, and treatment-by-BMD interaction.  The authors tested 

the significance of the interaction term and failed to reject the null hypotheses. Thereafter 

they concluded that there is no interaction effect between surrogate endpoint and 

treatment. 

Of course, observing a p-value larger than some specified α for H0: η = 0 does not 

imply that η = 0.  Is it is possible that statistically insignificant interaction can have a 

practical impact on PTE estimation?   To address this question, we can retain interaction 

in the model and investigate it jointly with PTE.  In this section, we present an example 

that motivates this approach. 

For our example, we simulated E1,…,En iid values of the true endpoint from a 

Poisson distribution with mean 

{ }exp T S TSγ′ ′λ = β + γ + η . 
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Here T denotes the treatment: 

0.5
0.5 ,

treatment
T

control
⎧

= ⎨−⎩
 

and S denotes the surrogate, where   

S|T = −0.5 ~ N(−0.5, 0.5) 

and  

S|T = 0.05 ~ N(0.5, 0.5).  

We generated n = 40 triples (Ei, Ti, Si) using 0.36,  0.7,  and 0.2γ′ ′β = γ = η =  

using SAS.   The program is included in Appendix B.1.  We used SAS PROC GENMOD 

to fit the Poisson regression of E|T, S, T×S.  Poisson regressions for models E|T, S and 

E|T were fit simultaneously to compute maximum likelihood estimators (MLE’s) for β 

and βγ.  The SAS program is included in Appendix C.1.  The MLE for PTE is the ratio of 

MLE’s for βγ and β in the models (4.1) and (4.2):   

   
ˆ

1 ˆPTE γβ
β

= −        (4.7) 

The frequentist test of H0: η = 0 yielded a p-value of 0.31 and was therefore not rejected.   

In our Bayesian analysis of this simulated data set, we used the same data model 

described above.  Let E = (E1,…,En), S = (S1,…,Sn), and T = (T1,…,Tn).  Under model 

(4.1) the likelihood is  

       1 1 1
1

( , , , | ) [ log( ) log( )]
n

i i i i
i

l E Eγ γ
=

μ β γ η = −μ + μ −∑E,S,T  

where  

μ1i = μγ + βγTi + γSi. 
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Under model (4.2) it is 

2 2 2
1

( , | ) [ log( ) log( )]
n

i i i i
i

l E E
=

μ β = −μ + μ −∑E,T  

where μ2i = μ + βTi. 

Under model (4.3) the likelihood function is 

[ ]3 3 3
1

( , , , | ) log( ) log( )
n

i i i i
i

l E Eγ γ
=

′ ′ ′μ β γ η = −μ + μ −∑E,S,T  

where 3 .i i i i iT S T Sγ γ′ ′ ′μ = μ + β + γ + η  

We used the following prior structure on the parameters in models (4.1), (4.2), 

and (4.3).  We placed the diffuse normal distribution, N(0, 100,000) on each of μ, μγ, γ′μ , 

and η.  Following the development in Section 2.4, we used the following priors: 

       β ~ beta[0,d](2,2), 

[0, ]| ~ (2, 2),betaγ ββ β  
and 

[0, ]| ~ (2, 2)betaγ β′β β . 
 

We chose d = 5 using a sensitivity analysis as described in Section 2.5.  The joint 

posterior distributions for the parameters in models (4.1), (4.2), and (4.3) are:   

( ) ( ) ( ) ( ) ( ) ( )1 1, , , | , , , | |p l p p p pγ γ γ γ γ γμ β γ β ∝ μ β γ β β β β μ γE,S,T E,S,T , 

( ) ( ) ( ) ( )2 2, | , |p l p pμ β ∝ μ β μ βE,T E,T  
and 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )3 3, , , , | , , , | |p l p p p p pγ γ γ γ γ γ′ ′ ′ ′ ′ ′ ′ ′ ′μ β γ η β ∝ μ β γ η β β β μ γ ηE,S,T E,S,T  
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The marginal posterior for η is given by  

( )3( | ) , , , , |p p d d d dγ γ γ γ′ ′ ′ ′ ′ ′η = μ β γ η β μ β β γ∫ ∫ ∫ ∫E,S, T E,S, T  

where the integration is over all possible values of ,  ,  ,  and .γ γ′ ′ ′μ β β γ   The posterior for 

PTE is the distribution of 1 γ−β β  derived from the joint posterior of (βγ, β).   

There are no closed-form expressions for the posterior distributions described 

above, so we used MCMC methods as implemented in WinBUGS.  The WinBUGS 

model and R-code to call WinBUGS are very similar to Appendix D.2 and E.1.  

Beginning two chains with over-dispersed starting values, we discarded the first 1,000 

iterations and based our posterior computations on a further 10,000 iterations.  For 

convergence diagnostic purposes, we computed Gelman-Rubin statistics and examined 

autocorrelation plots.  We found no problems with convergence of the chains.   

Figure 13 displays the posterior distribution for the interaction effect, η.  The 

posterior mode for η is 0.45 and P(η > 0| E, T, S) = 0.7885.    
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Figure 13. Posterior Density for η. 
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Clearly one should not simply assume that there is no interaction effect, a p-value 

in excess of 0.05 notwithstanding.  This is made further evident by looking at 

( )h S S= η β  from (4.6).  One can see from Figure 14 that h(S) is in no way sufficiently 

small to ignore.    
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Figure 14.  Median and 95% credible set values for h(S).  The abscissa is S.  Median, 
upper, and lower bounds are indicated with Δ, ◊ , and � respectively. 

 

As this example illustrates, ignoring interaction, even after failing to reject the 

appropriate frequentist hypothesis test, can result in misleading inferences about PTE.  In 

the next section we further investigate the role of interaction in such inference. 

 

4.3 The Affect of Interaction on PTE Estimation 

 

In this section, we will use three scenarios to demonstrate further the effect of 

interaction on PTE estimations.  In each scenario, single data sets of size 40 and 200 were 

simulated.  In each data set, half of the simulated observations were assigned to the 

treatment group and half to the control group.  We used the Poisson-normal model 
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described in the last section for the true effect and surrogate values.  We included an 

interaction term, as in model (4.3).  In each scenario we used 0.36 and 0.7γ′ ′β = γ = .  The 

scenarios differ in their value of η.  We used η = 0.2, 1, and 1.5.  

In each scenario, MCMC methods were used to compute posterior quantities of 

interest.  We used 10,000 iterations from two chains after discarding 1,000 burn-in 

iterations.  For convergence diagnostic purposes, we computed Gelman-Rubin statistics 

and examined autocorrelation plots.  There were no problems with convergence of the 

chains. 

As in the last section, we placed the diffuse normal distribution, N(0, 100,000) on 

each of μ, μγ, γ′μ , and η.    We used the conditional priors 

       β ~ beta[0,h](a, b), 

[0, ]| ~ ( , ),beta c dγ ββ β  
and 

[0, ]| ~ ( , )beta c dγ β′β β . 
 

for various choices of a, b, c, and d.  We again chose h = 5 based on a sensitivity analysis 

like that described in Section 2.5.  Note that we used the same conditional prior for βγ 

and γ′β .  Since we have no prior information on PTE, four prior structures are used for β 

and βγ--uniform, symmetric unimodal, left-skewed, and right-skewed.  These priors and 

the consequent induced priors on PTE are detailed below: 

(1) Prior 1: β ~ beta[0, 5](2, 2) and βγ ~ beta[0, β](2, 2) ⇒ PTE ~ beta[0, 1](2, 2) 

(2) Prior 2: β ~ beta[0, 5](2, 2) and βγ ~ beta[0, β](2, 5) ⇒ PTE ~ beta[0, 1](5, 2) 

(3) Prior 3: β ~ beta[0, 5](2, 2) and βγ ~ beta[0, β](5, 2) ⇒ PTE ~ beta[0, 1](2, 5) 

(4) Prior 4: β ~ beta[0, 5](1, 1) and βγ ~ beta[0, β](1, 1) ⇒ PTE ~ beta[0, 1](1, 1) 
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The induced priors on PTE were derived using the results of Section 2.4.  These priors for 

PTE are graphed in Figure 15.   

In these examples, posterior PTE’s were generated in WinBUGS from paired 

posterior values of β and βγ based on equation (4.1) and (4.2), as described in the last 

section, using posteriors ( )1 , , , |p γ γμ β γ β E,S,T  and ( )2 , |p μ β E,T .  The posterior for η 

is computed using WinBUGS samples from the posterior ( )3 , , , , |p γ γ′ ′ ′μ β γ η β E,S,T .   
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10 PTE  
Figure 15. Induced prior for PTE with four prior structures.  Numbers refer to the prior 
descriptions in the text. 

 

4.3.1 Scenario 1: Small Interaction (η = 0.2) 

Table 18 illustrates frequentist estimators and posterior median estimators for 

PTE and the interaction effect η.  The frequentist hypothesis testing p-value for each data 

set is also shown.  The hypothesis of no interaction would not be rejected in either case. 

Interval estimates for the small sample case are rather wide, as was the case with 

many of the examples in Chapters 2 and 3.  Furthermore, the priors have considerable 

1 

3 

4 
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influence over the posterior for PTE.  Finally, the MLE and posterior medians are hardly 

in agreement.  These facts reflect the fact that PTE is based on parameters from two 

weakly linked models, (4.1) and (4.2).   We shall see in Chapter 5 that prior information 

on β and βγ is critical if reliable estimation of PTE is to be possible.  Interval estimates 

are narrower in the larger sample case, as expected, as is agreement with the MLE.  Also, 

as expected, the posterior for PTE in the larger sample case is not as influenced by the 

prior structure. 

 
Table 18. Estimators for PTE and η when true η = 0.2. (Recall there is no “true” value of PTE 

since η ≠ 0.)  Lower (upper) refers to the 2.5th (97.5th) percentile of the posterior.  Bayesian point 
estimates are posterior medians.  For the case of N = 40, the MLE’s for PTE and η are 0.195 and 

0.809, respectively.  The values are 0.519 and −0.109 in the case of N = 200.  The p-values are for 
testing the hypothesis of no interaction. 

 
 

η = 0.2 
N = 40 N = 200  Prior 1 Prior 2 Prior 3 Prior 4 Prior 1 Prior 2 Prior 3 Prior 4

PTE 
Lower 
Upper 

0.525 
0.103 
0.918 

 

0.280 
0.047 
0.66 

0.752 
0.376 
0.960 

0.356 
0.021 
0.875 

0.511 
0.190 
0.799 

0.631 
0.363 
0.869 

0.367 
0.101 
0.647 

0.628 
0.368 
0.867 

η 
Lower 
Upper 

0.423 
−0.886 
1.772 

0.427 
−0.869 
1.758 

0.426 
−0.849 
1.756 

0.581 
−0.824 
1.988 

−0.114 
−0.722 
0.479 

−0.129 
−0.707 
0.462 

−0.076 
−0.697 
0.523 

−0.133
−0.718
0.447 

p-value 0.31 0.725 
 

Bayesian inference for η is largely independent of priors on the other parameters.  

The Bayesian point and interval estimates for the small sample case underestimate η.  In 

the larger sample case, the true value of η is included in the interval estimates for all four 

prior structures.  The MLE for η is poor in both the small and the larger sample case. 

Figure 16 compares the posterior kernel density plots for PTE and η using prior1 

with two different sample sizes (40 and 200). 
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 (a) Posterior for PTE                                          (b) Posterior for η 

 

Figure 16. Posterior densities for PTE and η with sample size 40 and 200 respectively 
using Prior 1.  The true value is η = 0.2.  Here the solid line represents posteriors with N 
= 40 while the dashed line is for N = 200. 
 

Figure 17 shows the posterior for η with three prior structures when the sample 

size is 40.  There is even greater agreement for the case of N = 200.  Although the priors 

differ for the other parameters, the same diffuse normal is used for all four joint prior 

structures, so this agreement is expected.   
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Figure 17. Posterior densities for the interaction using three prior structures for N = 40.  
The true value is η = 0.2.  Here the solid line corresponds to prior 1, the dashed line to 
prior 2, dotted line to prior 3, and the dot-dash line to prior 4. 
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4.3.2 Scenario 2 (η = 1)   

Table 19 contains frequentist estimators and posterior median estimators for PTE 

and η.  The frequentist hypothesis testing p-values are for testing the hypothesis of no 

interaction.  The hypothesis of no interaction would be rejected in the larger sample case 

and not rejected in the small sample case.  For the case of N = 40, the MLE’s for PTE and 

η are 0.435 and 1.231, respectively.  The values are 0.744 and 0.851 when N = 200.  

  
Table 19. Estimators for PTE and η when true η = 1.  Lower (upper) refers to the 2.5th (97.5th) 
percentile of the posterior.  Bayesian point estimates are posterior medians.  For N = 40, the 

MLE’s for PTE and η are 0.435 and 1.231 respectively.   
The values are 0.744 and 0.851 for N = 200. 

 
 

η = 1 
N = 40 N = 200  Prior 1 Prior2 Prior3 Prior 4 Prior 1 Prior2 Prior3 Prior 4 

PTE 
Lower 
Upper 

0.483 
0.118 
0.846 

 

0.671 
0.345 
0.671 

0.297 
0.057 
0.632 

0.461 
0.037 
0.918 

0.685 
0.400 
0.906 

0.751 
0.505 
0.934 

0.536 
0.251 
0.769 

0.727 
0.410 
0.967 

η 
Lower 
Upper 

1.065 
−0.272 
2.372 

0.975 
−0.332 
2.318 

1.149 
−0.178, 
2.533 

1.076 
−0.258 
2.416 

0.859 
0.345 
1.365 

0.812 
0.291 
1.316 

0.909 
0.394 
1.408 

0.849 
0.34 
1.359 

p-value 0.0975 0.0014 
 

In contrast to Table 18, interval estimates were narrower.  The priors had 

considerable impact on the posterior for PTE in the small sample case.  Frequentist 

estimators for PTE were markedly inflated from 0.195 to 0.435.  Moreover, the MLE and 

posterior median PTE using conditional uniform prior structures were in agreement.  In 

the small sample case, the interval estimates of η for all three prior structures were rather 

wider in contrast to those in the larger sample case.   
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In this larger sample case, the posterior for PTE was not as influenced by the prior 

structure.  The Bayesian point and interval estimates for both sample cases included the 

true value of η.   

Figure 18 compares the posterior kernel density plots for PTE and η using prior1 

with two different sample sizes (40 and 200).   
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Figure 18. Posterior densities for η with samples size 40 and 200 using prior 1.  The true 
value is η =1.  Here the solid line represents posteriors with N = 40 while the dashed line 
is for N = 200. 
 

4.3.3 Scenario 3 (η = 1.5) 

Table 20 displays the frequentist estimators and posterior median estimators for 

PTE and the interaction effect, η.  The frequentist hypothesis testing p-value for each 

data set is also shown.  The hypothesis of no interaction would be rejected in either case.  

For the case of N = 40, the MLE’s for PTE and η are 0.453 and 2.335, respectively.  The 

values are 0.947 and 1.389 in the case of N = 200.  

Table 20 indicates that a large interaction effect (η = 1.5) inflates the value of 

PTE estimators; compare to Table 18.  The Bayesian point and interval estimates for the 
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small sample case overestimate η.  The true value of η is included in the interval 

estimates for all four prior structures and both sample sizes. 

Figure 19 compares the posterior kernel density plots for η utilizing prior 1 under 

N = 40 and N = 200.  In this case the Bayesian analysis agrees with the frequentist 

conclusion that interaction is present. 

 
Table 20. Estimators for PTE and η when true η = 1.5.  Lower (upper) refers to the 2.5th 

(97.5th) percentile of the posterior.  Bayesian point estimates are posterior medians.  For N = 40, 
the MLE’s for PTE and η are 0.453 and 2.335 respectively.   

The values are 0.947 and 1.389 for N = 200. 
 

 

η = 1.5 
N = 40 N = 200  Prior 1 Prior 2 Prior 3 Prior 4 Prior 1 Prior 2 Prior 3 Prior 4 

PTE 
Lower 
Upper 

0.500 
0.121 
0.867 

 

0.690 
0.355 
0.934 

0.304 
0.056 
0.645 

0.475 
0.038 
0.942 

0.844 
0.633 
0.971 

0.868 
0.685 
0.977 

0.711 
0.485 
0.875 

0.903 
0.680 
0.995 

η 
Lower 
Upper 

2.057 
0.862 
3.295 

1.962 
0.801 
3.203 

2.099 
0.916 
3.354 

2.084 
0.906 
3.32 

1.425 
0.899 
1.92 

1.395 
0.886 
1.895 

1.483 
0.962 
1.985 

1.398 
0.892 
1.885 

p-value 0.0008 < 0.0001 
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Figure 19. Posterior densities of η for samples with size 40 and 200 when true η = 1.5.  
Here the solid line represents posteriors with N = 40 while the dashed line is for N = 200. 
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4.4 Estimating PTE When Small Interaction is Present 

As we have noted, significant interaction is an important concern in evaluating 

surrogate endpoints because the effect of the latter on the response becomes confounded 

with the treatment.   For this reason, PTE is meaningless in the presence of significant 

interaction.   However, if interaction is present but relatively small, can PTE still be used 

to evaluate surrogates? 

Let us return to the model discussed in Section 4.1 where we defined PTE as a 

function of S, repeated here for convenience: 

( ) 1

1

1 ( ).

S
PTE S

S

h S

γ

γ

γ

′β + η
= −

β
′β η

= − −
β β
′β

= − −
β

       

If γ γ′β ≈ β and h(S) are small enough, we can ignore interaction in the model.  But, 

how small should they be for practical estimation of PTE?  Let l(S) and u(S) be the lower 

and upper bounds, respectively, of a 95% credible set on h(S).   Consider the following 

conditions: 

(1) Model (4.3) is at least approximately true;  

(2) γ γ′β ≈ β ; 

(3) 0 ∈ [l(S), u(S)] with u(S) – l(S) small for all S. 

Under these conditions, we have PTE(S) ≈ PTE for all S.  Unfortunately, these conditions 

are fairly restrictive, as the following example illustrates. 
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In model (4.3) suppose T and S are defined as in Section 4.2.  Set μγ = 0, 

0.36,  0.7,  and 0.2.γ′ ′β = γ = η =   We generated n = 40 observations for this model, using 

the Poisson-normal assumptions of Section 4.2.   Note that we did nothing to guarantee 

that h(S) would be uniformly small, per the discussion in Section 4.1.  To fit (4.1), (4.2) 

and (4.3) with this data we used WinBUGS, as in the previous examples.  Parallel chains 

beginning at dispersed starting values were computed with 10,000 burn-in iterations and 

30,000 iterations used for the posterior computations. 

The posterior densities for βγ  and γ′β  are depicted in Figure 20.  Their means 

(standard deviations) were 0.6246 (0.2961) and 0.6001 (0.2845), respectively.  Clearly, it 

is reasonable to assume that  βγ  ≈ γ′β .   

 
beta.star chains 1:2 sample: 40000

   -1.0     0.0     1.0     2.0

    0.0
    0.5
    1.0
    1.5

 

beta.star1 chains 1:2 sample: 40000

   -1.0     0.0     1.0     2.0

    0.0
    0.5
    1.0
    1.5

 
Figure 20.  Posterior densities for βγ  and γ′β . 

 
 

Posterior densities for β and η are shown in Figure 21.  Their means (standard 

deviations were 0.4899 (0.696) and 1.625 (0.3639), respectively.  

ada chains 1:2 sample: 40000

   -4.0    -2.0     0.0     2.0

    0.0
    0.2
    0.4
    0.6

beta chains 1:2 sample: 40000

    0.0     1.0     2.0     3.0

    0.0
    0.5
    1.0
    1.5

 
Figure 21.  Posterior densities for β and η. 
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In this case, however, the quantity h(S) is not sufficiently well behaved, as the 

plot in Figure 22 illustrates.  That is, while condition (2) holds, condition (3) evidently 

fails, the median interval width being 1.056.  (An analysis of this data set using other 

methods can be found in Section 4.3.1.).   
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Figure 22.  Median and 95% credible set values for h(S).  The abscissa is S.  Median, 
upper, and lower bounds are indicated with × , �, and Δ respectively. 

 
4.5 Joint Distribution of PTE and η 

 
4.5.1 Introduction 

Cowels (2002) did not specify a Bayesian method to assess the level of interaction 

presented in the data.  In our fully Bayesian approach we prefer to model the uncertainty 

about interaction along with other parameters in the model.   We can do this in several 

ways, but the most practical appears to be Bayesian model selection methods.  Before we 

consider these, however, let us turn to the very special case in which there is expert 

consensus about what constitutes practically insignificant interaction. 
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Suppose expert opinion or previous data can establish what constitutes a 

practically insignificant interaction effect.  That is, suppose it is known that |η| < δ is 

practically insignificant for some small δ > 0.   Suppose further that it is required that 

PTE be larger than a specified value, say, c.  Then we can consider the joint posterior 

probability that |η| < δ and PTE > c.  In practice, it will turn out that η and PTE are 

approximately independent, so that the joint posterior probability is the product of the 

marginal posterior probabilities; that is, 

    ( ) ( ) ( )| |  and | |P PTE c P P PTE cη < δ > ≈ η < δ >E,T,S E,T,S E,T,S     (4.9) 

“Good” surrogate endpoints should have “large” values for both ( )| |P η < δ E,T,S  and 

( )P PTE c> E,T,S .  Assuming approximate posterior independence between PTE and 

η, as is reasonable, one can represent this criterion graphically as in Figure 23.   

 

 
Figure 23. Marginal probabilities for PTE and |η|. 
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4.5.2 An Example 

As an illustration of this approach, suppose c = 0.7 and δ = 1.  Using SAS we 

simulated N = 200 triples, (Ei, Si, Ti), using the Poisson-normal model described in 

Section 4.2 with 0.1,  0.7,  and 0.05.γ′ ′β = γ = η =  

As in the last section, we placed the diffuse normal distribution, N(0, 100,000) on 

each of μ, μγ, γ′μ , and η.    We used the conditional priors  

β ~ beta[0,B](2, 2), 

βγ|β ~ beta[0, β](2, 5) 

and       

γ′β |β ~ beta[0, β](2, 5). 

We again chose B = 5.  For this example, only one prior structure was used.  The 

consequent induced prior on PTE is beta[0,1](5, 2).  

As before, MCMC methods were used to compute posterior quantities of interest.  

Convergence diagnostics indicated poor mixing so we increased the length of each chain 

from 10,000 to 50,000 after discarding 1,000 burn-in iterations.  We retained every 10 

sample in the chains.   

Figure 24 displays the posterior distribution for PTE and η.  The posterior 

marginal probability for PTE > 0.7 is 0.987 and the posterior marginal probability for 

|η|<1 is 0.7054.  The joint posterior probability that PTE > 0.7 and |η|<1 is 0.698.  Note 

that the product of the marginal probabilities equals the joint probability.   
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  (a) Posterior distribution for PTE (b) Posterior distribution for η 

Figure 24. Posterior distributions for PTE and η. 
 

4.6 Bayesian Model Comparisons 

It would be unrealistic to count on routinely being able to specify what constitutes 

a practically insignificant interaction effect.  How should one determine if interaction is 

to be retained in the model?  Bayesian model comparison techniques are ideally suited for 

this purpose.  In this section, we will discuss the use of the Bayesian information criterion 

(BIC) and the deviance information criterion (DIC) in the process of model selection.  

 
4.6.1 Overview of Model Comparison 

Consider a model indexed by a parameter vector p × 1 parameter vector θ.  Let θ̂  

denote the point estimates of θ obtained using a suitable n × 1sample vector y with 

likelihood l.  BIC is defined as 

   ( )ˆ2log | 2 log( )BIC l p n= − +θ y    (4.9) 

 

BIC can be interpreted as the discrepancy between data and model using a point estimate 

for θ.  As such, smaller values of BIC indicated “better” models.  Note that this criteria 

penalizes the number of parameters through the term 2plog(n).   BIC is considered as an 
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analogue to likelihood ratio test.  BIC can be utilized to approximate Bayes factor via 

relation BIC1-BIC12≈-2log(Bayes Factor12).   

DIC can be viewed as a Bayesian analogue to the Akaike's information criteria 

(AIC).  For each model, one obtains the posterior distribution of the log likelihood 

evaluated at the observed data and compare across models (Gelfand and Ghosh, 2000).  

That is, define 

( ) 2 log ( | ) 2 log ( )D l h= − +θ θ y y  

where, again, l is the likelihood and h is a standardizing function of the data alone.  The 

latter has no affect on model selection.  The fit of the model is measured by the expected 

value of the deviance with respect to the posterior distribution, Eθ|y[D(θ)].  Model 

complexity is measured by the effective number of parameters, pD, often defined as  

pD = Eθ|y[D(θ)] – D(Eθ|y[θ]). 

Then we define 

        DIC = Eθ|y[D(θ)] + pD .    (4.10) 

Smaller values of DIC indicate “better” models.  For more detail see Carlin and Louis 

(2000).  Note that pD serves as a penalty on the number of parameters in the model.  DIC 

have been applied in a variety of research areas, such as pharmacokinetic modeling 

(Rhman et al., 1999) and spline models with Bernoulli responses (Biller and Fahrmeir, 

2001).  

 
4.6.2 Bayesian Model Comparison Methods 

In this section we compare the “null model” (2.1),  

E(E|T, S) = μγ+ βγT + γS 
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with the “full model” (4.1),   

( | , )E T S T S TSγ γ′ ′ ′= μ + β + γ + ηE  

In our example, the hypotheses are H0: η = 0 versus H1: η ≠ 0.  For this comparison, we 

used the data sets in Section 4.3.1 (η = 0.2) and Section 4.3.3 (η = 1.5).  As before, we 

used WinBUGS to calculate posterior quantities of interest.  To investigate robustness, 

we used three prior structures, originally defined in Section 4.3: prior 1 is left-skewed, 

prior 2 is symmetric, and prior 3 is right-skewed.   

The likelihood ratio, LR, and AIC are frequentist model comparison statistics.  

They are defined as: 

( ) ( ){ }ˆ ˆ2 log | log |null fullLR l l⎡ ⎤ ⎡ ⎤= − − θ − − θ⎣ ⎦ ⎣ ⎦y y   (4.11) 

and 

       ( )ˆ2log | 2AIC l p⎡ ⎤= − − θ +⎣ ⎦y    (4.12) 

where ˆ ˆ and null fullθ θ are MLE’s under the null and full models, respectively, and θ̂  is 

the MLE for the null or full model.   

Tables 21 and 22 contain values of DIC, AIC, BIC and the likelihood ratio for two 

models (4.1) and (2.1) for the case of η = 0.2.    As can be seen in Table 21, as the sample 

size increases, all Bayesian model comparison statistics increased since they are functions 

of n.  With moderate sample size (n = 200), the differences between null model and full 

model were slightly larger than those for the smaller sample size.  There is little to choose 

between the models with respect to the different prior structures.   
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Table 22 contains details of the comparison when η = 1.5.  The large interaction 

effect (η = 1.5) tended to inflate the model comparison statistics.  Consequently, the 

absolute differences of statistics between two models increased as well.   

For example, with prior 1 and n = 40, DICfull −DICnull = −9.59, which favors the 

full model.  One would be ill-advised to use PTE as a measure of surrogate validity in 

such a case.  The frequentist model comparison statistics (likelihood ratio and AIC) 

indicate the similar results.   

 
Table 21. Model comparison statistics for scenario with η = 0.2.  The WinBUGS quantites are 

Dbar = 2 log ( | )l− θ y and Dhat = 2 log ( )h y . 
 

N = 40, AICfull − AICnull=1.54, LR = 0.46 

  Dbar Dhat pD DIC DICfull 

−DICnull 

BIC BICfull  
− BICnull 

Null Model 98.10 95.64 2.46 100.56 117.77Prior 1 
Full Model 98.14 94.84 3.31 101.45

0.89 
124.35

6.58 
(0.037)* 

Null Model 98.71 96.38 2.33 101.04 118.51Prior 2 
Full Model 99.08 95.84 3.24 102.31

1.27 
125.35

6.84 
(0.037) 

Null Model 97.80 95.49 2.31 100.11 117.62Prior 3 
Full Model 97.73 94.56 3.17 100.91 0.80 124.07

6.45 
(0.040) 

Null Model 98.19 95.61 2.58 100.77 117.74Prior 4 
Full Model 98.17 94.77 3.40 101.57 0.80 124.28

6.54 
(0.038) 

N = 200, AICfull − AICnull = 1.9, LR = 0.1 
  Dbar Dhat pD DIC DICfull 

−DICnull 
BIC BICfull  

− BICnull 
Null Model 511.18 508.48 2.70 513.87 540.27Prior 1 
Full Model 512.08 508.37 3.70 515.78

1.91 
550.76

10.49 
(0.005) 

Null Model 511.41 508.78 2.63 514.04 540.57Prior 2 
Full Model 512.22 508.62 3.60 515.82

1.78 
551.00

10.43 
(0.005) 

Null Model 511.36 508.87 2.49 513.85 540.66Prior 3 
Full Model 512.32 508.82 3.50 515.83

1.98 
551.21

10.55 
(0.005) 

Null Model 511.39 508.48 2.91 514.31 540.27Prior 4 
Full Model 512.25 508.37 3.88 516.14

1.83 
550.76

10.49 
(0.005) 

Note: Numbers in the parenthesis indicates the approximated Bayes factor. 
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4.6.3 Conclusions 

In general, traditional hypothesis testing about interaction is problematic.  We 

cannot assume that interaction effect is absent solely based on a p-value.  As in any 

Bayesian analysis, we prefer to model uncertainty about unknowns.  Therefore, we 

recommend examination of features of the joint posterior distribution of PTE and 

interaction in studying the validity of a surrogate endpoint.  If bounds cannot be 

established for defining “practically insignificant” interaction, we recommend Bayesian 

model selection be used to determine the need for interaction in the model rather than 

hypothesis testing. 

 
Table 22. Model comparison statistics for scenario with η = 1.5.  The WinBUGS quantites are 

Dbar = 2 log ( | )l− θ y and Dhat = 2 log ( )h y . 
 

N = 40, AICfull − AICnull = −9.45, likelihood ratio = 11.45 

  Dbar Dhat pD DIC DICfull 

−DICnull 
BIC BICfull  

− BICnull 
Null Model 121.09 118.70 2.39 123.48 140.83 Prior 1 
Full Model 109.28 106.06 3.22 112.49 −10.99 135.57 -5.26 

Null Model 121.26 118.96 2.29 123.55 141.09 Prior 2 
Full Model 110.09 106.96 3.14 113.23 −10.32 136.47 -4.62 

Null Model 121.20 118.91 2.29 123.49 141.04 Prior 3 
Full Model 108.88 105.76 3.12 112.00 −11.49 135.27 -5.77 

Null Model 121.22 118.70 2.52 123.74 140.83 Prior 4 
Full Model 109.28 105.98 3.30 112.57 −11.17 135.49 -5.34 

N = 200, AICfull − AICnull = −23.5, LR = 25.5 

  Dbar Dhat pD DIC DICfull 

−DICnull 
BIC BICfull  

− BICnull 
Null Model 614.01 612.00 2.01 616.02 643.79 Prior 1 
Full Model 589.48 586.51 2.97 592.45

-23.57 
 628.90 -14.89 

Null Model 614.01 612.01 2.00 616.08 643.80 Prior 2 
Full Model 589.49 586.55 2.94 592.46

-23.62 
 628.94 -14.86 

Null Model 613.96 611.99 1.97 615.93 643.78 Prior 3 
Full Model 589.41 586.47 2.95 592.36 -23.57 628.86 -14.92 

Null Model 614.81 612.39 2.41 617.22 644.18 Prior 4 
Full Model 588.90 585.31 3.60 592.50 -24.72 627.70 -16.48 

Note: Numbers in the parenthesis indicates the approximated Bayes factor. 
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CHAPTER FIVE 

Relative Effect 

 
Although PTE has remained in use for the validation of surrogate endpoints, it has 

been severely criticized in the literature.  Burzykowski, Molenberghs and Buyes (2005) 

have questioned the utility of PTE in clinical trails, noting that “with large clinical trials, 

the denominator of the PTE (the effect of treatment on the true end point – β) will be 

estimated with little precision, for otherwise, the need for a surrogate endpoint would no 

longer exist”.  An alternative approach for evaluating surrogate endpoints was proposed 

by Buyse and Molenberghs (1998).  Their method involves the relative effect (RE) and 

the association (ρ) between surrogate endpoints and true endpoints after adjustment for 

treatment. 

In Section 5.1 we introduce RE and ρ.  Inference for RE and ρ is discussed in 

Section 5.2.  Section 5.3 we provide an overview of power priors, developed by Ibrahim 

and Chen (2000).  The purpose of Section 5.4 is to illustrate the Bayesian analysis of RE.  

Three prior structures are used in that section: diffuse normal, informative, and power 

priors.  The latter two prior structures are based on historical data.   

 
5.1 Introduction 

Buyse and Molenberghs (1998) studied frequentist estimation methods for RE and 

ρ for standard normal endpoints.  We summarize their development here.  As in previous 

chapters, let S denote the surrogate endpoint, T a binary treatment indicator, and E the 

true endpoint. For standard normal endpoints, we assume: 
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Si = μ′ + αTi + εSi       (5.1) 
and   
     Ei = μ + βT + εΕi                   (5.2) 

 
where  

   0 1
~ ,

0 1
S

E

MVN
ε ρ
ε ρ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

.        (5.3) 

 
RE is defined as β/α and ρ is the correlation between S and E.  A joint model for S and E 

given T is used to estimate RE and ρ simultaneously.  A large sample size is 

recommended to obtain precise estimation for RE.   

RE will be equal to 1 if the effects of treatment on the true endpoint are the same 

as those on the surrogate endpoint.  In that case, it is considered a perfect surrogate 

endpoint at the population level.  That is, regardless of any treatment effect, the true 

endpoint is mainly determined by the surrogate endpoint.  If there is a perfect linear 

relationship between surrogate and treatment, ρ will be equal to 1.  Then S is deemed a 

perfect surrogate endpoint at the individual level.  An ideal surrogate endpoint should 

have S and E identical up to a deterministic transformation.  That is, the closer RE and ρ 

are to 1, the better the surrogate endpoint. 

For standard normal endpoints, we can model the relationship between the true 

endpoint, surrogate endpoint, and treatment as 

ji TSE T Sγ γ= μ + β + γ + ε  

where βγ  = β − ρα, γ = ρ, and Var(εTSj ) = 1 − ρ.  In this normal theory case, Buyse and 

Molenberghs (1998) derived a simple relationship between PTE, RE, and ρ:   

        1 .PTE
RE

α
= ρ = ρ

β
    (5.4) 
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5.2 Inference for RE 

 
5.2.1 Frequentist Inference for RE and ρ   

Buyse and Molenberghs (1998) developed maximum likelihood estimators for RE 

and ρ for binary and standard normal endpoints.  The latter uses models (5.1), (5.2), and 

(5.3).  Fieller’s theorem or the delta method is needed to estimate confidence limits for 

RE (Henson, 1975).  See Section 1.2 for details of this development.  Buyse (2000) 

augured that RE can be typically estimated with greater precision than PTE.  The effect, 

β, of the treatment on the true endpoint is the denominator for calculating PTE.  

However, this parameter is frequently poorly estimated when the confidence limits of 

PTE are acceptably narrow.  In contrast, the denominator of RE, α (the effect of the 

treatment on the surrogate endpoint) is precise enough for the confidence limits of RE to 

be informative.  

For non-standard normal endpoints, we use (5.1) and (5.2) and assume the 

covariance structure  

2

2
0

~ ,
0

SS SES

E SE EE
MVN

⎛ ⎞⎛ ⎞σ σε⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ε ⎜ ⎟⎝ ⎠⎝ ⎠ σ σ⎝ ⎠⎝ ⎠
.     (5.5) 

Let μS  = μ′ + αE(T) and μE = μ + βE(T).  The conditional bivariate normal density 

for S and E|T is 

       

1
2

2 2

2

( , | ) 2 1

2 ( )( )1exp
2(1 )

SS EE

S S E E

SS SS EE EE

f S E T

S S E E

−
⎛ ⎞= πσ σ − ρ⎜ ⎟
⎝ ⎠
⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞− μ ρ − μ − μ − μ⎪ ⎪⎢ ⎥× − − +⎨ ⎬⎜ ⎟ ⎜ ⎟σ σ σ σ⎢ ⎥− ρ ⎝ ⎠⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

    (5.6) 

where −∞ < S < ∞, −∞ < T < ∞, σSS  > 0, σEE  > 0, and −1 < ρ < 1.   
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Since the magnitude of the endpoint variances will influence the magnitude of the 

RE,  Cowels (2004) used the standardized RE, defined as 

/
/

EE

SS
RE

β σ
=

α σ
        (5.7) 

where α and β are estimated for model (5.1) and (5.2), and 2
EEσ , 2

SSσ  are the variance 

components for εE and εS, respectively, as in (5.4).  The adjusted association ρ is defined 

to be 2 2
SE SS EEρ = σ σ σ , where σSE is the covariance between E and S.   

Molenberghs, Geys and Buyse (2002) extended the estimation for RE and ρ to the 

model with mixed discrete and continuous endpoints.  The calculation of RE and ρ for 

multiple clinical trials was also studied.  A mixed model was built to quantify the 

surrogacy at the trial level and individual level.   

Burzykowski, Molenberghs and Buyes (2005) also noted two potential difficulties 

in using RE and ρ.  First, RE might not be practical since confidence intervals for it are 

often too wide to be informative.  Furthermore, using RE requires the strong assumption 

that the relationship between the treatment effects on the surrogate and the true endpoints 

is multiplicative.  A multiplicative relationship may not obtain if RE changes with the 

strength of the association between treatment and the outcomes themselves.  

 
5.2.2 Bayesian Inference for RE and ρ  for Longitudinal Data   

Cowels (2004) developed Bayesian inferential methods for RE and ρ.  She 

extended the approaches of Buyse and Molenberghs (1998) to a longitudinal surrogate 

endpoint S and time-to-event data with a censored true endpoint E.  She worked with 
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three types of models: log normal, Weibull regression, and joint normal-proportional 

hazards (PH).   

 Cowels (2004) used a flat prior structure on the coefficients in the linear model.  

An informative Whishart prior was assumed for the precision matrix.  Cowels (2004) did 

not consider Bayesian inference for RE and ρ for normal endpoints.  In the following 

section, we focus on Bayesian analysis for RE and ρ given normal endpoints. 

 
5.2.3 Bayesian Inference for RE and ρ  for Normal Endpoints  

Denote the joint bivariate likelihood of model (5.6) by l(β, Σ|S, E, T), where the 

variance-covariance matrix for S and E is given by (5.5).  Let the prior distributions for 

the coefficients in model (5.1), (5.2) be denoted by p(β), where β = (μ, μ′, α, β), and the 

prior distribution for the variance-covariance matrix, Σ, by p(Σ).  Then the joint posterior 

distribution for β and Σ is 

p(β, Σ|S, E, T) ∝ p(β)p(Σ)l(β, Σ|S, E, T).   (5.8) 

As in previous chapters, we used MCMC methods to draw samples from the joint 

posteriors.  At convergence, the MCMC simulation produces a sequence of values of β 

from the joint posterior (5.8).  Values of (α, β) from this sequence can then be used to 

construct the posterior distribution of RE.  Values of  and SS SE EEσ ,σ , σ  from the chain 

after convergence can be used to construct the posterior of ρ.   

We used three choices for p(β):  diffuse normal, informative normal, and a power 

prior.  The latter two are based on the historical data.  In the next section, we introduce 

the background for power priors. 
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5.3 Power Priors 

When historical data is available, Bayes’ theorem can be used to fit a posterior 

distribution which subsequently can be used as a prior for new data.  This is usually 

accomplished by beginning with a relatively non-informative prior.  If the historical 

likelihood is especially “peaked”, the resulting posterior may be overly precise.  That is, 

the resulting posterior may overwhelm the likelihood from the new data.  Ibrahim and 

Chen (2000) have developed a new class of prior distributions for use in this scenario.   

Their power priors attenuate the influence of the historical data on the current likelihood.   

Several researchers have applied power priors to various problems: 

• Chen, Manatunga and Williams (1998) utilized the power prior for heritability 

estimates from human twin data;  

• Chen, Ibrahim, and Yiannoutsos (1999) used power priors in variable selection for 

logistic regression;  

• Chen, Ibrahim, Shao and Weiss (1998) used  power priors for the class of generalized 

linear mixed models and focused on variable selection; 

• Chen, Ibrahim and Sinha (1999) developed power priors for various types of models 

for survival data. 

 Let D denote the data from the “current” study and let l(θ|D) be the 

corresponding, “current” likelihood, where θ is a vector of  parameters.  Suppose D0 is 

the data from the “historical” study and denote by l(θ|D0) the “historical” likelihood 

function.  Let π0(θ|c0) represent the “initial” prior distribution for θ to be used with D0, 

indexed by the parameter vector c0.  Here, “initial” indicates prior structures to be used in 
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conjunction with the historical data.  Then the power prior distribution of θ for the 

current study is defined as 

π(θ|D0, a0) ∝ l(θ|D0)a0π0(θ|c0) ,   (5.9) 

where a0 is a parameter that weights the “historical” likelihood relative to the “current” 

likelihood.  Here a0 = 1 is equivalent to specifying a prior for θ that is proportional to the 

“historical” likelihood and a0 = 0 corresponds to prior specification without incorporation 

of historical data.  Specifying an appropriate value for a0 in (5.9) may be problematic.  

The beta distribution has proven particularly useful as a prior for a0; let π(a0|a, b) denote 

a beta prior for a0 with parameters a and b.  Then the joint power prior distribution for (θ, 

a0) becomes 

       π(θ, a0|D0) ∝ l(θ|D0)a0π0(θ|c0)π(a0|a, b).   (5.10) 

Using (5.10), the posterior distribution for (θ, a0) is 

π(θ|D, D0, a0)∝ l(θ|D0) a0π0(θ|c0)π(a0|a, b)l(θ|D)  (5.11) 

Thus, the posterior distribution based on a power prior is equivalent to the posterior based 

on the product of the two likelihood functions l(θ|D) l(θ|D0)a0. 

 
5.4 An Example 

In this section, we illustrate how to use historical data to construct the posterior 

for RE and ρ.  We use diffuse and informative normal priors, as well as a power prior.   

 
5.4.1 Data Generation 

 We simulated two data sets, one “historical” and one “current”, with sample sizes 

100 and 40, respectively.   In each data set, half of patients are in the treatment group 
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with T = 1 and half in the control group with T = 0.  For simplicity, we generated 

bivariate standard normal endpoints.  

For the “current” study data, the surrogate endpoints, S, and true endpoints, E, 

were generated from a bivariate normal distribution, 

2

2 2
~ ,

cc

c c

SESSS

T SE EE

TS
T N

TE

⎛ ⎞⎡ ⎤σ σμ⎡ ⎤⎛ ⎞ ⎜ ⎟⎢ ⎥
⎜ ⎟ ⎢ ⎥⎜ ⎟⎢ ⎥μ⎝ ⎠ ⎣ ⎦ σ σ⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

  (5.12)  

Specially, we chose μS = 1.3, μT  = 1 and 

2

2

1 0.3
0.3 1

cc

c c

SESS
c

SE EE

⎡ ⎤σ σ ⎡ ⎤⎢ ⎥≡ = ⎢ ⎥⎢ ⎥ ⎣ ⎦σ σ⎢ ⎥⎣ ⎦

Σ . 

With σSEc = 0.3 we have RE = 0.77.   Using the generated 40 observations, the 

MLE for RE is 1.07 with estimated variance-covariance matrix  

0.98 0.607
0.607 1.19

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

and estimated correlation 0.563.  Note that the estimated correlation is larger than the true 

value of ρ (0.3), and MLE for RE is not close to the true value (0.77). 

For the “historical” study, the surrogate endpoints, S, and true endpoints, E, were 

generated from (5.12) with μS  = 1.5, μT  = 1.2, and 

2

2

1 0.5
0.5 1

hh

h h

SESS
h

SE EE

⎡ ⎤σ σ ⎡ ⎤⎢ ⎥≡ = ⎢ ⎥⎢ ⎥ ⎣ ⎦σ σ⎢ ⎥⎣ ⎦

Σ . 

Here σSEc = 0.5 so we have RE = 0.8.  Using the generated 100 observations, the MLE for 

RE is 0.797 with estimated variance-covariance matrix 
1.74 0.937
0.937 1.12

⎡ ⎤
⎢ ⎥
⎣ ⎦
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and estimated correlation 0.67, which is larger than the true value of ρ (0.5), and MLE for 

RE is close to the true value (0.77). 

 
5.4.2 Prior Structure 

 
Power Prior 

The power prior for β = (μ, μ′, α, β) can be specified based on the “historical” 

likelihood: 

    π(β, a0|D0) ∝ l(β |D0)a0 π0(β |c0)π(a0|a, b)   (5.13) 

The joint posterior distribution for β and the precision matrix T ≡ 1
h
−Σ is  

         π(β, Τ|a0, D0, D) ∝ l(β |D0) a0π0(β, | c0)π(a0|a, b)l(β, Τ|D) π(Τ). (5.14) 

To investigate the effect of the power parameter a0 on the posterior in (5.14), we 

used three beta distributions with parameters (2, 90), (2, 2), and (90, 2).  For comparison 

purposes we also included the fixed values a0 = 0 and a0 = 1.   

We chose initial priors (π0) for β to be a diffuse normal, with zero mean vector, 

conditional on Τ.   A Wishart(R, k) prior was specified for T, the precision matrix for the 

bivariate normal endpoints.  The Wishart distribution we used has density 

( )/ 2 ( 1) / 2( ) | | | | exp 0.5trk k pf − −= −⎡ ⎤⎣ ⎦T R T RΤ   (5.15) 

where p = 2, Τ is symmetric and positive definite, and R is a scale matrix.   

To represent vague prior knowledge, we chose the degrees of freedom, k, to be as 

small as possible (i.e. 3).  We selected 
200 0
0 0.2

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
R  

This prior is summarized in Table 23. 
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Table 23. Initial prior distribution in power prior distribution.  
 

Initial Prior distribution 
μ 
β 
μ′
α  

Τ 
200 0

Wishart ,3
0 0.2

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥

⎣ ⎦⎝ ⎠
 

 

The posterior (5.14) is not of closed form.  We used MCMC methods to obtain a 

sample of posterior values.  After convergence, pairs (α, β) can be drawn from this 

sample and the posterior for RE constructed from them.   

 
Informative Prior 

To obtain a (non-power) prior distribution using the historical data, we set an 

initial diffuse normal prior structure for β, along with a diffuse Wishart for the precision 

matrix.  The posterior is then obtained in the usual way.  Independent normal priors to be 

used with the current data are then placed on the components of β by matching moments 

with the posterior obtained using the historical data, as was done in Section 3.3.   

The precision matrix, Τ, was given a Wishart prior.  To select the parameters for 

this Wishart prior, we proceeded as follows (see Bernardo and Smith, 1993).   Based on 

the posterior means for precision matrix and variance-covariance matrix, computed using 

the historical data, we can obtain estimates of the parameters in the Wishart distribution 

(5.15).  Specifically, we have 

E(T) = (k/2)R−1 

N(0, 100,000) 
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and  

( )
1

1 1
2

k p −
− − −⎛ ⎞= ⎜ ⎟

⎝ ⎠
Τ RE  

where p = 2 and T−1 is the variance-covariance matrix.  Using the posterior mean for the 

Τ and Τ −1, we derived the R matrix for the Wishart distribution, which is  

⎥
⎦

⎤
⎢
⎣

⎡
65.628.27
8.274.137  

and k = 97.   

Table 24 lists the informative prior structures that will be used for the “current” 

data.  The WinBUGS model is listed in Appendix E.4 and R code to call WinBUGS is 

included in Appendix D.5.     

 
Table 24. Informative normal prior distribution.  

 
Prior distribution 

μ N(0.212, 0.146) 
β N(1.077, 0.207) 
μ′ N(0.176, 0.165) 
α N(1.344, 0.228) 

Τ 
137.4 27.8

Wishart ,97
27.8 62.65

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥

⎣ ⎦⎝ ⎠
 

Diffuse Normal Prior 

To compare with the results with informative prior and power prior, diffuse 

normal prior structures were also used.  In this scenario, we discarded the information 

from the “historical” data, using instead the diffuse prior N(0, 100,000).  The precision 

matrix is assumed to follow a diffuse Wishart distribution as described above.   This prior 
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is summarized below in Table 25.  The WinBUGS model is listed in Appendix E.4 and R 

code to call WinBUGS is included in Appendix D.5. 

 
Table 25. Diffuse normal prior distribution.  

 
 Prior distribution 

μ 
β 
μ′
α  

Τ 
200 0

Wishart ,3
0 0.2

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥

⎣ ⎦⎝ ⎠
 

 

5.4.3 Simulation Results for Power Prior  

We sampled from the posterior (5.11) using MCMC methods implemented in 

WinBUGS.  The WinBUGS program is included in Appendix E.3.  The R program to call 

WinBUGS is in the Appendix D.4.  We used two chains with dispersed initial values and 

checked for convergence using Gelman-Rubin statistics and autocorrelation plots.   There 

was within-sequence correlation during draws.  To counter this we thinned the chains, 

keeping every 5th simulation draw from each sequence and discarding the rest starting 

with 1,000 burn-in iterations and 20,000 sample iterations.  Subsequent convergence 

diagnostics were satisfactory.    Table 26 displays the posterior inferences for RE and ρ.  

The posterior estimations for RE combine the information from the “current” 

likelihood and “historical” likelihood, the latter via the power prior.  The joint likelihood 

from the “historical” data and “current” data dominates RE posterior calculations.  The 

95% credible sets for RE include 1.  Therefore, at the population level, the effect of 

treatment T on the true endpoint E relative to that of treatment effect on surrogate 

endpoints for this example is large.  

N(0, 100,000) 
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Table 26. Posterior and MLE estimations for RE, ρ, α, β and Σ.  True values for “current” data 
and “historical” data are also listed.  The power prior in Table 23 was used in this analysis. 

 
“Current” “historical”  

Parameter 
True MLE True MLE 

Mean 
(95% credible set) 

RE 0.77 1.07 0.8 0.797 0.917 
(0.594, 1.362) 

ρ 0.3 0.563 0.5 0.67 0.328 
(0.04, 0.580) 

α 1.3 0.944 1.5 1.346 1.201 
(0.840, 1.562) 

β 1 1.01 1.2 1.074 1.077 
(0.761, 1.386) 

Var(S) 1 0.98 1 1.74 1.252 
(0.806, 1.933) 

Cov(S,E) 0.3 0.607 0.5 0.937 0.374 
(0.041, 0.804) 

Var(E) 1 1.19 1 1.12 1.016 
(0.649, 1.566) 

 

The posterior estimate for ρ is close the true value for the “current” data (– 0.3).  

Note that the prior information for ρ is not dependent on the “historical” data since we 

used a diffuse Wishart prior for the precision matrix.  Consequently, posterior estimates 

are close the true values for the “current” data.   

Figure 25 exhibits the posterior distributions for RE and ρ with different a0.  The 

initial prior structure for power a0 is assumed to be beta(2, 2). 

We also investigated the effect of the power parameter, a0, on the posterior.  In 

Figure 26 we have graphed the posterior densities for RE corresponding to different 

choices for a0.  Figure 26(a) shows the posterior distributions for RE when we set a0 to be 

fixed.  Recall from Section 5.3 that a0 = 1 is equivalent to using a scaled “historical” 

likelihood for the prior on β and a0 = 0 is corresponds to a prior on β with no 

incorporation of historical data.   
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  (a) Posterior distribution for RE (b) Posterior distribution for ρ 

Figure 25. Posterior distributions for RE and ρ.   
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         (a)             (b) 

(a) — a0~beta(2,2); ---- a0~beta(2, 99); …. a0~beta(99,2) 
(b) — a0~beta(2,2); ---- a0=0; …. a0=1 

Figure 26. Posterior distributions for RE with different a0. 
 

We also considered three beta priors on a0: beta(2, 2), beta(2, 90), and beta(90, 2).  

Figure 26(b) shows the posterior distributions for RE under these three prior structures 

for a0.   

Since our data were generated from similar distributions (albeit with very 

different sample sizes), the “historical” and “current” likelihood functions are quite 

similar.   As a result, in our examples, changes in a0 did not dramatically affect posterior 

estimations of RE.   
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5.4.4 Comparison of Posteriors under Power, Informative, and Diffuse Priors 

In addition to the posterior comparisons made above, we also compared the power 

prior with an informative Wishart component.  This prior structure is summarized in 

Table 27 below.  Table 28 contains posterior summaries for RE, α and β under the four 

prior structures. 

 
Table 27. Power Prior with informative Wishart structure.  

 
Initial Prior distribution 
μ 
β 
μ′
α  

Τ 
137.4 27.8

Wishart ,97
27.8 62.65

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥

⎣ ⎦⎝ ⎠
 

Table 28. Posterior mean and 95% credible sets for RE, α, β and ρ.  The true value of RE is 0.77.  
Column letters are for ease of reference in the text. 

 
Power prior    

a0=0 
(Table 23) 

a0=1 
(Table 23) 

a0 ~ beta(2, 2)  
(Table 27) 

a0=1 
(Table 23) 

Informative 
prior 

(Table 24) 

Diffuse normal 
prior 

(Table 25) 
 A B C D E F 

RE 0.924 
(0.6, 1.37) 

0.872 
(0.637,1.186) 

0.939 
(0.613, 1.37) 

0.880 
(0.644,1.176) 

1.045 
(0.486,1.882) 

0.921 
(0.61,1.38) 

α 1.197 
(0.843,1.565) 

1.253 
(0.970,1.528) 

1.176 
(0.840, 1.51) 

1.238 
(0.979,1.508) 

1.037 
(0.562,1.532) 

1.245 
(0.814,1.589) 

β 1.081 
(0.774,1.393) 

1.079 
(0.843,1.312) 

1.083 
(0.760, 1.401) 

1.078 
(0.841,1.314) 

1.028 
(0.519,1.538) 

1.009 
(0.71,1.319) 

ρ 0.332 
(0.050,0.582) 

0.330 
(0.040,0.583) 

0.325 
(0.171, 0.468) 

0.324 
(0.166,0.471) 

0.324 
(0.165,0.469) 

0.331 
(0.035,0.591) 

 

Not surprisingly, use of a diffuse normal prior resulted in wider 95% credible sets.  

The power prior with a0 = 1 and an informative Wishart (Column D in Table 28) showed 

improvement in the credible set for ρ, as expected.  Similarly, the informative prior with 

N(0, 100,000) 
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a0 ~ beta(2, 2) (Column C in Table 28) exhibited decreased width for the credible set on 

ρ compared to the informative and diffuse priors.  The posterior mean overestimates RE 

for all of these prior choices.  Likelihoods dominate the posterior for RE.  Recall that the 

data we generated has a higher correlation between surrogate endpoints and true 

endpoints.  This might be the reason for the overestimated RE.  

We have also graphed some of the posteriors described in Table 28.  Figure 27(a) 

compares the posterior distribution for RE using an informative normal prior (Column E 

in Table 28) with the posterior under a power prior when a0 = 1 (Column D).  Figure 27 

(b) makes the same comparison but between Column A and Column F.   Again, a diffuse 

Wishart prior was assumed for the precision matrix in these two cases. 
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(a)     (b) 

 
(a) —: power prior with a0=1; --- informative normal prior        
(b) —: power prior with a0=0; ---- diffuse normal prior 

Figure 27. Posterior distributions for RE with different prior structures.  In Figure (a) we 
compared column B and E.  In Figure (b) we have column A and F.   

 

In Figure 28 we compare the posterior distribution for RE using an informative 

normal prior (Column E in Table 28), a diffuse normal prior (Column  F in Table 28) 

with the posterior under a power prior when a0 =1, this is the case where an informative 
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Wishart prior was assumed for the precision matrix (Column D in Table 28).  Similar 

results are concluded from the comparisons between Column C, E, and F.  

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
1
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3
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5

 
Note: solid line: informative prior; dash line: power prior with diffuse Wishart prior; dot line: power prior 
with informative Wishart prior 
Figure 28. Posterior distributions for ρ with different prior structures.  In this figure, we 
have used the structures in Columns C, E and F  of Table 28.   

 

5.5 Power Prior for Bayesian Estimation for PTE 

This Section focuses on a simple example illustrating a Bayesian analysis for PTE 

with normal endpoints using a power prior approach.  We used the same data sets as in 

Section 5.4.  

 
5.5.1 Bayesian Estimation for PTE with a Power Prior 

 For normal endpoints, we assumed that the true endpoints, treatment and 

surrogate endpoint have the following relationship: 

Ei|Ti,Si = μγ + βγT + γS + εTSi        (5.16) 
and          

         Ei|Ti = μ + βT + εTi     (5.17) 
 

where εTSi and εTi are independently normally distributed.   
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Again, the proportion of treatment effects explained by surrogate endpoints was 

defined as PTE  = 1 γ− β β . 

 We used the power prior for β ≡ (μ, μγ, βγ, β, γ ) defined by  

π(β, a0|D0) ∝ l(β |D0)a0π0(β |c0)π(a0|a, b)     (5.18) 

where l(β |D0) denotes the joint likelihood function for models (5.16) and (5.17) and, 

again, D0 denoted the “historical” data D0. 

The joint posterior distribution for β is 

π( β |a0, D0, D) ∝ l(β |D0) a0π0(β |c0)π(a0|a, b)l(β |D)    (5.19) 

where, as before, D denotes the current data set.  We used two initial prior structures for 

β and βγ: diffuse normal prior structure and conditional beta prior structures.  Independent 

diffuse normal priors are placed for coefficients μ, μγ, and γ.  The power parameter, a0, is 

assumed to follow a beta(2, 2) distribution.  Diffuse gamma distributions were assigned 

to precision components τ1 and τ2.  The resulting joint prior is summarized in Table 29.  

  
Table 29. Initial prior distributions in power prior method. 

(a) β and βγ follow diffuse normal prior 
 

Initial Prior distribution 
μ 
β 

μγ

βγ 
τ1 
τ2 

    

 

 

N(0, 100,000) 

gamma(0.01, 0.01) 
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Table 29. Initial prior distributions in power prior method (continued). 
(b) β and βγ follow conditional beta prior 

 
 

 

 

 

 

 
5.5.2  Posterior Results under the Power Prior 

As before we used MCMC methods to sample from the joint posterior in (5.18), 

implemented in WinBUGS.  The program is in Appendix E.2 and R code to call 

WinBUGS model is listed in Appendix D.4.  We used 20,000 sample iterations with 

1,000 burn-in iterations, starting with dispersed initial values in two chains.  After 

thinning the chains (every 5th iteration was retained) Gelman-Rubin statistics and 

autocorrelation plots indicated no problems with convergence.  
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Figure 29. Posterior distribution for PTE with power prior.  Here the solid line indicates 
use of a diffuse normal as the initial prior and the dash line indicates use of an initial beta 
prior. 

 

Initial Prior distribution 

μ 
 

N(0, 100,000) 
μγ N(0, 100,000) 

β beta[0, 5] (2,2)  
βγ beta[0, β] (2,2) 
τ1 
τ2 

gamma(0.001, 0.001) 
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The MLE for PTE is 0.35 for “current” data and 0.56 for “historical” data.   

Figure 29 displays the posterior distribution for PTE under the power prior.  Two prior 

structures are assumed in this figure: diffuse normal prior and conditional beta priors.  

See details in table 29.   

With an initial diffuse normal prior structure, the posterior mean for PTE is 0.498 

with 95% credible set (0.138, 0.804).  In contrast, using a conditional beta initial prior, 

the posterior mean for PTE  is 0.487 and the 95% credible set is (0.205, 0.761). 
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CHAPTER SIX 

Summary and Future Research 

 
To save time and reduce the size and cost of clinical trials, surrogate endpoints are 

frequently measured instead of true endpoints.  The proportion of the treatment effect 

explained by surrogate endpoints (PTE) is a widely used validation criteria.  Frequentist 

and Bayesian methods have been developed to facilitate such validation.  Unfortunately, 

with both methods proposed to date estimates of PTE can be outside the unit interval.  To 

preclude this problem, we proposed a new model using conditional beta priors, applying 

it both Poisson distributed true endpoints and normally distributed surrogate endpoints.   

Furthermore, we derived the induced prior on PTE thereby allowing direct comparison of 

prior and posterior distributions.  A Cauchy distribution centered at 1 resulted when 

diffuse normal priors are used, which proved quite unsuitable.   We also introduced the 

use of power priors for PTE. 

We proposed a fully Bayesian approach to account for uncertainty about 

interaction.  Inference for both PTE and the interaction effect were considered.  Also 

regarding interaction, we considered Bayesian model comparison techniques.   

We performed Bayesian analysis of the relative effect (RE) and the association 

between surrogate endpoints and true endpoints (ρ) as an alternative to PTE.  We used 

power priors to develop the posteriors for RE and ρ as well. 

Our research considered surrogate endpoint evaluation for a single clinical trial.  

It is clearly of interest to study validation criterion for multiple trials.  In the future, we 

hope to extend our investigation to include meta-analysis.  
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Our focus was on single surrogate endpoints.  Cowles (2002) provided Bayesian 

framework for multiple covariates with binary endpoints.  Her work would be a good 

starting point from which to apply our ideas to the case of multiple covariates, 

particularly in a generalized linear model context.   

Finally, missing value and misclassification problems are very important in 

clinical trials generally and therefore in surrogate endpoints evaluation.  It is of interest to 

extend our investigation to situations involving missing values or misclassification. 
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APPENDIX A  

Convergence Issues in MCMC Simulations 

 
There are convergence difficulties in the iterative simulation inferences.  Iterative 

simulation draws with within-sequence correlation are generally less precise than the 

same number of independent draws.  Such correlation can cause inefficiencies in 

simulations.   

Brooks and Gelman (1998) and Best, Cowles and Vines (1997) summarized the 

convergence diagnostics.  One is the Gelman & Rubin diagnostics (1992) which propose 

a general approach to monitoring convergence of MCMC output in which two or more 

parallel chains are run with over-dispersed initial values.  Values substantially above 1 

indicate lack of convergence.  

 The other diagnostic is autocorrelation plot.  High autocorrelations within chains 

indicate slow convergence.  That is iiterative simulation draws with within-sequence 

correlation. 

For instance, Figure A.1 displays the autocorrelation for draws from posterior 

PTE distribution in one chain for one data set in section 3.3.  Obviously, there is high 

within-sequence correlation during draws.  About 20 sequently draw of PTE are 

correlated with each other.  The statistics estimate from these draws can not represent the 

true distribution of posterior PTE.      

There are three approaches to handle special convergence problems.  First,  we 

can manipulate multiple simulation sequences with starting points dispersed.  Two 
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parallel simulation chains with different starting points are used for every simulation 

study in this chapter.  Second, we monitor the prior structures and increase the precision 

in the priors from parameters.  We decreased the variance for diffuse normal prior 

structure.  If the above two ways can not effectively solve the convergence issue, we will 

use the third method, the most important one, that we thin the sequences by keeping 

every kth simulation draw from each sequence and discarding the rest.  Best, et al. (1997) 

suggest increasing the thinning interval to say, every 5th or 10th iteration, before 

calculating summary statistics and density estimates, in order to achieve a less highly 

correlated sample.   

PTE chains 1:2

lag
0 20 40

 -1.0
 -0.5
   0.0
   0.5
   1.0

. 

Figure A.1 Autocorrelation for one chain of posterior PTE distribution before thin the 
sequences. 

 

For example, we will be able to make the simulation sequence longer, say, from 

10000 to 20000, and thin the sequences by keeping every 10th simulation draw from each 

sequence and discarding the rest. 

Figure A.2 shows the autocorrelation for draws from posterior PTE distribution 

after thinning the sequences by keeping every 10th draw.  Apparently, after increasing 
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the length of the chain and the thinner sequences, the with-sequence correlation of draws 

noticeably decreased. 

PTE chains 1:2

lag
0 20 40

 -1.0
 -0.5
   0.0
   0.5
   1.0

 

Figure A.2 Autocorrelation for one chain of posterior PTE distribution after thin the 
sequences.  
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APPENDIX B 

SAS IML Program to Generate Data 

 
B.1. SAS Programs to Generate Data with Poisson Distributed Endpoints and Normally 

Distributed Surrogate Endpoints 

proc iml; 
   n=250; 
   E1=j(n,1,1); mu1=j(n,1,1); 
   E2=j(n,1,1); mu2=j(n,1,1); 
   S1=j(n,1,1); S2=j(n,1,1); 
   T1=j(n,1,0.5); T2=j(n,1,-0.5); 
   seed1=1; seed2=2; 
   do i=1 to n; 
       S1[i,1]=1+rannor(seed1); 
    S2[i,1]=-1+rannor(seed2); 
       mu1[i,1]=exp(0.375*T1[i,1]+0.875*S1[i,1]); 
     mu2[i,1]=exp(0.375*T2[i,1]+0.875*S2[i,1]); 
    E1[i,1]=ranpoi(seed1,mu1[i,1]); 
    E2[i,1]=ranpoi(seed2, mu2[i,1]); 
 end;  
 T=T1//T2;  
 S=S1//S2; 
 E=E1//E2; 
    variables=T||S||E; 
    create scenario from variables[colname={T S E}];  
    append from variables; 

quit; 

B.2. SAS Programs to Generate Data for Bivariate Normally Distributed Endpoints  

proc iml; 
   n=20; m=50; 
   S=j(2*n,1,1); 
   E=j(2*n,1,1); 
   z1=j(2*n,1,0);z2=j(2*n,1,0);z3=j(2*n,1,0);  
   z4=j(2*m,1,0);z5=j(2*m,1,0);z6=j(2*m,1,0);  
   Sh=j(2*m,1,0); Eh=j(2*m,1,0); 
   T1=j(n,1,1); T2=j(n,1,0); 
   T=j(2*n, 1,0); rho=0.3; 
    T=T1//T2;  
   Th1=j(m,1,1); Th2=j(m,1,0); 
   Th=j(2*m, 1,0); rho_h=0.5; 
    Th=Th1//Th2;  
   seed1=12345; seed2=4567;seed3=62341; 
   seed4=137967; seed5=3595;seed6=78141; 
   do i=1 to 2*n;  
   * generate 'current data'; 
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      z1[i,1]=rannor(seed4); z2[i,1]=rannor(seed5); 
      z3[i,1]=rannor(seed6); 
      S[i,1]=1.3*T[i,1]+1*(sqrt(1-rho)*z1[i,1]+sqrt(rho)*z3[i,1]); 
 E[i,1]=1*T[i,1]+1*(sqrt(1-rho)*z2[i,1]+rho*z1[i,1]); 
 end;  
 do i=1 to 2*m; 
 * generate 'historical data'; 
 z4[i,1]=rannor(seed4); 
      z5[i,1]=rannor(seed5); 
      z6[i,1]=rannor(seed6); 
 Sh[i,1]=1.5*Th[i,1]+1*(sqrt(1-
rho_h)*z4[i,1]+sqrt(rho_h)*z6[i,1]); 
      Eh[i,1]=1.2*Th[i,1]+1*(sqrt(1-
rho_h)*z5[i,1]+sqrt(rho_h)*z6[i,1]); 
 end; 
    variables1=T||S||E; 
    create scenario1 from variables1[colname={T S E}];  
    append from variables1; 
  variables2=Th||Sh||Eh; 
    create scenario2 from variables2[colname={Th Sh Eh}];  
    append from variables2; 
 
quit; 
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APPENDIX C 

SAS Procedure to Perform Frequentist Analysis 

 
C.1. SAS GENMOD Procedure to Analysis Data When True Endpoints Follow Poisson 

Distribution 

* To test the significance of interaction effect; 

proc genmod data=scenario; 
     model E = T S T*S / dist   = poisson 
                          link   = log; 
run; 
 
* To build Poisson regression between E and T, S; 

proc genmod data=scenario; 
     model E = T S / dist   = poisson 
                          link   = log; 
run; 
 
* To build Poisson regression between E and T; 

proc genmod data=scenario; 
  model E = T / dist   = poisson 
                link   = log; 
run; 
 
C.2 SAS REG Procedure to Analysis Data for Bivariate Normal Endpoints 
 

* To build regression between E and T, S; 

proc reg data=scenario1; 
     model E = T S ; 
run; 
 
* To build regression between E and T; 

proc reg data=scenario1; 
     model E = T  ; 
run; 
 
* To build regression between S and T; 

proc reg data=scenario1; 
     model S= T  ; 

run; 
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APPENDIX D 

 
D.1. R program to Calculate MLE’s for PTE in Chapter 3 

#################### Getting frequentist estimators for 500 data sets############## 
iter_freq<-function() { 
     N<-2*n 
     freq<-matrix(rep(0,4*k),nrow=k,ncol=4) 
     t<-0 
     ############## start iteration ######################### 
  for (i in 1: k) { 
     E1<-true[,i] 
     E2<-true[,i] 
     S<-surrogate[,i] 
    T<-treat[,i]  
 
#### Frequentist estimate of beta, beta.star and PTE 
glm_ETS<-glm(E1~S+T+S*T, family=poisson())   ### find how many data has p-value that is less  
              than 0.05 
glm_ET<-glm(E2~T,family=poisson()) 
glm_ETS1<-glm(E1~S+T, family=poisson()) 
freq[i,1]<-summary(glm_ETS1)$coefficients[3,1]  ### frequentist estimator of beta.star 
freq[i,2]<-summary(glm_ET)$coefficients[2,1]      ### frequentist estimator of beta 
freq[i,3]<-1-freq[i,1]/freq[i,2]                  ### frequentist estimator of PTE 
freq[i,4]<-summary(glm_ETS)$coefficients[4,4]   ### p-value of interaction effect 
if (freq[i,3]<0 ) t<-t+1                       ### test how many significant p-value 
} 
 return(t,freq) 
} 
 
 
D.2. R Program to WinBUGS to Get Bayesian Estimation for PTE with Conditional Beta 

Priors   

##############Getting Posterior Estimates for PTE Using beta priors ############# 
iter_beta<-function () { 
      N<-2*n 
      PTE.freq<-matrix(rep(0,k),nrow=k,ncol=1) 
      beta1.freq<-matrix(rep(0,k),nrow=k,ncol=1) 
      beta2.freq<-matrix(rep(0,k),nrow=k,ncol=1) 
      CS<-matrix(rep(0,5*k),nrow=k,ncol=5) 
     ############## start iteration ######################### 
  for (i in 1: k) { 
 
  E1<-true[,i] 
  E2<-true[,i] 
  S<-surrogate[,i] 
T<-treat[,i] 
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#### Call winbugs to calculate posterior distribution of PTE ### 
data<-list("N","T","S","E1","E2","a","b","c","d","f","g")   
inits1<-list(mu.star=0,gamma.star=0.1, b1=0.1, b2=0.5,mu=0.5, mu.S=0,tau.S=1) 
inits2<-list(mu.star=0.1, gamma.star=0.3, b1=0.3, b2=0.7,mu=1,mu.S=0.5,tau.S=1) 
inits<-list(inits1, inits2) 
parameters<- c("mu.star","beta.star","gamma.star","mu","beta","PTE") 
 
# poisson.bug contain the Winbugs program for bivariate binomial distribution 
poisson.sim<-
bugs(data,inits,parameters,"poisson.bug",n.chains=2,n.thin=1,n.iter=sim,n.burnin=1000, 
debug=FALSE)  
summary<-poisson.sim$summary 
CS[i,1]<-summary[6,1]   ### posterior mean of PTE 
CS[i,2]<-summary[6,2]  ### posterior std dev. of PTE 
CS[i,3]<-summary[6,3] ### posterior 2.5% of PTE 
CS[i,4]<-summary[6,5] ### posterior median of PTE 
CS[i,5]<-summary[6,7] ### posterior 97.5% of PTE 
 } 
  return (CS) 
 } 
 
D.3. R Program to WinBUGS to Get Bayesian Estimation for PTE with Truncated or 

Diffuse Normal Priors   

 
############### Iterations for truncated/ normal priors ################# 
iter_normal<-function () { 
      N<-2*n 
     CS<-matrix(rep(0,5*k),nrow=k,ncol=5) 
 
############## start iteration ######################### 
  for (i in 1: k) { 
  E1<-true[,i] 
  E2<-true[,i] 
  S<-surrogate[,i] 
  T<-treat[,i] 
   data<-list("N","T","S","E1","E2")   
   
inits1<-list(mu.star=0,gamma.star=1, beta=0.5,beta.star=0.1, mu=0.3, mu.S=0, tau.S=1) 
inits2<-list(mu.star=0.1, gamma.star=0.5, beta=0.7,beta.star=0.5,mu=0.1,mu.S=0.1,tau.S=1) 
inits<-list(inits1, inits2) 
parameters<- c("mu.star","beta.star","gamma.star","mu","beta","mu.S","PTE") 
poisson_normal.sim<- bugs(data, inits, parameters,"Poisson_truncated.bug", 
n.chains=2,n.thin=1, n.iter=sim,n.burnin=1000, debug=FALSE)       
summary<-poisson_normal.sim$summary 
CS[i,1]<-summary[1,1]   ### posterior mean of PTE 
CS[i,2]<-summary[1,2]  ### posterior std dev. of PTE 
CS[i,3]<-summary[1,3] ### posterior 2.5% of PTE 
CS[i,4]<-summary[1,5] ### posterior median of PTE 
CS[i,5]<-summary[1,7] ### posterior 97.5% of PTE 
 }  
  return (CS) 
} 
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D.4 R-code to WinBUGS to Get Bayesian Estimations for RE with Power Prior 
 
normal<-function() { 
data<-list("N","M","T","E","Eh","Sh","Th","R","a","b")   
inits1<-list(mu=0, mu.t=-0.375, beta=0.5,alpha=0.7,a0=1,tau1=1, 
tau2=0.6,tau=structure(.Data=c(1,0.5,0.5,1),.Dim=c(2,2))) 
inits2<-list(mu=0.1,mu.t=-0.5, beta=0.5, alpha=0.7, 
a0=0.5,tau2=0.2,tau1=0.2,tau=structure(.Data=c(1,0.8,0.8,1),.Dim=c(2,2))) 
inits<-list(inits1, inits2) 
parameters<- c("mu","mu.t","beta","alpha","RE","sigma","rho","tau") 
normal.sim<- bugs(data, inits, parameters,"normal.bug", n.chains=2,n.thin=5, 
n.iter=sim,n.burnin=1000, debug=TRUE)  
summary<-normal.sim$summary 
  return (summary) 
} 
 
 
D.5. The R code to Call WinBUGS Program to Get Bayesian Estimations for RE with 

Informative or Diffuse Normal Prior 

 
normal<-function() { 
data<-list("M","T","E","R")   
inits1<-list(mu=0, mu.t=-0.375, beta=0.5, 
alpha=0.7,tau=structure(.Data=c(1,0.5,0.5,1),.Dim=c(2,2))) 
inits2<-list(mu=0.1,mu.t=-0.5, beta=0.5, alpha=0.7, 
tau=structure(.Data=c(1,0.8,0.8,1),.Dim=c(2,2))) 
inits<-list(inits1, inits2) 
parameters<- c("mu","mu.t","beta","alpha","RE","tau","rho","sigma") 
normal.sim<- bugs(data, inits, parameters,"hist_normal_RE.bug", n.chains=2,n.thin=20, 
n.iter=sim,n.burnin=1000, debug=TRUE)  
summary<-normal.sim$summary 
  return (summary) 
} 

 
D.6. R Program to Simulate the Induced Prior for PTE with Conditional Prior Method 

prior<-function(a,b,c,d,f,g,sim) { 
## initialized the variables 
    b1<-matrix(rep(0,sim),nrow=sim,ncol=1) 
    b2<-matrix(rep(0,sim),nrow=sim,ncol=1) 
    beta<-matrix(rep(0,sim),nrow=sim,ncol=1) 
    beta.star<-matrix(rep(0,sim),nrow=sim,ncol=1) 
    PTE<-matrix(rep(0,sim),nrow=sim,ncol=1) 
    for (i in 1:sim) { 
        b1[i,1]<-rbeta(1,a,b) 
        b2[i,1]<-rbeta(1,f,g) 
        beta[i,1]<-b1[i,1]*(d-c)+c 
        beta.star[i,1]<-b2[i,1]*(beta[i,1]-c)+c 
                      } 
        PTE<-1-(beta.star/beta) 
    return (PTE,beta,beta.star) 
}
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APPENDIX E 
 

WinBUGS Programs 

 
The following lines of code used in WinBUGS provide the basic structures for all 

models we implemented in WinBUGS.  This basic structure contains the Bayesian 

estimations for PTE, RE and ρ with different prior structures. 

 
E.1. WinBUGS Model for Poisson Distributed True Endpoint to Calculate PTE 

Three prior structures for β and βγ are constructed in this model structure: diffuse 

normal, truncated normal and conditional beta prior.  If we would like to include 

interaction term in the model, simple adjustment for model structure is needed.  

model 
 { 
 for( i in 1 : N ) { 
                     # model E|T, S 
         E1[i] ~ dpois(est1[i]) 
                    # model E|T 
                    E2[i] ~ dpois(est2[i]) 
                    S[i]~dnorm(mu.S, tau.S) 
                    log(est1[i]) <- mu.star + beta.star* T[i] +gamma.star * S[i]  
                   log(est2[i]) <- mu + beta * T[i] 
 
  } 
 # define diffuse priors  
               mu.star~dnorm(0,0.000001) 
               mu ~ dnorm(0,0.000001) 
               gamma.star~dnorm(0,0.000001) 
               mu.S~dnorm(0,0.000001) 
               tau.S~dgamma(0.001, 0.001) 
 
        # conditional beta priors β and βγ 
                    b1~dbeta(a,b) 
                    b2~dbeta(f,g) 
                    beta<-b1*(d-c)+c 
                    beta.star<-b2*(beta-c)+c 
      # truncated normal priors for β and βγ 
           #   beta~djl.dnorm.trunc(0,0.0001,0,1000) 
           #   beta.star~djl.dnorm.trunc(0,0.0001, 0, beta) 
    # diffuse normal priors for β and βγ 
           #      beta~dnorm(0, 0.00001) 
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          #       beta.star~dnorm(0,0.00001) 
 
 PTE<-1-beta.star/beta 
 # If include interaction term, calculate joint/marginal distribution for PTE and η 
#Joint <- step(PTE - .7)*step(.3 - abs(ada)) 
#PTElarge <-step(PTE - .7) 
#adasmall <-step(0.3-abs(ada) ) 
 } 
 

E.2 WinBUGS Models to Calculate PTE with Normal Endpoints using Power Prior.  We 

used one-tricks twice to build power prior for PTE.  Two initial prior structures are 

constructed in this program: diffuse normal and conditional beta prior. 

model 
# model for "current data" 
  { for (i in 1:N ) { 
         E1[i]~dnorm(p1[i], tau1) 
         E2[i]~dnorm(p2[i],tau2) 
    p1[i]<-mu+beta*(T[i]) 
    p2[i]<-mu.star+beta.star*(T[i])+gamma.star*(S[i]) 
   } 
# ones trick 
   C <- 10000    # this just has to be large enough to ensure all p[i]'s < 1  
# likelihood model for historical data 
 for (j in 1:M) { 
      Eh1[j]~dnorm(phi[j],tau1) 
      phi[j]<-mu+beta*(Th[j]) 
      Eh2[j]~dnorm(theta[j],tau2) 
      theta[j]<-mu.star+beta.star*(Th[j])+gamma.star*(Sh[j]) 
      l1[j]<-(tau1/(2*3.1415926))*exp(-(Eh1[j]-phi[j])*(Eh1[j]-phi[j])*(tau1*tau1)/2) 
      l2[j]<-(tau2/(2*3.1415926))*exp(-(Eh2[j]-theta[j])*(Eh2[j]-theta[j])*(tau2*tau2)/2) 
 # likelihood function for E|T,S 
      ones1[j] <- 1 
       pp[j] <- pow(l1[j],a0)/C 
      ones1[j]~dbern(pp[j]) 
 # likelihood function for E|T 
      ones2[j] <- 1 
  tt[j] <- pow(l2[j],a0)/C        
      ones2[j]~dbern(tt[j]) 
   } 
 # define the prior structure for the historical data and current data 
     mu~dnorm(0,0.00001) 
     mu.star~dnorm(0,0.00001) 
    gamma.star~dnorm(0, 0.00001) 
 # diffuse normal prior structure for � and �� 
 #   beta~dnorm(0, 0.00001) 
 #   beta.star~dnorm(0,0.00001) 
 # Conditional beta prior structures for � and �� 
   d~dbeta(2,2) 
   c~dbeta(2,7) 
   beta<-d*5 
   beta.star<-c*beta 
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# consider power a0 is a random variable 
   a0~dbeta(a,b) 
# assign diffuse gamma distributions for precisions 
   tau1~dgamma(0.01, 0.01) 
   tau2~dgamma(0.01, 0.01) 
PTE<-1-beta.star/beta 
} 
 

E.3 WinBUGS Models for Power Prior to Calculate RE.  We used ones-trick twice to 

construct power prior for RE.   

model 
# model for "current data" 
  { for (i in 1:N ) { 
         E[i, 1:2]~dmnorm(p[i,1:2], tau[1:2,1:2]) 
        p[i,1]<-mu+beta*(T[i]) 
    p[i,2]<-mu.t+alpha*(T[i]) 
   } 
# try ones trick 
   C <- 10000    # this just has to be large enough to ensure all p[i]'s < 1  
# likelihood model for historical data 
 for (j in 1:M) { 
      Eh[j]~dnorm(phi[j],tau1) 
      phi[j]<-mu+beta*(Th[j]) 
      Sh[j]~dnorm(theta[j],tau2) 
      theta[j]<-mu.t+alpha*(Th[j]) 
      l1[j]<-(sqrt(tau1)/(2*3.1415926))*exp(-(Eh[j]-phi[j])*(Eh[j]-phi[j])*tau1/2) 
      l2[j]<-(sqrt(tau2)/(2*3.1415926))*exp(-(Sh[j]-theta[j])*(Sh[j]-theta[j])*tau2/2) 
 # likelihood function for E|T 
      ones[j] <- 1 
       pp[j] <- pow(l1[j]*l2[j],a0)/C 
      ones[j]~dbern(pp[j]) 
    } 
 # define the prior structure for the historical data and current data 
     mu~dnorm(0,0.01) 
     beta~dnorm(0, 0.01) 
     mu.t~dnorm(0, 0.01) 
     alpha~dnorm(0, 0.01) 
     a0~dbeta(a,b) 
# diffuse gamma priors for precisions in historical data 
   tau1~dgamma(0.01, 0.01) 
   tau2~dgamma(0.01, 0.01) 
# diffuse Whishart prior for precision matrix in current data 

tau[1:2,1:2]~dwish(R[1:2,1:2],2) 
       # get variance-covariance matrix 

    t<-tau[1,1]*tau[2,2]-tau[2,1]*tau[1,2] 
    sigma[1,1]<-tau[2,2]/t 
    sigma[1,2]<--tau[1,2]/t 
    sigma[2,1]<--tau[2,1]/t 
    sigma[2,2]<-tau[1,1]/t 
# get RE and rho 
RE<-beta/alpha 
rho<-sigma[1,2]/sqrt(sigma[1,1]*sigma[2,2]) } 
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E.4. WinBUGS Program to Model RE with Diffuse/Informative Normal Prior  
 
model 
# model for "current data" 
  { for (i in 1:M ) { 
       E[i, 1:2]~dmnorm(p[i,1:2], tau[1:2,1:2]) 
       p[i,1]<-mu+beta*(T[i]) 
      p[i,2]<-mu.t+alpha*(T[i]) 
 
   } 
 
 # define the prior structure for the historical data and current data 
    mu~dnorm(0.212,6.85) 
   beta~dnorm(1.077,4.83) 
    mu.t~dnorm(0.176,6.06) 
    alpha~dnorm(1.344, 4.386) 
 #     mu~dnorm(0,0.01) 
 #     beta~dnorm(0,0.01) 
 #     mu.t~dnorm(0, 0.01) 
 #   alpha~dnorm(0, 0.01) 
 
    tau[1:2,1:2]~dwish(R[1:2,1:2],94) 
 
    t<-tau[1,1]*tau[2,2]-tau[2,1]*tau[1,2] 
    sigma[1,1]<-tau[2,2]/t 
    sigma[1,2]<--tau[1,2]/t 
    sigma[2,1]<--tau[2,1]/t 
    sigma[2,2]<-tau[1,1]/t 
#RE<-(beta/sqrt(sigma[1,1]))/(alpha/sqrt(sigma[2,2])) 
RE<-beta/alpha 
 rho<-sigma[1,2]/sqrt(sigma[1,1]*sigma[2,2]) 
} 
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