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Adaptive Load Impedance Optimization for Power Amplifiers in  
Reconfigurable Radar Transmitters  
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Mentor: Charles Passant Baylis II, Ph.D. 

 
 
 A fundamental tradeoff exists in radar transmitter design between linearity and 

efficiency due to the signal amplification.  These transmitters are driven into saturation in 

order to increase efficiency, but may potentially violate regulatory spectral mask 

limitations.  An adaptive method for optimizing linearity and efficiency for power 

amplifiers in radar transmitters is presented.  This approach uses intelligent search 

techniques with load-pull measurements for power-added efficiency (PAE) and adjacent 

channel power ratio (ACPR) to dynamically maximize the PAE while meeting spectral 

requirements.  Using load-tuning, an algorithm performs a steepest ascent search for the 

PAE optimum load reflection coefficient, followed by a steepest descent search for 

ACPR.  The steepest descent search, when begun at the PAE optimum, approximates the 

Pareto optimal frontier between the two objectives.  This trace enables PAE to be 

maximized for an imposed limit on ACPR, optimizing the performance of adaptive radar 

transmitters under spectral mask constraints. 



Page bearing signatures is kept on file in the Graduate School.

Adaptive Load Impedance Optimization for Power Amplifiers in  
Reconfigurable Radar Transmitters

 

by

Joshua Lee Martin

A Thesis

Approved by the Department of Electrical and Computer Engineering

Kwang Lee, Ph.D., Chairperson
 

Submitted to the Graduate Faculty of 
Baylor University in Partial Fulfillment of the  

Requirements for the Degree 
of

Master of Science

 
 
 
 

Approved by the Thesis Committee

Charles Baylis, Ph.D., Chairperson

Robert Marks, Ph.D.

David J. Ryden, Ph.D.
 
 
 
 

Accepted by the Graduate School

December 2012

J. Larry Lyon, Ph.D., Dean



 

All rights reserved 

Copyright © 2012 by Joshua Lee Martin 



iv

TABLE OF CONTENTS 
 

 
LIST OF FIGURES                   v 
 
LIST OF TABLES                vii 
 
ACKNOWLEGEMENTS              viii 
 
CHAPTER ONE: INTRODUCTION                           1 
 
CHAPTER TWO: NONLINEAR AMPLIFIER EFFECTS AND MEASUREMENTS     6 
 2.1 Intermodulation Distortion                6 

2.2 Efficiency and Tradeoff with Linearity            10 
2.3 Amplifier Characterization with Load-Pull            12 
2.4 Conclusion                14 
 

CHAPTER THREE: PARETO TRADEOFF ANALYSIS FOR LOAD-PULL 
COUNTOURS               16 

 3.1 Pareto Optimization for Fuzzy Convex Contours           17 
 3.2 Pareto Front for Simulated and Measured Load-Pull Contours         25 
 3.3 Conclusion                28 
 
CHAPTER FOUR: SEQUENTIAL PEAK SEARCH ALGORITHM FOR AFFINE 
 PARETO TRACING              29 
 4.1 Augmenting Adaptive Radar Transmitters            30 
 4.2 Sequential Peak Search Algorithm             32 
 4.3 Using Steepest Descent as Affine Approximation to Pareto Curve         37 

4.4 Conclusion                41 
 
CHAPTER FIVE: RECONFIGURABLE RADAR TEST BENCH           43 
 5.1 Sequential Peak Search Algorithm Implementation                      43 

5.2 Reconfigurable Software Test Bench             48 
5.3 Adaptive Radar Measurement Test Bench            50 
5.4 Conclusion                52 

 
CHAPTER SIX: ANALYSIS OF SEQUENTIAL PEAK SEARCH RESULTS         53 
 6.1 ADS Simulation of Sequential Peak Search Algorithm          54 
 6.2 Sequential Peak Search Algorithm Using Load-Pull Test Bench         60 
 6.3 Conclusion               66 
 
CHAPTER SEVEN: CONCLUSION              67 
 
BIBLIOGRAPHY                 70 



v 

LIST OF FIGURES 
 
 

Figure 2.1: Two-Tone Frequency Spectrum for Weak Nonlinearity             8 

Figure 2.2: Modulated Signal Spectrum with Main (red) and Adjacent (blue)  
Channel Bandwidths                  9 

 
Figure 2.3: Gain (blue) and PAE (red) for GaAs MESFET Power Sweep  

 Reprinted from [28]       11 
 
Figure 2.4: Generic Contours for (a) Small and (b) Large Signal Amplifier  

Excitation                 13 
 

Figure 2.5: Basic Load-Pull Setup for Measuring Output Power           14 
 
Figure 3.1: Fuzzy Convex for Objective Function  (red)           18 
 
Figure 3.2: Maximizing  for a Constraint  on             19 
 
Figure 3.3: Level Sets at the Cusp (gray) of  (red) and            20 
 
Figure 3.4: Level Sets  and  Form a Pareto Solution   

For Objectives  and               23 
 

Figure 3.5: Circuit Schematic for HBT Circuit Envelope Simulation          25 
 
Figure 3.6: Simulated Load-Pull Contours for PAE (red) and ACPR (blue) 

with Pareto Path (black)               26 
 

Figure 3.7: Amplifier Load Pull for PAE (red) at 1% Contour Spacing  
and ACPR (blue) at 0.5dBc Contour Spacing with Pareto  
Path (black)                27 

 
Figure 4.1: Adaptive Radar Transmitter with Tunable Load Impedance          31 
 
Figure 4.2: Topology of Neighboring Points for Gradient Calculation          33 
 
Figure 4.3: Step in the Direction of Steepest Ascent             34 

 
Figure 4.4: Paraboloid Fit (blue) to Six Points Using Least Squares  

and Peak Location (red)               35 
 

Figure 4.5: Combined Peak Search for PAE (red) and ACPR (PAE)          36 



vi 

Figure 5.1: Control Diagram for PAE and ACPR Search Reprinted from [60]         44 
 
Figure 5.2: Flow Diagram for Combined Peak Search Algorithm           45 

Figure 5.3: Influence of Neighboring Point Distance and Step Distance on  
Measurement Topology Reprinted from [61]            46 

 
Figure 5.4: Performing Circuit Envelope Simulation for an Arbitrary  

Modulated Signal                49 
 

Figure 5.5: Reconfigurable Load Pull Measurement Setup Block Diagram 
 Reprinted from [28]               51 

 
Figure 6.1: Circuit Diagram for ADS Load-Pull Simulation            54 
 
Figure 6.2: (a) Steepest Ascent Algorithm for PAE and (b) Simulated PAE  

     Location on Smith Chart               55 
 
Figure 6.3: (a) Steepest Descent Algorithm for ACPR, (b) Simulated  

ACPR Location on Smith Chart, and (c) Pareto Path Between 
PAE and ACPR                57 

 
Figure 6.4: Sequential peak search Simulation Initializations and  

Approximate Paths for PAE (red) and ACPR (blue)           58 
 

Figure 6.5: (a) Measurement-Based Peak Search Algorithm for PAE and ACPR, 
(b) Measured PAE and ACPR Locations on Smith Chart, and  
(c) Pareto Path Between PAE and ACPR             61 

 
Figure 6.6: Measurement Sequential peak search Simulation Initializations  

and Approximate Paths for PAE (red) and ACPR (blue)           63 



vii 
 

LIST OF TABLES 
 

 
Table 6.1: Simulated Load-Pull Data Standard             55 
                
Table 6.2: Simulation PAE Instantiation Data with 05.0nD  and 5.0sD               59 
       
Table 6.3: Mean and Standard Deviation for Simulation PAE Searches          59 
            
Table 6.4: Simulation ACPR Instantiation Data with 05.0nD  and 05.0sD          60
              
Table 6.5: Mean and Standard Deviation for the Simulation ACPR Searches         60 
            
Table 6.6: Measurement Load-Pull Data Standard            62 
                
Table 6.7: Measurement PAE Instantiation Data with 05.0nD  and 5.0sD          64
      
Table 6.8: Mean and Standard Deviation for Measurement PAE Searches          64 
           
Table 6.9: Measurement ACPR Instantiation Data with 1.0nD  and 1.0sD           65 
       
Table 6.10: Mean and Standard Deviation for Measurement ACPR Searches         65 
           



viii 

ACKNOWLEDGEMENTS 
 
 

I would like to thank my thesis advisor, Dr. Charles Baylis, who has provided 

excellent guidance, encouragement, progressive comments, and sufficient funding for this 

work.  Dr. Robert Marks has contributed a great deal to the development of this work 

through mathematical insights and ideas.  He has dedicated time over and above what is 

expected of a committee member in developing my understanding of Pareto optimization.  

David Ryden has also devoted his time through editing and ensuring the ideas of this 

document are well communicated. I would like to acknowledge Agilent Technologies for 

a cost-free loan of the Advanced Design System Software, Modelithics for the donation 

of simulation model libraries, and Maury Microwave for the donation of SNP 

customization files.  Graduate students Matthew Moldovan, Loria Wang, David Moon, 

Robert Scott, Obi Akinbule, and Brandon Herrera have provided invaluable assistance in 

calibrating equipment for and performing load-pull measurements. I would also like to 

acknowledge our sponsors Lawrence Cohen and Eric Mokole from the Naval Research 

Laboratory. Their guidance and expertise in radar systems has been invaluable in the 

continuation of this work.  Furthermore, I would like to express my gratitude to Naval 

Research Laboratories for providing the funding and opportunity for this work. 

Finally I would like to thank to my wife, Brittney Martin, for love and support 

throughout the completion of this work.  My parents, David and Lori Martin, have 

provided wise council throughout my pursuits at Baylor.  Earl and Pasty Taylor, and the 

late Jewel Baughman, have also been greatly instrumental in encouraging and supporting 

my efforts. 



1 
 

CHAPTER ONE 
 

Introduction 
 
 

The concept of reconfigurable or adaptive radar is a system which, in addition to 

traditional detection purposes, possesses the ability to adapt its emissions to 

accommodate diverse operating environments.  These types of radar systems are often 

capable of producing unique emissions for improving target detection [1, 2, 3], operating 

in multiple frequency bands [4], and adjusting to various spectrum obstacles [5].  

Information pertaining to the radar’s operating environment is incorporated through 

various sources, such as an environmental dynamic database [6].  The use of this 

information enables the reconfigurable radar to fulfill missions in which accurate real 

time sensing is paramount.  

 Emissions from radar transmitters are affected by factors such as signal choice 

and constituent circuitry.  Influences for selecting the proper waveform include 

minimizing the ambiguity function [7], sidelobe suppression [8], and increasing signal to 

noise ratio at the receiver [2].  Additionally, the amplification stage of the radar 

transmitter introduces many unwanted spurious emissions at high output powers [9].  

These spectral effects degrade the system linearity and produce electromagnetic 

interference separate from the intended emissions.   

 The spurious emissions from high power radar transmitters possess the ability to 

interfere with neighboring communication channels [10].  Communication systems 

typically operate at power levels much lower than radar systems and are sensitive to 

signal distortion.  Unwanted interference from radar systems may cause bit errors and 
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reduced signal to noise ratio.  Radar systems operate in a broad range of the 

electromagnetic spectrum and thus have the potential to affect a large number of 

neighboring communication channels.  The United States has assigned the FCC with the 

responsibility allocating certain frequencies for which commercial electromagnetic 

emissions may operate.  Government frequency spectrum is regulated separately by the 

NTIA, which includes radar emissions.  The separation of different emissions is 

accomplished by imposing strict operating limitations on users of a particular band, such 

as maximum operating power, transmit time, and emission bandwidth.  These restrictions 

ensure both separation among the various frequency channels and that multiple users can 

coexist within the same bandwidth. 

 Radar system emissions in particular are regulated by the RSEC criteria [11].  The 

restrictions imposed on the transmitted waveforms are implemented in the form of a 

spectral mask, a tool which profiles the relative power between in-band and out-of-band 

channels for an allocated radar frequency band.  This regulation specifically targets out of 

band characteristics of the emitted spectrum and ensures that any undesired signals 

outside the intended bandwidth are sufficiently attenuated.  High power radar systems 

which emit significant spectral leakage may face significant performance degradations 

from reduced output power should the spectral constraints become increasingly strict.  

The immediate consequence of reduced output power for radar systems is maximum 

detectable range, but also could severely hinder the operating efficiency of the 

amplification stage.  The latter issue is significant from an energy conservation 

perspective since less of the large power required for amplification is used to amplify the 

signal and instead contributes to undesired factors such as temperature increase.  Recent 

developments in economically-driven wireless applications are threatening to intensify 
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the regulations on radar emissions.  As of 2010, the National Broadband Plan mandates 

the release of 500 MHz of additional electromagnetic spectrum to be used for the 

emerging wireless broadband networks [12].  Consequentially, radar systems which 

operate in this frequency range will be further limited in performance due to stricter 

spectral mask requirements. 

Ensuring the effectiveness of radar system performance is critical for both 

commercial and military applications.  As wireless technologies and applications 

continue to advance, radar emissions must adapt to an ever-changing spectrum 

configuration and utilize all available detection capabilities under spectral mask 

constraints.  Characterizing radar circuitry in order to minimize out-of band emissions 

has been achieved through load-pull characterization, along with other metrics such as 

output power, efficiency, etc.  Additionally, radar systems may need to operate in a 

dynamic spectrum access environment in which emissions must share the same 

bandwidth.  This development would require radar systems to be cooperative with other 

types of emissions.   

 Adaptive load tuning networks can provide a method for tuning amplification 

circuitry to mitigate spurious emissions at high power operation.  Chapter 2 analyzes how 

nonlinear amplifier operation influences transmitter emissions and device efficiency, as 

well as design techniques for accommodating the tradeoff between linearity and 

efficiency.  Another method for designing a tradeoff between linearity and efficiency is to 

examine the Pareto optimal curve between PAE and ACPR.  Chapter 3 explores a method 

for generating Pareto optimization curves for PAE and ACPR in designing matching 

networks with load-pull.  This technique parameterizes two objective functions, and 

forms a combined set which contains the solution for a particular importance weight.  
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The Pareto optimization curve allows for the efficiency to be maximized given a fixed 

spectral constraint.  The application of the Pareto curve between PAE and ACPR serves 

as an a priori technique to amplifier matching network design using load-pull 

measurements. 

Although the Pareto curve generated between PAE and ACPR provides a useful a 

priori tool for amplifier matching network design, reconfigurable transmitters must be 

able to adapt in real time to changing spectral constraints, modulated excitations, and 

device thermal effects.  Chapter 4 proposes a method for estimating the Pareto curve in 

real-time using a sequential peak search method.  Generating this tradeoff path utilizes a 

sequential search for both objective discovery and Pareto tracing. 

Chapter 5 shows how this method is implemented using both software and 

reconfigurable load-pull test benches.  The test benches are capable of producing 

arbitrary radar waveforms for exciting the DUT, as well as performing simultaneous PAE 

and ACPR measurements.  The measurement test bench in particular is orchestrated by a 

central PC and executes the algorithm in Chapter 4. 

The results of the steepest ascent search for multiple initializations are shown in 

Chapter 6.  Various settings for steepest ascent are shown to have a dramatic effect on the 

number of measurements required for generating the Pareto curve.  The effectiveness of 

the algorithm is determined by the consistent convergence point for each initial starting 

point, as well as the approximated magnitudes for PAE and ACPR.   

 Performing an adaptive load-pull for bi-objective optimization can be useful for 

reconfigurable radar systems operating in different environments and for various 

waveforms.  Chapter 7 explains how impedance tuning can further extend the capabilities 

of radar transmitter performance under different modulation schemes in a dynamic 
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spectrum environment.  Possible improvements upon the current algorithm are also 

discussed which could reduce the algorithm measurement time. 

 The goal of this work is to provide a method for applying circuit optimization 

techniques to maximize radar performance under spectral constraints.  The broader 

impact of this work provides a foundation for future adaptive solutions which allow for 

hardware level reconfiguration in the field.  Due to the application of digital modulation 

techniques to adaptive radar, impedance tuning using load-pull enables optimization of 

amplifier circuitry to fulfill certain system requirements for arbitrary signal excitations. 
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CHAPTER TWO 
 

Nonlinear Amplifier Effects and Measurements 
 
 

Amplifier behaviors vary dramatically depending upon the input signal used for 

excitation. A simple way to model such behaviors is through small signal excitation using 

S-parameters. This model, however, is only valid in cases where the amplifier transfer 

function is approximately linear. Once the amplifier is pushed near saturation, which is 

common in radar transmitter applications, the transfer function becomes increasingly 

nonlinear. These significant changes in the amplifier transfer function lead to unwanted 

effects, such as intermodulation distortion. Intermodulation distortion occurs for 

modulated signals under large signal conditions which produce interfering tones inside 

and outside of the emission bandwidth. Although these distortions are undesired, high 

power and efficient amplifier operation can only be accomplished in amplifier saturation.  

Nonlinear amplifier behavior can be characterized using load-pull techniques. This 

method provides an empirical study of the amplifier for a given nonlinear operating 

condition. This chapter explains the theory behind using load-pull for designing RF 

amplifiers and emphasizes the use of ACPR for quantifying the system linearity. 

 
2.1 Intermodulation Distortion 

 
The production of out-of-band signals by the amplifier is due to the nonlinear 

transfer characteristics under large signal conditions. The degree of the nonlinearity is 

dependent upon the magnitude of the input waveform. Intermodulation distortion does  

not occur for CW signals, where only a single tone is present. Most RF systems, 
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however, use modulated signals due to increased information capacity. In signals with 

multiple tones in close proximity, or broadband signals, additional nearby frequency 

content is produced from intermodulation of frequency components in the desired signal.  

A simple and well known measure of intermodulation distortion is demonstrated through 

a two tone excitation [13, 14]. Assuming a weak nonlinear system, the intermodulation 

products may be approximated using the power series. Consider the amplifier output, , 

as the summation of an infinite number of nonlinear products, : 

0n

n
ino vav                         (1) 

where  are coefficients weights. The two tone excitation is the input in this case and is 

represented by: 
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The two tone intermodulation spectrum is shown in Figure 2.1.  Third-order 

intermodulation in (6) include components at  and   and contributes 

significantly to the amount of distortion produced from large signal excitation [15]. The 

power series model for intermodulation may be used for weak nonlinear operation at 

power levels below the amplifier 1dB compression point according to Cripps [14]. 

Amplifier compression relates deviation of nonlinear gain from linear gain for operation 

near saturation. Higher order terms should be considered for the case of power amplifiers 

beyond 1dB compression, and can dominate lower-order effects. 

 

 
 

Figure 2.1: Two-Tone Frequency Spectrum for Weak Nonlinearity 
 
 

Moreover, Cripps indicates that amplifiers driven to greater levels of compression 

can no longer be modeled using a weak nonlinearity, but rather must be assessed as a 
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strong nonlinearity.  This strong nonlinearity is representative of an amplifier’s inability 

to increase the output signal amplitude for corresponding increases in input signal 

amplitude.  Additionally, strong nonlinearities introduce AM-PM effects.  These added 

effects represent a change in the phase characteristic of the amplifier as the input power 

becomes increasingly large. The two-tone test has inherent limitations when applied to 

radar systems considering that many transmitters operate at or near saturation [16], and 

utilize a variety of modulated waveforms [17].  A more useful way to evaluate amplifier 

linearity relating to spurious emissions is to compare the measured output power in the 

assigned channel of operation and adjacent channels.  The adjacent-channel power ratio 

(ACPR) quantifies this relationship by taking a ratio between the power in the main 

signal bandwidth and an adjacent bandwidth offset from the nominal operating frequency 

[18, 19, 20]. 

 

 
 

Figure 2.2: Modulated Signal Spectrum with Main (red) and Adjacent (blue) Channel 
Bandwidths 
 
 

The ACPR channels are shown for an arbitrary modulated frequency spectrum in 

Figure 2.2, where  is the carrier frequency,  is the adjacent channel offset,  is the 

main channel bandwidth, and  is the adjacent channel bandwidth.  The waveform 

spreading is shown to fall in the vicinity of the adjacent channel, which can possibly 

interfere with other emissions operating within the adjacent channel bandwidth.  The 
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power in each channel is quantified by integrating the power of the individual tones over 

the associated bandwidth.  Assuming the modulated signal frequency spectrum in Figure 

2.2 is symmetric, the upper and lower ACPR, , is mathematically expressed as a 

ratio of the total power of either adjacent channel channel  to the main channel   is 

given by (7). 

m

A
ACPR p

PP      (7) 

Using ACPR, the spurious emissions from all nonlinear terms in (1) are accounted 

for in a single integration bandwidth.  Comparing the integration bandwidth of the main 

channel allows for the distortion level to be evaluated, where higher values indicate 

increased distortion and vice versa [20].  ACPR is a measure of system linearity, though 

there other ways to quantify this attribute.   Error vector magnitude (EVM) is often used 

to quantify the in-band distortions that occur from nonlinear amplifier operation, and is 

used by Jonggyun to measure the RF path imbalances of a LINC amplifier configuration 

[21]. 

 
2.2 Efficiency and Tradeoff with Linearity 

 
Another key factor associated with amplifier nonlinearity is a boost in efficiency.  

Efficiency in amplifier design measures how well an amplifier converts DC power to AC 

power, which is used to amplify the device.  Specifically, power-added efficiency (PAE) 

is commonly used to quantify this performance factor and is given by (8). 

DC

io

P
PPPAE      (8) 

 is the total amplifier output power in watts,  is the total amplifier input power in 

watts, and  is the total DC power.  PAE is expressed in terms of percentage of DC 
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power which is converted to AC power.  An increase in efficiency is often desired for 

reduced carbon emissions, maximizing battery life in mobile applications, achieving high 

power output, and reducing cooling requirements for transmitter base stations [22]. 

 

 

 

 

 

 

 

 

 

 
Figure 2.3: Gain (blue) and PAE (red) for GaAs MESFET Power Sweep Reprinted from 
[28] 
 
 

High efficiency, however, is achieved from amplifier devices operating near 

saturation.  Operating the amplifier near saturation causes unwanted signal distortions as 

described in the previous section.  As such, linearity versus efficiency is a fundamental 

tradeoff of power-amplifier design.  This is based on the fact that high device efficiency 

is achieved through saturation, which also introduces substantial intermodulation.  Figure 

2.3 illustrates this tradeoff for a simulated power sweep for a GaAs MESFET amplifier. 

The amplifier is swept over a range of input power values.  The gain curve is constant for 

low input power values, displaying linear performance, but becomes increasingly reduced 

for higher output powers, demonstrating nonlinear behavior.   
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The degree of the nonlinearity relates directly to the amount of distortion and 

spectral spreading experienced by the output emission.  There are several techniques for 

overcoming the tradeoff between linearity and efficiency.  There has been interest in 

optimizing both linearity and efficiency using load-pull for Doherty amplifiers [23, 24, 

25], as well as reducing intermodulation distortion in radar and communications systems 

[18, 26, 27, 28, 29].  Methods for optimizing linearity and efficiency have been shown by 

techniques such as dynamic bias [30, 31], envelope following [32, 33], and envelope 

tracking [34, 35].  These methods, however, fundamentally limit the maximum efficiency 

achievable due to linear amplifier operation [36].  Another technique for improving both 

linearity and efficiency is through the use of the linear amplification with nonlinear 

components (LINC) approach, which separates the input signals into two out-of-phase 

components and recombines them after separate amplification [21, 37].  This method, 

however, losses efficiency in the combiner stage and also suffers from bandwidth, 

complexity, and linearity issues [18, 36].  One of the most influential factors that 

influences amplifier linearity and efficiency is the choice of matching impedances. 

 
2.3 Amplifier Characterization with Load-Pull 

 
A common characterization method used to identify the effects of matching 

impedance on performance is load-pull measurements [38].  Load-pull is an empirical 

technique for analyzing an amplifier output metric as a function of impedance [14].  One 

of the reasons this measurement is such a powerful tool is that it enables models to be 

extracted for amplifiers near saturation.  These measurements share a trait with linear S-

parameter analysis in that contours can be mapped onto the Smith Chart for various 

performance criteria. 
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(a)      (b)    
 

Figure 2.4: Generic Contours for (a) Small and (b) Large Signal Amplifier Excitation 
 
 

These contours represent curves of constant magnitude for which the magnitude 

of a measured attribute is constant.  The set of all contours for a particular dataset forms a 

contour map imposed onto the Smith Chart.  Figure 2.4a shows typical contours for an 

arbitrary dataset evaluated using small signal S-parameters.  These contours form circles 

around a central optimum point. 

As the amplifier approaches nonlinear operation, however, the contours can 

become ovals rather than circles as shown in Figure 2.4b.  Additionally, the optimum 

load reflection coefficient for a particular characteristic can drift as the device becomes 

more nonlinear.  Although load-pull techniques vary depending on the application, the 

measurement setup typically consists of an excitation source, a tunable impedance 

network, and a power sensor [14].  Figure 2.5 shows a diagram of this basic setup for a 

measurement of output power. 
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Figure 2.5: Basic Load-Pull Setup for Measuring Output Power 
 
 

Characterizing the DUT consists of varying the impedance tuner over a relevant 

set of load reflection coefficients and recording the output power at each location.  The 

output power measured can be used to calculate other qualitative factors such as gain, 

PAE, etc.  Additionally, ACPR load-pull may be performed to quantify the amplifier 

linearity.  This requires an additional tool, a spectrum analyzer, to measure the power at 

individual frequencies.  This basic setup is referred to as fundamental load pull, since 

only the fundamental harmonic is measured.  There are many cases in which harmonic 

load pull is necessary to design for harmonic matching [14, 39, 40].  This matching 

technique can be used to significantly increase device efficiency using second and third 

harmonic matching [41].  Active load-pull is another method used for modeling RF 

systems.  This measurement includes an active device as part of the impedance tuning 

apparatus.  The active element is necessary in order to compensate for losses in the 

measurement and provide a larger available VSWR [14]. 

 
2.4 Conclusion 

Characterizing RF amplifiers is essential to ensuring that the overall system is 

able to meet conflicting constraints such as PAE and ACPR.  Radar systems require 

knowledge pertaining to amplifier nonlinearities in order to ensure spectral conformity.  
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Such systems can be designed using the results of load-pull measurements, which provide 

description of amplifier traits as a function of impedance.  Although these methods 

provide an empirical study of linearity and efficiency tradeoff for amplifier design, the 

question remains on how a decision is reached as to which candidate impedance is 

selected.  The next chapter discusses intelligent algorithms which can be used to design 

for specific performance criteria. 
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CHAPTER THREE 
 

Pareto Tradeoff Analysis for Load-Pull Contours 
 
 

Designing amplifier matching networks for multiple objective criteria often 

results in performance tradeoffs.  These tradeoffs occur when the optima of two 

objectives cannot be reached simultaneously using individual matching impedances.  

Because minimization of spectral spreading is important in radar systems, this thesis 

discusses the Pareto optimization for the fundamentally conflicting criteria of linearity 

and efficiency in radar power amplifiers.  Although there are several methods for 

optimizing for linearity and efficiency in power amplifier design, the choice of output 

matching network is among the greatest of deciding factors.  Additionally, achieving high 

device efficiency often requires the amplifier to be driven near saturation; unfortunately, 

significant spectral spreading occurs from the resultant nonlinearity of the amplifier.  

Load-pull has been shown to be an effective means of empirically modeling nonlinear 

amplifiers for matching network design.  Despite the widespread use of load-pull 

measurements, the process of selecting an optimal tradeoff between conflicting objectives 

remains highly subjective in amplifier design and load pull.  Bi-objective Pareto 

optimization is proposed in this chapter as a method for mapping a tradeoff line between 

linearity and efficiency using load-pull techniques.  The Pareto curve, mapped to the 

Smith Chart, provides the optimal tradeoff between linearity and efficiency depending on 

the relative importance of these two objectives.  This curve too also serves as a design 

reference for negotiating the tradeoff between conflicting criteria in amplifier matching 

network design.
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3.1 Pareto Optimization for Fuzzy Convex Contours 
 

Load-pull has been shown in the previous section to map contours onto the 

complex impedance plane for a particular amplifier characteristic.  The load-pull contours 

describe the magnitude trend of a particular objective as a function of load impedance.  

The contours produced for small signal amplifier operation are circular and can be 

predicted by the S-parameters [41].  These assumptions become invalid, however, once 

the amplifier reaches nonlinear operation.  Load-pull contours for output power tend to 

deviate from a circular to an ovular shape, and become skewed as the degree of amplifier 

nonlinearity increases [42, 43, 44].  Extending these assumptions to the objective 

functions of PAE and ACPR, it becomes important to classify the functions which the 

contours specify.  The types of objective functions being considered are fuzzy convex 

sets as shown in Figure 3.1.  These functions encompass a wide range of unimodal 

objectives which the contours which are shown in Chapter 2, including those for PAE 

and ACPR.  A one dimensional example will be shown to demonstrate the derivation of 

Pareto optimal solutions, and will be extended to two dimensions for application to load-

pull.  Figure 3.1 shows a magnitude plot of an arbitrary, fuzzy convex objective 

function , where .  The definition of fuzzy convex sets follows from Zadeh 

[45] in (1). 

2121 ,min1 xpxpxxp     (1) 

}10|{  

This definition of convexity does not require that the function  be a convex function 

of , and therefore includes sets which are both strictly convex as well as quasi-convex 

[46, 47].  The points  and  represent locations with magnitudes  and  on the 
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boundary of .  The expression in (1) explains that the continuum of magnitudes 

between  and  must be greater than or equal to the minimum magnitude of either 

point.  These magnitudes are expressed in terms of a convex combination weighting in 

the left portion of (1), which must be true inside of the set.  Defining convexity in this 

way is required in order to define the Pareto optimization, or optimal tradeoff, between 

multiple objectives such as PAE and ACPR. 

 

 
 

Figure 3.1: Fuzzy Convex for Objective Function  (red) 
 
 

The Pareto optimization is used in design scenarios where a tradeoff must be made 

between two desired objectives [48, 49].  Each of the objectives is dependent on a 

common variable which influences their individual outcome.  The Pareto solutions 

correspond to those variable states which result in a weighted tradeoff between the two 

objectives.  Computing this weighting requires an examination of the definition of Pareto 
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optimum.  Consider two fuzzy convex objective functions,  and , where the 

Pareto optimization over  is defined as 

)(max xppo      (2) 
.)(.. oaxats  

 
Figure 3.2 shows the magnitude constraint  on  and solution  on . The 

magnitude  is the maximum value on  given the constraint  on , and 

 is a Pareto optimal point by the definition on (1). 

 

 
Figure 3.2: Maximizing  for a Constraint  on  

 
 

Theorem 1: Let  and   be the maximum magnitudes of  and  respectively. 

For every magnitude  of on  on the closed interval , there exists a  on 

the boundary of  which is a Pareto optimal solution.  

Considers that the function , for a given constraint , is always maximized 

along the boundary.  These boundary points can be defined in terms of the level sets 

 and  in (3) and (4). 
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oc pxpXxpL )(|)(     (3) 

oc axaXxaL )(|)( (4) 

An extension of Theorem 1 is that for every level set , there exists a  

which satisfies the Pareto solution at the boundary point  of both level sets.  A Pareto 

optimal point also exists at the points where the contours of the level sets are tangent 

[50], which is most obvious at the cusp between the two functions.  Figure 3.3 shows the 

cusp formed by the intersection of the two sets  and , where the two levels sets 

 and , intersect at the point . 

 

 
 

Figure 3.3: Level Sets at the Cusp (gray) of  (red) and  
 
 

The tip of the cusp represents a Pareto point for which  and can be 

defined as the maximum of the intersection between  and  in (5), which in fuzzy 

set theory [45] is also the maximum of the minimum of the two functions. 

xaxpxaxp ,minmaxmax    (5) 
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The cusp is unique for strongly convex functions [45], and thus gives a unique 

Pareto solution at the point  between the two functions.  Using (5), the point  can be 

evaluated by evaluating the argument at the cusp in (6). 

xaxpxB ,minmaxarg     (6) 

The cusp has been carefully described in order to explain how it can be used to evaluate 

the entire Pareto curve between  and .  Consider the example in Figure 3.2 

which shows the Pareto optimum  on  for a fixed  on , and  at the 

Pareto location .  A cusp can be defined on the interval  where the magnitude 

of the two functions are equal, so let there be a constant  such that 

BB xaxp .     (7) 

The constant  is a value which causes the value of the two functions at  to be equal, 

and also forms a cusp between the two functions at . The location of the cusp modifies 

(6) to 

xaxpxB ,minmaxarg .   (8) 

The movement of the cusp along the interval  traces the Pareto front for 

two reasons.  As stated previously, the cusp occurs at the point at which the magnitudes 

of the two objectives are equal.  Moreover, the level curves which correspond to the 

magnitudes of the two functions intersect at the tip of the cusp, which is by definition a 

Pareto solution.  The second reason is that for strictly increasing functions  the level 

curves of  are the same as the contours of ; that is, a strictly increasing 

function is order-preserving.  The values assigned to each level set changes, but the level 

curve shape does not.  A definition of an order-preserving transformation [51] would be 
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the following: let  be a real valued function on the set .  The function

 is an order preserving transformation of p if there is a strictly increasing real function 

 such that for every .  Every location at which the 

cusp is located on  for a given  will be Pareto optimal by definition.  The movement of 

the cusp, therefore, traces unique Pareto solution since the level curves remain in the 

same locations on  under multiplication, where the location of a particular Pareto point 

for a given  is shown by (8).  The constant  can be parameterized such that 

1
.      (9) 

 

The parameterization by  is necessary to meaningfully adjust the two objective 

functions in a meaningful fashion.  This parameterization modifies (8) to be 

xaxpxB 1,minmaxarg    (10) 
 

10       . 
 

The Pareto optimization is based on a fix-one, maximize the other approach.  The 

use of  in (10) allows for the two objectives to be weighted proportionally according to 

the importance, which is from least important to most important for  between zero and 

one.  The parameterization by  preserves the features of the cusp and still allows the 

locations of the Pareto optimal points to be located.  This technique for tracing the Pareto 

front for a simple function will now be extended to the load-pull contours. 

Applying these Pareto solutions to load-pull contours requires that the functions 

be extended to functions of two dimensional variables.  Consider the level curves shown 

in Figure 3.4 for functions  and , where  and .  The case of 

setting a magnitude limit for one objective and maximizing the other as in (1) applies to 
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the convex level sets formed by fuzzy convex objective functions  and .  The 

point  is a solution on the Pareto front for a fixed such that 

)(maxarg,
)(

xpyx
oaxaBB      (11) 

Following from (3) and (4), the level set  has a 

corresponding  which is a Pareto solution at the boundary 

point .  The expression in (10) can be extended to functions of two variables. 

 

 
 
Figure 3.4: Level Sets  and  Form a Pareto Solution  For Objectives 

 (red) and  (blue) 
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Evaluating the location of  can be accomplished by weighting each 

function so that the peak of the cusp formed between  and  is at that location.  

Using the parameterized form in (10), 

xaxpyx BB 1,minmaxarg, .   (12) 

A property of level sets is that for a function , the gradient of  at the point 

 such that . The gradients at  for the objective functions 

 and  are given by (13) and (14). 
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    (14) 

 
Furthermore, the gradients are for the two level sets are oriented in the opposite direction 

at their [52] intersection and thus satisfy 

.0,1, BBBB yxayxp    (15) 
 

Note that the  in expression (15) is different from the previous use, and instead 

represents an arbitrary constant. The expression in (15) is only valid for the intersection 

between the level curves of  and .  The Pareto front is not a function of the 

measurement units as long as the transformation between one unit and another is strictly 

increasing. Measurements of power ratios, for example, will yield the same Pareto 
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contour as using the log of the ratios.  The method for generating the Pareto front will 

now be applied to load-pull data extracted for both simulation and measurement.  

3.2 Pareto Front for Simulated and Measured Load-Pull Contours 
 

Identifying the Pareto front for amplifier design will allow for an optimal tradeoff 

to be made between two objectives.  The approach taken is to apply Pareto analysis to 

previously measured load-pull data.  The optimal tradeoff solutions mapped to the 

complex impedance plane can serve as a design guide for the linearity and efficiency 

tradeoff in nonlinear amplifier operation.  Assuming that these contours are unimodal and 

fulfill the definition of convexity given by (1), the Pareto tradeoff curve will yield 

solutions which provide a unique optimum tradeoff between two objectives.  Consider 

the simulation of an HBT amplifier model using ADS in Figure 3.5 under a CDMA2000 

excitation.  The bandwidth chosen for this simulation is 1.2288 MHz. This waveform 

demonstrates the applicability of Pareto analysis to a broad class of wideband signals. 

 

 
 

Figure 3.5: Circuit Schematic for HBT Circuit Envelope Simulation 
 
 

A Circuit Envelope Simulation is used to evaluate the load-pull contours of the 

amplifier model, which is driven into the nonlinear operating region at an input power of 
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19 dBm.  The characteristics measured for this test are PAE and ACPR, where the ACPR 

channels have a 30 kHz bandwidth and are offset 755 kHz from the 825 MHz carrier. 

Figure 3.6 shows the load-pull contours for PAE and ACPR with a 1% and 0.5 dB 

spacing respectively.  The contours for PAE and ACPR are shown to have extrema at 

locations  and  respectively.  A Pareto front 

generated between the two objectives reveals an optimal tradeoff path.  This path allows 

a designer to choose a point along the Pareto line which optimizes between ACPR and 

PAE.  

 

 

Figure 3.6: Simulated Load-Pull Contours for PAE (red) and ACPR (blue) with Pareto 
Path (black) 

 
 

Although evaluating the Pareto front for measurement and simulation data is very 

similar, the effects of measurement noise and sampling of impedance points can affect 

PAE Max

ACPR Min
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the results.  A load-pull measurement is performed on an amplifier at 2 dB compression 

under a radar chirp excitation.  Contours for the two objective functions, ACPR and PAE, 

were measured from a dense grid of impedances on the Smith chart, as shown in Figure 

3.7.  

 

 
 

Figure 3.7: Amplifier Load Pull for PAE (red) at 1% Contour Spacing and ACPR (blue) 
at 0.5dBc Contour Spacing with Pareto Path (black) 

 
 

The PAE and ACPR extrema are a significant distance apart, indicating that a 

design decision would need to be made for optimizing linearity and efficiency for this 

device.  Applying the Pareto optimization for quasi-convex sets shows the tradeoff curve.  

The quantized data was interpolated and smoothed in order reduce the effects of system 
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noise.  Smoothing the measurement data slightly changes the Pareto front due to changes 

in the original objective functions, but does not significantly affect the set topologies. 

 
3.3 Conclusion 

 
A method for mapping for mapping a Pareto tradeoff curve between linearity and 

efficiency has been shown.  This technique utilizes load-pull measurements in order to 

map the tradeoff curve to the Smith chart.  The solutions along this Pareto line are 

solutions for amplifier reflection coefficients which negotiate a weighted tradeoff 

between linearity and efficiency.  The method shown for solving for a Pareto tradeoff for 

load-pull objectives depends upon their topology.  These objectives often take the form of 

convexity defined in (1), where the set of Pareto solutions between them can be found 

using (12).  These Pareto optimization routines provide an a priori design tradeoff 

between linearity and efficiency for amplifier load impedance design.  Adaptive radar 

systems, however, require this tradeoff to be negotiated in real time depending on 

external constraints.  The next section presents a method for approximating the Pareto 

front for linearity and efficiency using real-time intelligent search techniques.
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CHAPTER FOUR 
 

Sequential Peak Search Algorithm for Affine Pareto Tracing 
 
 

The tradeoff between linearity and efficiency mentioned in Chapter 2 presents a 

problem for high power radar transmitters with a regulated spectrum for their emissions.  

Waveform distortions, which have been shown to result from nonlinear amplifier 

operation, can produce interference in adjacent frequency bands.  As described in Chapter 

2, reducing the input power to the amplifier can result in operation that is closer to linear 

and reduce the spectral spreading, but this also lowers the efficiency.  One the other hand, 

driving the amplifier near saturation to meet high operating efficiency may result in 

violation of spectral mask requirements.  Load-pull has been shown to be a useful tool for 

designing amplifier matching networks for the linearity and efficiency tradeoff. 

Because of the changing nature of wireless spectrum allocation, radar systems 

may soon be forced to operate in a dynamic spectrum access environment, with changing 

spectrum requirements and perhaps being required to perform real-time shifts in 

operating frequency.  Future radar systems must be able to adapt in real-time to meet 

changing spectrum requirements and switch between operating bands; this will require 

real time re-optimization of the amplifier load impedance and the waveform.  Qiao et al. 

[53] have demonstrated on-chip impedance optimization for communication transmitters, 

and Baylis et al. [54], as well as de Hek [55] and Perlow [56] have demonstrated peak-

search load-pull algorithms for output power optimization.  As such, real-time matching 

techniques and intelligent algorithms show excellent promise for the optimization radar 

amplifier circuitry using real-time load-pull measurements.  This chapter presents a
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method for approximating the Pareto optimal solutions for linearity and efficiency using a 

combined peak search method.  The concept of adaptive load tuning for radar systems 

will be discussed, followed by a comparison of the steepest descent search path to the 

Pareto curve generated between two objectives.  

 
4.1 Augmenting Adaptive Radar Transmitters 

 
Modern radar transmitters are required to fulfill multiple conflicting constraints 

while maintaining optimal detection capabilities.  As bandwidth for radar systems 

decreases due to economically driven wireless applications, the allowable interference 

produced by the radar transmitters will also decrease.  As discussed in Chapter 2, radar 

systems are often driven into saturation where nonlinear amplifier effects are dominant.  

Using a static output matching impedance for the design of a power amplifier can be 

chosen to maximize the efficiency of the device.  An adaptive radar transmitter, however, 

must be able to adjust its waveform and circuitry according to external influences such as 

spectral mask.  Additionally, multiple waveforms may need to be implemented on the 

same radar system for increased target detection [57], and cause the amplifier output 

matching network to be suboptimal for desired performance.  

 The method proposed is to augment the concept of adaptive radar transmitters by 

introducing a tunable load impedance network at the output of the radar system.  The 

ability to digitally define modulated signals is combined with the functionality of 

impedance tuning through load-pull techniques.  Figure 4.1 shows a concept diagram of 

an adaptive radar transmitter. 
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Figure 4.1: Adaptive Radar Transmitter with Tunable Load Impedance 
 

 
The main components of this setup consist of a signal generator for producing 

modulated signals, a tunable impedance network, a central controller, and feedback using 

a spectrum analyzer and power sensor.  Unlike a traditional load-pull measurement, the 

system is directed by a central controller which receives feedback data acquired for PAE 

and ACPR.  The central controller is responsible for waveform generation, impedance 

tuning, data collection, and making design decisions which impact system performance.  

These decisions are based on the current system requirements for linearity and efficiency, 

and implemented as changes in the waveform and/or load reflection coefficient at the 

amplifier output.  The robustness of this concept overcomes limitations of a priori design 

by allowing the amplifier load impedance to be adjusted for multiple operating points and 

spectral mask constraints.  However, another constraint for adaptive systems is the speed 

at which the controller converges on the optimal performance setting.  Assuming a fixed 

waveform, identifying the optimal load impedance for a tradeoff between PAE and 

ACPR with a small number of measurements is critical.  Designing intelligent search 

techniques for the load pull provides a way to drastically reduce the number of 

measurement queries required, and is discussed in the next section. 
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4.2 Sequential Peak Search Algorithm 
 

The study of typical load-pull contours in Chapters 2 and 3 indicate that the 

objectives are often realized as unimodal, convex or quasi-convex sets.  The peaks of 

these sets correspond to locations which best optimize either set.  Using the scheme 

shown in Figure 4.1, the central controller is responsible for locating the optimal 

reflection coefficient for a tradeoff between PAE and ACPR.  An unbiased search 

algorithm is implemented using the steepest ascent method to locate these reflection 

coefficients on the complex impedance plane.  The gradient search method has been 

suggested in [47, 58] for finding the peak of unimodal functions.  This method has been 

explored in [54, 59] for optimizing a single amplifier objective through load impedance 

tuning.  Since the reflection coefficient is a complex number, it can be analyzed as a 

two dimensional vector such that  where  .  The search begins at an 

arbitrary point  on the complex impedance plane and calculates the gradient at that 

point.  This calculation is made by taking two additional measurements at points  and  

neighboring the initial location at a predetermined distance  such that 

0
nr

r

Dx
     (1) 

ni
i Dx

0
.     (2) 

The measured magnitudes at the measurement locations, which are ,  

and , will be used to approximate the gradient in a neighborhood around  shown 

in Figure 4.2. 
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Figure 4.2: Topology of Neighboring Points for Gradient Calculation 
 
 
 The additional neighboring points are equidistant from the initial point, and lines 

drawn the initial power value and neighboring values form slopes  and .  These 

slopes represent the rate of linear increase between the initial magnitude of  and the 

neighboring points.  A plane shown in (1) is fit to the three measured points to solve for 

the direction of steepest ascent. 

irir mmp 21,     (3) 

where , , and  refer to the change from their starting values at .  The direction 

of greatest increase is calculated in [54] along a line following the gradient.  The 

algorithms then moves a certain step distance  from the initial point as shown in Figure 

4.3. 
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Figure 4.3: Step in the Direction of Steepest Ascent 
 
 
The new location is measured for the current objective and the process repeats if 

the new magnitude is higher than that of the initial point.  The step size decreases to one-

third of its original value if the new location’s magnitude is lower than that of the initial 

point.  The reduction in step size indicates that the objective peak has been overshot and 

provides a way to converge on the peak with precision.  This process continues until the 

step size becomes less than the neighboring point distance, in which case the steepest 

ascent algorithm halts.  The point  at which the steepest ascent iterations cease and 

associated neighboring points map a region of uncertainty as to the true location of the 

objective peak.  The extent of this region depends on the neighboring point distance, 

which sets the resolution of the search.  Approximating this peak is accomplished by 
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taking three additional measurements and performing a least squares fit to all six points 

[55].  The fit ideally results in a paraboloid that has a peak at the approximate location of 

the true objective peak, and is shown in Figure 4.4.  Evaluating the gradient of the 

paraboloid and solving for the point at which the gradient equals zero yields the 

maximum at location .  

 

 

Figure 4.4: Paraboloid Fit (blue) to Six Points Using Least Squares and Peak Location 
(red) 
 
 

The combined peak search algorithm for finding PAE and ACPR modifies this 

steepest ascent search by performing two searches consecutively.  The algorithm executes 

a steepest ascent for PAE as explained previously, finding the location of maximum 

PAE, , and the magnitude at that point .  Starting from , an additional 
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steepest descent search begins for the ACPR optimum .  This concept is illustrated 

in Figure 4.5 for arbitrary unimodal PAE and ACPR sets.  

 

 
 

Figure 4.5: Combined Peak Search for PAE (red) and ACPR (PAE) 
 
 

Performing the second steepest descent algorithm for ACPR has two important 

ramifications for adaptive radar.  One benefit of this algorithm is the ability to design 

between two conflicting objectives in real time.  An example of this would be to set an 

ACPR constraint, and perform a steepest descent algorithm going toward the ACPR 

optimum until the limit is reached.  Truncating the steepest descent before the ACPR 

optimum is reached prevents needless reduction in PAE incurred when improving ACPR 
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beyond the requirements.  The second development concerns the path the steepest 

descent algorithm follows.  Chapter 3 discussed a Pareto path between PAE and ACPR 

which provides an optimal tradeoff between the two objectives.  The questions of 

whether the steepest descent path for ACPR from the PAE optimum location 

approximates the Pareto path will be discussed in the next section. 

 
4.3 Using Steepest Descent as Affine Approximation to Pareto Tradeoff Curve 

When executing the steepest descent search of the routine (from the PAE 

optimum toward the ACPR optimum), the search traces a path between the optimum 

location of the two objectives.  How closely this path approximates the Pareto curve is 

based upon the nonlinearity of the device characteristics and the search parameters.  The 

steepest descent search is based on a calculation of the gradient at an initial search point 

similar to the steepest ascent algorithm described in the previous section, so it is desired 

to demonstrate under what conditions the Pareto curve proceeds in the direction of the 

gradients.  Consider the Pareto curve between two characteristics for PAE, , and 

ACPR, , both functions of the two-dimensional position vector 

.  From Chapter 3, it was shown for load-pull contours that at the intersection 

point  between two level sets for PAE and ACPR that 

.0,1, BBBB yxayxp     (4) 

As previously discussed, (4) demonstrates that, at a point on the Pareto curve, the 

gradients are collinear and pointing in opposite directions.  This characteristic occurs 

because limitations on the value of  to be between 0 and 1 show 

BB ap 1)(     (5) 
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Assume that the characteristics  and  are both affine, at least in a region 

surrounding , a point on the Pareto curve.  An affine approximation for both functions 

can be defined as  

BBB aaa    (6) 
 

and 
 

BBB ppp    (7) 
 

where  is a small two dimensional step in the direction of the gradient for 

either objective.  Equations (6) and (7) show that  and   are related 

for cases where the affine approximation holds true.  This consideration leads to the 

questions of whether some  exists such that 

BB ap 1)( .      (8)       

                             
If (8) is true, then the point  is also on the Pareto curve.  The values of the two 

functions and their gradients must first be evaluated at the specific coordinate vector .  

This procedure allows the right sides of (6) and (7) to be numerically calculated.  Taking 

the gradient of (7) yields 

.][ BBB ppp    (9) 
 
Note that  in the first term on the right of the equals sign occurs at point, and 

thus is the gradient of a constant with numerical components and therefore is zero.  An 

assumption is made that the affine approximation is sufficiently accurate so that the 

second gradient is approximately zero.   Inside the parentheses of the second term, 

however, is the gradient of  evaluated at the point .  This operation results in a vector 
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with components that are the partial derivatives of  with respect to x and y at the 

point  in (10). 

BBBBB yx
y
pyyx

x
pxp ,ˆ,ˆ    (10) 

 
Inserting the results from (10) into (9) gives 
 

yyx
y
pxyx

x
pp BBBBB ,, .  (11) 

 
The gradient requires derivatives to be taken of a scalar expression containing  and .  

These variables can be rewritten in terms of x and y as follows: 

xxx B      (12) 
 

yyy B .     (13) 
 

Because  and  are specific values of x and y, they are constants for purposes of 

differentiation. This means that  

 
xddx      (14) 

 
.yddy      (15) 

 
This means that a derivative with respect to x is the same as the derivative with respect to 

x, and a derivative with respect to y is the same as a derivative with respect to y.  

Using this in (11) gives the following for the gradient of  at the new point:   

.,ˆ,ˆ BBBBBB pyx
y
pyyx

x
pxp      (16) 

                     
The expression in (16) shows that, when the surface  is affine, that the gradient at 

another point along the line established by the gradient taken at an original point is the 
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same as the gradient at the original point.  The same is also true for the surface  such 

that  

.BB aa     (17) 
 

This comparison shows that the relationship between the gradients at the new point is 

exactly the same as at the original point if both surfaces are affine: 

BB pa 1)( .   (18) 

 
We have confirmed that (8) is true in this case with .  Assuming cases where the 

affine approximation holds, the next step in a steepest descent walk from a point on the 

Pareto surface results in a point which is also on the Pareto surface since the gradients are 

perpendicular for both criterion surfaces.  The case where   happens to be the optimum 

of criterion  indicates  in (4) and the gradient , the zero vector.  

Regardless of the value of , (5) is satisfied and this point is on the Pareto line.  

Additionally, the case where two characteristics  and  are on the Pareto path and a 

nearby point is chosen in the direction of one of the gradients (direction of steepest 

descent), the next point is also on the Pareto path if both of the characteristics are linear.   

A closer look at the derivation reveals that the gradients never change direction as 

the steepest descent walk is carried forward from one point to the next.  The progression 

would continue from one maximum to the other along the Pareto line.  This case is a 

unique contour type that would only be likely to occur only in linear devices.  However, 

if both  and  are re-measured at each point, then the approximation becomes piecewise 

affine rather than strictly affine, and the results will better approximate the actual 

characteristics in nonlinear situations.  The Pareto load-pull search is an attempt to map 

the Pareto line based on a piecewise affine approximation.  The search begins at the 
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optimum impedance for power-added efficiency (PAE) and proceeds toward the optimum 

impedance for adjacent-channel power ratio (ACPR).  This steepest descent-walk will 

follow the Pareto path only if both criterion characteristics can be reasonably 

approximated as linear over the step size. 

A problem with the piecewise affine approximation is that the error in the 

approximation causes the search to leave the Pareto path, with no way to regain position 

on the path.  A nudge factor is suggested for future work, based on the difference of the 

two characteristics’ gradients at each approximation point of the search, to keep the 

search near the Pareto path, ensuring optimum PAE is achieved in meeting ACPR 

requirements.   

 
4.4 Conclusion 

A Pareto-search algorithm for PAE and ACPR has the promise to greatly extend 

adaptive radar capabilities by allowing the circuitry to adapt for different amplifier 

spectrum requirements and frequency bands.  This real-time reflection-coefficient 

optimization is broadly applicable to many devices and provides a flexible approach that 

can be adopted in a wide range of conditions.  The key to achieving robust applicability is 

the use of a controller to direct the waveform creation, impedance tuning, and 

measurements to make intelligent design decisions.  The combined peak search 

algorithm, under the assumption of objective unimodality, is an unbiased empirical 

search that proceeds without using knowledge of device linear or nonlinear network 

parameters.  If such knowledge is available, the search can likely be performed with even 

fewer queries by intelligently selecting the starting point and the search-distance and 

neighboring-point-distance parameters.   
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The affine approximation to the Pareto curve using steepest descent provides a 

method for finding an optimal tradeoff between PAE and ACPR in a real time impedance 

matching network.  Under an affine approximation for both surfaces, the gradients will be 

collinear at a nearby point in the direction of the gradient at the first point.  This means 

that if one point lies on the Pareto curve, the next point in a steepest descent search from 

one optimum to the other, to a first-order approximation, will also lie on the Pareto curve.  

A piecewise affine approximation will proceed from one optimum to the other only if a 

piecewise affine approximation to the surface is accurate.  Such consideration usually 

dictates that the step size for the search between the PAE and ACPR optimum points be 

small enough that the piecewise linear approximation will be reasonable, while keeping it 

large enough so that the total number of experimental queries is relatively small.  The 

next chapter discusses the implementation of this algorithm in simulations and 

measurements.   
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CHAPTER FIVE 
 

Reconfigurable Radar Test Bench 
 
 

The implementation of the adaptive radar transmitter in Chapter 4 incorporates 

several common operations to load-pull measurements.  These procedures include 

waveform generation, impedance tuning, and measurements for spectrum and output 

power.  An adaptive approach, however, contains an additional decision making element 

that expands the use of load-pull beyond device characterization.  The load-pull for 

measurement becomes a load-pull for design or real-time optimization by the 

incorporation of an intelligent controller.  This controller implements optimization 

methods such as steepest ascent to impedance tuning in order to obtain solutions to multi-

objective amplifier design.  Additionally, the combined peak search algorithm enables the 

steepest ascent algorithm between two objectives to approximate their Pareto front.  This 

chapter discusses an implementation of the combined peak search algorithm in software 

and with a load-pull test bench.  

5.1 Sequential Peak Search Algorithm Implementation 
 
  The objective of the combined peak search algorithm is to find the amplifier load 

reflection coefficient providing the PAE and ACPR necessary based on constraints in 

order to optimize for linearity and efficiency.  The algorithm presented in this thesis 

searches for maximum PAE, then proceeds toward the ACPR optimum until the spectral 

constraints are met.  The central controller for the adaptive radar system in Figure 4.1 of 

Chapter 4 plays a key role in implementing this algorithm.  An unconstrained search such 
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as steepest ascent must be able to converge on the optimal impedances for PAE and 

ACPR without a priori knowledge of the device fitness landscape.  The central controller 

generally applies the same algorithm depending on whether it is implemented through 

software or on a test bench.  This decision making unit is responsible for executing 

software which realizes the intelligent algorithm being implemented.  The upper level 

block diagram for the implementation in this chapter is shown in Figure 5.1.  

 

Figure 5.1: Control Diagram for PAE and ACPR Search Reprinted from [60] 
 
 

The primary software used for both the software and test bench implementations 

of the combined peak search is the MATLAB computing environment.  One of the 

primary reasons for choosing this programming language is the ease with which 

communication is achieved with external devices.  The software which directs the 

combined peak search algorithm must be able to execute all stages of the algorithm, 

including waveform generation, impedance tuning, spectrum analysis, and power 

sensing.  Additionally, MATLAB possesses the ability to interface with software such as 

Advanced Design System (ADS) and Maury Automated Tuner Software (ATS) in order 

to direct the measurement.  Communication by MATLAB with third-party software is 

handled through external libraries, which MATLAB is able to invoke and execute.  One 
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level below the MATLAB controller block in Figure 5.1 are the devices through which 

the algorithm is implemented.  The first block consists of an arbitrary waveform 

generator, which is a digital transmitter used to create various modulated signals.  The 

impedance tuning block sets the output impedance of an amplifier for the duration of the 

algorithm, and is used as the primary knob for adjusting linearity and efficiency.  Data 

feedback is essential to automating the algorithm using this setup, and is implemented 

through the use of spectrum and power measurements.  Once communication is achieved 

between the blocks in Figure 5.1, the combined peak search algorithm is implemented in 

MATLAB.  Figure 5.2 shows the flow diagram of this algorithm as written in the script. 

Figure 5.2: Flow Diagram for Combined Peak Search Algorithm 
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The algorithm begins by asking the user for a starting reflection coefficient, step 

size, and neighboring point distance for gradient calculation.  Any arbitrary starting point 

can be selected given the condition that the search objective is unimodal.  This initial 

point  is the starting point for the PAE steepest ascent search, and is measured 

for its respective magnitude.  A plane needs to be fit to this initial point and two 

neighboring points in order to find the gradient, so two additional points are measured at 

the neighboring point distance .  This distance directly influences the resolution of the 

search. Points which lie between  and  on the Smith Chart will be neglected in 

the gradient calculation.  Figure 5.3 shows the measurement point topology for 

neighboring point distance  and the step distance .  

 

Figure 5.3: Influence of Neighboring Point Distance and Step Distance on Measurement 
Topology Reprinted from [61] 
 
 

Once a plane is fit to the three measured locations, the gradient is calculated and 

the algorithm measures a point for PAE in the direction of steepest ascent with a step size 

of .  The step size directly influences the speed of the search, and will be an important 

resolution factor in the steepest descent for ACPR and Pareto front approximation.  The 

measured point  at a distance  is compared with   for determining when to 
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decrement the step size, which is used to increase measurement accuracy.  A candidate 

value higher than the initial value indicates that the PAE peak has not been reached, and 

the algorithm continues until this condition is not met.  Measuring the candidate value to 

be lower than the initial value implies that the PAE peak has been overshot, and the step 

size is reduced to one-third of its original value.  Once the step size is reduced to less than 

the neighboring point distance, the steepest ascent algorithm comes to a halt.  This is due 

to the assumption that the PAE maximum now lies within the region spanned by the 

neighboring point distance.  Approximating the peak over this region requires a least 

squares fit to a total of six points including the final measured point and respective 

neighboring points.  Measuring three additional points for PAE at the neighboring 

distance allows a paraboloid to be fit to the data.  This function is desired since it 

provides a single global maximum.  Taking the gradient of this paraboloid yields the 

approximate location of the PAE maximum.  A second steepest descent algorithm is 

carried out for the ACPR optimum reflection coefficient beginning at the optimum 

reflection coefficient for PAE.  The algorithm generally follows same procedure for the 

PAE search with a couple key exceptions.  The purpose of the steepest descent algorithm 

for ACPR, as stated in Chapter 4, is to provide a piecewise affine approximation of the 

Pareto front between the PAE and ACPR objectives.  This necessitates that the step size 

be relatively small for the steepest descent in order for the algorithm to best approximate 

the tradeoff curve.  The ACPR minimum is sought, so the ACPR search algorithm is a 

steepest descent algorithm.  The minimum point for ACPR is evaluated in a similar 

fashion to that of PAE, except with aim of achieving a global minimum.  The algorithm 

terminates once the locations for optimum PAE and ACPR have been identified.  The 

algorithm in Figure 5.2 can be easily modified to end at the desired ACPR constraint 
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instead of tracing the Pareto curve, which is practical in terms of maximizing PAE for an 

ACPR constraint in a radar system.  Implementing this limit reduces the number of 

measurement queries required to trace the entire Pareto curve.  This system can be 

applied to both software simulations for load-pull and a physical load-pull test bench, 

instantiations of which are explained in the following sections. 

5.2 Reconfigurable Software Test Bench 
 

The algorithm for combined peak search can be demonstrated fully in software 

using the RF design software ADS and the MATLAB computing environment.  This 

method relies on ADS to perform simulated load-pull measurements for modulated 

signals while MATLAB performs the intelligent search.  The simulated load-pull 

measurement consists of a circuit envelope simulation for impedances of interest.  Proper 

setup of the circuit envelope simulation is essential to producing accurate load-pull 

contours for modulated signals.  The technique used combines both time and frequency 

domain analysis of the waveform [62].  Harmonic balance is another technique for 

evaluating amplifier characteristics, but becomes computationally intensive as signal 

complexity increases.  The circuit envelope simulation overcomes this limit by 

performing successive harmonic balance over specified time steps for the total defined 

time of the waveform.  The harmonic balance generates Fourier series coefficients for 

time segments spaced , over the total time duration of the waveform . This process is 

shown in Figure 5.4 for an arbitrary modulated signal.  The Fourier series coefficients for 

each of the time segments are used to solve for a time domain solution to the amplifier 

output waveform.  Obtaining spectral information about the output signal is accomplished 

by performing a fast Fourier Transform of the data.  This operation is particularly 
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important for simulating ACPR for load-pull.  An important consideration in ensuring the 

spectrum is reported accurately is to design the time characteristics of the circuit 

 

 

Figure 5.4: Performing Circuit Envelope Simulation for an Arbitrary Modulated Signal 
 
 

envelope simulation according to the waveform being measured.  The step time is 

inversely proportional to the bandwidth of the circuit envelope simulation.  This requires 

that the signal be “sampled” fast enough such that the signal can be accurately 

approximated.  The total time duration of the circuit envelope simulation is likewise 

inversely proportional to the frequency resolution of the signal.  The circuit envelope 

simulation during a load-pull measurement is performed over load reflection coefficients 

of interest.  This data is used to plot contours over the Smith Chart and provide an 

approximation of an amplifier model with a modulated signal excitation.  Performing the 

combined peak search algorithm with ADS requires MATLAB to request input from the 
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user.  The information gathered using ADS is relayed to MATLAB and results in further 

prompting by the algorithm script.  This process is carried out until the condition is met 

in Figure 5.1.  The use of software to implement the steepest ascent algorithm serves as a 

low cost evaluation of the algorithm effectiveness.  Producing the algorithm on a test 

bench, however, is more complicated and is explained in the next section. 

 
5.3 Adaptive Radar Test Bench 

 
The combined peak search algorithm for linearity and efficiency optimization can 

be realized as an adaptive load-pull test bench.  A basic load-pull setup contains many of 

the primary functions required for the algorithm, including measurements of output 

power and ACPR at various load impedances.  Controlling the load impedance seen by a 

DUT is accomplished through the use of mechanical impedance tuners.  The design is 

based on a “slide screw” concept, which adjusts the impedance by using a metal plunger 

and a 50 ohm air line [14].  These tuners are characterized to cover impedances which 

span the Smith Chart at certain frequencies of interest.  The main software controller for 

this measurement is Maury ATS, which primarily drives the load impedance tuners and 

interfaces with the equipment in Figure 5.5.  The functionality provided by MATLAB 

allows a direct interface to the external libraries of Maury ATS. These libraries allowed 

indirect control of equipment drivers such as the impedance tuners while retaining the 

functionality of the Maury ATS graphical user interface.  The main functions provided by 

Maury ATS are adjusting the impedance for a particular measurement and controlling the 

settings of external hardware.   

An arbitrary waveform generator, the Agilent 5182A, emits pre-programmed 

waveforms from MATLAB.  This functionality allows for unique modulations to be 

generated using software, and further expands the adaptability of the platform.  This 
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Figure 5.5: Reconfigurable Load Pull Measurement Setup Block Diagram Reprinted from 
[28] 

 
 

waveform segment is unconverted to the desired carrier frequency and repeated 

continuously while the measurement is taking place.  The RF emission passes through the 

device under test (DUT), impedance tuner, splitter, and ends at two distinct sensors.  The 

splitter allows the simultaneous measurement of the spectrum and broadband output 

power simultaneously.  The Agilent N1911A power meter measures the broadband 

output power of the DUT for calculating the PAE, whereas the Agilent E4407B spectrum 

analyzer detects the frequency spectrum for calculating ACPR.  Once these values are 

measured for particular load impedances, the results are reported through Maury ATS to 

the MATLAB software.  

One of the most important aspects of the measurement setup is determining the 

frequencies to be used to define the ACPR adjacent-channel boundaries.  The ACPR 

measured depends on the bandwidth and center frequency of the channel on the 

modulated signal spectrum.  The in-band and adjacent channel power values are 

measured by adding the measured power values within the specified channel over 

bandwidth.  These values, which are used to form contours over the Smith chart during 

load-pull, may cause the combined peak search algorithm to take different paths for 
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identifying the tradeoff between PAE and ACPR.  Correctly identifying the ACPR 

channels and bandwidth of interest is essential for achieving the desired unique solution 

using the combined peak search algorithm. 

 
5.4 Conclusion 

 
The combined peak search algorithm can be implemented in both software and as 

an adaptive radar test bench.  The ability to interface to both platforms is afforded by the 

MATLAB computing environment.  The software method utilizes ADS to produce 

simulated ACPR load-pull data using circuit envelope simulation.  This provides a 

convenient way to evaluate the software algorithm for different devices, modulations, and 

circuit topologies.  The adaptive test bench integrates the measurement capabilities of 

ACPR load-pull with control and automation of the algorithm through MATLAB. 

Control is accomplished by interfacing with the Maury ATS software through external 

libraries.  The communication between these programs allows the built in Maury ATS 

functions to be directed by the algorithm script.  The next chapter will discuss the results 

of tests performed for both software and test bench instantiations.  These examples will 

demonstrate the ability of the algorithm to approximate the Pareto front between PAE 

and ACPR using a finite number of measurements.  
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CHAPTER SIX 
 

Analysis of Sequential Peak Search Results 
 
 

The results of the sequential peak search algorithm are validated by showing that 

several instantiations of the search converge to the PAE and ACPR impedances that are 

determined to be optimal by traditional load-pull measurements.  Following the 

conceptual description in Chapter 4, the sequential peak search algorithm should first 

locate the optimum point for PAE.  A steepest descent search will then proceed from the 

PAE optimum load reflection coefficient and iterate towards the ACPR optimum point.  

Additionally, the steepest-descent walk between the optima uses a small  in an effort to 

roughly approximate the same trajectory as the Pareto optimal path.  The test bench in 

Chapter 5 enables the load impedance of a DUT to be maneuvered according to inputs 

received from a spectrum analyzer and wideband power sensor.  A MATLAB 

programmed script realizes the sequential peak search algorithm by receiving feedback 

from the measurement equipment and decides the reflection coefficient of an impedance 

tuner at the DUT output.  This chapter will show the results of the sequential peak search 

algorithm for a series of tuner impedance instantiations which are spread out along the 

Smith chart.  Key factors such as number of measurements, standard deviation of final 

magnitudes, and the mean magnitude at these points are used to demonstrate the 

algorithm’s effectiveness.  A modification of the algorithm will also be shown which 

imposes a maximum limit on ACPR.  
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6.1 ADS Simulation of Sequential Peak Search Algorithm 
 

A simulated sequential peak search algorithm is demonstrated for the ADS 

simulation in Figure 6.1.  The simulation is for a GaAs FET device driven to its nonlinear 

operating point at an input power of 19 dBm under a CDMA2000 excitation.  This source 

was chosen in order to demonstrate the applicability of the sequential peak search 

algorithm to a variety of wideband modulation schemes.  An exhaustive simulated load-

pull with 1127 simulated reflection-coefficient states was performed to obtain sufficient 

resolution and coverage of the amplifier behavior over the Smith Chart, where the 

optimum values and locations for PAE and ACPR are shown in Table 6.1.  

 

 
 

Figure 6.1: Circuit Diagram for ADS Load-Pull Simulation 
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Table 6.1: Simulated Load-Pull Data Standard 
 

 
 
 

Figure 6.2a demonstrates the steepest ascent algorithm for PAE starting at the 

reflection coefficient , and Figure 6.2b shows the location of the PAE maximum 

and contours.  The contours are spaced 1% for PAE and 0.5 dBc for ACPR. The peak 

search algorithm for both PAE and ACPR requires certain considerations such as 

algorithm step size  and neighboring point distance . 

 

 
 
Figure 6.2: (a) Steepest Ascent Algorithm for PAE and (b) Simulated PAE Location on 
Smith Chart 

 
 

The factors  and  were noted in Chapter 5 to affect the number of 

measurements required for convergence, as well as the resolution of the search.  The 

algorithm takes three measurements for each candidate point in order to determine the 

gradient in a neighborhood around the candidate point.  A step  is taken in the direction 
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of the gradient in order to approach the optimum of either PAE or ACPR. The chosen 

for this test, in terms of | |, is 0.05, and the starts at 0.5.  The algorithm proceeds from 

point to point as shown in Figure 6.2a until reaching the PAE optimum.  One of the key 

performance features of this algorithm is the number of measurements required to 

converge on the optimum objective location.  The locations marked by a circle in Figure 

6.2a indicate candidate points which resulted in three measurements.  Candidate points 

which demonstrate a decline in PAE only require one measurement, and the search 

returns to the previous candidate after this is ascertained.  The single PAE steepest ascent 

required 18 total measurements before reaching the objective peak value.  The PAE value 

approximated by a final parabola fit is shown to be within 0.18% of the load-pull 

simulation maximum at approximately the same location.  The vector distance | | on the 

Smith chart between the complete load-pull optimum PAE location and the search PAE 

optimum is approximately 0.0170 units, which is less than  and within the search 

resolution.  This difference indicates that the accuracy of the algorithm for predicting the 

magnitude at the PAE peak location.  

The steepest descent algorithm for ACPR begins at the PAE optimum location as 

described in Chapters 4 and 5, and is shown in Figure 6.3a.  The neighboring point 

distance remains the same as that for PAE, but is reduced to equal .  This reduction 

is due to the fact that the affine approximation of the Pareto curve using steepest descent 

depends on a small for the ACPR search.  Reducing , however, also increases the 

number of measurements required to reach the ACPR optimum.  The steepest descent 

algorithm for ACPR reaches its optimum load reflection coefficient at approximately 

.  The vector distance between the ACPR optimum predicted by the 

complete load-pull and that of the search algorithm is 0.0578 units, with a magnitude 
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Figure 6.3: (a) Steepest Descent Algorithm for ACPR, (b) Simulated ACPR Location on 
Smith Chart, and (c) Pareto Path Between PAE and ACPR 

 
 

difference of 0.0176 dBc.  The Pareto curve path is approximated by the small step-size 

ACPR steepest descent in Figure 6.3c.  The algorithm seems to closely approximate the 

Pareto curve between PAE and ACPR.  

To demonstrate the robustness of the peak search algorithm, multiple 

instantiations were performed from six initial points as shown in Figure 6.4.  The red 

arrows show the approximate paths of the PAE steepest ascent.  Each PAE path follows a 

slightly different trajectory which is dependent upon the location, but all converge in a  
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Figure 6.4: Sequential peak search Simulation Initializations and Approximate Paths for 
PAE (red) and ACPR (blue) 

 
 

small region around the simulated PAE optimum.  The arrow shown in blue indicates the 

approximate path for the ACPR searches.  These ACPR paths are relatively the same for 

each search due to the precision of the PAE search for the six instantiations.  The data 

shown in Table 6.2 shows the convergence point of the PAE steepest ascent routine.  

Absolute error is used to show the difference in magnitude between the maximum found 

by the complete simulated load-pull and give a convergence metric for each instantiation.  

The number of measurements is also shown in this table and directly influences the 

convergence time for the algorithm. 
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Table 6.2: Simulation PAE Instantiation Data with 05.0nD  and 5.0sD  
 

 
 
 

The standard deviations and mean of the PAE steepest ascent algorithm are shown 

in Table 6.3.  The difference between the mean value and the optimum PAE point on the 

complete load-pull simulation is 0.1497%, which is small compared to the magnitude of 

the dataset.  The low standard deviation values for impedance and magnitude indicate 

that the measurement is repeatable and can achieve high precision from arbitrary starting 

locations. 

 
Table 6.3: Mean and Standard Deviation for Simulation PAE Searches 

 

 
 
 

Table 6.4 shows the second portion of the algorithm in which the ACPR objective 

is reached.  A distinguishing characteristic of the PAE and ACPR search routines is the 

number of measurements required for convergence.  The ACPR dataset requires a 

significant increase in the number of measurements due to the constraint on .  The 

absolute error indicates that the ACPR converge point is close to the optimum predicted 

through the load-pull simulation.  Table 6.5 indicates that the mean value of the 

instantiations is close to the simulated optimum value of -52.01 dBc. 
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Table 6.4: Simulation ACPR Instantiation Data with 05.0nD  and 05.0sD  
 

 
 
 

The magnitude difference between these two numbers is 0.11245, which is small 

compared to the size of the datasets.  The sequential peak search for PAE and ACPR has 

been demonstrated using an ADS software simulation for a wideband modulated signal.  

The next step is to verify the test results for an adaptive load-pull test bench for radar 

chirp signals. 

 
Table 6.5: Mean and Standard Deviation for the Simulation ACPR Searches 

 

 
 
 

6.2 Sequential Peak Search Algorithm Using Load-Pull Test Bench 
 

The results from our new optimization were compared to traditionally measured 

PAE and ACPR load-pull results, as shown in Figure 6.5a. The DUT for this 

measurement is the Skyworks SKY65017-70LF InGaP amplifier, which reaches 

approximately 2dB compression with a 50 ohm load termination at an input power of 2 

dBm used.  The optimum values and locations for PAE and ACPR optimum points are 

shown in Table 6.6.  The excitation is a linear frequency modulated chirp which spans 16 

MHz and has a repetition rate of 62.5 microseconds with 100% duty cycle.  Figure 6.5b  
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Figure 6.5: (a) Measurement-Based Peak Search Algorithm for PAE and ACPR, 
(b) Measured PAE and ACPR Locations on Smith Chart, and (c) Pareto Path Between 
PAE and ACPR 

 

shows traditional load-pull results for PAE and ACPR, which required 1178 impedances 

to be measured to generate contours for PAE and ACPR.  Following the identification of 

the maximum PAE point, a steepest descent with a very small search distance was used to 

guide the measurement toward the ACPR minimum. 

 Figure 6.5a shows results for the bi-objective steepest-ascent algorithm starting 

from a reflection coefficient of , which reaches the maximum PAE point in 21 

measurements.  The value of the predicted PAE maximum deviates by 0.27% as from the 

standard peak in Table 6.6.  The difference in rectangular distance between the predicted  
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Table 6.6: Measurement Load-Pull Data Standard 
 

 
 
 

PAE optimum location and that of the complete load-pull is approximately 0.0195 units, 

which is smaller than and within the resolution of the search. An important feature to 

note is the apparent flatness that occurs near the peak of the PAE objective function as 

indicated by the contours in 6.5b. The large neighborhood of points surrounding the PAE 

maximum location, which have values near that of the PAE maximum, can cause the 

algorithm to converge onto a point near the maximum. This minor deviation is due to the 

limited resolution of the search, which interprets the region surrounding the PAE peak to 

be flat.  Under these considerations predicted value resides reasonably close to the true 

PAE maximum predicted by the load-pull in Figure 6.5b.  

The ACPR steepest descent begins at the location of the PAE maximum and 

reaches its minimum in 25 measurements.  The measured ACPR search differs from that 

of the simulated ACPR search in that a larger  of 0.1 is used instead of 0.05.  A larger 

value is chosen to make the gradient calculation for ACPR less dependent on fluctuations 

in the measurement.  The ACPR algorithm differed in location by a rectangular distance 

of 0.0416.  The ACPR minimum appears to be found at a location very close to the true 

minimum and varies in magnitude by 0.18 dBc. Figure 6.5c shows the Pareto path 

calculated from the load-pull data.  Because the piecewise affine approximation of the 

Pareto curve is performed (by necessity) using backward difference, a “lag” appears to be 

introduced when comparing the Pareto curve to the ACPR steepest descent path in Figure 

6.5b.  It appears that the slope of the affine approximation lags behind slope changes in 
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the actual Pareto curve.  A larger and  for the measurement of ACPR gradients also 

seems to introduce error in the Pareto trace by steepest descent.  This is expected due to 

the explanation of affine approximation in Chapter 4, where the Pareto curve cannot be 

guaranteed for sizeable steps.  The ACPR steepest descent, however, appears to 

reasonably approximate the Pareto curve and traces similar path features. 

 

 
 

Figure 6.6: Measurement Sequential peak search Simulation Initializations and 
Approximate Paths for PAE (red) and ACPR (blue) 

 
 

Figure 6.6 shows the search is robust regardless of the search starting point.  The 

paths for convergence from each of the initial six starting locations approximately 

converge to the PAE maximum and ACPR minimum.  Tables 6.7 and 6.8 show the data 

for the six PAE instantiations.  The number of measurements used in the PAE steepest 

ascent searches is shown to not depend solely on measurement locations.  Start location 
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5, for example, has a significant increase in measurements due to stepping over the peak 

but continually landing on a surface of greater magnitude than the previous.  Another 

example is the start location 3, except this case shows a quicker convergence due to a 

coincidental advantage of  and PAE surface.  The PAE standard deviation is significant 

when compared to the location of the PAE peak, but these differences are due to flatness 

around the maximum as previously stated. The difference between the mean and 

optimum PAE peak measured by load-pull is 0.004421 and indicates that the algorithm is 

predicting an accurate PAE value consistently.  

 
Table 6.7: Measurement PAE Instantiation Data with 05.0nD  and 5.0sD  

 

 
 
 

Table 6.8: Mean and Standard Deviation for Measurement PAE Searches 
 

 
 
 

Tables 6.9 and 6.10 show the second half of the sequential peak search algorithm 

for ACPR. The standard deviation of the ACPR locations shows significant variation, but 

is likely due to the standard deviation of the starting PAE maximum locations. Recall the 

flatness near the PAE maximum point, which causes the algorithm to converge onto 

maximum points surrounding the true maximum. From the theory in Chapter 4, the 
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Pareto front can only be approximated by the steepest descent algorithm if the starting 

location is a Pareto point. Since there is some variation in these starting locations, those 

path which do not begin exactly on the PAE maximum will also cause the steepest 

descent approximation of the Pareto front to vary from the true Pareto front. Given that 

that ACPR starting locations are not precise, some variation is expected in predicted 

ACPR optimum location. The absolute error in Table 6.9, however, shows the APCR 

magnitude to be very close to the measured load-pull minimum. The difference between 

the mean ACPR and the actual minimum measured by traditional load-pull is about 

0.007713. 

 
Table 6.9: Measurement ACPR Instantiation Data with 1.0nD  and 1.0sD  

 

 
 
 

The standard deviation is also three orders of magnitude lower than the ACPR optimum 

magnitude.  These two calculations show the magnitude of the ACPR optimum being 

accurately predicted by the sequential peak search algorithm. 

 
Table 6.10: Mean and Standard Deviation for Measurement ACPR Searches 
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6.3 Conclusion 
 

The results of the sequential peak search algorithm have been shown for various 

instantiations for both simulation and measurement instantiations.  These tests have been 

shown to converge on the PAE and ACPR optimum locations predicated by simulated 

and measured load-pull to a high degree of precision.  Additionally, the ACPR steepest 

descent algorithm closely approximates the Pareto tradeoff curve between PAE and 

ACPR for both simulated and measured data.  The next chapter will discuss possible 

applications and improvements to the current algorithm. 
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CHAPTER SEVEN 
 

Conclusion 
 
 

A method for optimizing the performance characteristics of adaptive radar 

transmitters has been shown through the design of an algorithm which shows promise for 

use in reconfigurable impedance tuning.  These techniques are expected to enable 

automatic adjustment of transmitter amplifier performance for PAE and ACPR to further 

extend the detection capabilities of radar systems under spectral mask constraints.  The 

intelligent optimization algorithm unifies two gradient-based searches for PAE and 

ACPR to produce an optimal tradeoff curve between the two objectives.  Solutions along 

the Pareto curve correspond to impedances which yield a weighted tradeoff between two 

objectives.  The results for simulation and measurement implementations indicate that the 

combined steepest ascent algorithm closely approximates the Pareto tradeoff curve 

between PAE and ACPR.  

There are a few limitations to using the combined steepest ascent algorithm, one 

of them being that only unimodal objectives are considered.  Multimodal objective 

functions would exhibit local minima which can cause the steepest ascent algorithm to 

convergence on a local minimum instead of the global maximum [47].  The optimization 

routine assumes that the contours for both PAE and ACPR functions are unimodal.  

Another potential source of error comes from the fact that an affine approximation of the 

Pareto curve can accumulate significant error for successive steepest descent iterations.  

This error occurs because each step overshoots a number of points which have different 

gradients, indicating that the new point will be off of the Pareto optimum curve.  Since 



68 
 

the new step will be made at a point where the gradients are not are not collinear, the 

algorithm may miss the next point along the Pareto path.  Although the ACPR optimum 

point will still be located under the unimodal case, the error between the actual trace and 

the actual Pareto curve increases as the measurement continues.   

Potential improvements upon this work would include increasing the accuracy of 

the Pareto tracing by redirecting the algorithm back towards the Pareto curve between 

PAE and ACPR.  This modification would reduce the error accumulated between 

measurements and provide a more accurate trace of the Pareto optimal solutions.  

Utilizing information provided by the gradients for PAE and ACPR points, a “nudge 

factor” would adjust the steepest descent for ACPR so that it follow the Pareto optimal 

path.  An even better modification is a method for quickly converging onto a desired 

Pareto optimum point for a fixed ACPR maximum, finding the Pareto optimum without 

first searching for the maximum PAE reflection coefficient.  There may be applications in 

which the entire Pareto curve between PAE and ACPR is not needed.  A single search 

could allow decreased time to convergence on the solution.  A fast Pareto convergence 

algorithm may use information about the gradients taken at a candidate point to roughly 

estimate the distance from a Pareto optimal point.  

The real-time Pareto tracing of the combined steepest ascent algorithm has a few 

important ramifications for adaptive radar systems.  Implementing automated impedance 

tuners as part of the transmitter amplifier provides a means to partially redesign the 

amplifier for certain applications.  This could be desirable for radar systems which must 

adapt to a continually changing electromagnetic environment, such as those which are 

utilized around the world under varying spectral constraints.  Adaptive radar with such 

flexibility can maximize detection when the spectral constraints are relaxed, and reduce 
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emissions when those constraints are increased.  Additionally, the affine approximation 

of the Pareto curve between PAE and ACPR allows for the efficiency to be maximized 

for constraints on the output emission.  This feature provides an alternative to power 

back-off of the transmitter, which may sacrifice more performance than is needed to meet 

the spectral mask.  There is immense potential for including the algorithm into a larger 

optimization scheme for waveforms due to the fact that the impedance tuning is driven by 

software.  Optimized radar waveforms such as continuous phase modulation [63] can be 

generated using software and arbitrary waveform generators.  Such a system may be 

augmented by modifying the waveform and amplifier output impedance simultaneously 

to further enhance the detection capacities of radar systems with spectrum constraints.  

Lastly, the use of automated impedance tuning adjusts fundamental parameters in 

amplifier design without modifications to circuit topology, and may be a more simple 

way to negotiate the tradeoff between linearity and efficiency for power amplifiers under 

different modulated signal excitations.  
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