
 

 

 

 

 

 

 

 

ABSTRACT 

  

Semi-supervised Learning for Electrocardiography Signal Classification 

Dedong Zhang, M.S. 

Mentor: Liang Dong. Ph.D. 

 

 

 An electrocardiogram (ECG) is a cardiology test that provides information about 

the structure and function of the heart. The size of the ECG data collected from patients 

can be very large, and the data analysis is tedious. Inspired by human learning, in this 

thesis we propose a new semi-supervised training framework for deep neural network to 

classify ECG data. The idea is to reward the valid associations that belong to the same 

class after a round trip during cross-matching of supervised and unsupervised learning, 

while penalizing the incorrect associations. The implementation of our framework can be 

easily integrated with any existing training setup. With data preprocessing, the detection 

of heart disease is improved. 
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CHAPTER ONE 

 

Introduction 

 

 

Project Aims and Contribution 

 

Machine learning has been increasingly used in various real-world applications. 

In such scenarios, however, labeled data is not always available due to cost and other 

constraints. For example, in medical classification area, due to the need of patients’ 

privacy protection, medical institutions and clinics often limit the disclosure of patient 

information. This is a big limitation for medical detection applying to training deep 

neural networks. Even with sensitive information taken off, without of the professional 

physician's label, the data do not actually improve the performance of supervised 

learning. To address this problem, semi-supervised learning leverages a large volume of 

unlabled data and a small set of labled data. The aim of this thesis is to investigate the 

feasibility of using partially labeled ECG signals and the improved semi-supervised 

learning model to achieve the goal of ECG classification. Inspired by humans’ 

association learning, in this thesis we propose a new semi-supervised training framework 

for deep neural network to classify ECG data. “Association” is resulted from embedding 

labeled data to unlabeled one and back. The proposed method rewards the valid 

associations that belong to the same class after a round trip, while penalizing the incorrect 

associations. We demonstrate our proposed framework on MNIST dataset and MIT-BIH 

dataset, showing that the semi-supervised learning can significantly improve the 

performance of ECG classification by using the unlabeled data. In particular, for ECG 
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database with fewer labeled data, our approach can achieve the same performance of 

training with more labeled data. 

 

Thesis Outline 

 

This thesis has the following structure: 

 

Chapter one briefly introduces the basic concepts of the project and describes the 

contribution of the project. 

Chapter two discusses the background of the ECG classification, including ECG 

signal distribution, the principle of ECG feature extraction, as well as classification. It 

also discusses the state-of-the-art for semi-supervised learning and unsupervised learning. 

Chapter three introduces image feature extraction and convolutional neural 

network principles. Meanwhile, an optimized semi-supervised learning model is 

introduced and mathematical formulas are derived accordingly. 

Chapter four describes a practical implementation of semi-supervised learning in 

handwriting recognition and ECG signal classification. Experimental results obtained on 

several data sets and feature collection are also shown. 

Chapter five concludes the thesis and points out future research directions. 

 

 

 

 

  



3 

 

 

 

 

CHAPTER TWO 

 

Background 

 

 

 Electrocardiogram or ECG is a tool used to visualize the electricity that flow 

though the heart. The electrodes placed on the skin detect the tiny electrical changes that 

arise from the heart muscle’s electrophysiologic pattern of depolarizing during each 

heartbeat. The electrodes are placed in different parts of the human body and connected 

to the positive and negative electrodes of the electrocardiograph ammeter by lead wires. 

This method of recording the electrocardiogram circuit is called electrocardiogram lead. 

Different electrode placements and connection methods can be used to form different 

leads. In the long-term practice of clinical electrocardiography, the standard 12-lead 

system became the wildly used international standard. It is a very commonly performed 

cardiology test. ECG can be used to measure the rate and rhythm of the heartbeats, the 

size and location of the ventricles, the presence of any damage to cardiac muscle cells or 

the conduction system, the effects of cardiac drugs, and the function of implanted 

pacemakers. The ECG signal is usually composed of the following waveforms: P, QRS 

and T, as shown in Figure 2.1. 

In recent years, computer-assisted ECG analysis has made great progress [1]. 

Some existing ECG devices have widely used these methods, include locating the main 

wave (R wave) of ECG, and the identification of the start and end positions for each 

wave. If the ECG waveform features can be accurately extracted, a valid judgment can be 

made according to the rules of disease classification. However, even for the best R wave 
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extraction method so far [2], the method was only tested on the standard database MIT-

BIH [3]. Their performance degrades quite a lot on the actual clinical data set. For P and 

T wave extraction, the accuracy of wave extraction for MIT-BIH is not stable, not to 

mention the raw clinical data. 

 

 

 

Figure 2.1 One period of an ECG signal 

 

 

For this reason, various mathematical features such as wavelet features [4], 

higher-order statistics [5], power spectral features [6], Lyapunov coefficients [7], Hermit 

coefficients [8], Shannon entropy [9], Hermite polynomial coefficients [10] and linear 

prediction error features [11] were proposed. Combined with methods such as time-

domain features, independent components analysis (ICA), waveform features, principal 

component analysis (PCA), and linear discriminant analysis (LDA), they are used in ECG 

classification and recognition. It is undeniable that these methods are valid for the given 

dataset, but according to the published literature, many of them are just conclusions 

drawn from a standard dataset or from a subset of them (even the entire MIT-BIH dataset 

only contains 47 patients). Thus the generalization of the algorithm is difficult to 

guarantee. There is also an important conclusion of the heart rate classification: the 

positive abnormal recognition rate in patients (ECG samples with both training and test 
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sets all contain the same individual) is much higher than the inter-patient (there is no 

intersection of individuals in the ECG samples of the training set and the test set), and the 

recognition rate of a certain disease should be between positive intra-patient and patient's 

abnormal recognition rate [12]. 

 

ECG Data Distribution 

 

In order to simulate the thinking process of the doctor when diagnosing, we 

should start with the classification of a certain disease. First, when the doctors determine 

between a positive anomaly and healthy, in fact, they also consistently match patient data 

with the disease template. If there is no match, in most case the doctor will consider the 

patient has healthy ECG signal. For a particular disease, medical experts have a set of 

diagnostic criteria (except for incurable diseases), such as ECG "right bundle branch 

block" (Figure 2.3) the diagnostic rules: 

(1) P-wave appears in front of each QRS wave; 

(2) PR interval: 0.12 ~ 0.20s; 

(3) QRS wave: > 0.12s; 

(4) V1 or V2 lead is rSR', RSR' and Rsr'; 

(5) Dull S-wave in V5, V6, and I lead. 

Assuming that 𝑥 is the ECG data of a randomly picked patient, various medical 

features 𝑓𝑚(𝑥) are obtained through the feature extraction function, i.e., the indicators in 

the diagnostic rule. Obviously, the ECG data points of the same disease are clustered in 

the medical feature space, which satisfies the clustering assumptions in pattern 

recognition. The left graph in Figure 2.2 shows roughly the distribution of ECG data in 
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the medical feature space. The black dots are abnormal ECGs, and the blank areas are 

normal ECGs. Notice that, here is only a schematic of the relative distribution of various 

types of ECG data. Individual data points could be staggered together (corresponding to 

rare complex disease). 

 

 

 

Figure 2.2 Distribution of ECG in different data spaces. 

 

 

Therefore, it can be seen that the medical feature space does not need a very 

complex classifier to meet the requirements (e.g., Support Vector Machine (SVM) can 

handle this classification task well), provided that 𝑓𝑚(𝑥) can not only handle all kinds of 

noise interference, but also cope with the data diversity due to physiological differences 

between different people. Obviously, 𝑓𝑚(𝑥) is a highly complex nonlinear function. The 

key to successful design an automated ECG analysis algorithm to meet the clinical 

application requirements positive anomalies between patients, diagnosis of specific 

diseases is the construction of the medical feature extraction function 𝑓𝑚(𝑥). 
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In the following, we analyze the distribution of ECG data based on positive anomalies in 

patients. In order to obtain ECG heartbeat samples from MIT-BIH or other databases, 

most existing work took the approach to find the location of R wave using the main wave 

extraction algorithm. Then they took R as the center and pushed forward and backward to 

form a heartbeat sample. After that, they divided the dataset randomly or by other means. 

Wubbeler et al. [13] took the peak of R wave as the center and extracted the waveform 

data of 100ms before and after the center, respectively.  They then calculated the 

Euclidean distance of each feature and combined with the threshold method. We can 

achieve a highly efficient identification algorithm, 74 individual ECG data in the PTB 

database [3] as the experimental sample, and the recognition accuracy is up to 99%. 

Therefore, the same person's ECG raw data tend to belong to a same cluster. The right 

part of Figure 2.2 shows roughly the distribution of the ECG data in the raw data space. 

The ECG data from the same person gather together, and the data of different people 

disperse in different regions. The two sides of Figure 2.2 are very similar. The only 

difference is that one is in the medical characteristics space, while the other is in the 

original data space. Therefore, putting an inside patient classification algorithm to the 

clinical practice, even a very efficient one, the classification performance will be 

significantly reduced. As for the classification of patients in the medical feature space, 

only one category needs to be considered. The positive anomaly classification should 

consider multiple categories, many of which are interlacing rare complex disease in the 

area. To some extent, the classification of diseases among patients is easier than the 

classification of positive anomalies. 
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Figure 2.3 Comparison of real ECG data. The above figure is one lead V1 heartbeat of 

healthy person, and the other figure is one heartbeat of Bundle Branch block patient. Both 

X axis in the plot represents the time in millisecond. And Both Y axis represents the 

voltage in mV.[3] 

 

 

 

Semi-supervised Training 

The semi-supervised learning has become more and more popular in recent years. 

It falls between supervised learning and unsupervised learning. By incorporating a small 

set of labeled data into the large volume of unlabeled data, the semi-supervised training 

can improve the learning accuracy significantly. In neural network research, the semi-

supervised training has been used in SVM [14] to detect image boundaries, where a set of 

labeled samples were used as extra regulators.  

One approach that can considerably improve the prediction accuracy of neural 

networks is to bootstrap the model with labeled samples. Such samples can be available 

from the model itself. For example, [22] used the class of data that has maximum 

predicted probability as the labels for unlabeled data. Then both set of data are trained at 

the same time. The paper also adopted noise cancellation and other techniques to achieve 

better performance on MNIST. 
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Another way to improve the accuracy is to apply an auto-encoder to the existing 

network ([27] [37] [39]), which leads to more efficient representations. M. Sajjadi et al. 

[30] also studied the mutual exclusivity loss for semi-supervised deep learning. In their 

work, an extra regulating term was used for the unlabeled data. [31] discussed the 

problem of regularization with stochastic transformations and perturbations for deep 

semi-supervised learning.  

 

Unsupervised Training 

Unsupervised training is to infer the inner structure by using unlabeled data. In 

unsupervised training, there is no evaluation on the accuracy of the output of certain 

algorithms since no labels are available. Though unsupervised training often finds more 

applications than its counterpart, it is necessary to differentiate their purposes. Semi-

supervised training leverages a small set of labels as the guidance for learning, while the 

evaluation of unsupervised learning algorithms mainly depends on the choice of cost 

function. The authors of [12] proposed to use ECG morphology and heartbeat interval 

features for automatic classification of heartbeats. The basic idea is to apply Restricted 

Boltzmann Machine [33] to do pre-training on a network. [11] proposed a two-stage 

method for ECG classification using Gaussian mixture model. [19] built high-level 

features using large scale unsupervised learning. An auto-encoder was used as a 

regulator. Wubbeler et al. [13] used the electrocardiogram to verify humans, where 

clustering was used. Ubeyli E D [7] evaluated the diagnostic accuracy of the recurrent 

neural networks (RNN) on the ECG signals. The RNN has composite features such as 
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wavelet coefficients and Lyapunov exponents. In [6], the relative position of two 

randomly picked samples in the image is predicted.  
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CHAPTER THREE 

 

Machine Learning 

 

 

 Due to the nature of the ECG data distribution, the clinical application of ECG 

classification algorithm should be patient-oriented. This is challenging because of the 

following reasons. First, part of the lead off and some of the QRS complexes are not 

obvious. Second, noise interference is ubiquitous, and the target test set is open. Third, 

due to the lack of ECG data, the decision function is a highly complex nonlinear function, 

which needs to be fitted in the end. The solution of those challenges is to use the deep 

learning network. Martinez et al. [17], for the first time, applied deep learning to the 

classification and identification of physiological signals, achieving only 70% -75% 

accuracy. Due to the limited ECG data resources, that is not an advantageous result for 

ECG data classification. On the other hand, the application of handwritten recognition of 

deep learning has reached a general accuracy of more than 98%. So, to verify the 

reliability of the algorithm we proposed, it is important to verify using MNIST datasets 

with large data sources. Our key insight is that data from the same class will share much 

similarity. By properly embedding labeled and unlabeled data, better performance can be 

achieved for a Convolutional neural network (CNN). Two vectors A and B are formed 

respectively from labeled and unlabeled raw data (𝐴𝑅𝐴𝑊  and 𝐵𝑅𝐴𝑊) that fed into the 

CNN. The optimization method we proposed is to do cross matching between supervised 

and unsupervised learning CNN. Imagine someone walks from A to B and then comes 

back. The walk is based on the mutual similarity between A and B. It is only valid if the 
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walker turns out belong to the same class as he is at the very beginning. This can be 

shown in Figure 3.1. 

 

 
Figure 3.1 Semi-supervised learning. Labeled and unlabeled data are fed into the CNN to 

produce embeddings (blue). A red arrow goes from labeled data to unlabeled data and 

back is called an association cycle. 

 

 

 

Figure 3.2 Partial MNIST database.[34] 
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MNIST Dataset 

 The MNIST dataset is a large modified handwritten database from the National 

Institute of Standards and Technology (NIST). The training set consists of numbers 

written by 250 different people, 50% of whom are high school students and 50% from the 

staff of the Census Bureau. The test set is also the same proportion as the handwritten 

training set. Figure 3.2 shows what the MNIST data look like. There are 60,000 training 

samples and 10,000 test samples. Each is an anti-aliasing grayscale with a 28 x 28 pixel 

size and a normalized 20 x 20 size digital portion, centered on the image, maintaining its 

original shape. Notice that the MNIST database also maintains the correspondence 

between handwritten numbers and identities. This provides a reference for us to choose 

the appropriate number of people and the appropriate amount of data.  

 

Convolutional Neural Network 

 The Convolutional Neural Network (CNN) has been widely used in deep learning 

and been very successful in image processing. CNN is the foundation for many 

successful models that use international standard ImageNet dataset to train. Compared to 

the traditional image processing algorithms, CNN does not require complex pre-

processing of the image. The original image can be directly used without feature 

extracting. For an ordinary one-dimensional signal, CNN does not seem to be a valid 

training model. It is because of the high reproducibility of ECG signals, and the fact that 

the shapes of different ECG classes or ECG annotation information are relatively similar, 

which makes ECG classification different from other one-dimensional signal 
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classification. Because CNN can extract deeper features through multiple layers, the 

differences between different ECG signal can be easier to discover. 

 In image processing, the image is often viewed as one or more 2D vectors. For 

example, the previously mentioned MNIST handwritten image can be viewed as 28 × 28 

2D vectors, which only has one-color channel (black and white). If the RGB color picture 

has three color channels, it can be represented as three 2D vectors. The traditional neural 

networks often introduce a huge number of parameters thus computation overhead since 

the input and the next hidden layer are fully connected. By contrast, the CNN is locally 

connected so that the computation overhead can be significantly reduced. 

 

 

 

 

Figure 3.3 The full connected neural network and locally connected neural network are 

compared, with the left-hand side showing the fully connected schematic and the right-

hand locally connected.  

 

 

 

 For example in Figure 3.3 shows a 1000 × 1000 input image, if the number of 

neurons in the next hidden layer is 106, there are 1000 × 1000 × 106 = 

1012 weight parameters for the full connection, which is a huge number. These 
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parameters are difficult to train. In contrast, using local connections, each neuron in the 

hidden layer is only connected to a 10 × 10 partial images in the image, so the number of 

weight parameters at this time  is 10 × 10 × 106 = 108, which reduces 4 orders of 

magnitude. Although the number of parameters is significantly reduced compared to the 

full connected NN, it is still very high. Using the method of weight sharing can further 

reduce the number of parameters. Specifically, in the local connection, each neuron of the 

hidden layer is connected to a 10 × 10 partial image. Therefore, there are 10 × 10 weight 

parameters, and they are shared to the rest. That means the weight parameters of 

106 neurons in the hidden layer are the same. No matter what the number of hidden layer 

neurons is, the number of weight parameters to be trained is 10 x 10, which is called the 

size of the convolution kernel or size of the filter. 

 

 

 

Figure 3.4 The locally connected NN and convolutional net are compared, with the left-

hand side showing the locally connected schematic and the right-hand convolutional net 

schematic. 

 

 

 

In this way, only one feature of the image is extracted. If more features are to be 

extracted, multiple convolution kernels can be added. Different convolution kernels can 

obtain features of different mappings of the image, which are called Feature Maps. As the 
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Figure 3.4 shows, if there are 100 convolution kernels, the number of weight parameters 

is only 100 × 100 = 104. In addition, the offset parameters are also shared, sharing the 

same filter. Figure 3.5 is a classic CNN LeNet-5 network. As the figure shows, there are 

mainly two types of network layers in the CNN: the convolution layer and the 

pooling/sampling layer (i.e., Pooling). The role of the convolution layer is to extract 

various features of the image, while the role of the pool layer is to abstract the original 

feature signal, thereby greatly reducing the training parameters as well as model 

overfitting. 

 

 

 

Figure 3.5 LeNet-5 network structure.  

 

 

 

Learning by Association 

 The logic behind our semi-supervised training is to maximize the probability that 

after a round-trip between A and B, the walker remains in the same annotation class, 

where rows in matrices A and B index the samples in the data. The similarity between 

embeddings A and B is defined as  

M𝑖𝑗 := A𝑖· B𝑗 
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where dot product is used. Note, however, any metrics other than dot product can be 

applied, e.g., Euclidean distance. The reason why we pick dot product is because we 

found it has the best convergence performance by experiments. The similarities are then 

transformed into the transition probabilities from A to B by the following operation: 

P𝑖𝑗
𝑎𝑏 = P (B𝑗 |A𝑖) := (softmaxcols (M))𝑖𝑗  

                                      = exp(Mij ) / ∑ exp (𝑀𝑖𝑗′)𝑗′  

Similarly, by replacing M with 𝑀𝑇, we can obtain the transition probability from B to A, 

i.e., 𝑃𝑏𝑎. Combing them together, the probability of the round-trip between A and B can 

be calculated as 

P𝑖𝑗
𝑎𝑏  := (Pab  Pba)

𝑖𝑗
 

           =∑ (𝑃𝑖𝑘
𝑎𝑏𝑃𝑘𝑗

𝑏𝑎)k  

Thus, we have the following probability: 

P(correct walk) = 
1

|𝐴|
∑ 𝑃𝑖𝑗

𝑎𝑏𝑎
𝑖~𝑗  

          where i ∼ j ⇔ class(A𝑖) = class(A𝑗 ) 

Now define  𝐿walker, 𝐿visit, and 𝐿classification as the loss of walk, visit, and 

classification respectively. Then the total loss is: 

𝐿total =  𝐿walker +  𝐿visit  + 𝐿classification    

 

Walker loss. First, we define walker loss aiming to keep consistency for 

association cycles. A walk is said to be consistent if it falls into the same class after the 

round trip. The intuition is to reward the probability that walks to the correct class while 

penalize wrong walks. The reason why we use a uniform probability instead of requiring 
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an exact sample is because the walk may end up at a different sample after the round trip, 

but it still belongs to the same class with the start. In this case, using a probability makes 

more sense. We further define the loss as follows: 

𝐿walker := H ( T, 𝑃𝑎𝑏𝑎) 

where H is cross-entropy, T is the uniform target distribution of correct round trip, and 

𝑃𝑎𝑏𝑎  is the probability of the trip respectively. The target uniform distribution is as 

follows: 

𝑇𝑖𝑗 ∶= {
1 / class( A𝑖), 𝑐𝑙𝑎𝑠𝑠(A𝑖) = 𝑐𝑙𝑎𝑠𝑠(A𝑗)

0, 𝑒𝑙𝑠𝑒
 

where class(A𝑖) denotes how many times class(A𝑖) happens in A.  

 

Visit loss. It is always beneficial to use all of the unlabeled data in semi-

supervised learning, instead of just associating samples that are easily available. By 

incorporating all data, the embedding can be more general. However, some unlabeled 

samples tend to be hard to use due to various reasons such as bad drawing. Thus, we 

define a loss function for “visiting” such samples as a cross-entropy H: 

𝐿visit ∶= H ( V, 𝑃𝑣𝑖𝑠𝑖𝑡) 

where V is the uniform target distribution and 𝑃𝑣𝑖𝑠𝑖𝑡 are the visit probabilities. The visit 

probabilities for samples in B and the uniform target distribution are:  

𝑃𝑗
𝑣𝑖𝑠𝑖𝑡 ∶=  〈P𝑖𝑗

𝑎𝑏〉𝑖 

𝑉𝑗 ∶=1 / |B|  

  

Classification loss. We have successfully solved the problem of creating 

embedding so far. Then next question is how to map the embedding into the classes. By 
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carefully study, we found that we can address this if we add a fully connected layer with 

softmax and a cross-entropy loss on top of the network. Note that such mapping is not 

necessary for network to be able to converge. However, it is critical for network 

performance evaluation. We define the classification loss as  𝐿classification. Using the 

method proposed by Adam [16], the total loss can be minimized. We also applied random 

data augmentation, which is discussed in Chapter Four. We implemented the semi-

supervised training using Google TensorFlow library. 
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CHAPTER FOUR 

 

Experimental Results 

 

 

Experimental Setup 

 

 

Datasets 

 

 Two datasets were used in the process of experimental validation of the 

algorithms introduced in this thesis. Table 4.1 shows the summary of MIT-BIH dataset 

and Table 4.2 shows the summary of MNIST dataset. 

 

 

Table 4.1 Summary of MIT-BIH dataset for different arrhythmia annotation classes. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

heartbeat classes  #Data point Symbol 

Normal beat 15,065,352 N 

Left bundle branch block beat 1,621,266 L 

Right bundle branch block beat 1,456,446 R 

Atrial premature beat 511,143 A 

Aberrated atrial premature beat 30,150 a 

Nodal (junctional) premature beat 16,683 J 

Supraventricular premature beat 402 S 

Premature ventricular contraction 1,432,125 V 

Fusion of ventricular and normal beat 161,202 F 

Atrial escape beat 3,216 e 

Nodal (junctional) escape beat 46,029 j 

Ventricular escape beat 21,306 E 

Fusion of paced and normal beat 197,382 f 

Non-conducted P-wave (blocked APB) 38,793 x 

Unclassifiable beat 6,633 Q 



21 

 

Table 4.2 Summary of handwriting data in the MNIST dataset. 

 

Name Description #Example Size 

train-images-idx3-ubyte Training set images 60,000 9,681KB 

train-labels-idx1-ubyte Training set labels 60,000 29KB 

t10k-images-idx3-ubyte Test set images 10,000 1611KB 

t10k-labels-idx1-ubyte Test set labels 10,000 5KB 

 

 

 

Splitting the data 

 

Every data set was split into four parts (Figure 4.1) 

▪ Data to train the supervised learning 

▪ Data to train the unsupervised learning 

▪ Data to tune the parameters 

▪ Data to test the learning result 

  we ran the nets on 10 randomly chosen subsets of the data and report median and 

standard deviation. 

 

 

 

 

 

Figure 4.1. Data split for both ECG database and MNIST database. 

 

 

Feature Extraction 

 

For handwritten images, feature extraction of images is conducted in 

convolutional neural networks. Because CNN is created by simulating the process of 

Test data 
Unlabeled Training 

data 

Validation 

data 

Labeled Training 

data 
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visual recognition of images, its network structure is specially designed for 2D images. 

To deal with 1D ECG signals, it is necessary to optimize the convolutional neural 

network to adapt the characteristics of the electrocardiogram signal. In addition, because 

there are too many useless fragments in the signal of ECG itself, it is necessary to 

perform feature extraction on the raw data before training in order to obtain better 

performance and reduce training time. The design of the ECG classification algorithm is 

actually to fit a nonlinear decision function F(x) = g(f(x)), where f(x) is the function fitted 

by the feature extraction algorithm. For example, it can be a medical or mathematical 

feature extraction function, or a hybrid feature extraction function. In this experiment, we 

use the R-wave position extraction and wavelet transform method to determine the 

valuable information in the ECG signal. Wavelet transform has achieved very good 

results in many areas. In this thesis, we evaluate its performance in terms of feature 

extraction, which can be expressed as: 

W𝑇𝑓(𝑎, 𝜏) =
1

√𝑎
∫ 𝑓(𝑡)ψ (

𝑡 − ψ

𝑎
)

𝑅

0

 

where ψ𝑎,𝜏(𝑡) is a wavelet basis function, with two parameters of scale a and translation 

τ. We used the multi-scale characteristics of the basis function to expand the signal at 

different scales and extract useful information.  

The process of the experiment consists of three steps. The first step is to test the 

effectiveness of the semi-supervised training method through the MNIST dataset. At the 

same time, a large amount of training data shows the characteristics of the mixed training 

compared to other methods. The second step is to optimize the ECG data by feature 
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extraction to avoid partial lead off, unobvious partial QRS complex, and noise 

interference. The last step is to train the ECG data from MIT-BIH database after feature 

extraction and analyze the results. 

Results 

A number of experiments were executed using this setup: 

1. In order to test the learning performance for ECG signal annotation 

classification. We use 117 heartbeat sample from MIT-BIH database train 

in a pure supervised learning algorithm. The totally accuracy is 83.3%. 

Figure 4.8 shows the Confusion matrix of the output accuracy result. And 

Figure 4.9 shows the Generating Receiver Operating Characteristic (ROC) 

Curves of the output accuracy result. 

2. Use semi-supervised learning algorithm to train handwriting image from 

MNIST Database. Table 4.3 shows the result of 10,000 label data training 

on supervised side before cross-matching of supervised and unsupervised 

learning. Figure 4.2 shows the Confusion matrix of MNIST data after 

20,000 steps of training and cross-matching. The test error is 0.97%. 

Figure 4.6 is the 2D distribution of the output layer’s corresponding 

handwriting data  

3. Find the R-wave of the raw ECG signal and use wavelet transform to 

extract feature information while reducing the impact of interference 

information on training. Figure 4.3 shows one patient’s raw data and the R 
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peak found on the heartbeat wave. Figure 4.4 shows the same patient’s 

data change after preprocessing.   

4. Using semi-supervised learning algorithm train, ECG labeled and the 

unlabeled signal from MIT-BIH Database. Figure 4.5 shows the learning 

rate of the training process. Table 4.4 shows the result of accuracy for 

different annotation classes. Figure 4.7 is the 2D distribution of the output 

layer’s corresponding ECG data.  

 

 

 
Figure 4.2 Confusion matrix with mistakes that were made. The x-axis is the true-label 

results. Y-axis is the results of the output from the learning structure. 
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Figure 4.3 The patient 118 lead V1 raw data from the MIT-BIH dataset, red point shows the found R-wave position. X axis in the plot  

represents the time in second, Y axis represents the voltage in mV. 
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Figure 4.4 Figure on the top shows the heartbeat wave of patient 118 lead V1 ECG signalbefore wavelet transform. And the following 

figure shows the same patient after prepossessing. The X axis in the top plot represents the time in second and the X axis in the bottom 

plot represents the time in millisecond. Both Y axis represents the voltage in mV. 
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Figure 4.5 Learning rate for semi-supervised learning algorithm training ECG labeled and unlabeled signal from MIT-BIH Database. 

X axis represents the steps of the learning process. Y axis represents the learning rate of the algorithm. 
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Table 4.3 Error (%) results on the test set of MNIST (lower is better). The standard 

deviation in parentheses. 

 

 

Method 

# labeled samples (%) 

100 1000 ALL 

Ladder, conv small Γ 0.98(0.50) - - 

Improved GAN 0.93(0.07) - - 

Mutual Exclusivity + 

Transform 

0.55(0.16) - 0.27(0.02) 

Ours 0.91(0.09) 0.74(0.03) 0.36(0.03) 

 

 

 

Table 4.4 Results on MIT-BIH. Accuracy (%) on the test set (higher is better). The 

standard deviation in parentheses. 

 

 

 

Method 

 

#Supervised 

training data 

 

#Unsupervised 

training data 

Classification result (%) 

N S V F Q 

Kiranyaz 

&Gabbouj 
419,377 0 0.98 0.64 0.93 0.76 0 

our 138,690 416,070 0.92 

(0.1) 

0.47 

(0.13) 

0.88 

(0.1) 

0.87 

(0.19) 

0.28 

(0.21) 
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Figure 4.6 The output layer’s corresponding handwriting data distribution visualizing. 

Note that handwriting images of different colors represent different classes sample points.
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Figure 4.7 The output layer’s corresponding heartbeats distribution visualizing. Note that 

each number represents one annotation heartbeat data from MIT-BIH data set.  
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Figure 4.8 Using the supervised learning method to classify the MIT-BIH database 

without extraction preprocessing. label 1 for normal annotations, label 2 for abnormal 

annotations. The x-axis is the true-label results. Y-axis is the results of the output from 

the learning structure. 
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Figure 4.9 Generating Receiver Operating Characteristic(ROC) Curves for supervised 

learning method to classify the MIT-BIH database without extraction preprocessing. Each 

point on the ROC curve reflects the sensitivity to the same signal stimulus.
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CHAPTER FIVE 

 

Summary 

 In this thesis, we propose a semi-supervised learning model for ECG signal 

classification. The model can be easily applied to both 1D and 2D signal training. 

According to the distribution characteristics of the ECG data, the feature extraction 

method avoids exacting useless information by using preprocessing. Although the effect 

of a small amount of ECG training data is not as obvious as the data collection, there are 

some important conclusions that can be drawn. First, with a small amount of label data, it 

is easier to use our proposed optimization to achieve higher accuracy as good as pure 

supervised training. Second, because this training method is based on a common 

convolutional neural network, it has good adaptability for either one-dimensional time 

series signals or two-dimensional images. 

 Some future research directions in this area include: (1) Extend this method of 

monitoring networks and non-supervised networks to other models, such as Long short-

term memory neural network (LSTM). (2) Continue to optimize convolutional neural 

networks. One possible direction could be update the CNN to Capsule Network to make 

more specific feature comparisons. 
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MIT-BIH beat type records 

 

 

Table A.1 Table of beat types for MIT-BIH database. 

 

   Record    Annotation 

 

N V F O N E P F O Q 

. L R A a J S V F ! e j E P f p Q 

100 2239 - - 33 - - - 1 - - - - - - - - - 

101 1860 - - 3 - - - - - - - - - - - - 2 

102 99 - - - - - - 4 - - - - - 2028 56 - - 

103 2082 - - 2 - - - - - - - - - - - - - 

104 163 - - - - - - 2 - - - - - 1380 666 - 18 

105 2526 - - - - - - 41 - - - - - - - - 5 

106 1507 - - - - - - 520 - - - - - - - - - 

107 - - - - - - - 59 - - - - - 2078 - - - 

108 1739 - - 4 - - - 17 2 - - 1 - - - 11 - 

109 - 2492 - - - - - 38 2 - - - - - - - - 

111 - 2123 - - - - - 1 - - - - - - - - - 

112 2537 - - 2 - - - - - - - - - - - - - 

113 1789 - - - 6 - - - - - - - - - - - - 

114 1820 - - 10 - 2 - 43 4 - - - - - - - - 

115 1953 - - - - - - - - - - - - - - - - 

116 2302 - - 1 - - - 109 - - - - - - - - - 

117 1534 - - 1 - - - - - - - - - - - - - 

118 - - 2166 96 - - - 16 - - - - - - - 10 - 
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Record . L R A a J S V F ! e j E P f p Q 

119 1543 - - - - - - 444 - - - - - - - - - 

121 1861 - - 1 - - - 1 - - - - - - - - - 

122 2476 - - - - - - - - - - - - - - - - 

123 1515 - - - - - - 3 - - - - - - - - - 

124 - - 1531 2 - 29 - 47 5 - - 5 - - - - - 

200 1743 - - 30 - - - 826 2 - - - - - - - - 

201 1625 - - 30 97 1 - 198 2 - - 10 - - - 37 - 

202 2061 - - 36 19 - - 19 1 - - - - - - - - 

203 2529 - - - 2 - - 444 1 - - - - - - - 4 

205 2571 - - 3 - - - 71 11 - - - - - - - - 

207 - 1457 86 107 - - - 105 - 472 - - 105 - - - - 

208 1586 - - - - - 2 992 373 - - - - - - - 2 

209 2621 - - 383 - - - 1 - - - - - - - - - 

210 2423 - - - 22 - - 194 10 - - - 1 - - - - 

212 923 - 1825 - - - - - - - - - - - - - - 

213 2641 - - 25 3 - - 220 362 - - - - - - - - 

214 - 2003 - - - - - 256 1 - - - - - - - 2 

215 3195 - - 3 - - - 164 1 - - - - - - - - 

217 244 - - - - - - 162 - - - - - 1542 260 - - 

219 2082 - - 7 - - - 64 1 - - - - - - 133 - 

220 1954 - - 94 - - - - - - - - - - - - - 

221 2031 - - - - - - 396 - - - - - - - - - 

222 2062 - - 208 - 1 - - - - - 212 - - - - - 

223 2029 - - 72 1 - - 473 14 - 16 - - - - - - 

228 1688 - - 3 - - - 362 - - - - - - - - - 

230 2255 - - - - - - 1 - - - - - - - - - 

231 314 - 1254 1 - - - 2 - - - - - - - 2 - 

232 - - 397 1382 - - - - - - - 1 - - - - - 

233 2230 - - 7 - - - 831 11 - - - - - - - - 

234 2700 - - - - 50 - 3 - - - - - - - - - 
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Table A.2 Symbols used in MIT-BIH database plots. 

 

Symbol Meaning 

· or N Normal beat 

L Left bundle branch block beat 

R Right bundle branch block beat 

A Atrial premature beat 

a Aberrated atrial premature beat 

J Nodal (junctional) premature beat 

S Supraventricular premature beat 

V Premature ventricular contraction 

F Fusion of ventricular and normal beat 

[ Start of ventricular flutter/fibrillation 

! Ventricular flutter wave 

] End of ventricular flutter/fibrillation 

e Atrial escape beat 

j Nodal (junctional) escape beat 

E Ventricular escape beat 

/ Paced beat 

f Fusion of paced and normal beat 

x Non-conducted P-wave (blocked APB) 

Q Unclassifiable beat 

| Isolated QRS-like artifact 
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Figure A.1 Schematic diagram of semi-supervised training network. 

 

 

 



39 

 

 

 

 

 

 

 

 

 

 
 

 

Figure A.2 Schematic diagram of supervised learning and unsupervised learning in side 

of Figure A.1. 
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