
ABSTRACT

Models for Rested Touchless Gestural Interaction

Darren Guinness, M.S.

Mentor: G. Michael Poor, Ph.D.

Touchless mid-air gestural interaction has gained mainstream attention with

the emergence of off-the-shelf commodity devices such as the Leap Motion and the

Xbox Kinect. One of the issues with this form of interaction is fatigue, a problem

colloquially known as the “Gorilla Arm Syndrome.” However, by allowing interaction

from a rested position, whereby the elbow is rested on a surface, this problem can

be limited in its effect. In this paper we evaluate 3 possible methods for performing

touchless mid-air gestural interaction from a rested position: a basic rested interac-

tion, a simple calibrated interaction which models palm positions onto a hyperplane,

and a more complex calibration which models the arm’s interaction space using the

angles of the forearm as input. The results of this work found that the two modeled

interactions conform to Fitts’s law and also demonstrated that implementing a simple

model can improve interaction by improving performance and accuracy.
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CHAPTER ONE

Introduction

In the past decade a large amount of work has been conducted looking into new

methods to interact with computers. This work has allowed touch interfaces such as

tablets, mobile phones, and public displays to become ubiquitous through continuous

improvements. Other newer methods such as input using Natural Language have also

been improved to the point that commercial interfaces are starting to offer speech-

based input services such as Siri, Google Now, and Amazon’s Alexa. Reality-based

Interfaces (RBIs) like the Xbox Kinect, Playstation Move, and Leap Motion which

incorporate metaphors from the physical world are also starting to emerge. However,

the traditional Desktop paradigm remains relatively unchanged, and is heavily relied

upon in areas which require high performance and long durations, such as business

and areas of gaming. This can be problematic, because not all users have the same

needs, and thus better incorporation for other alternative input methods, can produce

benefits for users who have difficulty with the standard paradigm.

The standard methods of interaction for the desktop computer has tradition-

ally been limited to that of the Keyboard and Mouse. Although this desktop paradigm

is still widely used and preferred by many, there are limitations which require good

alternative input methods for the desktop computer. One such limitation is that the

required motion of the keyboard and mouse can be a deterrent for persons who cannot

physically use these methods due to disabilities or impairments. For instance, if a

user had a hand impairment, or even if that user was missing a hand, they may have

difficulties interacting with the computer using the traditional keyboard and mouse.

This is partially addressed by commodity hardware that focuses on ergonomics such

as ergonomic mice and keyboards, but the root of the issue lies in the interaction

itself (Fagarasanu and Kumar, 2003). Subsequently, research done into the effects
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of mouse use has found that concentrated mouse use is associated with Carpal Tun-

nel (Keir et al., 1999). Other work has found strong evidence of a causal relationship

between keyboard and mouse usage and Carpal Tunnel Symdrome (Fagarasanu and

Kumar, 2003). This essentially means that there is a barrier to entry in standard

desktop input, which even when overcome, the use of this particular input paradigm

may result in impairment.

One type of interaction that can potentially cater to these issues is Gestural

Interaction, or more commonly referred to as “Gestures.” Gestural interfaces can be

developed using different parts of the body as input, meaning that the user who had

hand impairments, or a lack of a hand, would be able to interact using another body

part such as their eyes, foot, or even forearm. This would seemingly allow users who

had difficulties interacting with the traditional keyboard and mouse to interact with

the desktop by leveraging the motions that they can perform or prefer.

1.1 Gestures

Gestures in the context of Human-Computer Interaction (HCI) encompass a

large group of techniques used to interact with a computer. The accepted definition

of a gesture in HCI literature was defined by Kurtenbach and Hulteen to be “a motion

of the body that contains information” (Kurtenbach and Hulteen, 1990). This broad

definition lends itself to a wide research area which has incorporated expressions

elicited from various areas of the body including the legs, face, eyes, fingers, and

even hands (Han et al., 2011, Zelinsky and Heinzmann, 1996, Drewes and Schmidt,

2007, Grossman et al., 2004, Cockburn et al., 2011).

The fact that different body parts, and motions can be used makes it theo-

retically a powerful addition to the accessibility community. This was demonstrated

last year, when gestural cursor navigation was evaluated in a case study by two per-

sons who had impairments which made it difficult to use the mouse (Guinness et al.,

2014). Although this finding is limited, there is little reason that interfaces such as
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the one mentioned above, cannot be extended to people without hands, or even arms

by utilizing the motion in the forearms, or even the legs or feet to interact with the

computer.

1.2 Classification

The two main classifications of gestures are touch-based gestures, and mid-

air gestures which is also known as touchless gestural interaction. Recently hybrid

approaches, combining both touch and mid-air gestures, have also been studied (Chen

et al., 2014). Touch-based gestures involve meaningful strokes executed on a touch-

sensitive surface such as a touchscreen on a tablet, or cellular phone display (Poppinga

et al., 2014), while Mid-air gestures are concerned with motion made from the body

in mid air.

Mid-air gestural interaction implementations are further broken up into those

that require the user to wear physical devices such as a glove, or ring, and those that

require no physical contact which is known as the Bare-handed interaction style. In

the latter, users interact with the computer without any device or wires attached. Von

described this interaction style to be superior to implementations that required extra

devices to be worn (Von Hardenberg and Bérard, 2001). While both approaches have

their advantages, the Bare-handed interaction style is theorized to be a better form of

input because it incorporates the “Come As You Are” design principle (Triesch and

Von Der Malsburg, 1998). This principal states that users should not be required to

wear a glove or specific markers to interact with the system (Wachs et al., 2011).

1.3 Current State

Commodity gestural recognition hardware has become increasingly more pre-

cise, with devices in some cases demonstrated to be accurate up to a sub-millimeter

level (Guna et al., 2014) with low latency (Brown et al., 2014). Due to these ad-

vances, researchers have started looking at gestures not simply for coarse actions,
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but for more fine use cases such as cursor navigation (Jude et al., 2014b, Brown

et al., 2014, Pino et al., 2013, Sambrooks and Wilkinson, 2013), which require high

precision, and accuracy.

It is important in these high precision and repetition use cases, that new meth-

ods are able to perform well in comparison to existing methods. This determined by

providing comparisons between new and old methods, or retroactively by examining

literature using the same tasks over similar parameters (Soukoreff and MacKenzie,

2004). Comparisons are performed using measures that describe the interface such as

Performance, Accuracy, and consistency. When we looked at gestural cursor naviga-

tion in comparison to other input methods in a similar Index of Difficulty (ID) Range

(1-4 bits) for those with Motor Impairments, we find that our implementation of ges-

tural cursor navigation fits right above that of a Trackball, and below an ergonomic

Mouse (Wobbrock and Gajos, 2008). This demonstrates promise as the gestural im-

plementation performs similarly, but directs the motion to be elicited from the larger

muscle groups such as the forearm, biceps, and shoulders rather than relying on wrist,

and hand movements which has been previously associated with carpal tunnel.

1.4 Fatigue

The most common implementations of gestural input involve the user hold-

ing their arms out in mid-air. This mode of interaction results in arm and shoulder

fatigue (Teixeira, 2011, Wachs et al., 2011, Hincapié-Ramos et al., 2014) commonly

referred to as “Gorilla Arm Syndrome” (Carmody, 2010). This will need to be ad-

dressed before gestures can be accepted as a ubiquitous mode of interaction. Brown

et al identified a simple way to address this problem by allowing the user to rest the

elbow on a surface (Brown et al., 2014). However, this simple solution may result in

an interaction that is non-intuitive to the user, because it gives very little considera-

tion to the actual mechanics of the human arm. In order to address this, Jude et al
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introduced a potential improvement called Personal Space (Jude et al., 2014b) which

used a calibration step to first map the user’s input space.

Both Brown et al, and Jude et al, addressed fatigue by performing gestural

interaction from a rested position. However, each author makes a different claim:

Brown et al (Brown et al., 2014) stated that fatigue is addressed simply by resting

the elbow, while Jude et al (Jude et al., 2014b) claimed that fatigue was addressed

by modeling the user’s input space from a rested position.

1.5 Our Work

In this work, we seek to investigate both approaches further, using standard

evaluation methodologies provided by the ISO 9241-9 documentation. We aim to

identify whether differences in performance exist between gestural interactions by

using 3 different strategies: (1) a completely unmodeled approach, (2) the simple

model introduced by Jude et al (Jude et al., 2014b) which models palm positions

onto a hyperplane, and (3) a more complex model introduced here, which models the

interaction space with no loss of information, using the angles of the forearm as input.

We also aim to identify whether learning is present in these gestural interfaces through

the use of a longitudinal design, as current works that use only one session have not

found learning (Brown et al., 2014, Sambrooks and Wilkinson, 2013, Adhikarla et al.,

2015, Adhikarla et al., 2015). For this study, the following two hypotheses were

identified:

H1 Users will learn gestural interaction over time, allowing for an improvement in

performance.

H2 An interaction with a model of the interaction space will perform better than an

interaction which does not model the space.

The following metrics were collected to compare interactions: performance,

accuracy, and subjective user feedback. Each of these metrics are explained within

the following chapters.
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CHAPTER TWO

Literature Review

2.1 Gestural Interaction

Gestural Interaction is a technique that leverages gestures from the body to

interact with a computer. This type of interaction technique has been studied for

over 3 decades since Richard Bolt’s first implementation in “Put-That-There” (Bolt,

1980). Gestural interaction implementations are typically divided into two different

types: (1) those that require the user to wear gloves, devices or specific markers and

(2) touchless gestural interaction. The latter leverages the “Come As You Are” design

principle (Triesch and Von Der Malsburg, 1998), which states that users should not be

required to wear devices or specific markers to interact with a system (Wachs et al.,

2011).

Recent devices such as the Xbox Kinect, Leap Motion, and Myo Armband

have gained popularity amongst researchers, with some capable of sub-millimeter ac-

curacy in static situations (Guna et al., 2014). These devices have demonstrated

the potential use of gestural interfaces in medical professions that require sterile en-

vironments (Wachs et al., 2011, Mentis et al., 2012, Bigdelou et al., 2012), as an

accessibility device for those with impairments (Bailly et al., 2012, Guinness et al.,

2014), and in mixed reality environments with head mounted displays (Ens et al.,

2014). These applications demonstrate the usefulness of gestural interaction, but

more work is still needed before its ubiquitous adoption. More specifically, though

numerous implementations have been proposed for gestural cursor navigation, little

work has been done to compare these methods against each other to discover im-

provements and which the methods work better, and why. In this work we will seek

to close this gap by performing a larger investigation to uncover these answers.
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2.1.1 Gestural Fatigue

A few years ago, fatigue was not given enough consideration in gestural inter-

action, and the standard method of controlling the computer via gestures involved

users holding their arms up to the display for long periods of time. This method of

interaction resulted in prolonged extension of the arm, which has since been known

to cause a fatigue problem referred to as the “Gorilla Arm Syndrome” (Yoo et al.,

2012, Carmody, 2010, Wachs et al., 2011). This fatigue problem has been described

as a “known limitation” (Teixeira, 2011) of gestural interaction. Similarly, Segen and

Kumar stated that fatigue is one of the main issues with gestures after prolonged

interaction (Segen and Kumar, 2000).

After realizing the effects of fatigue on the interaction, Segen and Kumar

conceptualized the idea that the interaction could be performed while the elbow

was rested on a surface (Segen and Kumar, 2000). This simple solution was later

incorporated in a Wizard-Of-Oz style experiment by Freeman et al, which allowed

the user to appear as though they were interacting with the display while the elbow

was rested (Freeman et al., 2012).

Brown et al implemented this method to perform cursor navigation in an ex-

periment with 2 possible modes of input: the whole hand and finger pointing. Jude

et al implemented a very similar approach to the previous in their Personal Space

approach, whereby cursor navigation was likewise done with the whole hand, but the

user’s input space was first modeled during a calibration stage (Jude et al., 2014b)

which can be seen in Figure 2.1. All these approaches make the same claim: allowing

the users to perform gestural interaction from a rested position results in a more

comfortable interaction and reduces fatigue inherent to gestural interaction. Corre-

spondingly, gestural device manufacturers such as Leap Motion have taken notice of

this research, and encouraged designers to use this rested elbow solution (Plemmons

and Mandel, 2015).
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Figure 2.1. User calibrating their space taken from (Jude et al., 2014b) with permis-
sion. This method of calibration was used for both the Hyperplanar and Spherical
models.

Conversely, an experiment by Sambrooks and Madhvanath (Sambrooks and

Wilkinson, 2013) looked into comparing touch, gestures, and mouse interactions and

reported that fatigue was not a factor in gestural interaction. This study also reported

no improvements over the course of the experiment. We believe that this experiment

found no performance improvements as it was counteracted by fatigue experienced

by the participants.

In (Hincapié-Ramos et al., 2014), Ramos developed a novel metric Consumed

Endurance (CE) to assess the level of fatigue felt during mid-air gestural interaction.

In the study, the CE metric showed a strong correlation to the Borg CR10 scale and

encouraged the use of this metric to evaluation fatigue. This is a very promising study,

but currently has some limitations. The CE metric requires the use of a whole-body
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tracking system and that the arm is used in mid-air from a bent position. These

limitations make it difficult to incorporate into our study as we are using the Leap

Motion, which only tracks hand data, not the entire skeleton, and we allow the elbow

to be rested, which is not expressed in the CE model.

We accept the premise of the research above and use an interaction which

rests the elbow to reduce fatigue, and attempt to further the knowledge in the area

by investigating the effects of modeled versus unmodeled interactions.

2.1.2 Gestural Pointing

Recent gestural pointing implementations use one of two general pointing

methods. “Ray pointing,” is a popular pointing method used by many designers

when implementing gestural interaction (Brown et al., 2014, MacKenzie and Jusoh,

2001, Banerjee et al., 2011, Jota et al., 2010). Ray pointing uses ray casting to de-

termine where the user is pointing (Jota et al., 2010). This is done by casting a ray

from the pointing object and finding the intersection of the ray with the screen. This

method has been demonstrated to be rapid but inaccurate (Cockburn et al., 2011).

The other popular gestural pointing method is ‘whole hand pointing’, which

directly maps the 2D movements of the hand (by dropping 1 dimension usually depth)

to the 2D cursor on screen (Brown et al., 2014). The user can then move their

hand or finger within this navigation space to move the cursor on screen. ‘Whole

hand pointing’ implemented by (Cockburn et al., 2011, Brown et al., 2014, Jude

et al., 2014b), has been shown to be both rapid and accurate, even without visual

feedback (Cockburn et al., 2011).

In this work we examine ‘whole hand pointing’ further using the Unmodeled

and Hyperplanar approaches. The Spherical approach implements ’whole hand point-

ing’ without dropping the depth (Z) dimension.
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2.1.3 Gestural Selection

Brown found that the finger tap gesture, which was considered the closest ges-

ture to a mouse selection, performed inadequately for use in their experiment (Brown

et al., 2014). To combat this, (Brown et al., 2014) implemented a bimanual selection

method, where users used their other hand to press the space bar when the cur-

sor was over the target. Other researchers (Hincapié-Ramos et al., 2014, Jude et al.,

2014b, Sambrooks and Wilkinson, 2013) used a ‘hover-select’ or ‘dwell’ method which

required the user to hover over the target for between 250 and 1500 milliseconds. This

was the method we chose to implement in our own experiments.

2.2 Learning Effects

Schmidt and Lee indicated that we cannot directly observe learning. How-

ever, we can measure and report performance improvements, from which we can infer

learning (Schmidt and Lee, 1988). New pointing devices are expected to demon-

strate performance improvements over time, making a one day study less descriptive

of the performance of the device. To account for these improvements, researchers

have run longitudinal studies, performing analysis on the data when no performance

improvements were found (MacKenzie et al., 2001). This approach was used in our

experiment in line with H1 over 3 days, based on results from our pilot which showed

no significant improvements after day 3.

A simple method to report performance improvements would be to calculate

the difference between means of throughput between both rounds. Researchers have

shown that a better way to measure performance increase is with effect size (Jude

et al., 2014a) which is commonly measured using Cohen’s d (Cohen, 1992), a practice

which has recently been encouraged for use in the HCI community (Kaptein and

Robertson, 2012). This metric represents the difference of the mean between 2 groups
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over the pooled standard deviation, which can be seen in the following equation:

EffectSize =
x1 − x2

s
(2.1)

In our experiment, we measure the difference in performance between days to indicate

performance gained.

Researchers have indicated that random-order practice, also known as Dis-

tributed Practice (e.g. A-B-C, B-C-A, C-A-B), generally benefits motor learning more

than block order practice, known as massed practice (A-A-A, B-B-B, C-C-C) (Lin

et al., 2007, Lee and Genovese, 1988). A 3x3x3 balanced Latin Cube design was used

in our experiment, making the distributed practice approach trivial.

2.3 Pointing Device Evaluation

In 1954 Paul Fitts held the belief that humans had a fixed information-

transmission capacity, but warned that a person’s motor system cannot be evaluated

in isolation due to noise and the presence of other variables (Fitts, 1954). He however

posited that if a subject had sufficient practice in a rapid motor condition to the

point of overlearning, and the task’s stimuli were held constant, the resulting perfor-

mance would be limited by the demand from the condition on the person’s channel

capacity (Fitts, 1954).

To Human-Computer Interaction researchers, this meant that using this the-

ory it would be possible to gauge a pointing interface’s relative cognitive demand

in comparison to other pointing devices, given a reasonable sample size. When one

pointing condition obtained sufficiently better results than another, this meant that it

presumably required less demand on the user’s fixed information-transmission capac-

ity in the motor task. Using this theory, Fitts designed an experiment and uncovered

the relationship between movement time, and accuracy for persons in rapid motor

tasks (Fitts, 1954).
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Today this relationship is known as Fitts’ law or Fitts’s law, and is com-

monly used by HCI researchers to evaluate and identify improvements in pointing

devices (Soukoreff and MacKenzie, 2004). If an pointing interaction conforms to

Fitts’ law, it can be used as a predictive model used in user interface design (Souko-

reff and MacKenzie, 2004). In his experimentation Fitts proposed a new metric he

denoted Index of Performance, which is now commonly referred to as Throughput

which incorporated both speed and accuracy (Zhai, 2004, Soukoreff and MacKenzie,

2004). The definition of Throughput can be seen in Equation 2.2.

Throughput =
ID

MT
(2.2)

where Index of Difficulty (ID) is the ratio of the distance (D) to width (W) of the

intended targets and measured is in bits:

ID = log2

(
2D

W

)
(2.3)

Recent work has updated this definition to utilize the Shannon formulation of Index of

Difficulty due to its higher correlation with movement time (Soukoreff and MacKenzie,

2004) which can be seen in Equation 2.4.

ID = log2

(
D

W
+ 1

)
(2.4)

Because the cursor’s final positions or end points, in relation to the target are not typi-

cally uniformly distributed, an adjustment for accuracy is performed by using effective
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distance, and effective width based on the post-hoc distributions of the observed dis-

tance and width parameters (Soukoreff and MacKenzie, 2004). The adjusted Index

of Difficulty equation can be seen in Equation 2.5.

IDe = log2

(
De

We

+ 1

)
(2.5)

We also adjust for accuracy using bivariate end point deviation (SDx,y). We use

this to compute bivariate throughput, which has been demonstrated to have higher

explanatory power (Wobbrock et al., 2011). When the adjustments are made the

definition of throughput that we use is defined by Equation 2.6.

Throughput =
IDe

MT
(2.6)

2.3.1 Standard Tasks

In order to allow for researchers to compare their results with each other, and

avoid confusion Soukoreff and MacKenzie encouraged the use of the ISO 9241-9 stan-

dard for evaluating pointing devices (Soukoreff and MacKenzie, 2004). After which

Mackenzie, Wobbrock, and others have provided software suites which implement mul-

tiple tasks designed based of the ISO 9241-9 documentation (Wobbrock et al., 2008).

In these suites, two main tasks are generally present, the first is the 1-dimensional

vertical ribbons task design based upon Fitts’s original Reciprocal Tapping exper-

iment. The second is the “Ring-of-circles” task which allows for the evaluation in

2-dimensions and can be seen in Figure 2.2.

2.3.2 Fitts’ Law

To investigate whether an interface conforms to Fitts’ Law, a linear regression

is performed over movement times (MT) on the corresponding effective Index of
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Figure 2.2. Multi-Directional task implementation from (Soukoreff and MacKenzie,
2004) used with permission

Difficulty conditions. The result is a regression equation which takes the form:

MT = a+ b× IDe (2.7)

where a is the intercept term, b is the slope of the regression line and IDe is the Index

of Difficulty.

The intercept term represents the estimated time from the regression line, to

navigate to a target when the ID = 0 (lowest difficulty). The intercept a is desired to

be near zero, and if positive is ideally below 400ms (Soukoreff and MacKenzie, 2004).

Once the regression has been performed, the coefficient of determination (R2), or

“goodness of fit”, is typically reported as it signifies the strength of the association

between the IDe and MT (Pino et al., 2013). R2 is typically described as the degree

to which the regression model explains the variation of the data, and the higher the

R2, the better the fit (MacKenzie and Teather, 2012). E.g., if R2 = .9, this would

mean that the regression line explains 90% of the variation.
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The linear correlation coefficient (R) measures the strength and direction of

the linear relationship between IDe and MT (Pino et al., 2013). When there is

no linear correlation or a weak linear correlation, R is close to 0. A correlation is

described as strong if R > 0.8 and weak when R < 0.5 (Pino et al., 2013).

2.4 Accuracy Measures

Apart from performance measured in throughput, we also measure the accu-

racy of each interaction. We use the accuracy measures introduced by Mackenzie et al

which include Target Re-entry, Task Axis Crossing, Movement Direction Change, Or-

thogonal Direction Change, Movement Variability, Movement Error, and Movement

Offset (MacKenzie et al., 2001). These measures were introduced to further charac-

terize problems with pointing devices as previous literature would explain that there

were differences in performance between two pointing devices, but previous metrics

were not able to describe the behavior enough to identify why these differences oc-

cur (MacKenzie et al., 2001). A brief description of each metric and mathematical

definitions from the original paper will be provided in this chapter, for further informa-

tion see Accuracy Measures for Evaluating Computer Pointing Devices (MacKenzie

et al., 2001).

2.4.1 Discrete Measures

MacKenzie et al. introduced discrete accuracy measures to characterize dis-

crete events such as a entry to a target, or a change in velocity. These new measures

would be able to better describe performance differences between pointing devices.

Lower values are considered better for each of these discrete measures, as larger values

can signal issues with the pointing interface (MacKenzie et al., 2001).

2.4.1.1 Target Re-entry . A Target Re-entry is said to occur when the

pointer enters the intended target, exits, and then re-enters the target (MacKenzie

et al., 2001). This behavior is demonstrated in Figure 2.3. Mackenzie et al. further
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states that if this behavior is encountered 2 times within 10 trials, the metric is

reported as 0.2 TRE per trial (MacKenzie et al., 2001).

Figure 2.3. An example of a Target Re-entry as seen in (MacKenzie et al., 2001) used
with permission

2.4.1.2 Task Axis Crossing. In pointing tasks, the Task Axis which repre-

sents a straight line between the starting point of the cursor, and the center of the

target (MacKenzie et al., 2001). This represents the optimal path of the cursor to

which the actual path taken can be compared (Vatavu et al., 2013). When the cur-

sor’s position goes through the task axis during a trial a Task Axis Crossing is said

to occur (MacKenzie et al., 2001). This behavior is described visually in Figure 2.4.

Figure 2.4. An example of a Target Axis Crossing as seen in (MacKenzie et al., 2001)
used with permission

2.4.1.3 Movement Direction Change. A Movement Direction Change occurs

when the cursor’s path relative to the task axis changes (MacKenzie et al., 2001).

This behavior is captured in Figure 2.5.

Figure 2.5. An example of three Movement Direction Changes as seen in (MacKenzie
et al., 2001) used with permission
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2.4.1.4 Orthogonal Direction Change . A Orthogonal Direction Change is

said to occur when the cursor’s direction changes along the axis perpendicular to

the task axis (MacKenzie et al., 2001). If this measure is unusually high over a good

amount of trials it can represent a control problem in the pointing interface (MacKen-

zie et al., 2001). An example of two Orthogonal Direction Changes is pictured in

Figure 2.6.

Figure 2.6. An example of two Orthogonal Direction Changes as seen in (MacKenzie
et al., 2001) used with permission

2.4.2 Continuous Measures

MacKenzie et al. also introduced continuous measures that could capture

different aspects of the pointing behavior. For each of these continuous measures the

ideal value is 0 (MacKenzie et al., 2001). Table 2.1 characterizes each continuous

measure, and the relationships between them.

2.4.2.1 Movement Variability (MV). Movement Variability (MV) character-

izes the extent to which the sampled screen coordinates from the pointing interaction

lie on a straight line parallel to the task axis (MacKenzie et al., 2001). An ideal trial

would obtain a result of MV = 0 (MacKenzie et al., 2001). Equation 2.8 depicts the

mathematical definition of Movement Variability with the assumption that the task

axis is drawn at y = 0.

MV =

√∑
(yi − ȳ)2

n− 1
(2.8)
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2.4.2.2 Movement Error (ME). Movement Error represents the mean devia-

tion of the cursor’s sampled path from the task axis, regardless of whether the points

lie above or below the task axis (MacKenzie et al., 2001). Equation represents the

definition of Movement Error when the task axis is lies on y=0.

ME =

∑
|yi|
n

(2.9)

2.4.2.3 Movement Offset (MO) . Movement Offset represents the average

deviation of the sample points to the task axis (MacKenzie et al., 2001). Equation 2.10

depicts the definition of MO when the task axis is y=0.

MO = ȳ (2.10)

Table 2.1. The differences between actual paths(blue), and the optimal path (grey),
and how these are characterized by each of the continuous accuracy metrics. Used

from (MacKenzie et al., 2001), with permission.

Metric
Movement Variability Low Low High High
Movement Error Low Very High High Very High
Movement offset Low High Low High
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CHAPTER THREE

Preliminary Investigations

Due to the novelty of the area, it was identified early that extensive piloting

was necessary to identify parameters of the experiment, and issues with each inter-

face. We investigated learning effects, optimal target size and distance, fatigue, and

performance through multiple pilots starting in July and ending in February. A brief

summary of each pilot found to be important is provided in this chapter.

3.1 Pilot 1 : Foundations

The first pilot can be considered a precursor to the full experiment. The pilot

consisted of 5 persons who each participated over 5 consecutive days using 5 different

interactions forming a Latin Cube design (5x5x5). The pilot was conducted to provide

initial insight into learning effects, performance, and subjective user feedback using

the each of the interactions. As naming conventions changed throughout the year,

we provide all names for each interaction, but the decided names will be bolded.

3.1.1 Pointing Interactions

The study incorporated 5 different pointing interactions which are considered

to be conditions in the study. The first interaction used was the planar or which

is later referred to as the hyperplanar interaction, introduced by Jude et al. (Jude

et al., 2014b) which allows the user to calibrate all 4 corners of the screen, and models

the input space using a hyperplane containing the four points. An image of this

interaction model is visualized in Figure 3.1a. The second interaction is known as the

Spherical interaction, which also calibrates all 4 corners, but models the input space

using a portion of a sphere who’s’ radius is defined by the length of the forearm. This

interaction model can be seen in Figure 3.1b. In this pilot the Spherical interaction

learned the approximate elbow position, and forearm’s radius in the calibration step
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using a Least Squares sphereFit. The next interaction used was the standard whole

hand pointing method used by (Brown et al., 2014, Cockburn et al., 2011) which was

denoted the de facto interaction and was split up into rested (de facto rested) and

unrested (de facto unrested) conditions. The de facto interaction were later renamed

the unmodeled interaction, and the unrested condition was not examined in later

work. A front and side view of this interaction model can be found in Figure 3.1a.

(a) Unmodeled(left = blue, right=red) and hyperplanar (grey) front and side views

(b) Raw calibration data superimposed onto a sphere

Figure 3.1. Gestural interaction models

3.1.2 Results

Analysis of our results were done to analyze 4 main aspects of each interac-

tion: (1) Daily Improvement, (2) Performance, (3) Accuracy, and (4) Subjective User

Feedback. Metrics from (1), (2) and (3) were measured per trial across all partic-

ipants per day. With 70 trials and 5 participants, we obtained 350 points per day
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per interaction which were used in our analysis. Significance was determined when

p < 0.05.

Additionally, the analysis of the interaction’s performance and accuracy were

only done based on the last day of interaction. This is done in-line with existing

literature where performance analysis is only performed when there is no longer any

statistically significant learning effects (MacKenzie et al., 2001). A 5-way repeated

measures ANOVA was constructed for each pointing condition × metric to determine

if there was improvement in the pointing condition over time. Throughput was found

to be significantly different in each gestural model over the 5 days. Post-hoc tests

revealed that throughput on day 1 was significantly different than performance on

days 3-5 in each gestural condition. Significant differences in accuracy were found

until the very last day of the experiment, days 1-4 were therefore treated as practice.

However, all five days worth of qualitative data was used to evaluate subjective user

feedback.

3.1.2.1 Performance. We measure performance by throughput as per Equa-

tion 2.6 and illustrated in Figure 3.2 and Table A.1. A one-way ANOVA showed a

statistically significant difference between interactions (F (4, 1749) = 21.18, p < .001).

As the ANOVA showed statistical significance, a Least Significant Difference (LSD)

was used post-hoc to identify which interactions differ. This test showed that the

touchpad’s throughput was significantly higher than all gestural models (p <.001 ).

No significant differences were found between each gestural models.

3.1.2.2 Improvement. We measure Improvement as the increase in through-

put between day 1 and day 5, and reported with the effect size metric Cohen’s d.

In general, an effect size of 0.2 is considered a small effect, 0.5 signifies a

medium effect visible to the naked eye, and 0.8 signifies a large effect size (Coe,

2002). From Table 3.1 we can see that most gestural interaction have a medium
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Figure 3.2. Throughput means and standard deviation from days 1-5 grouped by
interaction

effect in throughput, which indicates overall performance improvement, from which

which we infer that learning has occurred. The touchpad on the other hand had no

practically significant increase in performance.

Table 3.1. Performance improvement between days 1-5, reported in Cohen’s d.

Source Cohen’s d
Planar 0.64
Spherical 0.60
De Facto Rested 0.46
De Facto Unrested 0.50
Touchpad 0.09

3.1.2.3 Accuracy. Accuracy metrics were collected which included the pre-

viously described metrics: Movement Error (ME), Movement Offset (MO), Movment

Variability (MV), and Target Reentry (TRE). Table A.2 depicts the accuracy results

between each interaction.

Overall the touchpad was found to be significantly more accurate than all other

interactions in terms of Movement Error. No significant differences were present in

the Movement Offset results. The touchpad was found to have significantly better
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Movement Variability than the de facto rested interaction. Once again the touchpad

was also found to have significantly better results in terms of Target Reentry than the

de facto rested, and de facto unrested interactions. The Planar interaction was found

to have significantly better Target Reentry performance than the de facto rested and

de facto unrested interactions.

3.1.2.4 Arm-length approximation. Since the Spherical interaction required

the measurement of the forearm, and elbow position, we wanted to examine how close

the approximation from the SphereFit was to the actual measurements. We compared

the correctness of our arm-length approximation over each of the 5 consecutive days

to the actual length of the arm measured on the first day. The results are measured

in percentage of overall difference and is shown in Table 3.2. We see that the values

ranged from 75% to 91%, with a trend that shows an overall increase in accuracy over

time.

Table 3.2. Arm length approximation correctness (%)

Metric Day 1 Day 2 Day 3 Day 4 Day 5

Approx % 75.40 86.80 79.71 89.24 91.51

3.1.3 Overview

In this small study we found that none of the gestural models on day 5, ob-

tained significantly better throughput, meaning that resting the elbow results in no

significant effect on throughput. However, modeling the input space using a hyper-

plane space improves the single accuracy metric Target Reentry over the Unmodeled

(de facto) approaches. We also found that performance improvement as measured by

throughput is not significantly different after day 3. This finding was incorporated

into later studies.
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A more expanded version of the study was submitted to the 2015 SIGCHI

conference. Although the study was not accepted, the reviewers provided critical

feedback which was directly used to construct the full experiment. The most promi-

nent considerations were to increase the number of participants, use the ISO 9241-9

task which is considered the standard task for pointing device evaluation, evaluate

only gestural devices without a benchmark, and to include a published work that had

been presented that year.

We took these critiques into consideration and began to design a more focused

experiment. We concluded that in addition to the reviewers concerns, our evaluation

could remove other nuisance variables such as the differing calibration regions between

each gestural interaction, and reduce the duration of the calibration by removing the

learning of the forearm and elbow position, and rather measure the user’s arm radius

and elbow’s position.

3.2 Pilot 2: New Setup

To reduce nuisance variables, a one shot calibration was designed and imple-

mented which would save the original source points captured from the Leap Motion

Controller into a matrix. With these source points we could then toggle the different

gestural interaction models over-top which would use either two points to construct

the space in the unmodeled interaction, or use all four points, which was used in

the Hyperplanar and Spherical interactions. The toggle switch of the gestural inter-

actions was enabled through a key binding (CTRL-ENTR) so users were not able to

explicitly identify that they were using different interactions.

To allow for this one shot calibration, we needed to measure the user’s forearm

length, and the relative position of the elbow to the Leap Motion Controller. This was

taken to be the sphere’s radius, and center point respectively in the interaction. These

measurements were collected using a metric tape measure in millimeters to reflect the

Leap Motion Controller’s setup. The arm was measured as seen in Figure 3.3 in
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Figure 3.3. User’s forearm is being measured in the pronated position with the palm
down

a pronated palm down position after consulting a medical expert about biological

tissues such as fats, and muscles impacting the measurements.

In our previous studies, and pilots we also discovered that simply resting the

elbow on the table posed some strain on the user during interaction (Guinness et al.,

2014). Due to this finding we also chose to incorporate an ergonomic elbow rest which

can be seen in Figure 3.4.

Additionally, we switched from our moving squares task used in our previous

studies (Jude et al., 2014b, Jude et al., 2014a, Guinness et al., 2014) to the ISO 9241-9

ring of circles task, which is the current standard for pointing device evaluations and

is described further in the previous chapter. In order to use the new task a selection

method needed to be chosen. To stay in line with out previous work we decided to

enact a hover/dwell selection, but reduced the dwell time to 250 milliseconds as our

reviewers from the previous pilot submission thought that the previous 500 millisecond

duration was too long.
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Figure 3.4. Ergonomic Rest used to reduce strain on the elbow and forearm

Due to the above changes we needed to run another preliminary investigation

to identify suitable experiment parameters, and identify issues in our new setup. So we

decided to focus on user feedback and finding suitable Amplitude/Width parameters

which were needed for the new ISO 9241-9 task. At this point version 2.2.5 of the

Leap Motion SDK was released which provided positional data about the wrist. We

experimented with this tracking because the wrist offers a more stable reference point

in our interaction than the hand, as the hand can bend, and roll which we do not

wish to encourage due to ergonomic concerns.

Using 5 participants we demonstrated that the new wrist tracking did not im-

prove performance over hand tracking. Upon further investigation using the provided

Diagnostic Visualizer, the wrist tracking did not appear to actually be tracking the

wrist, but building a wrist model from the hand with pre-programmed values. This

was discovered because in instances where the hand was not able to be seen, or had

become hidden, the wrist model would deform in the visualizer. The model would

then only become stable once the hand was seen, even though the wrist was clearly

positioned for the tracking.

In addition, we identified suitable parameters for the ISO task to use target

amplitudes {256, 512, 1024, 1408} and target widths {64, 96, 128}. Using these

values we were able to provide 10 unique Index of Difficulty (ID) values ranging from

1.52-4.58 bits which is in line with current literature’s encouragements (Soukoreff
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Figure 3.5. The stand used in the experiment (left), and the one used in the pilot
(right)

and MacKenzie, 2004). During this pilot we also found that many of the participants

accidentally knocked the Leap Motion Controller off of it’s angled stand. We decided

to construct 3 new angled stands; one of which can be seen in Figure 3.5 using

Lego blocks to keep the Leap Motion Controller tightly in place. We also wanted to

make sure that our performance improvements over sessions were present in our new

setup. Using one participant and 5 consecutive sessions, we saw that performance did

improve significantly between days, but that the majority occurred within the first 3

days.

3.3 Pilot Summary

From the first pilot we found that learning was present in gestural interfaces

in the form of performance improvements between sessions. This finding is contra-

dicted by current literature that has only been evaluated in one session (Brown et al.,

2014, Sambrooks and Wilkinson, 2013, Adhikarla et al., 2015). Given the current

literature’s state we consider that these learning effects should be reported in our
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next study. This meant that we would have to incorporate multiple consecutive ex-

periments using a longitudinal design in the full study. Since we did not find many

improvements after day 3, we chose to use 3 consecutive sessions to be able to identify

learning effects, but also minimize the cost of the experiment. We also identified that

the target amplitude parameters {256, 512, 1024, 1408} and target widths {64, 96,

128} were suitable for user’s to obtain and for our Fitts’ regression models to achieve

a reasonable ID range to be used in the regression.
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CHAPTER FOUR

Methods

4.1 Interaction Design

The interactions in this experiment were used specifically to test the hypothe-

ses of this research. Therefore, we used an unmodeled interaction described by Brown

et al (Brown et al., 2014), a simple model introduced by Jude et al (Jude et al.,

2014b), and a more complex model which we introduced for this experiment. We also

built 3 angled stands (30, 36, 44◦) with Legos, to hold the Leap on a tilted incline as

recommended by the previous authors (Jude et al., 2014b).

4.1.1 Unmodeled Gestural Interaction

Figure 4.1. A front view of the Unmodeled (blue plane) and Hyperplanar (grey plane)
interaction space. Both axis denotes interaction space measured in millimeters.
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In this interaction, the space is constructed using two diagonal points from

the calibration as shown in Figure 4.1. This model was replicated from (Brown et al.,

2014), which drops the Z dimension and only uses X and Y for input into the source

matrix. The points were chosen such that each screen boundary could be obtained

without lifting the elbows from the table. We identify this approach as the Unmodeled

interaction.

4.1.2 Rested & Calibrated Interaction – Hyperplanar Model

Figure 4.2. A top view of the Unmodeled (red plane) and Hyperplanar (grey hyper-
plane) with tracked hand movement (black points). Both axes denote a dimension of
the interaction space measured in millimeters.

The intuition behind this interaction is that the unmodeled interaction creates

a space that does not map well to the interaction space. The example in figure 4.1

shows how it could be difficult for the user to hit the bottom left of the interaction
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space. By first modeling the interaction space, this interaction allows the users to be

able to easily reach all corners of the screen from a rested position.

This interaction first constructed by Jude et al. and was referred to as a

“planar” interaction (Jude et al., 2014b). However, we believe the term “hyperplanar”

is more descriptive as as there is no guarantee that the 4 calibrated points in 3D lie

on the same plane. This is better illustrated in figure 4.2.

We also note that despite the Hyperplanar approach being closer to the inter-

action space, it is not as accurate as it could be. The black dots in figure 4.2 show the

actual interaction, which indicates some information loss despite all 3 dimensions (X,

Y, Z) in cartessian space used to build the model. The original author’s description

of this model is given in Appendix B.

4.1.3 Rested & Calibrated Interaction – Spherical Model

The Spherical model introduced here is based on two intuitions. The first

is that the movement of the hand from a rested position forms a part of a sphere,

as shown in Figure 4.3. And second, that controlling an inherently 2-dimensional

interface such as a monitor will be easier if the input itself is based on 2 dimensions.

We built the Spherical model on both of these intuitions. The interaction itself uses

a spherical coordinate system with the azimuth (θ), mapped to medial and lateral

shoulder rotation, and zenith (φ), mapped to elbow flexion and extension (McLester

and Pierre, 2007), of the forearm as input, making it 2-dimensional. This translation

equates to a feature reduction from 3 features (X, Y, Z) to 2 (θ, φ) and a constant

radius (r) with no loss of information. In contrast, other interactions that perform a

reduction in dimensions generally do so by eliminating one dimension, generally Z or

depth.

The feature reduction from 3 free features to 2 effectively removes one linearly

independent column from the source and destination matrix representations. Losing

this column causes a loss of precision as each matrix is now further away from full
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Figure 4.3. L-R: (1) Front view of Spherical model, (2) side view of the Spherical
interaction, (3) plotting the angles (θ, φ) which is essentially a quadrangle.

rank (Nagy et al., 1996) when compared to the Hyperplanar implementation. To

account for this we incorporate a plane-to-plane homography, otherwise known as a

projective transformation with homogeneous estimation, which projects a 3rd dimen-

sion into a 2D image. We use this 3rd dimension to preserve rank during the trans-

formation. The transformation also provides both determined and overly-determined

solutions with a bounded error (Criminisi et al., 1999).

Although the input required is the azimuth (θ) and zenith (φ) of the forearm,

these values were not directly obtainable from our input device, the Leap Motion

controller. We did not consider using a different device that did have these values as

it would be an unfair experiment, where there would be interaction with the input

device. We therefore used the provided input by the Leap Motion controller, which

is the X, Y, and Z positions of the palm in Cartesian coordinates, and transformed

it to corresponding θ, φ and a static r. We measured the length of participants’

forearms as radius r. The center of the interaction sphere is fixed and marked on

the table surface, and the users are expected to position their elbow on this exact

point throughout the experiment. Given these inputs, we were able to translate the

coordinates in X, Y and Z to θ and φ. We then used θ and φ as input and the screen

coordinates x and y as the intended output. We observed that using this coordinate

system produces a model that closer represents the user’s input, including being able
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to account for the curvature in the input, which was not achievable in the Hyperplanar

model.

4.2 Experimental Design

4.2.1 Participants

15 participants (M=9, F=6) between 19-27 years of age (mean = 20.6) took

part in the experiment. All participants were students from a local university. Two

participants self-reported as ambidextrous, but all elected to use their right hand for

all interactions. All but 3 participants had used gestural interfaces before. Previously

used gestural interfaces were limited to the Wii, Kinect, and/or PlayStation Move.

Participants were compensated for their time.

4.2.2 Apparatus

All testing was conducted in a lab setting on a 30-inch Dell monitor set to

2560 x 1600 resolution. The Leap Motion Controller was used to recognize the hand

position for the gestural navigation. The computer used an Intel i7-3820 CPU with

8 cores clocked at 3.6 GHz, with 32 GB RAM and ran Windows 7. The 36 degree

stand was used in all cases except for 2 participants with longer forearms, for which

the 30 degree stand was chosen.

4.2.3 Task

The ISO 9241-9 ring-of-circles task implementation from (Wobbrock et al.,

2011) was used to evaluate the performance of each interaction. This software was

modified such that a 250 millisecond hover is used for selection. The task utilized 4

amplitudes {256, 512, 1024, 1408} and 3 target widths {64, 96, 128 } for 10 unique

IDs ranging from 1.52-4.58 bits. Target amplitude and widths were identified from

current literature (Brown et al., 2014) and extensive piloting. As we were using a

large display, piloting revealed that a target width of 64px was the smallest target

33



that was able to be selected by participants. The first 3 trials of each condition were

taken as practice since this was the default in the software used.

4.2.4 Design

We used a 3x3x3 balanced Latin cube design with 3 interaction styles over 3

days and 3 orders. Each day included 1 session which lasted roughly 1 hour and was

split into 2 rounds. In each round, participants would use all of the three interactions

based on the Latin cube ordering. Participants were not told that they were using

different interaction models.

4.2.5 Procedure

Participants were required to watch a video detailing the interaction and cal-

ibration method before they began trials on the first day. After the video, the cal-

ibration stage would begin. Once calibrated, participants were asked to test the

interaction. A recalibration was allowed until they were pleased with the interaction.

After which, participants were asked to watch a video detailing the ring-of-circles

task. They then performed the task using the three gestural models. Participants

were encouraged to take notes on the interaction they just used after each task, for

ranking purposes. This was repeated until all 6 tasks (3 interactions × 2 rounds) were

evaluated. Participants were then asked to rank the interactions from best to worst.

These steps were repeated exactly every day of the experiment, with the videos only

shown on day 1.

Only 1 calibration (see Figure 2.1) was performed each day at the beginning

of the experiment to control for differing calibrations. Each model was then dynami-

cally computed from the original source input points. All gestural interactions were

performed with an off-the-shelf Leap Motion controller.
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CHAPTER FIVE

Results

Analysis of our results was done to investigate 5 main aspects of each interac-

tion: (1) Daily Improvement, (2) Conformance to the Fitts’ Model, (3) Performance,

(4) Accuracy, and (5) Subjective User Feedback. Metrics from (2), (3), and (4) were

measured per trial across all participants per day. In each ring-of-circles task there

were 23 trials (3 practice) in each of the 4 amplitude × 3 width conditions, which

meant that there was a total of 20× 4× 3 = 240 trials per task per participant. We

incorporated 2 rounds with 15 participants, for a total of 240 × 2 rounds ×15 par-

ticipants = 7200 trials per interaction per day. In each analysis, the assumption of

Sphericity was violated, thus a Greenhouse-Geisser (pGG) epsilon correction was used

to determine significance. Post-hoc tests were administered if the epsilon corrected

p-value was less than 0.05 (pGG < .05) using the MATLAB ‘Bonferroni Method’,

which uses critical values from the t-distribution after an adjustment for multiple

comparisons is made. We report the effect size of the Repeated Measures ANOVA as

η2p which is interpreted (0.01 = small, 0.06 = medium, 0.14 = large) as determined

by Cohen (Cohen, 1988, Richardson, 2011). In this design η2p is equivalent to η2G since

each regression only considers one manipulated factor and the participants (Bake-

man, 2005). We report pairwise effect size, as measured by Cohen’s d and fall back

on Cohen’s own guidelines for practical significance (0.2 = small, 0.5 = medium, 0.8

= large), as there are no domain-specific guidelines for pointing device evaluation.

5.1 Daily Improvement

We measure daily improvement as a difference in bivariate throughput be-

tween days in order to check for learning effects. These values are shown in Ta-

ble 5.1, and all interactions were found to have statistical difference between days.
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Table 5.1. Mean (x̄) and standard deviation (σ) of bivariate throughput for each
device across days 1-3. The corresponding d values indicate difference in

performance from the previous day measured with Cohen’s d.

Unmodeled Hyperplanar Spherical

Day x̄ σ d x̄ σ d x̄ σ d

1 2.35 .38 - 2.44 .43 - 2.32 .40 -
2 2.69 .48 .77 2.74 .40 .74 2.61 .39 .74
3 2.79 .44 .23 2.82 .41 .18 2.67 .38 .15

The Unmodeled interaction showed a significant difference in performance between

days (F (2, 14370) = 3573, pGG < .001, η2p = 0.33), as did the Hyperplanar inter-

action (F (2, 14370) = 2786, pGG < .001, η2p = 0.28) and the Spherical interaction

(F (2, 14370) = 2437, pGG < .001, η2p = 0.25). The post-hoc test showed all interac-

tions demonstrated significance between all days (p <.001 ).

Due to these differences, we perform the full analysis of the interactions for

performance, accuracy, and subjective feedback on data from day 3 only, while days

1 and 2 are considered practice. Therefore, all metrics reported in this chapter are

from day 3 of the experiment, unless stated otherwise.

5.2 Fitts’ Regression

Table 5.2. Metrics for Fitts’ regression of each interaction.

Metric Unmodeled Hyperplanar Spherical

Intercept 585.9 79.9 16.3
Slope 155.5 295.7 331.5
R2 0.018 0.738 0.758
R 0.418 0.859 0.870

A Fitts’ law model for each interaction was built by regressing the mean move-

ment times (MT) on the corresponding effective Index of Difficulty conditions. The

result is a regression equation in the form of Equation 2.7.

36



1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
400

600

800

1000

1200

1400

1600

1800

2000

2200

Unmodeled (R
2
 = 0.175)

IDe

M
T

e

 

Data

Fit

Confidence bounds

1.5 2 2.5 3 3.5 4 4.5 5 5.5
400

600

800

1000

1200

1400

1600

1800

2000

2200

Hyperplanar (R
2
 = 0.738)

IDe

M
T

e

 
1.5 2 2.5 3 3.5 4 4.5 5 5.5

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

Spherical (R
2
 = 0.758)

IDe

M
T

e

 

Figure 5.1. Mean movement time of all participants from day 3 as a function of
effective Index of Difficulty (IDe), with computed Fitts’ regression lines

The results for each day and interaction are shown in Table 5.2, and in Figures

A.1, A.2, A.3, while a visualization of the data from day 3 can be seen in figure 5.1.

The plots show that the modeled approaches are better explained by Fitts’ law than

the unmodeled approach. Additionally, Table A.3 shows that the two modeled ap-

proaches consistently improve their fit between days, while the unmodeled approach

does not.

5.3 Performance

The speed (specifically the Movement Time) of each interaction is considered a

naive metric (Soukoreff and MacKenzie, 2004), but is reported nonetheless as we con-

sider it a good description of each interaction. A better metric to use is throughput,

and specifically bivariate throughput (Wobbrock et al., 2011).

5.3.1 Movement Time

Table 5.3. Mean and standard deviation of movement time per trial for each
interaction in milliseconds. Smaller values are better.

Unmodeled Hyperplanar Spherical

Day Mean Stdev Mean Stdev Mean Stdev

3 1073.6 495.39 1063.4 481.89 1110.4 538.24

A repeated measures ANOVA showed a significant difference in movement

time, which was adjusted for dwell time, between interactions (F (2, 14370) = 18.619,
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pGG < .001, η2p = 0.003). The post-hoc test found that the Unmodeled interaction

had significantly lower movement time than the Spherical interaction (p <.001, d =

0.07). The post-hoc test also showed that Hyperplanar interaction had significantly

lower movement time than the Spherical (p <.001 d = 0.09).

5.3.2 Bivariate Throughput

A repeated measures ANOVA showed a significant difference in performance

between interactions measured with bivariate throughput (F (2, 14370) = 369.81, pGG < .001,

η2p = 0.05). A post-hoc test showed the Hyperplanar interaction had higher bivariate

throughput than both the Unmodeled (p <.005, d = .05) and Spherical (p <.001, d

= 0.35) interactions. The post-hoc test also showed that the Unmodeled interaction

had higher bivariate throughput than the Spherical interaction (p <.001, d = 0.29).

5.4 Accuracy Measures

We report accuracy measures based on the metrics introduced by Macken-

zie (MacKenzie et al., 2001) consisting of Target Re-entry (TRE), Target Axis Cross-

ing (TAC), Orthogonal Direction Change (ODC), Movement Variability (MV), Move-

ment Error (ME) and Movement Offset (MO) seen in Table 5.4. These measures were

taken directly from the FittsStudy software (Wobbrock et al., 2011), except for TRE,

as the software reports target entries (TE) instead, where TRE=TE-1. A lower num-

ber is better for all metrics except MO, where a closer distance to 0 is better.

5.4.1 Target Entries

The Unmodeled interaction had the best TE score, followed by the Hyperplanar

interaction. A repeated measures ANOVA showed a significant difference in the

number of Target Entries between interactions (F (2, 14370) = 27.20, pGG < .001, η2p =

0.004). The post-hoc test identified a statistical significance between the Unmodeled

and Spherical interactions (p <.001, d = 0.11), and between the Hyperplanar and

Spherical interactions (p <.001, d = 0.10).
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Table 5.4. Mean and standard deviation of accuracy measures metrics taken on day
3 of the experiment. Bold text denotes a result of statistical significance

Unmodeled Hyperplanar Spherical

Metric Mean Stdev Mean Stdev Mean Stdev

TE 1.27 0.68 1.28 0.70 1.35 0.78
TAC 1.45 1.20 1.49 1.17 1.55 1.25
MDC 2.77 1.69 2.78 1.66 2.87 1.79
ODC 1.08 1.30 1.05 1.25 1.19 1.38
MV 23.50 20.73 22.94 18.85 23.83 20.06
ME 26.70 20.42 25.72 18.67 26.42 19.26
MO -7.81 28.32 4.51 26.57 2.04 27.25

5.4.2 Task Axis Crosses

The Unmodeled interaction had the best TAC score, followed by the Hyper-

planar interaction. A repeated measures ANOVA showed this to be statistically sig-

nificant (F (2, 14370) = 11.054, pGG < .001, η2p = 0.002). The post-hoc test identified

a significant difference between the Unmodeled and Spherical interactions (p <.001,

d =0.08). The Hyperplanar interaction was also found to be significantly different

from the Spherical interaction (p <.05, d = 0.04).

5.4.3 Movement Direction Change

The Unmodeled interaction had the best MDC score, followed by the Hy-

perplanar interaction. A repeated measures ANOVA showed this to be statistically

significant (F (2, 14370) = 8.262, pGG < .001, η2p = 0.001). Post-hoc tests showed a

significant difference between the Unmodeled and Spherical interactions (p <.005, d

= 0.06). The post-hoc test also identified a significant difference between the Hyper-

planar and Spherical interactions (p <.005, d =0.06).

5.4.4 Orthogonal Direction Change

The Hyperplanar interaction had the best ODC score, followed by the Un-

modeled interaction. A repeated measures ANOVA showed this to be statistically

significant (F (2, 14370) = 23.786, pGG < .001, η2p = 0.003). A post-hoc test showed a
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significant difference between the Unmodeled and Spherical interactions (p <.001, d

= 0.08), and between the Hyperplanar and Spherical interactions (p <.001, d =0.10).

5.4.5 Movement Variability

The Hyperplanar interaction had the best MV score, followed by the Un-

modeled interaction. A repeated measures ANOVA showed a significant difference

between interactions (F (2, 14370) = 3.918, pGG < .05, η2p = 0.0005). A post-hoc tests

showed a significant difference between the Hyperplanar and Spherical interactions

(p <.05, d = 0.05).

5.4.6 Movement Error

The Hyperplanar interaction had the best ME score, followed by the Spherical

interaction. A repeated measures ANOVA showed this to be statistically significant

(F (2, 14370) = 5.161, pGG < .01, η2p = 0.0007). The post-hoc test identified a

significant difference between the Hyperplanar and Unmodeled interactions (p <.005,

d = 0.05).

5.4.7 Movement Offset

The Spherical interaction had the best MO score, followed by the Hyperplanar

interaction. A repeated measures ANOVA showed this to be statistically significant

(F (2, 14370) = 424.97, pGG < .001, η2p = 0.06). The post-hoc test identified a

significant difference between the Spherical and Hyperplanar interactions (p <.001, d

=0.09), and between the Spherical and Unmodeled interactions (p <.001, d= 0.36).

The post-hoc test also showed that the Hyperplanar interaction was significantly

different than the Unmodeled interaction (p <.001, d =0.45).
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5.5 Subjective User Feedback

5.5.1 Preference

Participants were asked to rank the interactions by preference on a scale of

1-6, with 1 being the best interaction and 6 being the worst. We combined the

rounds that used the same interaction. From these rankings we can order the in-

teractions by most preferred to least as such: 1) Hyperplanar, 2) Unmodeled, 3)

Spherical, with their respective scores of 2.57, 3.60, 4.33. A Friedman test showed

that there was a statistically significant difference in preference rank between the in-

teractions (χ2(2) = 13.505, p = 0.0012). Post hoc analysis with Wilcoxon signed-rank

tests was conducted with a Bonferroni correction applied. The only statistically sig-

nificance found was that the Hyperplanar interaction was significantly preferred over

the Spherical (Z = −3.524, p < .001, r = .23).

5.5.2 Usability

Table 5.5. Mean reported usability & comfort metrics per interaction (1 = Most
Negative, 5 = Most Positive).

Metric Unmodeled Hyperplanar Spherical

Operation smoothness 4.13 4.27 3.97
Operational effort 4.20 4.30 4.03

Accuracy 3.82 4.27 3.80
Operation speed 4.27 4.33 4.23
General comfort 4.27 4.40 4.07
Overall operation 4.17 4.33 4.03

Participants were asked to fill out 5-point independent rating Likert scale

questions from Annex C. of the ISO 9241-9 which evaluated usability and comfort

of the interaction immediately after using the interaction. Table 5.5 depicts the

questions and the mean reported ratings about the usability the interaction. The
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reported ratings show reasonably high usability in all interactions. Friedman tests

showed no statistical significance between interactions.

5.5.3 Fatigue

Table 5.6. Mean reported fatigue per interaction (1 = Extreme, 5 = None)

Metric Unmodeled Hyperplanar Spherical

Finger fatigue 4.53 4.50 4.50
Wrist fatigue 4.37 4.37 4.17
Arm fatigue 4.33 4.33 4.33

Shoulder fatigue 4.57 4.53 4.40
Neck fatigue 4.87 4.87 4.87

Participants filled out a 5-point independent rating Likert scale questions from

ISO 9241-9 Annex C to collect data in regards to fatigue. Table 5.6 depicts the ques-

tions and the mean reported ratings per interaction. The reported ratings demon-

strate a minor presence of fatigue in each interaction. Friedman tests showed no

statistical significance between interactions.

5.5.4 Borg Scale

Table 5.7. Mean reported effort per interaction (0 = Nothing at all, 0.5 = very very
weak (just noticable), 1 = very weak, ..., 10 very, very strong)

Metric Unmodeled Hyperplanar Spherical

Arm Effort 1.20 1.37 1.27
Shoulder Effort 0.95 1.02 1.05

Neck Effort 0.15 0.20 0.27

Previous work in gestures encouraged the use of the Borg Scale for arm, shoul-

der, and neck effort (Hincapié-Ramos et al., 2014), and were therefore included in our

subjective assessment. We used the Borg scale from ISO 9241-9 Annex C. Table 5.7

shows the questions and the mean reported ratings for each interaction. The table
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demonstrates that minimal effort was required when using the interactions. Friedman

tests showed no statistical significance between interactions.
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CHAPTER SIX

Analysis

The goal of this study was to evaluate the hypotheses using the metrics from

the previous section. We report our findings of the hypotheses by splitting hypothesis

H2 to better illustrate the results based on each of the interactions.

H1 Users will learn gestural interaction over time, allowing for an improvement in

performance.

We accept H1 as the performance improvement analysis showed a significant

improvement in all models between each day, which is indicative of learning. Per-

formance improvement as measured by Cohen’s d also reinforces, and describes this

finding by showing a medium to large improvement from day 1 to day 2, and a small

improvement from day 2 to day 3.

H2a An interaction with a simple model of the interaction space will perform better

than an interaction which does not model the space.

We accept H2a. This decision was based on a comparison of performance,

accuracy and Fitts’ law conformance between the Hyperplanar and Unmodeled inter-

action.

In terms of performance, The Hyperplanar interaction obtained statistically

better bivariate throughput than the Unmodeled interaction. However, this improve-

ment was minor and not practically significant based on Cohen’s interpretation.

With respect to accuracy, the Hyperplanar interaction obtained statistically

better Movement Offset than the Unmodeled interaction, which was found to be a

small-medium effect as defined by Cohen. It also had statistically better Movement

Error, although the practical significance is minor.

In terms of Fitts’ conformance, the Hyperplanar interaction demonstrated a

strong linear correlation (R) between Movement Time and IDe, had an intercept that
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was within the ideal range, and a higher goodness of fit (R2). The Unmodeled interac-

tion, on the other hand, demonstrated a weak linear correlation (R), an intercept that

was not within the ideal range, and a lower R2. It can also be seen in Table A.3 that

the Hyperplanar interaction demonstrated an improvement over time with regards to

Fitts’ law, while the Unmodeled interaction did not.

Since the Hyperplanar interaction was found to be as good, or better, in the

individual metrics of performance, accuracy, and predictability as measured by Fitts’

conformance, we consider the Hyperplanar interaction as a whole to obtain better

results than the Unmodeled interaction.

H2b An interaction which models the interaction space using a sphere will perform

better than an interaction which uses a hyperplane.

We fail to reject the null hypothesis in the case of H2b. To evaluate this

hypothesis we compared the Hyperplanar and Spherical interactions using each of

the collected metrics: performance, accuracy, and Fitts’ conformance.

In terms of performance, the Hyperplanar interaction obtained statistically

better bivariate throughput than the Spherical interaction, which was found to be a

small-medium effect as defined by Cohen.

In terms of accuracy, Hyperplanar interaction obtained statistically better ac-

curacy than the Spherical interaction in 5 of the 7 accuracy metrics. None are con-

sidered to be practically significant. The Spherical interaction obtained significantly

better Movement Offset than the Hyperplanar interaction, but was not practically

significant.

Fitts’ regressions demonstrated a strong linear correlation, an intercept within

the ideal range, and a relatively high ’goodness of fit’ in both the Hyperplanar, and

Spherical interactions. However the Spherical interaction was found to have a higher

correlation, goodness of fit, and an intercept that was closer to the ideal value when

compared to the Hyperplanar interaction.
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In addition to the aforementioned quantitative metrics, users also showed pref-

erence towards the Hyperplanar interaction which was shown to be significant. Taking

all these into consideration, we cannot conclude that the Spherical interaction is bet-

ter than the Hyperplanar, thus we fail to reject the null hypothesis.
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CHAPTER SEVEN

Discussion

7.1 Discussion and Future Works

Over the course of this work, we found performance improvements between

all 3 days of the study which we believe is caused by participants learning the in-

teraction. While this may seem trivially true, current literature has in some cases

failed to identify learning in these gestural interfaces (Brown et al., 2014, Sambrooks

and Wilkinson, 2013, Adhikarla et al., 2015). We believe this difference is due to

our experimental design, which used a longitudinal study and random-order practice.

With the inclusion of these experimental design parameters performance improve-

ments were found in both the pilot and main study.

We found that fatigue and effort were reported to be minimal from the rested

position, as demonstrated in Table 5.6 and Table 5.7. This finding further reinforces

current literature that has stated that resting the elbow during interaction reduces

fatigue (Freeman et al., 2012, Segen and Kumar, 2000, Brown et al., 2014, Jude

et al., 2014b). This finding suggests that fatigue is not as large of a problem in the

current state of gestural interaction, as previous research has stated that fatigue was

one of the main problems with gestural interaction (Segen and Kumar, 2000).

Additionally, modeling the interaction space resulted in an interaction which

conformed to Fitts’ law. Conversely, we found that an interaction which does not

model the input space was not well explained by Fitts’ law, nor was it within the

ideal intercept range in each of the 3 days. This means that the relationship between

movement time and Index of Difficulty (IDe) is not consistently predictable in the

unmodeled approach, and offers less value to those designing interfaces (Soukoreff and

MacKenzie, 2004). We believe this poor conformance may be attributed to the little

incorporation of the actual biomechanical motion in the unmodeled approach. The
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approach used to detect these results was in line with the current standard’s encour-

agement to regress the participant’s mean movement time (MT) over their respective

effective IDe, as opposed to regressing over mean of means per IDe (Soukoreff and

MacKenzie, 2004).

We found that the interaction which used a simple model was significantly bet-

ter than the unmodeled interaction in terms of both performance and accuracy. Only

the latter was found to be practically significant as interpreted by Cohen. However,

the interaction whose model was more complex in terms of the input space performed

significantly worse than the other two models despite its mapping to the biomechanics

of the body. This may be caused by the strict assumptions of the model. The two

angles, azimuthal (θ) and elevation (φ), were inferred from the previously measured

elbow position and the palm position provided by the Leap Motion. Therefore, this

model requires a higher tracking precision in order to perform optimally.

Upon review of the notes taken during the experiment, which included partici-

pants’ feedback, we identified a few issues with the Spherical interaction. A recurring

issue was with the static elbow placement. Participants had difficulty finding their

calibrated elbow position even when a marker was present. We also found that dur-

ing the pilot, participants mistakenly knocked the tracker off of its stand during their

note-taking between rounds. This did not seem to significantly penalize the more

simple models but caused large cursor jitters during the Spherical interaction. We

attempted to solve this issue by building a new stand using Lego blocks which al-

lowed the tracker to tightly fit into place. While this increased stability, the stand

itself was still movable when hit. We posit that a better interaction can be built using

a device which directly tracks the arm in terms of relative angles. The Myo Armband

is promising example of a new device that tracks these angles directly, and we plan

to use in future work. Another option would be to allow for dynamic elbow tracking

in which both the hand and the elbow are dynamically tracked so that the elbow
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does not need to be in a fixed position. We believe that the better fit offered by the

Spherical approach could yield positive results if these considerations are addressed.

While we provided overall effect size using η2p, and pairwise effect sizes for

performance and accuracy metrics as measured by Cohen’s d, interpreting these effect

sizes however proved to be difficult. These interpretations are meant to be domain-

specific (Morris and Fritz, 2013), but no such guidelines exist within the domain

of pointing device evaluation. We had to therefore fallback on the interpretations

provided by Cohen, which are meant to be used as a last resort (Lakens, 2013). By

providing the effect size of our study, we aim to provide better context for future

research, and to contribute towards establishing guidelines for interpreting effect size

within this domain.

7.2 Conclusion

In this study we used a longitudinal design to evaluate the two hypotheses.

We learned that modeling the interaction space results in an interaction which can be

explained by Fitts’ law. Conversely, we learned that an unmodeled approach conforms

weakly to Fitts’ law. We also learned that a simple model of the user’s interaction

space resulted an interaction that was as fast and more accurate than an interaction

which did not model the user’s interaction space. Furthermore, we introduced a more

complex model of the interaction space which maps the arm movement from a rested

position to the 2D screen with no loss of information using the forearm angles as

input. This more complex model did not exhibit better performance nor accuracy

than the simpler model. We posit that this is due to the interaction having too

many constraints and being unsuitable for use with an input device which uses the

hand position as input. Finally, we showed that gestural interaction demonstrated

performance improvements over multiple sessions, from which we infer learning.
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APPENDIX A

Tables, Figures and Transformations

A.1 Tables

Table A.1. Means and standard deviation of throughput for each device per day

Source
Day 1 Day 2 Day 3 Day 4 Day 5

Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev

Planar 2.68 0.80 2.96 0.92 3.20 0.89 3.26 0.94 3.22 0.89
Spherical 2.63 0.84 2.76 0.84 3.00 0.85 3.04 0.88 3.15 0.89
De Facto Rested 2.50 1.79 2.49 0.83 2.89 0.87 3.22 0.94 3.15 0.93
De Facto Unrested 2.73 0.88 3.01 0.90 3.10 0.85 3.18 0.94 3.17 0.90
Touchpad 3.59 1.24 3.67 1.15 3.77 1.27 3.79 1.13 3.70 1.15

Table A.2. Means and standard deviation per trial of each accuracy metric on day 5

Source
Movement Error Movment Offset Movement Variability Target Reentry

Mean Stdev Mean Stdev Mean Stdev Mean Stdev

Planar 66.06 48.94 -3.81 75.93 51.12 40.59 0.214 0.457
Spherical 61.50 43.14 1.02 69.23 48.48 34.45 0.263 0.540
De Facto Rested 68.47 50.88 1.82 76.94 54.65 43.35 0.311 0.516
De Facto Unrested 63.32 48.32 1.51 74.44 48.99 37.58 0.303 0.556
Touchpad 53.96 57.36 6.44 70.66 44.94 52.73 0.177 0.404
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Table A.3. Intercept, slope, coefficient of determination (R2) and correlation coefficient (R) of all 3 interactions over all 3 days.

Unmodeled Hyperplanar Spherical

Intercept Slope R2 R Intercept Slope R2 R Intercept Slope R2 R

1 453.05 248.18 0.31 0.56 113.29 334.08 0.63 0.79 18.97 381.91 0.65 0.81
2 785.04 108.17 0.07 0.26 59.47 308.46 0.73 0.86 38.62 332.73 0.71 0.84
3 585.86 155.53 0.18 0.42 79.86 295.67 0.74 0.86 16.30 331.50 0.76 0.87

A.2 Figures
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Figure A.1. Mean movement time of all participants from day 1 as a function of effective Index of Difficulty (IDe), with
computed Fitts’s regression lines
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Figure A.2. Mean movement time of all participants from day 2 as a function of effective Index of Difficulty (IDe), with
computed Fitts’s regression lines

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
400

600

800

1000

1200

1400

1600

1800

2000

2200

Unmodeled (R
2
 = 0.175)

IDe

M
T

e

 

Data

Fit

Confidence bounds

1.5 2 2.5 3 3.5 4 4.5 5 5.5
400

600

800

1000

1200

1400

1600

1800

2000

2200

Hyperplanar (R
2
 = 0.738)

IDe

M
T

e

 
1.5 2 2.5 3 3.5 4 4.5 5 5.5

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

Spherical (R
2
 = 0.758)

IDe

M
T

e

 

Figure A.3. Mean movement time of all participants from day 3 as a function of effective Index of Difficulty (IDe), with
computed Fitts’s regression lines
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A.3 Transformation

convertToSphere(ĥx, ĥy, ĥz, R )

ĥ = [ĥx, ĥy, ĥz], estimated hand positions from the leap controller

e = [ex, ey, ez], measured elbow position from the leap controller

radius = R, where R is equal to the length of the arm from elbow to palm.

V = ĥ− e

θ = arccos (Vy/R)

φ = arctan 2(Vz, Vx) ≈ arctan (Vz
Vx

) but with the correct quadrant computed

end

generateProjectiveTransformation()

Vθ = [θ1, θ2, θ3, θ4] , Vφ = [φ1, φ2, φ3, φ4] Xdest = [x1, x2, x3, x4], Ydest = [y1, y2, y3, y4]

B =



θ1 φ1 1 0 0 0 −x1 ∗ θ1 −x1 ∗ φ1

0 0 0 θ1 φ1 1 −y1 ∗ θ1 −y1 ∗ φ1

θ2 φ2 1 0 0 0 −x2 ∗ θ2 −x2 ∗ φ2

0 0 0 θ2 φ2 1 −y2 ∗ θ2 −y2 ∗ φ2

θ3 φ3 1 0 0 0 −x3 ∗ θ3 −x3 ∗ φ3

0 0 0 θ3 φ3 1 −y3 ∗ θ3 −y3 ∗ φ3

θ4 φ4 1 0 0 0 −x4 ∗ θ4 −x4 ∗ φ4

0 0 0 θ4 φ4 1 −y4 ∗ θ4 −y4 ∗ φ4
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A =



x1

y1

x2

x2

x3

y3

x4

y4


Aλ = B, solved using SVD

A = [λ(1 : 6), 0, 0, 1]

C = [λ(7 : 8), 1]

end

computePoint()

[θ, φ] =convertToSphere(ĥx, ĥy, ĥz, R)

V = [θ, φ, 1]

left = A ∗ V ′ , A is a global matrix solved above

rightScalar = C ∗ V ′, C is a global matrix also solved for above

projected = left/rightScalar

end
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APPENDIX B

Original Hyperplanar Description

For additional information, I will include the original description of the Hyper-

planar (Planar) interaction model. The description that follows was taken directly

from Alvin Jude’s thesis titled Giving the Users a Hand: Towards Touchless Hand

Gestures for the Desktop with permission (Jude, 2014).

B.1 Solution Design

B.1.1 Problem

The first problem with gestural interaction, is the position of the arm. A

common method prescribed for gestural interaction involves the elbow being elevated

as in figure B.1.

This introduces fatigue very quickly, approximately 90 seconds as per our

study. This is a problem in itself, but even more so on the desktop where prolonged

interaction is expected.

Figure B.1. Commonly used gestural interaction method.
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Figure B.2. Comparison of the actual and calibrated space.

B.1.2 Solution

A simple solution would be to allow the user to rest their elbow, but this then

creates another problem as the interaction space is no longer a rectangle, as the user

will not be able to reach the far edge of the screen. To solve for this, we create a model

of the users interaction space, or specifically we map the regions that are reachable

by the user without lifting their elbow.

In our case we build a model through a calibration phase. The software directs

the user to move their arm to the 4 corners of the screen and builds a suitable model

which is a flat quadrilateral plane.

The quadilateral plane is shown in figure B.2 The top row is a front view while

the bottom view is a diagonal view of the interaction space. The third column illus-

trates the difference between the two, and we see that the most amount of difference

is in the center and the bottom of the model.

The main algorithm for building the interaction is in the matrix multipli-

cation. It has been shown that Source × Transformation = Destination, and the
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Transformation matrix is calculated during the calibration stage. The minimum nec-

essary variables for the Source matrix are four coordinates in three dimensions, which

means the smallest matrix that can be built is a 4 × 3 matrix:

Source =



xs1 ys1 zs1

xs2 ys2 zs2

xs3 ys3 zs3

xs4 ys4 zs4


Likewise, the minimum number of variables needed in the Destination matrix are

three coordinates in two dimensions:

Destination =



xs1 ys1

xs2 ys2

xs3 ys3

xs4 ys4


Based on the information above, there are three ways in which we can solve

for Transformation:

The main algorithm for building the interaction is in the matrix multipli-

cation. It has been shown that Source × Transformation = Destination, and the

Transformation matrix is calculated during the calibration stage. The minimum nec-

essary variables for the Source matrix are four coordinates in three dimensions, which

means the smallest matrix that can be built is a 4 × 3 matrix:

Source =



xs1 ys1 zs1

xs2 ys2 zs2

xs3 ys3 zs3

xs4 ys4 zs4


Likewise, the minimum number of variables needed in the Destination matrix are

three coordinates in two dimensions:
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Destination =



xs1 ys1

xs2 ys2

xs3 ys3

xs4 ys4


Based on the information above, there are three ways in which we can solve

for Transformation with a few methods of linear solvers:

(1) One-padding and inverse – This is the implementation described in Chapter

Seven. It is usable primarily as there is only one column that is padded.

This will not work, however if the Source matrix only uses the X and Y

coordinates, ignoring the Z and therefore requiring 2 columns to be padded

as this will cause the matrix to be invertible.

(2) Pseudo inverse – Does not require a square matrix, thus allowing inversion

without first performing any padding. This method yields a Transformation

matrix that is very close to the former method, but there will bi loss of

significant bits. As a result, the Transformation matrix will not be accurate.

Our initial tests show that this causes the interaction to be approximately

100 pixels off.

(3) Right-hand division – This method is available in Matlab (denoted by A\B)

and a number of implementations of Matrix arithmetic libraries, including

EJML which is used in this study. This solution algorithmically selects the

ideal algorithm to solve the system of linear equations. This method is not

used as the exact implementation is not clearly documented, making it diffi-

cult to fully understand the exact method in which the solvers work.
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