
ABSTRACT

Bayesian and Likelihood-Based Interval Estimation for the Risk Ratio Using
Double Sampling with Misclassified Binomial Data

Dewi Gabriela Rahardja, Ph.D.

Chairperson: Dean M. Young, Ph.D.

We consider the problem of point and interval estimation for the risk ratio

using double sampling with two-sample misclassified binary data. For such data,

it is well-known that the actual data model is unidentifiable. To achieve model

identifiability, then, we obtain additional data via a double-sampling scheme.

For the Bayesian paradigm, we devise a parametric, straight-forward algorithm

for sampling from the joint posterior density for the parameters, given the data. We

then obtain Bayesian point and interval estimators of the risk ratio of two-proportion

parameters. We illustrate our algorithm using a real data example and conduct two

Monte Carlo simulation studies to demonstrate that both the point and interval

estimators perform well.

Additionally, we derive three likelihood-based confidence intervals (CIs) for the

risk ratio. Specifically, we first obtain closed-form maximum likelihood estimators

(MLEs) for all parameters. We then derive three CIs for the risk ratio: a naive

Wald interval, a modified Wald interval, and a Fieller-type interval. For illustration

purposes, we apply the three CIs to a real data example. We also perform various

Monte Carlo simulation studies to assess and compare the coverage probabilities and

average lengths of the three CIs. A modified Wald CI performs the best of the three

CIs and has near-nominal coverage probabilities.
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CHAPTER ONE

Introduction

1.1 Overview

Most binary devices or binary classifiers are fallible and sometimes misclassify

units into one of two mutually exclusive categories. The resulting observations are

referred to as misclassified binary data. For example, in the medical field Hildesheim,

Mann, Brinton, Szklo, Reeves, and Rawls (1991) have reported that a western blot

procedure may misclassify an uninfected individual to have herpes simplex virus or

vice versa.

Generally, two types of misclassified observations exist: false-positive and false-

negative observations. For example, visual inspection by a midwife or obstetrician

may misclassify a normal child as having Down’s syndrome (false-positive error) or

vice versa (false-negative error). In some situations, only one form of misclassifi-

cation occurs. For instance, Perry, Vakil, and Cutler (2000) have analyzed blood

testing data that had only false-positive or over-reported error. Also, Moors, van der

Genugten, and Strijbosch (2000) have presented auditing data where only false-

negative or under-reported errors occurred.

For binary data, Bross (1954) and Goldberg (1975) have demonstrated that

classical estimators that ignore misclassification can be very biased. In addition to

the bias problem, a model that incorporates misclassification has an unidentifiability

issue. Hence, one needs additional data to achieve model identifiability and to correct

for estimation bias.

Several information-addition methods are popular in the statistical literature.

One method is the Bayesian approach that uses sufficiently informative priors speci-

fied by expert opinion or by previously collected data. Another information-addition
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method is the use of multiple fallible classifiers. However, the information-addition

method we utilize incorporates training data via a double-sampling scheme.

Statistical inferences on binary data with misclassification has been ongoing.

For one-binomial-parameter problems, several researchers have considered the case

where only false-negative errors occur. For example, Lie, Heuch, and Irgens (1994)

have used a maximum likelihood approach with multiple fallible classifiers to correct

false-negative errors. Also, York, Madigan, Heuch, and Lie (1995) have considered

the same problem from a Bayesian perspective. Using a double-sampling scheme,

Moors, van der Genugten, and Strijbosch (2000) have derived method of moment

and maximum likelihood estimators and a one-sided interval estimator, and Boese,

Young, and Stamey (2006) have derived several likelihood-based confidence intervals

(CIs) for a single-proportion parameter using double sampling. For the same data,

Lee and Byun (2008) have used noninformative priors to provide Bayesian credible

intervals.

Additionally, several researchers have studied one-sample problems with both

types of misclassification errors. Using double sampling, Tenenbein (1970) has pro-

posed a maximum likelihood estimator for the proportion parameter and has derived

its asymptotic variance approximation. Gaba and Winkler (1992) and Viana, Ra-

makrishnan, and Levy (1993) have developed Bayesian approaches using sufficiently

informative priors for the case when training data are unavailable.

Also, Bayesian inference methods using informative priors have been devel-

oped for the case when training data were unavailable for two-sample problems with

misclassification errors of both types. For example, Evans, Guttman, Haitovsky,

and Swartz (1996) have derived a Bayesian approach for the risk difference, and

Gustafson, Le, and Saskin (2001) have proposed a Bayesian method for the odds

ratio. For the case when training data are obtained using a double-sampling scheme,

Boese (2003) has derived several likelihood-based methods for the risk difference.

2



To date, we have found no inference methods for the risk ratio of two-proportion

parameters using two-sample binomial data subject to misclassification. Therefore,

the objective of this dissertation is to derive point and interval estimators for the risk

ratio of two-proportion parameters using data from fallible and infallible classifiers.

The remainder of this chapter is organized as follows. In Section 1.2 we de-

scribe the double-sampling scheme pioneered by Tenenbein (1970). In Section 1.3 we

describe a Bayesian approach to obtain point estimators and credible sets for a risk

ratio. In Section 1.4 we discuss likelihood-based methods for obtaining point and

interval estimators for the risk ratio. Specifically, we derive three likelihood-based

interval estimators for the risk ratio by utilizing a double-sampling scheme. Finally,

in Section 1.5 we summarize the organization of this dissertation.

1.2 Double-Sampling Scheme

One can apply Tenenbein’s double-sampling scheme when both fallible and in-

fallible classifiers are available. A fallible classifier is usually inexpensive but subject

to errors in classified units, while an infallible (true) classifier is often more expensive

but much more accurate. The double-sampling approach utilizes two different data

sets: the original data, where only the fallible classifier is applied, and the smaller

training data, where both the infallible classifier and fallible classifier are applied.

Therefore, the use of both fallible and infallible classification procedures via dou-

ble sampling is an economically viable method that yields model identifiability and

reduces parameter estimation bias.

1.3 Bayesian Inference

We first consider a Bayesian inference approach for the risk ratio using mis-

classified binary data and training data obtained using a double-sampling scheme.

Bayesian inference relies on the posterior distribution of parameters conditioned on

the data. Once a posterior sample for a parameter is obtained, inference on this
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parameter, such as point and interval estimation, is straightforward. For example,

we can use the median of the posterior sample as a point estimator and the (α/2)

and (1−α/2) quantiles as the lower and upper limits of an approximate 100(1−α)%

credible interval. Bayesian inference usually does not depend on large-sample ap-

proximations and, hence, is appealing.

Bayesian inference typically requires complex Markov Chain Monte Carlo algo-

rithms for sampling from the posterior distribution. One popular posterior sampling

algorithm is the Gibbs sampler, which sequentially draws each parameter after con-

ditioning on all other parameters and the data (full conditionals). If one cannot find

an explicit algorithm for sampling from one of the full conditionals, one can use a

Metropolis-Hastings algorithm to sample from that full conditional distribution of

interest.

In general, technical challenges are associated with using Gibbs sampling for

Bayesian inference. In some applications deriving all of the full conditional densities

or probability mass functions can be difficult. Also, a Metropolis-Hastings algorithm

can be time-consuming. Additionally, specifying initial values may be challengin,g

and determining a Markov-Chain convergence may be a nontrivial task.

In our Bayesian approach, we reparameterize our model and then derive a

simple parametric algorithm for sampling from the marginal posterior distribution

of the model parameters, given the data. Once a posterior sample is drawn for the

proportion parameters of interest, we obtain a posterior sample for the risk ratio by

dividing the corresponding sample proportion parameters. We then obtain a credible

interval for the risk ratio based on this marginal posterior sample of the risk ratio.

Several advantages of our reparameterization-based algorithms exist:

(1) Because we sample directly from the posterior distributions, we need not

specify initial values, and we have no burn-in period or convergence issues.
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(2) Because posterior samples are available for each parameter, inferences on

the risk difference and the odds ratio are straightforward.

(3) The algorithm can accommodate zero counts.

(4) We require no asymptotic theory.

(5) We can generalize our posterior sampling algorithm to three or more pro-

portion parameters.

1.4 Likelihood-Based Inference

Likelihood-based inference methods are used in many statistical applications.

Under certain regularity conditions, the maximum likelihood estimator (MLE) is

asymptotically unbiased and efficient and has an approximate multivariate normal

distribution with the true parameters as the mean vector and inverse information

matrix as the covariance matrix. This property can be combined with the delta

method for variance approximation to construct CIs for functions of parameters.

Although MLEs are often desirable, they may be very difficult to compute,

especially when the number of parameters is large. Obtaining an MLE usually

requires iterative numerical algorithms, such as the Newton-Raphson algorithm.

Associated with such algorithms are the challenges of specifying initial values and

achieving convergence.

In this dissertation, through a reparameterization, we derive a parametric,

straightforward formula for computing MLEs of all the model parameters. Then, by

the invariance property of MLEs, the MLE for the risk ratio is obtained by dividing

the MLEs of the proportion parameters of interest. In addition, we derive a closed-

form for the inverse Fisher information matrix. We then approximate the variance

of this MLE by using the delta method and compute an approximate 100(1 − α)%

Wald type CI for the risk ratio.
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It is well-known that Wald-type CIs, when applied to multiple parameters,

generally have lower-than-nominal coverage probabilities, especially for relatively

small sample sizes. To improve small-sample performance, we propose first con-

structing an approximate 100(1 − α)% Wald-type CI for the log risk ratio via the

delta method. Then, we exponentiate this CI to obtain an approximate 100(1−α)%

CI for the risk ratio. We term this CI as a modified Wald CI.

Also, because the MLEs of the proportion parameters of interest have an

asymptotic normal distribution, one can use Fieller’s method (Fieller, 1954) to con-

struct an approximate 100(1 − α)% CI for the risk ratio. We describe the Fieller’s

interval estimation method as follows. Let Z1 and Z2 be two random variables having

a bi-variate normal distribution with mean vector (µ1, µ2)
′, marginal variances σ2

1

and σ2
2, and covariance σ12. Here, the variables Z1 and Z2 are observed, parameters

σ2
1, σ2

2, and σ12 are known, and (µ1, µ2)
′ is unknown. The objective is to construct

an approximate 100(1− α)% CI for the ratio of r = µ1/µ2. The Fieller’s method is

based on an approximate pivotal quantity

X1 − rX2√
σ2

1 + r2σ2
2 − 2rσ12

.∼ N(0, 1).

Therefore, confidence limits for an approximate 100(1 − α)% CI for r are obtained

by solving

(
X1 − rX2√

σ2
1 + r2σ2

2 − 2rσ12

)2

= Z2
α/2

for r. Let ∆ ≡ (X1X2 − Z2
α/2σ12)

2 − (X2
1 − Z2

α/2σ
2
1)(X

2
2 − Z2

α/2σ
2
2). When ∆ > 0, an

approximate 100(1− α)% Fieller CI for r is

X1X2 − Z2
α/2σ12 ±

√
∆

X2
2 − Z2

α/2σ
2
2

;

otherwise, a 100(1− α)% Fieller CI for r does not exist.
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1.5 Dissertation Organization

In this dissertation we derive point and interval estimators for the risk ratio

of the proportion parameters using double sampling with misclassified two-sample

binary data. The risk ratio, also known as the relative risk, is defined as the ratio

of two-proportion parameters. Each chapter of this dissertation is self-contained.

In Chapter 2, we consider point and interval estimation for the risk ratio

based on two independent samples of binomial data subject to only false-positive

misclassification. Using both the fallible and infallible data, we propose Bayesian

point and interval estimators of the risk ratio. In particular, we derive an easy-to-

implement algorithm for sampling from the marginal posterior distribution of the

risk ratio.

In Chapter 3, we generalize our Bayesian approach in Chapter 2 to data having

two types of misclassification errors. To obtain model identifiability, we apply a

double-sampling scheme and propose a Bayesian method for statistical inference for

a two-proportion risk ratio for the identifiable model.

In Chapter 4, we consider two-sample binary data subject to only false-positive

misclassification and use training data obtained using a double-sampling scheme. By

maximizing the full likelihood function, we derive closed-form maximum likelihood

estimators for all model parameters. In addition, we derive three confidence intervals:

a naive Wald interval, a modified Wald interval, and a Fieller-type interval.

In Chapter 5, we generalize our likelihood-based approach in Chapter 4 to

data with two types of misclassification errors.
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CHAPTER TWO

Credible Sets for the Risk Ratio in Over-Reported Two-Sample Binomial Data
Using a Double Sampling Scheme

2.1 Introduction

Because of imprecise diagnostic procedures or human error, misclassification

can occur when recording binary data. Usually, both possible types of misclassifi-

cation, false-positive or false-negative errors, occur. For example, for an imperfect

blood test, a healthy patient may be incorrectly diagnosed as diseased and vice versa.

In some cases, only one misclassification type occurs. For instance, Moors, van der

Genugten, and Strijbosch (2000) have presented auditing data where only false-

negative or under-reported errors occurred. Also, Perry, Vakil, and Cutler (2000)

have considered blood testing data that had only false-positive or over-reported er-

rors.

Among others, Bross (1954) has reported that classical estimators that ignore

misclassification can be extremely biased when used to analyze misclassified binary

data. Therefore, one needs additional information or data to promote correct-model

identifiability and to correct the bias. Several information-addition methods for this

purpose are popular in the statistics literature. One is to include training data via a

double-sampling scheme as suggested by Tenenbein (1970); another is to use infor-

mative priors in the Bayesian paradigm that are specified by expert opinion or by

previous data. The rationale for Tenenbein’s double-sampling scheme is straightfor-

ward. Fallible classification procedures result in misclassification but are inexpensive,

while infallible classification procedures result in correct classification or labeling but

are usually much more expensive. Therefore, the use of both fallible and infallible

classification procedures is an economically viable method that yields model identi-
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fiability. In some cases, an infallible test or procedure is unavailable or prohibitively

expensive; informative priors can then be used to yield model identifiability in the

Bayesian paradigm. Another information-addition method is to use multiple fallible

classifiers. We next review the research literature of research on binomial parameter

estimation with misclassified data. The objective of this research is to statistically

infer on the proportion parameters using possibly misclassified data and some form

of additional information.

For one-binomial-parameter problems, several researchers have considered the

case where only false-negative errors were present. Lie, Heuch, and Irgens (1994)

have used a maximum likelihood approach where false-negative errors are corrected

using multiple fallible classifiers. York, Madigan, Heuch, and Lie (1995) have con-

sidered this same problem from a Bayesian perspective. Using data obtained via

a double-sampling scheme, Moors et al. (2000) have discussed maximum likelihood

estimation and one-sided interval estimation, and applied these methods to auditing

data. Boese, Young, and Stamey (2006) have derived several likelihood-based CIs

for a single proportion parameter using double sampling. Also, Lee and Byun (2008)

have provided Bayesian credible intervals using noninformative priors.

In addition, several authors also have examined one-sample problems with

both types of misclassification errors. Using a double sampling method, Tenenbein

(1970) has proposed a maximum likelihood estimator and has derived an asymptotic

variance for the proportion parameter. Gaba and Winkler (1992) and Viana, Ra-

makrishnan, and Levy (1993) have developed Bayesian approaches with sufficiently

informative priors for the case when training data are unavailable in one-sample

problems.

For two-sample problems with misclassification errors of both types, Bayesian

inference methods using informative priors have been developed for the case when

training data were unavailable. For example, Evans, Guttman, Haitovsky, and
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Swartz (1996) have derived a Bayesian approach for the difference of two propor-

tion parameters and Gustafson, Le, and Saskin (2001) have proposed a Bayesian

inference method for the odds ratio.

To date, no inference methods for the risk ratio of two proportion parameters

have been developed using two-sample binomial data subject to misclassification. In

this article, we limit our scope to data subject to only one error type. That is, we

consider data with false-positive errors only. We derive Bayesian approaches for point

and interval estimation for the risk ratio. In Section 2.2 we describe the data and

in Section 2.3 we develop Bayesian models and algorithms for binomial parameter

estimation with false-positives. In Section 2.4 we illustrate our algorithms using

real data. Also, we examine the performance of our Bayesian inference method in

Section 2.5 and give a brief discussion in Section 2.6.

2.2 The Data

In this section we consider two-sample binomial data subject to misclassifica-

tion. The data are obtained using a fallible test or fallible classification method that

can yield false-positive but not false-negative observations. For example, suppose a

study is conducted to assess whether a certain infection type has the same preva-

lence rates for men and women. A positive blood test outcome is used to determine

whether a subject in the study is infected. This blood test is fallible with only false-

positive counts if a false-positive classification is the only incorrect result given by

the blood test.

To describe the data, let Fij be the observed classification by the fallible clas-

sifier for the jth individual in the ith sample, where i = 1, 2, j = 1, . . . ,Mi, and

Fij =





1, if the fallible classifier yields positive result,

0, otherwise.

Denoting the numbers of individuals with positive and negative labels by Xi and Yi,
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Table 2.1. Fallible Data for Sample i (i = 1, 2)

Classification 0 1 Total
Count Yi Xi Mi

respectively, the observed data using the fallible classifier for sample i, i = 1, 2, are

displayed in Table 2.1.

Similarly, we define the unobserved true classification of the jth individual in

the ith sample as Tij,

Tij =





1, if the classifier result is actually positive

0, otherwise.

Clearly, misclassification occurs when Tij 6= Fij.

Next, we introduce the following notation, for the ith sample, i = 1, 2:

pi ≡ Pr(Tij = 1),

πi ≡ Pr(Fij = 1),

φi ≡ Pr(Fij = 1|Tij = 0).

Thus, pi is the actual proportion parameter of interest, πi is the proportion parameter

of the fallible classifier, and φi is the false-positive rate of the fallible classifier. Here,

we allow the false-positive rates to be different for the two samples, i.e., φ1 6= φ2.

Note that

πi = Pr(Ti = 1) Pr(Fi = 1|Ti = 1) + Pr(Ti = 0) Pr(Fi = 1|Ti = 0)

= pi + qiφi, (2.1)

where qi = 1− pi, i = 1, 2.

As stated in Section 2.1, we are interested in statistical inference on the risk

ratio

r = p1/p2. (2.2)
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Because πi is determined through pi and φi, effectively there are four model pa-

rameters: p1, φ1, p2, φ2. However, (X1, X2)
′ is a vector of sufficient statistics for

this model. Because the dimension of the sufficient statistic is less than the num-

ber of parameters, the model is unidentifiable and, therefore, additional data or

information is needed for model identifiability. In this paper we consider a double-

sampling scheme with training data to provide the necessary additional information

for parameter estimation.

Tenenbein (1970) has used additional training data obtained by double sam-

pling to infer a single proportion parameter using one-sample binomial data subject

to misclassification. Specifically, in addition to the original fallible data classified

only by the fallible method, Tenenbein (1970) has used a second smaller training data

set obtained by classifying each individual in the training data by both the fallible

classifier and the infallible classifier. This sampling design enables the assessment

of the misclassification rate or rates of the fallible classifier. Other applications of

double-sampling include Tenenbein (1972), Hochberg (1977) and Boese et al. (2006).

We apply Tenenbein’s double-sampling scheme to our two-sample problem and

obtain ni training data in addition to the original Mi fallible data for the ith sample,

i = 1, 2. The combined data are presented in Table 2.2. In this table we use nijk to

denote the number of individuals classified as j and k by the infallible and fallible

methods, respectively. For example, ni01 is the number of individuals in the ith

sample classified as negative by the infallible classifier but positive by the fallible

classifier. We remark that for the case we consider here, ni10 is not available because

false-negative errors cannot occur. For easy reference, we give the cell probabilities

for Table 2.2 in Table 2.3.
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Table 2.2. Data for Sample i, i = 1, 2.

Fallible Method
Data Infallible Method 0 1 Total
Training 0 ni00 ni01 ni0·

1 NA ni11 ni11

Total ni00 ni·1 ni

Original NA Yi Xi Mi

NA: Not Available

Table 2.3. Cell Probabilities for Sample i, i = 1, 2.

Fallible Method
Data Infallible Method 0 1 Total
Training 0 qi(1− φi) qiφi qi

1 NA pi pi

Original NA 1− πi πi 1
NA: Not Available

2.3 The Model

In this section we develop Bayesian point and interval estimators for the risk

ratio using the data model described in the previous section. Our aim is to derive

explicit algorithms for sampling from the posterior distribution of all the parameters,

given the data. After posterior samples are drawn for both p1 and p2, a posterior

sample for risk ratio r is readily obtained by dividing the sample of p1 by the sample

of p2, elementwise. We obtain point and interval estimators for r based on this

sample draw.

For sample i, i = 1, 2, in Table 2.2, the observed counts (ni00, ni01, ni11)
′ of the

training data have a trinomial distribution with total size ni and the probabilities

displayed in an upper right 2× 2 submatrix in Table 2.3, i.e.,

(ni00, ni01, ni11)|pi, φi ∼ Trin[ni, (qi(1− φi), qiφi, pi)].
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In addition, the observed counts (Xi, Yi)
′ have the binomial distribution

(Xi, Yi)|pi, φi ∼ Bin[Mi, (πi, 1− πi)],

i = 1, 2. Because (ni00, ni01, ni11)
′ and (Xi, Yi)

′ are independent for sample i, i = 1, 2,

and because sample 1 is independent of sample 2, the sampling distribution of the

data vector, given the parameter vector, is

f(d|η) ∝ Π2
i=1{[qi(1− φi)]

ni00(qiφi)
ni01pni11

i πXi
i (1− πi)

Yi}, (2.3)

where

d = (n100, n101, n111, X1, Y1, n200, n201, n211, X2, Y2)
′

and

η = (p1, φ1, p2, φ2)
′.

In our Bayesian framework, we choose a non-informative proper prior for η.

Specifically, we choose a uniform prior for each component of η and assume that

these priors are independent; i.e., the joint prior distribution is

p(η) = 1. (2.4)

Combining (2.3) and (2.4), we obtain the joint posterior

f(η|d) ∝ Π2
i=1{[qi(1− φi)]

ni00(qiφi)
ni01pni11

i πXi
i (1− πi)

Yi}, (2.5)

that has the same functional form as the sampling distribution in (2.3).

To draw from the posterior density in (2.5), we first transform the parameter

vector η. We note that

1− πi = qi(1− φi) (2.6)

and let

λi = pi/πi. (2.7)
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Incorporating (2.6) and (2.7), we find the posterior density in (2.5) is

f(η|d) ∝ Π2
i=1λ

ni11
i (1− λi)

ni01πXi+ni.1
i (1− πi)

Yi+ni00 . (2.8)

Because the transformed parameters

(λ1, π1, λ2, π2)
′

are now separable, one can straightforwardly draw λi and πi from (2.8) by using

λi ∼ Beta(ni11 + 1, ni01 + 1) (2.9)

and

πi ∼ Beta(Xi + ni.1 + 1, Yi + ni00 + 1). (2.10)

We obtain pi and φi by solving (2.1) and (2.7) so that

pi = πiλi (2.11)

and

φi = (1− λi)πi/qi (2.12)

for i = 1, 2.

We summarize our parametric Monte Carlo sampling algorithm for the poste-

rior density in (2.5) as follows. First, choose a large number J , say, 10,000, for the

posterior draw sample size. For i = 1, 2,

(1) Obtain a size J sample of λi and πi using (2.9), and (2.10).

(2) Obtain a size J sample of pi and φi using (2.11) and (2.12).

(3) Obtain a size J sample of the risk ratio r using (2.2).

We then use the sample median as a point estimator of r because the distribution of

the posterior sample of r is skewed. Finally, we obtain an approximate 100(1−α)%

CI for r by using the α/2 and (1− α/2) quantiles of the posterior sample of r.
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2.4 An Example

In this section we apply our Bayesian point and interval estimators to real data

first described in Hildesheim, Mann, Brinton, Szklo, Reeves, and Rawls (1991) and

later used in Boese (2003). The original study examined the relationship between

exposure to the herpes simplex virus (HSV) and invasive cervical cancer (ICC). They

used the western blot procedure as a fallible detector of HSV. A sub-sample of the

women was also tested with the refined western blot procedure, which is a relatively

accurate procedure and, thus, is treated here as infallible. We regard this sub-sample

as the training data in the double-sampling scheme. Actually, both false-positive

and false-negative misclassification errors occurred in this study. However, for the

sake of illustration, we consider only the occurrence of the false positives and absorb

the ni10 false-negative observations into the ni11 negative observations. We display

the data in Table 2.4.

Using the posterior sampling algorithm developed in the previous section with

a posterior sample size of J = 10, 000, the estimated posterior median for r is

1.45 and an approximate 90% Bayesian credible interval is [1.18, 1.80]. Because the

lower limit of the Bayesian credible interval exceeds 1.0, we conclude that a larger

proportion of women have been exposed to HSV in the case group than in the control

group. Thus, a positive association could exist between exposure to HSV and having

the disease ICC.

2.5 Monte Carlo Simulations

We conducted two Monte Carlo simulation studies to examine the performance

of our posterior sampling algorithm and to evaluate the impact of various proportion

parameter values, sample sizes, and false-positive rates on the Bayesian credible

intervals for r. For the sake of simplifying the design of the simulation and the

presentation of the simulation results, we used N = N1 = N2, n = n1 = n2, and
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Table 2.4. Hildesheim Example Data

Fallible Method
Group Data Infallible Method 0 1
Case Training 0 13 3

1 NA 23
Original NA 318 375

Control Training 0 33 11
1 NA 32

Original NA 701 535
NA: Not Available

φ = φ1 = φ2, although these restrictions are not required to apply our credible

interval.

We considered 32 simulation scenarios resulting from combinations of the fol-

lowing parameter and sample-size values:

(1) Proportion parameters of interest (p1, p2): (.1, .2), (.4, .6).

(2) False-positive rates φ: .1, .2.

(3) Ratios of training-sample size versus the total sample size n/N : 0.2, 0.4.

(4) Total sample sizes N : 100, 200, 300, 400.

For each simulation scenario, we simulated K = 10, 000 data sets. Within

each data set, we drew a posterior sample of r of size J = 10, 000 using the poste-

rior sampling algorithm described in Section 2.3. We then computed the posterior

sample median and an approximate 90% credible interval for r. Finally, we gener-

ated boxplots of the K estimated posterior medians of r and calculated the coverage

probability and the average length of the K credible intervals.

In Figures 2.1 and 2.2 we present the boxplots of K estimated posterior me-

dians of r plotted against total sample size N . The actual proportion parameters

(p1, p2) used were (.1, .2) and (.4, .6) for Figure 2.1 and Figure 2.2, respectively. In
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Figure 2.1: Boxplots of posterior medians versus total sample size N , where (p1, p2) =
(.1, .2). We assumed φ = .2 for the simulations described in the top two panels and
φ = .1 for the simulation results shown in the bottom two panels; we used n/N = .2
in the simulations summarized in the left two panels and n/N = .4 in the simulations
summarized in the right two panels.

each figure, the over-reporting parameter was φ = .2 for the simulation results de-

scribed in the top two panels and φ = .1 for the simulation results shown in the

bottom two panels. In addition, we used a training sample size to total sample

size of n/N = .2 for the simulations in the left two panels and n/N = .4 for the

simulations in the right two panels.

From the 32 simulation scenarios in both figures, the sample posterior medians

performed well as a point estimator of the parameter r. Moreover, we make the

following additional observations:

(1) For each panel of four boxplots, the variation of the posterior medians de-

creased as N increased.

(2) For each figure, the variation of the posterior medians with larger values of
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Figure 2.2: Boxplots of posterior medians versus total sample size N , where (p1, p2) =
(.4, .6). We assumed φ = .2 for the simulations described in the top two panels and
φ = .1 for the simulation results shown in the bottom two panels; we used n/N = .2
in the simulations summarized in the left two panels and n/N = .4 in the simulations
summarized in the right two panels.

φ, shown in the top two panels, was greater than posterior median variation

with smaller values of φ, shown in the bottom two panels.

(3) For each figure, the variation of the posterior medians of the left two panels

with smaller n/N was greater than that of the right two panels with larger

n/N .

(4) For the same values of φ, n/N , N , the boxplot in Figure 2.1 with (p1, p2)

close to (0, 0) has greater variation than the boxplot in Figure 2.2 with

(p1, p2) close to (.5, .5).

In Table 2.5 we present the coverage probabilities and average lengths of the

K credible intervals for r under each simulation scenario. The coverage probabilities

for the three interval estimators were all close to the nominal 90% level. We make
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Table 2.5. Coverage Probabilities and Average Lengths of 90% CIs for risk ratio r

N
r (p1, p2) φ n/N 100 200 300 400

1/2 (.1, .2) .2 .2 CP 92.00 90.80 90.31 90.21
AL 1.97 0.97 0.74 0.61

.4 CP 91.04 90.53 90.43 90.83
AL 1.04 0.65 0.51 0.44

.1 .2 CP 92.49 91.39 90.99 90.68
AL 1.60 0.83 0.64 0.53

.4 CP 90.85 90.26 90.52 90.14
AL 0.94 0.59 0.47 0.40

2/3 (.4, .6) .2 .2 CP 91.68 90.88 90.48 90.60
AL 0.56 0.37 0.30 0.26

.4 CP 90.54 90.68 89.65 90.00
AL 0.42 0.29 0.23 0.20

.1 .2 CP 93.34 91.28 90.92 90.95
AL 0.50 0.33 0.26 0.23

.4 CP 90.97 90.46 90.65 89.95
AL 0.39 0.27 0.22 0.19

CP: Coverage Probability; AL: Average Length

the following observations on Table 2.5:

(1) For fixed (p1, p2), φ, n/N , the average length of the credible intervals de-

creased as N increased.

(2) For fixed (p1, p2), n/N , N , the average length of the credible intervals de-

creased as φ decreased.

(3) For fixed (p1, p2), φ, N , the average length of the credible intervals decreased

as n/N increased.

(4) For the same values of φ, n/N , N , the average length of the credible intervals

decreased as (p1, p2) approached (.5, .5).
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2.6 Discussion

In this paper we have proposed Bayesian credible interval estimators for the

risk ratio using binomial data subject to false-positive misclassification. Monte Carlo

simulations haven shown that our Bayesian credible intervals produced close-to-

nominal coverage probabilities. The posterior median, our point estimator for r,

also was well-behaved.

There are several advantages of our proposed posterior sampling algorithm for

drawing from the full posterior distribution:

(1) We need not specify initial values and we had no burn-in period or conver-

gence issues because we draw directly from the posterior distributions.

(2) Because posterior draws are available for each parameter, inferences on the

risk difference, the odds ratio, and other functions of p1 and p2 are straight-

forward.

(3) As shown in (2.9) and (2.10), the algorithm can accommodate zero counts.

(4) We use no asymptotic theory.

(5) We can generalize our posterior sampling algorithm to data model with three

or more proportion parameters.
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CHAPTER THREE

Bayesian Inference of Risk Ratio of Two Proportions Using a Double Sampling
Scheme

3.1 Introduction

In many disciplines, such as medical research, one obtains binary data that are

possibly misclassified. For example, a healthy patient may be wrongly diagnosed as

having a certain disease or vice versa. The consequence of ignoring misclassification

in statistical inference from binary data was first reported by Bross (1954), who

has shown that classical estimators based on only data subject to misclassification

can be extremely biased. Also, the actual data model suffers from unidentifiability.

Therefore, one requires additional data to obtain model identifiability and to correct

the bias. One can utilize at least two methods to achieve model identifiability in

the Bayesian paradigm. The first method, pioneered by Tenenbein (1970), is to

collect training data using a double-sampling scheme; the other method is to use

sufficiently informative priors specified by expert opinion or previous data. The

rationale for Tenenbein’s double-sampling scheme is as follows. Fallible tests or

classification procedures result in misclassification but are usually inexpensive, while

infallible tests or classification procedures result in errorless classification but are

generally much more expensive. Therefore, the use of both fallible and infallible

procedures yields not only model identifiability, but also economically viable bias

correction. When an infallible procedure is unavailable or prohibitively expensive,

one can use sufficiently informative priors to create an identifiable model in the

Bayesian paradigm. For example, see Gustafson (2005).

We next review the literature on statistical inference using binary data with

possible misclassification. For the single-proportion parameter problem, when data
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are obtained using a double-sampling scheme, Tenenbein (1970) has proposed a

maximum likelihood estimator and derived its asymptotic variance for the proportion

parameter of interest. Also, Boese, Young, and Stamey (2006) have derived several

likelihood-based confidence intervals for a single-proportion parameter using data

subject to only false-positive misclassification. For the single-proportion problem

using misclassified data with no training data, Gaba and Winkler (1992) and Viana,

Ramakrishnan, and Levy (1993) have developed Bayesian approaches with highly

informative priors. Bayesian inference using informative priors was also developed

for two-sample problems for two-proportion parameters. For example, see Evans,

Guttman, Haitovsky, and Swartz (1996) for the risk difference, that is, the difference

of two-proportion parameters, and see Gustafson, Le, and Saskin (2001) for the odds

ratio.

Although misclassified binary data are common in epidemiology, we remark

that such data also frequently occur in device testing. For example, Zhong (2002)

has studied the specificity and sensitivity of a fallible diagnostic test together with

a gold standard. In addition, Stamey, Seaman, and Young (2007) have developed a

Bayesian estimator of an intervention effect with pre- and post-misclassified binomial

data. Also, one can obtain clinical trial binary data that contain misclassified obser-

vations. For example, Lyles, Lin, and Williamson (2004) have provided design and

analytic considerations for single-armed clinical trial studies with misclassification

of a repeated binary outcome.

The risk ratio, also known as the relative risk, is defined as the ratio of the

proportion parameters from two groups. The risk ratio is commonly used in clinical

trials and epidemiological studies to measure the relative frequency between two

groups for a certain event of interest, such as an adverse event of interest. To date,

in the literature, we have found no inference methods for the risk ratio for proportions

using two-sample binary data subject to misclassification. Hence, we intend to fill
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in this gap and therefore, in this article, we propose a Bayesian approach to solve

this problem.

In Section 3.2 we describe the data, and in Section 3.3 we develop Bayesian

models and relatively simple posterior sampling algorithms. In Section 3.4 we illus-

trate our sampling algorithms using real data. We then examine the performance of

our Bayesian point and interval estimators in Section 3.5 and conclude with a brief

discussion in Section 3.6.

3.2 The Data

In this section we consider the structure and parameterization for two-sample

binary data subject to misclassification. The fallible data are obtained by using

an imperfect classification device that yields both false-positive and false-negative

observations. For example, suppose a study’s objective is to assess if a certain disease

has the same prevalence rates between men and women where a positive result of

an assay indicates that a subject in the study has the disease. Because this assay

does not have perfect sensitivity and specificity, both false-positive and false-negative

observations can occur.

To describe the data, let Fij be the observed classification by the fallible test

or classification method for the jth individual in the ith sample, where i = 1, 2,

j = 1, . . . , Mi, and

Fij =





1, if the result is positive by the fallible classifier

0, if the result is negative by the fallible classifier.

If one denotes the number of positive observations by Xi, the observed fallible

data for sample i, i = 1, 2, are displayed in Table 3.1. Similarly, we define the

unobserved true classification of the jth individual in the ith sample as Tij, where

Tij =





1, if the result is truly positive

0, otherwise.
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Table 3.1. Fallible Data for Sample i, i = 1, 2.

Classification 0 1 Total
Count Mi −Xi Xi Mi

Clearly, misclassification occurs when Tij 6= Fij. Next, we introduce the following

notation for the ith sample, i = 1, 2. Let

pi ≡ Pr(Tij = 1),

πi ≡ Pr(Fij = 1),

φi ≡ Pr(Fij = 1|Tij = 0),

and

θi ≡ Pr(Fij = 0|Tij = 1).

We see that pi is the actual proportion parameter of interest, πi is the propor-

tion parameter of the fallible test or classification method, and φi and θi are the

false-positive rate and the false-negative rate for the fallible classification method,

respectively. Here, we allow the false-positive and false-negative rates to differ be-

tween the two samples, i.e., φ1 6= φ2 and θ1 6= θ2. Note that πi, i = 1, 2, are functions

of the parameters pi, θi, and φi. In particular,

πi = Pr(Tij = 1) Pr(Fij = 1|Tij = 1) + Pr(Tij = 0) Pr(Fij = 1|Tij = 0)

= pi(1− θi) + qiφi, (3.1)

where qi = 1− pi.

As stated in Section 3.1, we are interested in statistical inference on the risk

ratio

r ≡ p1/p2. (3.2)

Because πi is determined through pi, φi, and θi, i = 1, 2, six effective model param-

eters result. However, the sufficient-statistic dimension is only two because X1 and
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X2, given in Table 3.1, are the sufficient statistics for the parameters in (3.1). Be-

cause the dimension of the sufficient statistics is less than the parameter dimension,

(3.1) is unidentifiable. Therefore, we need additional data or information about the

parameters to obtain model identifiability. For the Bayesian paradigm, two primary

methods can provide additional information: the first is to obtain training data by

using a double-sampling scheme, and the second is to incorporate prior knowledge

about model parameters through sufficiently informative priors. In this paper we

focus on data obtained via a double-sampling scheme.

To create model identifiability when one-sample binary data are subject to

misclassification, Tenenbein (1970) has used additional training data obtained by

double sampling. Specifically, in addition to the original data generated by only the

fallible device, he has used training data obtained by classifying each individual in

the training data using both the fallible and the infallible devices. The additional

data enable the assessment of the false-positive rates φi and false-negative rates θi

of the fallible device, i = 1, 2. One can find other applications of double sampling

in Tenenbein (1972), Hochberg (1977), and Boese et al. (2006).

We apply the same double-sampling scheme to our two-proportion risk ratio

problem to obtain ni training data in addition to the original Mi fallible data for the

ith sample, i = 1, 2. The combined data are presented in Table 3.2, where we use

nijk to denote the number of individuals classified as j and k by the infallible and

fallible labeling methods, respectively, where j = 0, 1 and k = 0, 1. For example,

ni01 is the number of individuals classified as negative by the infallible method but

positive by the fallible method in the ith sample. Using the combined fallible and

training data, we can now estimate all parameters. For easy reference, we present

the cell probabilities for Table 3.2 in Table 3.3.
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Table 3.2. Data for Sample i

Fallible Method
Data Infallible Method 0 1 Total
Training 0 ni00 ni01 ni0·

1 ni10 ni11 ni1·
Total ni·0 ni·1 ni

Original NA Mi −Xi Xi Mi

NA: Not Available

Table 3.3. Cell Probabilities for Sample i

Fallible Method
Data Infallible Method 0 1 Total
Training 0 qi(1− φi) qiφi qi

1 piθi pi(1− θi) pi

Original NA 1− πi πi 1
NA: Not Available

3.3 Bayesian Inference

We now develop Bayesian point and interval estimators for the data described

in the previous section. In particular, we derive algorithms to sample from the

posterior distributions of each of the parameters. Once we draw a posterior sample

for p1 and p2, we can readily obtain a posterior sample for the risk ratio r using (3.2).

We determine a point estimator of r, which is the sample median from the posterior

sample of r, and a credible interval for r. We next derive explicit algorithms for

sampling from the marginal posterior distributions of interest.

For sample i, i = 1, 2, in Table 3.2, the observed counts ni ≡ (ni00, ni01, ni10, ni11)
′

of the training data have a quadrinomial distribution with total size ni and cell prob-

abilities displayed in the upper-right 2× 2 submatrix in Table 3.3, i.e.,

ni|pi, φi, θi ∼ Quad [ni, (qi(1− φi), qiφi, piθi, pi(1− θi))] .
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In addition,

Xi|Mi, pi, φi, θi ∼ Bin(Mi, πi), i = 1, 2.

Because ni and Xi are independent for sample i, i = 1, 2, and Xi, i = 1, 2 are

independent, the distribution of the combined data is

f(d|η) ∝
2∏

i=1

{[qi(1− φi)]
ni00(qiφi)

ni01(piθi)
ni10 [pi(1− θi)]

ni11πXi
i (1− πi)

Mi−Xi}, (3.3)

where

d ≡ (n100, n101, n110, n111, X1, n200, n201, n210, n211, X2)
′ (3.4)

is the data vector and

η ≡ (p1, φ1, θ1, p2, φ2, θ2)
′

is the parameter vector. For our Bayesian framework, we choose a uniform prior for

each component of η and assume these priors were independent; therefore, the joint

prior distribution is the noninformative prior

p(η) = 1, (3.5)

where ηj ∈ (0, 1], j = 1, 2, . . . , 6. Combining (3.3) and (3.5), we obtain the joint

posterior

f(η|d) ∝ Π2
i=1{[qi(1−φi)]

ni00(qiφi)
ni01(piθi)

ni10 [pi(1−θi)]
ni11πXi

i (1−πi)
Mi−Xi}, (3.6)

which has the same functional form as (3.3).

To sample from (3.6), we reparameterize η to obtain a parametric, straight-

forward posterior sampling algorithm. Specifically, let

λi1 = pi(1− θi)/πi (3.7)

and

λi2 = piθi/(1− πi). (3.8)
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Using (3.7) and (3.8), we see that the posterior density (3.6) becomes

f(η∗|d) ∝ Π2
i=1λ

ni11
i1 (1− λi1)

ni01λni10
i2 (1− λi2)

ni00πXi+ni.1
i (1− πi)

Mi−Xi+ni.0 , (3.9)

where d is defined in (3.4) and

η∗ ≡ (λ11, λ12, π1, λ21, λ22, π2)
′ (3.10)

is the reparameterized parameter vector. Because the parameters in (3.10) are now

separable, we can straightforwardly draw λi1, λi2, and πi from the posterior (3.9) by

using

λi1 ∼ Beta(ni11 + 1, ni01 + 1), (3.11)

λi2 ∼ Beta(ni10 + 1, ni00 + 1), (3.12)

and

πi ∼ Beta(Xi + ni.1 + 1,Mi −Xi + ni.0 + 1), (3.13)

i = 1, 2. Once λi1, λi2, and πi are available, we obtain pi, φi, and θi by solving (3.1),

(3.7), and (3.8) so that

pi = πiλi1 + (1− πi)λi2, (3.14)

φi = (1− λi1)πi/qi, (3.15)

and

θi = λi2(1− πi)/pi, (3.16)

i = 1, 2.

In summary, the following is a parametric-based algorithm to sample from the

marginal posterior density p(r|d). First, choose a large number J , say 10,000, for

the posterior draw sample size. For i = 1, 2,
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Table 3.4. Hildesheim Example Data

Fallible Method
Group Data Infallible Method 0 1
Case Training 0 13 3

1 5 18
Original NA 318 375

Control Training 0 33 11
1 16 16

Original NA 701 535
NA: Not Available

(1) Obtain a sample of λi1, λi2, and πi with a sample size of J using (3.11) –

(3.13).

(2) Obtain a sample of pi, φi, and θi with a sample size of J using (3.14) –

(3.16).

(3) Obtain a sample of the risk ratio r with a sample size of J using (3.2).

We then use the median of the J observations from p(r|d) as a point estimator of

r because the marginal posterior density p(r|d) is skewed. Finally, we obtain an

approximate 100(1 − α)% credible interval for r by using the α/2 and (1 − α/2)

quantiles of the sample drawn from p(r|d).

3.4 An Example

In this section we apply our Bayesian point and interval estimators to real data

that were first described in Hildesheim et al. (1991) and later were analyzed in Boese

(2003). This study explored the association between exposure to herpes simplex

virus (HSV) and having invasive cervical cancer (ICC). The data are displayed in

Table 3.4. This data consist of a total of 2044 women with 732 women in the case

group and 1312 women in the control group. The western blot procedure is a fallible

detector of HSV. A sub-sample of the women was also tested with the refined western
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blot procedure, which is a relatively accurate procedure and, thus, treated here as

an infallible classifier. We regard this sub-sample as the training data in the double-

sampling scheme. Both false-positive and false-negative misclassification errors for

testing for HSV using the western blot procedure occurred in this study. Here, p1

= Pr(exposed to HSV | has ICC) is the probability that a patient has been exposed

to HSV given she has ICC (case group), p2 = Pr(exposed to HSV | does not have

ICC) is the probability that a patient has been exposed to HSV given she does not

have ICC (control group), and the risk ratio r is given in (3.2). Using the sampling

algorithm developed in the previous section with a posterior sample size J=10,000,

we determine that r̂Bayes = 1.34, and an approximate 90% Bayesian credible interval

for r is

[1.01, 1.75] . (3.17)

We interpret (3.17) to indicate that Pr(r ∈ [1.01, 1.75]|d) ≈ 0.90. Because the

lower limit of (3.17) exceeds 1.0, we believe that statistical evidence indicates that

a larger proportion of women have been exposed to HSV in the case group than

in the control group. Thus, a positive association could conceivably exist between

exposure to HSV and actually having ICC.

3.5 Monte Carlo Simulations

In this section we describe the results of Monte Carlo simulation studies that

examine the performance of our sampling algorithms for varying sample sizes, false-

positive rates, and false-negative rates. For the sake of simplifying the presentation

of simulation results, we assumed the sample size and parameter configurations of

the form N = N1 = N2, n = n1 = n2, φ = φ1 = φ2, and θ = θ1 = θ2. We remark

that these assumptions are not required by our posterior sampling algorithms.

We considered 32 simulation scenarios resulting from combinations of the fol-

lowing configurations:
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Figure 3.1: Boxplots of posterior medians versus total sample size N where (p1, p2) =
(.1, .2). We used (φ, θ) = (.2, .2) for the simulations summarized in the top two panels
and (φ, θ) = (.1, .1) for the simulations described in the bottom two panels; we assumed
n/N = .2 for the simulations summarized in the left two panels and n/N = .4 for the
simulations described in the right two panels.

(1) Proportion parameters of interest (p1, p2): (.1, .2), (.4, .6).

(2) False-positive and false-negative rates (φ, θ): (.1, .1), (.2, .2).

(3) Ratio of training-sample size versus the total sample size (n/N): 0.2, 0.4.

(4) Total sample sizes (N): 100, 200, 300, 400.

For each simulation scenario, we simulated K = 10, 000 data sets. For each

data set, we drew J = 10, 000 samples of r from the marginal posterior density using

the algorithm described in Section 3.3. We then computed the posterior sample

median to estimate r and calculated an approximate 90% credible interval for r.

We next generated boxplots of the K estimated posterior medians of r to examine

their behavior as a point estimator of r. In addition, we calculated the coverage

probability and the average length of the K credible intervals.
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Figure 3.2: Boxplots of posterior medians versus total sample size N where (p1, p2) =
(.4, .6). We used (φ, θ) = (.2, .2) for the simulations summarized in the top two panels
and (φ, θ) = (.1, .1) for the simulations described in the bottom two panels; we assumed
n/N = .2 for the simulations summarized in the left two panels and n/N = .4 for the
simulations described in the right two panels.

In Figures 3.1 and 3.2, we present the boxplots of K posterior sample medians

of r versus the total sample size N . The actual proportion parameters were (p1, p2) =

(.1, .2) and (.4, .6) for Figures 3.1 and 3.2, respectively. In each figure, we used

(φ, θ) = (.2, .2) in the top two panels and (φ, θ) = (.1, .1) in the bottom two panels;

we assumed n/N = .2 for the simulations results in the left two panels and n/N = .4

for the simulation results in the right two panels.

For the 32 simulation configurations for both figures, we have the following

observations:

(1) For each panel of 4 boxplots, the variation of the posterior medians decreased

as N increased.

(2) For each figure, the variation of the posterior medians, shown in the top
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two panels, which have larger misclassification probabilities φ and θ, was

greater than that of the bottom two panels with smaller misclassification

probabilities.

(3) For each figure, the variation of the posterior medians shown in the left

two panels for smaller n/N was greater than the variation of the posterior

medians depicted in the right two panels for larger n/N .

(4) For the same values of φ, θ, n/N , and N , the boxplots in Figure 3.1 had

greater variation than the corresponding boxplots in Figure 3.2.

In Table 3.5 we present the coverage probabilities, average lengths, and stan-

dard deviations of the K credible intervals for r under each simulation parameter

configuration. The coverage probabilities were all close to the nominal 90% level,

thus indicating that our credible interval estimator performed well for the param-

eter and sample-size configurations considered here. Also, we have the following

observations concerning Table 3.5:

(1) For fixed p1, p2, φ, θ, and n/N , the average length and standard deviation

of the credible intervals decreased as N increased.

(2) For fixed p1, p2, n/N , and N , the average length and standard deviation of

the credible intervals decreased as φ and θ decreased.

(3) For fixed p1, p2, φ, θ, and N , the average length and standard deviation of

the credible intervals decreased as n/N increased.

(4) For the same φ, θ, n/N , and N , the average length and standard deviation

of the credible intervals decreased when (p1, p2) approached (.5, .5).
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Table 3.5. The CP, AL, and SD of the ALs of 90% CIs for the risk ratio r

N
r (p1, p2) (φ, θ) n/N 100 200 300 400

1/2 (.1, .2) (.2, .2) .2 CP 92.84 91.77 91.33 90.96
AL 1.66 1.03 0.79 0.67
SD 1.23 0.54 0.35 0.22

.4 CP 91.90 90.84 90.67 90.93
AL 1.07 0.69 0.54 0.46
SD 0.58 0.24 0.15 0.10

(.1, .1) .2 CP 93.72 93.17 92.19 91.69
AL 1.46 0.90 0.70 0.58
SD 0.95 0.44 0.27 0.17

.4 CP 92.64 91.62 91.00 90.65
AL 0.97 0.63 0.49 0.42
SD 0.48 0.19 0.12 0.09

2/3 (.4, .6) (.2, .2) .2 CP 91.84 90.49 90.16 90.80
AL 0.65 0.45 0.36 0.31
SD 0.18 0.08 0.05 0.04

.4 CP 90.78 90.58 89.82 89.99
AL 0.47 0.33 0.26 0.23
SD 0.09 0.04 0.03 0.02

(.1, .1) .2 CP 93.46 92.31 91.56 91.23
AL 0.57 0.38 0.31 0.26
SD 0.13 0.06 0.04 0.03

.4 CP 91.98 91.00 90.42 89.99
AL 0.42 0.29 0.24 0.20
SD 0.07 0.03 0.02 0.02

3.6 Discussion

In this paper we have derived Bayesian point and interval estimators for the

risk ratio of two proportions using binary data subject to both false-positive and

false-negative misclassification. Monte Carlo simulations have shown that our infer-

ence algorithms produced credible intervals with near-nominal coverage probabilities.

Also, the estimated posterior median performed well as a point estimator of r.

Several advantages of our straightforward posterior sampling algorithms are

apparent for sampling from the joint posterior distribution:

35



(1) Because we draw directly from the posterior distributions, we need not spec-

ify initial values, and no burn-in period or convergence issues occur.

(2) Because posterior draws are available for each parameter, inferences on the

risk difference, the odds ratio, and other functions of p1 and p2 are straight-

forward.

(3) As shown in (3.11)-(3.13), the posterior sampling algorithms can accommo-

date zero counts.

(4) We use no asymptotic theory.

(5) We can generalize our posterior sampling algorithms to data for more than

two groups of observations.

Some applications exist where no training data are available. In these cases, if

sufficiently informative priors are obtainable, then more sophisticated Monte Carlo

Markov Chain (MCMC) methods may be needed to sample from the posterior of

interest instead of the straightforward Monte Carlo posterior sampling method pro-

posed here.
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CHAPTER FOUR

Likelihood-Based Confidence Intervals for the Risk Ratio Using Double Sampling
with Over-Reported Binary Data

4.1 Introduction

Binary data are sometimes obtained when experimental units are classified into

two mutually exclusive categories. Generally, a classifier is not perfect and, therefore,

misclassified binary data can occur. Two types of misclassified binary data exist:

false-positive and false-negative observations. For example, visual inspection by a

midwife or obstetrician may erroneously classify a normal child as having Down’s

syndrome (false-positive), or it may classify a child with Down’s syndrome as being

healthy (false-negative). In other cases, only one type of misclassification may exist.

For instance, Perry, Vakil, and Cutler (2000) have displayed blood testing data

that had only false-positive or over-reported errors, and Moors, van der Genugten,

and Strijbosch (2000) have presented auditing data indicating only false-negative or

under-reported errors to be present.

Many researchers, including Bross (1954), have demonstrated that classical es-

timators that ignore misclassifications are biased when applied to misclassified binary

data. Therefore, additional external information or additional data are needed to

correct the bias. Several methods in the literature are dedicated to this purpose. In

the Bayesian paradigm, when an infallible procedure is unavailable or prohibitively

expensive, one can use informative priors to obtain model identifiability. Another

information-producing method is to use multiple fallible classifiers. The method we

focus on in this article uses additional training data via the double-sampling scheme

first proposed by Tenenbein (1970). Tenenbein’s double-sampling method is used

when infallible and fallible classification procedures are available. Usually, the infal-
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lible procedure is very expensive; the fallible procedure is usually cheap but prone

to error. Therefore, the use of an infallible procedure on only a small portion of the

data and the use of a fallible procedure on all the data are an economically feasible

means of promoting model identifiability.

A rich literature of research is available on binary data subject to misclassifi-

cation that provides point and interval estimation methods on various functions of

the proportion parameters of interest. For one-sample problems, several researchers

have considered the case in which only one type of error is present. Lie, Heuch,

and Irgens (1994) have used a maximum likelihood approach, where false-negative

errors were corrected using multiple fallible classifiers. York, Madigan, Heuch, and

Lie (1995) have considered this same problem from a Bayesian perspective. When

data are obtained using a double-sampling scheme, Moors, van der Genugten, and

Strijbosch (2000) have discussed the method of moment and maximum likelihood

estimation, in addition to one-sided interval estimation. Boese, Young, and Stamey

(2006) have derived several likelihood-based confidence intervals (CIs) for a single-

proportion parameter, while Lee and Byun (2008) have provided Bayesian credible

intervals using noninformative priors for the same problem.

Moreover, several researchers have studied one-sample problems with both

types of misclassification errors. In conjunction with double sampling, Tenenbein

(1970) has proposed a maximum likelihood estimator for a proportion parameter

and has derived an expression for the asymptotic variance. For the case when train-

ing data are unavailable in one-sample problems, Gaba and Winkler (1992) and

Viana, Ramakrishnan, and Levy (1993) have developed Bayesian approaches using

sufficiently informative priors.

For two-sample problems with both types of misclassification errors, Bayesian

inference methods using sufficiently informative priors have also been developed

when training data are unavailable. For example, see Evans, Guttman, Haitovsky,
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and Swartz (1996) for risk difference estimation, that is, the difference of two-

proportion parameters, and Gustafson, Le, and Saskin (2001) for odds ratios. When

training data are obtained through a double-sampling scheme, Boese (2003) has

derived several likelihood-based CIs for the risk difference.

To date, no methods for inference on risk ratio exist in the literature for two-

sample misclassified binary data. The risk ratio (RR) is defined as the ratio of

two-proportion parameters and is also known as the relative risk. In this article we

focus on data subject to only one type of misclassification error. Without loss of

generality, we consider data with false-positive errors only.

The remainder of this paper is organized as follows. In Section 4.2 we de-

scribe the data, and in Section 4.3 we propose three likelihood-based methods for

interval estimation of a risk ratio using double sampling with over-reported data. In

Section 4.4 we illustrate the newly derived interval estimation methods using real

cervical cancer data. We examine the performance of three proposed interval esti-

mation methods in Section 4.5 using Monte Carlo simulation, and we provide a brief

discussion in Section 4.6.

4.2 The Data

In this section we describe two-sample misclassified binary data with one type

of misclassification error. We assume that the data is obtained using a fallible

classification procedure that yields false-positive but not false-negative counts.

We next introduce notation useful for describing the data. Let Fij be the

observed classification by the fallible classification for the jth individual in the ith

sample, where i = 1, 2, j = 1, . . . , Mi, and

Fij =





1, if the result is positive by the fallible classifier

0, otherwise.

Let Xi =
∑

j Fij and Yi = Mi−Xi be the observed number of positive and negative
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Table 4.1. Data from the Fallible Method for Sample i, i = 1, 2

Classification 0 1 Total
Count Yi Xi Mi

classifications, respectively. The data obtained by the fallible classification for sam-

ple i, i = 1, 2, are displayed in Table 4.1. Similarly, we define the unobserved true

classification of the jth individual in the ith sample as

Tij =





1, if the result is truly positive

0, otherwise.

We remark that misclassification occurs when Tij 6= Fij.

Also, we let

pi ≡ Pr(Tij = 1),

πi ≡ Pr(Fij = 1),

and

φi ≡ Pr(Fij = 1|Tij = 0).

Here, pi is the actual proportion parameter of interest, πi is the proportion parameter

of the fallible procedure, and φi is the false-positive rate for the fallible procedure. We

allow the false-positive rates to be different between the two samples, i.e., φ1 6= φ2.

Note that π1 and π2 are not additional unique parameters because

πi = Pr(Ti = 1) Pr(Fi = 1|Ti = 1) + Pr(Ti = 0) Pr(Fi = 1|Ti = 0)

= pi + qiφi, (4.1)

where qi = 1− pi, i = 1, 2.

As noted in Section 4.1, we desire to determine point and interval estimators

of the risk ratio

r = p1/p2. (4.2)
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Because πi is a function of pi and φi, effectively four unique parameters exist in the

model: p1, φ1, p2, φ2. However, the sufficient statistic dimension is only two be-

cause (X1, X2) are sufficient statistics for this model. Thus, because the dimension

of the sufficient statistics is less than the number of parameters, the four parame-

ters in model (4.1) are unidentifiable and, therefore, additional data are needed for

model identifiability. In this paper we use double sampling to provide additional

information.

Tenenbein (1970) has initiated a double-sampling scheme to promote model

identifiability while controlling the cost. Specifically, in addition to the original fal-

libly classified data, a new, smaller training data set is obtained by classifying each

individual using both the fallible and the infallible procedures. The double-sampling

scheme has attracted researchers’ attention because of its practicality. Other appli-

cations of double-sampling schemes have been given in Tenenbein (1972), Hochberg

(1977), and Boese et al. (2006).

In this paper we assume that training data of size ni are obtained using a

double-sampling scheme in addition to the original fallible data of size Mi for the

ith sample. Hence, the size of the combined data is Ni = Mi +ni. Table 4.2 presents

the combined data. In Table 4.2 we use nijk to denote the number of individuals

classified as j and k by the infallible and fallible classification procedures, respec-

tively. For example, ni01 is the number of individuals in the ith sample classified

as negative by the infallible procedure but classified as positive by the fallible pro-

cedure. Note that ni10 is not available because false-negative errors are assumed

non-existent. With the additional training data, the dimension of sufficient statis-

tics for the combined data is sufficient to estimate all parameters and, therefore, the

model is now identifiable. For future estimation methodology development, we give

the cell probabilities corresponding to Table 4.2 in Table 4.3.
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Table 4.2. Data for Sample i

Fallible Procedure
Data Infallible Procedure 0 1 Total
Training 0 ni00 ni01 ni0·

1 NA ni11 ni11

Total ni00 ni·1 ni

Original NA Yi Xi Mi

NA: Not Available

Table 4.3. Cell Probabilities for Sample i

Fallible Procedure
Data Infallible Procedure 0 1 Total
Training 0 qi(1− φi) qiφi qi

1 NA pi pi

Original NA 1− πi πi 1
NA: Not Available

4.3 The Model

In this section we develop point and interval estimators for the risk ratio (4.2)

of two-proportion parameters using double sampling with over-reported data. In

particular, we provide formulas for maximum likelihood estimators (MLE) based

on the full likelihood function. In addition, we develop two Wald-based CIs and a

Fieller-type CI based on the full likelihood.

4.3.1 The Full Likelihood Function

The data, obtained using a double-sampling scheme, are presented in Table

4.2. For sample i, the observed counts (ni00, ni01, ni11) of the training data have a

trinomial distribution with total size ni and probabilities displayed in an upper-right

2× 2 submatrix in Table 4.3, i.e.,

(ni00, ni01, ni11)|pi, φi ∼ Trin[ni, (qi(1− φi), qiφi, pi)]. (4.3)
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In addition, the observed counts (Xi, Yi) have the binomial distribution

(Xi, Yi)|pi, φi ∼ Bin[Mi, (πi, 1− πi)]. (4.4)

Because (ni00, ni01, ni11) and (Xi, Yi) are independent for sample i, i = 1, 2, and

sample 1 is independent of sample 2, the density function of the data vector given

the parameter vector is

f(d|η) ∝
2∏

i=1

{[qi(1− φi)]
ni00(qiφi)

ni01pni11
i πXi

i (1− πi)
Yi}, (4.5)

where

d = (n100, n101, n111, X1, Y1, n200, n201, n211, X2, Y2)
′ (4.6)

and

η = (p1, φ1, p2, φ2)
′.

Therefore, we can express the full likelihood as

Lf (η) ∝
2∏

i=1

{[qi(1− φi)]
ni00(qiφi)

ni01pni11
i πXi

i (1− πi)
Yi}. (4.7)

4.3.2 Full Likelihood MLEs

To determine the MLE of the risk ratio (4.2), we first perform a reparameter-

ization of parameters η and then derive closed-form solutions. Let

λi ≡ pi/πi, (4.8)

and let γ ≡ (λ1, π1, λ2, π2)
′, where πi, i = 1, 2, is given in (4.1). Using (4.1) and

(4.8), we see that the full likelihood in (4.7) can be re-expressed as

Lf (γ) ∝
2∏

i=1

[
λni11

i (1− λi)
ni01πXi+ni.1

i (1− πi)
Yi+ni00

]
. (4.9)

Therefore, the full log likelihood is

lf (γ) ∝
2∑

i=1

[ni11 log λi + ni01 log(1− λi) + (Xi + ni.1) log πi

+ (Yi + ni00) log(1− πi)] , (4.10)
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and the corresponding score vector is

sf (γ) ≡ ∂lf (γ)

∂γ

=

[
n111

λ1

− n101

1− λ1

,
X1 + n1.1

π1

− Y1 + n100

1− π1

,

n211

λ2

− n201

1− λ2

,
X2 + n2.1

π2

− Y2 + n200

1− π2

]′
. (4.11)

We obtain the MLE for γ by setting sf (γ) = 0 and solving for λi and πi so that

λ̂i =
ni11

ni·1

and

π̂i =
Xi + ni·1

Ni

.

By the MLE invariance property,

p̂i = π̂iλ̂i,

φ̂i = (1− λ̂i)π̂i/q̂i,

and

r̂ = p̂1/p̂2. (4.12)

4.3.3 The Full Likelihood Information Matrix

From (4.11), the Hessian matrix is

Hf (γ) = Diag

[
−n111

λ2
1

− n101

(1− λ1)2
,−X1 + n1.1

π2
1

− Y1 + n100

(1− π1)2
,

−n211

λ2
2

− n201

(1− λ2)2
,−X2 + n2.1

π2
2

− Y2 + n200

(1− π2)2

]
. (4.13)

Thus, the expected Fisher information matrix is

If (γ) = Diag

[
n1π1

λ1(1− λ1)
,

N1

π1(1− π1)
,

n2π2

λ2(1− λ2)
,

N2

π2(1− π2)

]
.
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Because the necessary regularity conditions are satisfied for this model, the MLE

vector γ̂ = (λ̂1, π̂1, λ̂2, π̂2)
′ has an asymptotic multivariate normal distribution with

asymptotic mean γ and asymptotic covariance matrix

I−1
f (γ) = Diag

[
λ1(1− λ1)

n1π1

,
π1(1− π1)

N1

,
λ2(1− λ2)

n2π2

,
π2(1− π2)

N2

]
.

Thus, for i = 1, 2, we have

V (λ̂i) =
λi(1− λi)

niπi

,

V (π̂i) =
πi(1− πi)

Ni

,

and that λ̂i, π̂i, i = 1, 2, are mutually asymptotically uncorrelated.

4.3.4 A Full Likelihood Naive Wald CI

We begin with constructing a naive Wald (nWald) confidence interval for the

risk ratio r. Note that p̂i = π̂iλ̂i and π̂i and λ̂i are uncorrelated, i = 1, 2. Thus, by

the delta method, we have

σ2
i ≡ V (p̂i) ≈

(
∂pi

∂πi

)2

V (π̂i) +

(
∂pi

∂λi

)2

V (λ̂i)

=
λ2

i πi(1− πi)

Ni

+
πiλi(1− λi)

ni

. (4.14)

The MLEs λ̂i and π̂i are consistent estimators of λi and πi. Because continuous

functions of consistent estimators are consistent, we have that a consistent estimator

of (4.14) is

σ̂2
i =

λ̂2
i π̂i(1− π̂i)

Ni

+
π̂iλ̂i(1− λ̂i)

ni

. (4.15)

Recall that the MLE of r is r̂ = p̂1/p̂2. Again using the delta method, we have

σ2
r ≡ V (r̂) ≈

(
∂r

∂p1

)2

V (p̂1) +

(
∂r

∂p2

)2

V (p̂2)

=
σ2

1

p2
2

+
p2

1σ
2
2

p4
2

, (4.16)
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and a consistent estimator of (4.16) is

σ̂2
r =

σ̂2
1

p̂2
2

+
p̂2

1σ̂
2
2

p̂4
2

. (4.17)

Therefore, an approximate 100(1− α)% nWald CI for r is

r̂ ± Zα/2σ̂r, (4.18)

where Zα/2 is the upper (α/2)th quantile of the standard normal distribution. We

refer to (4.18) as a naive Wald CI because the lower limit of the CI can be negative,

especially when the sample size is small and r is close to zero. If the lower limit of

the CI is negative, we replace the lower limit by zero.

4.3.5 A Full Likelihood Modified Wald CI

To alleviate under-coverage and negative-endpoint problems with the nWald

CI, we propose a modified Wald (mWald) CI by constructing an approximate 100(1−
α)% Wald CI for τ = log r that we exponentiate to obtain an approximate 100(1−
α)% CI for r. Hong, Meeker, and Escobar (2008) also suggested using transformation

of parameters when constructing Wald-type CIs. Specifically, let τ̂ = log r̂. Then,

using the delta method, we have

σ2
τ ≡ V (τ̂) ≈ V (log π̂1 + log λ̂1 − log π̂2 − log λ̂2)

= π−2
1 V (π̂1) + λ−2

1 V (λ̂1) + π−2
2 V (π̂2) + λ−2

2 V (λ̂2)

=
1− π1

N1π1

+
1− λ1

n1λ1π1

+
1− π2

N2π2

+
1− λ2

n2λ2π2

. (4.19)

A consistent estimator of (4.19) is

σ̂2
τ =

1− π̂1

N1π̂1

+
1− λ̂1

n1λ̂1π̂1

+
1− π̂2

N2π̂2

+
1− λ̂2

n2λ̂2π̂2

. (4.20)

Therefore, an approximate 100(1− α)% Wald-type CI for τ is

τ̂ ± Zα/2σ̂τ . (4.21)
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Finally, we determine an approximate 100(1−α)% mWald CI for r by exponentiating

the endpoints of (4.21) so that we obtain

[
r̂/ exp(Zα/2σ̂τ ), r̂ exp(Zα/2σ̂τ )

]
. (4.22)

Note that the mWald CI guarantees that the lower limit of (4.22) is nonnegative.

4.3.6 A Full Likelihood Fieller-Type CI

We next derive a CI for r based on an interval estimation concept introduced

in Fieller (1954). As noted previously, asymptotically, we have

p̂i ∼ N(pi, σ
2
i ).

Because

p̂1 − rp̂2√
σ2

1 + r2σ2
2

∼ N(0, 1)

is an asymptotic pivotal quantity, we can obtain an approximate 100(1−α)% Fieller

CI by solving

(p̂1 − rp̂2)
2

σ̂2
1 + r2σ̂2

2

= Z2
α/2

for r. Let

∆ ≡ p̂2
1p̂

2
2 − (p̂2

1 − Z2
α/2σ̂

2
1)(p̂

2
2 − Z2

α/2σ̂
2
2).

Because

p̂2
1 ≥ p̂2

1 − Z2
α/2σ̂

2
1 and p̂2

2 ≥ p̂2
2 − Z2

α/2σ̂
2
2,

we have ∆ ≥ 0. Moreover, ∆ = 0 if and only if σ̂2
1 = σ̂2

2 = 0. Clearly, when ∆ = 0,

Fieller CI does not exist, which is a well-known limitation of the Fieller method.

However, this circumstance occurs rarely. One instance is when n111 = n211 = 0.

When ∆ > 0, an approximate 100(1− α)% Fieller CI for r is

p̂1p̂2 ±
√

∆

|p̂2
2 − Z2

α/2σ̂
2
2|

.
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Table 4.4. Hildesheim Example Data

Fallible Procedure
Group Data Infallible Procedure 0 1
Case Training 0 13 3

1 NA 23
Original NA 318 375

Control Training 0 33 11
1 NA 32

Original NA 701 535
NA: Not Available

4.4 An Example

In this section we compute an MLE point estimate and three CI estimates,

the nWald interval, the mWald interval, and the Fieller interval, for the risk ratio r

using real data. This data, displayed in Table 4.4, was first described in Hildesheim,

Mann, Brinton, Szklo, Reeves, and Rawls (1991) and was later used in Boese et al.

(2006). The original study explored the relationship between exposure to herpes

simplex virus (HSV) and invasive cervical cancer (ICC). For the ease of description,

we define the variable HSV=1 for women exposed to HSV and HSV=0, otherwise.

In addition, we define the variable ICC=1 for women in the first group, or the case

group, that have ICC and ICC=2 for women in the second group, or the control

group, that do not have ICC. This study included a total of 2044 women with

732 women in the case group and 1312 women in the control group. The western

blot procedure was treated as a fallible detector of HSV. A sub-sample of 6% of the

women were also tested using the refined western blot procedure, which is a relatively

accurate procedure and, thus, was treated as infallible. We regard this sub-sample

as the training data in the double-sampling scheme. Both false-positive and false-

negative misclassification errors of HSV using the western blot procedure occurred in

this study. However, for the sake of illustration, we consider only the false-positives

and absorb the ni10 (false-negative) observations into the ni11 observations, i = 1, 2.
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Table 4.5. nWald, mWald, and Fieller CIs for the Hildesheim et. al Data

Method CI Length
nWald (1.15, 1.81) 0.66
mWald (1.18, 1.85) 0.67
Fieller (1.19, 1.86) 0.67

Here, p1 = Pr(exposed to HSV | has ICC) is the probability that a patient truly

has been exposed to HSV given she has ICC (case group), and p2 = Pr(exposed to

HSV | does not have ICC) is the probability that a patient truly has been exposed

to HSV, given she does not have ICC (control group). Recall that r = p1/p2.

The MLE for r is r̂ = 1.48, and we give the nWald, mWald, and Fieller ap-

proximate 90% CIs and their corresponding lengths in Table 4.5. For this particular

example, all three interval estimation methods produce similar CIs. Because the

lower limit of the CIs for all three intervals exceeds one, we conclude that a higher

proportion of women in the case group have been exposed to HSV than in the control

group. Thus, a relationship between exposure to HSV and having ICC could exist.

4.5 Simulations

In this section we describe and present the results of two Monte Carlo simula-

tion studies to assess and compare the coverage probabilities and average lengths of

our proposed CIs under various parameter and sample-size scenarios. In particular

we considered two-sided approximate 90% CIs. Although equal sample sizes from

each group are not required for the interval estimators, for the sake of simplifying

the conduct of the simulation studies and presentation of simulation results, we used

the total sample sizes N1 = N2 = N , training data sample sizes n1 = n2 = n, and

false-positive rates φ1 = φ2 = φ.

We first studied the performance of our three proposed CI methods by varying

total sample sizes. In these simulations, we chose the following parameter and
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Figure 4.1: Coverage probabilities and average lengths versus total sample size N where
(p1, p2) = (.4, .6). The false-positive rate is φ = .1 and s = n/N = 0.2.

sample-size configurations:

(1) False-positive rate: φ = .1,

(2) Ratio of the training-sample size versus the total sample size: s = n/N =

0.2,

(3) Total sample size N : from 100 to 400 with increments of 10,

(4) Proportion parameters of interest (p1, p2): (.4, .6), (.1, .2), corresponding to

risk ratios of 2/3 and 1/2, respectively.

For each simulation parameter and sample-size configuration for (p1, p2), φ, n/N ,

and N , we generated K = 10, 000 data sets. To generate a data set, for i = 1, 2, we

sampled (ni00, ni01, ni11) using (4.3) and (Xi, Yi) using (4.4). Then, we obtained the

complete data d by using (4.6). After a data set was generated, we used the three

competing CI methods developed in Section 4.3 to compute CIs for r. Once the K
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Figure 4.2: Coverage probabilities and average lengths versus total sample size N where
(p1, p2) = (.1, .2). The false-positive rate is φ = .1 and s = n/N = 0.2.

CIs were obtained for each type of CI, we calculated the coverage probability(CP)

and average length (AL) of the K CIs. Finally, we plotted the CP and AL versus

N for each CI method.

Figures 4.1 and 4.2 display plots of CPs and ALs of the three CI methods

versus N for (p1, p2) = (.4, .6) and (p1, p2) = (.1, .2), respectively. We remark that

when (p1, p2) = (.4, .6), binomial distributions can be well approximated by normal

distributions and, therefore, we expected the proposed CI methods to perform well.

In fact, Figure 4.1 demonstrates that both the nWald and mWald CIs had similar,

close-to-nominal CPs even for small samples with N = 100. The Fieller CIs had

reasonable CPs when sample sizes were small (N < 200) and close-to-nominal CPs

when sample sizes were larger (N ≥ 200). The ALs were similar for all three CIs

with the nWald CIs being the narrowest and the Fieller CIs being the widest. On

the other hand, when (p1, p2) = (.1, .2), binomial distributions were skewed and,

therefore, not very well behaved. Therefore, we did not expect the proposed CIs to
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Figure 4.3: Coverage probabilities and average lengths versus the log risk ratios r, where
p1 = .5. The false-positive rate is φ = .1, total sample size N = 200, and s = n/N = 0.2.

perform well for small sample sizes (N < 200). In fact, Figure 4.2 shows that both

the nWald and Fieller CIs had poor coverage where N < 200. The coverage was

close to nominal when sample sizes were larger (N > 300). Remarkably, the mWald

CIs had good coverage for the sample sizes considered here. When comparing ALs,

we were not surprised that nWald CIs were narrower on average than mWald CIs

because naive Wald intervals tended to be consistently too narrow. However, the

Fieller CIs were the widest, especially when the sample sizes were small. Thus, even

though the Fieller CIs were wide, they often did not cover the true risk ratios.

We then studied the performance of the nWald, mWald, and Fieller CIs by

varying the risk ratio r. Here, we chose the following parameter configurations:

(1) False-positive rate: φ = .1,

(2) Ratio of the training-sample size versus the total sample size: s = n/N =

0.2, and

52



−1.5 −0.5 0.5 1.5

0.
80

0.
85

0.
90

0.
95

log r

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

nWald
mWald
Fieller

−1.5 −0.5 0.5 1.5

0
10

20
30

40
50

60

log r
A

ve
ra

ge
 L

en
gt

h

nWald
mWald
Fieller

Figure 4.4: Coverage probabilities and average lengths versus the log risk ratios r, where
p1 = .2. The false-positive rate is φ = .1, total sample size N = 200, and s = n/N = 0.2.

(3) Total sample size: N = 200.

We considered two simulation configurations for p1 and p2 with fixed values of p1 = .5

and p1 = .2 for the first and second configurations, respectively. For each configura-

tion, we chose 9 values of p2, {p2,1, . . . , p2,9}, in an increasing order, such that log(r1)

and log(r9) were symmetric about 0, and {log(r1), . . . , log(r9)} were equally spaced,

where rt = p1/p2,t, t = 1, . . . , 9. We let p2,9 = .9 for both configurations. Using the

assumption that log(r1) and log(r9) are symmetric about 0, we obtained p2,1 ≈ 0.278

and p2,1 ≈ 0.044 for the two configurations, respectively. Note that in this way, we

ensured that the values of the parameters {p2,1, . . . , p2,9} were between 0 and 1. For

each configuration, we then determined p2,2, . . . , p2,8 such that {log(r1), . . . , log(r9)}
were equally spaced.

For each simulation scenario of known (p1, p2), φ, n/N , and N , we generated

K = 10, 000 data sets. The generation of one data set was described previously
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in this section. Once the K CIs for each interval were obtained, we calculated the

coverage probabilities (CPs) and average lengths (ALs). Finally, we plotted the CPs

and ALs versus log r for each type of CI.

Figures 4.3 and 4.4 depict plots of the CPs and ALs of all CI methods versus

log r for both configurations of p1 and p2, respectively. Figure 4.3 shows that both

the nWald and the mWald CIs had close-to-nominal coverage for the range of log r

studied here. The Fieller CI also had close-to-nominal coverage for the range of log r

studied here, although the coverage was consistently slightly below the nominal level.

Figure 4.3 also displays that the Fieller CI was slightly wider than the other two

CIs. Figure 4.4 shows that the mWald CI had close-to-nominal coverage for the

range of log r studied here. The nWald CI had close-to-nominal coverage when

log r ∈ (− log .5, log .5) and below-nominal coverage otherwise. The Fieller CI had

below-nominal coverage when log r < .5 and above-nominal coverage when log r > .5.

Figure 4.4 also displays that the mWald CI was slightly wider than the nWald CI.

The Fieller CI was the widest and was much wider than the other two CIs when

log r > .5.

4.6 Discussion

In this paper we have derived three CIs: the nWald, mWald, and Fieller in-

tervals for risk ratios using two-sample binary data subject to false-positive misclas-

sification. The nWald CI is obtained using a naive application of the Wald interval

estimation method, the mWald CI is based on a modified Wald method that guaran-

tees nonnegative CI limits, and the Fieller CI is constructed using a pivotal quantity.

All three interval estimators are easy to compute.

The three proposed CIs were applied to cervical cancer data and produced

similar CIs for the risk ratio r. We expected this outcome because all three CIs

perform well when sample sizes are large, as in the cervical cancer data.
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We have conducted Monte Carlo simulation studies to examine the CPs and

ALs of the three proposed CIs for the risk ratio r under various simulation scenarios.

In general, all three interval estimators performed well for large samples. That is,

the CPs were close to the nominal level. Also, the ALs decreased as sample sizes

increased. The mWald interval produced CIs that were close to the nominal level

under all simulation scenarios considered here. Compared with the mWald CI, the

nWald CI was generally narrower but had CPs considerably less than the nominal

level, especially when p1 and p2 were close to zero or one and the sample sizes were

small (N ≈ 100). The Fieller CI was sometimes much wider than the other two

intervals and had CPs larger or smaller than the nominal levels, especially when

p1 and p2 were close to zero or one and the sample sizes were small (N ≈ 100). In

summary, the mWald CI performed well for the parameter configurations and sample

sizes considered here and, hence, is preferred to the nWald and Fieller intervals.
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CHAPTER FIVE

Confidence Intervals for the Risk Ratio Using Double Sampling with Misclassified
Binomial Data

5.1 Introduction

Several researchers, including Bross (1954), have studied the effect of misclas-

sification on the classical proportion estimators. In general, two types of misclassi-

fication for binary misclassified observations exist: false-positive and false-negative

binary observations. For example, visual inspection by a midwife or obstetrician

may erroneously classify a normal child as having Down’s syndrome (false-positive),

or one may classify a child with Down’s syndrome as being healthy (false-negative).

In many applications with misclassified binary data, both misclassification types are

present.

Because classical estimators that ignore misclassification are biased, one needs

additional data to correct the bias and achieve model identifiability. Various meth-

ods in the statistical literature have been proposed for this purpose. For the Bayesian

paradigm, when an infallible classifier is unavailable or prohibitively expensive,

one can use sufficiently informative priors to obtain model identifiability. Another

information-producing method is to use multiple fallible classifiers. This article fo-

cuses on an information-addition method first proposed by Tenenbein (1970) that

includes training data obtained by double sampling.

One can apply Tenenbein’s double sampling scheme when both fallible and

infallible measuring devices or classifiers are available. Usually, the fallible classifier

is relatively inexpensive but may misclassify units, while the infallible classifier is

generally much more expensive but is infallible. Tenenbein’s approach was to com-

promise between the two extremes by using the infallible classifier on only a small
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portion of the data and using the fallible classifier on all of the data. This approach,

called double sampling, not only enables model identifiability but is also economical.

A number of researchers have used misclassified binary data to provide point

and interval estimation methods for various functions of the proportion parame-

ters of interest. For one-sample binomial problems where only one type of error or

misclassification is present, Lie, Heuch, and Irgens (1994) have used a maximum

likelihood approach, where false-negative errors are corrected with multiple falli-

ble classifiers, whereas York, Madigan, Heuch, and Lie (1995) have considered the

same problem from a Bayesian approach. Using data obtained by double sampling,

Moors, van der Genugten, and Strijbosch (2000) have discussed method of moments

and maximum likelihood estimation, in addition to one-sided interval estimation.

Also, Boese, Young, and Stamey (2006) have derived several likelihood-based confi-

dence intervals (CIs) for a single proportion parameter, while Lee and Byun (2008)

have provided Bayesian credible intervals using noninformative priors for the same

problem.

Additionally, several researchers have studied one-sample problems with both

types of binary misclassification errors. In conjunction with double sampling, Tenen-

bein (1970) has proposed a maximum likelihood estimator for a single proportion

parameter and has derived an expression for the estimator’s asymptotic variance.

For the case when training data are unavailable in the one-sample problem, Gaba

and Winkler (1992) and Viana, Ramakrishnan, and Levy (1993) have developed

Bayesian approaches using sufficiently informative priors.

For the two-sample problem with both types of binary misclassification er-

rors, Bayesian inference methods using sufficiently informative priors have also been

developed when training data are unavailable. For example, see Evans, Guttman,

Haitovsky, and Swartz (1996) for risk-difference estimation, that is, the difference of

two proportion parameters, and Gustafson, Le, and Saskin (2001) for estimation of
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Table 5.1. Data from the Fallible Classifier for Sample i, i = 1, 2

Classification 0 1 Total
Count Yi Xi Mi

odds ratios. When training data is obtained through double sampling, Boese (2003)

has derived several likelihood-based CIs for the risk difference.

So far, no inference methods for the risk ratio of two proportion parameters

have been published for two-sample misclassified binary data. In this article, we

develop point and interval estimators for this problem. The remainder of this paper

is organized as follows. In Section 5.2 we describe the data, and in Section 5.3 we

derive three likelihood-based interval estimators of a risk ratio using double sampling

with misclassified data containing both false-negative and false-positive observations.

In Section 5.4 we illustrate the newly derived interval estimators using real cervical

cancer data. We examine and compare the performance of three interval estimators

in Section 5.5, and we give a brief discussion in Section 5.6.

5.2 The Data

In this section we introduce notation and rigorously describe two-sample mis-

classified binomial data. The original data are obtained with a fallible classifier that

produces both false-positive and false-negative observations.

We first introduce notation necessary for describing the data. Let Fij be the

observed classification by the fallible classifier for the jth individual in the ith sample,

where i = 1, 2, j = 1, . . . , Mi, and Fij = 1 if the result by the fallible classifier is

positive, and Fij = 0 otherwise. Let Xi =
∑

j Fij and Yi = Mi−Xi be the observed

number of positive and negative observations, respectively. The data obtained by

the fallible classifier for sample i, i = 1, 2, are displayed in Table 5.1. Similarly,

we define the unobserved true classification of the jth individual in the ith sample
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as Tij = 1 if the classifier result is truly positive, and Tij = 0 otherwise. Clearly,

misclassification occurs when Tij 6= Fij.

Also, we let

pi ≡ Pr(Tij = 1),

πi ≡ Pr(Fij = 1),

φi ≡ Pr(Fij = 1|Tij = 0),

and

θi ≡ Pr(Fij = 0|Tij = 1).

Here, pi is the actual proportion parameter of interest, πi is the proportion parameter

of the fallible classifier, φi and θi are the false-positive and the false-negative rates,

respectively, for the fallible classifier. Note that we allow the false-positive rates and

false-negative rates to be different between the two samples, i.e., we allow φ1 6= φ2

and θ1 6= θ2. Also we remark that π1 and π2 are not additional unique parameters

because

πi = Pr(Tij = 1) Pr(Fij = 1|Tij = 1) + Pr(Tij = 0) Pr(Fij = 1|Tij = 0)

= pi(1− θi) + qiφi, (5.1)

where qi = 1 − pi. As noted in Section 5.1, we wish to develop point and interval

estimators of the risk ratio

r = p1/p2. (5.2)

Because πi is determined through pi, φi, and θi, i = 1, 2, effectively six pa-

rameters result in the model: p1, φ1, θ1, p2, φ2, θ2. However, the sufficient statistics

dimension is only two because X1 and X2 are the minimal sufficient statistics for

this model. Therefore, six parameters in model (5.1) are unidentifiable because the

dimension of the sufficient statistics is less than the number of parameters and,
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Table 5.2. Data for Sample i

Fallible Classifier
Data Infallible Classifier 0 1 Total
Training 0 ni00 ni01 ni0·

1 ni10 ni11 ni1·
Total ni·0 ni·1 ni

Original NA Yi Xi Mi

NA: Not Available

therefore, additional data are needed for model identifiability. In this paper we use

double sampling to provide additional information. Specifically, in addition to the

original fallible data classified only by the fallible classifier, new but smaller training

data are obtained when we classify each individual in this training data by both the

fallible and the infallible classifiers. The double sampling paradigm has attracted

researchers’ interests due to its practicality. Other applications of double-sampling

schemes have been addressed in Tenenbein (1972), Hochberg (1977), and Boese et al.

(2006).

In this paper we assume that for the ith sample, training data of size ni are

obtained using double sampling in addition to the original fallible data of size Mi,

i = 1, 2. Hence, the size of the combined data is Ni = Mi + ni for sample i. Table

5.2 presents the combined data by concatenating the original and training data. In

Table 5.2 we use nijk to denote the number of individuals classified as j and k by

the infallible and fallible classifiers, respectively. For example, ni01 is the number

of individuals in the ith sample classified as negative by the infallible classifier but

classified as positive by the fallible classifier. With the additional training data, the

dimension of the sufficient statistic for the combined data is sufficient for estimating

all parameters and, therefore, the full model is identifiable. For future estimation

methodology development, we present the cell probabilities corresponding to Table

5.2 in Table 5.3.
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Table 5.3. Cell Probabilities for Sample i

Fallible Classifier
Data Infallible Classifier 0 1 Total
Training 0 qi(1− φi) qiφi qi

1 piθi pi(1− θi) pi

Original NA 1− πi πi 1
NA: Not Available

5.3 The Model

For data described in the previous section, we derive point and interval estima-

tors for the risk ratio (5.2) of two proportion parameters using double sampling on

possibly misclassified data. In particular, we derive closed-form maximum likelihood

estimators (MLEs). In addition, we obtain an asymptotic covariance matrix of the

vector of MLEs by computing the inverse of the Fisher information matrix. Finally,

we develop two closed-form Wald-based CIs and a Fieller-type CI for the risk ratio

r based on the full likelihood.

5.3.1 The Full Likelihood Function

Table 5.2 presents the data for the inference problem under consideration.

For sample i, the observed counts (ni00, ni01, ni10, ni11)
′ of the training data have a

quadrinomial distribution with total size ni and probabilities displayed in an upper

right 2× 2 submatrix in Table 5.3, i.e.,

(ni00, ni01, ni10, ni11)|pi, φi, θi ∼ Quad[ni, (qi(1− φi), qiφi, piθi, pi(1− θi))]. (5.3)

In addition, the observed counts (Xi, Yi) have the binomial distribution

(Xi, Yi)|pi, φi, θi ∼ Bin[Mi, (πi, 1− πi)]. (5.4)

Because (ni00, ni01, ni10, ni11)
′ and (Xi, Yi)

′ are independent for sample i and because

sample 1 is independent of sample 2, the probability density function of the data
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vector given the parameter vector is

f(d|η) ∝
2∏

i=1

{[qi(1− φi)]
ni00(qiφi)

ni01(piθi)
ni10 [pi(1− θi)]

ni11πXi
i (1− πi)

Yi}, (5.5)

where

d = (n100, n101, n110, n111, X1, Y1, n200, n201, n210, n211, X2, Y2)
′ (5.6)

and

η = (p1, φ1, θ1, p2, φ2, θ2)
′.

Finally, we can express the full likelihood function as

Lf (η) ∝
2∏

i=1

{[qi(1− φi)]
ni00(qiφi)

ni01(piθi)
ni10 [pi(1− θi)]

ni11πXi
i (1− πi)

Yi}. (5.7)

5.3.2 MLEs Based on the Full Likelihood Function

We now derive the maximum likelihood estimators (MLEs) of all parameters

of interest. Generally, directly maximizing (5.7) with respect to η requires such

numerical methods as the Newton-Raphson algorithm. These numerical methods

are computationally expensive and may have convergence issues. Instead of using

these numerical methods, we first perform a reparameterization of parameters η and

then derive closed-form solutions. Let

λi1 ≡ pi(1− θi)/πi, (5.8)

λi2 ≡ piθi/(1− πi), (5.9)

and γ ≡ (λ11, λ12, π1, λ21, λ22, π2)
′, i = 1, 2. Using (5.1), (5.8), and (5.9), we see that

(5.7) can be reexpressed as

Lf (γ) ∝
2∏

i=1

[
λni11

i1 (1− λi1)
ni01λni10

i2 (1− λi2)
ni00πXi+ni.1

i (1− πi)
Yi+ni.0

]
.(5.10)

Therefore, the full log likelihood is

lf (γ) ∝
2∑

i=1

[ni11 log λi1 + ni01 log(1− λi1) + ni10 log λi2 + ni00 log(1− λi2)+

(Xi + ni.1) log πi + (Yi + ni·0) log(1− πi)] , (5.11)
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and the corresponding score vector is

sf (γ) ≡ ∂lf (γ)

∂γ

=

[
n111

λ11

− n101

1− λ11

,
n110

λ12

− n100

1− λ12

,
X1 + n1.1

π1

− Y1 + n1·0
1− π1

,

n211

λ21

− n201

1− λ21

,
n210

λ22

− n200

1− λ22

,
X2 + n2.1

π2

− Y2 + n2·0
1− π2

]′
. (5.12)

We obtain the MLE for γ by setting sf (γ) = 0 and solving for λi1, λi2, and πi, so

that

λ̂i1 =
ni11

ni·1
,

λ̂i2 =
ni10

ni·0
,

and

π̂i =
Xi + ni·1

Ni

,

i = 1, 2. By solving (5.1), (5.8), and (5.9) and applying the invariance property of

MLEs, we find the MLEs for η are

p̂i = π̂iλ̂i1 + (1− π̂i)λ̂i2,

φ̂i = (1− λ̂i1)π̂i/q̂i,

θ̂i = λ̂i2(1− π̂i)/p̂i,

i = 1, 2, and

r̂ = p̂1/p̂2. (5.13)
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5.3.3 The Full Likelihood Information Matrix

From (5.12), the Hessian matrix is

Hf (γ) = Diag

[
−n111

λ2
11

− n101

(1− λ11)2
,−n110

λ2
12

− n100

(1− λ12)2
,

−X1 + n1.1

π2
1

− Y1 + n1·0
(1− π1)2

,−n211

λ2
21

− n201

(1− λ21)2
,

−n210

λ2
22

− n200

(1− λ22)2
,−X2 + n2.1

π2
2

− Y2 + n2·0
(1− π2)2

]
. (5.14)

Thus, the expected Fisher information matrix is

If (γ) = Diag

[
n1π1

λ11(1− λ11)
,

n1(1− π1)

λ12(1− λ12)
,

N1

π1(1− π1)
,

n2π2

λ21(1− λ21)
,

n2(1− π2)

λ22(1− λ22)
,

N2

π2(1− π2)

]
.

Because the necessary regularity conditions are satisfied for this model, the MLE

vector γ̂ = (λ̂11, λ̂12, π̂1, λ̂21, λ̂22, π̂2)
′ has an asymptotic multivariate normal distri-

bution with asymptotic mean γ and asymptotic covariance matrix

I−1
f (γ) = Diag

[
λ11(1− λ11)

n1π1

,
λ12(1− λ12)

n1(1− π1)
,
π1(1− π1)

N1

,

λ21(1− λ21)

n2π2

,
λ22(1− λ22)

n2(1− π2)
,
π2(1− π2)

N2

]
.

Thus, for i = 1, 2, asymptotically we have

V (λ̂i1) =
λi1(1− λi1)

niπi

,

V (λ̂i2) =
λi2(1− λi2)

ni(1− πi)
,

V (π̂i) =
πi(1− πi)

Ni

,

and that λ̂11, λ̂12, π̂1, λ̂21, λ̂22, π̂2 are asymptotically mutually independent.

5.3.4 A Full Likelihood Naive Wald CI

We begin with constructing a naive Wald-type confidence interval for the risk

ratio r. Note that p̂i = π̂iλ̂i1 + (1− π̂i)λ̂i2 and that λ̂i1, λ̂i2, and π̂i are independent,
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i = 1, 2. Thus, using the delta method, we have

σ2
i ≡ V (p̂i)

≈
(

∂pi

∂λi1

)2

V (λ̂i1) +

(
∂pi

∂λi2

)2

V (λ̂i2) +

(
∂pi

∂πi

)2

V (π̂i)

=
πiλi1(1− λi1)

ni

+
(1− πi)λi2(1− λi2)

ni

+
(λi1 − λi2)

2πi(1− πi)

Ni

. (5.15)

The MLEs λ̂i1, λ̂i2, and π̂i are consistent estimators of λi1, λi2, and πi, respectively.

Because a continuous function of consistent estimators is consistent, we have that a

consistent estimator of (5.15) is

σ̂2
i =

π̂iλ̂i1(1− λ̂i1)

ni

+
(1− π̂i)λ̂i2(1− λ̂i2)

ni

+
(λ̂i1 − λ̂i2)

2π̂i(1− π̂i)

Ni

. (5.16)

Recall that the MLE of r is r̂ = p̂1/p̂2. Again using the delta method, we have

σ2
r ≡ V (r̂) ≈

(
∂r

∂p1

)2

V (p̂1) +

(
∂r

∂p2

)2

V (p̂2)

=
σ2

1

p2
2

+
p2

1σ
2
2

p4
2

, (5.17)

and a consistent estimator of (5.17) is

σ̂2
r =

σ̂2
1

p̂2
2

+
p̂2

1σ̂
2
2

p̂4
2

. (5.18)

Therefore, an approximate 100(1− α)% naive Wald (nWald) CI for r is

r̂ ± Zα/2σ̂r, (5.19)

where Zα/2 is the upper (α/2)th quantile of the standard normal distribution. This

interval estimator is referred to as a naive Wald CI because it results from a naive

application of the Wald interval estimation method. We remark that the lower limit

of the CI can be negative, especially when sample sizes are small and r is close to

zero. In the case where the lower limit of the CI is negative, we replace the lower

limit by zero.
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5.3.5 A Full Likelihood Modified Wald CI

To alleviate the problem with the nWald CI, we propose a modified Wald

(mWald) CI by first constructing an approximate 100(1 − α)% CI for τ = log r.

Then, we exponentiate this CI to obtain an approximate 100(1−α)% CI for r. Hong,

Meeker, and Escobar (2008) also suggested using transformation of parameters when

constructing Wald-type CIs. Specifically, we let τ̂ = log r̂. Then, using the delta

method, we compute

σ2
τ ≡ V (τ̂) = V (log p̂1 − log p̂2)

≈ V (p̂1)

p2
1

+
V (p̂2)

p2
2

=
σ2

1

p2
1

+
σ2

2

p2
2

. (5.20)

Clearly, a consistent estimator of (5.20) is

σ̂2
τ =

σ̂2
1

p̂2
1

+
σ̂2

2

p̂2
2

. (5.21)

Then, a 100(1− α)% CI for τ is

τ̂ ± Zα/2σ̂τ . (5.22)

Finally, an approximate 100(1−α)% mWald CI for r is obtained by exponentiating

(5.22):

[
r̂/ exp(Zα/2σ̂τ ), r̂ exp(Zα/2σ̂τ )

]
. (5.23)

Note that the mWald CI guarantees the lower limit of (5.23) is nonnegative.

5.3.6 A Full Likelihood Fieller-Type CI

We next develop a CI for r based on an interval estimation concept introduced

in Fieller (1954). As noted previously, asymptotically, we have

p̂i ∼ N(pi, σ
2
i )
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and p̂1 and p̂2 are independent. Because

p̂1 − rp̂2√
σ2

1 + r2σ2
2

∼ N(0, 1)

is an asymptotic pivotal quantity, we can obtain an approximate 100(1−α)% Fieller

CI by solving

(p̂1 − rp̂2)
2

σ̂2
1 + r2σ̂2

2

= Z2
α/2

for r. Let

∆ ≡ p̂2
1p̂

2
2 − (p̂2

1 − Z2
α/2σ̂

2
1)(p̂

2
2 − Z2

α/2σ̂
2
2).

Because

p̂2
1 ≥ p̂2

1 − Z2
α/2σ̂

2
1 and p̂2

2 ≥ p̂2
2 − Z2

α/2σ̂
2
2,

we have ∆ ≥ 0. Moreover, ∆ = 0 if and only if σ̂2
1 = σ̂2

2 = 0. This phenomenon

occurs rarely, for example, when n111 = n211 = 0. When ∆ > 0, an approximate

100(1− α)% Fieller CI for r is

p̂1p̂2 ±
√

∆

|p̂2
2 − Z2

α/2σ̂
2
2|

.

Clearly, when ∆ = 0, a 100(1−α)% Fieller CI does not exist, which is a well-known

limitation of the Fieller method.

5.4 An Example

In this section we use a real data set to compute an MLE point estimate and

three CI estimates using the nWald interval, mWald interval, and Fieller interval

for the risk ratio r. This dataset, displayed in Table 5.4, was first described in

Hildesheim, Mann, Brinton, Szklo, Reeves, and Rawls (1991) and was later used in

Boese et al. (2006). The original study explored the relationship between exposure

to herpes simplex virus (HSV) and invasive cervical cancer (ICC). A total of 2044
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Table 5.4. Hildesheim et. al Data

Fallible Classifier
Group Data Infallible Classifier 0 1
Case Training 0 13 3

1 5 18
Original NA 318 375

Control Training 0 33 11
1 16 16

Original NA 701 535
NA: Not Available

women participated in this study with 732 women in the case group and 1312 women

in the control group. The western blot procedure was treated as a fallible detector

of HSV. A sub-sample of 6% of the women were also tested using the refined western

blot procedure, which is a relatively accurate procedure and, thus, was treated as

infallible. We regard this sub-sample as the training data in the double sampling

scheme. Both false-positive and false-negative misclassification errors of HSV using

the western blot procedure occurred in this study.

In this example, we have the p1=Pr(exposed to HSV | has ICC) is the proba-

bility that a patient truly has been exposed to HSV, given that she has ICC (case

group), and p2=Pr(exposed to HSV | does not have ICC) is the probability that a

patient truly has been exposed to HSV, given that she does not have ICC (control

group). Recall that r = p1/p2.

The MLE for r is r̂ = 1.34, and we give approximate 90% nWald, mWald,

and Fieller CIs and their ALs in Table 5.5. For this example, all three interval

estimators produced similar CIs. Because the lower limits of two CIs (mWald and

Fieller) exceed one, we conclude there is a higher proportion of women exposed to

HSV in the case group than in the control group. Thus, an association between

exposure to HSV and having ICC could exist. However, the evidence for drawing

this conclusion is relatively weak because the lower limits of the CIs are close to one.
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Table 5.5. nWald, mWald, and Fieller CIs for the Hildesheim et. al Data

Method CI Length
nWald (0.98, 1.71) 0.73
mWald (1.02, 1.76) 0.74
Fieller (1.02, 1.78) 0.76

5.5 Simulations

In this section, we describe and present the results of two Monte Carlo sim-

ulation studies to assess and compare the performance of our proposed CIs under

various parameter and sample-size scenarios. The performance was evaluated in

terms of CI coverage probabilities and average lengths. In particular, we consid-

ered two-sided approximate 90% CIs. Although equal sample sizes from each group

were not required by these interval estimation methods, we assumed the total sam-

ple size N1 = N2 = N , training data sample size n1 = n2 = n, false-positive rate

φ1 = φ2 = φ, and false-negative rate θ1 = θ2 = θ, to simplify the simulation studies

and presentation of simulation results.

We first investigated the performance of our three proposed CI methods by

varying total sample size. In this simulation, we chose the following parameter and

sample-size configurations:

(1) False-positive rate: φ = .1,

(2) False-negative rate: θ = .1,

(3) Ratio of the training sample size versus the total sample size: s = n/N = 0.2,

(4) Total sample size N : from 100 to 400 with increments of 10,

(5) True proportion parameters of interest (p1, p2): (.4, .6) and (.1, .2), corre-

sponding to risk ratios of 2/3 and 1/2, respectively.
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Figure 5.1: Coverage probabilities and average lengths versus total sample size N where
(p1, p2) = (.4, .6). The false-positive rate is φ = .1, the false-negative rate is θ = .1, and
s = n/N = 0.2.

For each configuration of p1, p2, φ, θ, n/N , and N , we simulated K = 10, 000

data sets. To simulate a data set, for i = 1, 2, we sampled (ni00, ni01, ni10, ni11)
′ using

(5.3) and (Xi, Yi) using (5.4). Then, we created the complete data d using (5.6).

After a data set was created, we computed the three competing CIs for r. Once the

K CIs were available for each type of CI, we computed the coverage probabilities

(CPs) and the average lengths (ALs). Finally, we plotted the CPs and ALs versus

sample sizes N for each type of CI.

Figures 5.1 and 5.2 display curves of CPs and ALs of the three CI estimators

versus N for (p1, p2) = (.4, .6) and (p1, p2) = (.1, .2), respectively. When (p1, p2) =

(.4, .6), the corresponding binomial distributions are approximately symmetric about

their means and, therefore, we expected the proposed CIs to perform well. Not

surprisingly, Figure 5.1 demonstrates that both the nWald and mWald CIs had

similar, close-to-nominal CPs, regardless of the sample sizes. The Fieller CIs had
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Figure 5.2: Coverage probabilities and average lengths versus total sample size N where
(p1, p2) = (.1, .2). The false-positive rate is φ = .1, the false-negative rate is θ = .1, and
s = n/N = 0.2.

reasonable CPs for small samples (N < 200) and close-to-nominal CPs for large

samples (N ≥ 200). The ALs were similar for all three CIs with the nWald CIs

being the narrowest and the Fieller CIs being the widest. On the other hand,

when (p1, p2) = (.1, .2), the corresponding binomial distributions were skewed and,

therefore, not very well-behaved. Therefore, in this case, we did not expect the

proposed CIs to perform as well for small sample sizes (N < 200). In fact, Figure

5.2 shows that both the nWald and Fieller CIs had very poor coverage for small

samples (N < 200). However, the coverage for nWald and Fieller CIs was close

to nominal when sample sizes were large (N > 300). Impressively, the mWald

CIs had good coverage properties for all of the sample sizes considered here. For the

comparison of ALs, we expected that the nWald CIs would be narrower than mWald

CIs on average because naive Wald intervals commonly tend to be consistently too

narrow. The Fieller CIs were generally the widest and were much wider than the
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Figure 5.3: Coverage probabilities and average lengths versus the log risk ratios r where
p1 = .5. The false-positive rate is φ = .1, the false-negative rate is θ = .1, the total sample
size N = 200, and s = n/N = 0.2.

other two interval estimators when the sample sizes were small. This property is

very undesirable, especially with the fact that the Fieller CIs had low coverage

probabilities.

Secondly, we studied the performance of the nWald, mWald, and Fieller CIs

by varying the risk ratio r. In these simulations, we chose the following parameter

configurations:

(1) False-positive rate: φ = .1,

(2) False-negative rate: θ = .1,

(3) Ratio of the training sample size versus the total sample size: s = n/N = 0.2,

(4) Total sample size: N = 200.

We considered two simulation configurations for p1 and p2 with fixed values of p1 = .5

and p1 = .2 for the first and second simulation configurations, respectively. For each
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Figure 5.4: Coverage probabilities and average lengths versus the log risk ratios r, where
p1 = .2. The false-positive rate is φ = .1, the false-negative rate is θ = .1, the total sample
size N = 200, and s = n/N = 0.2.

simulation configuration, we chose 9 values of p2, {p2,1, . . . , p2,9}, in an increasing or-

der, such that log(r1) and log(r9) were symmetric about 0, and {log(r1), . . . , log(r9)}
were equally spaced, where rt = p1/p2,t, t = 1, . . . , 9. We let p2,9 = .9 for both config-

urations. Using the assumption that log(r1) and log(r9) are symmetric about 0, we

obtained p2,1 ≈ 0.278 and p2,1 ≈ 0.044 for the two configurations, respectively. Note

that in this way, we ensured that the values of the parameters {p2,1, . . . , p2,9} were

between 0 and 1. For each simulation configuration, we then determined p2,2, . . . , p2,8

such that {log(r1), . . . , log(r9)} were equally spaced.

For each simulation scenario with known p1, p2, φ, θ, n/N , and N , we simulated

K = 10, 000 data sets. The simulation of one data set was described previously in

this section. Once the K CIs for each interval method were obtained, we calculated

the coverage probabilities (CPs) and average lengths (ALs). Finally, we plotted the

CPs and ALs versus log r for each CI method.
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Figures 5.3 and 5.4 display plots of the CPs and ALs of all CI methods versus

log r for both configurations of p1 and p2, respectively. Figure 5.3 shows that both

the nWald and the mWald CIs had close-to-nominal coverage for the range of log r

studied here. The Fieller CI also had close-to-nominal coverage for the range of log r,

although the coverage was consistently slightly below the nominal level. Figure 5.3

also displays that the Fieller CI was slightly wider than the other two CIs. Figure 5.4

shows that the mWald CI had close-to-nominal coverage for the range of log r studied

here. The nWald CI had close-to-nominal coverage when log r ∈ (− log .5, log .5) but

much below-nominal coverage otherwise. The Fieller CI had below-nominal coverage

when log r < .5 and above-nominal coverage when log r > .5. Figure 5.4 also displays

that the mWald CI was slightly wider than the nWald CI. The Fieller CI was the

widest and was much wider than the other two CIs when log r > .5.

5.6 Discussion

In this article, we have considered interval estimation of the risk ratio of two

binomial proportion parameters using two-sample misclassified binomial data. Be-

cause the original full likelihood function was difficult to work with, we have per-

formed a reparameterization of the parameters. The transformed parameters in the

new likelihood function were separable and, therefore, the maximum likelihood es-

timation was straightforward. As a result, we have derived closed-form formulas for

the MLE and the nWald, the mWald, and the Fieller CIs, for the risk ratio. The

nWald CI was computed using a naive application of the Wald method; the mWald

CI was based on a modified Wald method that guarantees nonnegative CI limits;

and the Fieller CI was constructed using an asymptotic pivotal quantity. All three

CIs are easy to compute and require little computing resources.

To illustrate, all three CIs were applied to a cervical cancer data set. As

expected, they produced similar CIs because the cervical cancer data have a large
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sample size. To compare and evaluate these three CIs, we conducted several Monte

Carlo simulation studies to examine the CPs and ALs of all three CIs for r under

various parameter-configuration scenarios. Because the CI estimators were devel-

oped based on asymptotic theory, we expected all three methods to perform well for

large samples. This assumption was confirmed in our simulations because the CPs

were close to the nominal level for large samples and the ALs decreased as sample

sizes increased.

Substantial differences in performance occurred among these three CIs. We

remark that the mWald CIs had CPs close to nominal level under various parameter

and sample-size scenarios. Compared with the mWald CIs, the nWald CIs were

narrower but tended to have CPs less than the nominal level, especially when p1

and p2 were close to zero or one and the sample sizes were small (N < 200). The

Fieller CIs generally were the widest and sometimes were much wider than the other

two intervals. The behavior of the Fieller CIs was somewhat erratic because the

CPs could be above or below the nominal levels, especially when p1 and p2 were

close to zero or one and the sample sizes were small (N < 200). In summary,

the mWald CIs consistently had nominal coverage and performed the best among

three CI methods for parameter and sample-size configurations considered here and,

therefore, are preferred to the nWald and Fieller intervals for the parameter and

sample-size configurations considered here.

75



BIBLIOGRAPHY

Boese, D. H. (2003), “Likelihood-based confidence intervals for proportion parame-
ters with binary data subject to misclassification,” Ph.D. thesis, Baylor Univer-
sity.

Boese, D. H., Young, D. M., and Stamey, J. D. (2006), “Confidence intervals for a
binomial parameter based on binary data subject to false-positive misclassifica-
tion,” Computational Statistics & Data Analysis, 50, 3369–3385.

Bross, I. (1954), “Misclassification in 2x2 tables,” Biometrics, 10, 478–486.

Evans, M., Guttman, I., Haitovsky, Y., and Swartz, T. (1996), “Bayesian analysis
of binary data subject to misclassification,” in In Bayesian Analysis in Statistics
and Econometrics: Essays in Honor of Arnold Zellner, eds. Berry, D., Chaloner,
K., and Geweke, J., John Wiley, pp. 67–77.

Fieller, E. C. (1954), “Some problems in interval estimation.” Journal of the Royal
Statistical Society, Series B, 16, 175–185.

Gaba, A. and Winkler, R. L. (1992), “Implications of errors in survey data: a
Bayesian model,” Management Science, 38, 913–925.

Goldberg, J. D. (1975), “The Effects of Misclassification on the Bias in the Difference
Between Two Proportions and the Relative Odds in the Fourfold Table,” Journal
of the American Statistical Association, 70, 561–567.

Gustafson, P. (2005), “On Model expansion, model contraction, identifiability and
prior information: two Illustrative scenarios involving mismeasured variables,”
Statistical Science, 20, 111–140.

Gustafson, P., Le, N. D., and Saskin, R. (2001), “Case-control analysis with partial
knowledge of exposure misclassification probabilities,” Biometrics, 57, 598–609.

Hildesheim, A., Mann, V., Brinton, L. A., Szklo, M., Reeves, W. C., and Rawls,
W. E. (1991), “Herpes simplex virus type 2: a possible interaction with hu-
man papillomavirus types 16/18 in the development of invasive cervical cancer,”
International Journal of Cancer, 49, 335–340.

Hochberg, Y. (1977), “On the use of double sampling schemes in analyzing categor-
ical data with misclassification errors,” Journal of American Statistical Associa-
tion, 72, 914–921.

Hong, Y., Meeker, W., and Escobar, L. (2008), “Avoiding problems with normal
approximation confidence intervals for probabilities,” Technometrics, 50, 64–68.

76



Lee, S. C. and Byun, J. S. (2008), “A Bayesian approach to obtain confidence
intervals for binomial proportion in a double sampling scheme subject to false-
positive misclassification,” Journal of the Korean Statistical Society, 37, 393–403.

Lie, R. T., Heuch, I., and Irgens, L. M. (1994), “Maximum likelihood estimation of
the proportion of congenital malformations using double registration systems,”
Biometrics, 50, 433–444.

Lyles, R. H., Lin, H.-M., and Williamson, J. M. (2004), “Design and Analytic Con-
siderations for Single-Armed Studies with Misclassification of a Repeated Binary
Outcome,” Journal of Biopharmaceutical Statistics, 14, 229–247.

Moors, J. J. A., van der Genugten, B. B., and Strijbosch, L. W. G. (2000), “Repeated
audit controls,” Statistica Neerlandica, 54, 3–13.

Perry, M., Vakil, N., and Cutler, A. (2000), “Admixture With Whole Blood Does
Not Explain False-Negative Urease Tests,” Journal of Clinical Gastroenterology,
30, 64–65.

Stamey, J. D., Seaman, J. W., and Young, D. M. (2007), “Bayesian Estimation of
Intervention Effect with Pre- and Post-Misclassified Binomial Data,” Journal of
Biopharmaceutical Statistics, 17, 93–108.

Tenenbein, A. (1970), “A double sampling scheme for estimating from binomial data
with misclassifications,” Journal of American Statistical Association, 65 (331),
1350–1361.

— (1972), “A double sampling scheme for estimating from multinomial data with
applications to sampling inspection,” Technometrics, 14, 187–202.

Viana, M., Ramakrishnan, V., and Levy, P. (1993), “Bayesian analysis of prevalence
from results of small screening samples,” Commun. Statist. –Theory Meth., 22,
575–585.

York, J., Madigan, D., Heuch, I., and Lie, R. T. (1995), “Birth defects registered
by double sampling: a Bayesian approach incorporating covariates and model
uncertainty,” Applied Statistics, 44, 227–242.

Zhong, B. (2002), “Evaluating Qualitative Assays Using Sensitivity and Specificity,”
Journal of Biopharmaceutical Statistics, 12, 409–424.

77




