
ABSTRACT

Developing Industrial Strength UVM for Academic Research and Teaching

George M. Onwubuya, M.S.E.C.E.

Mentor: Keith E. Schubert, Ph.D.

The Universal Verification Methodology (UVM) has been getting attention

from researchers and the functional verification community for a little over decade.

Its flexibility, reusability and reliability features are suitable for the design verifi-

cation of multifaceted chip systems thus making it attractive for the verification

industry. Similarly researchers frequently explore and utilize UVM to enhance its

verification capabilities of system-on-chip (SoC) and application specific integrated

circuits (ASIC). For a long time UVM learning and training has been tailored to suit

the needs of seasoned verification engineers. Recent books have sought to address the

needs of novice verification engineers, however UVM testbenches lack the standard

required by the verification industry. This thesis outlines steps required in building

a typical UVM testbench while also highlighting the important industry standards

that must be maintained. In the first lab a UVM testbench is built to verify a trivial

design. UVM components are constructed using a step-by-step guide with a detailed

description of the UVM code. In the second lab a simple APB finite state machine

is verified. This lab includes a verification plan, assertion coverage and functional

coverage. These features are widely used by the verification industry to create a more

robust verification environment
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CHAPTER ONE

Introduction

Verification is a process that takes place on a daily basis and it can range from

verifying a food order to balancing accounting books. Formally, verification is a pro-

cess used to demonstrate that the specifications of a design are preserved throughout

its implementation. In the era of reusable intellectual property (IP), system-on-chip

(SoC) devices, and multi-million gate application specific integrated circuits (ASICs)

the process of verification has taken a central role. Verification is estimated to take

approximately 70% of the design effort. In order to cope with the increase in veri-

fication load, companies are forced to hire as many as twice the number of design

verification engineers to design engineers.

Given the amount of time and effort required for the verification process, it is

no surprise that the verification process often forms the critical path of the project

plan. Verification engineers and the industry as a whole have sought methods and tools

that would reduce verification time, enable parallelism between design and verification

efforts, and increase automation. In order to parallelize the verification process it is

vitally important to avoid any interferences with the low level design. Higher levels of

abstraction enable the verification engineers to work more efficiently without having

to worry about the low level design and any changes that could be made to it. Higher

levels of abstraction do present their own unique problems. It leads to less control

over the design and therefore it is important to choose the method of abstraction

wisely. Automation requires a standard with well-defined inputs and outputs for it

to take place. Not every aspect of the verification process can be automated because

of the various functions, interfaces, protocols and transformations. Therefore it is not

possible to create a general-purpose automated solution for verification.

1



The reconvergence model is a conceptual representation of the verification pro-

cess. Verification begins at the end point of the transformation process, and ends at

the start point of the transformation process. Therefore the verification process is

used to reconcile the result with the beginning of transformation. This is why a line

with a double arrow is used to represent the verification process in Figure 1.1. Accord-

ing to [1], transformation could be any process that takes an input and produces an

output. Transformation could be taking a specification and creating the appropriate

circuit using register transfer level (RTL) code. Verification checks whether the RTL

implementation meets the specification. The verification process is prone to human

Figure 1.1: The reconvergence model shows that without a common starting point verifica-

tion is not possible. There must therefore be two common points for the convergence to be

possible.

error and therefore much thought must be given to eliminating as much human er-

ror as possible. As previously mentioned, automation is one of the mechanisms used

to error proof a verification process. In the field of RTL coding, complete automa-

tion is not possible because at some level human intervention is required. Figure 1.2

describes the scenario where a designer interprets user requirements from a specifica-

tions document. During this process, the verification effort is focused on verifying the

designers interpretation of the user specifications. Therefore if the interpretation is

wrong in anyway this verification scenario will not reveal it. Redundancy is added to

the verification process to guard against the misinterpretation of the user specifica-

tions. Figure 1.3 describes a scenario where a designer engineer creates RTL code that

is meant to address the specification and the verification engineer will independently

2



Figure 1.2: The common origin for this scenario is at the interpretation point and not at

specification. This method is prone to the misinterpretation of user specifications.

test the transformation. It is important to note that the verification engineer is also

aware of the user specification and therefore is able to detect an error in the designer’s

interpretation. This is the verification process that has been widely adopted by the

ASIC industry. Origin and reconvergence points in the verification process are deter-

Figure 1.3: The reconvergence model shows the redundancies used to protect against the

misinterpretation of the user specifications.

mined by the method or tool used for verification. These tools and methods include

formal verification, functional verification, property checking and rule checkers.

Formal verification mathematically proves that the origin and output are logi-

cally equal thus showing the transformation maintained its functionality. Equivalence

checking is a common formal verification method and its most common use is found

when comparing two netlists. It is also used to check whether a netlist correctly

implements the original RTL code. A netlist is a connection of gates derived from

synthesizing the RTL code. History has shown that synthesis tools are prone to error

and equivalence checking is used to keep the synthesis tools honest.

3



Property checking is another application of formal verification technology and

involves proving or disproving the assertions or characteristics of a design. Charac-

teristics such as checking state machines for isolated states or assertions about the

signal interfaces of a design are some of the property checks that can be done. Prop-

erty checks have their challenges, one major obstacle is the interpretation of design

specifications which assertions are required to prove. Furthermore, for assertions to

prove useful, they are not to be written as trivial restatements of the design behavior,

but rather they should be based on the user requirements. Assertions will be discussed

in further detail in Chapter 4.

Functional verification is used to verify the design intent at the design, unit, chip

and system level. It’s used to reconcile a design with its specification. Functional veri-

fication checks that the transformation of a specification document was done without

any misrepresentation. Functional verification can be approached using three meth-

ods: black-box, white-box and grey-box. These approaches will be discussed in further

detail in Chapter 2. It is important to note that for functional verification to take

place the specifications document must be written in formal language with precise

semantics.

It is worth mentioning that testing and verification are not the same concept.

The two are often confused and used interchangeably. Testing is used to verify that a

design component was manufactured correctly and verification is used to ensure that

design meets its functional intent. During testing the finished silicon is reconciled with

the netlist used for manufacturing. Testing uses test vectors to test physical locations

and observe for changes from 0 to 1.

A Brief History of UVM

The verification industry has made large strides in building reusable and robust

testbench environments. The Verilog Hardware Description language was created to

4



model the design behavior of a circuit. It also has a few constructs that could be used

for creating tests. This makes it rather cumbersome for carrying out the verification

of complex chip or system-on-chip (SoC) designs.

Hardware Verification Languages such as ‘OpenVera’, ‘e’ and ‘SystemC’ were

designed to make the verification process easier. SystemC was particularly useful

because of its software approach to verification. RTL requires pin level activity to

communicate. As the RTL design grows, the number of pins required for communica-

tion increases and this slows down simulation significantly. SystemC uses transaction

level modeling (TLM) to communicate by making simple function calls. By replacing

a lot of pin wiggling with function calls, a dramatic speed up in simulation is realized

[2].

Over time it became apparent that there was a growing need for a unified

language and a consortium of electronic design automation (EDA) companies was

created. The result of this effort was SystemVerilog, an extension of verilog which

inherited the verification constructs of OpenVera and makes use of TLM from Sys-

temC. System Verilog has proved to be very valuable in the creation of quality designs

as well as implementing a reliable verification environment that can be used across

different projects.

It is important to note that the evolution of a verification standard and Sys-

temVerilog were taking place at the same time. In 2000, Verification Advisor (vAd-

visor) was introduced to the verification industry. It was a collection of best known

practices for verification design. It touched many aspects of verification such as stim-

uli creation, self-checking testbenches and coverage model creation [3]. Although this

collection was useful it did not address the need for automation and reuse. In 2002,

the creators of vAdvisor released the eReuse Methodology (eRM) which became the

first verification library.
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In response, Synopsis created and released the Reuse Verification Methodology

Library (RVM). RVM lacked a lot of the architectural guidelines that came with eRm

and therefore users always saw it as a subset of eRM [3]. Overtime Synopsis converted

RVM to the SystemVerilog Verification Methodology Manual (VMM) which was used

to support the ever evolving SystemVerilog standard.

Mentor Graphics created the Advanced Verification Methodology and although

it made use of TLM found in SystemC it left out key verification needs such as

complex stimuli generation, test classes and more [4]. AVM was important because it

was the first open-source verification solution.

Cadence released the Universal Reuse Methodology (URM) in early 2007. It

was open source and made use of TLM communications, but most importantly it

migrated proven solutions from the eRM architecture into the SystemVerilog URM.

It also provided a significant upgrade by adding new features such as an abstract

factory, class automations, test classes and configuration mechanisms [5].

In 2008, Cadence and Mentor Graphics released the Open Verification Method-

ology (OVM). The library unification was made rather smooth because both URM

and AVM were already using TLM as the standard communication protocol. How-

ever, OVM like all its predecessors was a standard that was simulator dependent. In

2010, OVM was chosen as the basis for the Universal Verification Methodology. UVM

is currently the industry standard and has been tested by all vendors who are a part

of the Accellera group. It is meant to be simulator independent and has several other

advantages.

A Survey of Current Literature

Verification is a complex process and therefore it comes as no surprise that there

is a steep learning curve that is associated with UVM. The Accellera organization

has produced the UVM 1.2 class reference manual which is used to provide a detailed
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description of the SystemVerilog classes used in UVM. According to [6] it is important

to make use of this document but only after one has a firm grasp on the fundamentals

of UVM.

UVM resources follow two general approaches. The focus of the first approach

is to tailor UVM training to design verification engineers who are already a part of

the industry. Verification books released before or during the development of UVM

focused heavily on the practical application of advanced verification techniques for

the everyday verification engineer [7].

Industry experts realized that the goal of UVM was to help verification engineers

find bugs earlier in the design process and the best way to do this was through the use

of controlled randomness [3]. Therefore the UVM testbench is composed of reusable

UVM-compliant components which are ready to be used and configured to suit any

design interface protocol. This approach led to further developments in constrained-

random verification which has proved to be very useful in ASIC verification.

As the introduction of verification libraries grew, industry experts began to

adopt verification techniques for system-level design. Verification for block-level de-

sign is very different from the verification of system-level design. For the latter, it is

important to consider how individual blocks that make up the system interact with

one another [8].

Scalable techniques for Formal verification was introduced by Ray Sandip. Its

aim was to give a broad overview of the spectrum of formal verification techniques, as

well as combining such techniques into a single framework [9]. More importantly, Gau-

rav Bhatnagar et al states how formal verification and portable stimulus standards

could compliment a dynamic verification standard like UVM [10].

This first approach is useful for the seasoned verification engineer by focusing

on the finer elements of UVM testbench. This approach discourages a beginner who

seeks a simpler overview of UVM without being burdened with the enormous amount
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of information that is often associated with industry sources. The second approach

was tailor made for the novice verification engineer. According to [11], it is impor-

tant to have a solid foundation of object-oriented programming constructs (OOP) in

SytemVerilog before learning UVM.

Resources that adopt this approach make use of fairly simple designs to illustrate

a fully functional UVM testbench. The source [12] adopts this approach and provides

multiple design examples to illustrate the many features of UVM. However, too many

design examples distract the beginner from focusing on the important elements of a

fully functioning testbench.

A single design is used by [13] as the only design example to illustrate the

different components required to build a fully functional testbench. The Ray Salemi

builds the UVM testbench around a tiny arithmetic logic unit and supplements high-

level discussions of code behavior with detailed videos. This method of presenting

UVM to a beginner seems to work however it leaves out the basic industry standards

required by companies seeking to hire verification engineers such as coverage and

assertions.

Some resources such as [14] have sought to address the lack of industry stan-

dards. It provides advanced best practices on how to apply UVM beyond an intro-

duction of the verification methodology. Although this resource is very useful, one

must go beyond the basic introduction of UVM to fully grasp these concepts.

There are resources that have attempted to balance industry standards with

simple UVM testbench examples. The source [6] provides a good method for achieving

this balance. The aim is to present the building of the UVM testbench around a simple

design by separating the different parts into stimulus generation, stimulus delivery

and checking the response from the design-under-test (DUT). It also provides a brief

introduction into industry methods such as the register abstraction layer and coverage

with example code. Although this is one of the best resources for beginners, it still
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lacks an overview of assertion coverage, how to write a standard verification plan and

there is no access to the code examples found in the book.

The main focus of this work is centered around the universal verification method-

ology (UVM) architecture used in functional verification. This paper will outline the

steps involved in setting up a typical UVM testbench that meets the standard re-

quired by the verification industry. It centers around two designs, the first is rather

trivial and is meant to keep the focus on the features of the UVM testbench. The

second design steps up the level of complexity and includes a complete verification

strategy, UVM testbench, assertion and functional coverage.

Industry Desired Skills

A verification engineer must have solid knowledge about the design-under-test

(DUT). This knowledge is often derived from the design specification document. It

is imperative that a thorough understanding of the design specification document is

achieved and sometimes even a greater understanding than the design engineer. The

knowledge is important and fundamental for all aspects of verification. This includes:

• Defining a proper verification plan and identifying all the features and corner

cases for testing

• Identifying the right methodology for verifying different design block features.

A one size fits all approach will not work for different features of the design.

• Implementation of efficient testbenches using components like drivers, check-

ers, monitors, coverage and efficient stimulus patterns.

• Identifying and triaging simulation failures and recommending fixes.

Debugging is going to be part of the everyday job of a verification engineer.

Verification engineers spend a lot of time debugging when compared to other tasks.

Mastering the art of debug is a quality often overlooked among verification engineers

who are just starting off, but it is a hugely desirable industry skill. The modern ver-
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ification engineer is required to have more software skills on top of a fundamental

understanding of the hardware design concepts. Gaining good knowledge in a verifi-

cation language like SystemVerilog and a widely used methodology like UVM is only

possible with good fundamentals in programming and software engineering concepts.

Finally, demonstrating results with quality is a core value in any engineering disci-

pline and it is important that a verification engineer carry out their work with the

highest standards of quality. Anything less, and the company could be made to suffer

huge losses. It is important that verification engineers take responsibility of tasks and

finish them on time.

Content Structure of this Thesis

Chapter Two

Chapter Two gives a detailed background of the functional verification ap-

proaches, benefits of UVM, verification components, features of UVM, 3 C’s of a

good verification methodology and tests and coverage.

Chapter Three

Chapter Three introduces the basic features behind a fully functional UVM

testbench environment. The trivial design to be verified adds two 16-bit numbers.

Chapter Four

Chapter Four introduces assertions and coverage. These are industry methods

used to improve the quality of UVM testbenches. It details the use of assertions,

types of assertions and how to write a good assertion. It provides a brief overview of

coverage and cross coverage.
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Chapter Five

Chapter Five introduces the second design which much more complex than the

first. It details a verification strategy which includes features to be verified, stimulus

generation and checkers. It also adds functional coverage and other testbench features

that were intentionally left out in the first UVM environment.

Chapter Six

Chapter Six outlines a conclusion for the thesis. It recommends learning to use

the register abstraction layer (RAL) and virtual sequencer as next steps.
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CHAPTER TWO

Background

Functional Verification Approaches

Functional verification can be accomplished using three complementary ap-

proaches, black-box, white-box and grey-box.

In the black-box approach, functional verification is performed without any

knowledge of the design implementation. Verification is accomplished through the

available interfaces without direct access to the internal state of the design. This

approach suffers from a lack of controllability and visibility, this means that it is often

difficult to set up interesting state combinations to isolate specific functionality. It is

also difficult to debug a response from the input if an error is produced. This problem

often arises from the long delay experienced between the occurrence of the problem

and the appearance of the symptoms [1, 15]. However, a huge advantage of the black-

box verification is that it does not depend on any design implementation. This means

that whether a design is implemented in ASIC, RTL code, transaction-level model,

or entirely in software, the approach to verification remains the same. Therefore the

black-box verification model serves as a good model to develop golden testbenches.

The black-box approach is very impractical in the today’s large and complex ASIC

systems. There too many internal signals and states to effectively verify the ASIC

using only this approach.

The white-box approach provides full visibility and controllability to the internal

implementation of the design. It allows the person carrying out verification to setup

interesting combinations of states and inputs quickly [1, 15]. It therefore becomes

easier to observe the results and to treat any bugs in the design. This approach is

heavily dependent on the particular design implementation. Therefore any change in
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the design would require a change in the testbench. It also requires the verification

engineer to have a significant amount of knowledge of the design implementation to

know which test conditions to create and which results to expect. The white-box

verification approach is a useful complement to the black-box approach to ensure

low-level design behaves correctly. Assertions are ideal for this type of approach, the

assertion states that at a particular event (clock or a signal), under a given condition,

a certain result is expected of the design. For example, when checking the rollover of

a counter, the assertion would check that when the count reaches maximum count

the next count must be zero.

The grey-box verification approach is a compromise between the first two meth-

ods. It aims to fully exercise all the parts of the design while still being portable [1, 15].

Like the black-box verification method it has the benefits of observing the design en-

tirely through is top-level interfaces. However, the verification is intended to fully

exercise low-level implementations of the design. A typical grey-box strategy is to

include some non-functional registers in the design to increase visibility and control-

lability. A good example would be to include a signal that can be used to force a

counter to its maximum value in order to speed up simulation time. These registers

and features would not be used during normal operation of the design but are often

useful in providing more control to the verification engineer.

If verification is to be done in parallel with design implementation using TLM

as stated in chapter one, the black-box and grey-box approaches are the only possible

avenues for design and verification parallelization. They both do not require a detailed

implementation of the design beforehand in order for verification to take place.
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UVM

Benefits of UVM

According to [16], the benefits of UVM include:

• Modularity and Reusability - The methodology is designed as modular com-

ponents and this allows for reusing of components across multiple units as

well as across projects.

• Separating Tests from Testbenches - Tests that are generated using sequencers

and other stimulus can be separated from the actual testbench hierarchy and

hence tests can be reused across different units and the project

• Simulator Independent - The UVM base class library and the methodology

as a whole is supported by all simulators and hence is not dependent on any

simulator.

• Sequence control gives good control on stimulus generation. Sequences can

be developed in several ways using randomization, layered sequences, vir-

tual sequences, etc. This provides good control and rich stimulus generation

capability.

• Configuration mechanisms simplify the configuration of objects with deep

hierarchy. The configuration mechanism helps in easily configuring different

testbench components based on the verification environment using it with-

out having to worry about how deep any component is within the testbench

hierarchy.

• Factory mechanism is an OOP method used to simplify the modification of

components. Creating a component using factory enables them to be overrid-

den in different tests or environments without changing the underlying code

base.
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UVM does have its drawbacks. As previously mentioned, UVM has a steep

learning curve to understand all the details of the library. The methodology is still

developing and has lots of overhead that can sometimes slow down RTL code simu-

lation.

UVM Components

Verification components can be divided into stimulus generating components,

and components that monitor and check the effects of injecting stimulus into a DUT.

The transaction, sequence, sequencer and driver form part of the stimulus generation

of the verification environment. The monitor and scoreboard are used to monitor

effects of injecting stimulus into the DUT. Components such as the agent are used to

make the verification environment re-usable from one design to the next [17].

Sequence Item. The sequence item contains “transaction” data [18] . Network-

ing packets and processor instructions are some examples of transactions in UVM.

Put simply, a sequence item is a packet that contains data.

Sequence. The sequence is used to take care of the creation, randomization

and finalization of the transaction objects. The sequence uses a transaction object and

creates multiple iterations of the object to form a stream of input data [19]. These

complex sequences can be used to simulate operations like bus read and write proto-

cols. It is possible to create virtual sequences that contain several normal sequences.

This is normally useful for a verification environment that deals with several verifi-

cation components that require multiple sequences. If the sequence item is a packet,

then think about the sequence as the packet generator.

Sequencer. The sequencer acts as an inter-agent between the production and

use of transactions. It is used to implement the handshaking methods between the
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sequence and the driver [19]. Think of the sequencer as a packet router that sends

packets (transactions) to the driver.

Driver. Driver as the name suggests is used to drive the DUT signals. It re-

ceives the transaction object from the sequencer and converts it into pin level activity

[20]. The driver is active part of the of the verification environment and uses clock

inputs to time the events. A driver can drive a simple single transmission or it can be

used to drive multi-cycle transfers such as in the case of bus transmissions. In keeping

with the network analogy, the driver is the packet injector because it drives packets

to the DUT.

Figure 2.1. Connection between sequence item, sequence, sequencer and driver

Monitor. The monitor is a packet sniffer and is responsible for sampling

signals at the DUT. The monitor collects the data items from the DUT and translates

it into a transaction making it available for other verification components [21]. This

information is normally sent to the scoreboard to test for correctness or subscriber for

coverage. Monitors can divided into bus monitors and agent monitor. All bus signals

and bus related transactions are handled by a bus monitor. Signals and transactions

related to a specific agent are handled by an agent monitor. It always recommended

to create a monitor that does not depend on driver for information.

Agent. The agent component is a container that encapsulates the sequencer,

driver and monitor [22]. All these components can be called through the agent. Veri-

fication environments can have more than one agent and some agents can be master

agents involved in initiating transactions to the DUT. Other agents can be slave agents
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that react to the transaction requests. Agents can be configured to act as either an

active or a passive agent. Active agents are responsible for driving transactions, while

the passive agents are responsible for only monitoring the DUT behavior.

Scoreboard. The scoreboard performs high-level validation checks based on

the transaction received from the monitors of the different verification components. It

predicts what DUT outputs should occur based on the DUT inputs and then compares

the predicted results to the actual DUT outputs [23]. It may contain a functional

model of the DUT. By collecting traffic from all the DUT ports the scoreboard enables

verification of the device behavior.

Figure 2.2. Connection between a monitor, scoreboard and coverage collector

Environment. The environment is another container. This particular con-

tainer holds one or more agents and other environments [24]. It also contains other

objects that are needed for simulation such as a scoreboard, register model, mem-

ory model, coverage objects, etc. It’s called an environment because it contains the

components that are necessary to build an effective verification environment.

Test. The test component is a top-level element of the UVM based simulation.

It defines a testbench scenario, by scheduling execution of the high level sequences

on the respective virtual sequencers [25]. The UVM test allows for configuration of

its verification components and customization of the reusable environment.
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Features of UVM

Transaction-Level Modeling (TLM) Protocol. UVM uses the SystemC TLM

1.0 standard for communication between components [26]. A “port” or “analysis port”

specifies a set of communication methods used for a particular connection. An “export”

or “imp export” implements the ports methods. A port must be paired with exactly

one export(one-to-one). An analysis port is paired with zero or more imp exports

(one-to-many).

Figure 2.3: A simple example of how two components can communicate using a TLM port

and export.

In Figure 2.3, the producer pushes transactions to the consumer. The producer

can create a transaction and place the transaction in the TLM port.

A TLM FIFO(first-in-first-out) is used for transactional communication when

both the producing component and consuming component need to operate indepen-

dently [26]. In this case as shown in Figure 2.4, the producing component generates

a transaction and places it into the FIFO, while the consuming component pulls one

transaction at a time from the FIFO.

Figure 2.4. Components communicating using the TLM FIFO

TLM is normally used when connecting the driver component to the sequencer

and the monitor to the scoreboard or coverage report as shown in Figure 2.5
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Figure 2.5. Typical usage of TLM in UVM

UVM Class Libraries. UVM is a collection of SystemVerilog classes. It pro-

vides 3 core base classes as shown by Figure 2.6. This includes the uvm object, uvm

component and uvm transaction.

The uvm_object is used to define a core of class-based operations such as cre-

ate, copy, compare, print, sprint, record, etc. It also defines interfaces for instance

identification and random seeding. All components and transactions are derived from

the uvm_object class [27].

The uvm_component class is the root base class for all UVM components. Com-

ponents are quasi-static objects that exist throughout the simulation [27]. Therefore

they can be used to establish a structural hierarchy like modules and program blocks.

The uvm component also defines a phased test flow that components must follow dur-

ing the course of the simulation. Phases are discussed later in this chapter. Every com-

ponent is uniquely addressable via a hierarchical path name. Finally, uvm_component

can also be used to define configuration, reporting, transaction recording and factory

interfaces.

The uvm_transaction class is the root base class for all the UVM transactions

[27]. Unlike components they are transient in nature. Simple transactions can be

derived directly from the uvm transaction but transactions that are sequence- enabled

will be derived from the uvm sequence item class.
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The uvm_root class is a special form of the uvm component class. It serves as

the top level component for all the other components found in the UVM environment

[27]. It provides phasing control for all the UVM components.

Figure 2.6. UVM class hierarchy

UVM Factory. The UVM factory is used to build the UVM object hierarchy.

It is used to construct the class objects using the factory create() method instead

of the class constructor new(). It allows tests to swap out testbench components for

specific tests. It can be used to change drivers, scoreboards and other components as

well as method behavior and constraints.

Think of the UVM factory as having an assembly line and creating objects

required during simulation. UVM is a dynamic testbench environment, this means

that tests are constantly begin swapped in or swapped out. In Figure 2.7, the UVM

testbench begins the execution of test usb2_test. This test requires a USB 3 agent,

however the UVM environment is making use of the USB 1 agent. The factory is

used for building the components corresponding to the USB 3 agent (sequence item,

sequencer, driver etc.) and swapping the USB 1 agent for the USB 3 agent.
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Figure 2.7. UVM factory

UVM Phases. UVM phases are used to define the simulation phase for static

objects derived from the uvm component class. UVM components synchronize with

each other using UVM phases. There are 3 phases in the UVM testbench; construction

phases, Run phases and Cleanup phases.

The construction phase is where the testbench is configured and constructed.

All construction phases execute in zero time and at simulation time zero [28, 29]. The

construction phase includes the build phase, connect phase, end of elaboration-phase

and start of simulation-phase. The build phase is used to construct the components

of the UVM testbench from the top-level hierarchy to the bottom using the UVM

factory. The connect phase is responsible for TLM connections. Handles to test bench

resources are also assigned during this method call. This method is called after a

successful construction of UVM testbench components. The end of elaboration phase

is used to make final adjustments to the testbench structure, connectivity, or con-

figuration before the start of simulation. Start of simulation phase occurs before the

start of the time consuming part of simulation and is used to set initial run-time

configurations.

The run phase category is executed after the start of simulation phase. The

run phase is the only phase included in this category, and it is where the actual

execution of simulation takes place. It is important to note that this is the only phase

that is defined as a task because it consumes time [28, 29]. Stimulus generation and

test bench activity checks are handled by this method. To add greater control and

flexibility UVM callbacks are added to the run phase. UVM callbacks are methods
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used to alter the behavior of the transactor(driver) with modifying it. The callback

methods in this phase include pre-reset, reset, post-reset, pre-configure, configure,

post-configure, pre-main, main, post-main, pre-shutdown, shutdown, post-shutdown.

Pre-reset is used to take care of all the activities before reset. Its execution begins at

the same time as the run task. Reset is used to put all the DUT related interface signals

into their respective reset states. Post-reset is used to execute any activity following

the reset. Pre-configure is used for the preparation of the DUT configuration following

reset. This includes waiting for the creation of components responsible for driving the

DUT signals. Pre-configure is intended for any activity that is required to prepare the

DUTs for the configuration process after reset is completed. Configure is responsible

for programming the DUT and setting the signals that would initiate the test case.

Post-configure is used to wait for the effects of configuration to propagate through

the DUT or for the DUT to reach a state where it is ready to start the main test

stimulus. Pre-main is used to ensure that all components are ready to begin generating

stimulus. Pre-main is used to ensure that all required components are ready to begin

generating stimulus. Main is where the stimulus specified by the test case is generated

and applied to the DUT. It completes when either all stimulus is generated or a

timeout has occurred. Post-main is used to take care of any activity required for the

finalization of the main. Pre-shutdown is a buffer for any DUT stimulus activity that

needs to take place before the shutdown phase. Shutdown is used to ensure that any

effects of stimulus generation during the main has propagated through the DUT and

that any resultant data has drained away. Finally, post-shutdown is used to perform

any final activities before exiting the active simulation phase. At the end of the post

shutdown the UVM testbench starts the cleanup phase.

The cleanup phases are where the results of the tests are collected and reported

[28, 29] . All cleanup phases are executed in zero time. The cleanup phases category

is meant for information extraction from monitors and scoreboards to prove that the
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test case was successful. It also checks if the coverage goals have been achieved. The

extract phase is used to retrieve and process information from the scoreboards and

functional coverage monitors. The check phase is used to check that the DUT behaved

correctly and to identify any errors that may have occurred during the simulation of

the testbench. The report phase is used to display the results of the simulation or to

write the results to a file. The final phase is used to complete any other outstanding

actions that the testbench has not already completed.

Figure 2.8. UVM phases

UVM Macros. Macros are provided in UVM to semi-automate generation of

required UVM code [27]. The different type of macros include report, utility, sequence-

related and TLM macros.

The report macros are used to provide wrappers around the uvm report* func-

tions. Some commonly used report macros include uvm report info, uvm report warn-

ing, uvm report error and uvm report fatal.
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The utility macros are used inside any user-defined uvm object derived classes.

They are meant to define the infrastructure for all the uvm components to ensure

correct factory operation. Some commonly used utility macros include uvm object

utils and uvm component utils.

The sequence-related macros are used for starting the sequence items and se-

quences on the m sequencer (default sequencer). Some commonly used sequence-

related macros include uvm create, uvm do, uvm do pri, uvm do with and uvm do

pri with.

The TLM macros are used to provide multiple implementation tasks to a port.

For example any component that implements a put() function call must implement a

corresponding put imp port. If many put() functions are implemented then as many

put imp ports must also be declared. Some commonly used TLM macros include uvm

analysis imp decl, uvm put imp decl, uvm get imp decl, uvm master imp decl and

uvm slave imp decl.

Three C’s of a Good Verification Process

Verification of complex systems must not be dependent on the manual inspec-

tion of detailed waveforms and vector sets. Functional checking and coverage must

be an automated process. The process of verification begins with a verification plan

which is derived from the system and design requirements. The verification plan to-

gether with automated checking, functional coverage collection and analysis are the

foundation of a good verification methodology. The best way to approach a verifi-

cation process is to start with a simple directed test also known as a bring-up test

for the design block. The bring-up test is used to test basic feature of a block and is

normally added to smoke tests to ensure that any future changes to the RTL code

does not break the verification test. The bring-up test is followed up by random tests

to explore the design block space in broad fashion and detect as many bugs as pos-
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sible. Random stimulus has two significant benefits, it is great for uncovering bugs

and it allows for compute resources to be maximally utilized by running nightly or

weekly regression tests. Random tests typically cannot achieve 100% coverage and the

latter part of the verification process is used to define a series of tests, each of which

uses constrained random stimulus to push the design into interesting corner cases. In

order to properly direct verification resources, priorities must be set according to the

verification plan.

Checkers, coverage and constraints are known as the 3 C’s of a good verification

process. Constrained verification relies on checkers, coverage and constraints. Each is

used to play a key role in the verification process.

Checkers

Checkers ensure functional correctness, and is used to make sure that as more

and more random stimulus is generated the DUT is being checked automatically

for functional correctness [30]. Checkers can be implemented using SystemVerilog

assertions or normal procedural code. Assertions can be directly embedded within

the DUT, the external interface or as part of the verification process.

Coverage

Coverage is used to provide a measure of functional completeness of the testing

and is used to tell when the goals of verification plan have been met [30]. SystemVer-

ilog offers two separate mechanisms for functional coverage collection; property-based

coverage and sample-based coverage. Coverage models are specified in the verification

plan and its execution is intimately tied to it as well.

Constraints

Constraints provide the means to reach coverage goals by shaping the random

stimulus to push the DUT into interesting corner cases [30]. Random stimulus alone is
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not sufficient to exercise many of the deeper states of the DUT. Constrained random

stimulus is still random, the distribution of vectors is shaped such that interesting

cases are reached.

Tests and Coverage

The features in the verification plan should be captured as a set of checker and

coverage statements. Many simulation tools provide ways to link coverage and checks

directly to the verification plan. This provides direct feedback o the effectiveness of

any test. The verification plan is not part of UVM but it is a vital element in the

verification process.

Direct testing is written with the purpose of pushing the design into specific

cases. For example a customer might request to check whether a general-purpose

timer used for profiling rolls over after the maximum count is reached. In this case

the maximum count is 32’hFFFFFFFF and is too big a number to capture using

constrained random stimulus. A test for this specific case would include forcing the

count to a value closer to the max count and observing the results in the simulation

waveform. Constrained random test can be written with specific coverage goals in

mind, however the tests are not assumed to exercise only one particular feature but

rather tests are graded against the coverage model. Tests that achieve the highest

coverage in the fewest number of cycles can be used to form the basis of a regression

test set.
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CHAPTER THREE

Lab 1

Verification Plan

Verification plan details the process of translating the verification requirement

specifications into verifiable descriptions. Verification plan is one of the key deliv-

erables of the functional verification process. The testbench architecture is wholly

dependent on the verification plan so cutting corners will directly impact functional

verification quality. A verification plan is primarily driven by three plans: test plan,

coverage plan and checks plan. Fundamentally functional verification is about stimu-

lus generation and creating checks for verifying the response to stimulus. The test and

check plans are meant to cover these two primary aspects of functional verification. A

coverage plan is added as a third part of the verification plan because of constrained

random verification. There is uncertainty introduced by constrained random verifica-

tion and therefore the coverage plan is meant to ensure that all the design and system

requirements are covered during randomization.

Test Plan

The test plan is used to capture the various scenarios to be verified. Test plans

often include tests for specific use cases required by a design or system requirement.

These include tests that could provide stimulus for configuring the DUT into inter-

esting corner cases. An example could be testing the accuracy of a real-time counter

when switching between a 32 kHz clock source and a 40kHz clock source. A specific

test could be devised to randomize the number of times the real-time counter(RTC)

switches between the two clock sources. This randomization might not be otherwise

realized using UVM sequences because the RTC is a small part a larger chip design.
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An assertion is used check that the RTC maintains its count accuracy after clock

switching has taken place.

Checks Plan

The checks plan lists all the response checks to be implemented for each ver-

ification requirement. This is the second key element of a good verification plan. If

the DUT has multiple components or physical interfaces, response checks have to be

implemented on all interfaces. Response checks are used to flag as errors any deviation

from the design or system specifications. Checks could be simple signal level checks,

complex sequence of events and data integrity checks. Checks can be implemented as

assertions, scoreboards and a combination of the two.

Coverage Plan

The coverage plan should capture the functional coverage requirements. Individ-

ual parameters, transactions, sequential and concurrent scenarios have to be captured.

The coverage plan can be used to ensure that constrained random verification hits

all the required ’bins’ for each signal, transaction or register field. When considering

coverage, special attention must be paid to micro-architecture coverage and their in-

tersection. For example, watchdog timer(WDT) is sub-block within a microprocessor

unit(MCU) block, coverage could be implemented to observe the interaction between

the MCU enable and the WDT enable. Functional coverage has to be carefully bal-

anced without missing important coverage goals and ruthlessly weeding out irrelevant

coverage.

A good verification plan is essentially an art of balancing between theoretically

enumerating all cases while ensuring that irrelevant cases are kept to a minimum.

Sequential and concurrent scenarios as well as state machine transitions are but a few

important points to keep in mind when writing a good verification plan. Practically

only about 80% of the verification plan can be completed during the initial planning
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phase, the remaining 20% evolves during the course of the project as specifications

undergo changes [30].

Testbench Architecture

A bottom-up approach has been used in the design of the testbench architecture.

The design begins with design of DUT and ends with a top module. Another way to

look at it, is to think about the verification process. The design and interface must

be implemented first before sequences are generated. After sequences are generated

there needs to be a driver to inject stimulus into the DUT. Thereafter, a monitor

broadcasts the DUTs response to the stimulus to a scoreboard which carries out the

appropriate checks.

Figure 3.1. Testbench architecture for lab 1
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DUT

Figure 3.2. adder DUT

The DUT used in lab 1 is rather simplistic because the major focus of this

section is to become familiar with the UVM testbench architecture. The DUT has an

asynchronous reset, two 16 bit inputs and one 32-bit output. The DUT carries out a

sum of the two inputs and yields an output.

Step 1: Build Interface

Figure 3.3. adder_if

30



The following can be used to implement an interface:

(1) Derive adder_if from interface

(2) Implement driver clocking block

(3) Implement monitor clocking block

(4) Implement driver and monitor modport

The adder_interface consists of two clocking blocks and two modports. A clock-

ing block is a set of signals that are synchronous to a common clock. The clocking

blocks in SystemVerilog were introduced to address the problem of specifying the

timing and the synchronization requirements of a design. Clocking blocks become

especially important for complex designs with multiple architectural design blocks.

Design blocks have a myriad number of flip-flops that come with setup and hold

times. Trying to recreate these timing paradigms in simulation is annoying and often

not scalable. Clocking blocks are used to specify the skew time using the octothorp

or pound key(#) construct to ensure events are delayed by a certain number of clock

cycles.

The driver and monitor clocking blocks are triggered at the positive edge of the

clock. Signals are sampled to or from the DUT after one clock cycle. One important

consideration to make when writing clocking blocks is to examine whether a signal is

an input or an output to the DUT. The two 16-bit inputs (a and b) are defined as

outputs in the driver clocking block because they are inputs to the DUT. Likewise

the sum is defined as input in the driver clocking block because it is sampled as an

output from the DUT. All the signals in the monitor clocking block are inputs because

the monitor samples stimulus inputs and outputs at the DUT. Modports are used

to provide direction information for interface ports. The DRIVER and MONITOR

modports are used to specify the direction of the signals clock, reset and the clocking

bus.
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Step 2: Build Sequence Item/Transaction

Figure 3.4. adder_transaction

The following steps can be used to implement a transaction:

(1) Derive transaction/sequence item from uvm_sequence_item using the “ex-

tends” keyword

(2) Add signals (information) to be randomized

(3) Register transaction class with factory using uvm_object_utils

(4) Add class constructor

(5) Add signal constraints

The adder_transaction is a UVM class that is derived from uvm_sequence_item.

It is recommended to use the uvm_sequence_item for implementing sequence based

stimulus. The adder_transaction is used to group DUT information together, and add

constrained randomization to the information. The utility macro uvm_object_utils

is used to register the adder_transaction class with the factory. A factory in UVM is

a special look up table where all UVM components and transactions are registered.

Creating objects using the factory helps in substituting an object of one type with

an object of a derived type without having to change the structure of the testbench.
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Field automation macros can be defined by adding the words “begin” and “end”

at the end of a utility macro. Field automation macros are in the form uvm_-

field_*(data member, flag) and they allow access to methods such as copy, compare,

pack, unpack, clone, record, print, etc. These methods can be tedious and repetitive

to code manually. There are macros of various data types such as integer, enumera-

tion, queues, etc. The flag indicates what type of automation to enable for that data

member.

Table 3.1: A few of the possible flag values are listed below. Multiple flag values can be

bitwise ORed together.

Field Automation Flags

Flag Interpretation

UVM_ALL_ON Set all operations on
UVM_DEFAULT Use the default flag settings
UVM_NOCOPY Do not copy this field
UVM_NOCOMPARE Do not compare this field
UVM_NOPRINT Do not print this field
UVM_NOPACK Do not pack or unpack this field

The constructor “new” is a virtual method found in the uvm_object class,

hence adder_transaction has to include a constructor that follows its prototype tem-

plate. UVM components/objects are constructed during the build phase but factory

constructors should contain default arguments in the definition of these classes. This

allows factory registered components/objects to be created initially inside factory and

later be passed to the class properties via the create() command as arguments. The

default arguments are different for components and objects, in this case the definition

is string name=“adder_transaction” (string name = “name of derived class”).

The constraints a_c and b_c ensure that there is comprehensive randomization

of the two input numbers. The constraints are divided into four ranges so that when

coverage is implemented, all four ranges of the constraints will be used as “bins” and

coverage is designated as a success when all four bins are hit.

33



Step 3: Build Sequence

Figure 3.5. adder_sequence

The following steps can be used to implement a sequence:

(1) Derive sequence from uvm_sequence using the “extends” keyword and pass

the transaction as a parameter

(2) Register sequence class with factory using uvm_object_utils

(3) Add class constructor

(4) Define sequence generation in task body()

A sequence specifies one or more sequences to be sent to the driver. The adder_sequence

class is derived from uvm_sequence and is parameterized with the uvm_sequence_item

type, adder_transaction. Its is registered with the factory using the utility macro

uvm_object_utils and It has the same constructor as the adder_transaction because

both classes belong to base class uvm_object. There are several ways to define a se-

quence such as using uvm_do, uvm_do_with, etc. For building the adder_sequence,

the start_item and finish_item application program interfaces(APIs) were used.

The sequence order is defined within a task body() which is a virtual method

found in the uvm_sequence class. A “req” transaction is first created and then the
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method start_item is called. The API start_item requests for access to the driver via

the sequencer and returns when the driver gets access. The “req” is the randomized

and finish_item is called. This type of randomization that waits for arbitration from

the sequencer is known as late randomization. The finish_item API results in the

driver receiving the sequence item, and is a blocking method which returns only after

driver calls item_done. Ten sequence items are generated using SystemVerilog repeat

construct.

Step 4: Build Sequencer

Figure 3.6. adder_sequencer

The following steps can be used to create a sequencer:

(1) Derive sequencer from uvm_sequencer using the “extends” keyword and pass

the transaction as a parameter

(2) Register sequencer class with factory using uvm_component_utils

(3) Add class constructor

The adder_sequencer is derived from uvm_sequencer and is parameterized

with adder_transaction. It is registered with the factory using the utility macro

uvm_component_utils. The constructor is defined as string name, uvm_component

parent because uvm_sequencer belongs to the uvm_component base class. The se-

quencer supports an arbitration mechanism to ensure that at any point in time only

one sequence has access to the driver. The beauty of UVM is that you can write
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six lines of code to implement the sequencer. Having the sequencer mechanism pre-

pared for you in the UVM library allows the testbench to be created faster and more

effectively.

Figure 3.7. Illustration of the handshake protocol between the sequencer and the driver

Step 5: Build Driver

Figure 3.8. Code snippet 1 of adder_driver

The following steps can be used to implement the driver:

(1) Derive driver from uvm_driver using the “extends” keyword and pass trans-

action as a parameter

(2) Register driver class with factory using uvm_component_utils
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(3) Declare virtual interface variable

(4) Add class constructor

(5) Implement function build_phase()

(6) Implement task run_phase()

The adder_driver is derived from the uvm_driver class and is parameterized with

adder_transaction. It is registered with the factory using the same utility macro as

the sequencer, uvm_component_utils. The constructor is defined as string name,

uvm_component_parent just like the sequencer. A virtual interface is defined in this

class and in any class that intends to make used of the interface, adder_if. The

virtual interface “vif” is defined using the SystemVerilog construct virtual and the

name of the real interface (virtual adder_if vif). In traditional directed testbench

environments, all components are static in nature and information is also exchanged

in the form signals/wire/net at all levels. This is not the case in UVM where DUT

is static(module based) in nature and testbench is SystemVerilog OOP based. We

use the the virtual interface as a handle pointing to the interface instance. Virtual

interface acts as a medium to connect the DUT and the testbench. Testbench accesses

the DUT signals via virtual interface and vice versa.

UVM components are quasi-static, this means they are executed slowly and exist

throughout the life cycle of simulation. UVM phases act as a synchronizing mechanism

in the life cycle of a simulation. In the build_phase function, the uvm_config_db is

used to obtain the virtual interface. The uvm_config_db is a library that is used for

data sharing. The uvm_config_db is built from the uvm_resource_db and it is used

to store hierarchical configuration values such as the interface. The uvm_config_db

is encapsulated in an if statement and when the call is unsuccessful, the uvm_fatal

macro will print out the message “virtual interface failed at build phase”. If the call is
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successful the uvm_info prints “build stage complete” with the full hierarchical name

of the driver component using get_full_name().

Figure 3.9. Code snippet 2 of adder_driver

The run_phase is defined as a task because this is where actual simulation takes

place. In the run_phase task the heart of execution is encased in the forever block.

This is necessary so that these threads execute continuously throughout simulation.

The seq_item_port is a TLM port defined for communication between sequencer and

driver. It calls the blocking method get_next_item in the driver that blocks until a

sequence item is received on the port connected to the sequencer. This method returns

the sequence item which can be translated to pin level protocol by the driver. There

is a task drive() which is used to drive randomized values for a and b on the interface

using the clocking block driver_cb. The line of code DRIV_IF.a <= req.a used to

drive a input to the DUT. It is important to note the a non-blocking assignment

is used because both a and b have to be loaded at the same time. DRV_IF is a

macro that is predefined and is meant to represent vif.DRIVER.driver_cb. The sum

is recorded from the interface using DRV_IF.sum. The item_done() is a non-blocking

method call to signal to the sequencer that it can unlock the sequences finish_item

method either when the driver accepts the sequences request or it has executed it.
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Step 6: Build Monitor

Figure 3.10. Code snippet 1 of adder_monitor

The following steps can be used to implement the monitor:

(1) Derive monitor from uvm_monitor using the “extends” keyword

(2) Register monitor class with factory using uvm_component_utils.

(3) Declare virtual interface variable

(4) Declare TLM analysis port

(5) Add adder_transaction variable

(6) Add class constructor

(7) Implement function build_phase()

(8) Implement task run_phase()

The adder_monitor is derived from the uvm_monitor class. It is registered with

factory using the utility macro uvm_component_utils. Just like the adder_driver,

the adder_monitor has a virtual interface “vif” that is used to monitor informa-

tion from the DUT. The adder_monitor class must contain a way to broadcast the

information collected from the DUT via “vif”. A TLM analysis port is a port def-

inition that is used by the monitor to carry out broadcasting. Think of the anal-

ysis port as a drop box where the transaction collected can be dropped off and
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picked up by any component that needs it such as the scoreboard or a coverage

object. The analysis port is parameterized to the adder_transaction and is defined

as uvm_analysis_port#(adder_transaction) item_collected_port. The line of code

adder_transaction mon_trans defines a variable used to store data collected from

the interface.

Figure 3.11. Code snippet 2 of adder_monitor

Like the build_phase found in adder_driver, the build_phase function is used

to obtain the interface from uvm_config_db. However, this build_phase is differ-

ent because it includes creating objects that the monitor will use in the run_phase.

The analysis port item_collected_port is not registered with the factory so the con-

structor is used to create it. The analysis port is created using the line of code

item_collected_port=new(“item_collected_port”,this). The factory is used to create

mon_trans although for this case it is not necessary because the object will not be

overridden. It is good practice to always create objects with the factory whenever pos-
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sible because the assumption is objects tend to be overridden in large scale testbench

implementations.

The run_phase simply calls the task collected_data where the transaction col-

lection is done. In the forever loop found in task collected_data, input values are

collected at the interface at the positive edge of the clock. The output sum is also

collected at the positive edge of the next clock. The MON_IF is a macro that is

predefined and is meant to represent vif.MONITOR.monitor_cb. The transaction

collected is written to the analysis using the write method. This is a simple monitor

class suitable for this lab. Lab 2 in chapter 5 includes a monitor that adds a few more

layers of complexity.

Now that the sequencer, driver and monitor have been created, it is time to

create a container class to hold the aforementioned components.
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Step 7: Build Agent

Figure 3.12. adder_agent

As previously discussed the agent is a container class used to hold the sequencer,

driver and monitor classes. The agent is important because it facilitates a key charac-

teristic of a good testbench, reusability. The following steps can be used to implement

the agent:

(1) Derive agent from uvm_agent using the “extends” keyword

(2) Register agent class with factory using uvm_component_utils

(3) Declare sequencer, driver and monitor variables

(4) Add class constructor

(5) Implement function build_phase()

(6) Implement function connect_phase()
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The adder_agent class is derived from the uvm_agent class. It is registered

with the factory using the utility macro ‘uvm_component_utils. The objects are cre-

ated in the build_phase function such that when an agent is active the sequencer,

driver and monitor are created and when it is passive only the monitor is created. The

variable get_is_active is of the type uvm_active_passive_enum and it has two pos-

sible values uvm_passive and uvm_active. Component construction takes place using

left-hand-side (LHS) = <type>::type_id::create(“<name>”). The construct type_id

is used to pick the factory component wrapper for the class, construct its contents

and pass the resultant handle back to the LHS variable. In the connect_phase func-

tion the driver’s communication port is connected to the sequencer’s communication

export when an agent is active. This is another illustration of the power of UVM such

that in one line of code the driver is connected to the sequencer so that sequence

items can be passed and executed. The library does the hard part for the verification

designer. There is an underlying TLM that handles the handshake between the driver

and sequencer, and it is wise for the verification engineer to understand the code

under the hood.
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Step 8: Build Scoreboard

Figure 3.13. Code snippet 1 of adder_scoreboard

The basic function of the scoreboard is to check the correctness of the output

data of the DUT. The following steps can be used to implement the scoreboard:

(1) Derive scoreboard from uvm_scoreboard using the “extends” keyword

(2) Register scoreboard class with factory using uvm_component_utils

(3) Declare a transaction queue

(4) Add class constructor

(5) Implement function build_phase()

(6) Implement function write()

(7) Implement task run_phase()

The adder_scoreboard is derived from the uvm_scoreboard; however there is

no current functionality of the uvm_scoreboard. It is important to mention that

uvm_scoreboard has no functionality because scoreboards are design specific and

the important aspect is how the scoreboard retrieves its data for comparison. In this
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scoreboard a queue is used to store transaction data from monitor. In adder_monitor

there is an analysis port used to broadcast the collected data therefore in the score-

board a uvm_analysis_imp must be implemented. The analysis implementation

is parameterized with adder_transaction and adder_scoreboard. The line of code

uvm_analysis_imp#(adder_transaction, adder_scoreboard) item_collected_export)

declares an implementation of the analysis port. The line of code adder_transaction

queue_trans[$] declares the transaction queue used to store data.

In the build_phase, the item_collected_export is created using the construc-

tor. The analysis export of the scoreboard or subscriber must implement the write

function. One way to do this is by using a uvm_tlm_analysis_fifo. The benefit of

using the fifo is that it has an analysis export, it implements the much needed write

function and has an unbounded queue for storing transactions. Another way to do

this is using the uvm_analysis_imp and implementing a write function as shown in

figure 3.13. The write function is used to push incoming transactions into the queue

using the queue method push_back.

Figure 3.14. Code snippet 2 of adder_scoreboard

In the run_phase data comparison is implemented in a forever loop. When there

is a transaction in the queue, the transaction is popped from the queue. A check is car-
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ried out compare the sum of the inputs to the output. The line of code “scb_trans1.a

+ scb_trans1.b = scb_trans1.sum” implements this check. If the sum is equal to a

+ b, a message “CORRECT RESULT” is printed with information contained in the

transaction. If the sum is not equal to a + b the message “INCORRECT RESULT”

is printed.

Step 9: Build Environment

Figure 3.15. adder_environment

An environment is another container. This container holds agents and other

environments such as a scoreboard, register model, memory models and coverage

objects. It’s called an environment because it contains the components that are used

build an effective verification environment. The environment in this lab is used to

simply instantiate the agent and the scoreboard. The following steps can be used to

implement the environment:
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(1) Include adder_agent.sv and adder_scoreboard.sv files

(2) Derive environment from uvm_env using the “extends” keyword

(3) Register class with factory using uvm_component_utils

(4) Declare objects agent and scoreboard

(5) Add class constructor

(6) Implement build_phase()

(7) Implement connect_phase()

The adder_environment is derived from uvm_env. The class definition should

include the adder_agent and adder_scoreboard files. Like all the other classes, a con-

structor is added, and agent and scoreboard variables are added. In the build_phase

the agent and scoreboard objects are created using the factory. Component construc-

tion in the build_phase uses the piece of code LHS = <type>::type_id::create(“<name>”)

just like the adder_agent. When object creation is complete, the function prints "build

stage complete" with full hierarchical name using the the get_full_name() method.

The connect phase is used to connect the monitor’s uvm analysis port and the score-

board’s uvm analysis implementation.
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Step 10: Build Base Test

Figure 3.16. Code snippet 1 of adder_base_test

A test instantiates the environment and each test is a class that is derived from

uvm_test. A test library is simply a collection of test that stimulate the DUT. When

building a test library it is good practice to begin with a base test from which other

tests can derive. This base test would include elements that are required by all tests,

such as the environment.

The following steps can be used to implement a base test:

(1) Include adder_environment.sv file

(2) Derive base test from uvm_test using the “extends” keyword

(3) Register class with factory using uvm_component_utils

(4) Declare object environment

(5) Add class constructor

(6) Implement build_phase()

(7) Implement end_of_elaboration()
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(8) Implement report_phase()

The adder_base_test is derived from the uvm_test. The class is registered with

the factory using the utility macro uvm_component_utils. The object environment

is created from the adder_environment class. The constructor definition is the same

as the other constructors found in previously created components. The build_phase

function is used to create the object environment using the factory. In the run_phase

of the base test the drain time is set and is used to add to the simulation time to

allow all elements to complete after the final objection has been lowered. The end_of

elaboration function is used to print the topology of the testbench as shown in figure

13.17.

Figure 3.17. Testbench topology

The function report_phase is used to keep track of the uvm_error and uvm_fatal

message count. If this count exceeds zero then function prints “TEST FAIL” and if

this condition is not met the function prints “TEST PASS”.
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Figure 3.18. Code snippet 2 of adder_base_test

Step 11: Build Test

Figure 3.19. adder_test

The following steps can be used to implement a test:

(1) Derive test from base test using the "extends" keyword
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(2) Register class with factory using ‘uvm_component_utils

(3) Add class constructor

(4) Implement function build_phase()

(5) Implement task run_phase()

The adder_test is derived from the adder_base_test. In the run_phase of this

test a handle to the adder_sequence is declared. This class adder_sequence creates

a random data transaction that is sent to the sequencer. An objection is raised using

the method raise_objection. The objection mechanism is used to communicate when

it is safe to end a phase. By raising an objection it indicates that the phase is still

in progress. After the objection is raised, the sequence is created using the factory.

Notice that the argument for the start method is the “seq” that has been constructed.

After the sequence has completed, the drop_objection method is called to indicate

the the phase has ended. Notice that the sequence is created in the run phase and not

in the build phase. Sequences do not have phases because they are elements that do

not persist throughout simulation. Although you can create them in the build phase,

it is more appropriate to do so in the run phase so that they can be created and

destroyed as needed.
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Step 12: Build Module Top

Figure 3.20. Code snippet 1 of top module

The module testbench is the top module and it includes the adder_interface.sv,

adder_base_test.sv and adder_test.sv files. A clock and reset signals are declared in

this module as well as the addition of a virtual interface.

Figure 3.21. Code snippet 2 of top module

A DUT is instantiated in the top module and the configuration data base(uvm_config_db)

is used to store the interface which can be retrieved by other elements top down.

Finally the call to the run_test creates the test based on the name and then the

components in the various build phase methods top down.
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Simulation Results

The EDA software online tool was used for writing testbench code and Aldec

Pro Riviera was the simulator of choice. Figure 3.22 shows the results of simulation

with the number of UVM errors.

Figure 3.22. Simulation results
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CHAPTER FOUR

Assertions and Coverage

SystemVerilog Assertions

An assertion is a statement that a certain property (design or system require-

ment) must be true. Assertions are integral to design and verification and can be

used to document the functionality of a design, check that the functionality of a de-

sign over a simulation period is met and determine whether verification tested the

design(coverage) [31]. Assertions can be written by a design engineer as part of the

DUT model or by a verification engineer as part of the verification test program.

The Verilog language does not have an assertion construct. Verification checks

must be coded with programming statements. Simple assertions are difficult to write

and maintain, require several lines of Verilog code and cannot be turned off during

reset or during other don’t care simulation points. Assertion checks look like RTL

code and therefore synthesis compilers cannot distinguish between the DUT model

and embedded assertion code. Verilog assertion code must be hidden from synthesis

compilers and this means even more code.

SystemVerilog assertions are important for several reasons. Dozens of lines of

Verilog code can be represented in one line of SystemVerilog assertions(SVA) code. It

is ignored by synthesis and hence there is no need to hide checker code. SVA can be

turned off during reset, or when a block is disabled and when the simulation reaches a

certain point. SVA failures can be categorized according severity level from non-fatal

to fatal.

According to [31], using SystemVerilog assertions are important for the following

reasons;
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• It is a verification technique that is embedded in the language to give white

box visibility into the DUT.

• It can be used to specify design requirements using an executable language.

• It enables easier detection of design problems . Error reports show when error

has occurred with insight as to why.

• It can be used to report how effective random stimulus was at covering all

aspects of the design. Assertion coverage can be used to report on the number

of assertions that never triggered and the number that only had vacuous pass.

SystemVerilog supports three general categories of assertions. These are invari-

ant, sequential and eventuality assertions. Invariant assertions are assertions with

conditions that should always be true or never true. A good example is a FIFO

should never indicate full and empty at the same time. Sequential assertions have a

set of conditions that occur in a specific order and over a defined number of cycles.

For example, a request signal from a bus should be followed in 1 to 3 clock cycles by

a grant signal. Eventuality assertions are assertions with a condition that should be

followed by another condition, but with any number of clock cycles in between. For

example, if an active-low reset goes low it should eventually go high.

There are two types of SVA, immediate and concurrent assertions. Before get-

ting into the finer details used to construct both types of assertions it is important to

comprehend how assertions are scheduled throughout the SystemVerilog simulator.
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SystemVerilog Scheduling Semantics

Figure 4.1. Regions inside a SystemVerilog simulation time step

A SystemVerilog simulator has different scheduling regions where events are

scheduled and subsequently evaluated. All event evaluations occur in the scheduler’s

Active region. Events include RTL and behavioral code, blocking assignments and

right-hand-side for non-blocking assignments. Events with #0 delays are scheduled in

the Inactive region and assignment (left-hand-side) for non-blocking assignments are

scheduled in the Non-Blocking Assignment region. Once all the events in the Active

region are exhausted, the events in the Inactive region are promoted and likewise

when these events are exhausted, the events in the Non-Blocking assignment region

are promoted to the Active Region.

The Preponed region has been introduced in SystemVerilog in order to sample

all of an assertion’s inputs and the Observed region is used for their evaluation [32].
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Since assertion inputs are sampled in the Preponed region before any clock or reset

events are generated, assertion always sample their input values before the sampling

event occurs. This is why when we write assertions we always need to go 1 clock cycle

into the future and then observe what happened on the last clock edge. The Reactive

region is used to evaluate and execute all program activity to avoid race conditions

between design and testbench.

Immediate Assertions

An immediate assertion is a test of an expression the moment the statement

is executed. It can be used in initial and always procedures, tasks and functions.

Immediate assertion performs a boolean(true/false) test such that when the test result

is true, the pass statement is executed and when the test result is false or unknown

the fail statement is executed. An immediate assertion can be written in the form:

[name:] assert(expression) [pass_statement] [else fail_statement]. Figure 4.2 is an

example of an immediate assertion.

Figure 4.2. Example of an immediate assertion

Concurrent Assertions

Concurrent assertions are used to test for a sequence of events spread over 

multiple clock cycles. A concurrent assertion can be written in the form; [name:] 

assert property (property_specfication) pass_statement [else fail_statement]. The 

pass fail messages are optional in concurrent assertions. Figure 4.3 is an example of 

a property assertion written checking sequential events.
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Figure 4.3. Example of a concurrent assertion property

The property definition “prop_cause_to_effect” is written to be reused. This

means that only the first line in figure 4.3 is required when writing an assertion. The

“trigger” is used to activate the assertion. This could be a signal, an event or a clock.

The “kill” condition is used to disable the assertion during periods in simulation when

the assertion is not required.

The implication construct(|->) allows a user to monitor sequences based on

satisfying a pre-condition, and only evaluating the sequence when the condition is

successful. On the left-hand side of the implication construct is the “start_condition”

also known as the antecedent sequence expression. Evaluating the expression only

occurs when the antecedent is true. On the right-hand side of the implication operator

is the “effect” also known as the consequent sequence expression. For each successful

match of the antecedent sequence expression the the consequent sequence expression

is evaluated. The variable “TIMEOUT” defines the number of clock cycles after which

the “effect” is expected and check_clk defines the clock.

There are two forms of the implication construct, overlapped operator (|->) and

non-overlapped operator(|=>). For the overlapped implication operator, if there is a

match for the antecedent sequence expression then the consequent sequence expression

is evaluated on the same clock. For non-overlapped operator, the consequent sequence

expression is evaluated on the next clock tick. To avoid any confusion it is always

advised to use the overlapped operator with a defined number of clock ticks as is

shown in figure 4.3.
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Figure 4.4. Example of a concurrent assertion

The concurrent assertion CHK_RTC_ALARM1_EN in figure 4.4 uses the

“prop_cause_to_effect” property. This is an assertion that checks that alarm1 of

a real-time clock(RTC) is not triggered when alarm1_en is not set. The trigger is

!alarm1_en and the kill condition is a combination of a rst_rtc_clk and cp_rtc_en

ORed together. The antecedent is one, this means that the consequent is always

evaluated when the assertion is triggered. The consequent is !alarm1 after zero clock

ticks.

There are a few important points to remember when writing assertions. Firstly,

the assertion must be efficient. Unless absolutely necessary, it is always advisable not

to trigger an assertion at every edge of a clock . If a number of assertions are written in

this way, it will cause multiple simulation timeouts. It is more time efficient to use an

event as a trigger, that is triggered from an always block. Secondly, when evaluating

the pass and fail rate of assertions it is important to distinguish passes from vacuous

passes. Vacuous passes occur when an assertion is triggered and there is no match

of the antecedent sequence expression. The assertion passes vacuously by returning

true. Assertions need to examine for why the antecedent sequence expression has not

been met. Lastly, assertion must sometimes be written in twos or even more to cover a

sequence. For example, an assertion can be written to check that an alarm is triggered

when alarm_en is set and another assertion is written to check that it is not triggered

when alarm_en is disabled.

Coverage

Functional coverage is a measure of what features of the design have been

exercised by the tests. This is useful for constrained random verification to know
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what features have been covered by a set of tests in a regression. Functional coverage

in SystemVerilog samples variables in the testbench and analyzes if they have reached

certain values.

How to write coverage

Figure 4.5. Example of a covergroup

Figure 4.4 shows a concurrent assertion used to check alarm1 for an RTC design.

Figure 4.5 shows how a coverpoint for alarm1 is written. Coverpoints are put together

in a covergroup block [33]. Variables from the DUT are mentioned as coverpoint, in

this case the variable is alarm1 and the name of the coverpoint is cp_alarm1. Bins in

a coverpoint are said to be hit or covered when the variable reaches the corresponding

value. So, the bin_alarm1_0 is hit when alarm1 value is zero and bin_alarm1_1 is

hit when alarm1 value is one.

Figure 4.6. Example of cross coverage

Cross coverage is also possible in functional coverage. Cross coverage is specified

between the coverpoints or variables and is defined using the cross construct. In figure
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4.6, each coverpoint has two bins and therefore a cross between alarm1 and alarm1_en

will yield four bins. Cross coverage becomes a useful tool in complex systems where

it is important that a combination of functional points are verified [33].
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CHAPTER FIVE

Lab 2

Advanced Peripheral Bus Protocol

The advanced peripheral bus (APB) interfaces to any peripheral that is low-

bandwidth and does not require the high performance of a pipelined bus interface.

It is connected to the system bus via a bridge. There is a single bus master on the

APB, thus there is no need for an arbiter. The master drives the address and write

buses, and also performs a combinatorial decode of the address to decide the type of

transfer. It is also responsible for driving the enable signal to time the transfer and

driving the APB data onto the system bus during a read transfer.

APB finite state machine (FSM) has three operating states, Idle, Setup and

Access. The Idle state is the default state of the APB. When a transfer is required

the bus protocol moves in to the setup state where the appropriate select signal

(PSELx) is asserted. The bus only remains in this state for one clock cycle and always

moves to the Access state on the next rising edge of the clock. In the Access state

the enable signal(PENABLE) is asserted. The address(PADDR), write(PWRITE),

select(PSELx) and write data (PWDATA) must remain stable during the transition

from the Setup to Access state. Exit from the Access state is controlled by the ready

signal(PREADY) from the slave. If the ready signal is held low by the slave then the

peripheral bus remains in the Access state. If the signal is driven high by the slave

then the Access state is exited and bus will return to the Idle state state and remain

in that state if no further transfers are required. Alternatively, the bus moves directly

to the Setup state if another transfer follows.
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APB Transfer

There are 3 types of transfers used in the APB protocol; read, write and error

response. There are two types of read and write transfers, write and read with no

Wait state and read and write with a Wait state. For the purpose of this lab the read

and write transactions are implemented without any Wait states.

The following steps are used to make an APB Write with no wait state

• The write transfer starts with the address, write data, write signal and select

signal changing after the rising edge of the clock.

• The first clock cycle of the write transfer is the Setup phase.

• After that clock edge the enable signal is asserted which indicates that the

Access phase is taking place.

• The address, data and control signals all remain valid during this phase and

transfer completes at the end of the clock cycle.

• The enable signal is then de-asserted and the select signal also goes low un-

less the transfer is immediately followed up by another transfer to the same

peripheral.

The following steps are used to make an APB Read with no waits state;

• The read transfer starts with the address, write data, write signal and select

signal all changing after the rising edge of a clock.

• Like the write transfer, the first clock cycle of the read transfer is also the

Setup phase.

• After the clock edge the enable signal is asserted to indicate the transfer is in

the Access phase.
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• The address, data and control signals all remain valid during this phase. The

slave must provide the data before the end of the read transfer. The transfer

completes at the end of this cycle.

• The enable signal is de-asserted at the end of the transfer.

Figure 5.1. APB FSM state diagram

Verification Plan

Verification Strategy

The stimulus to the APB FSM block includes paddr, pwdata and pwrite. Each

stimulus is used to illicit a response from the block that can be checked with a

scoreboard and assertions. Verification of this block will be done at block level.
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Figure 5.2. Diagram used to illustrate the verification strategy

Features to Verify

APB block operates in reset and enable mode.

• APB FSM reset

• APB FSM read transaction

• APB FSM write transaction

Stimulus and Randomization

The sequence shall generate the following type of signals with constrained ran-

dom values; address and data. The pwrite value shall be randomized as an enumerated

data type.
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Table 5.1. Checkers used to test features of the ABP FSM DUT

Checker scope for the verification plan

Checker Checker Type

Check that when pwrite is set, correct data in pw-

data is written to paddr

Scoreboard

Check that when pwrite is zero, data in prdata is

the same as paddr

Scoreboard/Assertion

Check at reset prdata=0 and pready=1 Assertion

Check that reset, psel and penable are not X or Z

values after a defined simulation period

Assertion

Check that when pwrite is high, value in prdata is

zero

Assertion

Check that when psel is active, penable goes high

on the next clock cycle

Assertion

Check that pwdata is not X or Z from the rising

edge to the falling edge of pwrite

Assertion

Cover address and data sizes Coverage

Cross pwrite with data and address Coverage

Testbench Architecture

The testbench architecture for lab two is similar to lab one in many ways.

New features added to class components are explained in this section. The steps for

creating each testbench component remains relatively the same.
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DUT

The DUT is a simple APB FSM state machine. The FSM state machine has a

SETUP, R_ENABLE and W_ENABLE states. APB read takes place in the SETUP

state and APB write in the W_ENABLE state.

Figure 5.3. APB DUT
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APB Interface

The APB interface has the collection of signal inputs and outputs found in the

DUT. There is a clocking bus for the master, slave and monitor. The clocking bus for

the APB slave is used if a slave BFM is added to this testbench.

Figure 5.4. APB interface

The interface is also a good place to write assertions that will be used to check

for some functionality of the design. Figure 5.5 shows the different assertions used to

check the functionality of the design.
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Figure 5.5. APB assertions
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APB Transaction

Figure 5.6. APB transaction

The data and address random variables are restricted to a range of values us-

ing the “inside” SystemVerilog construct. The pwrite random variable is specified as

weighted distribution using the “dist” Systemverilog construct. The value with more

weight will get allocated more often to the random variable. The := operator assigns

the specified weight to the item, the item can be a single value or a range of values.

The possibility that pwrite will be assigned the value “READ” is 4 times more likely

than the value “WRITE”.

The function convert2string is a new addition which was left out in lab 1. It is

recommended to implement this function which returns a string representation of the

transaction. It is useful for printing debug information to the simulator transcript or

log file.
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APB Sequence

Figure 5.7. APB sequence

The APB stimulus is made up of the apb_sequence and apb_direct_sequence.

The first sequence is used to generate random sequence items and will be sent to

the driver. It is similar to the sequence generated in lab 1 using start_item and fin-

ish_item. The second sequence in figure 5.7 is used to generate fixed values for the

data and address. This sequence is created using the macro uvm_do_with which ran-

domizes data and address using the inline constraints provided in the curly brackets.

This is useful to check that the DUT performs reads and writes as intended.

Figure 5.8. APB direct sequence
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APB Sequencer

Figure 5.9. APB sequencer

The sequencer remains the same as the sequencer in lab1 and as already high-

lighted before, UVM takes care of the underlying implementation of the sequencer.

APB Driver

Figure 5.10. Code snippet 1 of APB driver
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The APB driver is implemented using the non-pipelined model. The driver is

designed to model only one transaction at a time. In this case, sequence sends one

transaction to the driver and driver might take several clock cycles (based on the

interface protocol) to finish driving the transaction. Only after that will the driver

accept a new transaction from the sequencer. This is the same method used to im-

plement the driver in lab 1. It is important to mention this because some interface

protocols follow a pipelined model. The driver would be required to drive more than

one active transaction at a time. In this case sequence can keep sending transactions

to the driver without waiting for driver to complete the previous transaction. A good

example would be the advanced high performance bus (AHB) lite protocol.

The APB driver has all the same components that the adder driver has in lab 1.

The only difference is in how the transaction is driven to the DUT. At the beginning

of the run phase the psel and penable signals are reset. This is to ensure that the

DUT enters into the Idle state. After one clock cycle a transaction is received from the

sequencer and its contents reported by the uvm_report_info. The uvm_report_info

has the following format, uvm_info(ID,MSG,VERBOSITY). The “APB_DRIVER”

is the ID and $sprintf(“Got Transaction %s, driver_trans.covert2string()” is the mes-

sage. If the verbosity is not specified as is the case in figure 7, UVM_LOW is used

as the default verbosity.

The case statement is used to decode whether the transaction contains a read

or write depending on the value of pwrite. If pwrite is 1, the transaction specifies a

write and if 0 the transaction specifies a read.
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Figure 5.11. Code snippet 2 of APB driver

The read task is defined as protected. If a task is protected, then it will be

available in the inherited class but it cannot be publicly accessed. The following are

steps to carry out an APB read:

(1) Drive address to DUT.

(2) Set pwrite to 0 and psel to 1 (read)

(3) Set penable to 1

(4) Retrieve value from prdata and assign it to the output data

(5) Set psel and penable to 0

The write task is also protected. The following are steps to carry out an APB

write:

(1) Drive address and data to DUT

(2) Set pwrite and psel to 1 (write)

(3) Set penable to 1

(4) Set psel and penable to 0
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The aforementioned steps are important to for accessing all the states in the

APB FSM state machine. Care must be taken when injecting transactions to a DUT

that follows a specific sequence of events.

APB Monitor

Figure 5.12. Code snippet 1 of APB monitor

The APB monitor has the same components as the monitor in lab 1. The

important components to remember in the monitor are the UVM analysis port and

the virtual interface.
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Figure 5.13. Code snippet 2 of APB monitor

At the beginning of the run phase, the monitor waits for when psel is not equal

to one or when penable is not equal to zero. This is ensures that the monitor waits

for the SETUP state in the FSM state machine. When one of the conditions in the

while loop is satisfied, the fields in monitor are populated with the values seen on

the interface. The value of address is written to the address field in monitor and the

ternary operator is used to populate the pwrite field. A check of penable is carried

out to ensure that an APB protocol violation has not take place. The data field is

populated depending on the value of pwrite. If pwrite is one, the data field is populated

with the value of pwdata and if pwrite is zero, the data field is populated with the

value of prdata. The function convert2string is used to display the transaction that

has been acquired from the DUT. A variable num_packets is incremented after every

transaction and is used to monitor the number of transactions generated by the APB

sequence. The report_phase is used to display the number of packets.
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APB Agent

Figure 5.14. APB agent

The APB agent has the usual components like the sequencer, driver and moni-

tor. The most important part to remember for the agent is to connect the sequencer

to the driver.
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APB Scoreboard

Figure 5.15. Code snippet 1 of APB scoreboard

The APB scoreboard has most of the same components that the adder score-

board has. The APB scoreboard has a queue that is used to store transactions received

from the monitor. It has memory that is used to check if the correct data and ad-

dress values are received from the DUT. In the build phase the uvm_analysis_imp

is created using the constructor. In figure 5.16, the scoreboard waits for a transaction

in the queue and then checks if the transaction is a write or a read. If is a read, the

scoreboard checks that data in the address is the same as the data in prdata. If it is

a write transaction the scoreboard prints the information of pwdata and paddr. The

contents of this transaction are not checked in the scoreboard because this testbench

does not include a slave bus functional model and a slave DUT. The convert2string

function is used to print the transactions sent to the driver and collected by the

monitor against those reported by the scoreboard.
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Figure 5.16. Code snippet 2 of APB scoreboard

APB Coverage

Figure 5.17. APB coverage
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The coverage object apb_coverage is derived from the uvm_subscriber class

and is parameterized with the apb_transaction. Since the object is of type uvm_subscriber,

it has an analysis_export and can implement the write function. This APB coverage

class has a typical covergroup with coverpoint of the elements in the transaction. The

covergroup cover_apb is created using the class constructor and data, address and

pwrite are defined as coverpoints with bins. If all the bins are hit, the coverpoint

is said to be covered. There is also cross coverage between cp_pwrite and cp_data,

and cp_write and cp_addr. This coverage is a simple example that can be used as

a building block and coverage is much larger and complicated for ASIC being manu-

factured today. The coverage class must be instantiated in the environment and the

connect function is used to enable communication between the analysis port and ex-

port. Modern simulators often provide coverage analysis tools to examine the holes

that might have been missed. These holes can be covered by adding to the test library.

APB Environment

Figure 5.18. APB environment
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The class APB environment is container that holds the agent, scoreboard and

coverage. As previously mentioned the coverage class should be instantiated in the

environment. The instantiation is done in the connect phase by connecting the

item_collected_port(from apb_monitor) to the analysis_export.

APB Base Test

Figure 5.19. APB base test

The APB base has several elements required by the random and direct tests

that derived from it. It has an object environment created in the build phase and

drain time is set in the run phase.
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APB Random Test

Figure 5.20. APB random test

The class apb_random_test is derived from the apb_base_test. In the run

phase of this test, a handle to the sequence object apb_sequence is declared. The

class apb_sequence simply creates random apb transactions that are sent to the

sequencer. A objection is raised and dropped to communicate when it is safe to end

a phase.
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APB Direct Test

Figure 5.21. APB direct test

The class apb_direct_test is also derived from the apb_base_test. In the run

phase of this test, a handle to the sequence object apb_direct_sequence is declared.

The class apb_direct_sequence creates transaction with fixed values for data and

address. This test could be used as bring up test because the transaction is made up

of known values of address and data and not randomized values.

Testbench Top

The testbench top has the same features as the testbench top in lab 1. The

run_test is called twice for the apb_random_test and the apb_direct_test.
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Figure 5.22. APB top module

Simulation Results

The simulation results are shown in figure 5.23. For each transaction there is

a value for data and address. The convert2string is used to display the transactions

received by the driver, monitor and subscriber.

Figure 5.23. APB simulation results
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The assertion CHK_APB_PRDATA caught an error that the scoreboard was

unable to catch. During a read transaction the value in the address is ’db’ but the

value read is ’da’. This is clearly a data read mismatch. This is a good example of

how an assertion can be used in conjunction with scoreboard to catch errors missed

by the latter.
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CHAPTER SIX

Conclusion

In this thesis steps to writing a typical UVM testbench were outlined. The

first UVM testbench environment was designed to test a trivial adder. Emphasis

was placed on describing in detail the steps required for creating a fully functional

UVM testbench. The second UVM testbench was designed to verify a APB FSM.

Details on how to write a good verification plan, concurrent multi-clock assertions

and basic functional coverage were outlined. This two labs can be used to form a

foundation for teaching the basics of UVM. Moving forward the aspiring verification

engineer must be introduced to other parts of the environment such as the register

package. Most designs have a set of registers. UVM has introduced a register package

that allows for control of registers in the DUT. Virtual sequence is another part

of the of UVM environment that must be quickly adopted beyond the introduction

of UVM. Most chip design systems are made up of several IP components that are

connected together. Virtual sequences are used to start multiple sequences on different

sequencers corresponding to each IP block.
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