Matrix Representations of $GF(p^n)$ over GF(p)

Peter M. Maurer Dept. of Computer Science Baylor University Waco, Texas 76798

Abstract – We show that any non-singular $n \times n$ matrix of order $p^n - 1$ over GF(p) is a generator of a matrix representation of $GF(p^n)$. We also determine the number of matrix representations of $GF(p^n)GF(p)$ over GF(p), and then number of order $p^n - 1$ matrices in the general linear group of degree n over GF(p). The theorems are easily generalizable to arbitrary field extensions.

1. Text

The following contains some results about the matrix representations of $GF(p^n)$ over GF(p). I'm not claiming to be the first to write this stuff down, but I'm the first I know of, and the proofs are all mine.

Theorem 1. Let M be a non-singular $n \times n$ matrix over GF(p), which is of order $p^n - 1$. Let $K = \{Z, M^0, M^1, M^2, ..., M^{p^n - 1}\}$, where Z is the $n \times n$ zero-matrix. Then K is isomorphic to $GF(p^n)$ under matrix addition and multiplication.

Proof: Let P be the characteristic polynomial of M. P must have one root of order p^n-1 , namely, M, itself. P must be irreducible, for if it were not, each root, α , of P must occur in some finite field of order p^k , with k < n. However, since the multiplicative group of $GF(2^k)$ is of size $p^k-1 < p^n-1$, α cannot be of order p^n-1 . Therefore P is irreducible and its roots must generate $GF(p^n)$. Since P has a root of order p^n-1 it is also primitive. Thus any root of P which is of order p^n-1 , including P0, must be a generator of the multiplicative group of P1.

Corollary: Let M be a non-singular $n \times n$ matrix over GF(p), which is of order $p^n - 1$. Then the characteristic polynomial of M is irreducible and primitive. Theorem 2. Given a polynomial $P = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ of degree n over GF(p), with $a_0 \neq 0$. Let M be the matrix:

$$\begin{pmatrix} 0 & 0 & \dots & 0 & 0 & -a_0 \\ 1 & 0 & \dots & 0 & 0 & -a_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & & 1 & 0 & -a_{n-2} \\ 0 & 0 & \dots & 0 & 1 & -a_{n-1} \end{pmatrix}$$

Then M is of order $p^n - 1$ if and only if P is primitive.

Proof. A quick calculation will show that that P is the characteristic polynomial of M. By the corollary to Theorem 1, if M is of order p^n-1 then P is primitive. If P is primitive, it must have a root of order p^n-1 . Since P is of degree n it must split in $GF\left(p^n\right)$. Let M' $GF\left(p^n\right)$ be the diagonal matrix over $GF\left(p^n\right)$ of the following form:

$$M' = \begin{pmatrix} e_1 & 0 & \dots & 0 \\ 0 & e_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e_n \end{pmatrix}$$

Where e_i is the i^{th} root of P. The e_i are the eigenvalues of M, so M and M' are similar and must be of the same order. Since P has at least one root of order $p^n - 1$ there must be an element e_i order $p^n - 1$. Now,

$$M'^{k} = \begin{pmatrix} e_{1}^{k} & 0 & \dots & 0 \\ 0 & e_{2}^{k} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e_{n}^{k} \end{pmatrix}$$

Because e_j is of order p^n-1 , for all k, $1 < k < p^n-1$ $e_j^k \ne 1$, and $M'^k \ne I$. But because the order of the multiplicative group of $GF\left(p^n\right)$ is p^n-1 , the order of every element of $GF\left(p^n\right)$ must divide p^n-1 , so $e_i^{2^p-1}=1$ for all i, $1 \le i \le n$, and $M'^{p^n-1}=I$. Thus the order of M' is equal to p^n-1 and the order of M is p^n-1 as well.

Theorem 2 gives us a way to test for primitive polynomials. Given P, we formulate M, and determine the order of M. If the result is $p^n - 1$, then p is primitive.

We can also say something about the structure of $G = \{M, M^2, ..., M^{p^n-1}\}$. The number of order p^n-1 matrices in G is $\phi(p^n-1)$. Each of these matrices as a characteristic polynomial P of degree n which is irreducible and primitive. Each such polynomial has exactly n distinct roots in G. There are $\frac{\phi(p^n-1)}{n}$ primitive polynomials of degree n over GF(p). Therefore, we have the following theorem.

Theorem 3. Let M be an $n \times n$ matrix of order $p^n - 1$ over GF(p) and let $G = \{M, M^2, ..., M^{p^n - 1}\}$. For every primitive polynomial P of degree n over GF(p), G contains exactly n matrices with characteristic polynomial P.

How many conjugates are there of the multiplicative group $G = \{M, M^2, ..., M^{p^n-1}\}$? We need to determine the normalizer of G in $GL_n(p)$, that is we need to determine all matrices $N^{-1}M^iN \in G$ for all i, $1 \le i \le p^{n-1}$. $N \in GL_{n}(p)$ that such $N^{-1}M^iNN^{-1}M^jN = N^{-1}M^iIM^jN = N^{-1}M^iM^jN$, the transformation $T_N(M^i) = N^{-1}M^iN$ is an automorphism of G. T_N is one-to-one is because T_N is order preserving making the kernel of Because $T_N(0) = N^{-1}0N = 0$, to $\{I\}$. T_{N} and $N^{-1}M^{i}N + N^{-1}M^{j}N = N^{-1}(M^{i}N + M^{j}N) = N^{-1}(M^{i} + M^{j})N$, T_{N} is also an automorphism of $GF(p^n)$. Furthermore, T_N preserves GF(p). In any matrix representation of $GF(p^n)$, 1 must be represented as the identity matrix I, any element k of GF(p) must be represented as the matrix kI, where 2I = I + I and kI = (k-1)I + I. Thus k is represented by a matrix with k's along the main diagonal, and zeros elsewhere. We will write these matrices as k. Diagonal matrices of this form commute with every matrix, therefore $T_N(k) = T^{-1}kT = T^{-1}Tk = k$.

The distinct automorphisms of $GF\left(p^n\right)$ are generated by the conjugates of $M: M^p$, M^{p^2} , ..., $M^{p^{n-1}}, M^{p^n} = M$. Every element has n conjugates in $GF\left(p^n\right)$. For each power of p, we define the transformation $Q_{p^i}(a) = a^{p^i}$. The transformations Q_{p^i} are the distinct automorphisms of $GF\left(p^n\right)$ that preserve GF(p).

Let N be a matrix such that $Q_{p^i} = T_N$. (We still need to prove this exists.) For any matrix $M^i \in G$, $T_{M^k N} = Q_{p^i}$ because $\left(M^k N\right)^{-1} = N^{-1} \left(M^k\right)^{-1}$ and $T_{M^k N} \left(M^i\right) = N^{-1} \left(M^k\right)^{-1} M^i M^k N = N^{-1} \left(M^k\right)^{-1} M^k M^i N = N^{-1} M^i N = T_N \left(M^i\right)$. Therefore, the

number of matrices in the normalizer of G is $o(G)n = np^n - n$. Therefore the number of

representations of
$$GF(p^n)$$
 in $n \times n$ matrices is
$$\frac{\prod_{i=0}^{n-1} (p^n - p^i)}{np^n - n}.$$

Theorem 4. If M is a non-singular matrix $n \times n$ of order p^{n-1} over GF(p), then there is a matrix N over GF(p) such that $N^{-1}MN = M^p$.

Proof. Let P be the characteristic polynomial of M. The matrix M must be similar to the following matrix over GF(p),

$$M' = \begin{pmatrix} C_1 & 0 & \cdots & 0 \\ 0 & C_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & C_k \end{pmatrix}$$

Where the C_i are the companion matrices of the irreducible factors of P. However, by Theorem 1, we know that P must be irreducible, therefore

$$M' = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 & -a_0 \\ 1 & 0 & \dots & 0 & 0 & -a_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & & 1 & 0 & -a_{n-2} \\ 0 & 0 & \dots & 0 & 1 & -a_{n-1} \end{pmatrix}$$

Where the a_i are the coefficients of P. If a is any root of P, then a must be primitive, and the set $\left\{a, a^p, a^{p^2}, \ldots, a^{p^{n-1}}\right\}$ is the complete set of roots of P. This implies that M is similar, in $GF\left(p^n\right)$ to the matrix

$$M'' = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & a^p & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a^{p^{n-1}} \end{pmatrix}$$

In general, if two matrices A and B are similar, then $A = N^{-1}BN$ for some non-singular matrix N. Now, we have $A^2 = N^{-1}BBN = N^{-1}B^2N$, so in general we will have A^k similar to B^k . In particular, M^p is similar to

$$M''^{p} = \begin{pmatrix} a^{p} & 0 & \dots & 0 \\ 0 & a^{p+1} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a^{p^{n}} \end{pmatrix}$$

But $a^{p^n} = a$ so M''^p and M' have the same eigenvalues and the same characteristic polynomial. Thus, M and M^p have the same characteristic polynomial, P. Since M^p has characteristic polynomial P, it must be similar to M'. Since M and M^p are both similar to M' in GF(p), they must be similar to one another in GF(p).

Definition. We will call a non-singular $n \times n$ matrix, M, over GF(p) primitive, if it is of order $p^n - 1$.

Theorem. Let R_1 and R_2 be two $n \times n$ matrix representations of $GF(p^n)$ over GF(p). If $M \in R_1 \cap R_2$ and M is primitive, then $R_1 = R_2$.

Proof. If R_1 is a matrix representation of $GF(p^n)$ and $M \in R_1$ is primitive, then $R_1 = \{0, M, M^2, M^{p^n-1} = I\}$. Because $M \in R_2$, $R_2 = \{0, M, M^2, M^{p^n-1} = I\} = R_1$.

Corollary. Any nonsingular $n \times n$ matrix M of order $p^n - 1$ over GF(p) appears in one and only one representation of $GF(p^n)$.

The following two theorems are obvious from the preceding results.

Theorem. Let R be a matrix representation of $GF(p^n)$ over GF(p). Then R contains $\phi(p^n-1)$ matrices of order p^n-1 .

Theorem. $GL_n(p)$ contains $\frac{\prod_{i=0}^{n-1}(p^n-p^i)}{np^n-n}\phi(p^n-1)$ matrices of order p^n-1 .