Matrix Representations of $G F\left(p^{n}\right)$ over $G F(p)$

Peter M. Maurer
Dept. of Computer Science
Baylor University
Waco, Texas 76798

Abstract - We show that any non-singular $n \times n$ matrix of order $p^{n}-1$ over $G F(p)$ is a generator of a matrix representation of $G F\left(p^{n}\right)$. We also determine the number of matrix representations of $G F\left(p^{n}\right) G F(p)$ over $G F(p)$, and then number of order $p^{n}-1$ matrices in the general linear group of degree n over $G F(p)$. The theorems are easily generalizable to arbitrary field extensions.

1. Text

The following contains some results about the matrix representations of $G F\left(p^{n}\right)$ over $G F(p)$. I'm not claiming to be the first to write this stuff down, but I'm the first I know of, and the proofs are all mine.

Theorem 1. Let M be a non-singular $n \times n$ matrix over $\operatorname{GF}(p)$, which is of order $p^{n}-1$. Let $K=\left\{Z, M^{0}, M^{1}, M^{2}, \ldots, M^{p^{n}-1}\right\}$, where Z is the $n \times n$ zero-matrix. Then K is isomorphic to $\mathrm{GF}\left(p^{n}\right)$ under matrix addition and multiplication.

Proof: Let P be the characteristic polynomial of $M . P$ must have one root of order $p^{n}-1$, namely, M, itself. P must be irreducible, for if it were not, each root, α, of P must occur in some finite field of order p^{k}, with $k<n$. However, since the multiplicative group of $G F\left(2^{k}\right)$ is of size $p^{k}-1<p^{n}-1, \alpha$ cannot be of order $p^{n}-1$. Therefore P is irreducible and its roots must generate $G F\left(p^{n}\right)$. Since P has a root of order $p^{n}-1$ it is also primitive. Thus any root of P which is of order $p^{n}-1$, including M, must be a generator of the multiplicative group of $G F\left(p^{n}\right)$.

Corollary: Let M be a non-singular $n \times n$ matrix over $\operatorname{GF}(p)$, which is of order $p^{n}-1$. Then the characteristic polynomial of M is irreducible and primitive.

Theorem 2. Given a polynomial $P=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ of degree n over $G F(p)$, with $a_{0} \neq 0$. Let M be the matrix:

$$
\left(\begin{array}{cccccc}
0 & 0 & \ldots & 0 & 0 & -a_{0} \\
1 & 0 & \cdots & 0 & 0 & -a_{1} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & & 1 & 0 & -a_{n-2} \\
0 & 0 & \cdots & 0 & 1 & -a_{n-1}
\end{array}\right)
$$

Then M is of order $p^{n}-1$ if and only if P is primitive.
Proof. A quick calculation will show that that P is the characteristic polynomial of M. By the corollary to Theorem 1 , if M is of order $p^{n}-1$ then P is primitive. If P is primitive, it must have a root of order $p^{n}-1$. Since P is of degree n it must split in $G F\left(p^{n}\right)$. Let M^{\prime} $G F\left(p^{n}\right)$ be the diagonal matrix over $G F\left(p^{n}\right)$ of the following form:

$$
M^{\prime}=\left(\begin{array}{cccc}
e_{1} & 0 & \ldots & 0 \\
0 & e_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & e_{n}
\end{array}\right)
$$

Where e_{i} is the $i^{\text {th }}$ root of P. The e_{i} are the eigenvalues of M, so M and M^{\prime} are similar and must be of the same order. Since P has at least one root of order $p^{n}-1$ there must be an element e_{j} order $p^{n}-1$. Now,

$$
M^{\prime k}=\left(\begin{array}{cccc}
e_{1}^{k} & 0 & \ldots & 0 \\
0 & e_{2}^{k} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & e_{n}^{k}
\end{array}\right)
$$

Because e_{j} is of order $p^{n}-1$, for all $k, 1<k<p^{n}-1 e_{j}^{k} \neq 1$, and $M^{\prime k} \neq I$. But because the order of the multiplicative group of $G F\left(p^{n}\right)$ is $p^{n}-1$, the order of every element of $G F\left(p^{n}\right)$ must divide $p^{n}-1$, so $e_{i}^{2^{p}-1}=1$ for all $i, 1 \leq i \leq n$, and $M^{\prime p^{n}-1}=I$. Thus the order of M^{\prime} is equal to $p^{n}-1$ and the order of M is $p^{n}-1$ as well.

Theorem 2 gives us a way to test for primitive polynomials. Given P, we formulate M, and determine the order of M. If the result is $p^{n}-1$, then p is primitive.

We can also say something about the structure of $G=\left\{M, M^{2}, \ldots, M^{p^{n-1}}\right\}$. The number of order $p^{n}-1$ matrices in G is $\phi\left(p^{n}-1\right)$. Each of these matrices as a characteristic polynomial P of degree n which is irreducible and primitive. Each such polynomial has exactly n distinct roots in G. There are $\frac{\phi\left(p^{n}-1\right)}{n}$ primitive polynomials of degree n over $G F(p)$. Therefore, we have the following theorem.

Theorem 3. Let M be an $n \times n$ matrix of order $p^{n}-1$ over $G F(p)$ and let $G=\left\{M, M^{2}, \ldots, M^{p^{n}-1}\right\}$. For every primitive polynomial P of degree n over $G F(p), G$ contains exactly n matrices with characteristic polynomial P.

How many conjugates are there of the multiplicative group $G=\left\{M, M^{2}, \ldots, M^{p^{n}-1}\right\}$? We need to determine the normalizer of G in $G L_{n}(p)$, that is we need to determine all matrices $N \in G L_{n}(p) \quad$ such \quad that $\quad N^{-1} M^{i} N \in G \quad$ for \quad all $\quad i, \quad 1 \leq i \leq p^{n-1}$. Since $N^{-1} M^{i} N N^{-1} M^{j} N=N^{-1} M^{i} I M^{j} N=N^{-1} M^{i} M^{j} N$, the transformation $T_{N}\left(M^{i}\right)=N^{-1} M^{i} N$ is an automorphism of $G . T_{N}$ is one-to-one is because T_{N} is order preserving making the kernel of T_{N} equal to $\quad\{I\}$ Because $T_{N}(0)=N^{-1} 0 N=0$, and $N^{-1} M^{i} N+N^{-1} M^{j} N=N^{-1}\left(M^{i} N+M^{j} N\right)=N^{-1}\left(M^{i}+M^{j}\right) N, T_{N}$ is also an automorphism of $G F\left(p^{n}\right)$. Furthermore, T_{N} preserves $G F(p)$. In any matrix representation of $G F\left(p^{n}\right), 1$ must be represented as the identity matrix I, any element k of $G F(p)$ must be represented as the matrix $k I$, where $2 I=I+I$ and $k I=(k-1) I+I$. Thus k is represented by a matrix with k 's along the main diagonal, and zeros elsewhere. We will write these matrices as k. Diagonal matrices of this form commute with every matrix, therefore $T_{N}(k)=T^{-1} k T=T^{-1} T k=k$.

The distinct automorphisms of $G F\left(p^{n}\right)$ are generated by the conjugates of $M: M^{p}, M^{p^{2}}$, $\ldots, M^{p^{n-1}}, M^{p^{n}}=M$. Every element has n conjugates in $G F\left(p^{n}\right)$. For each power of p, we define the transformation $Q_{p^{i}}(a)=a^{p^{i}}$. The transformations $Q_{p^{i}}$ are the distinct automorphisms of $G F\left(p^{n}\right)$ that preserve $G F(p)$.

Let N be a matrix such that $Q_{p^{i}}=T_{N}$. (We still need to prove this exists.) For any matrix $M^{i} \in G, \quad T_{M^{k} N}=Q_{p^{i}} \quad$ because $\quad\left(M^{k} N\right)^{-1}=N^{-1}\left(M^{k}\right)^{-1} \quad$ and $T_{M^{k} N}\left(M^{i}\right)=N^{-1}\left(M^{k}\right)^{-1} M^{i} M^{k} N=N^{-1}\left(M^{k}\right)^{-1} M^{k} M^{i} N=N^{-1} M^{i} N=T_{N}\left(M^{i}\right)$. Therefore, the
number of matrices in the normalizer of G is $o(G) n=n p^{n}-n$. Therefore the number of representations of $G F\left(p^{n}\right)$ in $n \times n$ matrices is $\frac{\prod_{i=0}^{n-1}\left(p^{n}-p^{i}\right)}{n p^{n}-n}$.

Theorem 4. If M is a non-singular matrix $n \times n$ of order p^{n-1} over $G F(p)$, then there is a matrix N over $G F(p)$ such that $N^{-1} M N=M^{p}$.

Proof. Let P be the characteristic polynomial of M. The matrix M must be similar to the following matrix over $G F(p)$,

$$
M^{\prime}=\left(\begin{array}{cccc}
C_{1} & 0 & \cdots & 0 \\
0 & C_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & C_{k}
\end{array}\right)
$$

Where the C_{i} are the companion matrices of the irreducible factors of P. However, by Theorem 1, we know that P must be irreducible, therefore

$$
M^{\prime}=\left(\begin{array}{cccccc}
0 & 0 & \ldots & 0 & 0 & -a_{0} \\
1 & 0 & \cdots & 0 & 0 & -a_{1} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & & 1 & 0 & -a_{n-2} \\
0 & 0 & \cdots & 0 & 1 & -a_{n-1}
\end{array}\right)
$$

Where the a_{i} are the coefficients of P. If a is any root of P, then a must be primitive, and the set $\left\{a, a^{p}, a^{p^{2}}, \ldots, a^{p^{n-1}}\right\}$ is the complete set of roots of P. This implies that M is similar, in $G F\left(p^{n}\right)$ to the matrix

$$
M^{\prime \prime}=\left(\begin{array}{cccc}
a & 0 & \ldots & 0 \\
0 & a^{p} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a^{p^{n-1}}
\end{array}\right)
$$

In general, if two matrices A and B are similar, then $A=N^{-1} B N$ for some non-singular matrix N. Now, we have $A^{2}=N^{-1} B B N=N^{-1} B^{2} N$, so in general we will have A^{k} similar to B^{k} . In particular, M^{p} is similar to

$$
M^{\prime \prime p}=\left(\begin{array}{cccc}
a^{p} & 0 & \ldots & 0 \\
0 & a^{p+1} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a^{p^{n}}
\end{array}\right)
$$

But $a^{p^{n}}=a$ so $M^{\prime \prime p}$ and M^{\prime} have the same eigenvalues and the same characteristic polynomial. Thus, M and M^{p} have the same characteristic polynomial, P. Since M^{p} has characteristic polynomial P, it must be similar to M^{\prime}. Since M and M^{p} are both similar to M^{\prime} in $G F(p)$, they must be similar to one another in $G F(p)$.

Definition. We will call a non-singular $n \times n$ matrix, M, over $G F(p)$ primitive, if it is of order $p^{n}-1$.

Theorem. Let R_{1} and R_{2} be two $n \times n$ matrix representations of $G F\left(p^{n}\right)$ over $G F(p)$. If $M \in R_{1} \cap R_{2}$ and M is primitive, then $R_{1}=R_{2}$.
Proof. If R_{1} is a matrix representation of $G F\left(p^{n}\right)$ and $M \in R_{1}$ is primitive, then $R_{1}=\left\{0, M, M^{2}, M^{p^{n}-1}=I\right\}$. Because $M \in R_{2}, R_{2}=\left\{0, M, M^{2}, M^{p^{n}-1}=I\right\}=R_{1}$.

Corollary. Any nonsingular $n \times n$ matrix M of order $p^{n}-1$ over $G F(p)$ appears in one and only one representation of $G F\left(p^{n}\right)$.

The following two theorems are obvious from the preceding results.
Theorem. Let R be a matrix representation of $G F\left(p^{n}\right)$ over $G F(p)$. Then R contains $\phi\left(p^{n}-1\right)$ matrices of order $p^{n}-1$.

Theorem. $G L_{n}(p)$ contains $\frac{\prod_{i=0}^{n-1}\left(p^{n}-p^{i}\right)}{n p^{n}-n} \phi\left(p^{n}-1\right)$ matrices of order $p^{n}-1$.

