
ABSTRACT

Topics in Bayesian Models with Ordered Parameters: Response Misclassification,
Covariate Misclassification, and Sample Size Determination

Kristen M. Tecson, Ph.D.

Chairperson: John W. Seaman, Jr.

Researchers often analyze data assuming models with constrained parameters.

Order constrained parameters are of particular interest. In this dissertation, we ex-

amine Bayesian models which incorporate ordered parameters. We investigate or-

dered differential response misclassification in a logistic regression model and provide

an adjustment for it using a conditional prior structure. We examine a parametric

Bayesian Weibull proportional hazards model with ordered covariate misclassification

and provide an adjustment for it. Finally, we consider informative hypotheses (Hoi-

jtink, 2012) and perform sample size determination for this problem using the two

priors approach of Brutti et al. (2008).
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CHAPTER ONE

Introduction

Order constrained models have interesting properties in both hypothesis test-

ing and estimation, across a broad range of applications. These models have been

thoroughly studied in both the frequentist and Bayesian literature. For an overview,

see, for example, Robertson et al. (1988), Dunson and Neelon (2003), or Silvapulle

and Sen (2004).

The Bayesian approach to models with constrained parameters affords the in-

corporation of prior information and ease of inference for functions of parameters.

Importantly, the latter does not require recourse to large sample approximations

typically needed in frequentist inference. In this dissertation, we utilize Bayesian

methods to explore special topics in models with order restrictions on parameters.

Specifically, we examine ordered differential response misclassification in logistic re-

gression, a Weibull proportional hazards model with a covariate subject to ordered

misclassification, and sample size determination under “informative hypotheses” (Hoi-

jtink, 2012). The dissertation is organized as follows.

In Chapter Two, we explore ordered differential response misclassification in

a logistic regression setting. We introduce this concept through an example involv-

ing racial differences in self-reported mammography use (Njai et al., 2011). This

Bayesian logistic regression model has a misclassified response (self-reported mam-

mography) with one perfectly recorded binary covariate (race). We then describe a

method comprised of a conditional and marginal prior structure to adjust for this

misclassification. We perform simulations to compare the results of this adjustment

to that of the differential adjustment, which removes bias, but ignores order.

In Chapter Three, we explore covariate misclassification under constraints. Ini-

tially, we build a Weibull proportional hazards regression model with one binary

covariate subject to ordered misclassification. We extend to a model with two binary
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covariates, one of which is subject to ordered misclassification, depending on the lev-

els of the perfectly recorded covariate. We use the conditional and marginal prior

structure to adjust for the misclassification and compare the results to a naive model,

an unordered misclassification adjusted model, and a perfectly classified model.

In Chapter Four, we introduce “informative hypotheses” (Hoijtink, 2012) through

a oneway analysis of variance example. We perform Bayesian sample size determi-

nation while testing between an informative hypothesis and its complement using an

empirical error rate criterion and the two-priors approach of Brutti et al. (2008). We

compare results to those in Van Rossum et al. (2013) and extend the simulation to

other dimensions, priors, and informative hypotheses.

In Chapter Five, we summarize the statistical problems and results presented

in this dissertation. Additionally, we discuss plans for future work.
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CHAPTER TWO

Bayesian Adjustments for Ordered Differential Response Misclassification

2.1 Introduction

2.1.1 Problem Overview

Statistical inference is invariably complicated when data are incomplete or im-

perfect. Subjects drop out of studies or fail to answer parts of questionnaires. Con-

tinuous responses like calorie intake may be mis-measured in diet records. Individuals

may be misclassified as not having a disease, when in fact they do. In this chapter,

we are concerned with the effect that ordered response misclassification may have in

logistic regression.

Misclassified data can be problematic in statistical inference if not addressed.

Apparent trends may be false, true trends may go undiscovered, and parameter esti-

mates will be biased with underestimated standard deviations (Gustafson, 2003). For

these reasons, there is a large literature on adjusting analyses for response misclas-

sification. Before a correction can be performed, it is necessary to determine which

type of misclassification is present in the data.

Suppose a test yields a binary response. Let T+ and T− represent tests with

positive and negative results, respectively. Let a subject’s true status be D+ or D−,

indicating positive and negative, respectively. Then sensitivity is η = P (T + |D+)

and specificity is θ = P (T − |D−). It is often convenient to consider outcomes in

terms of false negatives and false positives. These quantities have the relationship

P (False Negative) = P (T − |D+) = 1− η

and

P (False Positive) = P (T + |D−) = 1− θ.

3



When response misclassification is independent of covariate values, the misclas-

sification is non-differential. For example, suppose we have data regarding employees

on probation for violating their company’s at-work alcohol consumption policy. We

wish to determine the probability of a probational employee consuming alcohol based

on his or her career field. Suppose the test used to determine alcohol consumption

is fallible, yielding a false positive rate of 5%, regardless of career field. This mis-

classification is non-differential. Alternatively, if response misclassification depends

on covariate values, it is differential. In this example, suppose the test yields a false

positive rate 7% of the time for subjects in health care related fields and 2% of the

time for subjects who are not in health care related fields.1 This misclassification is

differential. Many papers analyze data with these distinguishing characteristics. For

an overview see, for example, Carroll et al. (2006) and Gustafson (2003).

Suppose it is known that the rates of misclassification have a distinct order

which depends on covariate level. We refer to this as ordered differential response

misclassification. Just as adjusting for non-differential misclassification is not suffi-

cient when differential misclassification is present, incorporating an adjustment for

differential misclassification in a model for data with ordered differential response

misclassification may not provide the best solution. Additionally, incorporating the

differential misclassification adjustment into a model with ordered differential misclas-

sification may be inappropriate at times, a possibility that is explored in Section 2.4.3.

To our knowledge, this issue has not been addressed in the literature.

Ordered differential response misclassification can occur in survey research. If

the survey is administered orally, the respondent may intentionally lie about an answer

in an effort to please or displease the survey administrator. Additionally, if the

survey is taken in private, the respondent may unintentionally record an incorrect

answer due to inaccurate memory recall or confusion of the question’s wording or

1 This example is adapted from information regarding an ethyl glucuronide test, which is affected
by the use of alcohol-based hand sanitizers, a product that health care employees are exposed to at
a much higher rate than employees in other career fields (Kirn, 2006).

4



response scale (Alwin, 2014). Misclassification may occur at different rates for various

subpopulations of respondents, thus inducing the order.

2.1.2 Example: Self-Reported Mammography Use

The Behavioral Risk Factor Surveillance System (BRFSS) is a survey admin-

istered via telephone to women to determine who had a mammogram within the

past two years. Njai et al. (2011) use BRFSS data from 1995 to 2006 to determine if

response misclassification explains some of the racial differences in self-reported mam-

mography use. Njai et al. (2011) determine the sensitivity, (ηi), and specificity, (θi), of

self-reported mammography among African American (i = A) and Caucasian (i = C)

women. They use sensitivity estimates η̂A = η̂C = 0.97 for both races. For specificity,

they use the estimates θ̂A = 0.49 and θ̂C = 0.62 (Rauscher, 2008). In this example,

the sensitivity is constant between both races; however, the specificity is ordered such

that θA < θC . In our analyses, we treat this order as though P (θA < θC) = 1.

After adjusting for misclassification in a frequentist manner for the 2006 survey,

Njai et al. (2011) estimate the true percentage of women who had a mammogram in

the past two years to be π̂A = 59% for African American women and π̂C = 65% for

Caucasian women. These numbers are lower than p̂A = 78% and p̂C = 77% obtained

via self-reporting by African American and Caucasian women, respectively. This

result makes sense intuitively due to the inverse relationship between false positive

recordings and specificity. These summary statistics are displayed in Table 2.1.

Table 2.1: Mammography Use Statistics.

Race η̂ θ̂ p̂ π̂
African American 0.97 0.49 0.78 0.59
Caucasian 0.97 0.62 0.77 0.65

To find the probability of self-reported mammography use, we use the law of

total probability and the information regarding sensitivity and specificity. We let Y

be the true mammography use status and Y ∗ be the self-reported mammography use

status (a surrogate for Y ). Then for a respondent with race x,
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px = P (Y ∗ = 1|x)

= P (Y ∗ = 1|Y = 1, x)P (Y = 1|x)

+P (Y ∗ = 1|Y = 0, x)P (Y = 0|x)

= ηxπx + (1− θx)(1− πx),

where πx = P (Respondent had mammogram in past two years), η is the sensitivity,

and θ is the specificity. Thus, the self-reported data for respondent j is given by

Y ∗j |xj = x ∼ Bernoulli(ηxπx + (1− θx)(1− πx)).

Note that Y is reserved for perfectly measured responses and Y ∗ is used to indicate

surrogate responses subject to misclassification. Njai et al. (2011) perform frequentist

linear regression to examine the prevalence of mammography in the past two years.

We perform Bayesian logistic regression to model the binary outcome of mammogra-

phy use in the past two years using the single binary covariate, race.

In this chapter, we investigate features of logistic regression in the presence of

ordered differential response misclassification. In Section 2.2, we briefly present fre-

quentist and Bayesian methods to adjust models with differential and non-differential

response misclassification. In Section 2.3, we propose an adjustment for ordered dif-

ferential response misclassification via the general (four parameter) beta as a prior for

selected misclassification parameters. This Bayesian approach benefits from the con-

ditional properties of the ordered misclassification data. In Section 2.4, we illustrate

what is lost when using current “naive” methods to analyze misclassified data with

such ordering. In Section 2.5, we perform a small scale simulation study to compare

the performance of the ordered differential response misclassification adjustment to

the differential response misclassification adjustment. We provide concluding remarks

in Section 2.6.
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2.2 Misclassification Adjustments

2.2.1 Frequentist Models

Although this dissertation is written from a Bayesian perspective, we briefly

present methods used in the frequentist literature to overcome the problems associated

with response misclassification. We focus on logistic regression models.

In the frequentist literature, it is common to build models with misclassification

present and account for the resulting bias after the fact by making adjustments to

the estimates. This also requires an adjustment to the standard deviation of the

estimator, sometimes relying on the delta method. Hausman et al. (1998) propose the

use of a modified maximum likelihood estimator to correct for misclassification. They

also utilize a semiparametric approach to combine the maximum rank correlation

estimator with isotonic regression.

An alternate method is to make adjustments to the data before building the

model. This requires setting fixed values for the misclassification parameters, sensi-

tivity and specificity. In the differential response misclassification adjustment, fixed

values for sensitivity and specificity are set for each covariate level. For the non-

differential response misclassification adjustment, only one value of sensitivity and one

value of specificity need to be specified for the model due to the assumption that mis-

classification is independent of the covariate level (Thomas, Stram, and Dwyer, 1993).

Magder and Hughes (1997) use a version of the EM algorithm and Neuhaus (1999)

uses maximum likelihood methods after incorporating fixed values for the misclassifi-

cation parameters, sensitivity and specificity. Setting fixed values for sensitivity and

specificity can be problematic because these parameters are typically unknown. Lyles

et al. (2011) use main/external and main/internal validation studies to determine val-

ues for sensitivity and specificity. We will elaborate on incorporating sensitivity and

specificity information into the model under the Bayesian paradigm.

7



2.2.2 Bayesian Models

Distinguishing features of a Bayesian analysis include the act of conditioning on

the data and quantifying uncertainty about each unknown parameter with a prior dis-

tribution. A beneficial aspect of using Bayesian methods is the ability to incorporate

historical or expert knowledge into the current analysis through these prior distri-

butions. Prescott and Garthwaite (2002) consider a two-stage approach to analyze

case-control studies based on a mis-measured binary covariate in which correct values

are known for a subset of the data. Having high quality prior knowledge or expert

opinion is important in misclassification problems due to the unknown sensitivity and

specificity parameters (Gustafson and Greenland, 2014).

In any practical setting, the sum of specificity and sensitivity is greater than

one; however, it is common to treat these parameters’ priors as independent. This is

reasonable because any test with η+ θ < 1 is impractical. Assuming independence of

the misclassification parameters makes the joint prior easy to construct as it is simply

the product of marginal priors.

For Bayesian misclassification problems, independent beta priors are typically

used for sensitivity and specificity. It is common to interpret the sum of the beta

distribution’s shape parameters in terms of a prior equivalent sample size (PESS)

of a binomial experiment (Morita et al., 2008). The beta distribution’s first shape

parameter is interpreted as the number of successes in such an experiment.

In the differential response misclassification setting, prior distributions are given

for sensitivity and specificity at each covariate level. As in the frequentist case, ad-

justing for non-differential misclassification is simpler than the modifications needed

to accommodate differential misclassification. In the non-differential response mis-

classification setting, only two priors for misclassification, one for sensitivity and one

for specificity, need to be specified across all covariate levels.
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2.3 Ordered Misclassification Adjustments

As we have seen, there are frequentist and Bayesian methods that adjust for

response misclassification. In this section, we introduce adjustments for ordered differ-

ential response misclassification, that is, response misclassification in which covariate

values impose an ordering on one or both misclassification parameters. The ordering

may hold with certainty, or with probability less than one. We examine both pos-

sibilities, but choose to perform a Bayesian analysis of the mammography example

assuming order with probability one.

2.3.1 Adjustment for Ordered Misclassification with Probability One

To make use of additional information regarding the order of the response mis-

classification rates, we propose utilizing a conditional prior structure. Specifically, we

suggest the family of four parameter beta distributions, also referred to as general

betas. The beta distribution on the interval (u, v) has probability density function

Beta[u,v](a, b) ≡
Γ(a+ b)

Γ(a)Γ(b)(v − u)a+b−1
(x− u)a−1(v − x)b−1, u ≤ x ≤ v,

where a > 0, b > 0. We denote this distribution generically by Beta[u,v](a, b). Note

that if Z ∼ Beta[0,1](a, b), then X = u + Z(v − u) ∼ Beta[u,v](a, b). For more infor-

mation regarding the general beta, see Appendix A.1.

2.3.1.1 Two dimensional ordered misclassification adjustment. Suppose we

have an ordered differential response misclassification problem. Let η = (η1, . . . , ηp)

and θ = (θ1, . . . , θp). Then we construct a joint prior distribution on the sensitivities

and specificities as π(η,θ). For simplicity, consider the two dimensional case where

η1 < η2 and θ1 < θ2. As in Section 2.2.2, we assume the two prior distributions are

independent, which we denote by

π(η1, η2) ⊥ π(θ1, θ2).

Here, however, we propose the joint prior

π(η,θ) = π(η2|η1)π(η1)π(θ2|θ1)π(θ1),
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where

π(η1) = Beta(aη1 , bη1),

π(η2|η1) = Beta[η1,1](aη2 , bη2),

π(θ1) = Beta(aθ1 , bθ2),

and

π(θ2|θ1) = Beta[θ1,1](aθ1 , bθ2).

The hyperparameters (aη1 , . . . , bθ2) are chosen to align the distributions with the prior

knowledge of the sensitivities and specificities. We can select a beta distribution by

specifying a mode, percentile, and bounds for its support.2 Suppose from historical

or expert information we have reason to believe that θ1 = 60%, θ2 = 75%, and the

fifth percentile of the distribution of θ2 is 70%. We use this information along with

the conditional relationship among misclassification parameters and a prior effective

sample size of 100 to arrive at

θ1 ∼ Beta(60, 40), θ2|θ1 ∼ Beta[θ1,1](39, 61).

Doing so aligns the distributions with prior information about θ1 and θ2. It also

ensures that for every value of π(θ1), the corresponding value of π(θ2|θ1) is larger.

This example is shown in Figure 2.1 and the adjustment is utilized in an analysis in

Section 2.4.4.

The strict orderings implied by this joint distribution constitute a very stringent

assumption. If this assumption is incorrect, no amount of data will correct the im-

posed ordering. In Section 2.3.2, we relax this condition. As in any Bayesian analysis,

the methods of this section are highly dependent on the quality of historical data or

expert opinion obtained.

2.3.1.2 Ordered misclassification adjustment for three or more dimensions. Sup-

pose we have an ordered differential response misclassification problem and we con-

2 Care should be taken here since specifying a mode and a percentile need not uniquely identify
a beta distribution.
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Figure 2.1: Beta(60,40) Distribution with Support (0,1) (left). Beta(39,61) distribu-
tions with support indicated in parentheses (right). In each case, the left endpoint of
the support is the value of (θ1) on which the prior for (θ2) is conditioned.

struct a joint prior distribution on the sensitivities and specificities as π(η,θ) for η =

(η1, η2, . . . , ηp) and θ = (θ1, θ2, . . . , θp). Consider the case where η1 < η2 < · · · < ηp

and θ1 < θ2 < · · · < θp. We assume

π(η) ⊥ π(θ)

as before, but now the joint prior is given by

π(η,θ) = π(ηp|ηp−1, . . . , η1) · · · π(η2|η1)π(η1)π(θp|θp−1, . . . , θ1) · · · π(θ2|θ1)π(θ1),

where

π(η1) = Beta(aη1 , bη1),

π(η2|η1) = Beta[η1,1](aη2 , bη2),

π(ηk|ηk−1, . . . , η1) = Beta[ηk−1,1](aηk , bηk), k = 3, . . . , p,

π(θ1) = Beta(aθ1 , bθ1),

π(θ2|θ1) = Beta[θ1,1](aθ2 , bθ2),

and

π(θk|θk−1, . . . , 1) = Beta[θk−1,1](aθk , bθk), k = 3, . . . , p.
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Again, the hyperparameters are chosen to reflect prior information of the sensitivities

and specificities.

2.3.2 Stochastically Ordered Misclassification Adjustment

We briefly discuss possible adjustments for stochastically ordered misclassifica-

tion rates. The following papers propose methods to incorporate stochastic orderings

among parameters in models. None of the papers discuss misclassification of any

kind; however, stochastically ordered misclassification could be an area of application

for these methods.

Madi et al. (2000) form hierarchical priors and incorporate order restrictions

in the hyperparameter stage. Dunson and Peddada (2008) use a class of restricted

dependent Dirichlet process priors. The priors “have full support in the space of

stochastically ordered distributions, and can be used for collections of unknown mix-

ture distributions to obtain a flexible class of restricted dependent Dirichlet process

prior mixture models.” Additionally, Evans et al. (1997) perform analyses using a

Dirichlet prior on cell probabilities and proceed as if they are independent.

Another possible way to incorporate information regarding stochastic ordering

among misclassification parameters is to make the shape parameters of one of the

priors dependent on the shape parameters of the other prior. Doing so maintains

the full support of the distribution, (0,1) for a beta distribution, but allows the prior

to be centered over the desired value, which depends on the other misclassification

parameter.

For example, suppose we obtain information regarding θ2 conditional on infor-

mation regarding θ1. The shape parameters of the underlying beta distribution for

θ2 could be made to depend on θ1. For example, we might require that

mode(θ2|θ1) = α + βθ1

and add a percentile requirement, also dependent on θ1. Or we might have

E(θ2|θ1) = α + βθ1
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and, for γ > 0,

V (θ2|θ1) = γV (θ1).

The assumption of stochastically ordered misclassification is less stringent than

the assumption of order with probability one. Adjusting for stochastically ordered

misclassification as described above does not guarantee the order of the misclassifi-

cation rates will be preserved; this is appropriate when order with probability one

cannot be assumed. As before, this method is dependent on the quality of historical

data or expert opinion. The stochastically ordered adjustment may be an appropriate

topic for future exploration and development.

2.4 Analysis of Mammography Data

2.4.1 Naive Analysis

Recall the mammography use example in Section 2.1. We begin by developing

a conditional means prior (Bedrick, Christensen, and Johnson, 1996) for a logistic

regression model while assuming no misclassification. For more information on con-

ditional means priors, see Appendix A.2. Without misclassification, we have

Yj|πj ∼ Bernoulli(πj),

where

logit(πj) = β0 + β1x1j,

and x1 is race (0 = African American, 1 = Caucasian). The configuration matrix for

the CMP elicitation is

X̃ =

1 0

1 1

 =

x̃′A
x̃′C

 ,
where the covariate configurations are

x̃A =

 Baseline

African American

 , x̃C =

 Baseline

Caucasian

 .
Suppose we have a single expert from whom we elicit beta priors for the two

x̃k configuration vectors above. For x̃A, knowing only that race is African American,
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suppose the expert believes the most likely value for the probability of having a mam-

mogram in the past two years is 0.59 and and thinks it very unlikely this probability

is less than 0.44. If we interpret the latter as the 5th percentile of a beta density, then

the resulting prior for π̃A = P (Y = 1|x̃A) is a Beta(19, 13) distribution. In terms of

prior equivalent sample size, this represents 19 prior successes out of a total number

of 32 binomial trials. This produces an expected value of 59.4%.

Similarly, for x̃C , knowing only that race is Caucasian, suppose the expert

believes the most likely value for the probability of having a mammogram in the past

two years is 0.65 and thinks it unlikely that this probability is lower than 0.50. Then

the resulting beta prior for π̃C = P (Y = 1|x̃C)is a Beta(21, 12) distribution. In terms

of prior equivalent sample size, this represents 21 prior successes out of a total number

of 33 binomial trials. This produces an expected value of 63.6%. See Figure 2.2 for

an illustration of the conditional means priors produced from this information.

Figure 2.2: Conditional Means Priors Induced on β0 (left) and β1 (right) for Mam-
mography Example.

We perform 10,000 burn-ins and 50,000 posterior samples to produce the re-

sults in Table 2.2 and Figure 2.3. The posterior estimates for the probabilities of

mammography use are equal to the self-reported mammography use probabilities.

This occurred because we naively assumed that the self-reported mammography use
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data were recorded without error. Additionally, even though we incorporated expert

opinion into the model via conditional means priors, the data overwhelmed the pri-

ors. This is not surprising because the sample size is very large (nA > 30, 000 and

nC > 100, 000) and the prior equivalent sample sizes for the CMP for β0 and β1 are

only in the thirties (we examine smaller sample sizes in Section 2.5). Note that the

posterior means differ considerably from the adjusted probability estimates from Njai

et al. (2011). This is because we have ignored misclassification.

Also of interest in this logistic regression model is the odds ratio of having

a mammogram in the past two years for Caucasian women compared to African

American women; that is

ORCA = exp(β1). (2.1)

Table 2.2: Posterior Summary Statistics for Naive Analysis (The adjusted estimates
in the second column are from Njai et al., 2011.).

Parameter Adjusted Estimate Mean SD 2.50% Median 97.50%
β0 − 1.258 0.012 1.233 1.258 1.282
β1 − −0.050 0.014 −0.078 −0.050 −0.023

ORCA − 0.951 0.014 0.925 0.951 0.978
πA 0.59 0.779 0.002 0.774 0.779 0.783
πC 0.65 0.770 0.001 0.767 0.770 0.772

One of the benefits of a Bayesian analysis is the ease of assessing transformations

of parameters, such as (2.1). Using the posterior mean in Table 2.2, we estimate

the odds ratio as 0.951. Thus, the estimated odds of Caucasian women having a

mammogram in the past two years is 0.95 times less likely than those of African

American women.

2.4.2 Non-Differential Response Misclassification Analysis

We conduct this analysis with the same conditional means prior distributions

for the regression parameters as in Section 2.4.1, but now acknowledge the presence

of misclassification in the model. In this section, we perform a correction for non-

differential response misclassification. As was briefly discussed in Section 2.2, we
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Figure 2.3: Posterior Densities from Naive Analysis.

adjust for this type of misclassification by specifying one prior for the sensitivity and

one prior for the specificity. These priors remain unchanged regardless of covariate

level. This is a reasonable restriction for the sensitivity because information suggests

both races have sensitivity of 0.97. Using a prior equivalent sample size of 100 yields

the prior π(η) ∼ Beta(97, 3). Because we are illustrating the results of assuming

non-differential misclassification in the model, we somewhat arbitrarily set the com-

mon prior on specificity to be π(θ) ∼ Beta(55, 45), which has a mode between the

specificity estimates due to Njai et al. (2011), 0.49 and 0.62.

Mild autocorrelation in preliminary MCMC runs indicated a need to thin the

chains. We used a burn-in of 100,000 values, retaining every 10th iteration. We

followed this with 500,000 iterations, again retaining every 10th value. No other

convergence issues were observed. The posterior densities are sufficiently smooth and

are provided in Figure 2.4.

For this non-differential response misclassification adjusted model, the estimate

for ORCA is 0.93. Thus, the estimated odds of Caucasian women having a mammo-

gram in the past two years is 0.93 times less likely than those of African American

women.

Although the resulting posterior standard deviations are larger than those of the

naive analysis, this method is not ideal, as evidenced by the poor posterior estimates

of the mammography use probabilities. This is because the non-differential misclas-
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Table 2.3: Posterior Summary Statistics for Non-Differential Misclassification
Analysis.

Parameter Adjusted Estimate Mean SD 2.50% Median 97.50%
β0 − 0.521 0.148 0.225 0.522 0.811
β1 − −0.074 0.022 −0.119 −0.074 −0.033
η 0.97 0.970 0.016 0.931 0.972 0.993

ORCA − 0.929 0.020 0.888 0.929 0.968
πA 0.59 0.627 0.035 0.556 0.628 0.692
πC 0.65 0.610 0.035 0.537 0.610 0.676
θ 0.55 0.544 0.043 0.462 0.544 0.630

Figure 2.4: Posterior Densities from Non-Differential Misclassification Analysis.

sification correction is too simplistic for this problem in that it only incorporates one

prior for specificity. Doing so cannot adequately adjust estimates.

2.4.3 Differential Response Misclassification Analysis

We continue to use the conditional means priors for the regression parameters

as in the two previous sections; however, we now acknowledge the presence of dif-

ferential response misclassification. For the survey response problem, the sensitivity

was estimated by Njai et al. (2011) to be 0.97. Again using a prior equivalent sample

size of 100, we specify the priors as π(ηA) = π(ηC) = Beta(97, 3). The specificities for

African Americans and Caucasians are 0.49 and 0.62, respectively, again as estimated
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by Njai et al. (2011). We construct two priors, each with a prior equivalent sample

size of 100. These priors are π(θA) = Beta(49, 51) and π(θC) = Beta(62, 38).

We used a burn-in of 100,000 values, retaining every 10th iteration. We followed

this with 500,000 iterations, again retaining every 10th value. The results are provided

in Table 2.4 and the posterior densities are plotted in Figure 2.5.

Table 2.4: Posterior Summary Statistics for Differential Misclassification Analysis.

Parameter Adjusted Estimate Mean SD 2.50% Median 97.50%
β0 − 0.339 0.185 −0.042 0.344 0.691
β1 − 0.303 0.236 −0.149 0.298 0.781
ηA 0.97 0.969 0.017 0.928 0.972 0.993
ηC 0.97 0.971 0.016 0.932 0.974 0.994

ORCA − 1.392 0.338 0.862 1.347 2.183
πA 0.59 0.583 0.045 0.490 0.585 0.666
πC 0.65 0.654 0.033 0.588 0.655 0.718
θA 0.49 0.491 0.045 0.406 0.490 0.580
θC 0.62 0.614 0.047 0.522 0.614 0.705

For this differential response misclassification adjusted model, the estimate for

ORCA is 1.39. Thus, the estimated odds of Caucasian women having a mammogram

in the past two years is 1.39 times greater than those of African American women.

The parameter estimates are all near the adjusted estimates and the standard

deviations are larger than those obtained via the naive model. In fact, the estimates

for the probabilities of mammography use by race are within a few one-thousandths

of the adjusted estimates. This method adequately corrects the misclassification;

however, it does not use or benefit from the a priori knowledge of the order amongst

the misclassification parameters.

Since this method does not explicitly take order into account, there are times

that it may be violated. For this example, violating the order means P (θA < θC) <

1. To examine this more closely, we conduct a simulation with 10,000 replications

to determine the probability of order violation when using the differential response

misclassification adjustment. Table 2.5 displays the probability of order violations as
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Figure 2.5: Posterior Densities from Differential Misclassification Analysis.

δ ≡ θC − θA increases while using priors based on an equivalent sample size of 100.

As expected, the probability of violation decreases as δ increases.

Table 2.5: Extent of Order Violations using Independent Prior Distributions.

δ π(θA) π(θC) P (Order Violated)
0.05 Beta(50, 50) Beta(55, 45) 0.2416
0.10 Beta(50, 50) Beta(60, 40) 0.0777
0.15 Beta(50, 50) Beta(65, 35) 0.0160
0.20 Beta(50, 50) Beta(70, 30) 0.0023

For this example, θA = 0.49, θC = 0.62, and the resulting probability of order

violation is 0.0341.

2.4.4 Ordered Differential Response Misclassification Analysis

We continue to use the conditional means priors for the regression parame-

ters as in the three previous sections; however, we make an adjustment for the or-

dered differential response misclassification. The estimated sensitivity is the same for

African Americans and Caucasians, so we specify π(ηA) = π(ηC) ∼ Beta(97, 3), as be-

fore. Since the specificities are ordered, we specify the marginal prior distribution for
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African American specificity as π(θA) ∼ Beta(49, 51) and condition the values of the

prior for Caucasian specificity on the values of the prior for African American speci-

ficity. Provided a mode of 0.62 and a ninety fifth percentile of 0.82, we solve for the

shape parameters and find π(θC |θA) ∼ Beta[θA,1](24, 76). Note that it is recommended

to specify the fifth percentile if the mode is larger than 0.50, but complications arise

due to the shifted support. We have incorporated the known order of the response

misclassification into the model with probability one.

The likelihood is given by

L(β,η,θ) =
n∏
j=1

[πjηj + (1− πj)(1− θj)]y
∗
j [πj(1− ηj)(1− πj)θj]1−y

∗
j .

The joint prior for the misclassification parameters is

π(η,θ) = Beta(ηA|97, 3)Beta(ηC |97, 3)Beta(θA|49, 51)Beta[θA,1](θC |24, 76)

and the prior induced on the regression parameters is

π(β) = X̃−1(π̃),

where

π̃ = Beta(π̃A|19, 13)Beta(π̃C |21, 12).

Thus, the posterior is

π(β,η,θ|x,y∗) ∝ L(β,η,θ)π(β)π(η,θ).

This model is diagramed in Figure 2.6.

We perform a burn-in of 100,000 values, retaining every 10th iteration. We

follow this with 500,000 iterations, again retaining every 10th value. The results are

in Table 2.6 and the posterior densities are in Figure 2.7. The parameter estimates

are all near the adjusted estimates and the standard deviations are larger than those

obtained from the naive model.

For this ordered differential misclassification adjusted model, the estimate for

ORCA is 1.38. Thus, the estimated odds of Caucasian women having a mammogram

in the past two years is 1.38 times greater than those of African American women.
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Figure 2.6: Ordered Differential Response Misclassification Model Diagram.

Figure 2.7: Posterior Densities from Ordered Differential Misclassification Analysis.

2.4.5 Comparison of Results Under Different Assumptions of Misclassification

The naive approach yields poor parameter estimates. The non-differential re-

sponse misclassification adjustment allows only one prior for the specificity, which

is not suitable for the problem. The standard deviations for the non-differential re-
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Table 2.6: Posterior Summary Statistics for Ordered Differential Misclassification
Analysis.

Parameter Adjusted Estimate Mean SD 2.50% Median 97.50%
β0 − 0.330 0.178 −0.029 0.334 0.671
β1 − 0.308 0.156 0.007 0.303 0.630
ηA 0.97 0.969 0.017 0.929 0.972 0.993
ηC 0.97 0.970 0.016 0.932 0.973 0.994

ORCA − 1.377 0.219 1.007 1.354 1.877
πA 0.59 0.581 0.043 0.493 0.583 0.662
πC 0.65 0.654 0.029 0.597 0.654 0.710
θA 0.49 0.488 0.043 0.408 0.487 0.575
θC 0.62 0.610 0.039 0.535 0.610 0.687

sponse misclassification adjusted model are larger than the naive model’s, but the

parameter estimates from this adjustment are still far from the adjusted estimates.

The odds ratios under these two models are both less that one, which indicate

that African American women are more likely than Caucasian women to have had

a mammogram in the past two years. The differential and ordered adjusted models

yield odds ratios that are greater than one, which indicate that Caucasian women

are more likely than African American women to have had a mammogram in the

past two years. These conflicting inferences are a common problem in models with

misclassified data. This illustrates one of the reasons it is important to adjust for

misclassification if it is present.

The differential response misclassification adjustment produces parameter esti-

mates that reflect those found in Njai et al. (2011) with larger standard deviations

than the naive model, but fails to incorporate the known ordering in the data roughly

3% of the time in this example. Using the ordered differential response misclassifi-

cation adjustment produces parameter estimates that reflect those found in Njai et

al. (2011). Additionally, it does not require substantial additional work and is pre-

ferred because it ensures that the order in the misclassification rates is preserved.

Interestingly, the standard deviations observed are smaller than those produced by

the differential response misclassification adjustment, which may be another advan-
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tage of the method. In Section 2.5, we conduct a small scale simulation to compare

the properties of these two adjustments more closely.

2.5 Simulation

In the previous section, we illustrated shortcomings of analyses of data with or-

dered differential response misclassification under a naive assumption, a non-differential

misclassification assumption, and a differential misclassification assumption. The

naive and non-differential misclassification methods were shown to be inadequate

and will not be included in the simulation. The differential misclassification cor-

rection adequately adjusted the estimates in the previous section, so we compare

simulation results of this method to the ordered differential response misclassification

adjustment’s.

Both methods performed similarly in the mammogram use example, but the

ordered differential response misclassification adjustment yielded smaller posterior

standard deviations than the differential response misclassification adjustment. For

this reason, we examine coverage and credible interval width of the slope parameter,

β1. In the mammography example, δ ≡ θC − θA = 0.13 and δπ ≡ πC − πA =

0.06. The range of plausible values of δ is limited because it is desirable for both

η and θ to be relatively high. We choose a high and low value for δ and δπ and

consider sample sizes of 500 and 1000. The design points are provided in Table 2.7

and the corresponding priors are in Table 2.8. Note that π(θC) in Table 2.8 is for

the differential response misclassification adjustment and π(θC |θA) is for the ordered

differential response misclassification adjustment.

Table 2.7: Design Points for Response Misclassification Simulation.

Sim. δ δπ θA θC ηA = ηC β0 β1 πA πC pA pC
1 0.05 0.05 0.70 0.75 0.97 0.00 0.20 0.50 0.55 0.64 0.65
2 0.05 0.20 0.70 0.75 0.97 0.00 0.85 0.50 0.70 0.64 0.75
3 0.20 0.05 0.70 0.90 0.97 0.00 0.20 0.50 0.55 0.64 0.58
4 0.20 0.20 0.70 0.90 0.97 0.00 0.85 0.50 0.70 0.64 0.71
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To complete this simulation, we use R2WinBUGS to perform 200,000 burn-ins

and 500,000 posterior samples with a thinning factor of 10. Using a thinning factor

of 10 keeps only every 10th iteration, leaving 20,000 burn-ins and 50,000 posterior

samples. Doing so eliminates autocorrelation and speeds convergence. We perform

100 replications for each of the 16 design points. The simulation results for β1 are in

Table 2.9.

Table 2.8: Shape Parameters of Beta Priors for Simulation. The support of π(θC |θA)
is (θA, 1); all other priors have support (0,1).

θA θC θC |θA ηA = ηC πA πC
(35, 15) (37.5, 12.5) (9, 41) (48.5, 1.5) (25, 25) (27.5, 22.5)
(35, 15) (37.5, 12.5) (9, 41) (48.5, 1.5) (25, 25) (35, 15)
(35, 15) (45, 5) (33, 17) (48.5, 1.5) (25, 25) (27.5, 22.5)
(35, 15) (45, 5) (33, 17) (48.5, 1.5) (25, 25) (35, 15)

The conditional means priors induced on the regression parameters are plotted

in Figure 2.8 and Figure 2.9. To observe the updating from the likelihood, selected

parameters’ priors and posteriors for the design points used in Simulation 1 of Ta-

ble 2.7 are plotted in Figure 2.10. The posteriors are less variable than the priors and

the distributions are centered near true parameter values.

Figure 2.8: Priors Induced on β0 (left) and β1 (right) for Simulations 1 and 3.

After obtaining the 100 replications for each simulation design point in Ta-

ble 2.7, we investigate the simulation’s variability by examining posterior credible
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Figure 2.9: Priors Induced on β0 (left) and β1 (right) for Simulations 2 and 4.

intervals. Figures 2.11-2.14 display the simulation variability for β1 at each design

point. The line across the middle of each plot corresponds to the true parameter value

for the simulation (Table 2.7) and the black circle is the median of the 100 posterior

means. The two short lines above and below the middle line are the medians of the

100 95% credible interval upper and lower bounds, respectively. Additionally, the

grey vertical bar represents ± 1 simulation standard deviation from the median of

100 posterior means and 95% credible interval bounds.

Figure 2.10: Prior (Dashed) and Posterior (Solid) Distributions for Simulation 1 (or-
dered adjustment, n = 500).
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Table 2.9: Simulation Results for β1. Mean (width). All simulations had 100%
coverage.

Adjustment (Sample Size) Simulation 1 Simulation 2 Simulation 3 Simulation 4
True β1 Value 0.200 0.850 0.200 0.850
Ordered (n = 500) 0.214 0.836 0.197 0.814

(0.691) (0.798) (0.743) (0.813)
Differential (n = 500) 0.181 0.722 0.185 0.765

(0.827) (0.888) (0.796) (0.850)
Ordered (n = 1000) 0.210 0.853 0.203 0.839

(0.611) (0.724) (0.691) (0.758)
Differential (n = 1000) 0.183 0.719 0.189 0.780

(0.794) (0.857) (0.762) (0.810)

In each simulation, the coverage for the 95% credible interval is 100%. Ad-

ditionally, the ordered differential response misclassification adjustment produces a

narrower credible interval than those found using the differential response misclassi-

fication adjustment. Thus, the analysis benefits from the dependent prior structure

by preserving order and yielding more precise estimates for β1 than those from the

independent prior structure.

Figure 2.11: Simulation Summary for β1 in Simulation 1. Row 1: Ordered adjustment,
Row 2: Differential adjustment (left: n = 500, right: n = 1000).
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Figure 2.12: Simulation Summary for β1 in Simulation 2. Row 1: Ordered adjustment,
Row 2: Differential adjustment (left: n = 500, right: n = 1000).

Figure 2.13: Simulation Summary for β1 in Simulation 3. Row 1: Ordered adjustment,
Row 2: Differential adjustment (left: n = 500, right: n = 1000).
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Figure 2.14: Simulation Summary for β1 in Simulation 4. Row 1: Ordered adjustment,
Row 2: Differential adjustment. (left: n = 500, right: n = 1000).

2.6 Concluding Remarks

In this chapter, we discussed ordered differential response misclassification, a

problem that exists, but is currently ignored in the literature. We proposed a method

to adjust the ordered differential response misclassification in a logistic regression

model. This method incorporates information regarding sensitivity and specificity

through a series of marginal and conditional prior distributions. We recognize that

the proposed method is largely dependent on expert opinion and is only as good

as the quality of information obtained during the prior elicitation process. We saw

improvements in modeling mammography use by race after correcting for the ordered

response misclassification. This method requires minimal additional work compared

to the differential misclassification correction. Additionally, in small scale simulations,

the estimates had adequate removal of bias, complete coverage, and narrower credible

intervals compared to the results from the differential adjustment. For these reasons,

the ordered differential misclassification adjustment is preferred over the differential

adjustment when order with probability one may be assumed.
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CHAPTER THREE

Weibull Proportional Hazards Regression with Ordered Covariate Misclassification

3.1 Introduction

Suppose we wish to study the potential impact of race/ethnicity on progression-

free survival for patients with a certain type of cancer (CDC, 2014). We also want to

consider the size of hospital as a potential predictor. To this end, suppose we obtain

data from a source such as the Greater Bay Area Cancer Registry (Cancer Prevention

Institute of California, 2015). Specifically, define

x =

 0 if the subject is White and Hispanic;

1 if the subject is White and non-Hispanic,

and

z =

 0 if the hospital is large and public;

1 if the hospital is small and private.

Unfortunately, race/ethnicity is often misclassified in such records, and dif-

ferentially so with respect to hospital size. Gomez et al. (2003) and Gomez and

Glaser (2006) show that large, public hospitals have more error in racial/ethnic clas-

sification than small, private hospitals. The misclassified surrogate is described by

x∗ =

 0 if the subject is listed as White and Hispanic in the cancer registry;

1 if the subject is listed as White and non-Hispanic in the cancer registry.

In this example of differential misclassification, the racial/ethnic classification

is more prone to error in large hospitals. We are particularly interested in orderings

imposed on the misclassification rates for categorical covariates, focusing primarily

on binary covariates in this chapter. We refer to this as ordered covariate misclas-

sification. The order may occur from a dependence on levels of another covariate,

or alternatively, the dependence may occur between the sensitivity and specificity

directly.
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For the examples considered in this chapter, we assume that the rates of misclas-

sification are ordered with probability one. To avoid potentially misleading inferences

from models with misclassified data, we must provide an adjustment for the misclas-

sification (Gustafson, 2003). To do this, we incorporate prior information regarding

the misclassification parameters in a Bayesian model.

We illustrate the versatility of the ordered misclassification adjustment from the

last chapter by first building a parametric Bayesian survival model with one misclassi-

fied binary covariate and then extend the model to include the addition of a perfectly

recorded binary covariate. We incorporate prior information of misclassification us-

ing four-parameter beta distributions within a proportional hazards regression model.

For the latter, we assume a Weibull baseline hazard (Klein and Moeschberger ,2005,

Luo et al., 2012).

In Section 3.2, we provide an overview of parametric proportional hazard re-

gression. In Section 3.3, we discuss complications of and adjustments for covariate

misclassification, including ordered covariate misclassification. In Section 3.4 and

Section 3.5, we provide examples which compare results obtained from models under

different assumptions regarding the misclassified data. In Section 3.6 and Section 3.7,

we conduct small-scale simulations to study the performance of our proposed correc-

tion. We make concluding remarks in Section 3.8.

3.2 Survival Analysis

3.2.1 Basic Functions

Suppose T is a non-negative random variable with CDF F and continuous PDF,

f . We take f to be a distribution of lifetimes for subjects in a population and define

the survival function as

S(t) = P (T > t) = 1− F (t) =

∫ ∞
t

f(u)du.

It follows that

f(t) = −dS(t)

dt
.
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Another quantity of interest is the hazard function, the instantaneous rate of

death:

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)

∆t
.

Since we have assumed that T is continuous,

h(t) =
f(t)

S(t)
= −d ln[S(t)]

dt
.

The hazard function may be preferred over the survival function because it

more clearly depicts the failure pattern. Intuitively, as the hazard rate increases, the

probability of failure increases. Similarly, the probability of failure decreases as the

hazard rate decreases. Compare the survival and hazard functions in Figure 3.1 for

an illustration.

Figure 3.1: Weibull Survival Functions (left) and Hazard Functions (right), a Re-
creation from Page 29 of Klein and Moeschberger (2005).

The Weibull distribution is often used in survival analysis. A random variable,

T , follows a Weibull distribution if

f(t|α, λ) = αλtα−1e−λt
α

, α > 0, λ > 0.
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The survival function for the Weibull is

S(t) = P (T > t)

=

∫ ∞
t

αλuα−1 exp(−λuα)du

= exp(−λtα)

and the hazard function is

h(t) =
f(t)

S(t)

=
αλtα−1 exp(−λtα)

exp(−λtα)

= αλtα−1.

The Weibull distribution can mimic characteristic shapes of many different dis-

tributions and is flexible enough to model a variety of data sets. The Weibull distri-

bution can also model hazard functions that are increasing, decreasing or constant,

as shown in Figure 3.1.

3.2.2 Proportional Hazards Model

Regression models can be used to relate survival functions or hazard functions

to covariates. A widely used approach is to fit a proportional hazards model, defined

as

h(t|x) = h0(t) exp(x′β),

where h0(t) is a baseline hazard function, x is a p × 1 vector of covariates, and β is

a p × 1 vector of regression coefficients. For an introduction to such models see, for

example, Klein and Moeshberger (2005). The baseline hazard function is chosen so

as to render the hazard positive. For any such function, the ratio of hazards lends

the model its name: Suppose two subjects have covariate values xa and xb. Then the

hazard ratio is

h(t)|xa
h(t)|xb

=
h0(t) exp(x′aβ)

h0(t) exp(x′bβ)

= exp(x′aβ − x′bβ)

= exp[(xa − xb)
′]β.
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Thus, the hazard rates are proportional. This is a strong assumption and may not

always be reasonable.

If a parametric distribution for h0(t) is not specified, then partial likelihood

methods can be used to construct a Cox proportional hazards model. In our develop-

ment, we specify a Weibull baseline hazard function, using Bayesian methods to fit

the model. That is,

h0(t) = αλtα−1

and

h(t|x) = αtα−1 exp(x′β),

where λ is absorbed into the baseline hazard without loss of generality.

The likelihood function for this data model, with perfect classification and no

censoring is given by

L(α,β|x) =
n∏
i=1

αtα−1
i exp(x′iβ). (3.1)

The censored regression model can also be used, but we choose to assume no censoring

in order to focus on ordered misclassification.

For the proportional hazards model, an intuitive interpretation for a coefficient,

βj, of a binary variable, xj, is the hazard ratio. That is, HR = exp(βj) is the hazard

ratio for being in the group where xj = 1 versus the group where xj = 0. If βj = 0,

this indicates that xj has no association with survival time; βj > 0 indicates that

xj = 1 has a higher hazard of death, and βj < 0 indicates that xj = 1 has a lower

hazard of death. This relationship may be obfuscated when xj is misclassified and

inferences must be made using its surrogate, x∗j .

3.3 Covariate Misclassification and Adjustments

Suppose a test yields a binary response: a subject is positive or negative for

some condition. Let T+ and T− represent tests with positive and negative results,

respectively. Let a subject’s true status be D+ or D−, indicating positive or negative,

respectively. Then sensitivity is η = P (T + |D+) and specificity is θ = P (T −
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|D−). Suppose we construct a model assuming perfectly classified data, utilizing the

likelihood function described in (3.1). If misclassification is present, such that the

likelihood function is truly described by

L(α,β|x∗) =
n∏
i=1

αtα−1
i exp(x∗

′

i β), (3.2)

where P (x∗ = 1|x) = ηx + (1 − θ)(1 − x), then we have constructed a naive model

because no correction for misclassification was performed.

On average, parameter estimates for models with misclassified covariates may

be biased when no adjustments for misclassification are utilized (Greenland, 1980).

Several methods used to adjust for misclassification in proportional hazards models

are presented in papers such as Zucker and Spiegleman (2004), Wang and Song (2013),

and Bang et al. (2013). Methods to adjust for covariate misclassification require

information about the misclassification parameters, but sensitivity and specificity

are rarely known exactly. In Bayesian modeling, beta distributions are ideal for

representing uncertainty about probabilities. They are easily elicited using a variety

of methods and their contribution to the analysis can be assessed with concepts like

prior equivalent sample size (PESS). For an overview see, for example, Morita et

al. (2008).

To make use of the additional information regarding the order of the covariate

misclassification rates, we use a four parameter beta distribution as a prior for the

misclassification parameter with the larger value conditioned on the misclassification

parameter with the smaller value. The beta distribution on the interval [u, v] has

probability density function

Beta[u,v](x|a, b) ≡
Γ(a+ b)

Γ(a)Γ(b)(v − u)a+b−1
(x− u)a−1(v − x)b−1, u ≤ x ≤ v,

where a > 0, b > 0. We use the notation Beta[u,v](x|a, b) to denote a generic four-

parameter beta distribution. We omit the subscript [u, v] when u = 0 and v = 1. For

more information on the general beta distribution, see Appendix A.1.

Suppose a covariate is subject to ordered misclassification depending on the

misclassified covariate. For example, suppose a diagnostic screening for a life threat-
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ening condition must be interpreted by a clinician. Since the consequence of failing to

diagnose a patient is more severe than incorrectly diagnosing a patient as positive, it

is ideal to yield a higher probability of false positive results than false negative results.

Thus, it is desirable for the sensitivity to be higher than the specificity. Define the

joint prior

π(η, θ) = π(η|θ)π(θ),

where

π(θ) = Beta(aθ, bθ),

and

π(η|θ) = Beta[θ,1](aη, bη).

The hyperparameters (aθ, . . . , bη) are chosen to align the means of the prior distri-

butions with the elicited sensitivities and specificities. See Garthwaite, Kadane, and

O’Hagan (2005) or Kinnersley and Day (2013) for additional details on the prior

elicitation process.

Suppose the covariate’s ordered misclassification is attributable to another co-

variate, as in the race/ethnicty and hospital example. We assume

π(η1, η2) ⊥ π(θ1, θ2).

Let η = η1, η2 and θ = θ1, θ2. For η1 < η2 and θ1 < θ2, we propose the dependent

joint prior

π(η,θ) = π(η2|η1)π(η1)π(θ2|θ1)π(θ1),

where

π(η1) = Beta(aη1 , bη1),

π(η2|η1) = Beta[η1,1](aη2 , bη2),

π(θ1) = Beta(aθ1 , bθ1),

and

π(θ2|θ1) = Beta[θ1,1](aθ2 , bθ2).
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The hyperparameters (aη1 , . . . , bθ2) are chosen to align the means of the prior distri-

butions with prior information about the misclassification. This can be generalized

to categorical covariates with three or more levels, as described in Section 2.3.1.2.

We do not wish to construct a prior so informative that it dominates the pos-

terior. However, an informative prior is warranted if a priori expert knowledge or

historical data is available. One way to quantify this prior information is to do so with

the concept of prior effective sample size, as discussed by Morita et al. (2008). In the

context of this problem, it is appropriate to consider the sum of a beta distribution’s

shape parameters as a number of binomial trials, in which the first shape parameter

is interpreted as the number of successes out of such trials.

3.4 Examples with One Covariate

The misclassification parameters’ priors, π(η) and π(θ), are often treated inde-

pendently even though it is assumed that P (η + θ > 1) = 1 for any test of interest.

Although common, we should not ignore dependence due to the level of the misclas-

sified covariate, as in the fallible test example where false positive results are more

desirable than false negative results.

The model for this problem is diagramed in Figure 3.2 and is appropriate for

P (θ < η) = 1. For P (η < θ) = 1, the joint prior for the misclassification parameters

is

π(η, θ) = Beta(η|aη, bη) Beta[η,1](θ|aθ, bθ).

In the following sections, we let the prior(s) for the regression parameter(s) be diffuse

normal distributions given by

βi ∼ N(0, τ),

where the precision, τ , is taken to be small. The likelihood for this data is given by

L(α, β|x∗) =
n∏
j=1

αtα−1
j exp(x∗

′

j β)

and the joint prior is

π(α, β, θ, η) = Exp(α|1.711)N(β|0, 0.01)Beta(θ|7, 3) Beta[θ,1](η|6.6, 3.4).
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Thus, the posterior is

π(α, β, η, θ|x∗) ∝ L(α, β|x∗)π(α, β, η, θ).

Figure 3.2: Proportional Hazards Model with a Covariate Subject to Ordered Mis-
classification.

Again consider the fallible test example in which a clinician must subjectively

interpret diagnostic screenings. Suppose the screening is for a particular factor, x,

and it is of interest to determine if the survival times for patients affected by the same

type and stage of cancer depend on that particular factor. Further, the test used to

detect x is fallible with P (0 < θ < η < 1) = 1 and we only observe its surrogate, x∗.

The patients can be categorized as group 1 if x = 0 and group 2 if x = 1. We assign

the surrogate groups 1∗ and 2∗ based on the value of x∗. Suppose from historical

evidence that θ = 0.7. Using a prior equivalent sample size of 10, we specify a beta

prior with mean 0.7:

π(θ) = Beta(7, 3).

Additionally, suppose an expert in the field believes that the most likely value of η is

0.9 and that a value less than 0.85 is unlikely, which we interpret as the 5th percentile

of the prior. Using this information, as well as a prior equivalent sample size of 10,

yields the prior

π(η|θ) = Beta[θ,1](6.6, 3.4).

This prior has a range dependent on θ and has a mean of 0.9 when θ = 0.7.
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We generate Weibull proportional hazards data by substituting the values from

Table 3.1 into the process detailed in Appendix B.2. Let ζ1 and ζ2 be the hypothetical

medians of group 1 and group 2, respectively. We generate n = 50 survival times for

each of the 2 groups for a total of N = 100 observations with η = 0.9 and θ = 0.7,

yielding an overall misclassification rate of 14%.

Table 3.1: Summary of Parameters for Fallible Test Example.

ζ1 ζ2 β θ η α
90 Days 498 Days −1.0 0.70 0.90 0.5843

We use two chains and a burn-in of 2000 values. We follow this with 10,000

posterior samples. No convergence issues were observed. The posterior densities are

shown in Figure 3.3. The posterior summary statistics are provided in Table 3.2.

Adjusting for the ordered misclassification yields a posterior estimate of β1 that is

nearly equal to the true parameter value. Additionally, the estimated hazard rate for

those in group 1 compared to group 2 is 0.3844, which is close to the true parameter

value, 0.3679. To gain insight on this model, which utilizes the ordered adjustment,

we consider models utilizing different assumptions about misclassification.

Table 3.2: Posterior Results for the Fallible Test Example, Assuming Ordered
Misclassification.

Parameter Truth Mean SD 2.5% Median 97.5%
β1 −1.0000 −0.9918 0.3094 −1.6410 −0.9799 −0.4240
η 0.9000 0.9188 0.0477 0.8039 0.9282 0.9843
HR 0.3679 0.3844 0.1183 0.1868 0.3723 0.6499
θ 0.7000 0.7378 0.0918 0.5498 0.7403 0.9070

Recall the naive model which assumes the likelihood given in (3.1), when the

data truly follow (3.2). This model typically yields inaccurate point estimates and

artificially narrow interval estimates.

Incorporating independent beta prior distributions in Bayesian models can im-

prove estimates when a priori information is available regarding the misclassification

rates. This unordered misclassification adjustment is common practice, but it ignores
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Figure 3.3: Posterior Densities of β1 (left) and HR = exp(β1) (right) for the Fallible
Test Example, Assuming Ordered Misclassification. The vertical bar in each plot
represents the true parameter value.

potentially beneficial information regarding order. In this example, the unordered

joint prior on the misclassification parameters with a prior equivalent sample size of

10 is

π(θ, η) = Beta(θ|7, 3)Beta(η|9, 1).

We compare the results from the model assuming ordered misclassification to

those obtained under the assumptions of the naive model, unordered adjustment

model, and a perfectly classified model. We perform the analysis with the perfectly

recorded data simply to reiterate that the generated data reflect our expectations.

As before, we use two chains and a burn-in of 2000 values. Then, we follow this

with 10,000 posterior samples. No convergence issues were observed. We compare the

posterior summary statistics for β1 from these four models in Table 3.3. Additionally,

we compare the posterior summary statistics for HR = exp(β1) from these models in

Table 3.4.

The naive model yields an estimate for β1 that is far from the true parameter

value, whereas the three remaining models’ estimates for β1 are all near the true value.

The models acknowledging the presence of misclassification have posterior standard

deviations that are larger than the models making no such assumption, as is to be
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Table 3.3: Comparing Posterior Results of β1 for the Fallible Test Example Under
Different Misclassification Assumptions.

Model Mean SD 2.5% Median 97.5%
Truth −1.0000 − − − −
Naive −0.7892 0.2071 −1.1970 −0.7907 −0.3813
Unordered Adjustment −0.9973 0.3107 −1.625 −0.9921 −0.4129
Ordered Adjustment −0.9918 0.3094 −1.6410 −0.9799 −0.4240
Perfectly Classified −0.9917 0.2058 −1.3890 −0.9917 −0.5834

expected. The potential advantage of modeling ordered misclassification parameters

will be considered in Section 3.6.

Table 3.4: Comparing Posterior Results of HR = exp(β1) for the Fallible Test
Example Under Different Misclassification Assumptions.

Model Mean SD 2.5% Median 97.5%
Truth 0.3679 − − − −
Naive 0.4649 0.0961 0.3053 0.4554 0.6796
Unordered Adjustment 0.3920 0.1147 0.1993 0.3815 0.6508
Ordered Adjustment 0.3844 0.1183 0.1868 0.3723 0.6499
Perfectly Classified 0.3798 0.0787 0.2485 0.3714 0.5585

The posterior densities for β1 under these four assumptions are graphed in

Figure 3.4. Additionally, the posterior densities for HR under these four assumptions

are graphed in Figure 3.5. Both figures reiterate the findings from Table 3.3 in that

the two adjusted models yield estimates near the true parameter value and have more

variability than the other two models.

The prior distributions for the misclassification parameters of this example are

in in Figure 3.6. For this analysis, we choose a prior equivalent sample size of 10

because it is one-tenth of the total sample size. Also shown in Figure 3.6 are other

possible prior distributions which reflect the same prior information regarding mis-

classification, but do so at different prior equivalent sample sizes. Distributions with

larger prior equivalent sample sizes have less variability than those with smaller prior

equivalent sample size.
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Figure 3.4: Posterior Densities for β1 in the Fallible Test Example. The vertical bar
represents the true value.

Figure 3.5: Posterior Densities for HR = exp(β1) in the Fallible Test Example. The
vertical bar represents the true value.

3.5 Examples with Two Covariates

Cancer mortality rates differ by race (CDC, 2014). Recall that Gomez and

Glaser (2006) show that race/ethnicity is misclassified in the Greater Bay Area Cancer

Registry and that the rates of misclassification differ among the races/ethnicities and

hospitals in the registry. Further, Gomez et al. (2003) found that of the hospitals
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Figure 3.6: Possible Beta Priors for Misclassification Parameters with Varying Prior
Equivalent Sample Sizes. Beta priors for θ with mean 0.7 (left). Beta priors for η with
mean 0.9 (middle). Beta priors for η|θ with support (0.7,1) and mean 0.9 (right).

examined, roughly 20% reported assigning patients’ race/ethnicity based only on

surname. This gives rise to potential racial/ethnic misclassification, especially for

women who take their husband’s surname in an interracial/interethnic marriage. This

scenario, with its potential misclassification, motivates the following hypothetical

example.

Models incorporating knowledge of misclassification must utilize estimated val-

ues of misclassification parameters. Bayesian models that do so require priors on

those parameters. These can be constructed with a combination of expert opinion

and either internal or external validation data. See Prescott and Garthwaitte (2002)

for an overview of obtaining prior distributions via validation substudy. In our case,

suppose that we have a separate study of classification performance at hospitals con-

tributing to the cancer registry utilized for the main survival data set. If that data

set is available and can be itself analyzed with a Bayesian model, then the resulting

posteriors on the misclassification parameters can be employed in the misclassified

proportional hazards model. Suppose we have the slightly less convenient situation

in which the separate data are not available, but the results of a frequentist analysis

are available. In particular, suppose we have maximum likelihood estimators (MLEs)

and 95% interval estimates for sensitivity and specificity. For example, suppose that

the MLE of the sensitivity of racial/ethnic classification at a large hospital is η̂1 =
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0.96 and the MLE of the sensitivity of racial/ethnic classification at a small hospital

is η̂2 = 0.96. Further, the estimated positive predictive value at the large hospital

is P̂PV 1 = 0.78 and the estimated positive predictive value at the cancer center is

P̂PV 2 = 0.92. The MLE, θ̂i, for i = 1, 2 is

θ̂i = 1− (η̂iπ̂i/P̂PVi)− η̂iπ̂i
1− π̂i

.

Thus, the MLE of the specificity of racial/ethnic classification at the large hospital is

θ̂1 = 0.73 and the MLE of the specificity of racial/ethnic classification at the small

hospital is θ̂2 = 0.92.1 Assuming that η ⊥ θ for η = (η1, η2) and θ = (θ1, θ2), the

Bayesian model for this general problem is diagramed in Figure 3.7.

Figure 3.7: Proportional Hazards Model with a Perfectly Recorded Binary Covariate
and a Covariate Subject to Ordered Misclassification.

Suppose that, given θ̂2 = 0.92 and a 95% confidence interval, we set the 5th

percentile of the prior for θ2 at 0.82. Then, using a prior equivalent sample size of 20,

we specify the joint prior for the misclassification parameters as

π(η1, η2, θ2|θ1) = Beta(η1|19.2, 0.8)Beta(η2|19.2, 0.8)Beta(θ1|14.6, 5.4)Beta[θ1,1](θ2|14, 6).

Note that because the estimates of η1 and η2 are the same, we do not employ the

general beta correction for the sensitivities. The prior π(θ2|θ1) ranges from θ1 to 1

and has a mean of 0.92 when θ1 = 0.73.

1 This is an adaptation from Gomez and Glaser (2006).
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Define a subject’s group as

Group =



1 if x = 0, z = 0;

2 if x = 1, z = 0;

3 if x = 0, z = 1;

4 if x = 1, z = 1.

We generate n = 50 survival times for each of the 4 groups for a total of N = 200

survival times based on the hypothetical median (ζ) survival times for each group

displayed in Table 3.5.

Table 3.5: Summary of Parameters for Race/Ethnicity and Hospital Example.

ζ1 ζ2 ζ3 ζ4 β1 β2 η1 η2 θ1 θ2 α
90 498 45 251 −1.0 0.3 0.96 0.96 0.73 0.92 0.5843

The likelihood is

L(α,β|x∗, z) =
n∏
j=1

αtα−1
j exp(x∗

′

j β1) exp(z
′

jβ2)

and the joint prior is

π(α,β,η,θ) = Exp(α|1.711)N(β1|0, 0.01)N(β2|0, 0.01)Beta(η1|19.2, 0.8)

×Beta(η2|19.2, 0.8) Beta(θ1|14.6, 5.4) Beta[θ1,1](θ2|14, 6).

Thus, the posterior is

π(α,β,η,θ|x∗, z) ∝ L(α,β|x∗, z)π(α,β,η,θ).

To perform the analysis, we use two chains and a burn-in of 2000 values. We

follow this with 10,000 posterior samples. No convergence issues were observed. The

posterior summary statistics under the ordered misclassification assumption are pro-

vided in Table 3.6. The posterior estimate of β1,−1.036, is close to the true pa-

rameter value, −1.000. Additionally, the estimated hazard rate of death for White,

non-Hispanic patients compared to White, Hispanic patients is 0.3634, which is close

to the true parameter value of 0.3679.
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Table 3.6: Posterior Results for the Race/Ethnicity and Hospital Example,
Assuming Ordered Misclassification.

Parameter Truth Mean SD 2.5% Median 97.5%
β1 −1.0000 −1.0360 0.2215 −1.5100 −1.0220 −0.6395
β2 0.3000 0.3239 0.1423 0.0402 0.3253 0.6019
η1 0.9600 0.9523 0.0425 0.8469 0.9636 0.9990
η2 0.9600 0.9703 0.0291 0.8944 0.9790 0.9996
HR 0.3679 0.3634 0.0774 0.2190 0.3611 0.5249
θ1 0.7300 0.7296 0.0698 0.5867 0.7320 0.8593
θ2 0.9200 0.9177 0.0338 0.8407 0.9217 0.9707

We compare the results obtained using the ordered misclassification assumption

to those obtained with a naive model, a model using the unordered adjustment, and

a perfectly classified model. The unordered joint prior is given by

π(η1, η2, θ1, θ2) = Beta(η1|19.2, 0.8)Beta(η2|19.2, 0.8)Beta(θ1|14.6, 5.4)Beta(θ2|18.4, 1.6).

To perform the analyses, we use two chains and a burn-in of 2000 values. We follow

this with 10,000 posterior samples. The posterior summary statistics for β1 from these

four models are in Table 3.7. The naive model yields an estimate that is pulled toward

zero, away from the true parameter value. Both of the adjusted models, as well as the

perfectly classified model produce estimates for β1 that are near the true parameter

value. Additionally, the posterior summary statistics for HR = exp(β1) using these

four models are in Table 3.8. The posterior densities of β1 for the four models are in

Figure 3.8 and the posterior densities for the hazard rates are in Figure 3.9.

Table 3.7: Comparing Posterior Results for β1 in the Race/Ethnicity and Hospital
Example Under Different Misclassification Assumptions.

Model Mean SD 2.5% Median 97.5%
Truth −1.0000 − − − −
Naive −0.8368 0.1460 −1.1170 −0.8388 −0.5460
Unordered −1.0350 0.2234 −1.5200 −1.0180 −0.6400
Ordered −1.0360 0.2215 −1.5100 −1.0220 −0.6395
Perfectly Classified −1.0440 0.1487 −1.3350 −1.0450 −0.7497
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Figure 3.8: A Comparison of β1 Densities for the Race/Ethnicity and Hospital Exam-
ple. The vertical line represents the true value.

Figure 3.9: A Comparison of HR = exp(β1) for the Race/Ethnicity and Hospital
Example. The vertical line represents the true value.

3.6 Simulation for Single Covariate

To investigate the performance of and relationship between the models, we

perform small-scale simulations assuming different levels of separation between or-

dered parameters. We quantify this difference as δ = [(η − θ)/θ]× 100 and examine

δ = 10, 20, and 30. We consider n = 50 for the 2 groups for a total sample size of

N = 100, as before. The simulation design points are presented in Table 3.9. We
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Table 3.8: Comparing Posterior Results for HR = exp(β1) in the Race/Ethnicity
and Hospital Example Under Different Misclassification Assumptions.

Model Mean SD 2.5% Median 97.5%
Truth 0.3679 − − − −
Naive 0.4365 0.0643 0.3246 0.4310 0.5741
Unordered 0.3638 0.0783 0.2188 0.3613 0.5273
Ordered 0.3634 0.0774 0.2190 0.3611 0.5249
Perfectly Classified 0.3564 0.0530 0.2637 0.3527 0.4703

compare the models assuming PESS = 10. To complete this simulation, we perform

5,000 burn-ins, 10,000 posterior samples, and 100 replications. Convergence diagnos-

tics were examined for a random sample of replications and no problems were found.

The simulation results for β1 are in Table 3.10 and the simulation results for the

hazard rate, HR = exp(β1), are in Table 3.11.

Table 3.9: Design Points for Single Covariate Simulation.

δ β1 θ η
10% −1.00 0.70 0.77
20% −1.00 0.70 0.84
30% −1.00 0.70 0.91

Table 3.10: Single Covariate Simulation Results for β1. Mean of posterior means
(coverage) [width].

Model δ = 10 δ = 20 δ = 30
Truth −1.0000 −1.0000 −1.0000
Naive −0.5604 −0.6481 −0.7658

(0.3600) (0.5800) (0.7900)
[0.7559] [0.7616] [0.7789]

Unordered Adjustment −1.0171 −1.0083 −1.005
(1.0000) (1.0000) (1.0000)
[1.6743] [1.5060] [1.3262]

Ordered Adjustment −0.9926 −0.9892 −0.9959
(1.0000) (1.0000) (1.0000)
[1.6462] [1.4834] [1.2717]

The simulation summary graphics are displayed in Figure 3.10. The line across

the middle of each plot represents the true value of β1 and the black circle represents

the median of the 100 posterior means. Additionally, the horizontal black lines below
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and above the circle are the medians of the 100 posterior 2.5th and 97.5th percentiles,

respectively. The grey boxes surrounding the lines represent ±1 simulation standard

deviation of the posterior means and percentiles. The naive model’s median is biased

toward zero, while both of the adjusted models are practically unbiased. The model

using the ordered adjustment yields slightly narrower bands than the model using the

unordered adjustment.

Figure 3.10: Simulation Summary Graphics for Single Covariate Simulation at δ = 30.
From left to right: naive model, unordered adjusted model, ordered adjusted model.

3.7 Simulation for Two Covariates

As in the previous section, primary interest for this problem is in the separation

between dependent misclassification parameters. We again quantify this difference as

δ = [(θ2 − θ1)/θ1] × 100 and examine δ = 10, 20, and 30. We consider n = 50 for

the 4 groups for a total sample size of N = 200. The simulation design points are

in Table 3.12. We perform the misclassification adjusted analyses assuming PESS

= 20, which is one-tenth of the total sample size. To complete the simulations, we

perform 5,000 burn-ins, 10,000 posterior samples, and 100 replications. Convergence

diagnostics were examined for a random sample of replications and no problems were
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Table 3.11: Single Covariate Simulation Results for HR. Mean of posterior means
(coverage) [width].

Model δ = 10 δ = 20 δ = 30
Truth 0.3679 0.3679 0.3679
Naive 0.5886 0.5401 0.4802

(0.3600) (0.5800) (0.7900)
[0.4457] [0.4119] [0.3752]

Unordered Adjustment 0.4133 0.4060 0.3962
(1.0000) (1.000) (1.0000)
[0.6116] [0.5511] [0.4804]

Ordered Adjustment 0.4228 0.4108 0.3965
(1.0000) (1.0000) (1.0000)
[0.6174] [0.5481] [0.4709]

found. The results are for β1 are in Table 3.13 and the results for HR = exp(β1) are

in Table 3.14.

Table 3.12: Design Points for Two Covariate Simulation.

δ β1 β2 η1 η2 θ1 θ2

10% −1.00 0.30 0.96 0.96 0.70 0.77
20% −1.00 0.30 0.96 0.96 0.70 0.84
30% −1.00 0.30 0.96 0.96 0.70 0.91

Table 3.13: Two Covariates Simulation Results for β1. Mean of posterior means
(coverage) [width].

Model δ = 10 δ = 20 δ = 30
Truth −1.0000 −1.0000 −1.0000
Naive −0.8006 −0.8229 −0.8512

(0.7400) (0.7800) (0.8300)
[0.5770] [0.5759] [0.5732]

Unordered Adjustment −1.1447 −1.1515 −1.1544
(0.9400) (0.9500) (0.9600)
[0.8481] [0.8218] [0.7772]

Ordered Adjustment −1.1394 −1.1392 −1.1460
(0.9400) (0.9500) (0.9600)
[0.8463] [0.7969] [0.7658]

The simulation summary graphics are displayed in Figure 3.11. The line across

the middle of each plot represents the true value of β1 and the black circle represents

the median of the 100 posterior means. Additionally, the horizontal black lines below
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and above the circle are the medians of the 100 posterior 2.5th and 97.5th percentiles,

respectively. The grey boxes surrounding the lines represent ±1 simulation standard

deviation of the posterior means and percentiles. The naive model yields estimates

that are biased toward zero. The misclassification adjusted models have reduced

bias, but slightly overcorrect the effect of misclassification bias. The model using the

ordered adjustment yields slightly narrower bands than the model using the unordered

adjustment.

Figure 3.11: Simulation Summary Graphics for Two Covariate Simulation at δ = 20.
From left to right: naive model, unordered adjusted model, ordered adjusted model.

3.8 Concluding Remarks

Proportional hazards models enable researchers to evaluate the relationship

between time-to-event data and covariates. When one or more of the covariates is

misclassified, the inferences drawn from the model become unreliable, as the param-

eter estimates do not likely reflect the true parameter values. There are scenarios

which may cause the covariate’s misclassification rates to be ordered. In this chapter,

we presented an example in which a fallible test yields more false positive than false

negative results. We also explored an example derived from Gomez and Glaser (2006)
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Table 3.14: Two Covariates Simulation Results for HR. Mean of posterior means
(coverage) [width].

Model δ = 10 δ = 20 δ = 30
Truth 0.3679 0.3679 0.3679
Naive 0.4600 0.4493 0.4368

(0.7400) (0.7800) (0.8300)
[0.2661] [0.2592] [0.2510]

Unordered Adjustment 0.3335 0.3306 0.3288
(0.9400) (0.9500) (0.9600)
[0.2730] [0.2625] [0.2497]

Ordered Adjustment 0.3355 0.3342 0.3315
(0.9400) (0.9500) (0.9600)
[0.2738] [0.2599] [0.2482]

in which racial/ethnic misclassification of patients depends on the type of hospital in

which the patient is treated. In the first example, η and θ are ordered amongst them-

selves. In the second, the misclassification order occurs from the levels of another

covariate.

When order exists with probability one, an independent prior structure is inap-

propriate, as the order may not be preserved. We proposed an adjustment for ordered

misclassification based on a conditional prior structure, using the general beta distri-

bution. This adjustment preserves the order of misclassification with probability one.

Adjusting for ordered covariate misclassification with the proposed method requires

minimal additional work compared to the unordered misclassification adjustment. In

addition to preserving the misclassification order, the method also yields improved

estimation precision in some cases.

We recognize that it is not always appropriate to assume order with probability

one. If this assumption cannot be made, then this adjustment is inappropriate. This

adjustment, as well as any Bayesian method, is limited by the quality of historical

data and/or expert opinion obtained.
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CHAPTER FOUR

Bayesian Sample Size Determination for Informative Hypotheses

4.1 Introduction

Suppose we design an experiment to produce continuous responses with group

means µ1, . . . , µJ which share a common variance, σ2. Furthermore, we believe the

means follow the order given by

HI : µ1 < µ2 < · · · < µJ . (4.1)

This is commonly referred to as an informative hypothesis in the Bayesian literature

(Hoijtink, 2012). Suppose we wish to construct a test of this informative hypothesis

against its complement. Then we have HI vs. HC : µi ≥ µj for some i < j. Define

the effect size as

δi ≡
∣∣∣∣µi − µi+1

σ

∣∣∣∣ , i = 1, . . . , J − 1.

Additionally, define the error probabilities

αC = P (select HI |HC) (4.2)

and

αI = P (select HC |HI). (4.3)

Suppose we wish to distinguish between HI and HC at pre-specified effect sizes and er-

ror probabilities. We must find an appropriate sample size to satisfy these conditions.

In this chapter, we do so by implementing a Bayesian sample size determination tech-

nique based on empirical selection error probabilities and the two-priors approach.

As we shall see, this new approach affords advantages over the traditional sample size

methods employed in Hoijtink (2012).
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4.2 Methods of Analysis

4.2.1 Frequentist Testing Procedures

In the frequentist setting, the most commonly utilized procedure to analyze

three or more group means with equal variance is a oneway analysis of variance

(ANOVA). The hypotheses used in testing j = 1, . . . , J normal means in this setting

are

H0 : µi = µj for all i, j

and

HA : µi 6= µj for some i 6= j,

where H0 denotes the null hypothesis and HA denotes the alternative. In the usual

approach (Stoline, 1981), if the overall F -test rejects the null hypothesis, further

tests are required to distinguish the relationships between the groups’ means. These

tests include pairwise comparisons and orthogonal contrasts. Performing tests ad-

ditional to the overall F -test increases the probability of incorrectly rejecting a null

hypothesis one or more times, the family-wise error rate. This family-wise error rate

inflation is directly related to a decrease in power. Even utilizing adjustments such

as Bonferonni’s method may not provide an optimal solution to the multiple test

requirement.

Due to family-wise error rate inflation and other drawbacks associated with ad

hoc multiple tests, frequentists developed methods specifically to test hypotheses with

inequality constrained parameters. These methods include likelihood ratio tests based

on restricted maximum likelihood estimators and planned contrast tests (Robertson

et al., 1988). The likelihood ratio tests are evaluated with a χ2 or F distribution and

are formed using restricted maximum likelihood estimates. Planned contrast tests

are evaluated using a t or F distribution. If the one-sided p-value is significantly

small, the researcher rejects the null hypothesis and automatically concludes that

the means follow the order specified by the alternative hypothesis. Incorporating

inequality constraints in the alternative hypothesis can increase power and decrease
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the time required for testing by eliminating the need for ad hoc multiple tests. The

literature on order restricted frequentist analysis is rich (see Silvapulle et al., 2004 or

Kopylev, 2012, for example). However, we consider a Bayesian formulation of this

problem and focus ultimately on sample size determination.

4.2.2 Bayesian Hypothesis Testing

The Bayesian approach to hypothesis testing relies on posterior probabilities,

information criteria (for model selection), or on Bayes factors, which contrast prior

and posterior odds for the hypotheses of interest (Robert, 2007). Bayes factors pro-

vide the support of one hypothesis relative to another. A value larger than 1 indicates

preference for the hypothesis in the numerator, a value smaller than 1 indicates pref-

erence for the hypothesis in the denominator, and a value of 1 indicates no preferential

model. There exists much debate on cutoff values for Bayes factors in an effort to

avoid the arbitrariness of the 0.05 ‘rule’ of p-value significance in frequentist analysis.

In the context of our problem, we contrast the prior and posterior odds for HI and

HC . Here, the posterior probability of HI refers to the probability of the set

HI = {µ ∈ RJ : µ1 < · · · < µJ}, (4.4)

where µ = (µ1, . . . , µJ). Additionally, the set corresponding to HC is simply its

complement, HC ≡ HI .

The ability to use prior information is an advantage of the Bayesian approach.

Another is that, given the posterior, any number of hypotheses can be tested, includ-

ing pairwise tests. The multilevel Bayesian model requires neither ad hoc tests to

determine the order of parameters, nor a correction for the family wise error rate.

Gelman, Hill, and Yajima (2012) note that “rather than correcting for a perceived

problem, we just build the multiplicity into the model from the start.”

In the Bayesian evaluation of informative hypotheses, all hypotheses with in-

equality constraints are nested in an unconstrained (encompassing) hypothesis de-
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noted by

HE : µ1, µ2, . . . , µJ , (4.5)

corresponding to the set

HE = {µ ∈ RJ}. (4.6)

A prior for this hypothesis is called an encompassing prior (Klugkist et al., 2005).

Through use of indicator functions, all priors corresponding to informative hypothe-

ses nested in the encompassing hypothesis may be created. An advantage to this

approach is that these priors only require the hyperparameters corresponding to the

unconstrained model, HE, to be specified. This set of priors does not favor any par-

ticular model. Additionally, the corresponding marginal priors are designed to be

vague. This effectively creates a class of priors that are informative solely through

the specified order. For example, in a J group ANOVA model with

yi =
J∑
j=1

µjdji + εi, εi ∼ N(0, σ2),

one possible encompassing prior is given by

π(µ, σ2|HE) =
J∏
j=1

N(µj|µ0, τ
2
0 )Γ−1(σ2|a, b),

where N(·|·) and Γ−1(·|·) denote normal and inverse gamma densities, respectively.

Here, µ0, τ
2
0 , a, and b are all hyperparameters chosen to make π(µ, σ2|HE) relatively

noninformative.1 We can create a prior for the informative hypothesis, HI , by limiting

the domain of the encompassing prior to match the order specified by the informative

hypothesis via an indicator function. We have

π(µ, σ2|HI) =

∏J
j=1 N(µj|µ0, τ

2
0 )Γ−1(σ2|a, b)IHI∫ ∫ ∏J

j=1 N(µj|µ0, τ 2
0 )Γ−1(σ2|a, b)IHIdµdσ2

, (4.7)

where

IHI =

 1 If the order follows that of HI ;

0 Otherwise.

1 A prior which is noninformative relative to the likelihood function. This prior has little impact
on the posterior.
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Note that the normal and inverse-gamma are conditionally independent given the

ordering. One could provide a more general covariance structure, but like Klugkist

et al., 2005, we retain the conditional independence structure.

As an example, Figure 4.1 displays 95% contours for three bivariate normal

priors for (4.4) with J = 2. Clearly, all three priors distribute probability equally on

both inequality constrained spaces, i.e. P (µ1 < µ2) = P (µ2 < µ1) = 0.5. The two

circular contours are from encompassing priors, in that they satisfy the covariance

structure implied by (4.7). The prior represented by the more eccentric elliptical

contour is not considered encompassing because it requires a more general covariance

structure.

Figure 4.1: 95% Contours of Bivariate Priors. The circular contours satisfy the re-
quirements of encompassing priors. The elliptical contour does not satisfy the encom-
passing prior covariance structure requirement.

As previously mentioned, the unconstrained (encompassing) prior is specifically

designed not to favor an hypothesis over another. Generally, for models with strict

inequalities and J means, there are J ! possible configurations of the means, including

that in (4.1). To model a lack of a prior preference of one configuration over another,

we can require that each has prior probability 1/J ! ≡ cI .

We suggest the following formal definitions for the continuous case. Let PJ ≡

P{1, 2, . . . , J} denote the set of permutations of the integers {1, 2, . . . , J}. Let p ≡
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(p1, . . . , pJ) ∈ PJ. Define the set

Hp = {µ ∈ RJ : µp1 < µp2 < · · · < µpJ}.

For any p ∈ PJ, the complexity (Klugkist, Laudy, and Hoijtink, 2005) of the infor-

mative hypothesis is the prior probability2

cI =

∫
Hp

π(µ)dµ, for any p ∈ PJ.

Further, cI = 1/J ! for any p ∈ PJ with only strict inequalities. Similarly, the fit of

the informative hypothesis is the posterior probability

fI =

∫
Hp

π(µ|data)dµ, for any p ∈ PJ.

Klugkist et al. (2005) showed that the Bayes factor for comparing an informative

hypothesis against an unconstrained alternative hypothesis, (4.5), is given by

BFIE = fI/cI .

Since HC = HI , the complexity and fit of the complementary collection of hypotheses

are cC = 1− cI and fC = 1− fI , respectively. Thus, the Bayes factor comparing HC

to HE is

BFCE =
fC
cC

=
(1− fI)
(1− cI)

.

Finally, Van Rossum et al. (2013) conclude that the Bayes factor for testing an infor-

mative hypothesis against its complement is

BFIC =
BFIE
BFCE

=
fI/cI

(1− fI)/(1− cI)
.

They select HI when BFIC > 1 and select HC when BFIC < 1. Thus,

αC = P (select HI |HC) = P (BFIC > 1|HC)

and

αI = P (select HC |HI) = P (BFIC < 1|HI).

2 Our notation and formal definition of these concepts is new, but the ideas of complexity,
encompassing priors, etc., are due to Klugkist, Hoijtink, and their colleagues.
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Although there is no null hypothesis in the Bayesian analysis outlined above, the

resulting errors are analogous to that of Type I and Type II errors in the frequentist

paradigm. The errors in both paradigms may be intentionally altered through the

choice of sample size.

4.3 Bayesian Sample Size Determination

Due to cost, time, and, especially in biomedical applications, ethical constraints,3

sample size determination is a crucial component of the experimental design process.

Because of its importance, there exist many methods to determine an appropriate

sample size. In fields such as drug development, operating characteristics (error prob-

ability, coverage, average credible interval width, etc.) must be examined, even in a

Bayesian analysis, as detailed in the Guidance for the Use of Bayesian Statistics in

Medical Device Clinical Trials (FDA 2010). The sample size determination problem

of interest arises from choosing between HI and HC . The challenge is to choose a

sample size that satisfies some criterion regarding the hypothesis test performance.

4.3.1 Fixed Parameters

Choosing between HI and HC can result in two types of errors, either by incor-

rectly selecting HI or incorrectly selecting HC , as defined in (4.2) and (4.3), respec-

tively. As previously discussed, Van Rossum et al. (2013) perform their analysis with

encompassing priors and then use the Bayes factor, BFIC , to make selection deci-

sions. As suggested by Hoijtink (2012), Van Rossum et al. (2013) perform a Bayesian

simulation at three fixed sample sizes in a repeated sampling framework to obtain

the empirical error probabilities associated with their testing procedure. We consider

this in more detail in Section 4.4.2. They subsequently find the appropriate sample

size for the desired effect size based on pre-defined error probabilities.

3 We want to avoid treating patients with an inferior drug when there is a more efficacious
alternative. The latter might be the existing standard of treatment or the new drug; either way we
do not want to expose more patients than necessary to the inferior treatment.

58



4.3.2 Two-Priors Approach

As in Van Rossum et al. (2013), we use a Bayesian sample size determination

method based on empirical error rates associated with the hypothesis test of HI v. HC .

However, we utilize the two-priors approach as discussed in Brutti et al. (2008). Do-

ing so increases flexibility in simulation studies by replacing fixed parameters with

probability distributions. These distributions are called design priors and are typi-

cally very informative. They are used specifically for sampling purposes. An example

of incorporating design priors in a simulation study as opposed to specifying fixed

parameters is illustrated in Figure 4.2.

In the figure, two models are specified, one with common effect size 0.5 and

the other with 0.2. The number line represents a typical simulation relying on fixed

parameters. The two sets of density plots illustrate the variability incorporated during

the data generation process. Initially, we use the same standard deviation in the

design priors for the models at both effect sizes, which explains the variation in the

distributional overlap in the two sets of density plots. Selecting different values for

the design prior standard deviation allows manipulation of the distributional overlap.

After using design priors to find parameter values, data are generated, and

analysis priors are incorporated as in a typical Bayesian analysis. This two-priors

method generally requires the use of Markov chain Monte Carlo methods. To our

knowledge, the two-priors approach has not been used in sample size determination

for testing informative hypotheses.

4.4 Simulation

4.4.1 Motivating Example

As discussed in Section 4.2.2, Van Rossum et al. (2013) developed a method

using BFIC to test one informative hypothesis, HI , against its complement, HC . In

the article, they apply their selection method to data in Van de Schoot et al. (2010)

on the association between popularity and antisocial behavior.
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Figure 4.2: Design Prior Flexibility for Selected Models from Section 4.4.1. M1 has
δi = 0.5 ∀i and M5 has δi = 0.2 ∀i.

In that article, subjects from preparatory vocational schools are first categorized

into five sociometric status groups using a peer assessment tool. The five sociometric

groups are Group 1: neglected, Group 2: popular, Group 3: average, Group 4:

rejected, Group 5: controversial. Once the groups are established, a slightly modified

version of the Anti-Social Behavior Questionnaire (Host et al., 1998) is administered

to the students. The questionnaire is comprised of the question: ‘did you conduct this

behavior’ for twelve items, such as ‘stealing money from home.’ Each item is measured

with a four point frequency scale (no, once, sometimes, often). Van de Schoot et

al. (2010) expect the average frequencies of antisocial behavior to be smallest for the

neglected group, followed by the popular, average, rejected, and controversial groups.

Van Rossum et al. (2013) use the example from Van de Schoot et al. (2010)

to develop an informative hypothesis; however, they change the range of possible

values for their simulation to be between −0.8 and 2.0. The researchers’ informative

hypothesis is

HI : µ1 < µ2 < µ3 < µ4 < µ5. (4.8)
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The task is to find a sample size that enables the researchers to distinguish between

HI and HC while keeping the αI and αC errors ‘small.’

4.4.2 Fixed Parameters

Van Rossum et al. (2013) examine five models for the antisocial behavior prob-

lem at three preset sample sizes. Figure 4.3 is one of many possible representations

of those five models. Table 4.1 specifies the actual values assigned to the means used

in the models. Additionally, they set σ2 = 1 for all groups across all models. Van

Rossum et al. (2013) design M1 and M2 to follow the order constraints in HI at

effect sizes 0.5 and 0.2, respectively. Additionally, they choose M3,M4, and M5 in

HC with an increasing number of HI order violations at effect sizes 0.5, 0.5, and 0.2,

respectively.

Figure 4.3: Possible Mean Scores of the Anti-social Behavior Questionnaire by Group.

Table 4.1: Parameter Specification for Antisocial Behavior Example.

Model µ1 µ2 µ3 µ4 µ5

M1 0.0 0.5 1.0 1.5 2.0
M2 0.0 0.2 0.4 0.6 0.8
M3 0.0 1.0 0.5 1.5 2.0
M4 0.0 1.0 0.5 2.0 1.5
M5 0.0 −0.2 −0.4 −0.6 −0.8

To complete their sample size simulation, they use a Gibbs sampler and perform

1000 burn-ins and 10,000 posterior iterations in WinBUGS for 1000 replications at

each Mk, k = 1, . . . , 5, and each n = 10, 20, 40. They calculate BFIC for each
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replication and record the corresponding choice of hypothesis based on the predefined

cutoff value of 1. Then they calculate the empirical error probabilities (αI and αC)

and make sample size decisions based on those error rates. The results are compared

to the two-priors simulation results in Figure 4.8.

4.4.3 Two-Priors

The simulation algorithm for the two priors approach applied to the sample

size problem for informative hypotheses at a fixed sample size is represented by the

diagram in Figure 4.4. The algorithm is as follows:

(1) Select an hypothesis and specify the corresponding design and analysis priors,

maximum tolerated empirical error rate, and maximum sample size.

(2) Generate parameters using the design priors.

(3) Conditional on the generated parameters, generate data from aK-dimensional

(K = number of groups) multivariate normal distribution with a constant

variance and no correlation between groups.

(4) Combine the generated data with the analysis priors in WinBUGS to obtain

posterior distributions.

(5) Calculate BFIC and record the model selections for all N replications.

(6) Calculate the empirical error probabilities.

(7) Repeat with different sample sizes until the maximum tolerated empirical

error rate is achieved with the smallest sample size.

For the antisocial behavior example, we generate data from the K-dimensional

multivariate normal distribution using the design prior values in Table 4.1 as the

means. To be consistent with the simulation setup in Van Rossum et al. (2013), we

specify a constant variance (σ2 = 1) of antisocial behavior, and no correlation between

the sociometric groups. To obtain results comparable to Van Rossum et al. (2013),
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we use the five models summarized in Table 4.1 at sample sizes (10, 20, 40), (analysis)

priors, burn-ins (1000), posterior samples (10,000), and replications (N = 1000).

Figure 4.4: Diagram of Simulation Algorithm.

The joint design priors can be written as

π(µ̃j, σ̃) = π(µ̃j|σ̃)π(σ̃).

We take π(µ̃j|σ̃) as N(µj, φ
2) and π(σ̃) as U(a, b). We choose φ = 0.1, and set

a = 0.5, and b = 1.5 to center the uniform distribution at 1 because this is the

value that Van Rossum et al. (2013) use as the standard deviation between each µj.

Note that use of a uniform prior on the standard deviation is preferred over the once

common inverse-gamma prior because of its superior MCMC convergence properties

(see Spiegelhalter et al., 2004 and Gelman, 2006). We set φ = 0.1 to allow some

possibility of overlap in the distributions of the means. Figure 4.2 depicts the overlap

for models 1 and 5, which represent both effect sizes examined in this simulation.

There is a noticeable difference in overlap for the two effect sizes. For this reason, we

perform an additional simulation in Section 4.5.2 to investigate the effect of changing

the value of φ on sample size.

To facilitate comparison to the results in Van Rossum et al. (2013), we use the

same analysis priors, chosen to be relatively noninformative and provide equal support

for all possible ordered models. The priors are given below as joint independent
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normal-gamma (gamma on precision, inverse-gamma on variance) distributions. Since

this example problem has a maximum range of 2 units across group means, specifying

a precision of 0.001 in the prior may seem alarming; however, there are no problems

with convergence.

Figure 4.5: Analysis Priors for 5 Group ANOVA Model.

We randomly sample simulation replications to examine data generation and

convergence. We include one plot for each assumption investigated in this chapter. To

verify the generated data follow the order we expect, we create box plots for samples

of simulation replications. An example plot is shown for the data using Model 1 in

Figure 4.6. The data clearly follow the requisite ordering.

Figure 4.6: Boxplots for Model 1 Sample Size 40.

We investigate MCMC convergence for a randomly chosen sample of simulation

replications, using parallel chains. Gelman-Rubin plots and other diagnostics reveal

no convergence problems for the sampled replications.
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After obtaining the 1000 replications for each model, we investigate the sim-

ulation’s variability by examining posterior credibility intervals. Figure 4.7 displays

groups 1 and 5 of Model 1. The line across the middle of each plot corresponds to the

true parameter value for the group (from Table 4.1). The two short lines above and

below the middle line are the medians of the 1000 95% credible interval upper and

lower bounds, respectively. Additionally, the black circle is the median of the 1000

posterior means. The grey vertical bar represents ± 1 simulation standard deviation

from the median of 1000 posterior means and 95% credible interval bounds. The two

dark grey bands indicate overlapping simulation standard deviations. As expected,

the simulation variability decreases as the sample size increases and looks similar for

both groups. Because the data are normal and symmetric, we could have elected to

use the less robust mean summary statistic instead of the median.

Figure 4.7: Simulation Summary for Model 1: Group 1 (top). Group 5 (bottom). N
= 10, 20, 40 (left to right).

The empirical error probabilities displayed on the left side of Figure 4.8 cor-

respond to Models 1 and 2 (Table 4.1), which both follow the order specified in HI

(4.8). Therefore, the error probabilities (αI) are the percents of times out of 1000

that HC is selected. An example of how to use this plot follows. Suppose the client is
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certain his model follows M2 and wants to bound αI at 0.075. Then we suggest the

method of sample size determination relying on fixed parameters, which requires a

sample size of 20. However, if the client is less certain his model follows M2, but still

wants to bound αI at 0.075, we suggest the two priors approach, which incorporates

his uncertainty regarding the parameters’ order, in the simulation through the use of

design priors. Doing so requires a sample size of 40.

Figure 4.8: Empirical Errors from the Simulation for Models 1 and 2 (left) and 3, 4,
and 5 (right).

The error rates displayed on the right side of Figure 4.8 correspond to Models

3, 4, and 5 (Table 4.1), which all violate the order given in HI (4.8). Model 3 has

one paired violation, Model 4 has two paired violations, and Model 5 completely

violates the order in HI . Since BFIC distinguishes between HI and HC , the errors

(αC) represent the percents of times out of 1000 that HI is selected. The Bayes factor

easily determines that Model 5 follows the order given by HC , even with a sample as

small as 10. Model 4 requires a sample size of at least 40 to provide a reasonable error

probability for both the fixed parameter and two-priors simulation methods. Even at

a sample size of 40, the error rate for Model 3 is high using both simulation methods
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(αC > 0.5). Because these error rates are so high, it may not be appropriate to use

BFIC to distinguish between an informative hypothesis and its complement when

there is one paired order violation present in the data for a five parameter model.

4.5 Additional Simulation Experiments

4.5.1 Dimensionality

When few order violations are present relative to the number of groups in a

model (i.e. Model 3), BFIC has difficulty correctly distinguishing HI from HC . For

this reason, the sample size required to obtain the maximum tolerated error rate is

large. In the 5-dimensional case examined in Section 4.4.3, there is potential for the

two-priors approach to yield a smaller sample size requirement than the fixed param-

eter simulation because the empirical error rates obtained are lower than the fixed

parameter simulation’s. For this reason, we investigate the effect of dimensionality

on the sample size requirement using the fixed parameter simulation method and the

two-priors simulation method.

In Figure 4.9, we illustrate a three parameter model with one paired order

violation at effect size 0.5. To perform the simulation, we use the model diagrammed

in Figure 4.4 and the corresponding algorithm from Section 4.4.3. For this problem,

we generate data from the 3-dimensional multivariate normal distribution using the

design prior values of µ1 = 0.0, µ2 = 1.0, µ3 = 0.5 as the mean vector components from

which to generate parameter values. To be consistent with the simulation setup in

Van Rossum et al. (2013), we specify a constant variance (σ2 = 1) within groups, and

no correlation between the groups. To obtain results comparable to Van Rossum et

al. (2013), we use the same sample sizes (10, 20, 40), (analysis) priors, burn-ins (1000),

posterior samples (10,000), and replications (N = 1000). Note that the analysis priors

for this problem are depicted in Figure 4.5; however, instead of j = 1, . . . , 5, now

j = 1, 2, 3.
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Figure 4.9: 3-Dimensional Model on the Number Line.

Figure 4.10: Error Rates for 3-Dimensional Hypothesis.

We investigate MCMC convergence for a randomly chosen sample of simulation

replications, using parallel chains. Gelman-Rubin plots and other diagnostics reveal

no convergence problems for the sampled replications. Figure 4.10 shows that the

three parameter model requires a smaller sample size than the five parameter model

(Figure 4.8) to obtain acceptably small errors using both simulation methods. Addi-

tionally, the Van Rossum method results in smaller error rates at each of the sample

sizes examined, which can lead to different sample size requirements. For example,

suppose the client wishes to have a maximum error rate of 0.1. Then the Van Rossum

fixed parameter approach requires a sample size of 40, but the two-priors approach

requires a sample size larger than 40.

Figure 4.11 depicts a seven parameter model with one and two paired order

violations. To perform the simulation, we again use the model diagrammed in Fig-

ure 4.4 and the corresponding algorithm from Section 4.4.3. For this problem, we
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generate data from the 7-dimensional multivariate normal distribution using the de-

sign prior values shown in Figure 4.11 as the means for parameter generation. To

be consistent with the simulation setup in Van Rossum et al. (2013), we specify a

constant variance (σ2 = 1) within groups, and no correlation between the groups.

To obtain results comparable to Van Rossum et al. (2013), we use the same sample

sizes (10, 20, 40), (analysis) priors, burn-ins (1000), posterior samples (10,000), and

replications (N = 1000). Note that the analysis priors for this problem are captured

in Figure 4.5; however, instead of j = 1, . . . , 5, now j = 1, . . . , 7.

We investigate MCMC convergence for a randomly chosen sample of simulation

replications, using parallel chains. Gelman-Rubin plots and other diagnostics reveal

no convergence problems for the sampled replications. Figure 4.12 shows that the

sample size required to obtain an acceptable error rate is higher for these two models

than any other dimension examined. Although it is clear that a sample size greater

than 40 is required, it is also evident that the two-priors simulation yields smaller

error rates than the Van Rossum approach, which could produce a smaller sample

size requirement.

Figure 4.11: 7-Dimensional Model on the Number Line.

4.5.2 Design Prior Variation

Increasing uncertainty in parameter values may correspond to an increase in

the requisite sample size for a given error probability specification. This level of

uncertainty is reflected by altering the design prior standard deviation, φ. Changing

the value of φ changes the extent of overlap in the design prior distributions, as seen

in Figure 4.2. This overlap represents the probability that the design priors yield

parameter values violating the order specified by the informative hypothesis. It is not
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Figure 4.12: Error Rates for 7-Dimensional Hypotheses.

known to what extent this alters the sample size requirement, so we investigate this

potential change via simulation.

The sample size simulation in Section 4.4.3 specifies φ = 0.1 for both effect size

0.2 and 0.5. For the latter effect size, this value of φ corresponds to an approximate

1% probability of generating parameter values that violate the specified order, for

any two of the neighboring design priors. For example, the two neighboring design

priors may be N(µ2 = 0.5, φ = 0.1) and N(µ3 = 1.0, φ = 0.1). Alternatively, φ = 0.1

corresponds to an approximate 30% probability of generating parameter values that

violate the specified order, for any two of the neighboring design priors with the

0.2 effect size. In this simulation, we examine three values of φ for both effect sizes

while allowing the probability of order violation among generated parameter values to

range between roughly 1% and 30%. The values of φ designed to achieve the desired

probability of order violation are displayed in Table 4.2.

The model diagrammed in Figure 4.4 is employed again, along with the corre-

sponding algorithm from Section 4.4.3. For this problem, we generate data from the

5-dimensional multivariate normal distribution using the design prior values shown in

Table 4.1 as the means. To be consistent with the simulation setup in Van Rossum et
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al. (2013), we specify no correlation between the groups and σ2 = 1.0. We change the

value of φ in the design priors to achieve the appropriate probability of order violation

(Table 4.2). We use the same sample sizes (10, 20, 40), (analysis) priors, burn-ins

(1000), posterior samples (10,000), and replications (N = 1000) as in Section 4.4.3

and Section 4.5.1.

Table 4.2: Specification of Design Prior Standard Deviation, φ.

φ Effect Size Overlap
0.100 0.5 1%
0.175 0.5 15%
0.250 0.5 30%
0.040 0.2 1%
0.070 0.2 15%
0.100 0.2 30%

We investigate MCMC convergence for a randomly chosen sample of simula-

tion replications, using parallel chains. Gelman-Rubin plots and other diagnostics

reveal no convergence problems for the sampled replications. Figure 4.13 shows that

increasing the overlap in the design priors leads to higher error probabilities when

HI is true. This indicates that using design priors with large values of φ, relative to

the effect size, may require the largest sample size to obtain acceptable error rates.

This result is expected because as the probability of overlap in design priors increases,

so does the probability of an HI order violation. This plot can be used for sample

size determination, as was illustrated with Figure 4.8 in Section 4.4.3. For example,

suppose a client believes his data follow Model 2 and wishes to use the smallest sam-

ple size that achieves a 0.10 error rate. A sample size of 20 is sufficient to obtain

this result for the fixed parameter simulation and the simulations which have design

priors with 1% and 15% probability of generating parameter values that violate the

order. However, a sample size of 40 is necessary to achieve this for a 30% probability

of overlap in these design priors.

Figure 4.13 shows a general decrease in empirical error rates as the extent of

overlap in design priors increases when HC is true. A sample size greater than 40 is
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required to produce reasonable error rates for Model 3. When the sample size is 10,

Model 4 yields the same order of empirical errors as in Model 3. When the sample

size is 40, the pattern does not hold. A sample size of 40 or larger is required to

obtain acceptable error rates for Model 4. There are virtually no selection errors for

Model 5; these results are consistent with those from Section 4.4.3.

Figure 4.13: Errors for Design Prior Simulation. Top left (Models 1 and 2). Top right
(Model 3). Bottom left (Model 4). Bottom right (Model 5).

4.5.3 Hypothesis with Constraint and Unknown Relationships

At times, interest may lie primarily with one group’s mean compared to a set

of other group means having either an unknown or unimportant relationship. For

example, suppose we have four group means and the researcher suspects the order is
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given by

HI2 : µ1 > max{µ2, µ3, µ4}. (4.9)

We continue to use an ANOVA model encompassing prior for this problem. One

possibility is

π(µ, σ2|HE) =
J∏
j=1

N(µj|µ0, τ
2
0 )Γ−1(σ2|a, b),

where µ0, τ
2
0 , a, and b are all hyperparameters chosen to make π(µ, σ2|HE) relatively

noninformative. We can create a prior for the informative hypothesis, HI2, by limiting

the domain of the encompassing prior to match the order specified by the informative

hypothesis via an indicator function. We have

π(µ, σ2, HI2) =

∏J
j=1 N(µj|µ0, τ

2
0 )Γ−1(σ2|a, b)IHI2∫ ∫ ∏J

j=1 N(µj|µ0, τ 2
0 )Γ−1(σ2|a, b)IHI2dµdσ2

,

where

IHI2 =

 1 If the order follows that of HI2;

0 Otherwise.

We are now interested in testing the informative hypothesis, HI2, against its comple-

ment, HC2 : HI2. To perform this test, we still use BFIC ; however, we must redefine

the set

Hp = {µ ∈ RJ : µp1 > max{µp2 , . . . , µpJ}},

where PJ ≡ P{1, 2, . . . , J} denotes the set of permutations of the integers {1, 2, . . . , J}

and p ≡ (p1, . . . , pJ) ∈ P{1, 2, . . . , J}, as before. For any p ∈ PJ, cI = 1/J .

The model diagrammed in Figure 4.4 is employed again, along with the corre-

sponding algorithm from Section 4.4.3. Now, the appropriate design prior means are

in Table 4.3. To obtain results comparable to Van Rossum et al. (2013), we use the

same five models summarized in Table 4.3, sample sizes (10, 20, 40), (analysis) priors

(Figure 4.14), burn-ins (1000), posterior samples (10,000), and replications (1000).

The empirical error rates for BFIC at each sample size and model are given in

Figure 4.15. Across all fifteen design points, the two priors and Van Rossum methods
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Table 4.3: Parameter Specification for HI2 Simulation.

Model µ1 µ2 µ3 µ4

M1 0.5 0.0 0.0 0.0
M2 0.2 0.0 0.0 0.0
M3 −0.2 0.0 0.0 0.0
M4 0.5 0.0 1.0 0.0
M5 0.5 0.0 1.0 1.5

Figure 4.14: Analysis Priors for HI2 Simulation.

likely produce the same sample size requirement, as the empirical error rates are

similar.

Figure 4.15: Empirical Errors from the HI2 Simulation for Models 1 and 2 (left) and
3, 4, and 5 (right).
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4.6 Concluding Remarks

In this chapter, we presented a sample size determination technique for infor-

mative hypotheses which uses an empirical error rate criterion with the two-priors

approach. We performed a simulation study to investigate the effect of substituting

design priors for fixed parameters on sample size requirements. We did so at two

different effect sizes (0.5 and 0.2) in a five parameter model and then extended the

simulation to both three and seven-dimensional models. Upon comparison of our

results to those in Van Rossum et al. (2013), we discovered that the sample size re-

quirements produced from these methods may not always coincide. Utilizing the two

priors in the simulation provided the flexibility to incorporate a researcher’s uncer-

tainty regarding order through the design priors. Additionally, changing the value of

the design prior standard deviation, φ, altered the requisite sample size as expected.

In particular, when HI is true, increasing the extent of overlap in the design priors

resulted in larger error probabilities, which required larger sample sizes to obtain

acceptable error rates. When HC is true, increasing the overlap of design priors re-

sulted in smaller error probabilities, which required smaller sample sizes to obtain

acceptable error rates. Further, we performed sample size determination for a model

with one inequality constraint and an unknown relationship between three remaining

variables. The fixed parameter method and the two-priors method resulted in similar,

if not identical, sample size requirements for this simulation. Electing to incorporate

uncertainty through design priors can correspond to adjustments in sample size.
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CHAPTER FIVE

Conclusion and Future Work

We presented topics in Bayesian models with order constrained parameters.

Order among parameters may occur from researchers’ expectations, empirical evi-

dence, or any number of other reasons. We examined logistic regression, proportional

hazards, and a one-way analysis of variance, all with ordered components.

In Chapter Two, we focused on ordered differential response misclassification.

We explored this phenomenon in a logistic regression setting and provided an ad-

justment using a system of conditional and marginal priors. We compared results

from a naive model, a non-differential misclassification adjusted model, a differential

misclassification adjusted model, and an ordered differential response misclassifica-

tion adjusted model using the BFRSS mammography use data as introduced by Njai

et al. (2011). In a simulation study, the proposed adjustment achieved “unbiased”

estimates with smaller credible interval widths than the differential adjustment’s.

Of primary interest for the future is ordered response misclassification in a

logistic regression model with covariates having three or more levels. Also of interest is

the ordered differential response misclassification generalized linear model regression

setting with three or more outcomes. Ordered response misclassification in a logistic

regression model with multiple covariates may also be an area of continued work.

In Chapter Three, we explored Bayesian survival models based on a covariate

subject to ordered misclassification. We specified a Weibull baseline hazard in order

to construct a fully parametric proportional hazards model. We first built a model

based on an hypothetical fallible test example using only one misclassified covariate.

In this case, the order occurred via a dependence on the misclassification parameters

directly. We then built a more complex model based loosely on the example of

racial/ethnic misclassification at hospitals (Gomez and Glaser, 2006). This model

used one perfectly recorded binary covariate and a misclassified binary covariate with
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misclassification rates dependent on the level of the perfectly recorded covariate. In

the simulations, the ordered adjustment provided more accurate estimates of the

regression parameter and hazard rate than the naive model. In most simulations

considered, the ordered adjustment yielded more precise estimates than the unordered

adjustment; however, the benefits of incorporating the ordered adjustment were more

apparent in Chapter Two.

Applying this ordered misclassification adjustment to another model with a

binary covariate could be both interesting and informative. Also of interest is ordered

misclassification in covariates having three or more levels.

In Chapter Four, we presented “informative hypotheses” (Hoijtink, 2012) and

performed a Bayesian sample size determination technique using the two-priors ap-

proach of Brutti et al. (2008). Through simulation, we concluded that applying the

two-priors approach in the context of informative hypotheses led to similar empir-

ical error rates than those obtained using a fixed-parameter simulation. However,

the two-priors’ results may lead to a different sample size requirement, based on a

pre-defined maximum-tolerated empirical error rate criterion. In this simulation, we

utilized Bayes factors to find preference between an informative hypothesis and its

complement. We extended the work to two other dimensions, other design priors,

and a different set of hypotheses.

We may examine other sample size determination criteria, such as coverage and

credible interval widths. Additionally, we plan to extend the inequality constrained

hypotheses to models unexplored in this context. This includes mixture models,

models with misclassified data, and correlated binary data models.
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APPENDIX A

Ordered Differential Response Misclassification Chapter

A.1 General Beta

The mean and variance of the general beta are

µ(Y ) =
αc+ βa

α + β

and

V (Y ) =
αβ(c− a)2

(α + β)2(α + β + 1)
,

respectively. Additionally, the mode is

M(Y ) =
(α− 1)c+ (β − 1)a

α + β − 2
.

The general beta distribution can represent quantities that are not restricted to the

support (0,1). For example, suppose we have X ∼ Beta(50, 50) and we have use

for this distribution to be on a range of (4,9). Then we apply the transformation

Y = X(9− 4) + 4 to achieve Y ∼ Beta[4,9](50, 50).

A.2 Conditional Means Priors

The conditional means priors (CMP) as described by Bedrick, Christensen,

and Johnson (1996) are useful for incorporating prior information about regression

parameters. Parameters in a logistic regression model are difficult to interpret and

eliciting priors for these parameters is a challenging process. An alternative is to elicit

information regarding expected responses from experts. In the logistic regression

setting, this shifts the conversation from log-odds ratios to success probabilities at

various covariate levels. The process of deriving CMPs involves eliciting information

about these observable outcome probabilities from an expert and then inducing priors

on the regression parameters.
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A.3 Ordered Differential Response Misclassification Code

The following WinBUGS code performs an adjustment for ordered differential

response misclassification in a logistic regression model.

model{

p[1] <- pi[1]*eta1 + (1 - pi[1])*(1 - theta1)

p[2] <- pi[2]*eta2 + (1 - pi[2])*(1 - theta2)

for(j in 1:k){

ystar[j] ~ dbin(p[j], n[j])

logit(pi[j]) <- beta0 + beta1*x[j]

}

ORCA <-exp(beta1)

# priors:

eta1 ~ dbeta(97,3)

eta2 ~ dbeta(97,3)

theta1 ~ dbeta(49,51)

theta2 <- pre.theta2*(1-theta1)+theta1

pre.theta2 ~ dbeta(24,76)

e_pi[1]~dbeta(19, 13)

e_pi[2]~dbeta(21, 12)

beta0 <- xtili[1,1]*(logit(e_pi[1])) + xtili[1,2]*(logit(e_pi[2]))

beta1 <- xtili[2,1]*(logit(e_pi[1])) + xtili[2,2]*(logit(e_pi[2]))

}
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APPENDIX B

Ordered Covariate Misclassification Chapter

B.1 Constraint on Weibull Scale Parameter

The following describes work by Blair and Seaman (2014). Suppose we have

information regarding the median survival time and wish to determine the value of α,

the shape parameter of the Weibull distribution. For T ∼ Weibull(α, σ), the median

survival time is

tm =

(
ln(2)

σ

)(1/α)

,

which yields

α =
ln(ln(2)/σ)

ln(tm)
.

If σ > ln(2) and tm > 1, α will be negative, which is not acceptable. In most cases,

tm > 1; thus, we must restrict σ < ln(2). In our problem, σ = λ exp(β) and it is not

reasonable to restrict exp(β). Therefore, we restrict the nuisance parameter, λ. We

require

λ exp(β) < ln(2).

Additionally, σ = λ exp(β) must be greater than zero and exp(β) is always positive.

Thus, we bound λ by

0 < λ <
ln(2)

k
,

where k is an unusually large value of the hazard ratio and is chosen based on the

level of conservativeness desired. Since we have no additional knowledge of λ, we

assume that every value between 0 and ln(2)/k is equally probable. Thus,

λ ∼ Unif

(
0,

ln(2)

k

)
.

B.2 Generating Survival Data

Bender, Agustin, and Blettner (2003) describe a method to generate survival

data. We summarize their work regarding Weibull proportional hazards data gener-
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ation. To begin, the survival function for the proportional hazards model is

S(t|x) = exp(−H0(t)eβ
′x),

and the cumulative distribution function (CDF) is

F (t|x) = 1− exp(−H0(t)eβ
′x).

Let Y be a random variable with CDF F (Y ). Using the probability integral trans-

form, W = F (Y ) ∼ Uniform(0,1). Suppose a random variable, U , is the linear

transformation U = 1 −W . Then U ∼ Uniform(0,1). In terms of the proportional

hazards model, W = F (t|x) ∼ Uniform(0,1) and

U = 1−W = exp[−H0(T ) exp(β′x)] ∼ Uniform(0, 1). (B.1)

If h0(t) > 0 for all t, the survival times for the proportional hazards model can be

found by inverting Equation B.1 as

T = H−1
0 [− log(U) exp(−β′x)] .

Additionally, the inverse of the cumulative hazard function for the Weibull distribu-

tion is

H−1
0 (t) =

(
λ−1t

)1/ν
.

Using this information allows the survival times of a proportional hazards model with

a Weibull baseline to be expressed as

T = λ−1/ν (− log(U) exp(−β′x))
1/ν

=

(
− log(U)

λ exp(β′x)

)1/ν

.

The hazard function is

h(t|x) = λνtν−1 exp(β′x) = λ exp(β′x)νtν−1.

Thus, the survival times are ti ∼ Weibull(λ exp(β′xi), ν).
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APPENDIX C

Bayesian Sample Size Determination Chapter

We use the following code from van Rossum et al. (2013) to perform the sam-

ple size simulations for the five-dimensional model. The simulation code for other

hypotheses and dimensions can be derived from this code.

MODEL{

#likelihood

for(i in 1:full.num){

y[i]~dnorm(mu[i],invsigma2)

mu[i] <-mu1*d1[i] + mu2*d2[i] + mu3*d3[i] + mu4*d4[i] + mu5*d5[i]

}

#priors

mu1~dnorm(0.0,0.001)

mu2~dnorm(0.0,0.001)

mu3~dnorm(0.0,0.001)

mu4~dnorm(0.0,0.001)

mu5~dnorm(0.0,0.001)

invsigma2~dgamma(0.01,0.01)

f1<-step(mu5-mu4)

f2<-step(mu4-mu3)

f3<-step(mu3-mu2)

f4<-step(mu2-mu1)

fit<-f1*f2*f3*f4

}
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