
 

 
 
 
 
 
 
 
 

ABSTRACT 
 

Application of Chemometric Analysis to UV-Visible  
and Diffuse Near-Infrared Reflectance Spectra 

 
Christopher Brent Davis, Ph.D. 

 
Mentors: Kenneth W. Busch, Ph.D. and Marianna A. Busch, Ph.D. 

 
 

 Multivariate analysis of spectroscopic data has become more common place in 

analytical investigations due to several factors, including diode-array spectrometers, 

computer-assisted data acquisition systems, and chemometric modeling software.  

Chemometric regression modeling as well as classification studies were conducted on 

spectral data obtained with chili peppers and fabrics samples.   

Multivariate regression models known as partial least squares (PLS-1) were 

developed from the spectral data of alcoholic extracts of Habanero peppers.  The 

developed regression models were used to predict the total capsaicinoids concentration of 

a set of unknown samples.  The ability of the regression models to correctly predict the 

total capsaicinoids concentration of unknown samples was evaluated in terms of the root 

mean square error or prediction (RMSEP).  The prediction ability of the models produced 

was found to be robust and stable over time and in the face of instrumental modifications.   

 A near-infrared spectral database was developed from over 800 textile samples.  

Principal components analysis (PCA) was performed on the diffuse near-infrared 



 

reflectance spectra from these commercially available textiles.  The PCA models were 

combined together into a soft independent modeling of class analogy (SIMCA) in order 

to classify the samples according to fiber type.  The samples in the study had no 

pretreatments.  The discriminating power of these models was tested by creating 

validation sets within a given fiber type as well as attempting to classify samples into a 

category that they do not belong to.   

 The apparent sub-class groupings within the same fiber class were investigated as 

to whether or not they were caused by chemical processing residues, multipurpose 

finishes, or dyes. 
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CHAPTER ONE 
 

Introduction 
 
 

Chemometrics 
 
 The term chemometrics was first coined by the Swedish physical organic chemist 

Svante Wold in June 1972.1a  Wold discussed the application of splines to fit data to a 

statistical model in the journal Kemisk Tidskr.2  The origins of chemometrics can be 

traced as far back as 1969 when a series of papers authored by Jurs, Kowalski, and 

Isenhour was published in Analytical Chemistry on the use of a linear learning machine to 

classify a collection of low resolution mass spectra.3-5  In 1974, Kowalski and Wold 

founded the Chemometrics Society.  The society defined chemometrics as a chemical 

discipline that combines mathematical and statistical methodologies to design or select 

optimal measurement procedures and experiments in order to afford maximum chemical 

information by analyzing the chemical data available.1a   

  The basis of any chemometric analysis is the development of a statistical model 

that will relate the experimentally obtained variables to one another and show how these 

variables can be used to make qualitative and quantitative determinations about the 

samples.  Pattern recognition or classification analyses are the preference for making 

qualitative assessments of chemical data.  Multivariate regression modeling (MRM) is 

chosen when quantitative results concerning a dependent variable are desired.  The 

multivariate nature of chemometric modeling allows the examiner to employ empirical 

modeling techniques, such as PCA and PLS, that can visually depict unexpected patterns 



2 

 

in the data because the joint effect of all the variables in the model are taken into 

account.6   

 
Multivariate Data 

 
 Nature itself is multivariate.  The weather patterns on the planet Earth are 

influenced by a number of factors, including wind, air pressure, temperature, and dew 

point among others.  The health of a human being relies on a combination of variables, 

like genes, social position, stress, and eating habits.  The multivariate character of nature 

does not stop at a laboratory door.  In many scientific disciplines, the underlying casual 

relationships between components of a system manifest themselves in the form of 

observable data.  The data is rarely dependent on one and only one variable.7   

The question could be raised as to why chemists and technologists would concern 

themselves with using statistics when they spend large amounts of time and energy to 

calibrate their analytical instruments.  The answer would be that statistics has useful 

concepts that are frequently lacking in other sciences, like chemistry. The quality of 

analytical data can be improved by applying multivariate analyses.8  Most chemical 

measurements are inherently multivariate, because more than one measurement can be 

made on a single sample.  In a spectroscopic analysis, a spectrum can be recorded at 

hundreds of wavelengths on a single sample.  The traditional methods of analysis in 

chemistry are univariate, where only one wavelength, or other measurement, is used per 

sample.  Though tried and true, univariate techniques ignore the large amounts of 

information contained in the complete spectrum.9   

 Multivariate data analysis is used for a number of distinct and different purposes. 

The three main groups of objectives are data description, discrimination and 
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classification, and regression and prediction.7  Often times, multivariate data analysis is 

merely concerned with looking at the data.  The characterization of the data is usually in 

the form of written summaries or displaying the intrinsic data graphically in plots.  

Discrimination of the data deals with the separation of groups of data.  The possibility 

exists to derive a quantitative data model in order to discriminate between two or more 

groups.  Classification is related to discrimination, in this case however, typically, the 

relevant groups of the samples in the data set and the reasons behind those groupings are 

known.  Regression is an approach for relating two sets of variables to each other.  The 

process derives a relationship between one or more Y-variables on the basis of a well-

chosen set of X-variables.  Prediction is a means of determining Y-values for new sets of 

X-values based on a previously calibrated X-Y model.   

 Practical applications of statistical methods often have one or more observations 

showing a departure from the bulk of the data.  These observations are called outliers or 

abnormal observations.8  Outliers can be seen in both calibration and predictions and 

occur for many different reasons.  A system should be in place to identify possible 

outliers in a data set as well as a system to determine whether or not a sample should be 

removed from a classification or regression model.  The sheer fact that a sample does not 

match up and cluster with others that are “supposedly” the same, does not mean a mistake 

has been made.  Outliers may sometimes be highly informative and not an erroneous 

sample.  The sample marked as an outlier may simply span a certain type of important 

variability in the X-data.   
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Pattern Recognition Methods in Chemometrics 

In analytical chemistry, it is often necessary to observe similarities and 

differences in chemical samples based on the results of whatever analysis has been 

conducted.  The determination of trends within the data set is called pattern recognition.   

Even as children, we are taught to discriminate between different shapes and colors while 

playing with blocks, games, and other toys.  Television programs, such as Sesame Street, 

actively involve toddlers and young children in learning simple pattern recognition skills.  

This early indoctrination into pattern recognition spills over into the adult lives of most 

chemists.  Spectroscopic data is usually presented as a continuous curve as opposed to a 

table of numbers, due to our ability to perceive shapes.  When an absorbance or 

reflectance spectrum is examined, more often than not, it can be clearly seen that certain 

peaks are present, or absent.10   

As human beings, our pattern recognition abilities are finite.  Correlating and 

examining a collection of twenty different spectra can be a daunting task.  When the 

collection of spectra grows to one hundred or more, the determination of class 

membership can be nearly impossible due to the shear amount of data.  In this case, 

minute variations may not be readily apparent to the human eye.  Chemometric pattern 

recognition utilizes computer-assisted statistical analysis to make up for the shortcomings 

of simple visual inspection.  Pattern recognition methods are used for elucidating or 

confirming groups of samples in multivariate row space.  There are two discrete types of 

pattern recognition: unsupervised methods, also known as cluster analysis or numeric 

taxonomy, and supervised methods, also known by the blanket term of classification.  
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Figure 1.1 is a decision tree in order for an examiner to determine which type of 

classification analysis would be most appropriate for their analysis.   

 

 
 

Figure 1.1. Decision tree for pattern recognition (Adapted from reference 10. Copyright 1998 John Wiley 
& Sons, Inc.) 
 
 
Unsupervised Pattern Recognition 

 The primary goal of an unsupervised pattern recognition analysis is to determine 

whether or not clustering exists in a data set without the use of the class membership in 
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the actual calculation.  Class membership of the samples in the data set is either not 

known or simply ignored, as can be seen in Figure 1.2.  The groupings observed in the 

examination of row space are defined by the type of measurements taken from the 

samples.  An examiner may simply wish to see if there are groupings within the set of 

samples or if outliers are present.  If the class memberships are known, the examiner may 

choose to display or identify any groupings in the data swarm (Figure 1.3).  This process 

is accomplished without imposing a class membership on the samples.  The examination 

of natural clusters of the samples can lead to an increased understanding of the data set.  

Hierarchical Cluster Analysis (HCA) and Principal Components Analysis (PCA) are two 

readily used methods of unsupervised pattern recognition in chemometrics. 

 
 
 

 
 

Figure 1.2. Result of unsupervised pattern recognition analysis (a) multiple clusters present and (b) data 
present in one cluster (Modified from reference 10. Copyright 1998 John Wiley & Sons, Inc.) 

 
 

 
 

Figure 1.3. Result of unsupervised pattern recognition analysis (a) clusters conform to known class 
memberships (b) clustering not related to known information (Modified from reference 10. Copyright 1998 
John Wiley & Sons, Inc.) 

 
 

1. Hierarchical Cluster Analysis.  HCA is an unsupervised technique that 

examines the interpoint distances between all of the samples and represents that 
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information in the form of a two-dimensional plot known as a dendrogram (Figure 1.4a).  

This depiction brings higher-dimensional row space into a simpler format by which 

human pattern recognition skills can deduce natural clusters.  Dendrograms used in HCA 

methods form clusters based on the samples’ nearness in row space.  Initially, every 

sample is treated as a cluster and the closest clusters are joined together.  This process is 

repeated over and over again until only one cluster remains.  Depending on what 

variation of HCA is used, the measurement of distances between clusters can be 

calculated by single versus centroid linkage or Euclidean versus Mahalanobis or 

statistical distance.  Samples joined together at small distances are similar based on the 

measurement system.  However, samples joined at large distances can indicate the 

presence of outliers in the data matrix.   

 
 

 
 
Figure 1.4. (a) Dendrogram derived from data (b) Single-link clustering HCA (Modified from reference 10. 
Copyright 1998 John Wiley & Sons, Inc.) 

 
 

 2. Principal Components Analysis.  Another unsupervised method of pattern 

recognition is principal components analysis.  The aim of PCA is to represent the 
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variation present in many variables using a reduced number of factors by mathematically 

manipulating the data matrix.  These factors redefine an axis system in a new row space 

as opposed to the original measurement variables.  The new axes, also referred to as 

principal components (PCs), allow the matrix variables to be viewed in a true 

multivariate fashion in a relatively small number of dimensions.  A successful PCA 

describes the interpoint distances using as few axes, or dimensions, as possible.   

 
 

 
 
Figure 1.5. A row plot of (a) mean-centered data (b) with one PC (c) with two PCs and (d) with three PCs 
(Reproduced with permission from reference 11. Copyright 2004 Sayo Fakayode) 

 
 

 The maximum amount of variation possible in the data set (Figure 1.5.a) in one 

direction is explained by the first principal component calculated (Figure 1.5.b).  Each 

successive PC will describe ever decreasing amounts of variation in the data set.  This 
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fact can be helpful when determining the appropriate number of principal components to 

include in order to describe the full variation in the sample set (Figures 1.5c-d).  Any 

determinations based on a PC plot should be gauged by the amount of variation that is 

explained by the factors in the plot.  When an examiner removes non-significant principal 

components, noise from the data set can be filtered out.  Every principal component 

contains some degree of noise; however, the noise is spread throughout all of them.  The 

signal-to-noise ratio is greatest for the first PC and decreases for the PCs subsequently 

calculated as is seen in Figure 1.6.  The subsequent PCs generated describe more and 

more of the noise in the data matrix, as opposed to the relevant chemical information.  

Principal components, as used in chemometrics, are orthogonal to one another.  The 

maximum number of principal components capable of being calculated is always less 

than the number of samples or variables.   

 
 

 
 

Figure 1.6. Residual unexplained variance in a data set drops to zero (Reproduced with permission from 
reference 7. Copyright 2004 Camo AS) 

 
 

 PCA is most useful when the dimensionality of the measurement space is large, 

but the samples reside in a small dimensional space, also referred to as having small 

inherent dimensionality or rank.  When discussing PCA, inherent dimensionality is 
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defined as the number of principal components needed to describe a data set down to the 

noise level.  Striking the balance of relevant PCs and excluding the pure noise 

components is difficult.  The inherent dimensionality of the data matrix can be 

constrained by a number of factors, including: number of measurements, number of 

samples analyzed, and the number of chemical components present in a sample.   

 Both hierarchical cluster and principal components analyses have their individual 

strengths and weaknesses.10  When using HCA, the analysis does not identify which 

variable or variables contribute to the overall clustering found in the dendrogram.  The 

individual discriminating power of the variables used in the model cannot be determined.  

Any poorly resolved clusters found are often difficult to interpret using HCA, due to the 

fact that some of the geometric information is not retained.  Dendrogams are fixed 

representations of the variation in the sample matrix.  There is not a method of 

manipulation that can transform the dendrogram into a form that would be more 

accessible to human pattern recognition abilities.   

 There are some advantages to using HCA.  For instance, all of the variation in the 

original data set is depicted in the dendrogram.  Principal components analysis displays 

different fractions of variation in a succession of scores plots.  HCA also negates the need 

to determine the rank of a data matrix.   

 PCA requires that the rank of a data set be determined.  Rank determination is not 

always a straightforward procedure.  The goal in creating a PCA is to explain the 

variation in a sample set with the least number of principal components possible.  Even 

with decreased dimensionality, it is still possible to have a large number of plots 

explaining the variation in the sample set.  The larger the inherent dimensionality of a 
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data matrix becomes, the less that PCA will aid in deriving meaningful information from 

it.   

 PCA does provide information about the measurement variables in the data set.  A 

loadings plot will indicate the degree of variation contained in each individual 

measurement variable.  Another added feature of PCA is the use of interactive tools that 

can allow the examiner to explore the analysis results in different ways.  It is possible to 

rotate the PC axes in three dimensions to afford different views which may have obscured 

various clusters or outliers behind another.   

 The unsupervised methods of hierarchical cluster analysis and principal 

components analysis are often times done in conjunction with one another.  They 

compute similar information, but in dramatically different forms.  Investigation of both 

analyses allows for a broader examination of the data by HCA, and PCA will allow for 

examination of the samples and clusters that are identified by HCA.  Both methods have 

proven their validity in preliminary data analysis.   

 
Supervised Pattern Recognition 

 Supervised pattern recognition analyses do include class membership information 

in calculations of models.  The prediction of class membership for future samples is the 

primary goal in the construction of models from different analytical measurements.  In 

order to properly calibrate the models generated, both the class shape and location are 

taken into account.   

 
1. K-Nearest Neighbor.  The supervised pattern recognition technique of K-

Nearest Neighbor (KNN) predicts the class of an unknown sample by calculating the 
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nearest sample to the unknown in multidimensional space.10  This distance can be 

Euclidean, which is calculated by equation (1.1): 

Distance 22
22

2
11 )(...)()( nn yxyxyx −++−+−=   (1.1) 

where xi and yi are the coordinates of samples x and y in the ith dimension of the row 

space, where i ranges from 1 to n.  A training, or calibration, set, with a known class 

membership, is used to classify an unknown by calculating the Euclidean distance 

between it and the training set.  The closest samples (K) to the unknown are then used to 

make the determination of class membership.  In order to determine the optimal K for 

class determination, the original data set with known class identities undergoes a cross-

validation to determine the degree of separation between different groups.  A K-value of 

1 indicates that the closest neighbor to a given sample has a high likelihood of being a 

member of the same class.   

 The K-values offer a more qualitative measure of class membership for the 

unknown sample.  One quantitative measure of validating the prediction is “goodness 

value”, G.10  This approach involves the comparison of the distance from the unknown 

sample to the suspect class, relative to an expected distance for known members.  The 

goodness value is obtained by first calculating the distance (du) from the unknown to the 

closest member of the suspect class.  Next, the interpoint nearest-neighbor distances for 

each of the samples in the calibration set for the class being considered are determined.  

Finally, the mean and standard deviation for these values are calculated.  These three 

values, the unknown distance, the standard deviation and mean for the interpoint nearest-

neighbor distances are placed into equation 1.2 to calculate the goodness value as can be 

seen below: 
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where, du is the distance of the unknown from the suspect class, dc is the mean of the 

interpoint distances, and sd(dc) is the standard deviation of those values.   

 The goodness value, G, acts similarly to the t-value often used in traditional 

univariate statistics which indicates the number of standard deviation units the distance of 

the unknown is from the average class distance.  With this in mind, it is logical to see that 

the smaller the G-value is, the more confidence one will have in describing the unknown 

as a class member.  It is possible for the G-value of a data set to be negative if the 

unknown sample is closer to the interpoint distance than all of the samples used in the 

calibration set.  The larger the G-value becomes, the less certainty an examiner will have 

in declaring the unknown sample to be a member of the class.   

 The traditional KNN technique does not detect the presence of outliers in the 

sample data set.  The unknowns placed into a KNN classification will always be 

classified into one of the member groups in the training sets provided.  In addition, K-

Nearest Neighbor also does not take advantage of the class shape information that is 

available.  KNN does have an added value in the fact that it is a simple methodology to 

implement.  KNN is applicable when the number of samples per class is relatively small.   

 The conceptually simple approach of KNN works well for a variety of situations, 

but its limitations must be understood.  The numbers in each class should be 

approximately equal, otherwise, the votes will be biased towards the class with the most 

representatives.9  Also, for the simplest implementations, each variable in the data matrix 

assumes equal significance.  In spectroscopy, an examiner may record hundreds of 

wavelengths.  A large number of those variables might not be diagnostically important, or 
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worse, be highly correlated in a way that does not offer a classification model that 

accurately depicts the status of the sample population.  A way of circumventing this 

problem is to either use some form of variable selection or to use a distance calculation 

other than Euclidean, such as the Mahalanobis distance.  The Mahalanobis distance is a 

distance measure based on correlations between variables by which different patterns can 

be identified and analyzed.  This measure is useful for determining the similarity of an 

unknown sample set to a known one.  The primary difference between Euclidean and 

Mahalanobis distances is that Mahalanobis takes correlations in the data into account 

when calculations are made and is scale-invariant, not dependent on the scale of the 

measurements.  Another problem is the presence of ambiguous or outlying samples in the 

data set.  Also, KNN does not take into account the spread or variance within a class.  If 

an examiner was trying to determine whether a forensic sample was a forgery, it is likely 

that the class of forgeries has a much higher variance compared with the class of non-

forged samples.   

 
2. Soft Independent Modeling of Class Analogy.  SIMCA was first introduced by 

Svante Wold in 1977.12  The idea behind soft modeling is that two classes can overlap.  

In soft modeling, there is no problem with belonging to both of the classes or neither.  

The added value of SIMCA is that the analysis will not automatically place a sample into 

a category solely because that sample was placed into the analysis.  The philosophy of 

soft modeling is that, in many situations in chemistry, it is entirely legitimate for an 

object to fit into one or more classes simultaneously.  For example, a compound could 

contain an ester and an alkene group.  When the compound is analyzed by a 

spectroscopic method, it will show characteristics of both functional groups.  A 
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classification method that assumes the compound belongs to only one or the other is 

unrealistic.  When hard modeling is employed, like in other areas of statistics, an object is 

required to belong to a discrete class.  K-Nearest Neighbor is an example of a hard-

modeling technique.   

In a SIMCA pattern recognition analysis, a separate principal component analysis 

is conducted for each class in the data set.9  Each class is represented by an individual 

PCA that takes the form of equation 1.3: 

 iiiii EPTX +⋅+= 1χ  (1.3) 

where χi is the n x p data matrix of class i, 1Xi is the mean vector matrix of class i, Ti is 

the n x F scores matrix, Pi is the F x P loadings matrix, and Ei is the residual n x P 

matrix.  The scores matrix provides the coordinates for each sample in the principal 

component space.  The loadings matrix contains the necessary information for 

transforming the original variables into the principal components.  The F-value is 

determined by the number of principal components necessary to accurately model the 

data within each class.  The residual matrix indicates the extent to which the arrived upon 

model explains the data within the original matrix.13 The residual variance for a particular 

class to determine the quality of the cluster can be calculated with equation 14: 
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where eij are the components of the residual matrix Ei, P is the dimensionality of the data, 

F is the number of principal components necessary to define the class, and N is the 

number of samples in the given class.  The residual variance of fit indicates the degree to 

which a sample fits into a class model, and is given by equation 1.5: 
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The comparison of the so
2 and si

2 values will show whether or not sample i is 

representative of the class in question.  When the two values are equivalent to one 

another, sample i is said to be representative of the class.  If si
2 is significantly larger than 

so
2, the sample is not representative of the class.  The difference in the two benchmarks is 

evaluated using an F-test to see if si
2 is significantly larger than so

2. 

 
 

 
 

Figure 1.7. Soft Independent Modeling of Class Analogy (Reproduced with permission from reference 1b. 
Copyright 1998 Elsevier Science) 

 
 

 The modeling power of each variable for each separate class being modeled is 

defined by: 

 
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where sjraw is the standard deviation of the variable in the raw data and sjresid is the 

standard deviation of the variable in the residuals given by equation 1.4, which provides 

the difference between the observed data and the PC model data for the class.  The 

modeling power (M) varies between 1 for excellent discriminating power and 0 for no 

discrimination.  Variables with an M-value of 0.5 or lower are of little use unless they 

provide minute amounts of information that could be added to a model to achieve a 

classification for a difficult sample.   

 
Multivariate Regression Techniques in Chemometrics 

The ability to obtain ideal measurements in chemical analysis is often difficult.  

More often than not, measurements that are only selective for the constituents of interest 

are rarely found.  In addition to the presence of usually more or less random measurement 

noise, the data may be affected by chemical and physical interferences due to phenomena 

in the samples themselves.  Experimental interferences arising in the measurement 

process also contribute.  Non-linearities can cause additional problems, because 

instruments seldom respond linearly to changes in the constituent concentrations and to 

changes in levels of interferents.  Interferences can often be removed by means of 

separation procedures like filtration or some type of chromatography in order to ensure 

both selectivity and linearity.  Often times, the purification of the samples of interest is 

prohibitively expensive or even physically impossible.  The interferences and individual 

non-linearities represent less of a problem when the samples are subjected to multivariate 

calibration.8   

 Chemical interferences are described as systematic errors in the quantitative 

determination of a certain analyte when these errors are caused by other chemical 
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constituents or by chemically-induced variations in the analyte’s own instrument 

response.  Many chemical samples, especially those of a biological type, are mixtures 

consisting of several chemical constituents. Chemical similarity of those constituents can 

be to the degree that it affects the measurement.  Physical interferences in a sample occur 

when systematic errors in the quantitative determination of a chemical constituent are 

caused by physical effects and not chemical ones.  Irrelevant physical phenomena can 

affect the measured signal quite intensely.  A common physical interference, seen in 

absorbance spectroscopy, is light scattering due to changing turbidity in a sample.  

Another physical effect is temperature.  The water absorption peaks in the near-infrared 

spectrum, at approximately 1940 nm, are greatly affected by variations in temperature.  If 

the temperature of the samples is not kept constant or compensated for in some way, the 

prediction of chemical composition for things, such as protein, lipid, carbohydrate, and 

water cotent, in foods and feeds using NIR reflectance measurements will be inaccurate.   

 In regression calibration, a regression model is developed to describe the 

experimental data by forming a mathematical relationship between factors or dependent 

variables, such as spectral data, and a response or dependent variable, like the 

concentration of an analyte(s).  Regression calibration can either be univariate linear 

regression or multivariate regression modeling.   

Univariate linear models are developed from a single dependent variable and 

single independent variable.  The common example of this univaraite approach is when a 

calibration curve is constructed by plotting the absorbance or emission intensity, at a 

particular wavelength, as a function of concentration of the absorbing or emitting species.   
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Figure 1.8. Decision tree for multivariate calibration (Adapted from reference 10. Copyright 1998 John 
Wiley & Sons, Inc.) 
 
 
The relationship is described as follows:  

 xbby 1+= °  (1.7) 

where y is the dependent concentration variable, x is the independent absorbance or 

emission variable, bo is the intercept, and b1 is the slope.  While the determination of a 

single analyte constitutes a critical area of analytical science, multi-component analysis 

and multivariate data analysis are becoming more important.  Chemometric approaches 
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like multiple linear regression (MLR), principal components regression (PCR), and 

partial-least-squares regression (PLSR) are often employed to carry out multivariate 

regression analyses.  A decision tree to determine the appropriate type of regression 

modeling to be used by an examiner can be seen in Figure 1.8. 

 Consider a situation where the spectral data of sample solutions are recorded over 

a certain wavelength range.  The spectral data can be seen in Table 1.1.  The relationship 

between the concentration of the absorbing species and the spectral data can be described 

by the following equation: 

  mm XbXbXbXbby KK332211 +++= °  (1.8) 

where y is the concentration, bi are the regression coefficients, and Xi are the measured 

absorbances at different wavelengths where  i = 1…m.  The relationship between the 

response, the coefficients, and the independent variable can be expressed in matrix form 

by: 

  Xby =  (1.9) 

where the vector y contains the concentration, b is the vector containing the coefficients 

of the regression model, and X is the matrix of the response or spectral data.   

 The coefficient of the regression can be calculated as follows: 

  yXXXb TT 1)( −=  (1.10) 

where XT is the transpose of X.  A variety of useful information can be obtained from the 

regression coefficients, including the significance of those coefficients in the regression 

model.  The contribution of individual wavelengths to a given model can be seen in a plot 

of the regression coefficients as a function of wavelength.  The future predictions of new 

samples is also dependent on the coefficients.  The new spectral data (Xfs)introduced will 
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be weighted by the regression coefficients to predict concentrations (y) by the following 

equation: 

  bXy fs=  (1.11) 

 In many analytical chemistry experiments, the XTX is not always invertible.  There 

can be extensive collinearity between the variables involving large numbers of 

independent variables or columns of the sample matrix.  Collinearity adds redundancy to 

regression model since more variables may be included in the model than are necessary  

 
 

Table 1.1. Typical response matrix for a set of the  
absorbance and concentration of sample solutions 

 
Sample 
No. 

Absorbance at different wavelength (λ) 
(X-Data) 

Concentration
(Y-Data) 

1 X1λ1 X1λ2 X1λ3 X1−− X1−− X1−− X1−− X1λm y1 

2 X2λ1 X2λ2 X2λ3 X2−− X2−− X2−− X2−− X2λm y2 

3 X3λ1 X3λ2 X3λ3 ------- ------- ------- ------- ------- y3 

4 X4λ1 X4λ2 X4λ3 ------- ------- ------- ------- ------- y4 

5 X5λ1 X5λ2 X5λ3 ------- ------- ------- ------- ------- y5 

------- ------- ------- ------- ------- ------- ------- ------- ------- y--- 

------- ------- ------- ------- ------- ------- ------- ------- ------- y--- 

------- ------- ------- ------- ------- ------- ------- ------- ------- y--- 

------- ------- ------- ------- ------- ------- ------- ------- ------- y--- 

------- ------- ------- ------- ------- ------- ------- ------- ------- y--- 

n-1 ------- ------- ------- ------- ------- ------- ------- X1λ1 yn-1 

n Xnλ1 Xnλ2 Xnλ3 Xnλ4 Xn−− Xn−− Xn−− Xnλm yn 

 

for adequate description of the spectral variation and predictive performance.  In 

mathematical terms, the X matrix is called collinear, or multi-collinear, if the columns in 
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X are approximately or exactly linearly dependent.  In other words, X is collinear if at 

least one of the X-variables can be written as an approximate or exact linear combination 

of the others.  If an examiner chooses to use multiple linear regression modeling for a 

data set, any collinearity in the X matrix could have a detrimental effect on the stability of 

the coefficients of b and render them useless for the casual interpretation.  An example of 

collinear data can be seen in Figure 1.9.  The high degree of correlation in the data can be 

used as basis the estimation of the first principal component or partial-least-squares 

component of a PCR or PLS analysis, respectively.   

 
 

 
 

Figure 1.9. Two X-variables with high collinear nature (Modified from reference 8. Copyright 1989 John 
Wiley & Sons, Ltd.) 
 
 
 To avoid problems with collinearity in spectral data, all multivariate regression 

techniques require an orthogonal basis set or coordinate system on which to represent the 

data.  Bilinear modeling techniques, such as principal components and partial –least-

squares regression, employ projection methods to obtain a series of variance-scaled 

eigenvectors that can serve as a new coordinate system.  A new matrix, U, with columns 
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that are linear combinations of the original columns from X is generated.  The 

relationship is then given as the following: 

  °= Uby  (1.12) 

The inversion, UTU, is now possible and eliminates the problem of collinerairty among 

the spectral data.  The reduction of the colinearity in the data matrix is also desireable 

because it reduces the dimensionality of the data.   

 
Partial Least Squares Regression Modeling 

 Partial-least-squares regression (PLSR) is a powerful multivariate regression 

technique for reducing the colinaerity of spectral data.  PLS is often regarded as the major 

regression technique to use when dealing with multivariate data.  The PLS method 

proceeds by successive linear combinations of the predictors in the X-matrix.  Parital least 

squares balances the objectives of seeking factors that explain both response and 

prediction variation.  PLSR differs from principal components regression by including 

the dependent variable in the data compression and decomposition operations.  This 

means that both the X and Y data are actively involved in the construction of the new 

basis set made up of PLS components.11  The information in the data that is not of 

importance to the model’s predictive abilities is not weighted as heavily as that which 

does directly correlate to the parameter of interest.   

 PLS also takes into account the errors in both the concentration estimates and the 

spectra.  Methods such as PCR assume that the concentration estimates are free of error.  

In chemistry, there are often errors involved in sample preparations, including weighing 

of solids and making dilutions.  PLS assumes that the error in the experimentation is 

spread throughout the spectral and concentration data.   
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Overview and Research Objective 

 The research studies reported in this dissertation address some of the 

shortcomings of existing analytical methods for determining chili pepper pungency as 

well as identifying fiber composition of textiles.  A new spectrophotometric method for 

the determination of total capsaicinoid concentration (capsaicin and dihydrocapsaicin) 

was developed by combining UV-visible absorption spectroscopy and partial-least-

squares regression modeling.  Typical pepper pungency analysis involves the use of 

liquid chromatography to separate the individual capsaicinoids before they can be 

detected and quantified.  The new method developed does not require the separation of 

the capsaicinoids prior to the collection of the UV spectrum.  The results of this study can 

be seen in Chapter 2.   

 The analysis of textiles by diffuse near-infrared reflectance spectroscopy is 

investigated in Chapter 4.  Soft Independent Modeling of Class Analogy (SIMCA) 

classification was used to process the near-infrared spectra and make predictive principal 

components models that were used to classify commercially available textiles.  The 

possibilities of classifying fibers on the basis of their origin (natural cellulose, mineral, 

synthetic, etc.) as well as by their fiber type (cotton, flax, polyester, etc.) were 

investigated.  A preliminary study was carried out as a test to see whether the modeling 

of the spectral data would be able to distinguish samples based on fiber content.  An 

expanded study, which comprised a database of over 800 individual fabric samples, was 

completed in order to increase the accuracy of the predictive classifications by allowing 

for more variability within a fiber class.   
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The results the classification studies yielded different substructures in the scores 

plots for the principal components analyses (PCA) of some individual fiber classes.  The 

reasons behind the phenomena were investigated.  A collection of untreated fabric 

samples was coated with a variety of different textile finishes and dyes.  The resulting 

scores plots from the PCAs were examined to see whether or not the finishing procedures 

common to textile manufacturing could cause stratification within a particular fiber 

grouping.  This study is reported in Chapter 5.   
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CHAPTER TWO 
 

Determination of Capsaicinoids in Habanero Peppers  
by Chemometric Analysis of UV Spectral Data 

 
 

Introduction 
 

While UV-visible spectrophotometry is often highly sensitive – particularly for 

analytes with high molar absorptivities – selectivity can frequently be a problem with 

complex samples because contaminants in the sample can produce absorption bands that 

overlap those of the analyte.  As a result, ordinary UV-visible spectrophotometry at a 

single wavelength generally requires that the analyte be separated from the other 

absorbing constituents in the sample matrix before the absorbance measurements are 

made.  This prior separation step can be problematic when the sample matrix is complex.  

In the case of chili pepper samples, capsaicinoids are generally extracted from the flesh 

of the pepper with solvents like ethyl alcohol.  While extracting capsaicinoids from a 

chili pepper is straightforward, other absorbing compounds – particularly carotenoids – 

are simultaneously co-extracted from the pepper.  As a result, traditional 

spectrophotometric methods require sample purification before the absorbance spectrum 

is collected.14   

Though techniques for the chemical purification of pepper extracts have been 

developed for spectrophotometric procedures, sample cleanup can be expensive and time-

consuming because it adds an extra step to the procedure and may generate chemical 

waste that requires proper disposal.  In analytical situations like this, chemometric 

techniques can be beneficial.    
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Chemometric techniques have gained acceptance in the past several years as an 

effective tool in extracting information out of seemingly chaotic uncontrolled systems by 

use of different statistical algorithms.  In chemistry, for example, multivariate regression 

modeling has been used as a means of correlating spectral data with known 

compositional changes.15-17  Techniques like partial-least-squares (PLS-1) regression 

modeling have been shown to be especially effective in removing the influence of 

unwanted variables that are impractical or impossible to control in the laboratory.6  The 

overall goal of this approach is to attempt to compensate for the interferences and other 

uncontrolled variables mathematically rather than resorting to chemical purification 

strategies.   

Research into the determination of chili pepper pungency in our laboratory has 

been an ongoing process.  The earliest work was a feasibility study to determine the 

validity of using multivariate modeling and near-infrared transmittance spectroscopy to 

determine pepper hotness.18  The results of the study demonstrated that there is 

correlation, as would be expected, between the predicted concentration of capsaicinoids 

and the actual values determined by high-performance liquid chromatography.  No 

independent validation sets were created and analyzed during this study.  The study was 

limited in regard to the number of samples included in the modeling process and used 

leverage correction.  Also, the sample preparation required 70 g of chopped peppers to be 

used in the extraction of capsaicinoids.   

In a further study, NIR transmittance was used to analyze chili pepper extracts 

using partial-least-squares modeling.  The study also investigated the use of NIR 

reflectance measurements on pepper extracts adsorbed onto the solid support 
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Chromosorb.19  The results of this study showed that adsorption of the pepper extract 

onto the solid support improved the overall predictions from the regression models 

produced.  However, the error of prediction for the validation samples reached as high as 

43 ppm.  The sample preparation was also cumbersome due to the 15 g of chopped 

peppers needed to complete the capsaicinoid extraction procedure, as well as preparing 

the samples adsorbed on Chromosorb.   

The most recent work done on determining chili pepper hotness, prior to the work 

reported later in this Chapter, involved UV spectroscopy, as opposed to NIR.20  This 

study attempted to build a universal partial-least-squares regression model that would 

predict capsaicinoid concentrations in a wide variety of peppers, from the mild jalapeno, 

to the pungent habanero.  The sample preparation still utilized a large mass of chopped 

peppers from which the capsaicinoids were extracted.   

PLS-1 is used to develop a mathematical model that correlates two sets of data so 

that the independent X-variables (spectral data in this case) can be used to predict the 

dependent Y-variable (capsaicinoids concentration in this case).  PLS-1 regression 

modeling is a two-step multivariate process that makes use of actual real samples (rather 

than laboratory-prepared standards) in calibration.  By using actual real samples for 

calibration, all possible interferences are ideally present in the spectral data used to 

develop the regression model.  The procedure is multivariate because it makes use of 

spectral ranges rather than a single wavelength. 

This chapter will report on the application of multivariate statistical analyses, 

particularly PLS-1, to UV spectral data of habanero pepper extracts to develop regression 

models aimed at predicting the combined capsaicin and dihydrocapsaicin content of 
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pepper extracts from their UV-visible absorption spectra.  This technique has the 

potential to permit direct spectrophotometric determination of pepper pungency in pepper 

extracts without prior separation of the matrix.   

 
Background 

 
Capsaicin (N-[(4-hydroxy-3-methoxy-phenyl)methyl]-8-methyl-non-6-enamide) 

and dihydrocapsaicin (N-[(4-hydroxy-3-methoxy-phenyl)methyl]-8-methyl-nonanamide) 

are two members of a family of naturally occurring capsaicinoids (Table 2.1), which 

make up the pungent components of Capsicum fruits.  Capsaicinoids are all N-

vanillylamides of fatty acids, which differ by the length of their aliphatic side chain, the 

presence or absence of a double bond, the branching point, and their relative pungency.  

The first true data concerning the chemical structure of capsaicin was not seen until 1919.  

Nelson developed a proposed structure; however, it was not proven to be correct until the 

following year.  Lapworth and Royle were able to obtain pure capsaicin, with a melting 

point of 64-65° C, but they disagreed with Nelson on his theory that capsaicin was a 

condensation product of vanillylamine and decenoic acid.   

Until the discovery of five naturally occurring capsaicinoids by Bennett and Kirby 

in 1968, it was believed that the pungency of peppers was due solely to capsaicin.  When 

evaluating the “hotness” of a pepper, capsaicin and dihydrocapsaicin constitute 

approximately 80-90% of the total capsaicinoids present.14, 21  The remaining 

capsaicinoids are nordihydrocapsaicin, homocapsaicin, and homodihydrocapsaicin, 

which are vanillylamides that can be derived from 7-methyloctanoic acid, 9-methyldec-

trans-7-enoic acid, and 9-methyldecanoic acid, respectively.  The relative concentrations 

of the naturally occurring capsaicinoids were determined to be 69% capsaicin, 22% 
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dihydrocapsaicin, 7% nordihydrocapsaicin, 1% homocapsaicin, and 1% 

homodihydrocapsaicin.22  The concentrations of capsaicin and dihydrocapsaicin in a chili 

pepper vary, depending on the species of the pepper, its growing conditions, and the time 

when the pepper was harvested.23, 24  The capsaicinoids are not evenly distributed 

throughout the pepper, and substantial amounts of the capsaicinoids exist in the pericarp 

and placenta of the individual fruits.22  The total concentration of capsaicinoids found in 

different varieties of peppers can be highly variable.  Woodbury and colleagues measured 

the capsaicinoids in a variety of peppers in a study conducted in 1980.  Paprikas were 

found to have between 0-30 ppm, 30-600 ppm in chili peppers, and a staggering 13,000 

ppm in red peppers.   

 
 

Table 2.1. Naturally occurring capsaicinoids in chili peppers 

Capsaicinoid Relative 
abundance 

Scoville 
heat units Chemical structure 

Capsaicin 69% 15,000,000 
HO

H3CO
N

O

 

Dihydrocapsaicin 22% 15,000,000 
HO

H3CO
N

O

 

Nordihydrocapsaicin 7% 9,100,000 
HO

H3CO
N

O

 

Homodihydrocapsaicin 1% 8,600,000 
HO

H3CO
N

O

 

Homocapsaicin 1% 8,600,000 
HO

H3CO
N

O
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Capsicums were first cultivated by Native American Indians that lived in tropical 

climates.  Archeological evidence shows that Capsicum fruits appeared as early as 5000 

to 7000 BC in Mexico and Central and South America.25  The remains of dried pepper 

pods were found at the burials sites in Peru that dated back more than 2,000 years.  The 

name, Capsicum, was originally ascribed to these plants by herbalists and later by 

taxonomists.  Though the origin of the term is not known, the word may come from the 

Latin root capsa, meaning box, referring to the box-like shape some pepper pods have.  

Another possible derivation may stem from the Greek work kapto, meaning bite referring 

to the intense nature of the pungent principles contained within the Capsicum fruit.  

Taxonomists generally agree that there are five different cultivated species of peppers 

(genus Capsicum) that include C. annum, C. frutescens, C. pendulum, C. pubescens, and 

C. chinense.  Investigations into the domestication and dispersal of chili pepper have 

identified samples from the genus Capsicum by analyzing microfossils present on 

artifacts.26, 27   

 Habanero peppers belong to the Capsicum chinense variety.  This species is 

typically grown in tropical lowland areas of Central and South America, specifically the 

Amazon Basin.  The peppers are also grown in the Yucatan Pennisula of Mexico, Belize, 

Costa Rica, as well as in the states of Texas, Idaho, and California.  Other peppers are 

grown in India, China, and throughout Southeast Asia.25  On average, these pepper plants 

have large leaves and have fruits that are round and quite pungent.  The mature fruits are 

commonly red, orange, or yellow in color.   

Capsicum fruits have long been sought for their use in food preparation,28 

medicinal applications,29, 30 and personal protection aerosols.23  Chile peppers and spices, 
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such as paprika, with different capsaicin contents are used routinely in salsas and other 

food products.22  Of all spices, Capsicums are the most popular and widely cultivated.31  

Pungent sauces found Mexican and Asian cuisine often contain pungent peppers like the 

habanero.32  Capsaicin has been used in the treatment of rheumatoid arthritis, 

osteoarthritis, and other peripheral neuropathic disorders as a therapeutic pain reliever.19   

Since capsaicin does not cause blistering or other surface damage to the skin, as 

such, it has been used as an ointment, liniment, or plaster applied externally, providing 

some pain relief by having an irritating effect on the sensory nerve endings.  In addition, 

there are no deleterious effects on the capillaries, arteries, or veins in the patients’ skin.  

Capsaicin is also used to gauge a patient’s cough threshold after ingestion of an 

antitussive agent.29  Recent studies have used capsaicin in other applications, such as 

neurobiological research,30 weight management,33, 34 local/topical analgesia,35 and 

antimicrobial defense.36, 37  Capsaicin has also been investigated as a possible treatment 

for prostate38, 39 and lung cancer.40, 41  Personal self-defense aerosols rely on the 

lachrymator-like effects caused when capsaicin is introduced to the mucous 

membranes.23, 42  The painful, burning sensations caused by capsaicin is due to its 

interaction with sensory neurons.  Capsaicin binds with the vanilloid receptor subtype 

one (VR1), which is an ion-channel receptor.  VR1 can be stimulated by heat and 

physical abrasion that allows for cations to pass through the cell membrane and into the 

cell when activated.  When the receptor is bound to capsaicin, the molecule produces the 

same effect that excessive heat or abrasion damage would cause.  The vanilloid receptor 

subtype one has become included in a super family of TRP ion channels.  It is now 

commonly referred to as TRPV1. 
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In the past, organoleptic tests, like the Scoville Heat Test, introduced in 1912 by 

Wilbur Scoville, were used to determine pepper pungency.43  The Scoville analysis 

required that a given amount of sample be macerated with alcohol and sweetened with 5-

10 % aqueous sucrose solution.  Panels of five judges then consume the mixtures and 

vote by committee as to the appropriate Scoville Heat Unit (SHU) to assign the sample in 

question.  The basis of the test is dependent upon whether the judges can still detect the 

“bite” of the capsaicin even after many dilutions.  A breakdown of the Scoville Heat Unit 

Scale can be seen in Table 2.2.  While the fact remains that this analysis is simple and 

cost effective, it is clearly obvious that it has significant drawbacks.  Problems include 

fatiguing of the judges, poor reproducibility, and no true standard panel.  As a result, 

these methods have given way to modern instrumental analyses.14, 44   

Analytical methods employed for the determination of capsaicinoids have 

included colorimetry,39, 45 paper chromatography, thin layer chromatography, gas 

chromatography,46-49 liquid chromatography,32, 42, 50-60 GC/LC-MS,23, 61 NMR-flow probe 

analysis,62 spectrophotometry,63-70 amperometric titration,71 micellar electrokinetic 

capillary chromatography,72 and sensory methods such as an electronic nose.73   

Thin layer and paper chromatography techniques have been found to be an 

efficient, fast, and economical way to purify crude capsicum extracts.  Colorimetric 

methods involve the reaction of the phenolic group on the capsaicin with a chromogenic 

reagent to induce a color change, or frequency shift, in the sample.  This process can be 

quite tedious due to the fact that all pigments, fats, and other interferences must be 

removed in order to assure accuracy.  The use of solvent extractions and chromatographic 

columns to purify capsaicin can add large amounts of time to the analysis as well as  
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possibly losing a large portion of the analyte.  UV spectroscopy is a reliable method for 

the determination of capsaicin; however, it also requires the removal of all interfering 

substances from the sample matrix before an analysis is conducted. 

Of all these methods, the most widely used is high-performance liquid 

chromatography, which offers sufficient accuracy and precision.  Lee and coworkers 

were the first to report on the clean separation of capsaicin and dihydrocapsaicin using 

reverse-phase HPLC.25  The standard analytical method, as described by the American 

Spice Trade Association, called the Gillett method, employs HPLC for testing the 

pungency of capsicums and their oleoresins.74  In this method, the pump flow rate is set 

Table 2.2. Scoville Heat Unit Scale 

Type of pepper Scoville heat units Type of pepper Scoville heat units 

Capsaicin 1.5x107-1.6x107 Serrano Pepper 1.0x104-2.3x104 

Nordihydrocapsaicin 9.1x106 Habanero Tabasco 7.0x103-8.0x103 

US Grade pepper 

spray 
2.0x106-5.3x106 Wax Pepper 5.0x103-1.0x104 

Naga Jolokia 8.6x105-1.0x106 Jalapeño Pepper 2.5x103-8.0x103 

Dorset Naga 8.7x105-9.7x105 Tabasco sauce 2.5x103-5.0x103 

Red Savina 

Habanero 
3.5x105-5.8x105 Rocotillo Pepper 1.5x103-2.5x103 

Habanero chili 1.0x105-3.5x105 Poblano Pepper 1.0x103-1.5x103 

Scotch Bonnet 1.0x105-2.0x105 
Green Pepper 

Tabasco 
6.0x102-8.0x102 

Jamaican Hot 

Pepper 
1.0x105-2.0x105 New Mexico Pepper 5.0x102-1.0x103 

Thai Pepper 5.0x104-1.0x105 Pimento 1.0x102-5.0x102 

Cayenne Pepper 3.0x104-5.0x104 Bell Pepper 0 
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between 0.6-1.8 ml/min, and the UV detector is set at 280 nm for samples greater than 

700 ppm.  For samples less than 700 ppm, fluorescence detection is employed with 

excitation at 288 nm and, emission recorded at 320 nm.  The analytical column is a 4.6 x 

250 mm C-18 column (10 µm packing) with a mobile phase consisting of a mixture of 

acetonitrile, dioxane, water, methanol, and perchloric acid depending on the sample 

concentration.  Significant drawbacks to chromatographic methods include: expense of 

columns and solvents, analysis time, and production of chemical wastes that require 

proper disposal.   

 
Ultraviolet-Visible Spectrometry  

When one examines the visible region of the electromagnetic spectrum, it is found 

to cover a wide range of different wavelengths of light from approximately 400 to 750 

nm.  A breakdown of the individual components of the visible spectrum can be seen in 

Table 2.3.  Beyond the visible region, at shorter wavelengths from about 400 nm down 

to190 nm, is the ultraviolet region.   

1. Types of Electronic Transitions. The energies of the photons between 200-800 

nm correspond to the energies of excitation of outer valence electrons and inner shell, d-d 

transitions with related vibrational levels.  An electron will be promoted from an 

occupied orbital of low energy, the ground state, to an orbital of higher energy, known as 

the excited state.  This can be seen in Figure 2.1.  The most probable transition is that of 

the electron moving from the highest occupied molecular orbital (HOMO) to the lowest 

unoccupied molecular orbital (LUMO).   
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The magnitude of energy that an electron can absorb is specific due to the fact 

that the energies of the orbitals involved in the electronic transitions are quantized.11  

This implies that absorptions in the UV-visible spectrum should be sharp, well-defined 

 
 

Table 2.3. Colors of visible radiation and their compliments  
 

Wavelength range 
(nm) 

Color of reflected light Color of absorbed light 

400-465 Violet Yellow-green 

465-482 Blue Yellow 

482-487 Greenish-blue Orange 

487-493 Blue-green Red-orange 

493-498 Bluish-green Red 

498-530 Green Red-purple 

530-559 Yellowish-green Reddish-purple 

591-571 Yellow-green Purple 

571-576 Greenish-yellow Violet 

576-580 Yellow Blue 

580-587 Yellowish-orange Blue 

587-597 Orange Greenish-blue 

597-617 Reddish-orange Blue-green 

617-780 Red Blue-green 

 
 

 
 

Figure 2.1. Energy differential between the ground state and excited state of an election (Adapted from 
reference 79. Copyright 1996 Harcourt Brace & Company) 
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peaks.  As can be seen in Figure 2.2, the broad bands in the spectrum are due to the 

superposition of vibrational and rotational levels on the electronic transitions.  This 

phenomenon is the reason that the absorption spectrum is a broad continuum instead of 

the anticipated sharp peaks.    

 
 

 
 

Figure 2.2. Vibrational and rotational transitions superimposed on electronic transitions (Modified from 
reference 79. Copyright 1996 Harcourt Brace & Company) 
 

 
 There are three basic types of electronic transitions involving: (1) sigma(σ), pi 

(π), and non-bonding (n) electrons; (2) charge transfer electrons; and (3) d-d transitions.  

The σ→σ* and π→π* transitions involve the excitation of sigma and pi bonding orbital 

electrons to their corresponding antibonding orbitals.  Molecules that contain only single 

bonds and lack atoms with unshared electron pairs only exhibit transitions of the σ→σ*  

type.  Because these transitions are of sufficiently high energy, the ultraviolet energy is 

absorbed at a very short wavelength.  Due to instrumental shortcomings, the σ→σ* 

transitions are not normally observed in the UV.  This particular type of transition is 

shown in Figure 2.3a.  The n→σ* transition (Figure 2.3b) becomes important in saturated 



38 

 

molecules, such as alcohols, ethers, amines, and sulfur compounds, containing atoms 

bearing nonbonding pairs of electrons.  Unsaturated molecules, like alkenes and 

 
 

Figure 2.3. Electronic transitions from (a) σ→σ*, (b) n→σ*, and (c) π→π*79 
 
 
alkynes, that have multiple bonds and pi electrons can undergo a π→π* transition (Figure 

2.3c).  The n→π* transition is forbidden by selection rules, and, as a result, has a low 

intensity in the UV.  Unsaturated molecules that contain heteroatoms such as oxygen or 

nitrogen, particularly in carbonyls, sometimes undergo n→π* transitions.  A listing of 

typical absorptions for some isolated chromophores can be seen in Table 2.4.   

The environment around a chromophore has an effect on which wavelength will 

be absorbed by the chromophore.  Substituent groups in place of hydrogen on a simple 

chromophore unit change the position and intensity of the absorption band.79  Even if the 

substituents themselves do not absorb in the ultraviolet region of the spectrum, their 

presence will alter the absorption of the principal chromophore (Table 2.5).  When a 
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substituent increases the intensity of the absorption, it is called an auxochrome.  Common 

auxochromes include methyl, hydroxyl, alkoxy, halogen, and amino groups.  The 

increase in absorption intensity is called a hyperchromic effect.  The converse of this is a 

hypochromic effect, where the absorption intensity decreases.  A bathochromic shift, also 

known as a red shift, is when the absorption band is moved to a longer wavelength.  

When the shift is to a shorter wavelength, it is termed a hypsochromic, or blue, shift.   

 
 

 
 

Table 2.4. Typical absorptions of simple isolated chromophores79 
 

Class Transition λmax (nm) log ε 
R-OH n → σ* 180 2.5 

R-O-R n → σ* 180 3.5 

R-NH2 n → σ* 190 3.5 

R-SH n → σ* 210 3.0 

R2C=CR2 π → π* 175 3.0 

R-NO2 n → π* 271 <1.0 

R-CHO π → π* 190 2.0 

 n→ π* 290 1.0 

R2CO π→ π* 180 3.0 

 n→ π* 280 1.5 

RCOOH n→ π* 205 1.5 

RCOOR’ n→ π* 205 1.5 

RCONH2 n→ π* 210 1.5 
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Table 2.5. Absorption Characteristics of Some Common Chromophores79 
 

Chromophore Example Solvent λmax (nm) εmax 
Type of 

Transition 
Alkene C6H13CH CH2  n-Heptane 177 13,000 π→ π* 

Alkyne C5H11C C CH3 n-Heptane 178 10,000 π→ π* 

   196 2,000 --- 

   225 160 --- 

Carbonyl CH3CCH3

O

 
n-Hexane 186 1,000 n → σ* 

   280 16 n→ π* 

 CH3CCH
O

 
n-Hexane 180 large n → σ* 

   293 12 n→ π* 

Carboxyl CH3COH
O

 
Ethanol 204 41 n→ π* 

Amido CH3CNH2

O

 
Water 214 60 n→ π* 

Azo NH3C NCH3  Ethanol 339 5 n→ π* 

Nitro CH3NO2  Isooctane 280 22 n→ π* 

Nitroso C4H9NO  Ethyl ether 300 100 --- 

   665 20 n→ π* 

Nitrate C2H5ONO2  Dioxane 270 12 n→ π* 

 
 
 2. Beer-Lambert Law. The phenomenon of light being absorbed as it passed 

through a given sample was first published in the paper Essai d'optique sur la gradation 

de la lumière by the French mathematician and astronomer Pierre Bouguer in 1729.  His 

work examined the quantity of light that was lost by passing it through a given extent of 

atmosphere.  This study led to the work of both Johann Heinrich Lambert and August 

Beer.  Lambert is credited with the discovery that the amount of light absorbed is related 
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to the thickness of the sample, and Beer was able to deduce that the concentration of the 

sample in question was also directly related to the absorbance.  Their contributions 

resulted in the Beer-Lambert Law, also known simply as Beer’s law that can be seen in 

equation 2.1: 

 cl
I
I

A ε=





= 0log  (2.1) 

where A is the absorbance of the sample, I0 is the incident intensity of the light upon the 

sample, I is the intensity of the light leaving the sample, c is the molar concentration of 

the solute, l is the pathlength of the sample cell, and ε is the molar absorptivity of the 

solute.  At a specific wavelength, there is a linear relationship between the absorbance, 

concentration of the absorbing molecules, and the path length of the cell.  The 

concentration of unknown samples is routinely determined by generating a calibration 

curve of various known standards.  The concentrations of the unknowns can be 

determined by comparing their absorbance intensities to those in the calibration curve.   

The Beer-Lambert law is obeyed for samples that are of low concentrations or in 

dilute solutions.  Deviations from the Beer-Lambert law can be seen in Figure 2.4.  These 

deviations arise from real limitations of the law itself, chemical changes associated with 

concentration, known as chemical deviations, as well as the manner in which the 

absorbance measurements are made, instrumental deviations.75   

 Because Beer’s law is used to describe the absorption behavior of dilute solutions 

only, it can be thought of as a limiting law.  At concentrations above 0.01 M, the average 

distance between the species that are responsible for absorption is decreased to the extent 

each molecule’s neighbors will affect the charge distribution on the central molecule and 
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vice versa.  As a result, this interaction can alter a species’ ability to absorb a given 

wavelength of light.  The extent of this phenomenon is concentration dependent, which 

 
 

 
 
Figure 2.4. Plots of absorbance as a function of concentration for (a) a sample which exhibits a positive 
deviation from Beer’s lab, (b) a sample which obeys Beer’s law, (c) a sample  which exhibits a negative 
deviation from Beer’s law (Reproduced with permission from reference 11. Copyright 2004 Sayo 
Fakayode) 
 
 
will result in deviations from the linear relationship between absorbance and 

concentration.  Another situation that can occur is if a sample contains a low 

concentration of an absorbing species and a high concentration of another species, such 

as an electrolyte.  Electrostatic interactions between the absorber and the non-absorbing 

species can produce a change in the molar absorptivity of the former.  The molar 

absorptivity is also dependent upon the refractive index of the solution the solute is 

dissolved in.76  Concentration changes can lead to significant alterations in the refractive 
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index of a solution.  It is possible to correct for this error by including the refractive 

index, n, in the Beer’s law calculations.  The corrected molar absorptivity constant can be 

seen in equation 2.2: 

  22
'

)2( +
=

n
nεε  (2.2) 

where ε is the standard molar absorptivity and n is the refractive index of the solvent.  

Generally, correction is never very large and is rarely significant at concentrations below 

0.01 M.   

 Deviations from Beer’s law can also be seen when the analytes in a sample 

dissociate, associate, or react with a solvent to form a new complex that has a different 

absorption spectrum than the analyte itself.  An example of this situation can be seen in 

the behavior of acid/base indicators, where a color change arises from a shift in  

 
 

 
 

Figure 2.5. Chemical deviations from Beer’s law for unbuffered solutions of indicator HIn at 430 nm (A) 
and 570 nm (B). (Modified from reference 75. Copyright 1992 Harcourt Brace Jovanovich) 
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equilibrium.  This is represented by the following reaction: 

  HIn ↔ H+ + In- 

where In is the indicator.  The protonated indicator species has one color while the 

deprotonated anionic form of the indicator has a different color.  The deviations from 

Beer’s law for this scenario can be seen in Figure 2.5. 

 Instrumental deviations from Beer’s Law can arise from polychromatic radiation 

and stray radiation.  The use of radiation that is constrained to a single wavelength is 

hardly ever practical because devices that isolate portions of the output of a continuous 

source produce a symmetric band of wavelengths around the desired one.  Stray 

radiation, that often times contaminates radiation exiting the monochromator, usually 

differs from the wavelength of the principal radiation.  When stray light is present in the 

monochromatic radiation, the observed absorbance is given by: 

  
s

s

PP
PP

A
+
+

= 0log'  (2.3) 

where A’ is the apparent absorbance in the presence of stray radiation, P is the incident 

power of the radiation, P0 is the power of the radiation leaving the sample (without the 

stray radiation), Ps is the power of nonabsorbed stray radiation.  In Figure 2.6, the 

absorbance as a function of concentration for a given sample is plotted.  There is marked 

deviation in the linear relationship between these two factors as the relative percentage of 

stray radiation is increased from 0% to 5%.  It should also be mentioned that at high 

concentrations and at longer path lengths, stray radiation can also cause a deviation in the 

linear relationship between absorbance and path length.77  Both polychromatic light and 

stray radiation always lead to negative absorbance errors.78   
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Figure 2.6. Apparent deviation from Beer’s law caused by varying amounts of stray radiation, 0.0% (A), 
0.2% (B), 1% (C), 5% (D) (Modified from reference 75. Copyright 1992 Harcourt Brace Jovanovich) 
 
 
 3. UV-Visible Spectrometer: Instrumentation. A common UV-Visible 

spectrometer is comprised of a source of electromagnetic radiation, a wavelength 

selector, sample containers, radiation detector, a signal processor, and read-out device.75  

Typical sources include deuterium or hydrogen discharge lamps, tungsten filament bulbs, 

or xenon arc lamps.  Deuterium lamps are used to produce radiation in the UV.  A 

modern deuterium lamp is operated at a low-voltage that forms an arc between a heated, 

oxide-coated filament and a metal electrode.  They produce a continuous spectrum from 

160 to 375 nm.  Xenon arc lamps produce intense radiation by passing a current through 

an atmosphere of xenon gas.  The spectrum is continuous from the UV (250 nm) to the 

visible (600 nm).   

The monochromator is used to select wavelengths in the spectrum.  A 

monochromator usually employs a diffraction grating that is used to spread out the beam 
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into its component parts.79  An exit slit out of the monochromator allows the light to pass 

through the sample.  Sample cells, commonly known as cuvettes, can be made of an 

assortment of materials.  Glass and plastic are used when the measurements taken are in 

the visible region of the spectrum.  Because these materials absorb in the UV, a UV 

transparent material, quartz, is used in the cuvette.   

 
 

 
 
Figure 2.7. Multichannel diode array spectrometer (Modified from reference 75. Copyright 1992 Harcourt 
Brace Jovanovich) 
 
 

The detector in a spectrometer primarily translates the electromagnetic radiation 

signal that has passed through the sample into an electrical signal.  The intensity of the 

signal is proportional to the intensity of light that has reached the detector.  In the past, 

barrier-layer cells, photo tubes, and photomultiplier tubes were used as detectors in the 

ultra-violet region of the spectrum.  Diode array detectors are the most popular detector 

found in UV-Vis spectrometers today.  The silicon diode detector is a reverse-biased pn 

junction on a silicon chip.75  The reverse bias creates a depletion layer that reduces the 

conductance of the junction to almost zero.  When radiation from the sample cell reaches 
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the chip, holes and electrons are formed in the depletion layer.  This effect produces a 

current that is proportional to the radiant power of the light.  Diode detectors have a 

spectral range from 190 to 1100 nm.  Though vacuum phototubes have no moving parts 

and a spectrum can be collected quickly using them,11, 79 they are, however less sensitive 

than photomultiplier tubes.75  Diode detectors can be combined into an array that will 

allow the entire spectrum to be analyzed simultaneously.  The photodiodes are each 

designed to record a narrow band of the spectrum.  This type of arrangement can be seen 

in Figure 2.7.   

 Diode array detectors have the advantage that they can have their output shunted 

directly to a computer for analysis.  Other common types of recording devices include 

analog meters, digital meters, recorders, printers, and video displays.   

 
 

Materials and Methods 
 
Experimental 
 

Natural capsaicin (~65% capsaicin and 35% dihydrocapsaicin), ethanol, HPLC 

acetonitrile, and HPLC water were purchased from Aldrich Chemical.  Glacial acetic acid 

was purchased from Dupont.  A series of calibration standards (20, 40, 60, 80, 100, 120, 

140, 160, 180, and 200 ppm) were prepared by diluting a 1025 ppm stock solution of the 

natural capsaicin in ethanol.  These standards were subsequently used to prepare an 

HPLC calibration curve using the peak areas of the capsaicin and dihydrocapsaicin peaks.  

The calibration curve was then used to determine the amounts of the two capsaicinoids in 

the pepper extracts. 
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Habanero peppers were purchased from local area supermarkets in the Waco 

metropolitan area and pureed in a Black and Decker Handy Chopper Plus blender.  

Approximately 4.0 grams of the pepper mush was placed in a 150 ml beaker with 50 ml 

of 100% ethanol.  The mixture was then stirred for 30 seconds.  A watch glass was placed 

over top the beaker and the contents were heated to approximately 78 °C.  If the solvent 

level dropped below 10 ml, more solvent was added.  After boiling for 30 minutes, the 

samples were removed from the heat and allowed to cool to room temperature.  The 

liquid extract was then separated from the solids using vacuum filtration through a nylon 

filter mat into a 250 ml filter flask.  The filtered extract was then transferred to a 50 ml 

volumetric flask and diluted to the calibration mark.  Extracts were then stored in two 25 

ml glass vials (Figure 2.8). 

 
 

 
 

Figure 2.8. Alcoholic extracts from Habanero peppers 
 
 
HPLC Analysis 

The HPLC analysis was conducted using a Hewlett-Packard Liquid 

Chromatograph Model 1090.  The chromatograph was controlled by a computer 
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interfaced via a Hewlett-Packard interface card (Model 82341C).  Data analysis and 

instrument control were performed by HP Chemstation software.  Sample injections were 

formed with the HP-1090 sample injection valve using a 5.0 µl sample loop.  The column 

used was a Restek Corporation Pinnacle IITM (C-18) 250 x 4.6 mm with a 5 µm particle 

size.  A 1.0 cm x 4.6 mm Hypersil guard column with 5 µm packing diameter was 

attached to the column.  The column was maintained at a temperature of 40 ºC.  The 

signal from the Hewlett-Packard UV-Vis Diode Array Detector (Model 1050) was 

collected and processed by the computer using the Chemstation software.  The UV 

detector was set to 284 nm.  The flow rate through the column was 2.0 ml min-1, and the 

total run time was 11 minutes.  The solvents were degassed with helium and gradient 

elution was used (see Table 2.6).  A period of 2-5 minutes was allowed to pass before a 

new sample was injected to the liquid chromatograph to allow the late-eluting 

homocapsaicin to come off the analytical column.   

 
 

Table 2.6. Solvent Gradient for HPLC Analysis 

Time (min) Acetonitrile (%) Acetic Acida (%) 

0 50 50 

2 50 50 

5 80 20 

7 80 20 

8 50 50 

9 50 50 
aAcetic acid, 1% by volume in water 
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UV-Visible Spectroscopy 

Absorbance spectra were collected with a Hewlett-Packard photodiode array UV-

vis spectrometer (Model 8455) using a 2.0 mm path length quartz cell over the 

wavelength range from 190 to 1100 nm. 

Chemometric Analysis 

 Partial least squares (PLS-1) regression modeling was used to develop the 

regression models.  Because UV spectral data are relatively noise-free, no data pre-

treatment was employed and the raw spectral data were input directly into the PLS 

software.  The mean-centered spectral data were subjected to multivariate analysis using 

The Unscrambler© 9.1 software package (CAMO, Inc., Corvallis, OR).  Partial least 

squares regression (PLS-1) was preformed on the spectral data using test set validation.  

Independently prepared validation samples were also prepared to further validate the 

models.  The performance of the prediction models was evaluated using the root-mean-

square error of prediction (RMSEP):  

 ∑
=

−=
I

i
ii yy

I
RMSEP

1

2)ˆ(1  (2.4) 

where I is the number of samples in the validation set, y is the predicted value from the 

regression model, and ŷ is the accepted value for the sample. 

 
Results and Discussion 

 
The ultimate goal of multivariate regression modeling is to correlate measured X-

data with some desired Y-data to produce a regression model that can be used to predict 

future Y-values from their X-data.  One reason for doing this is to attempt to substitute a 

simpler and perhaps faster technique (like absorption spectrophotometry) for a slower, 
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more expensive technique (like HPLC).  In this case, the goal is to correlate the spectral 

data obtained for the pepper extracts with the known capsaicin concentrations determined 

independently by HPLC.  By using actual pepper samples in the calibration phase of the 

modeling process, the goal is to develop a model that focuses in on those spectral 

components that correlate with the capsaicin content of the sample while ignoring those 

spectral components that arise from other matrix components like carotenoids that are not 

of interest.  To accomplish this, it is important that the calibration set consists of  real 

samples and that the members of the set exhibit all possible natural variations that occur 

in the peppers.  To span all the possible variations that can occur, it is necessary to use as 

large a number of samples in the calibration phase as possible.  It is also important to 

realize that a calibration set of samples cannot be prepared artificially by adding 

capsaicin to a pepper extract sample (such an attempt would not lead to the same types of 

natural variations that occur in real samples, and a model developed in this way would 

fail in the predictive stage).   

 
 

 
 
Figure 2.9. HPLC chromatogram of natural capsaicin in ethanol at 284 nm. The total concentration of 
capsaicin and dihydrocapsaicin for this sample was 160.0 ppm.  A: capsaicin; B: dihydrocapsaicin. 
 
 

The sample used to obtain the chromatogram in Figure 2.9 contained ~65% 

capsaicin and ~35% dihydrocapsaicin along with minor amounts of the other 

capsaicinoids.  Standard solutions (0-200 ppm) of this commercially available capsaicin 



52 

 

were prepared and subsequently used to a prepare calibration curve of peak area versus 

the total concentration of the two major capsaicinoids (i.e., the sum of capsaicin and 

dihydrocapsaicin) in Figure 2.10.   
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Figure 2.10. Calibration curve of total capsaicinoids, capsaicin (C) and dihydrocapsaicin (D) from HPLC 
peak area 
 
 

This HPLC calibration curve was used subsequently to determine the reference 

concentrations needed to prepare the multivariate regression model relating the 

absorption spectral data with the capsaicin concentration of the pepper extracts. 

 
 



53 

 

 
 

Figure 2.11. HPLC chromatogram of Habanero pepper extract in ethanol 
 
 

Figure 2.11 shows a typical HPLC chromatogram obtained with a habanero 

pepper extract using absorbance detection at 284 nm.  The peaks eluting prior to 4 

minutes on this chromatogram are carotenoids and other plant materials in the sample 

matrix.  Under these chromatographic conditions, both capsaicin and dihydrocapsaicin 

give strong, well-resolved peaks that can be used in conjunction with the calibration 

curve prepared with the commercially-available capsaicin to determine the concentration 

of the two major capsaicinoids in the pepper extracts (i.e., the sum of capsaicin and 

dihydrocapsaicin).  A total of 31 habanero pepper extracts were analyzed by HPLC to 

determine their capsaicin levels. 

 
Univariate Determination of Capsaicinoids 
 
 In a traditional analytical analysis using UV-visible spectroscopy, a univariate 

analysis would be preformed where a single wavelength is selected and correlated to the 

concentration of the analyte of interest.  This analysis is usually carried out with a pure 

sample having any possible interferences removed.  The goal of this project was the 

quantitation of the pungent principles of a habanero chili pepper without any preparative 

separation.  Capsaicin and dihydrocapsaicin are the two main components accounting for 

approximately 90% of the pepper’s hotness.   
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Table. 2.7. Physical Data of Natural Capsaicinoids22 

 Ca DHCb NDCc HCd HDCe 

Formula C19H27NO3 C18H29NO3 C17H27NO3 C19H29NO3 C19H31NO3 

MW 305 307 293 319 321 

MP (°C) 64.5-65.5 65.6-65.8 65.6 --- 66.5 

UV abse 

 

280.5 nm (ε2690) 

230.0 nm (ε8130) 

281 nm (ε2630) 

228 nm (ε6390) 

280 nm (ε3110) 

228 nm (ε7490) 

282 nm (ε3180) 

231 nm (ε7720) 
280.5 nm 

aCapsaicin, bDihydrocapsaicin, cNordihydrocapsaicin, dHomocapsaicin, eHomodihydrocapsaicin, eλ max in 

ethanol 

 
 

The peak absorbances for these components of the pepper extract are at 230 and 

280 nm (Table 2.7).  Figure 2.12 is a plot of absorbances at these wavelengths using a 

UV-visible spectrometer versus the total concentration of the two capsaicinoids, 

capsaicin and dihydrocapsaicin pepper extracts as determined by HPLC.  In accordance 

with Beer’s law, a linear relationship should exist between the absorbance and the 

concentration, assuming the path length is kept constant.  By examining the data in 

Figure 2.12, there is a linear relationship between the absorbance and concentration of the 

capsaicinoids.  However, the plot shows significant scattering of the data, not in keeping 

with linear best-fit trend lines.  The correlation of the data when monitored at 230 nm had 

an R2 value of 0.84255.  The selection of 280 nm yielded a poorer correlation with an R2 

of 0.80586.  These results demonstrate that the determination of capsaicinoids in future 

pepper extract samples using either a set of capsaicin standards in a traditional univariate 

calibration routine or real pepper extracts would be problematic and not produce reliable 

results.  The application of multivariate regression modeling, particularly partial-least-

squares (PLS-1), could provide a means to determine the total capsaicinoid concentration 

in a pepper extract, even in the presence of interferences such as carotenoids.   
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Figure 2.12. Plot of UV absorbance of pepper extracts at 230 and 280 nm versus concentration of 
capsaicinoids as determined by HPLC 
 
 
Multivariate Determination of Capsaicinoids 
 

In the calibration phase of regression modeling, spectral data are acquired for a 

calibration set of samples whose capsaicinoid concentrations are known independently 

from some reference analytical method (like HPLC).  In this part of the process, the 

computer is trained to predict the capsaicinoid levels from spectral data obtained on real 

pepper samples that contain all the possible interfering matrix components.  In selecting 

the calibration samples, it is important to have as much inherent variability in the samples 

as possible so that all the potential interferences are present in the calibration set.  The 

more samples in the calibration set, the more likely the regression model will give good 

prediction results.   

The PLS-1 algorithm is extremely powerful in dealing with interferences 

associated with the spectral data because it focuses those spectral features that correlate 
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with the parameter of interest while simultaneously minimizing the effect of spectral 

features that do not correlate with the parameter of interest80-82.  The mathematical model 

developed in this stage of the process takes the form of a regression vector made up of 

regression coefficients that are determined by the PLS-1 algorithm.  This regression 

vector can be represented by: 

 nno xbxbxbby ++++= ...ˆ 2211  (2.5) 

where ˆ y  is the concentration of capsaicinoids predicted by the model for a given sample, 

the b-values are the coefficients determined by the PLS-1 algorithm during the calibration 

phase, and the x-values are the measured absorbances at the different wavelengths that 

make up the spectral range from 1 to n. 

In the validation phase of the process, a second independent set of samples is 

collected and analyzed by the reference method to determine the analyte concentrations.  

The spectra of these samples are then input into Eqn. 2.5 and the concentrations of 

capsaicinoids are predicted.  The predicted concentrations are then compared with those 

obtained by the reference analytical method.   If the predicted concentrations agree with 

the values obtained by the reference analytical method, then Eqn. 1 can be used to 

determine the capsaicinoid levels of future samples simply from the absorption spectra of 

the samples15-17. 

In this study, a total of nine regression models were prepared.  These nine models 

were prepared by randomly selecting 21 pepper extracts from the 31 samples that were 

analyzed by HPLC.  These 21 randomly selected samples were then used to prepare a 

particular regression model, and the remaining 10 samples were used to validate that 
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model.  This process was repeated nine times with different samples selected randomly to 

prepare the model and validate it. 

 
 

 
 

Figure 2.13. UV absorption spectra of 31 habanero peppers extracted with ethanol from 190-600 nm 
 
 

 The selection of wavelengths to include in a regression model to achieve the best 

predictive capabilities can be challenging.  The complete UV spectra for the pepper 

extracts can be seen in Figure 2.13.  As was discussed in the previous section, a classical 

univariate analysis of the spectral data for the determination of pepper pungency based on 

a single wavelength calibration curve will not provide a reliable spectrophotometric 

method for the determination of pepper pungency.  As shown in Figure 2.13, the spectra 

for the extracts show two broad peaks at 230 nm and 280 nm characteristic of the 

absorbing components in pepper extracts.  The question then becomes, how many 

individual wavelengths or wavelength windows are necessary to produce a model whose 
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ability to predict future samples is high.  Since the absorbing species of interest, capsaicin 

and dihydrocapsaicin absorb at 230 and 280 nm, respectively, both of those wavelengths 

must be included in the model.  The overall wavelength region initially chosen was 215-

300 nm (Figure 2.14).   

 
 

 
 
Figure 2.14. Expanded (215-300 nm) UV absorption spectra of 31 habanero peppers extracted with ethanol 
 
 

A plot of the mean-centered spectral data over the wavelength range from 215-

300 nm can be seen in Figure 2.15.  The mean-centered plot was obtained by averaging 

the 31 individual spectra on a wavelength-by-wavelength basis (i.e., adding the 

absorbances of each spectrum on a wavelength-by-wavelength basis and dividing each 

sum by 31).  The average spectrum was then subtracted from each individual spectrum on 

a wavelength-by-wavelength basis to give the mean-centered spectra.  The mean-centered 

spectra show the regions of the pepper extract spectra that vary the most among the 
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different pepper samples.  Because these spectral ranges where variation occurs are likely 

candidates for multivariate regression modeling studies, the cut off for the wavelength 

window should be where the variations drop back to zero. 

 
 

 
 

Figure 2.15. Expanded (215-300 nm), mean-centered UV absorption spectra of 31 habanero peppers 
extracted with ethanol 
 
 

Figure 2.16 shows a summary of the results of the regression modeling for the 21 

samples used to prepare model number 1.  Figure 2.16a shows a scores plot for the first 

two PLS components in the model.  From the scores plot, which shows the samples 

plotted on the new coordinate system made up of PLS components, there are no apparent 

groupings in the sample set and the first  PLS component appears to be related primarily 

to the concentration of the capsaicinoids (it accounts for 76% of the variance in the 

concentration data).  Figure 2.16b shows a plot of unexplained variance as a function of 
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the number of PLS components in the model.  Figure 2.16c shows a plot of the regression 

coefficients that make up the model as a function of wavelength.  This plot shows the 

values for the different bi coefficients in Eqn. 2.5.  The plot shows that over the 

wavelength range from 215 nm to 300 nm the coefficients vary sinusoidally with some 

being positive and others being negative.  The maximum positive values in the plot occur 

at approximately 230 nm and 280 nm, which correspond to regions in the pepper extract 

spectra that show the most variability for the different samples (see Figures 2.16b and 

2.16c).  Wavelengths in these regions contribute significantly to the regression model in a 

positive sense.  By contrast, the region around 250 nm contributes significantly to the 

regression model in a negative sense. 

Figure 2.16d shows a plot of the capsaicin concentrations predicted by the model 

versus the values obtained by HPLC.  For the calibration set, this linear plot has a slope 

of 0.994, an offset of 0.665, and correlation coefficient of 0.997.  A perfect model would 

have a slope of 1, and offset of 0, and a correlation coefficient of 1.  It should be stressed 

that Figure 2.16d is not a calibration curve.  

While the above model parameters look quite good, the real test of any regression 

model is its ability to predict future samples correctly.  This ability is evaluated in the 

validation phase of regression modeling.  In this part of the study, the spectra of the 10 

samples that were not used to develop a given model were input into the model and the 
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Figure 2.16. Summary of regression results for total capsaicinoids concentration: (a) scores plot; (b) 
residual variance as a function of the number of PCs; (c) regression coefficients as a function of 
wavelength; (d) plot of concentration of total capsaicinoids predicted by the model versus the known values 
 
 
capsaicin levels were predicted using the model and the spectral data.  Table 2.8 gives the 

results obtained for this phase of the study for model number 1.  In this table, the total 

capsaicin concentration (capsaicin plus dihydrocapsaicin) predicted by the model is given 

along with the corresponding value determined by HPLC.  From this data, the errors for 

the individual validation samples were calculated along with the RMSEP for all 10 

samples. 

In developing a regression model, selecting the proper number of PLS 

components to use is an important consideration.  Using too few PLS components will 

result in sub-optimal predictive capability, while using too many PLS components will 

result in over fitting the model.  By using too many PLS components, one risks 

incorporating noise into the model, which has no predictive capability.  As a result, use of 



62 

 

too many PLS components will also reduce the predictive capability of the model.  The 

maximum number of PLS components possible in a model is given by the smaller of: a) 

the number of variables in the model or b) the number of samples in the model minus 

one.  In this study, there were 86 variables (wavelengths) and 21 samples.  As a result, 20 

PLS components would be possible with this set of data.   

In examining Figure 2.16a, it can be seen that two PLS components account for 

98% of the variance in the spectral data and 99% of the variance in the concentration 

data.  Figure 2.16b also indicates that 2 PLS components account for essentially all the 

variance in the data.  This means that 2 PLS components should be all that are needed in 

the model.  However, it is necessary to validate the number of PLS components selected 

to explain the spectral data. 

To determine the optimum number of PLS components to use in the model, the 

predictive abilities of models with two and four PLS components were studied with the 9 

models developed as described above.  Figure 2.17 shows the results of the study in terms 

of a bar graph.  It is clear that in almost all cases, models with four PLS components had 

better predictive capabilities (lower RMSEP) than models with only two PLS 

components.  Only for models 7 and 9 were the RMSEP values almost the same or better 

for two PLS components as opposed to four.  Accordingly, four PLS components were 

used for the models in this study. 
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Figure 2.17. Comparison of RMSEP of 9 test sets with 2 and 4 PLS components 

 
Table 2.9 summarizes the results obtained for the nine regression models prepared 

in this study.  The RMSEP values range from 4 to 8 ppm.  The average RMSEP for all 

nine models made with the pepper extracts was 5 ppm.  This is quite good considering 

that only 21 samples were used in the calibration phase of the regression modeling.  

Smaller error values would be expected if a larger calibration set were employed.   

With the optimal number of PLS components selected, the final step to optimize 

the model is to determine the proper wavelength window to be used in the modeling.  As 

a logical starting point, the peak absorbances of the capsaicinoids will be used.  Varying 

wavelength windows about the peak absorbances were selected, models were made, and 

the concentration of total capsaicinoids was predicted.  The results of these predictions 

can be seen in Figure 2.18. 

The average RMSEP for 228-232 and 278-282 nm window was 9 ppm.  This is 

higher than the average of 5 ppm given by the 215-300 nm window used in the bulk of 

this study.  The higher error value is to be expected.  The univariate method described 
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Table 2.8.  Prediction Results for the ten samples in Test Set 1a 

Total (ppm)b Predicted (ppm)c Error (ppm)d 

144 138 -6 

82.7 78.7 -4 

118 124 6 

124 121 -3 

135 132 -3 

135 135 0 

91.8 88.4 -4 

91.9 90.5 -1 

142 144 2 

163 167 4 

  4e 
aFour PLS components were used in this model, bTotal concentration of 
capsaicin and dihydrocapsaicin as determined by HPLC at 284 nm, cTotal 
concentration of capsaicin and dihydrocapsaicin as predicted by the regression 
model, dabsolute error, eRoot-mean-square error of prediction 
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Table 2.9.  Summary of slope, offset, correlation coefficient, and RMSEP for 9 test sets 

Modela Cal/Valb Slope Offset Correlation RMSEPc 

Set 1 Cal 0.994 0.665 0.997 4 

 Val 1.05 -7.50 0.992  

Set 2 Cal 0.997 0.390 0.998 8 

 Val 1.07 -4.73 0.981  

Set 3 Cal 0.994 0.733 0.997 5 

 Val 1.03 -3.51 0.991  

Set 4 Cal 0.995 0.632 0.997 4 

 Val 1.04 -4.56 0.990  

Set 5 Cal 0.995 0.636 0.997 6 

 Val 0.930 6.16 0.995  

Set 6 Cal 0.994 0.777 0.997 4 

 Val 1.03 -3.48 0.994  

Set 7 Cal 0.994 0.725 0.997 4 

 Val 0.991 2.75 0.994  

Set 8 Cal 0.996 0.458 0.998 6 

 Val 0.987 0.845 0.984  

Set 9 Cal 0.994 0.661 0.997 6 

 Val 1.06 -7.44 0.995  
aFour PLS components were used in all the models, bCalibration (Cal)/Validation (Val),  cRoot-mean-
square error of prediction (ppm) 
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previously shows the departure in linearity from Beer’s Law.  The reduced number of 

wavelengths in the multivariate analysis is removing information that is crucial to the 

prediction of total capsaicinoid concentration in the pepper samples.  The RMSEP values 

show a decreasing trend as the model window increases in the number of wavelengths 

used.  The error values for the window of 210-250 and 260-300 nm were comparable to 

those observed at using the 215-300 nm window.  The RMSEP for the shorter 

wavelength range was slightly higher at 6 ppm.  Though the difference is only 1 ppm, it 

demonstrates that even small changes in the window can cause deviations in the 

predictions from the models.   
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Figure 2.18. RMSEP for nine test sets at various wavelength windows 
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Independent Validation Study 
 

To validate this optimized spectrophotometric procedure, a series of 12 fresh 

pepper samples was prepared and analyzed with a regression model that had been 

prepared over 5 months prior to this validation study.  The UV spectra used in the 

calculations can be seen in Figure 2.19.  Figure 2.20 shows the regression model, which 

used the original 31 pepper extracts to predict the 12 validation samples using 4 PLS 

components from 215-300 nm.  Table 2.10 shows the prediction results obtained for these 

pepper samples analyzed after a two week equilibration period.  The RMSEP obtained for 

these samples was 4 ppm, suggesting that the regression model prepared from the UV 

spectral data is quite stable over time.   

 
 

 
 
Figure 2.19. UV absorbance spectra for 12 pepper extracts used for independent validation of the regression 
model prepared five months earlier 
 
 

The 12 pepper samples were then stored in the dark at room temperature for a 

period of 25 weeks.  During this time, the UV lamp in the spectrophotometer failed and 
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was replaced.  The 12 samples were taken out of storage and their UV spectra were taken.  

Table 2.11 shows the prediction results obtained for these samples.  The RMSEP 

obtained was 5 ppm, which demonstrates that the model is stable over time, as well as 

when instrument adjustments occur. 

A principal components analysis was conducted on the UV spectral data of the 

validation samples taken at two weeks and 27 weeks.  The three dimensional scores plot 

seen in Figure 2.21 shows, graphically, that the samples show a high degree of 

correlation with one another even after a five month storage with no tendency to 

segregate into groups.   

 
 

 
 
Figure 2.20. Summary of regression results for total capsaicinoids concentration in independent validation 
series: (a) scores plot; (b) residual variance as a function of the number of PCs; (c) regression coefficients 
as a function of wavelength; (d) plot of concentration of total capsaicinoids predicted by the model versus 
the known values 
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Table 2.10.  Prediction Results for the 12 samplesa,b 

Total (ppm)c Predicted (ppm)d Error (ppm)e 

114 116 2 

112 119 7 

144 147 3 

229 223 -6 

130 131 1 

115 116 1 

89 90 1 

152 156 4 

119 123 4 

90 92 2 

146 138 -8 

113 111 -2 

  4f 
aFour PLS components were used, bCalibration set used all 31 samples, cTotal 
concentration of capsaicin and dihydrocapsaicin as determined by HPLC at 284 nm, 
dTotal concentration of capsaicin and dihydrocapsaicin as predicted by the regression 
model, eabsolute error, fRoot-mean-square error of prediction 
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Table 2.11. Prediction of 12 samples after light source 
replacementa,b 

Total (ppm)c Predicted (ppm)d Error (ppm)e 

118 115 -3 

115 117 2 

142 145 3 

230 220 -10 

138 129 -9 

121 115 -6 

88 88 0 

154 154 0 

123 120 -3 

93 90 -3 

137 136 -1 

111 108 -3 

  5f 
aFour PLS components were used, bCalibration set used all 31 samples, 
cTotal concentration of capsaicin and dihydrocapsaicin as determined by 
HPLC at 284 nm,  dTotal concentration of capsaicin and dihydrocapsaicin as 
predicted by the regression model, eabsolute error, fRoot-mean-square error 
of prediction 
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Figure 2.21. Three dimensional scores plot of independent validation set at 2 and 27 weeks 
 
 
Determination of Individual Capsaicinoids 
 
 Commercially available capsaicin, available from retailers such as Aldrich, Alfa 

Aesar, and Fluka, contains approximately 65% capsaicin and 35% dihydrocapsaicin, 

along with several other naturally occurring capsaicinoids in miniscule quantities.  As 

mentioned above, capsaicin and dihydrocapsaicin constitute 80-90% of the total 

pungency of a chili pepper.  Throughout this study, the total capsaicin concentration was 

always taken as the sum of the capsaicin and dihydrocapsaicin.  It is possible to 

determine an approximation of the two constituents from the total capsaicinoid data as 

well.   

 Since the total concentration for the two components is the concentration of the 

stock solutions prepared for the initial calibration curve, it is merely a matter of 

determining the relative percent of capsaicin and dihydrocapsaicin present by looking at 

the peak areas on the chromatograms for the calibration standards.  For this study, the 
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residual capsaicinoids, though present in the samples, will be ignored, due to their 

negligible concentrations.  The estimations for the concentrations of capsaicin and 

dihydrocapsaicin can be seen in Table 2.12.  The average values for the percentages of 

capsaicin and dihydrocapsaicin are 69% and 31%, which are slightly different than the 

values of 65% and 35% reported previously by the manufacturer.   

 
 

Table 2.12. Estimated capsaicin and dihydrocapsaicin  
concentrations in commercial capsaicin 

 
C Peak 
Area 

DHC Peak 
Area 

C+DHC 
Peak Area C (ppm) DHC 

(ppm) 
C+DHC 
(ppm) %C %DHC 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

11.3 5.10 16.4 14.2 6.44 20.7 68.9 31.1 

21.4 9.54 30.9 27.4 12.3 39.7 39.1 30.9 

34.7 15.3 50.0 41.7 18.4 60.2 69.4 30.6 

42.0 19.2 61.2 54.7 25.1 79.8 68.6 31.5 

53.2 24.1 77.2 68.6 31.0 99.6 68.9 31.2 

66.6 30.2 96.9 83.9 38.1 122 68.8 31.2 

76.6 35.1 112 96.4 44.2 141 68.6 31.4 

91.2 41.4 133 110 50.0 160 68.8 31.2 

102 45.0 147 125 55.0 180 69.4 30.6 

117 51.0 168 139 60.7 199 69.6 30.4 

Average      69.0 31.0 

 
 

With this concentration data, it was possible to build calibration curves for both 

capsaicin and dihydrocapsaicin in Figures 2.22 and 2.24.  The concentrations of these two 

components in the alcoholic pepper extracts was then modeled based on the UV spectral 

data already collected.  The same nine test set groupings used previously, with a 

wavelength window from 215-300 nm, were used as calibration and validation sets to 
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determine the ability of the model to quantify individual pungent principles instead of 

their total.  Summaries of the regression models can be seen in Figure 2.23 and 2.25.   
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Figure 2.22. Calibration curve for estimated capsaicin concentration 
 
 

The predicted concentrations for capsaicin had RMS error or prediction of 4 to 7 

ppm and had an average value of 5 ppm.  This is comparable to the values of total 

capsaicinoids determined earlier.  The prediction of dihydrocapsaicin had RMSEP values 

of between 2 and 3 ppm for the test sets and an average value of 2 ppm.  The full 

summary of the error values can be seen in Figure 2.26.   
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Figure 2.23. Summary of regression results for estimated capsaicin concentration: (a) scores plot; (b) 
residual variance as a of the number of PCs; (c) regression coefficients as a function of wavelength; (d) plot 
of concentration of capsaicin predicted by the model versus the estimated values 
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Figure 2.24. Calibration curve for estimated dihydrocapsaicin concentration 
 



75 

 

 
 
Figure 2.25. Summary of regression results for estimated dihydrocapsaicin concentration: (a) scores plot; 
(b) residual variance as a of the number of PCs; (c) regression coefficients as a function of wavelength; (d) 
plot of concentration of dihydrocapsaicin predicted by the model versus the estimated values 
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Figure 2.26. Root mean square error of prediction results for individual capsaicinoids in nine test sets 
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Conclusion 
 

The motivation in conducting this study was to show that multivariate regression 

modeling of spectral data could be used as a means of developing regression models that 

could be used to predict pepper pungency from ordinary absorption spectrophotometric 

data.  We chose to predict the sum of the capsaicin and dihydrocapsaicin levels because 

they are the major capsaicinoids present that primarily determine the pepper pungency.  If 

one wanted, however, similar models could be made individually for capsaicin and 

dihydrocapsaicin separately.   

We selected habanero peppers for this study because they are one of the hotter 

commonly available peppers with relatively high levels of capsaicinoids.  Because they 

have high capsaicinoid concentrations, these pepper extracts were more compatible with 

our diode-array absorption detection systems than less pungent peppers that would 

require fluorescence detection.  The smaller 4.0 g sample size was used due to the fact 

that the models developed were aimed at predicting the total capsaicinoid concentration 

of a single pepper and not the relative hotness of a certain type of pepper as was seen in 

previous research.20   

This study has shown that reasonable multivariate regression models can be 

prepared from ordinary absorption spectrophotometric data obtained on pepper extract 

samples using HPLC as a reference method to determine the actual capsaicinoid content 

of the pepper extracts.  For the habanero peppers used in this study, an average predictive 

error of about ± 5 ppm was observed for regression models prepared with 21 samples.  

The average error for the NIR solid support studies previously conducted were between 
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41.71 and 41.91 ppm using the Kubelka-Munk function and log (1/R).  The previous 

study conducted in the UV showed relative error values ranging from 18 to 34%.   

 It should be realized that regression modeling is an ongoing process and models 

can be updated periodically with new samples.  As this is done, the predictive error will 

decrease. 
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CHAPTER THREE 
 

Introduction to Textiles 
 
 

Background 
 

 Textiles are among the most ubiquitous materials in society and have been 

important to mankind since before recorded history.  They have served to protect people 

from the elements, used in the construction of homes and shelters, and provided for 

decorations like wall coverings and objects such as baskets and furniture.  Other uses of 

textiles include tire reinforcement, tenting, filter media, conveyor belts, and insulation.83  

Even though the term textiles has become synonymous with household products and 

apparel, the use of industrial fibers is of ever increasing importance.   

The term textile is derived from the Latin textilis meaning woven.84  Over time, 

the word has taken on broad connotations, that include: (1) staple filaments and fibers for 

use in yarns or preparation of woven, knitted, tufted, or non-woven fabrics, (2) yarns 

made from natural or man-made fibers, (3) fabrics and other products made from fibers 

or yarns, and (4) apparel or other articles made from the above which retain the flexibility 

and drape of the original fabrics. 85   

 Little regard is given as to the many fabrics that are around us everyday and their 

origin.  Though many natural materials are fibrous in nature, not all of them are suitable 

to be made into a fabric.  Corn silk and wood slivers are prime examples of fibrous 

materials that do not have correct properties to be used in making textiles.  Fibers must be 
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thin, flexible, long, cohesive, and strong.84  Of course, each of these factors must be 

modified in various degrees in order to produce a fabric with the desired characteristics.   

The remaining chapters in this dissertation will discuss the use of chemometric 

multivariate analysis of diffuse near-infrared spectra collected from a variety of 

commercially available textiles.  With the countless types and variations of fibers 

available in today’s market, it is necessary to provide some background outlining general 

information on textile fibers.  The current chapter will present relative information 

pertaining to the taxonomy, historical background, chemical and physical characteristics 

of fibers, and various analytical methods of textile identification. 

 
Fiber and Textile Taxonomy 

Yarns and fibers are interlaced or entangled in a specific manner to produce the 

planar structure commonly referred to as a textile fabric.  A diagram of this arrangement 

can be seen in Figure 3.1.  The individual yarns are continuous strands made up of textile 

fibers.  The structural arrangement and orientation of the molecules that make up the 

fibers will dictate the fibers’ properties.   

The broad spectrum of textile fibers can be classified into two broad categories 

based on the chemical makeup: natural fibers and man-made or manufactured fibers.  A 

general flowchart for the divisions can be seen in Figure 3.2.  Fibers in a textile may be 

either staple or filament.  Staple fibers are relatively short, measuring only a maximum of 

a few inches in length.  Filament fibers are relatively long and can reach up to yards in 

length.86   

The fibers that come from natural sources and do not require formation or 

reformation are classed as natural fibers.85 Natural fibers that come from  plant or 
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vegetable origins are composed of cellulose (Figure 3.3), which is a polymeric substance 

made from 1,4-β-anhydroglucose subunits, connected by β-ether linkages,85 bound to 

lignin and associated with varying amounts of other natural materials.83   

 
 

 
 

Figure 3.1. Construction breakdown for a textile (Modified from reference 84. Copyright 1996 Prentice-
Hall Inc.) 
 
 

 
 
Figure 3.2. General taxonomy breakdown for fiber classes (Adapted from reference 85. Copyright 1986 
Noyes publications) 
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Figure 3.3. Cellulose molecule comprised of two β-D-glucose residues (Modified from reference 84. 
Copyright 1996 Prentice-Hall Inc.) 
 
 

The number of cellulosic repeating monomers can be less than 1,000 and up to as 

many as 18,000,  depending on the fiber source.  Being a hemiacetal, cellulose is 

hydrolyzed in dilute acid solutions to form the monosaccharide glucose.  Primary and 

secondary hydroxyl functional groups are the predominant reactive sites in cellulose with 

the primary moieties being the more reactive.   

Plant-based natural fibers, also called cellulosic fibers, are further segregated by 

which part of the plant the fiber is derived from.83  Leaf fibers are obtained from the 

leaves of monocotyledonous plants, from the fibro-vascular systems, mostly from tropical 

regions.  Examples of commercially important leaf-based fibers include abaca, sisal, and 

henequen, which are used for tasks such as cordage due to their hard and robust nature.  

Bast fibers are procured from the bast tissue or bark of a plant’s stem.  Common 

examples of bast fibers include flax, hemp, jute and ramie, also called soft-fibers that are 

converted into textiles, thread, yarn, and twine.  The multi-celled fibers of this category 

are long and can readily be split into finer cells.  Seed hair fibers, such as cotton, kapok, 

and the flosses, are obtained from seeds, seedpods, and the inner walls of the fruit.  The 

fibers from this grouping are short and single celled.  The final grouping of plant-based 

natural fibers is that of those from more obscure sources.  They include fibers obtained 
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from sheathing-leaf stalks of palms, stem segments, and fibrous husks like piassava and 

coir.  These fibers are often used as broom bristles, matting, and stuffing because of their 

straw-like, woody, and coarse nature.   

 Natural fibers can also be based on proteins and fall under the category of animal 

fibers.  Protein fibers are formed naturally from the condensation of α-amino acids to 

form polyamide units with various substituents on the α-carbons.85  The various protein 

units can be seen in Table 3.1.  The sequence and type of amino acid residues in the 

condensed polymer chain will dictate the overall properties of the resultant fiber.  Protein 

fibers can be grouped into two subclasses: (1) keratin, derived from hair or fur, and (2) 

secreted from insects.  Keratin fibers are characterized by proteins that are highly cross-

linked by disulfide bonds in the cystine residues in the protein chain.  Secreted fibers tend 

not to be cross-linked and are derived from a smaller array of less complex amino acids.  

Keratin fibers exhibit helical structures periodically throughout; however, secreted fiber 

protein chains are arranged in a linear pleated-sheet structure with hydrogen bonding 

between amide groups in adjacent protein chains.  On average, protein fibers can be 

regarded to have moderate strength, resiliency, and elasticity.  Though they do not build 

up a static charge and are fairly resistant to acids, protein fibers are readily attacked by 

bases and other oxidizing agents.  The two main protein fibers of commercial interest are 

wool and silk. 

The final class of natural fibers is that of inorganic fibers, also known as mineral 

fibers.  The common example of an inorganic fiber is asbestos, or “rock wool”.84  Despite 

the fact that the material is formed inside of a rock, it can be spun and made into fabrics 
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just as its plant and animal derived cousins can.  A complete classification scheme for 

natural fibers can be seen in Figure 3.4.   

 
 

Table 3.1. Protein Structures85  
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Figure 3.4. Detailed taxonomy for natural fibers (Modified from reference 84. Copyright 1996 Prentice-
Hall Inc.) 
 
 
 Man-made, synthetic, or manufactured fibers are those that are made by chemical 

synthesis followed by fiber formation.  Manufactured fibers can also be produced by 

taking naturally occurring polymers, such as cellulose, dissolving and then regenerating 

them.85  Two sub-classifications exist for manufactured fibers: natural polymer and 

synthetic polymer.87  Natural polymer manufactured polymers are derived from sources, 

such as regenerated cellulose and proteins.  The first recorded patent for a natural 
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polymer manufactured fiber is credited to Count Hilarie de Chardonnet of France in 1885 

for the production of an artificial silk.83  The fabric was, in fact, modern day rayon, which 

was synthesized by converting nitrated cellulose into a fiber and then chemically 

regenerating the cellulose.  This was done because the flammability of cellulose nitrate 

was extremely hazardous.  Chardonnet’s discovery paved the way for more work to be 

done in the area of man-made fibers from the late 1880’s to the 1930’s.  Cellulose 

remained the basis for most of the work accomplished during this period.   

 In the 1920’s and 1930’s, research conducted, especially that of Hermann 

Staudinger and W. H. Carothers positioned the foundation for future advances, 

particularly those relating to synthetic fibers.  The 1953 Nobel prize winner, Staudinger, 

proved that polymers were molecules with a high molecular weight.  Carothers was 

responsible for defining the two types of polymerization, addition and condensation, 

demonstrating that polymers of a high molecular weight could be synthesized, and that 

some of these polymers could be formed into filaments, resulting in oriented, strong 

fibers.88  Carothers’ work led in 1939 to two major breakthroughs.  The first was the 

commercialization of nylon.  Nylon was the first true synthetic polymer fiber.  The 

second milestone was the use of the melt spinning technique to form the nylon fibers 

after they were synthesized.  By 1977, the global production of manufactured fibers was 

approaching that of natural fibers.   

 Whether naturally occurring or synthesized, polymers must meet several 

conditions in order to be suitable for fiber production.  To be of use in the textile 

industry, the fibers must be capable of being converted into fibrous form and be of 

sufficient molecular weight.  The molecular weight will dictate the overall fiber 
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properties of the finished fiber.  A complete categorical breakdown of the types of 

manufactured fibers  can be seen in Figure 3.5.   

 
 

 
 
Figure 3.5. Detailed taxonomy for manufactured fibers (Modified from reference 84. Copyright 1996 
Prentice-Hall Inc.) 
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History and Background of Natural Fibers 

 
1. Cotton.  The first use of the cotton plant to make textiles remains unknown as 

its use predates recorded history.  There is evidence for the existence of cotton plants in 

Egypt as early as 12,000 BC.  Archeological findings prove that cotton was in use as of 

3,000 BC.  Records of the cultivation of cotton plants can be traced to 700 BC in the 

Indian subcontinent.  Herodotus, a Greek historian and often dubbed the “father of 

history”,89 described trees growing in the wild in India, bearing wool as soft and beautiful 

as that of the sheep in Greece.83  This description was chronicled in his writings in the 5th 

century BC.  The account may not be reliable due to the debate as to the authenticity of 

Herodotus’ work.90  Alexander the Great was said to have introduced Indian cotton to 

Egypt in the 4th century BC, where it later spread to Greece, Italy, and Spain.  The 

discovery of cotton in North America was made by Christopher Columbus on his historic 

voyage in 1492.  It was not until 300 years later when the first cotton mill was introduced 

in Beverly, Massachusetts.  Eli Whitney was granted a patent for the cotton gin in 1794. 

 Cotton is a member of the Malvaceae or mallow family.  It is a plant of the genus 

Gossypium with important species being hirsutum, barbadense, arboretum, and 

herbaceum.  Gossypium hirsutum originates from Central America and can be traced 

back to the time of the Mayan civilization.  The many varieties of Gossypium hirsutum 

comprise those grown in the southern United States.  Cotton is a single-cell fiber that 

originates in the epidermis of the seed coat at the time when the flower opens.  The fibers 

of the cotton boll grow to a maximum of 2,500 times their overall width.  The cells that 

make up the fibers are initially composed of a thin wall, known as the primary wall that is 

covered by a waxy pectinaceous material which encloses the cytoplasm.  When the boll is 
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half mature, cellulose is deposited on the inside of the thin casing to become what is 

known as the secondary wall.  The cellulose layers are continually built up until only a 

central cavity called the lumen is left clear (Figure 3.6).  A microscope magnified view of 

cotton fibers can be seen in Figure 3.7. 

 
 

 
 

Figure 3.6. Cross-section of mature cotton fiber (Modified from reference 86. Copyright 2002 Prentice-Hall 
Inc.) 
 
 
 In 1999, cotton made up 54% of the fibers that went into apparel, making it the 

most important apparel fiber in the world, as well as being the cash crop of more than 80 

countries.  Major producers of cotton today include China, the United States, India, 

Eastern Europe, Pakistan, Turkey, and Brazil.86  Because of the importance of cotton, 

recent advances in plant breeding have produced cotton plants that  are resistant to 

insects, herbicides, and stress.   

Since cotton is primarily cellulose, 95 wt%, it typically behaves like a cellulose 

polymer.  Other components of the cotton fiber include waxes, pectinaceous substances, 

protein, organic acids, sugars, and nitrogenous matter.91  These secondary materials are 

located mostly in the primary cell wall.  Residual protein is the component second only to 
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Figure 3.7. Cross-section and longitudinal view of (a) unmercerized and (b) mercerized cotton fibers 
(Modified from reference 84. Copyright 1996 Prentice-Hall Inc.) 
 
 
cellulose in the cotton fiber.  The protein is what remains after the protoplasm of the cell 

has dried.  The relative weight percentages for the component parts of a cotton fiber can 

be seen in Table 3.2. 

 
 

Table 3.2. Composition of Typical Cotton Fibers83 
 
 Composition, % of dry weight 
 Typical Range 
cellulose 94.0 88.0-96.0 

protein 1.3 1.1-1.9 

petic substances 1.2 0.7-1.2 

ash 1.2 0.7-1.6 

wax 0.6 0.4-1.0 

total sugars 0.3  

pigment trace  

others 1.4  

 
 

2. Flax.  Another cellulosic natural fiber is flax.  The fibers are derived from the 

stem of the annual plant, Linum usitatissimum that grows in temperate and subtropical 
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areas of the world.85 Flax is used to manufacture linen textiles and fabrics.  The word 

linen is derived from the Celtic term llin.92  The history of flax fibers is also one of the 

oldest in human history.86  Remnants of linen fabric have been found in prehistoric lake-

side settlements in present day Switzerland.  The mummified pharaohs of ancient Egypt 

were wrapped in fine linen cloth as far back as 3,000 years ago.  Until the 18th century, 

the linen industry thrived in Europe.  The invention of power spinning methods drove 

cotton to replace flax as the most used fabric.86, 92  Today, most flax is produced in 

western Europe, in Belgium, Italy, Ireland, and the United Kingdom.  Flax is also 

cultivated in Belarus, Russia, as well as New Zealand.  The use of flax has been greatly 

reduced, due to the extensive labor and cost of producing linen. 

 
 

 
 

Figure 3.8. Cross-sectional view of a flax fiber (Modified from reference 86. Copyright 2002 Prentice-Hall 
inc.) 
 
 

The flax fibers are cleaved from the plant using a fermentation process called 

retting.  Fermentation accelerated by acids or bases have been used with success; 

however, the natural fermentation process works just as well and at a lesser cost.  Two 

processes called scotching and hackling are done to remove all excess woody material 
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and orient the fibers for spinning respectively.  The desired bast fiber is located between 

the central woody core of the plant and the outer two layers of the stem, the cortex and 

epidermis (Figure 3.8). 

 
 

 
 

Figure 3.9. Photomicrographs of flax fiber (a) Cross-section and (b) longitudinal view (Modified from 
reference 84. Copyright 1996 Prentice-Hall Inc.) 
 
 
 As with cotton, flax is almost pure cellulose.  The two fibers also share many of 

the same physical properties as a result.  Flax fibers are comprised of many individual 

fiber cells, or fibrils.  The average molecular weight for this cellulosic polymer chain is 

about 3 million.  The cross-section of the flax fibers (Figure 3.9) is polygonal with a large 

lumen.85 Flax is highly resistant to bases, and chemical bleaches.92  Flax is also resistant 

to moths and other insects.  Exposure to acid and direct sunlight will cause damage flax 

fibers.   

 
3. Other Cellulosic Fibers.  Natural cellulose fibers are found in most localities 

throughout the world.  There are a large variety of  cellulosic fibers that are of importance 

to the world economy that are not cotton or flax.  The term hard fiber is used to indicate 
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that the fiber in question was derived from the leaf of a plant, while a soft fiber is 

obtained from the base or stem of the plant.92   

Abaca is a hard fiber extracted from the Musa testilis plant that is native to the 

Philippines.83  The fiber, also known as Manila hemp, was of prime importance due to its 

use as cordage in the Napoleonic and Crimean Wars.92  Finer grades of abaca can also be 

woven into fabrics for uses as tablecloths, placemats, and purses in addition to its use in 

ropes and twine.  Another leaf fiber is sisal, which is derived from fibers taken from the 

Agave sisalana plant.  Like abaca, sisal is composed of cellulose and lignin; however, 

sisal also contains other carbohydrates, hemicelluloses, pectins, and wax.  Because it 

comes from the stiff, parallel fibers of the leaf, sisal has a high degree of tensile strength.  

It has been used in the manufacture of ropes, sacking, twine, sailcloth, and cable 

insulation.  Other types of hard leaf fibers include: henequen, cantala, istle, Mauritius, 

phorium, snsevieria, caroa, pissava, piña, and broomroot.83, 86  All of these hard fibers 

have similar physical characteristics. 

Of the soft-bast fibers, flax is the most popular.  Another soft-bast fiber is hemp, 

which is derived from the annual plant Cannabis sativa.83  Early reports of cultivation of 

hemp come from China in 2,800 BC.92  The introduction of the plant to Europe came 

prior to the Christian era.  The use of hemp originally was, as is with most of the bast 

fibers, as cordage; however, abaca and sisal, and then later manufactured fibers, have 

supplanted the use of hemp in rope.  Ramie is a prehistoric soft fiber that is also known as 

rhea in India and China grass in China.  It was not introduced to Europe until the 18th 

century and America in 1850.  Applications for ramie include its use as twine, fishnets, 

industrial sewing thread and packing, canvas, fire hose, filter cloths, rugs, upholstery, 
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clothing, and household fabrics.  Jute is similar to hemp, and can be used as a 

replacement for hemp.  As with most cellulose-based materials, jute is damaged by 

exposure to acid.  Jute is also damaged by alkalis and damaged by bleaching.  Other types 

of soft-bast fibers include: kenaf, roselle, urena, China jute, and sunn hemp.   

A few other examples of cellulosics are found in use today.  Two seed fibers are 

kapok and coir.86  Kapok is taken from the see pod of the tropical tree Ceiba pentandra.  

Because it is hollow, the fiber itself is buoyant.  This characteristic makes it a perfect 

material to stuff life jackets; nevertheless, different foams and polyester fiberfill has 

largely superseded the use of kapok.  Coir is a coarse, stiff, and strong fiber made from 

the husk of a coconut.  It is often used as cordage and rough matting.  Other seed fibers 

with minor amounts of use include East Indian basla, Indian kumbi, American milkweed 

floss, and cattail.83 A more complete listing of plant fibers of commercial interest can be 

found in Table 3.3.  Bark fiber cloth, known as Tapa, is produced by using the inner bark 

of the paper mulberry tree, Brousonnetia papyrifera.84  The bark is pounded into bark 

cloth in regions like the Pacific islands and is considered a natural non-woven fabric.  

Spanish moss, related to the pineapple, has been used in the southern United States as a 

stuffing material as an alternative to horsehair.   

 
4. Wool.  The highly crimped protein hair fiber wool is procured from sheep.  The 

variety of the sheep will determine the fineness, structure, and properties of the fiber.  

The varieties of sheep that are sheared for their wool include the Merino, Lincoln, 

Leicester, Sussex, and Cheviot breeds.85  The use of wool by man for clothing and other 

purposes dates back before written records were kept.  There is evidence that wool was 

used as household items and clothing by the Egyptians, Babylonians, and Romans.92  It  
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Table 3.3. Selected Plant Fibers of Commercial Interest83 
 
Commercial name Botanical name Source Use 

Leaf fibers 

Abaca Musa textilis Borneo, Philippines  cordage 

Cantala Agave cantala Philippines, Indonesia cordage 

Caroa Neoglaziovia vareigata Brazil cordage, coarse textiles 

henequen Agave fourcroydes Austrailia, Cuba, Mexico cordage, coarse textiles 

Istle Agave (various) Mexico cordage, coarse textiles 

Mauritius Fureraea gigantea Brazil, Venezuela, tropics cordage, coarse textiles 

phormium Phorium tenax Argentina, Chile cordage 

bowstring hemp Sansevieria Africa, Asia, S. America cordage 

Sisal Agave sisalana Haiti, Java, Mexico cordage 

Bast fibers 

China jute Abutilon theopharasti China cordage, coarse textiles 

Flax Linum usitatissimum N. S. temperate zones textiles, threads 

Hemp Cannabi sativa All temperate zones cordage, oakum 

Jute Corchorus capsularis India cordage, coarse textiles 

Kenaf Hibiscus cannabinus India, Iran, Russia coarse textiles 

Ramie Boehmeria nivea China, Japan, US textiles 

Roselle Hibiscus sabdarifa Brazil, Indonesia cordage, coarse textiles 

Sunn Crotalaria juncea India cordage, coarse textiles 

Cadillo Urena lobata Africa, Brazil cordage, coarse textiles 

Seed hair fibers 

Cotton Sossypium sp. US, Asia, Africa textiles, cordage 

Kapok Ceiba pentranda tropics stuffing 

Miscellaneous fibers 

broom root Muhlenbergia macroura Mexico brooms, brushes 

Coir Cocos nucifera tropics cordage, brushes 

crin vegetal Champaerops humilis North Africa stuffing 

Piassava Attalea funifera Brazil cordage, brushes 
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was not until the mid 1600’s that wool was introduced to the colonies in North America, 

following its use in Italy, England, and Spain.  Though the consumption of wool has 

declined in recent years due to the assortment of man-made fibers, which have similar 

physical properties, wool is still used in the United States.   

 
 

 
 

Figure 3.10. Physical structure of a wool fiber (Modified from reference 86. Copyright 2002 Prentice-Hall 
Inc.) 
 
 
 The exterior of the wool fiber is covered by a thin membrane called the epicuticle 

(Figure 3.10).  This membrane protects the next layer which is known as the cuticle.  

These layers of protection insulate the cortex, which is made up of long, flattened, 

tapered cells.  The grouping of cells on the different sides of the fiber, the ortho- and 

paracortex, respond differently to moisture and temperature leading to wool’s natural 

crimp.  The crimp is what helps the fibers cling to one another in a yarn, increasing its 

overall strength and resiliency.  Within the cortical cells, are a collection of fibrils that 

delineate down until the wool biopolymer is seen.86   
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Wool is a highly cross-linked keratin protein polymer comprised of over 17 amino 

acid residues (Figure 3.11).  The protein chains in wool are connected periodically 

through the disulfide cross-linked cystine.  The average amino acid contents of the major 

varieties of wool can be found in Table 3.4. 

 
 

 
Figure 3.11. Chemical formula for wool molecule (Modified from reference 86. Copyright 2002 Prentice-
Hall Inc.) 
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Table 3.4. Amino Acid Contents in Wool Keratin Fibers85  
 

Amino Acid Content in Keratina  Amino Acid Content in Keratina 

Glycine 5-7 Alanine 3-5 

Valine 5-6 Leucine 7-9 

Isoleucine 3-5 Proline 5-9 

Phenylalanine 3-5 Tyrosine 4-7 

Tryptophan 1-3 Serine 7-10 

Threonine 6-7 Cystine 10-15 

Methionine 0-1 Arginine 8-11 

Histidine 2-4 Lysine 0-2 

Aspartic acid 6-8 Glutamic acid 12-17 

aContent g/100g Wool 
 
 

Approximately 40% of the protein chains in wool are in the form of an α-helix 

(Figure 3.12), due to the chains spiraling onto themselves and being held together by 

internal hydrogen bonding.  Close packing of the polymer chains is not possible at points 

where the periodic cystine crosslinks or where proline and other amino acids with bulky 

substituents exist.  This results in a less regular non-helical geometry.   

 The 1998 domestic consumption of wool in the United States was 190 million 

pounds.  This amount was approximately 1.0% of the all the fibers used in that same 

year.86  The main use of wool is in the manufacture of business suits due to the fabric’s 

performance and durability.  Though the amount of wool used in furnishings is quite low, 

it has been established as the standard by which carpets are judged.  Many fire-safety 

blankets used in chemical and other types of laboratories are made from wool.  Industrial 
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felts that are used as insulators to cut down on machine noise as well as absorb oil and 

other spills are derived from wool.  Landscapers often use wool mulch mats to aid in 

weed control.   

 
 

 
 

Figure 3.12. α-helix geometry of wool (Modified from reference 86. Copyright 2002 Prentice-Hall inc.) 
 
 

5. Silk.  The natural protein polymer known as silk is excreted by the moth larva 

Bombyx mori, which is more commonly known as a silkworm.85  Silk is a fine continuous 

monofilament fiber which has high luster and strength.  The fiber and textiles made from 

it are often considered prestigious or a status symbol due to the high cost of silk.  There 

have been several business ventures attempted to commercialize silk from spiders, but all 

of the attempts met with failure.  The amino acid content for the silk fibroin fibers can be 

seen in Table 3.5.  The predominant amino acids found in fibroin are glycine, alanine, 

tyrosine, and serine.   
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Table 3.5. Amino Acid Contents in Silk Fibroin of the Bombyx mori larva)85 

 
Amino Acid Content in Fibroina  Amino Acid Content in Fibroina 

Glycine 36-43 Alanine 29-35 

Valine 2-4 Leucine 0-1 

Isoleucine 0 Proline 0-1 

Phenylalanine 1-2 Tyrosine 10-13 

Tryptophan 0-1 Serine 13-17 

Threonine 1-2 Cystine 0 

Methionine 0 Arginine 0-2 

Histidine 0-1 Lysine 0-1 

Aspartic acid 1-3 Glutamic acid 1-2 

aContent g/100g Fibroin 

 
 

Without the presence of cystine, silk is essentially an uncross-linked polymer and 

has a relatively simple amino acid composition compared to keratin fibers, such as wool.  

With no cross-linking agents and limited numbers of bulky substituents, fibroin 

molecules align themselves parallel to each other and hydrogen bond to form a pleated or 

beta sheet structure (Figure 3.13).  

The liquid silk protein is secreted from two glands at the head of the larva.  The 

fibers emerge from the spinneret and harden into a single strand by a water-soluble 

protective gum called sericin.85, 86  The cocoons of the larva are then soaked in hot water 

to loosen the sericin binding agent.  Once the binding agent has released the fibers, they 

are then unwound and washed in warm detergent solutions to remove the remaining  
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Figure 3.13. Beta sheet structure of silk fibroin 
 
 
sericin.  The finished fibers are strong with moderate degrees of recovery from 

deformation.  Silk is soluble in aqueous lithium bromide, phosphoric acid, and 

cuprammonium solutions.  Silk show resistance to damage by acids; however, with long 

exposure, the fibers will deteriorate.  Biological agents have little effect on silks, but the 

fibers do yellow and lose strength when put in direct sunlight.  Tin and other metal salts 

are used to weight silk fibers.  This makes the silk more susceptible to light-induced 

oxidative attack.   

 
6. Other Natural Protein Fibers.  Other major keratin based fibers, sometimes 

called specialty wools,86 include mohair, cashmere, llama, alpaca, and vicuña.85  Mohair 

and cashmere are resilient fibers obtained from the angora and cashmere goats, 

respectively.  Mohair posses a brilliant luster and is often blended with other fibers to 

impart this luster on the finished textile.  There is a scratchy feel to mohair that is not 
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seen in cashmere.  Cashmere fibers are extremely fine and soft and used in luxury 

applications.   

Llama, alpaca, guanaco, and vicuña are all part of the camel family or cameloids.  

These animals are raised in South America, and the fibers derived from them are usually 

found in expensive luxury items like those made from cashmere.85  Both guanaco and 

vicuña are now protected.  As of mid-1999, it was illegal to bring any items into the 

United States that contained fibers from the vicuña because of the Endangered Species 

Act.86  

 
7. Inorganic Fibers.  Asbestos has been known since the time of the ancient 

Greeks for its valuable property of being flame retardant.  In fact, the term asbestos is 

derived from a Greek word ασβεστος, meaning “will not burn”.  The material can melt, 

but only when the ambient temperature reaches 1450-1500 °C.  Various types of asbestos 

exist, including hydrated silicates of magnesium and calcium, along with other minerals.  

The best fiber-quality asbestos, used for textiles, is chrysolite asbestos, Mg3(Si2O5)(OH)4, 

was mined in the eastern townships of Quebec.86  Chrysolite asbestos is also known as 

white asbestos.  Amosite, Fe7Si8O22(OH)2, or brown asbestos is another type of asbestos 

found in South Africa.  Blue asbestos, Riebeckite, is found in Africa and Australia.93   

In the past, asbestos had been used as lamp wicks and cleaning cloths.  Asbestos 

has also been used in sheetrock taping, vinyl flooring, plasters and stuccos, roofing tar, 

siding, countertops, acoustical ceilings, brake pads, as well as fireproof clothing and 

blankets.  The United States Environmental Protection Agency (EPA) has made efforts to 

ban or restrict the use of asbestos in consumer products.  Of all the types of asbestos, blue 

is considered to be the worst biohazard.  Some conditions linked to asbestos include 
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asbestosis, mesothelioma, and cancer.93  All of these diseases are a direct result of 

asbestos fibers entering and being lodged in the inner lining of the lungs. 

 
History and Background of Manufactured Fibers 
 

1. Rayon.  It was observed by Frederick Schoenbein, in 1846 that cellulose 

pretreated with nitric acid would dissolve in a mixture of ether and alcohol.  This process 

may have lead to mass production of rayon fibers; however, the resulting fibers were 

found to be highly explosive.  The dangerous nitrated cellulose was converted back to 

ordinary cellulose by Count Hilarie de Chardonnet in 1889.  Rayon fibers are regenerated 

cellulose produced from a solution of cellulose, usually obtained from wood pulp, cotton 

waste, or other sources, that is extruded through a spinneret and subsequently regenerated 

into fiber form.85 The United States Federal Trade Commission defines rayon as a 

manufactured fiber composed of regenerated cellulose in which substituents have not 

replaced more than 15% of the hydroxyl hydrogens.86  Rayon was the first regenerated 

manufactured fiber to be produced commercially.  Viscose rayon, cuprammonium rayon, 

and saponified cellulose acetate are the three different forms of rayon produced, by 

various methods.  Viscose rayon is the most important and least expensive to produce 

among these fiber types.   

Viscose rayon production in the United States was begun in 1911.  The fibers 

were originally dubbed artificial silk, as was de Chardonnet’s original patented material, 

until the name rayon was adopted in 1924.86  Viscose rayon fibers are produced by what 

is known as the viscose process (Figure 3.14), developed in 1891 by Cross, Bevan, and 

Beadle in England.  The overall reaction can be seen in Figure 3.15.  First, the  
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Figure 3.14. The viscose rayon production process (Adapted from reference 83. Copyright 1984 John 
Wiley & Sons) 
 
 
cellulose sheet raw material is converted to alkali cellulose by placing the sheets in a 

steeping press and filling the press with a closely controlled solution of 18-20 wt% 

sodium hydroxide (±0.2 wt%).83  After the steeping process is complete, the cellulose is 

pressed under high pressure to remove as much excess sodium hydroxide.  The resulting 

material is then shredded to allow for a more even spread of the caustic sodium  

 
 

 
 

Figure3.15. Synthesis of rayon from cellulose 
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hydroxide over the surface of the fibers.   Next, the cellulose, often called cellulose cruds, 

is aged in covered containers.  After aging, the crumbs are combined with carbon 

disulfide to form cellulose xanthate.  The material is then placed in a dilute sodium 

hydroxide solution and stirred before it allowed to age and ripen until the proper viscosity 

is achieved.   

The cellulose solution is then forced through the spinneret into a dilute sulfuric 

acid solution.  The acidic environment will decompose the xanthate and regenerate the 

cellulose in what is call wet-spinning.  Various additives can be placed in the acid bath, 

such as sodium sulfate, zinc sulfate, and glucose.  The additives can regulate the 

decomposition of the xanthate as well as the regeneration of the cellulose itself.  Regular 

viscose rayon is characterized by lengthwise lines called striations (Figure 3.17a).   

 
 

 
 

Figure 3.16. Orbital interactions in cuprammonium cellulose (Modified from reference 83. Copyright 1984 
John Wiley & Sons) 
 
 

Cuprammonium rayon (CAR) is produced by adding cellulosic materials to a 

solution of cuprammonium hydroxide at low temperature under nitrogen.  Then, the 

solution is extruded through a spinneret into a water bath, followed by a sulfuric acid 
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rinse to decompose the cuprammonium complex formed (Figure 3.16) and to regenerate 

the cellulose.  The process was discovered by Louis Despeissis in 1890.  The 

commercialization of cuprammonium rayon was achieved in 1919 by J. P. Bemberg.86   

CAR is more silk-like than any of the other cellulose derived fibers.85  This 

physical attribute comes with an increase in the cost of production as well.  

Photomicrographs of both viscose and cuprammonium rayon can be seen in Figure 3.17b. 

 
 

 
 

Figure 3.17. Photomicrographs of (a) viscose rayon x2000 and (b) cuprammonium rayon x1100 (Modified 
from reference 85. Copyright 1986 Noyes publications) 
 
 
 Since it is derived from cellulose, the chemical properties of rayon are similar to 

those of cotton.  Whether in dilute or concentrated solution, bases at low temperatures do 

not significantly affect rayon fibers.  However, dilute acids at elevated temperatures will 
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attack rayon at a faster rate than that of cotton.  Oxidizing agents have little effect with 

the exception of hydrogen peroxide, which readily attacks rayon.85  Rayon is resistant to 

most microorganisms and insects, with an exception being silverfish.  Excessive sunlight 

exposure will cause a reduction in the fibers’ strength and resiliency.85   

 
2. Cellulosic Esters.  The cellulosic esters, or acetates for short, originated in 

Europe during World War I.  The Dreyfus brothers experimented with acetate in 

Switzerland, before going to England.  They managed to perfect an acetate dope used as a 

varnish for airplane wings.86  The two major cellulosic esters are acetate, also known as 

secondary acetate, and triacetate.  The Federal Trade Commission defines acetate fibers 

as manufactured fibers in which the fiber-forming substance is cellulose acetate.85, 86 

When a cellulose fiber has more than 92% of its hydroxyl groups acetylated, it is called a 

triacetate fiber.  Acetate fibers are categorized as those cellulose acetates that have less 

than 92% of their hydroxyl groups acetylated.  Structures for both polymers can be seen 

in Figure 3.18.   
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Figure 3.18. Chemical structures for the cellulose esters (a) acetate and (b) triacetate 
 
 
 The preparation of triacetate fibers begins with purified cellulose, usually wood 

pulp or cotton linters.  They are mixed with glacial acetic acid, acetic anhydride, and a 
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sulfuric acid catalyst.  The solution is left to age for 20 hours, which allows for partial 

hydrolysis to occur.  The triacetate is precipitated as an acid-resin flake.  These flakes are 

then dissolved in acetone, filtered, solution spun, and then dried with warm air.86  Acetate 

is obtained by an acid catalyzed hydrolysis of triacetate to achieve an average degree of 

substitution of 2.4 acetyl groups on each glucose unit.83   

 While both acetate and triacetate fibers are resistant to dilute acid solutions, both 

are readily attacked by concentrated acids that cause hydrolysis and removal of the 

acetate ester groups.  Both cellulosic esters show resistance to alkali solutions; 

nonetheless, acetate is more susceptible to attack than triacetate.85  Microorganisms and 

insects have very little effect on acetates.  Both acetates exposed to direct sunlight 

perform admirably, but the greater stability was found to be with triacetate.   

 
3. Polyamides.  Polyamide fibers include the nylons as well as the aramid fibers, 

which are both formed from polymers of long-chain polyamides.  Nylon fibers have less 

than 85% of their polyamide units attached directly to two aromatic rings, while aramid 

fibers have more than 85% of their amide groups directly attached to aromatic rings.85   

Nylon was the first synthetic manufactured fiber, and the first fiber developed in 

the United States.  DuPont initiated a research effort to develop nylon fibers in 1928.86 

Wallace Carothers’ team at DuPont synthesized a wide assortment of polymers.  It was 

not until a team member discovered that the solutions they were making could be drawn 

out into a stable solid filament that Carothers and co-workers began to concentrate on 

textile fibers.  Commercial release of nylon into the marketplace occurred after 193992 

with a successful pilot plant.  Two common examples of nylons are nylon-6 and nylon-
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6,6 (Figure 3.19).  The name nylon was originally going to be No-Run, but DuPont felt 

that making an unjustified claim about the new polymer would not be practical.   

 
 

 
 

Figure 3.19. Chemical structures for common (a) nylon-6,6 and (b) nylon-6 
 
 
 Both nylons have similar properties.  Nylon polymers are extremely strong and 

durable.85, 86 A ring-opening chain growth polymerization of caprolactam in the presence 

of water vapor and an acid catalyst is the method to synthesize nylon-6.  The fibers are 

melt-spun at 250-260 °C after the water and acid have been removed.  Nylon-6,6 is 

produced by a step-growth polymerization of hexamethylene diamine and adipic acid and 

melt spun at 280-290 °C.  The polyamide chains, which vary in degrees of 

polymerization from 100 to 250 monomer units, lie parallel to one another in a pleated 

sheet geometry similar to that of natural silk protein polymers.  The chains are held 

together by hydrogen bonding between the amide linkages on neighboring chains.   

 Nylon fibers are moderately hydrophilic with the moisture uptake into the fibers 

of up to 4-5% under standard conditions.85  With a relative humidity of 100%, the 

moisture regain can be as high as 9%.  Nylons are soluble a variety of solvents like 

phenols, 90% formic acid, and benzyl alcohol.  Acids, bases, and oxidizing agents show 

little effect on nylon fibers.  Only under extreme conditions are the fibers degraded by 

these reagents.   
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 Nylon is one of the most widely used fibers in the United States.86  End use 

applications of nylons include hosiery, lingerie, underwear, sweaters, and other knitted 

goods.85 Their use has been extensive in garments that are light and sheer such as 

windbreakers, nightgowns, pajamas, and lightweight robes.  Perhaps the most important 

use of nylon today is in carpets, due to its aesthetic, appearance, durability, and ability to 

be cleaned in place.  Industrial applications vary to include tire cordage as well as 

automobile interiors.   

 Aramid polyamide fibers are produced from a long chain of synthetic polyamides 

in which at least 85% of the amide linkages are attached to aromatic rings.86  These 

polyamides are characterized with high melting points and excellent property retention 

and durability even at extreme temperatures.  The fibers are moisture resistant and 

inherently flame retardant.  Aramids are the strongest of the man-made fibers, depending 

on polymer structure, spinning method, and degree of orientation of the fiber.85  Nomex 

and Kevlar are two examples of common aramid fibers commercially available (Figure 

3.20).  

 
 

 
 

Figure 3.20. Chemical structures for common aramid fibers (a) Nomex and (b) Kevlar 
 
 
 The aramids are synthesized through a step-growth polymerization of aromatic 

diacids, like terephthalic or isophthalic acid, with aromatic diamines in a polar-aprotic 

solvent, such as N,N-dimethylformamide.85  Like with nylon-6 and 6,6, the degree of 
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polymerization for these fibers is between 100-250 monomer units.  The meta- (Nomex) 

and para- (Kevlar) substituted benzene dicarboxcylic acid chlorides and diamines are 

routinely used in aramid fiber production.  The resulting aramid fibers in suspension are 

passed through the spinneret and either dry spun in hot air or wet spun in a coagulating 

bath.  Aramids have limited flexibility and mobility due to the aromatic units along the 

aramid polyamide chain.  They constrain the polymeric chains and cause stiffness.  

Hydrogen bonding between the amide groups and adjacent chains as well as 

tremendously strong van der Waals interactions between aromatic rings planar to 

adjacent aromatic rings provides a tightly-packed, forcefully held molecular structure that 

accounts for the strength and thermal resistance of aramid fibers.   

 Polar aprotic solvents and strong acids can dissolve the aramid fibers.  For the 

most part, aramids are resistant to biological attack from microorganisms and insects, as 

well as most chemicals.  Sunlight exposure will cause discoloration because of an initial 

oxidative attack.  The initial discoloration and slight loss of strength is the extent of the 

damage the sun can cause.  Further exposure will have little or no effect.  Aramid fibers 

have also been used as effective screens from high energy nuclear radiation.  The fibers 

have the ability to trap and stabilize radical and ionic species induced by a nuclear blast.85   

 The need for fibers with certain physical or chemical characteristics has given rise 

to a group of specialty polyamide fibers.  Some specialty nylon fibers include Qiana, 

nylon-4, nylon-11, nylon-6,10, and biconstituent nylon-polyester.85  Qiana (Figure 3.21) 

is the trade name for a luxury nylon fiber formed through step-growth polymerization of 

trans, trans-di(2-aminocyclohexyl)methanol and a dibasic acid having between 8-12 
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carbons.  The properties of Qiana resemble those of nylon-6 and 6,6 as well as having a 

unique silk-like texture. 
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Figure 3.21. Chemical structure of polyamide polymer fiber Qiana 
 
 
 Nylon-4 was produced by a polymerization of pyrrolidone using carbon dioxide 

as a catalyst.85  The material was then melt spun above the polymer’s melting point of 

273 °C.  Due to the status of the textile market of the time, with the presence of such 

fibers as nylon-6 and 6,6, nylon-4 was never commercially produced in any great 

quantities.  Nylon -11 is synthesized during a self-condensation polymerization reaction 

of 11-aminoundecanoic acid.  It is also melt spun above its 189 °C melting point.  This 

fiber is often used as an insulator in electrical devices and in common household 

applications such as brush bristles and clothing.  A condensation reaction between 

hexamethylene diamine and sebacic acid produces nylon-6,10.   

 
4. Polyesters.  The first polyester fiber, known as Terylene, was produced in 

England.86 DuPont acquired the patent for polyester in the United States in 1948, while 

Imperial Chemical Industries secured the patent rights for the United Kingdom and the 

rest of the world.83  Commercially availability of polyester was not seen until 1953.  

Manufactured fibers containing at least 85% of a polymeric ester of a substituted 
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aromatic carboxylic acid including, but not restricted to, teraphthalic acid and p-

hydroxybenzoic acid are called polyesters.85   

The major polyester of commercial importance is polyethylene terephthalate 

(PET) polyester seen in Figure 3.22.  PET is an ester formed from a step-growth 

polymerization of terephthalic acid and ethylene glycol in the presence of a catalyst.  The 

degree of polymerization is between 100-250 monomer units.  Generally, when someone 

says a material is polyester, it is a reference to this generic type.  The finished polymer 

molecular chains are stiff and rigid due to the presence of periodic phenylene groups, 

which results in a tightly packed fiber, held together by van der Waals interactions.   

 
 

CC CH2CH2O
OO

n 
 

Figure 3.22. Chemical structure of polyethylene terephthalate (PET) polyester 
 
 
 PET is highly resistant to attack from acids, bases, oxidizers, and reducing agents.  

Significant damage is only seen when concentrated acids or bases at high temperatures 

are used.  Biological agents have no deleterious effects on PET polyester.  Oxidative 

damage, along with discoloration, is seen when the fibers are exposed to sunlight.  The 

fibers are hydrophobic and are non-absorbent unless chemical modifications are made.   

 Poly-1,4-cyclohexylenedimethylene terephthalate (PCM) polyester (Figure 3.23) 

is formed through the step-growth polymerization of terephthalic acid and 1,4-

cyclohexylenedimethanol.85  Most of the properties of PCM resemble those of PET 

polyester.  The addition of the cyclohexylene group in this fibers structure gives rise to 
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additional rigidity; however, the packing of the polymer chains in the fiber may not be as 

tight as PET due to its increased bulk.  PCM is superior to PET when considering 

recovery from stretch as well as resistance to pilling.  PCM is also more resilient and well 

suited to being blended with cellulose and wool fibers.   
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Figure 3.23. Chemical structure of poly-1,4-cyclohexylenedimethylene terephthalate (PCM) polyester 
 
 

5. Acrylics.  The research into synthetic fiber production based on 

polyacrylonitrile (PAN) started in Germany in the 1930’s.83  Parallel research was 

independently begun in the United States.  There are two types of acrylics available in 

today’s textile market: acrylic and modacrylic.  An acrylic fiber is defined as a 

manufactured fiber in which the fiber-forming substance is any long-chain synthetic 

polymer composed of at least 85 wt% acrylonitrile units, which can be seen in Figure 

3.24.  Modacrylic fibers are defined as those composed of less than 85 but at least 35 

wt% acrylonitrile units.  The structure of modacrylic can be seen in Figure 3.25.   

DuPont announced the first commercial acrylic fiber in 1949 under the trade name 

Orlon.  The filament Orlon was first produced in 1950, with the staple length fiber 

reaching the market in 1952.83  Because the acrylic fibers are 85 wt% polyacrylonitrile, 

many of their properties are determined by the chemical nature and physical behavior of 

long chain polyacrylonitrile molecules in an orientated structure.  PAN molecules are 

described as stiff rods with a diameter of 0.6 nm, but are able to bend.  A randomly 
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twisted and kinked polymer molecule view was given to PAN’s by Bohn and coworkers94 

due to strong steric and dipolar repulsive forces between adjacent nitrile groups.95 
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Figure 3.24. Chemical structure of acrylic fibers 
 
 
 Acrylic fibers are extremely resistant to direct sunlight, as compared to rayon, 

polypropylene, wool, cotton, and polyester.  After a period of 19 months of direct sun 

exposure, the acrylic fibers had lost 50% of their overall strength.  The same structural 

integrity loss in the other fibers occurred between two and a half and six and a half 

months.  Acrylic fibers are also resistant to attack by insects and microorganisms found 

in soil.  Most chemicals have little to no effect on acrylic fibers.  Strong acids may cause 

fibers to swell; however, concentrated nitric or sulfuric acids will dissolve the fibers.  

Most organic solvents have a negligible effect on acrylics.  Common oxidizers have little 

effect on these fibers.   

 The United States market uses a large amount of acrylics in home furnishing like 

carpets and rugs.  It replaced wool because of increased resiliency and resistance to 

staining.  Draperies, curtains, and awnings are also routinely made from acrylic fibers.  

The warmth, lightness, and ease of cleaning also make acrylics good for use in blankets. 
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Figure 3.25. Chemical structure of modacrylic 
 
 
 The first modacrylic fiber was a result of the research efforts from Union Carbide 

on copolymers of vinyl chloride.83  The continuous filament fiber was introduced in 

1948, and the staple fiber was produced in 1950 by Dynel.  Different trade names for 

modacrylics have included Eastman Chemical’s Verel and Kanekalon from the Japanese 

company Kanegafuchi.  Modacrylic fibers are similar in behavior to acrylic fibers.  Due 

to the presence of halogen-containing monomers, the temperatures at which modacrylics 

are dimensionally stable are lower than those of acrylics.  The halogen presence also 

changes the overall fiber properties including moisture regain, light stability, and 

resistance to degradation on heating.   

 Perhaps the most important property of modacrylics is their flame retardance.  

Consumer concern of the flammability of textiles has made this property of commercial 

significance.  Modacrylic fibers, like acrylics, are highly resistant to biological agents 

such as insects and microorganisms.  Though modacrylics are resistant to sunlight, they 

are not equal to the lightfastness of their acrylic cousins, due to the loss of hydrogen 

halides.83 Because of their flame retardance, modacrylics are used in a wide range of 

applications.  The largest amounts of modacrylics are used in apparel, such as sleepwear 
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for children and adults, and home furnishings.  Wigs and industrial applications are also 

important areas of modacrylic use.   

 
Determination of Textile Fibers 

Forensic examinations of trace evidence are based upon Locard’s Exchange 

Principle.  The principle states that “every contact leaves a trace”.  This means, for 

instance, that if a person enters a room, they will either pick up something from the room, 

leave something behind in the room, or both.  Problems can arise when the amount 

material transferred is so minute it can not be accurately identified.87    

The methods generally used for the identification of fibers can be applied to both 

natural and manufactured fibers.  However, some methods of analysis are more efficient 

and reliable when analyzing one class of fibers or the other.92  Microscopic examination 

can be used to readily identify most of the natural fibers.  When identifying man-made or 

regenerated fibers, other testing methods must be used.  Infrared spectroscopy is one of 

the preferred methods of analyzing manufactured fibers.  Nevertheless, natural fibers are 

difficult to identify because more often than not, the basic cellulosic structure of the plant 

fibers and the amino acid polymers of animal fibers are too similar to offer definitive 

results.   

 A variety of testing methods can be performed on a given set of fibers or textiles, 

assuming there is enough of the sample.  The combinations of different tests often 

provide enough information as to the generic class or specific type in a given sample.  

Examiners do not need to use every technique available to identify a sample.  Positive 

identifications can be made without exhausting every resource available.  An assortment 

of analysis methods frequently used in forensic textile analysis are highlighted below 
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with the first four being the routine methods.86, 96  All of the analytical methods described 

can be complimentary and need not be done alone.   

 
1. Visual Inspection.  The first method which most examiners would use to 

identify a textile would be visual inspection and hand analysis.  The process involves 

looking at and feeling the sample.  The length of the fibers is examined by untwisting the 

yarn and determining the overall length.  All fibers can be made to be staple length; 

however, not all fibers can be filament length.  Cotton and wool are both always staple 

length and never filament.  The luster or lack thereof can be another factor observed 

through visual inspection.  Manufactured fibers can have lusters ranging from matte, to 

dull, to shinny.  The body, texture, and hand of a fabric can be related to the fiber size, 

surface contour, stiffness, and cross-sectional shape.  Because manufactured fibers can 

resemble natural fibers, as well as other manufactured fibers, it is no longer possible to 

make a determination of fiber type solely on the basis of visual inspection.   

 
2. Microscopy.  The use of microscopy will be of use when the examiner has a 

working knowledge of the physical structure of the fibers.  The physical characteristics of 

a fiber, such as longitudinal contours and cross-sectional shape, lead to the identification 

of an unknown fiber.  The identification of natural fibers is best accomplished using 

microscopy.86  Manufactured fibers are more difficult to identify because many of the 

man-made fibers look similar.  Also, changes can occur during the manufacturing process 

to alter the shape and morphology of a fiber.  Photomicrographs of an assortment of 

fibers can be seen in Figure 3.26.   
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Nylon (a) Polyester (b) Spandex (c) 

   
Trilobal Nylon (d) Trilobal Nylon-6,6 (e) Cuprammonium Rayon (f) 

   
Nylon with voids (g) Silk (h) Vinyon (PVC) (i) 

 
Figure 3.26. Comparison of photomicrographs for textile fibers86 

 
 
 Figure 3.26a-c shows the cross-sectional and longitudinal photomicrographs of 

nylon, polyester, and spandex.  All three fibers have a circular cross-section.  The 

longitudinal scans show that nylon and polyester are smooth, yet spandex appears to be 

fluted.  If the nylon and polyester were being analyzed, it would be impossible to show 

which was which, based solely on microscopy.  The shape of the spinnerets used to make 

the individual fibers can be changed to produce a different type of fiber.  Micrographs 

(a), (d), and (g) in Figure 3.26 show that nylon can be extruded to have at least three 

completely different cross-sections, making identification quite dubious.  The remaining 

micrographs, (e), (f), (h), and (i) demonstrate that longitudinal scans also can lead to 

problems determining fiber type.  The trilobal nylon-6,6 and cuprammonium rayon show 

similar morphology to one another.  The natural fiber silk and the completely synthetic 

vinyon, also known as polyvinyl chloride, also resemble one another.    



119 

 

3. Burning Characteristics.  The use of burn testing can give information as to the 

general chemical composition of a fiber (i.e. cellulose, protein, mineral, synthetic).86 

Textiles that are fiber blends cannot be identified by burn analysis.92 Visual inspection 

can be used in conjunction with burn testing.  Burn testing requires a well ventilated area 

or hood vent to be used.  To conduct the analysis, a collection of unknown fibers are held 

in a pair of tongs.  The sample is then brought close to an open flame, usually from a 

Bunsen burner.  The fibers’ behavior as they approach the flame, while they are in the 

flame, and after they are removed from the flame is monitored.  The characteristics of the 

smoke and ash produced, as well as the odor while burning is recorded.  All of this data is 

then correlated and compared to known behaviors for different fibers. 

As can be seen in Table 3.6, all of the cellulosic fibers, including the regenerated 

rayon, behave in an identical manner.  The behaviors of all the fibers are the same before, 

while in, and out of the flame.  Ash and odor are the same for all of the fibers.  A similar 

trend can be observed for the other general classes of fibers, protein and 

mineral/synthetic.  This demonstrates why the burn testing method is limited in scope and 

cannot be used for reliable identification on its own.  Also, the method is inherently 

destructive as well as necessitating the need for proper facilities for performing the 

analysis.   

 
4. Solubility Analysis.  The use of chemical solvents to soften or dissolve different 

fibers as a means of identification has been done for many years.86, 92 Solubility testing is 

most useful for the identification manufactured fibers by their generic class and to  
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Table 3.6. Identification of textile fibers by burn testing86 

 
Fibers Approach In Flame Remove Ash Odor 
Cellulose 
Cotton 

Flax 

Lycocell 

Rayon 

Does not 
fuse of 
shrink from 
flame 

Burns with 
light gray 
smoke 

Continues 
to burn, 
afterglow 

Gray, 
feathery, 
smooth 
edge 

Burning 
paper 

Protein 
Silk 

Wool 
Curls away 
from flame 

Burns 
slowly 

May self-
extinguish 

Crushable 
black ash 

Burning 
hair 

Mineral/Synthetic 

Acetate 
Melts/pulls  
away from 
flame 

Melts/burns Continues 
to burn/melt 

Brittle, 
black, hard 
bead 

Acrid 

Acrylic 
Melts/pulls  
away from 
flame 

Melts/burns Continues 
to burn/melt 

Brittle, 
black, hard 
bead 

Chemical 
odor 

Glass No reaction Does not 
burn No reaction Fiber 

remains None 

Modacrylic 
Melts/pulls  
away from 
flame 

Melts/burns 

Self-
extinguish, 
white 
smoke 

Brittle, 
black, hard 
bead 

Chemical 
odor 

Nylon 
Melts/pulls  
away from 
flame 

Melts/burns May self-
extinguish 

Hard 
gray/tan 
bead 

Celerylike 

Olefin 
Melts/pulls  
away from 
flame 

Melts/burns May self-
extinguish 

Hard tan 
bead 

Chemical 
odor 

Polyester 
Melts/pulls  
away from 
flame 

Melts/burns May self-
extinguish 

Hard black 
bead Sweet odor 

Saran 

Melts/pulls  
away from 
flame 
Melts/burns 

Melts/burns May self-
extinguish 

Hard black 
bead 

Chemical 
odor 

Spandex 

Melts/does 
not pull  
away from 
flame 

Melts/burns Continues 
to burn/melt 

Soft black 
ash 

Chemical 
odor 
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confirm the identification of natural fibers.  A fiber sample is placed into a beaker along 

with a particular solvent at a set temperature and stirred for 5 minutes.  A variety of 

solvents are available in increasing strength.  The fibers in question should be placed in 

the different solvents in order of increasing strength to be sure proper identifications are 

made.  The list of solvents routinely used in solubility testing, in order of increasing 

strength can be seen in Table 3.7.   

 
 

Table 3.7. Solubility tests for fibers86 
 

Solvent Temp. (°C) Fiber dissolved 
Acetic acid, 100% 20 Acetate 

Acetone, 100% 20 Acetate, modacrylic, vinyon 

Hydrochloric acid, 20% 20 Nylon-6, nylon-6,6, vinal 

Sodium hypochlorite, 5% 20 Silk, wool, azlon 

m-Xylene, 100% 139 Olefin, saran, vinyon 

Dimethyl formamide, 100% 90 
Spandex, modacrylic, acrylic, acetate, 

vinyon 

Sulfuric acid, 70% 38 Cotton, flax, rayon, nylon, acetate, silk 

m-Cresol 139 Polyester, nylon, acetate 

 
 
5. Pyrolysis Gas Chromatography/Mass Spectrometry.  Gas chromatography has 

been used as another method of fiber analysis.87 The sample is pyrolyzed by a thin wire 

suspended in the GC column.  When an electric current is passed through the wire, the 

sample is heated and vaporized.  The pyrolzed products of the combustion are then 

carried onto the GC column to be separated and analyzed.97, 98  The resulting ‘pryogram’ 

produced by this analysis is characteristic of a specific fiber type and can be used as a 

fingerprint in the identification of polymers and fibers. 
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6. Thermal Analysis.  The physical and chemical changes in fibers are also 

investigated by the measurement of changes in selected properties as samples of fibers 

are heated at a steady rate over a given temperature range in an inert atmosphere, such as 

argon or nitrogen.  The four thermal characterization methods used are: differential 

thermal analysis (DTA), differential scanning calorimetry (DSC), thermal gravimetric 

analysis (TGA), and thermal mechanical analysis (TMA).85   

 Differential thermal analysis monitors physical and chemical alterations of 

matter.  These changes can be detected by measuring temperature differences arising 

between a sample and a thermostable, inert reference material.  The sample and reference 

materials are heated or cooled at a constant rate of change.  The temperature range for 

these analyses can range anywhere from -150 °C to 1000 °C with a rate of change 

between 5-10 °C.  Total analysis time to get a thermogram is dependent on the 

temperature range and rate of change.  These methods all necessitate some degree of 

sample preparation before the analysis can be conducted.  The chemical and physical 

events that are monitored in the samples include changes in crystallinity or crystal 

structure, loss of water, solvents, or other volatile materials, melting, or decomposition of 

the fiber.85  Differential scanning calorimetry is similar to DTA; however, DSC measures 

changes in heat capacity (∆H) rather than  temperature (∆T) as the fibers are heated.  This 

analysis method provides quantitative insight on the thermodynamic processes involved 

in the fiber and the environment it resides in.  Thermal gravimetric analysis monitors the 

changes in mass of the fibers (∆M) as the temperature is increased at a constant rate.  

TGA offers information about the loss of volatile materials, the rate and mode of sample 

decomposition, and the effect of finishes on the fiber’s decomposition.  TMA measures 
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the change in a specific mechanical property, such as hardness and flow under stress, as 

the temperature of the fiber is raised at a constant rate.   

 
7. Infrared Spectroscopy.  The use of infrared spectroscopy is not usually needed 

when the fibers under investigation are natural fibers.  The use of microscopy, chemical 

testing, and staining techniques can regularly make a valid determination.  If two 

manufactured fibers have the same basic monomer unit and the same copolymer, it may 

not be possible to identify the fiber by use of IR spectroscopy.92  There are different 

approaches by which infrared spectroscopy can be  used to analyze a fiber.  The first is by 

pressing the fibers into a potassium bromide pellet.  This will afford a qualitative 

identification even with minute samples.  Another approach is the determination of the 

attenuated internal reflectance of the fiber samples.   

 
8. Near-Infrared Spectroscopy.  Raw materials as well as finished textile products 

can be characterized using near-infrared spectroscopy (NIRS).  NIR methods continue to 

diversify and be applied to a variety of wide-ranging quantitative and qualitative 

analyses.  The quantitative techniques allow for the rapid, accurate monitoring of 

chemical, physical, and morphological properties of a fiber, yarn, fabric, or chemical 

textile auxiliary.91  NIRS analyses are useful due to their speed, accuracy, and precision, 

without having to destroy the sample being analyzed.  Diffuse reflectance measurements 

can be made since the samples in question are, for the most part, solids.  This also 

removes the time consuming and often times expensive sample preparations necessary 

for textiles.   
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In the processing of cotton, reducing sugars present in the fibers, such as glucose, 

mannose, fructose, and pentoses, can accumulate on the surfaces of the equipment.  

Depending on the relative humidity and temperature, the sugars can become extremely 

sticky, leaving a coating on the finished fibers and in the machinery.  Perkins and 

coworkers devised a method of determining sugars by means of a complex titration 

analysis known as Perkin’s method.99  An aqueous extract of cotton is reacted with 

potassium ferricyanide in the presence of sodium carbonate.  The potassium ferricyanide 

oxidizes the reducing materials and is itself reduced to potassium ferrocyanide.  The 

quantity of potassium ferrocyanide produced is determined by titrating with ceric sulfate 

in an acidic solution containing o-phenantholine/ferrous sulfate complex (ferroin) as an 

indicator.   

Though Perkin’s method is accurate, it involves large amounts of sample 

preparation and actual analysis time.  NIR techniques have been developed to determine 

the amounts of these compounds in cotton fibers, so that excessive levels of sugars, over 

0.5%, can be removed or reduced before production begins.91  These methods are 

streamlined and user friendly.  Fabric blends have also been analyzed by NIRS.  

Polyester and cotton are often combined in various ratios to afford a finished textile that 

has the soft characteristics of cotton, while at the same time, the durability and resiliency 

of polyester.  Traditionally, the process of determining the ratio of polyester to cotton was 

by dissolving the fibers in 70% sulfuric acid.  This analysis required 8 hours before the 

final results were known.  Near-infrared reflectance analysis (NIRA) can determine the 

fiber blend composition within two minutes.   
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Mercerization is a process by which fabrics are treated with 20% sodium 

hydroxide under tension.  The mercerization process is done to enhance the finished 

fabric’s dye affinity, dimensional stability, tensile strength, and luster.100, 101  The degree 

of mercerization must remain constant to ensure the final product is of the proper quality.  

The most common problem, associated with changes in the degree of mercerization, is 

dye shade variability.91   

 
 

 
 

Figure 3.27. Near-infrared reflectance spectra of mercerized and unmercerized cotton samples (Modified 
from reference 91. Copyright 2001 Marcel Dekker Inc.) 
 
 

The conventional method of mercerization testing is barium-activity number 

measurements.  The process begins with the both mercerized and unmercerized fabrics 

being boiled in soap and soda ash.  The fabrics are then washed until they are at a neutral 

pH.  Next, both samples are treated with a barium hydroxide solution.  The ratio of the 

amount of barium hydroxide absorbed by the two different samples is determined by 
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titration.  The total time required for this analysis was approximately 6 hours.  The NIRA 

for both mercerized and unmercerized cotton can be seen in Figure 3.27.  The hydroxyl 

group overtone region near 1471 nm shows a more pronounced band in the mercerized 

sample.   

 
9. Elemental and End Group Analysis.  Both quantitative and qualitative 

information concerning chemical elements and end groups can be derived from fibers to 

elucidate the fabric class.  The presence of process residues, dyes, and other finishes can 

affect the nature and elemental composition that could skew the results.85  A variety of 

gravimetric and instrumental methods are available for both elemental and end group 

analysis.  The determination of amino acids in protein fibers, amino acids in polyamides 

and proteins, and acid groups in polyamides and polyesters can aid in structure analyses, 

molecular characterization, and the identification of fibers.  
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CHAPTER FOUR 
 

Soft Independent Modeling of Class Analogy for Textile Classification  
by Diffuse Near-Infrared Reflectance Spectroscopy 

 
 

Introduction 

In today’s global business community, the textile and clothing industries make up 

a substantial portion of the domestic and international trade marketplace.  The textile 

industry is expected to grow to a staggering $320 billion in retail sales this year alone.  

With such a large investment of money in this industry, manufacturers and retailers 

demand assurances that the raw materials, textiles, and finished garments they are 

purchasing to provide to their customers are authentic.  The Federal Trade Commission 

Act requires all clothing retailers and textile manufacturers to run identification tests on 

all fabrics sold in the United States.  Prices for different fabrics can range from less than 

one dollar to several hundred dollars a yard.  Cotton Inc. levies a tariff on all imported 

bales of foreign cotton entering the United States.  This revenue is then used to promote 

the purchase of cotton materials in television and print media.  The cotton entering the 

country must be screened to determine its authenticity.  At international borders and 

customs checkpoints, travelers entering a country with textiles must also have those items 

screened to determine legitimacy and assess whatever import fees or taxes might apply.  

In the past, such screenings could take days or even weeks before someone would have 

their fabric released by customs officials.  And perhaps of paramount importance, fiber 

classification and characterization is a crucial element in many criminal investigations.96 
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The mission statement of the Baylor University Department of Family and 

Consumer Sciences is to prepare students to become professionals in business, education, 

and service careers that use the family and consumer sciences knowledge base and to 

assume individual, family, and community roles in an increasingly complex global 

society.  The programs offered by Family and Consumer Sciences (FCS) department 

include fashion design and merchandising, as well as interior design, in which textile 

materials are used constantly.  A fast, non-destructive method of fiber analysis would be 

quite beneficial to the FCS department.   

The Baylor Center for Analytical Spectroscopy was approached and agreed to 

enter into a collaborative effort with FCS.  Both entities provided expertise that was 

invaluable to the success of the project. Dr. Judith Lusk, professor of fashion 

merchandising and design, provided the textile samples, as well as technical information 

concerning the manufacturing and finishing techniques associated with textiles.  The 

Center for Analytical Spectroscopy provided the instrumentation and technical 

knowledge of both near-infrared spectroscopy and chemometrics.   

Chemometric classification analyses are more often used when the examiners 

wish to know if a certain compound is present in a given sample, without necessarily 

determining its concentration in the sample matrix.  The identification of a textile fiber is 

an excellent example of where a classification analysis would be beneficial.  A common 

classification technique is soft independent modeling of class analogy (SIMCA).   

The purpose of both the preliminary and expanded studies reported here was to 

investigate the feasibility of using SIMCA on the diffuse near-infrared spectra of textile 

samples in order to classify future samples.  The Baylor NIR textile database has grown 
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to over 800 samples and spectra.  The creation and use of such a large and diverse NIR 

spectral library to perform classification analyses on textiles has not been reported  

 
Background 

 
Near-Infrared Spectroscopy 

 The discovery of the near-infrared (NIR) region of the electromagnetic spectrum 

has long been attributed to Sir William Herschel in 1800.  The noted astronomer, 

formerly a musician, authored two papers detailing his work on the heating effect in the 

spectrum of solar radiation.102  Herschel used a large glass prism to disperse sunlight onto 

three thermometers that had carbon-blackened bulbs.  A heating effect was observed in 

the study towards the red end of the spectrum.  However, beyond the visible red light 

from the prism, where no visible light was seen, the temperature recorded by the 

thermometer was at its highest.  The heating effect was termed radiant heating and the 

thermometrical spectrum by Herschel.   

 In 1835, Ampere utilized a thermocouple to show that near infrared has the same 

optical properties as visible light.  He concluded that they both were the same 

phenomenon and gave birth to the concept of an extended spectrum, beyond the ordinary 

visible.  Abney and Festing were able to record and interpret the first true NIR spectrum 

of organic liquids from 1-1.2 µm in 1881.  Further headway into the understanding of the 

NIR was made when W.W. Coblentz was able to record the spectra of hundreds of 

compounds in the 1-15 µm wavelength region.  Coblentz observed that no two chemical 

compounds had the exact same NIR spectrum even if they contained the same elements 

in the same proportions, such as with different isomers.   



130 

 

 The development of methodologies for using NIR measurements is often more 

laborious and quite different from those in the ultraviolet/visible (UV-vis) and infrared 

(IR) due to hydrogen bond shifts that dominate in the NIR, as well as the fact that 

interactions and nonlinearities show nearly a total disregard for Beer’s law.   

 
 1. Spectral Characteristics.  The fundamental concept to remember with 

vibrational spectroscopic methods is that the atom-to-atom bonds within molecules 

vibrate at discrete frequencies (Figure 4.1).  These vibrations can be described by the 

laws of physics, and the different resonant frequencies can be calculated mathematically.  

Most molecules, while at room temperatures, will only vibrate in their least energetic 

state that is dictated by quantum mechanics.  Molecules in this state are said to be at 

rest.102  The fundamental frequency at which any two atoms connected by a chemical 

bond can be roughly calculated by making the assumption that the bond energies arise 

from the vibration of a diatomic harmonic oscillator and obey Hooke’s Law.  This can be 

seen in equation 4.1: 

µπ
ν k

2
1

=       (4.1) 

where ν is the vibrational frequency, k is the force constant, and µ is the reduced mass for 

the two atoms in the bond, which is given by: 

21

21

mm
mm

+
=µ       (4.2) 

where m1 and m2 are the respective masses for the two atoms connected by the chemical 

bond in question.   
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Figure 4.1. Energy diagram of vibrational mode calculated as (a) an ideal diatomic oscillator or (b) as an 
actual anharmonic diatomic oscillator (Modified from reference 102. Copyright 2001 Marcel Dekker, Inc.) 
 
 

This approach works well for the fundamental vibrational frequency of simple 

diatomic molecules and is not too far divergent from the average value of a two-atom 

stretch within a polyatomic molecule.  This approximation only gives the average or 

center frequency of the diatomic bond.  Since the reduced masses of the C-H, O-H, and, 

N-H are 0.85, 0.89, and 0.87 respectively, one might expect the ideal frequencies of these 

pairs to be quite similar.  These pairing also constitute the major absorption bands of the 

NIR spectrum.  The electron withdrawing and donating properties of neighboring atoms 

and groups in real molecules greatly influence the bond strength and length, thus 

affecting the frequency of the X-H bonds.   

The classical spring model for molecular vibrations has a continuum of energy 

levels; however, molecular vibrations have discrete energy levels as described by 
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quantum theory.  The quantum mechanical treatment requires that the energy E, at any 

given time, be restricted to specific fields according to: 

 )2,1,0()( 2
1 K=+= υνυυ hE  (4.3) 

where υ is the vibrational quantum number, h is Plank’s constant, and ν is the frequency 

of vibration.  When the molecule in question is a non-linear polyatomic molecule, the 

equation can be generalized as: 
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where υ1, υ2, υ3 = 0,1,2….  

 When a vibrational transition occurs from υ= 0 toυ =1 in any of the vibrational 

states (ν1, ν2, ν3…), the transition is considered a fundamental transition, permitted by 

selection rules.   A vibrational overtone occurs when the transition occurs from the 

ground state to a state υ = 2,3,4….  The majority of the overtone peaks seen in the NIR 

spectrum arise from the X-H stretching modes of O-H, C-H, S-H, and N-H due to energy 

considerations.  A selection of group frequencies in the near-infrared region can be seen 

in Table 4.1.  Because these transitions are quantum mechanically forbidden, overtones 

are commonly seen to be 10 to 1000 times weaker than the fundamental vibrational 

bands.102 When a band arises from a bending or rotating atoms, which have lower 

energies than stretching vibrational modes, it would not be until the third or fourth 

overtone that it would be seen in the NIR spectrum.  Large numbers of combination 

bands are prominent features of the NIR.  Combination bands are those arising from 

movement from the ground state to a state for with υi = 1 and υj = 1.  An example of 

combination and overtone bands for chloroform can be seen in Table 4.2.   
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Table 4.1. Near-infrared spectral bands 
 

Wavelength (nm) Bond Vibration Structure 

1450 O-H Stretch first overtone Starch 

1463 N-H Stretch first overtone CONH2 

1500 N-H Stretch first overtone NH 

1540 O-H Stretch first overtone Starch 

1620 C-H Stretch first overtone =CH2 

1695 C-H Stretch first overtone -CH3 

1705 C-H Stretch first overtone -CH3 

1900 C=O Stretch second overtone -CO2H 

1940 O-H Bend second overtone -H2O 

1990 N-H Stretch/bend combination Urea 

2180 N-H Bend second overtone Protein 

2310 C-H Bend second overtone Oil 

2380 C-H Stretch/C-C stretch combination Oil 

2470 C-H Combination CH2 

 
 

2. Diffuse Reflectance Spectroscopy.  The use of near-infrared reflectance for the 

quantitative analysis of many products and commodities has gained wide acceptance in 

recent years.  Different algorithms have been developed to achieve multi-component 

determinations from the diffuse reflection spectra of powdered samples.  The strict 

adherence to a linear dependence of band intensity is not absolutely mandatory for an 

analytical result to be obtained.  One algorithm that is frequently used is log 1/R, where R 

is the reflectance of a sample.  The use of log 1/R as a preferred ordinate is contrary to 

what most physical scientists would consider appropriate for a diffuse reflection 

measurement.  The understanding of the basic theories of diffuse reflection and the 
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validity of the assumptions for each would be helpful in understanding the strengths and 

limitations of diffuse NIR.102 

 
 

Table 4.2. NIR bands of Trichloroethane 103 
 

Assignmenta Wavenumber (cm-1) Wavelength (nm) 

ν1 + 2ν4 5373 1861 

2ν1 5911 1692 

2ν1 + ν4 7091 1410 

3ν1 8680 1152 

 
 

The phenomenon of diffuse reflection is observed in everyday life, such as when 

sunlight is reflected from a matte surface.  This observable fact led Lambert to be the first 

to attempt a mathematical description of diffuse reflection.  Lambert proposed that the 

radiation flux, Ir, in an area f cm2, and solid angle ω steradians (sr), is proportional to the 

cosine of the angle of incidence α and the angle of observation, ϑ, in the form: 

 ϑϑα
πω

coscoscos BCS
d

df
dIr

== °  (4.5) 

where So is the irradiation intensity in W/cm2 for normal incidence, B is the radiation 

density or surface brightness in W cm-2 sr-1, and the constant C is the fraction of the 

incident radiation flux that is remitted, reflected.  C is less than 1 because some of the 

incident radiation is always absorbed. Eq. 4.5 is known as the Lambert cosine law and 

can be derived from the second law of thermodynamics.  An ideal diffuse reflector has 

never been found in practice, therefore deviations, whether large or small, always occur 

from the Lambert cosine law.  There have been many studies trying to prove or disprove 
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the Lambert cosine law.91  It was found, in general, that the law only holds when both the 

angle of incidence α and the angle of observation ϑ are relatively small.   

 Mie scattering is another widely accepted general theory concerning the scattering 

of light.  The phenomenon is related primarily to the scattering of radiation by isolated 

particles.  Mie’s efforts led to a series of equations that describe the angular distribution 

of both the intensity and the polarization of scattered radiation for a plane wave scattered 

once by a particle.  The particle in question was spherical and had no limitation imposed 

on its size.  The primary equation developed by Mie is as follows: 
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where IθS is the scattered intensity at a distance R from the center of the sphere, I0 is the 

intensity of the incident radiation, and λ is the wavelength of the incident radiation.   The 

values of i1 and i2 are functions of the angle of the scattered radiation.  The Mie theory, 

although applicable for spherical particles of any size, is only valid for single scattering 

and therefore only applicable to chemical systems where particles are well separated.   

 Most theories attempt to describe diffuse reflection of radiation by means of a 

radiation transfer equation.  In simplest terms, the equation can be stated as: 

  dSIdI κρ=−  (4.7) 

where dI describes the change in intensity of a beam of radiation of a given wavelength in 

a sample whose density is ρ and for which the pathlength is dS.  The attenuation 

coefficient, κ, is associated with the total radiation lost, whether that loss is due to 

scattering or absorption.  The first attempt to find a simplified solution to the radiation 

transfer equation was found by Schuster in 1905.  The solution was arrived at by first 
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making the assumption of using two oppositely directed radiation fluxes, I and J.  The 

forward traveling radiation was designated as I.  The following two differential equations 

were derived using this simplification: 
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where 
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and  
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In equations 4.10 and 4.11, α is the true absorption coefficient of single scattering and σ 

is the scattering coefficient for single scattering.  The abbreviation s used by Schuster is 

identical to the aldebo ωo for single scattering.91  When equations 4.8 and 4.9 are solved, 

they give the reflectance at “infinite depth”, which is defined as the depth at which a 

sample must be in oder to have no further change in the measured reflectance.  Schuster’s 

final equation is: 
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where R∞ is the diffuse reflectance.   
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Table 4.3. Assumptions of the Kubelka-Munk Equation102 
 

No. Statement 
1 The radiation flux (I and J) travels in two opposite directions 
2 The sample is illuminated with monochromatic radiation of intensity I0 
3 The distribution of scattered radiation is isotropic so that all regular (specular) 

reflection is ignored 
4 The particles in the sample layer (defined as the region between x = 0 and x = d 

are randomly distributed 
5 The particles are very much smaller than the thickness of the sample layer d 
6 The sample layer is subject only to diffuse irradiation 
7 Particles are much larger than the wavelength of irradiation (so that the 

scattering coefficient ill be independent of wavelength), although if only one 
wavelength is to be used then this assumption is not relevant 

8 The breadth of the macroscopic sample surface (in the yz plane) is great 
compared to the depth (d) of the sample and the diameter of the beam of incident 
radiation (to discriminate against edge effects) 

9 The scattering of particles are distributed homogeneously throughout the entire 
sample 

 
 
 A similar solution to Schuster’s was derived by Kubelka and Munk (K-M) in 

1931.102  The primary difference was in the definition of the two constants k and s.  

Schuster defined these constants in terms of the absorption and scattering coefficients for 

single scattering.  K-M theory simply defined k and s in their equations as the absorption 

and scattering coefficients for the densely packed sample as a whole.  K-M theory made a 

series of assumptions in their theoretical considerations that can be seen in Table 4.3.  A 

schematic representation of the Kubelka-Munk equation can be seen in Figure 4.2. 

The general Kubelka-Munk equation is expressed as: 
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where R∞ is the absolute reflectance of the layer, k is the molar absorption coefficient, 

and s if the scattering coefficient.   
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Figure 4.2. Schematic representation of a sample for which Kubelka-Munk equation was derived (Modified 
from reference 102. Copyright 2001 Marcel Dekker, Inc.) 
 
 
 Kubelka-Munk theory predicts that a linear relationship will exist between 

spectral data and sample concentration under conditions of a constant scattering 

coefficient and infinite sample dilution in a non-absorbing matrix.  Therefore, the K-M 

theory can only be strictly applied under the stated conditions.  The K-M equation only 

applies to an infinitely thick sample layer, which is approximately 3 mm for NIR 

spectroscopic determinations. The work of Humphrey and coworkers demonstrated that 

the comparison between the Kubelka-Munk and log 1/R calculations of NIR reflectance 

showed no clear preference for one method over another.19   

 
3. Near-Infrared Analysis of Textiles.  Use of near-infrared analysis for textiles 

has been growing over the past two decades.  It can be used to characterize both raw 

materials and finished textile products.  Both qualitative and quantitative analyses have 

been conducted using NIR spectroscopy.91  In 1994, Jasper and coworkers pioneered the 
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idea of using neural networks and NIR spectrophotometry to identify 17 categories of 

fibers including both natural and man made.104  The study showed that the neural network 

could, with a fair degree of certainty, categorize unknown fibers into their respective 

groups.  Confidence levels for all but one category were a minimum of 94%.  Cotton had 

only a 51% confidence level, and further examination of the data showed that cotton 

showed 32% chance of being said to contain linen.  The misclassification can be traced to 

the inherent similarities of the structures (Chapter 3), which lead to similar specta.   

Cleve and colleagues used chemometric methods in conjunction with near-

infrared spectroscopy in order to determine not only fabric type, but also such factors as 

moisture content and textile coatings.105  The study used seven fabric types as well as a 

number of two component blends of those fibers.  The blends’ spectra were analyzed by 

use of the PLS-2 algorithm.  Sample pretreatment in this research involved pulverizing 

the fibers after they had been frozen in liquid nitrogen.   

 A comparison of several vibrational spectroscopic methods including FT-Raman, 

mid-infrared attenuated total reflectance, mid-infrared diffuse reflectance, and near-

infrared diffuse reflectance to determine the composition of wool/polyester blends was 

completed by Church et al.106  When the diffuse near-infrared reflectance data were 

analyzed, it was found that a partial-least squares (PLS) approach was superior to the 

classical least squares approach familiar to most statisticians, because a PLS analysis 

examines spectral regions and not a singular wavelength.  The PLS algorithm is an 

outgrowth of multiple linear regression.  A regression as opposed to a classification is 

more appropriate for this research study due to the fact that the samples analyzed had 

varying compositions, and there was not a uniform fiber makeup between all samples.  A 
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partial-least squares regression model takes into account different minute spectral 

variations and processes them to identify the important information to be retained.  

Interferences can come from many factors including dyes, finish resins, and weave 

patterns.   

 The use of near-infrared and chemometrics in the analysis of fiber blends 

continues.  In August 2005, Sohn and coworkers reported on the use of FT-NIR 

spectroscopy for determining the linen/cotton content of different textiles.96  As with the 

previous work done by Church, this study utilized a partial-least squares analysis of the 

near-infrared spectra.  The models created and validated showed less than a 3% error of 

prediction.   

 
Methods and Reagents 

 
 
Preparation of Textile Samples 
 
 Commercially available textiles were attained from Dr. Judith Lusk of the Baylor 

University Department of Family and Consumer Science.  Samples approximately one-

inch square were cut from the textile swatches provided.  The samples were then placed 

in acid-free polypropylene sleeves containing a 4 x 6 inch index card marked with the 

sample’s fiber type and a numerical designation which indicated the samples position in 

the data matrix.   

 
Near-Infrared Spectroscopy 
 

NIR analysis of textile samples was carried out on a dual-channel spectrometer 

previously assembled and tested in our laboratory.18  The radiation source for the 

spectrometer was a quartz tungsten-halogen lamp.  The radiation from the source lamp 
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was passed through a long-pass filter with a cut-off of 1400 nm before being modulated 

with a rotary chopper and focused onto the entrance slit of the monochromator.  The exit 

slit of the monochromator was mounted onto a custom-built sample compartment.  The 

radiation from the exit slit was collimated before being divided by a beam splitter into a 

reference and sample beams.  The beam was reflected off a mirror within the sample 

compartment and entered an eight-inch diameter intergrating sphere through the sample 

port.  The diffuse reflectance signal was detected by a lead sulfide detector mounted 45° 

from the sample window, and passed into a lock-in amplifier that was referenced to the 

frequency of the rotary chopper.  The signal from the lock-in amplifier, in analog form, 

was then digitized by a 16-bit analog-to-digital converter and passed to the instrument 

computer.  The instrument control and data processing were carried out by a LabView 

software graphical user interface, which controlled the stepping of the monochromator 

and acquisition of the signal from the lock-in amplifiers.  A diagram of the instrumental 

setup is shown in Figure 4.3.   

The textile samples were placed in the sample holder at the sample window of the 

intergrating sphere.  NIR reflectance scans were run from 1100 to 2200 nm, with a 

sampling interval of 2.0 nm.  Measurements were reported as log 1/R, where R is equal to 

the reflectance.  Data were written into ASCII tables by the LabView software and 

converted to Microsoft® Excel spreadsheets used in chemometric analysis. 
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Chemometric Analysis 
 
 The spectral data, contained in the Excel spreadsheet files, were imported into the 

Unscrambler© software package (versions 9.1 and 9.6 – CAMO, Inc., Woodbridge, NJ).  

The data were then transposed to list the wavelengths as the x-variables and the samples 

as the y-variables.  The multivariate principal components analysis was performed on the 

data.  Raw spectral data was subjected to a Savitzky-Golay smoothing routine, using a 

zero-degree polynomial with 5 averaging points on both ends.   

 
 

 
 
Figure 4.3. Schematic of dual-channel near-infrared spectrometer, SPS = spectral power supply, QTH = 
quartz tungsten halogen lamp, LPF = long pass filter, CH = chopper, CHC = chopper controller, MON = 
monochromator, CHREF = reference channel, RDET = reference detector, SDET = sample detector, DPS = 
diode power supply, SCOM = sample compartment, RC = reference channel, SC = sample cell, L1-L3 = 
lenses, RLIA = reference lock-in amplifier, SILA = sample lock-in amplifier, IS = intergrating sphere, 
SWIN = sample window (Modified with permission from reference 18. Copyright 2000 Olusola Soyemi) 
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Results and Discussion 
 
Preliminary Study  

The complete spectra for the 114 samples in the preliminary study can be seen in 

Figure 4.4.  The high degree of signal noise at the wavelength extremes is due to the 

photoconductive lead sulfide detector used by the spectrometer.  The spectroscopic 

sensitivity of lead sulfide detectors drops off at their wavelength limits of 1.0 and 2.5 µm.  

For this reason, the wavelength region selected for these studies was from 1334 to 1906 

nm, where the signal-to-noise ratio is substantially higher.   

 
 

 
 

Figure 4.4. Diffuse near-infrared reflectance spectra for 114 textile samples from 1100 to 2200 nm 
 
 

The inherent spectral characteristics of the fiber samples must also be considered 

when selecting the wavelength region to be used in the principal components analyses.  

For a classification analysis based on SIMCA to be plausible, the samples in the data sets 
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must segregate themselves in multivariate space to a degree that hyper-dimensional 

regions can be erected around the sample clusters.  The principal NIR bands for cotton 

and polyethylene terephthalate, PET polyester, can be seen in Table 4.4.  Many of the 

spectral characteristics for both fibers can be seen in the selected wavelength window of 

1334 to 1906 nm.  Cotton and polyester are among the two most important fibers in the 

world.  As such, the characteristic spectral bands for these samples must be included in 

the principal components analysis. 

 
 

Table 4.4. Principal bands in NIR spectra of  
cotton and polyester terephthalate102 

 
Cotton 

λmax (nm) 
 Polyester Terephthalate 

λmax (nm) 
1216 1708  1128 1800 2156 
1270 1776  1172 1828 2184 
1372 1824  1368 1868 2256 
1444 1930  1412 1908 2336 
1490 2104  1616 1952 2396 
1550 2276  1660 2088  
1590 2340  1716 2132  

 
 
 A principal components analysis was conducted using the diffuse near-infrared 

reflectance spectra for the cotton and polyester samples in the data set.  There were no 

sample pretreatments, as well as no manipulation of the raw spectral data collected on the 

spectrometer.  The wavelength region of 1334 to 1906 nm was used (Figure 4.5).  A total 

of six principal components were calculated using full cross-validation.  The result of the 

principal components analysis can be seen in Figure 4.6.  The two-dimensional scores 

plot (Figure 4.6a) shows that the samples have segregated into two distinct groups.  The 

factor discriminating the samples in each group is the fiber type.  The segregation can 
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also be seen in a three-dimensional scores plot (Figure 4.7) from the same analysis.  A 

border has been superimposed on the samples in the different groups, as is done in a 

SIMCA classification.  This result demonstrates that two fibers, one a natural and the 

other a manufactured, can be distinguished by using a principal components analysis.  

The separating power can also be attributed to the fact that the polymers involved, 

cellulose and substituted aromatics for cotton and polyester, respectively, are chemically 

dissimilar.  With the naked eye, a prominent spectral band between 1668 and 1684 nm is 

seen, which is indicative of polyesters, but totally lacking in the spectra for cotton. 

 
 

 
 
Figure 4.5. Diffuse near-infrared reflectance spectra for 114 textile samples depicting the wavelength 
window of 1334 to 1906 nm. 
 
 

The next question to be answered is whether or not the principal components 

analysis can distinguish, not just between a natural and manufactured fiber, but also 

between two fibers that are both natural or both manufactured.  Cotton and silk samples 
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were used as the two natural fiber candidates to be differentiated.  A PCA was conducted 

on the spectral data for these fiber types using the same wavelength region of 1334 to 

1906 nm.  As before, a total of six principal components were used in the analysis.  The 

results of the PCA can be seen in Figure 4.8.  The scores plot (Figure 4.8a) shows the 

distribution of the samples in the new principal component coordinate system.  At first 

glance, the samples appear to have formed a single cluster about the origin, with a small 

grouping of outliers near the extreme edge of the plot.  However, it is again necessary to 

view the samples in higher dimensional space to get a true and accurate picture of the 

data. 

 
 

 
 
Figure 4.6. Summary of principal components analysis for cotton and polyester samples with a wavelength 
window from 1334-1906 nm: (a) scores plot; (b) residual X-variance plot; (c) x-loadings as a function of 
wavelength; (d) residual variance as a of the number of PCs 
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In figure 4.9, the three-dimensional scores plot is shown with borders of the 

cotton and silk samples drawn in.  As with the previous example, the textiles of the same 

fiber type clustered together, which formed two distinct groups.  This experiment also 

shows the ability of the model generated to distinguish a natural cellulose fiber, cotton, 

and a natural protein fiber, silk.   

 
 

 
 
Figure 4.7. Three-dimensional scores plot from principal component analysis of cotton and polyester fabric 
samples 
 
 

This pattern becomes further complicated when the addition of more fiber types 

are added to the PCA.  There are six different natural fibers used in this preliminary 

study: cotton, linen, mohair, rayon, silk, and wool.  When conducting a PCA on these 

fibers, one would expect that cotton and rayon would be difficult to separate due to the 

fact that rayon is simply chemically regenerated cellulose.  The NIR spectra for these 

samples would be virtually identical, and thus, difficult to classify.  Linen, derived from 

flax, is also a cellulose based fiber.  Though the remaining fibers, mohair, silk, and wool 
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are all protein based, the relative amounts of the amino acid residues in the fibers is 

different.  This will provide a means of separating these fibers.  The three-dimensional 

scores plot for the principal components analysis run on all six natural fibers can be seen 

in Figure 4.10.   

 

 
 
Figure 4.8. Summary of principal components analysis for cotton and silk samples with a wavelength 
window from 1334-1906 nm: (a) scores plot; (b) residual X-variance plot; (c) x-loadings as a function of 
wavelength; (d) residual variance as a of the number of PCs 
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Figure 4.9. Three-dimensional scores plot from principal component analysis of cotton and silk fabric 
samples 
 
 

 
 
Figure 4.10. Three-dimensional scores plot from principal components analysis of fibers from natural based 
sources cellulose (cotton, rayon), linen, mohair, silk, and wool 
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 As was expected, the cotton, rayon, and cellulose clustered together into a single 

group.  It should be noted, however, that since there are very few samples of each type in 

the full data, a true accurate picture of the grouping behavior for these fiber types may 

not be seen.  The protein fibers did cluster into their own groups as was anticipated based 

on the amino acid content of the keratin and secreted fibers.   

 The six types of manufactured fibers in the data set were examined next.  A 

principal components analysis was run on spectral data collected from the acetate, 

acrylic, nylon, olefin, polyester, and polyvinyl chloride using the 1334 to 1906 nm 

wavelength window, six calculated principal components, and full cross-validation of the 

model.  The resulting three-dimensional scores plot for the analysis can be seen in Figure 

4.11.  The degree of separation is quite prominent.  The arbitrary size of the clusters is 

quite small, lending more credence to the possibility of using the diffuse near-infrared 

reflectance spectra of textiles in a SIMCA analysis to classify them based on fiber type.   

The final test of the discriminating power of the principal components analysis was to 

place all the pure fiber samples, excluding any blends, into a single model and investigate 

their placement in the resulting scores plot.  Figure 4.12 shows the three-dimensional 

scores plot for this study.  The natural and manufactured fibers, as two groups, clustered 

around one another.  The cellulose based fibers, cotton, rayon, and linen, again showed 

an association with one another, and not decomposing into three distinct groups.  Mohair, 

silk, and wool fibers did segregate into three groups, removed from the other natural 

fibers, as well as the manufactured.  The manufactured fibers all formed distinct clusters, 

based on their chemical make up. 
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Figure 4.11. Three-dimensional scores plot from principal component analysis of synthetic fibers (acetate, 
acrylic, nylon, olefin, polyester, PVC) 
 
 
 

 
 
Figure 4.12. Three-dimensional scores plot from principal component analysis of both natural and synthetic 
fibers 
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 With the results of the PCA models for different fiber types in hand, the near-

infrared data was then used to create class based models to describe a particular fiber 

type.  In order to have models based on an appropriate sample size and still have enough 

samples for validation, the three fibers selected for this portion of the study were cotton, 

silk, and polyester.  The Unscrambler program automatically defaults to a set number of 

principal components to be used in a classification, even if the number of PCs computed 

in a model is higher.  The suggested number of principal components is what the program 

deems necessary to explain the variation in the spectral data.  But, when one looks at the 

residual x-variance plot for a model based on 16 cotton samples (Figure 4.13), it can be 

seen that the residual variance continues to drop, closer to zero, beyond the second 

principal component.  The recommended number of PCs for the cotton models studied 

was always two.  However, each model’s residual x-variance plots showed further 

explanation of the spectral data when more PCs were used.  For this reason, the modeling 

and validation done was computed using both the suggested and a predetermined number 

of 6 principal components.   

 
 

 
 

Figure 4.13. Residual x-variance plot for a principal components analysis of cotton samples 
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 In Table 4.5, the classification results for five cotton sets can be seen.  When the 

suggested number of principal components was used, the classification results showed 

two errors (102-cotton).  One sample in test sets 2 and 4 was not identified as a cotton 

sample.  However, when the number of principal components used was increased to 6, 

the two errors were not present, and all the samples were correctly identified as cotton.  

The same type of analysis was preformed on the polyester samples.  The suggested 

number of principal components for these analyses was 2.  Both the suggested and 

predetermined number of principal components yielded the same results.  All the 

polyester fiber samples were correctly classified (Table 4.5). 

The classifications run on the silk samples were successful as well.  The five 

sample sets selected provided correct classifications with one exception.  A sample 

designated silk-13 was not classified in either model for which it was used as a validation 

sample, at neither the suggested or predetermined number of principal components.  For 

this fiber type, the suggested number of PCs changed from 2 to 3, depending on which 

model was used.  The results for the classification can be seen in Table 4.5. 

To further optimize the method of classification, the PCA models developed for 

the cotton, silk, and polyester samples in the previous section were used in an attempt to 

classify fibers in the data set that were not included in the models (Figure 4.14).  These 

fibers included: acetate, acrylic, linen, mohair, nylon, olefin, PVC, rayon, and wool.  

When using SIMCA methodology, a sample will not be classified as a member of a 

group, unless it is deemed to belong to that group.  This is a major advantage to negating 

false positives when classifying.  In the best case scenario, no samples from the other 
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fiber types would be flagged when being compared to the models for cotton, silk, and 

polyester.   

 
 

Table 4.5. Classification results of preliminary study for cotton, polyester, and silk  
 
 Cotton Polyester Silk 
    
Test Set Sample Classa Classb Sample Classc Classb Sample Classd Classb 

1 22 X X 15 X X 13   
 36 X X 49 X X 44 X X 
 46 X X 59 X X 80 X X 
 91 X X 72 X X 84 X X 
 100 X X    98 X X 
       109 X X 
2 36 X X 6 X X 13   
 46 X X 48 X X 40 X X 
 73 X X 49 X X 44 X X 
 100 X X 72 X X 69 X X 
 102  X    80 X X 
       108 X X 
3 18 X X 6 X X 24 X X 
 21 X X 47 X X 40 X X 
 102 X X 49 X X 42 X X 
 105 X X 66 X X 58 X X 
 107 X X    78 X X 
       99 X X 
4 18 X X 4 X X 37 X X 
 23 X X 59 X X 43 X X 
 100 X X 65 X X 44 X X 
 102  X 75 X X 58 X X 
 104 X X    80 X X 
       84 X X 
5 21 X X 15 X X 24 X X 
 38 X X 65 X X 40 X X 
 91 X X 71 X X 69 X X 
 106 X X 75 X X 76 X X 
 111 X X    84 X X 
       109 X X 

aTwo PCs, bSix PCs, cThree PCs, dTwo PCs for sets 1, 2, and 4, three PCs for sets 3 and 5 
 
 

In Figure 4.14, any asterisk within a cell is an indication of a false positive.  There 

should be no positive hits in this figure.  Whether or not the recommended number of  
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 Recommended PCs Non-Recommended PCs 

Sample C C C C C P P P P P S S S S S C C C C C P P P P P S S S S S 

Acetate       * * *    *  *      * * * * *   * * * 

Acrylic                               

Olefin                               

Acrylic                               

Acetate       * * *    *  *      * * * * *   * * * 

Rayon                               

Rayon                *  * *            

Nylon      * * * * *   * * *      * * * * *   * * * 

Nylon      * * * * *   * * *      * * * * *   * * * 

Nylon      * * * * *   *  *      * * * * *   * * * 

Acrylic                               

Wool                               

Linen * * * * *        * * * * * * * *      * * * * * 

Linen * * * * *        * * * * * * * *      * * * *  

Wool                             * * 

Wool              * * * *  *       * * * * * 

Rayon * * * * *      * * * * * * * * * *      * * * * * 

PVC                               

Wool                           *  * * 

Acetate             *  *         *    * * * 

Mohair                               

Nylon      * * * * * * * * * *      * * * * * * * * * * 

Rayon * * * * *      * * * * * * * * * *      * * * * * 

Mohair                               

Acrylic                               

Rayon * * * * *      * * * * * * * * * *      * * * * * 

Rayon  * * * * *           * * * * *        *   

Rayon * * * * *           * * * * *      * * *   

Linen * * * * *           * * * * *           

 
Figure 4.14. Comparison of cotton (C), polyester (P), and silk (S) models classification abilities with fiber 
types not included in the calibration phase 
 
 
principal components was used, the misclassifications are in the same places.  Rayon and 

linen fibers are being misidentified as cotton and silk.  Wool is being marked as a silk 

fiber.  Nylon and acetate fibers are being misclassified as polyesters as well as silks.  To 

use SIMCA to classify fiber samples, these errors must be greatly reduced or removed.  

In an attempt to clear up some signal noise, the reflectance spectra from the data set were 

subjected to a Savitzky-Golay smoothing routine, fitted to a zero degree polynomial with 
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5 averaging points on the left and right side.  The smoothed spectra for the cotton, 

polyester, and silk samples can be seen in Figure 4.15.   

 
 

 
 

Figure 4.15. Savitzky-Golay smoothed diffuse near-infrared reflectance spectra of cotton, polyester, and 
silk textiles from 1334-1906 nm 
 

The smoothed reflectance spectra for cotton, polyester, and silk were then used to 

construct models for those fiber types.  These models were then validated as were the 

PCA models developed from the unsmoothed data.  The results of the classification 

anaylsis can be seen in Table 4.6.  There was no change in the classification abilities of 

the polyester model when compared to the unsmoothed model.  All polyesters were 

correctly identified.  There are two classification errors present in the cotton samples (46-

cotton) when the suggested number of PCs is used.  These errors are absent from the 

classification when 6 PCs are used; however, there is an additional error present in test  

Table 4.6. Classification results of preliminary study for cotton, polyester, and silk 
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with Savitzky-Golay smoothing of raw diffuse near-infrared reflectance sectra 
 
 Cotton Polyester Silk 
    
Test Set Sample Classa Classb Sample Classc Classb Sample Classd Classb 

1 22 X X 15 X X 13   
 36 X X 49 X X 44 X X 
 46 X  59 X X 80 X X 
 91 X X 72 X X 84 X X 
 100 X X    98 X X 
       109 X X 
2 36 X X 6 X X 13   
 46 X X 48 X X 40 X X 
 73 X X 49 X X 44 X X 
 100 X X 72 X X 69 X X 
 102  X    80 X X 
       108 X X 
3 18 X X 6 X X 24 X X 
 21 X X 47 X X 40 X X 
 102 X X 49 X X 42 X  
 105 X X 66 X X 58 X X 
 107 X X    78 X X 
       99 X X 
4 18 X X 4 X X 37 X X 
 23 X X 59 X X 43 X X 
 100 X X 65 X X 44 X X 
 102  X 75 X X 58 X X 
 104 X X    80 X X 
       84 X X 
5 21 X X 15 X X 24 X X 
 38 X X 65 X X 40 X X 
 91 X X 71 X X 69 X X 
 106 X X 75 X X 76 X X 
 111 X X    84 X X 
       109 X X 

aTwo PCs, bSix PCs, cThree PCs, dTwo PCs for sets 1 and 2, three PCs for sets 3 and 5, four PCs for 
set 4 
 
 
set one that was not present the analysis for 2 PCs.  The overall performance of the cotton 

model is still acceptable with only one error at 6 PCs.  The silk models saw the same 

problem sample, designated silk-13, as the lone hold-out for both models in test sets 1 

and 2.  An additional error can be seen in test set 3 (42-silk).   
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On the surface, the models using smoothed spectra seem to provide the same 

classification abilities as their unsmoothed counterparts.  The smoothed models are far 

superior however.  As was done previously, the models from the test sets for the cotton, 

polyester, and silk fibers were used to classify the other sample fiber types in the 

data set.  As seen in Figure 4.14, the unsmoothed spectra models showed rampant 

misclassifications.  When the smoothed spectra models using the imposed 6 PCs were 

compared to the other fiber types, all the misclassifications from the polyester and silk 

models vanished.  The cotton models are a different matter.  The PCA models still 

classified rayon as a cotton fiber, but at a greatly reduced frequency.  Linen fibers were 

also misclassified.  The lack of selectivity of the cotton models for cotton alone could 

indicate that the sample population must be increased in order to better define the PCA 

models and in turn the classification. 

 
Expanded Sample Population Study 

 The next progression in the textile study was an increase in the number of fabric 

samples within each individual fiber class.  A total of 826 textile samples were cataloged 

and had their NIR reflectance spectra collected.  The specific breakdown as to the types 

of fibers and the total number of each can be seen in Table 4.7.  The raw spectra were  

smoothed, using the Savitzky-Golay moving average with 5 averaging points on the left 

and right sides, and a wavelength window from 1334 to 1906 nm was selected (Figures 

4.16, 18, 20, 22, 24, 26).  Principal components analyses were conducted (Figures 4.17, 

19, 21, 23, 25, 27) on the fiber classes of acetate, cotton, polyester, rayon, silk, and wool.  

The total numbers of samples in the remaining categories were deemed too low to 
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achieve a PCA model well enough defined as to classify future samples.  Results can be 

seen in Tables 4.8-4.13.   

 
 

Table 4.7. Textile fiber catalog for expanded study 
 

Fiber Type No. of Samples Fiber Type No. of Samples 

Acetate 61 Olefin 1 

Acrylic 4 Polyester 109 

Blendsa 50 PVC 1 

Cotton 274 Rayon 77 

Linen 5 Silk 46 

Mohair 2 Wool 192 

Nylon 4   
aBlends include a variety of fiber mixtures 

 
 

 
 
Figure 4.16. Savitzky-Golay smoothed diffuse near-infrared reflectance spectra of 61 acetate textiles from 
1334-1906 nm 
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Misclassifications and Counterfeit Determination of Silk Sample 

 There was no additional examination of the textile fibers acquired from the 

Department of Family and Consumer Science.  The fabrics were labeled as to their fiber 

type, and as such, cataloged on that basis alone.  The models created for the individual  

 
 
Figure 4.17. Summary of principal components analysis for Savitzky-Golay smoothed diffuse near-infrared 
spectra of acetate samples with a wavelength window from 1334-1906 nm: (a) scores plot; (b) residual X-
variance plot; (c) x-loadings as a function of wavelength; (d) residual variance as a of the number of PCs 
 
 
fiber categories were validated not only by classifying samples of the same fiber type, but 

also by using the analyses to attempt classification of samples of different fiber types.  

False positives, as were seen in the preliminary study, could be a major obstacle in the 

implementation of this method as a routine textile analytical technique.  The expanded 

study, with more inherent variability, was used to classify samples of each fiber type.  

Acetate samples showed no false classifications when categorized using the cotton, 

rayon, and wool.  Of the 10 polyester class models, 8 of them produced a false positive 
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on a single fiber of acetate.  The spectrum for the suspect sample, designated Acetate-

582, along with representative spectra of acetates and polyester can be seen in Figure 

4.28.  When a principal components analysis was conducted on the spectra present in 

Figure 4.28, the suspect sample did not cluster with the polyester samples.   

 

 

 

Table 4.8. SIMCA classification results for acetate fibers in expanded studya 
 

Test Set 1 Test Set 2 Test Set 3 Test Set 4 Test Set 5 
Sample Class Sample Class Sample Class Sample Class Sample Class 

9 X 5 X 5 X 1 X 10 X 
13 X 7 X 24 X 3 X 15 X 
15 X 19 X 28 X 7 X 18 X 
27 X 26 X 29 X 12 X 20 X 
33 X 41 X 34 X 14 X 26 X 
35 X 42 X 38 X 19 X 33 X 
40 X 45 X 41 X 30 X 39 X 
43 X 51 X 50 X 32 X 43 X 
45 X 56 X 53 X 36 X 44 X 
59 X 59 X 55 X 50 X 53 X 

Test Set 6 Test Set 7 Test Set 8 Test Set 9 Test Set 10 
Sample Class Sample Class Sample Class Sample Class Sample Class 

3  5 X 4  4  3 X 
5 X 9 X 8  6 X 15 X 
14 X 10 X 12 X 9 X 22 X 
17 X 11 X 18 X 11 X 33 X 
24 X 16 X 30 X 20 X 37 X 
26 X 20 X 31  31  40 X 
31  27 X 39 X 43 X 41 X 
34 X 42 X 45 X 45 X 46 X 
60 X 48 X 49 X 49 X 52 X 
61  58 X 61  52 X 53 X 

Correct Classifications 91%
aClassifications based on six principal components 
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Figure 4.18. Savitzky-Golay smoothed diffuse near-infrared reflectance spectra of 274 cotton textiles from 
1334-1906 nm 
 
 

 
 
Figure 4.19. Summary of principal components analysis for Savitzky-Golay smoothed diffuse near-infrared 
spectra of cotton samples with a wavelength window from 1334-1906 nm: (a) scores plot; (b) residual X-
variance plot; (c) x-loadings as a function of wavelength; (d) residual variance as a of the number of PCs 
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Table 4.9. SIMCA classification results for cotton fibers in expanded study 
 

Test Set 1 Test Set 2 Test Set 3 Test Set 4 Test Set 5 
Sample Class Sample Class Sample Class Sample Class Sample Class 

1 X 2 X 22 X 4 X 11 X 
22 X 28 X 59 X 10 X 19 X 
33 X 29 X 62  37 X 38 X 
43 X 35 X 72 X 54 X 47 X 
45 X 62  74 X 59 X 60 X 
60 X 76 X 76 X 61 X 79 X 
68 X 85 X 94 X 76 X 94 X 
105 X 102 X 105 X 82 X 104  
123 X 127 X 134 X 83 X 109 X 
147 X 147 X 141 X 115 X 115 X 
156 X 149 X 142 X 119 X 116 X 
192 X 160 X 159 X 133 X 141 X 
194 X 166 X 187 X 134 X 142 X 
223 X 175 X 190 X 137 X 166 X 
227 X 181 X 194 X 143 X 175 X 
238  192 X 196 X 148 X 176 X 
252 X 236 X 204 X 200 X 202  
256 X 238  228  221 X 213 X 
270 X 261 X 239 X 247 X 235 X 
271 X 265 X 266 X 252 X 254 X 

Test Set 6 Test Set 7 Test Set 8 Test Set 9 Test Set 10 
Sample Class Sample Class Sample Class Sample Class Sample Class 

8 X 4 X 11 X 5 X 2 X 
39 X 36 X 17 X 11 X 4 X 
40 X 53 X 22 X 13 X 71 X 
59 X 54 X 23 X 26 X 74 X 
62  55 X 28 X 52 X 76 X 
74 X 57 X 39 X 76 X 78 X 
79 X 62  62  78 X 82 X 
88 X 74 X 85 X 85 X 103 X 
93 X 82 X 107 X 97 X 110  
115 X 94  119 X 104  118 X 
123 X 100 X 122 X 119 X 131 X 
126 X 101  126 X 123 X 135 X 
131 X 102 X 135 X 139 X 210 X 
141 X 116 X 156 X 147 X 213 X 
171 X 167 X 162 X 166 X 214 X 
208 X 174 X 177 X 175 X 220  
238 X 175 X 191 X 199 X 228  
240 X 192 X 203 X 204 X 249 X 
250  235 X 220  222 X 260 X 
251  236 X 273  238  270 X 

Correct Classifications 89%
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Figure 4.20. Savitzky-Golay smoothed diffuse near-infrared reflectance spectra of 109 polyester textiles 
from 1334-1906 nm 
 
 

 
 
Figure 4.21. Summary of principal components analysis for Savitzky-Golay smoothed diffuse near-infrared 
spectra of polyester samples with a wavelength window from 1334-1906 nm: (a) scores plot; (b) residual 
X-variance plot; (c) x-loadings as a function of wavelength; (d) residual variance as a function of the 
number of PCs 
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Table 4.10. SIMCA classification results for polyester fibers in expanded studya 

 
Test Set 1 Test Set 2 Test Set 3 Test Set 4 Test Set 5 

Sample Class Sample Class Sample Class Sample Class Sample Class 
3  2  2  19 X 2  
13 X 3  3  25 X 4  
15 X 4  11 X 31 X 5 X 
17 X 6 X 12 X 39 X 12 X 
19 X 11 X 16 X 41 X 14  
28 X 19 X 18 X 42 X 29 X 
34 X 41 X 27 X 44 X 31 X 
40 X 45 X 36 X 53 X 33 X 
41 X 48 X 44 X 54 X 35 X 
43 X 51 X 46 X 55 X 43 X 
48 X 55 X 49 X 56 X 46 X 
49 X 58 X 50 X 61 X 50 X 
54 X 60 X 56 X 62 X 51 X 
57 X 63 X 58 X 63 X 56 X 
58 X 71 X 69 X 69 X 71 X 
61 X 72 X 70 X 79 X 88 X 
66 X 87 X 74 X 83 X 92 X 
67 X 89 X 75 X 91 X 96 X 
72 X 107 X 96 X 96 X 104 X 
76 X 108 X 99 X 100 X 108 X 

Test Set 6 Test Set 7 Test Set 8 Test Set 9 Test Set 10 
Sample Class Sample Class Sample Class Sample Class Sample Class 

10 X 5 X 15 X 5 X 5 X 
18 X 7 X 19 X 8 X 10 X 
20 X 11 X 23 X 10 X 11 X 
23 X 14  28 X 12 X 19 X 
25 X 20 X 31 X 14  21 X 
30 X 21 X 32 X 17 X 35 X 
43 X 26 X 38 X 22 X 42 X 
50 X 29 X 43 X 33 X 45 X 
51 X 41 X 47 X 34 X 47 X 
53 X 44 X 55 X 38 X 50 X 
57 X 51 X 61 X 47 X 53 X 
61 X 57 X 67 X 54 X 55 X 
67 X 60 X 71 X 55 X 56 X 
71 X 61 X 74 X 57 X 69 X 
79 X 73 X 79 X 58 X 72 X 
80 X 81 X 82 X 61 X 81 X 
93 X 86 X 95 X 84 X 89 X 
97 X 100 X 99 X 86 X 90 X 
98 X 101 X 101 X 88 X 93 X 
99 X 102 X 108 X 97 X 98 X 

Correct Classifications 95%
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Figure 4.22. Savitzky-Golay smoothed diffuse near-infrared reflectance spectra of 77 rayon textiles from 
1334-1906 nm 
 
 

 
 
Figure 4.23. Summary of principal components analysis for Savitzky-Golay smoothed diffuse near-infrared 
spectra of rayon samples with a wavelength window from 1334-1906 nm: (a) scores plot; (b) residual X-
variance plot; (c) x-loadings as a function of wavelength; (d) residual variance as a function of the number 
of PCs 
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Table 4.11. SIMCA classification results for rayon fibers in expanded studya 
 

Test Set 1 Test Set 2 Test Set 3 Test Set 4 Test Set 5 
Sample Class Sample Class Sample Class Sample Class Sample Class 

16 X 2 X 11 X 7  5 X 
19  5 X 13 X 9 X 19  
25 X 8 X 18 X 17 X 20 X 
33 X 11 X 31 X 23 X 21 X 
34 X 22 X 33 X 28 X 41 X 
36 X 35 X 45 X 29 X 44 X 
42 X 44 X 47 X 49 X 49 X 
72  58 X 48 X 51 X 62 X 
73 X 61 X 52 X 55 X 71 X 
76 X 64 X 72  59 X 77 X 

Test Set 6 Test Set 7 Test Set 8 Test Set 9 Test Set 10 
Sample Class Sample Class Sample Class Sample Class Sample Class 

4 X 2 X 1  4 X 16 X 
18 X 10 X 11 X 9 X 23 X 
29 X 17 X 14 X 10 X 33 X 
41 X 19  25 X 13 X 43 X 
53 X 21 X 28 X 25 X 47 X 
55 X 25 X 32  28 X 50 X 
56 X 31 X 37 X 34 X 62 X 
63 X 63 X 40 X 36 X 70 X 
64 X 74 X 50 X 47 X 72  
69 X 75 X 73 X 64 X 75 X 

Correct Classifications 92%
aClassifications based on six principal components 
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Figure 4.24. Savitzky-Golay smoothed diffuse near-infrared reflectance spectra of 45 silk textiles from 
1334-1906 nm 
 
 

 
 
Figure 4.25. Summary of principal components analysis for Savitzky-Golay smoothed diffuse near-infrared 
spectra of silk samples with a wavelength window from 1334-1906 nm: (a) scores plot; (b) residual X-
variance plot; (c) x-loadings as a function of wavelength; (d) residual variance as a function of the number 
of PCs 
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Table 4.12. SIMCA classification results for silk fibers in expanded studya 
 

Test Set 1 Test Set 2 Test Set 3 Test Set 4 Test Set 5 
Sample Class Sample Class Sample Class Sample Class Sample Class 

5 X 11 X 1  2 X 5 X 
24 X 13 X 13 X 11 X 10 X 
37 X 23 X 23 X 16 X 28 X 
42 X 28 X 42 X 31 X 35 X 
44 X 30 X 45 X 34 X 37 X 

Test Set 6 Test Set 7 Test Set 8 Test Set 9 Test Set 10 
Sample Class Sample Class Sample Class Sample Class Sample Class 

12 X 23 X 2 X 7 X 2 X 
17 X 27 X 24 X 13 X 5 X 
32 X 32 X 33 X 15 X 20 X 
35 X 35 X 39  20 X 27 X 
41 X 41 X 42 X 21 X 42 X 

Correct Classifications 96%
aClassifications based on six principal components 
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Figure 4.26. Savitzky-Golay smoothed diffuse near-infrared reflectance spectra of 192 wool textiles from 
1334-1906 nm 
 
 

 
 
Figure 4.27. Summary of principal components analysis for Savitzky-Golay smoothed diffuse near-infrared 
spectra of wool samples with a wavelength window from 1334-1906 nm: (a) scores plot; (b) residual X-
variance plot; (c) x-loadings as a function of wavelength; (d) residual variance as a function of the number 
of PCs 
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Table 4.13. SIMCA classification results for wool fibers in expanded studya 

 
Test Set 1 Test Set 2 Test Set 3 Test Set 4 Test Set 5 

Sample Class Sample Class Sample Class Sample Class Sample Class 
2 X 33 X 32 X 12 X 3 X 
10 X 38 X 47 X 31 X 14 X 
25 X 40 X 54 X 35 X 21 X 
33 X 43 X 100 X 37 X 25 X 
38 X 58 X 105 X 40 X 61 X 
52 X 72 X 113 X 44 X 70 X 
53 X 102 X 117 X 46 X 81 X 
54 X 106 X 124 X 56 X 83 X 
60 X 110 X 131 X 61 X 84 X 
66  119 X 133 X 65 X 108 X 
71 X 127 X 154 X 66  114 X 
78 X 136 X 159 X 79 X 133 X 
79 X 147 X 161 X 82 X 151 X 
105 X 148 X 167 X 85 X 153 X 
117 X 153 X 173 X 103 X 158 X 
147 X 161 X 174 X 134 X 161 X 
152 X 162 X 175 X 151 X 169 X 
161 X 169 X 177 X 159 X 183 X 
172 X 184 X 179 X 166 X 189 X 
175 X 189 X 191 X 175 X 190 X 

Test Set 6 Test Set 7 Test Set 8 Test Set 9 Test Set 10 
Sample Class Sample Class Sample Class Sample Class Sample Class 

1  5 X 14 X 2 X 12 X 
5 X 6 X 19 X 30 X 29 X 
25 X 8 X 31 X 45 X 34 X 
26 X 16 X 48 X 52 X 41 X 
35 X 23 X 58 X 54 X 46 X 
49 X 51 X 64 X 56 X 62 X 
54 X 58 X 67 X 60 X 65 X 
58 X 62 X 81 X 66  85 X 
70 X 83 X 86 X 67 X 91 X 
75  86 X 89 X 78 X 93 X 
95 X 88 X 92 X 90 X 100 X 
114 X 90 X 110 X 104 X 103 X 
121 X 95 X 116 X 110 X 107 X 
136 X 117 X 139 X 118 X 111 X 
144 X 127 X 140 X 127 X 125 X 
152 X 129 X 141 X 131 X 130 X 
174 X 142 X 144 X 167 X 131 X 
177 X 144 X 172 X 170 X 159 X 
178 X 163 X 183 X 175 X 168 X 
187 X 185 X 187 X 181 X 186 X 

Correct Classifications 98%
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The peak at approximately 1670 nm, commonly seen in the spectra of polyesters, is 

present in the spectra for Acetate-582.  It should be noted, however, that the peak is 

substantially weaker than in the example spectra for polyesters.  The presence of this 

spectral feature could account for the erroneous classification.   

 When cotton samples were classified, no misclassifications were seen when the 

acetate, polyester, silk, and wool models were used.  The ten rayon models produced an 

enormous amount of errors in the classification of the cottons.  The shear number of 

errors indicates that the 77 rayon samples available for modeling are still too small.  The 

cotton samples are too chemically similar to rayon to have a distinction made with such a 

reduced sample population.  When rayon samples are subjected to classification by the 

cotton models, there was a single false positive sample across the data sets.  One acetate 

model flagged a single sample in the analysis.  The polyester, silk, and wool models 

showed no erroneous classifications for the rayon samples.   

 Polyester samples showed no false positives when classified using the acetate, 

cotton, rayon, silk, or wool models.  The models for acetate, cotton, polyester, and wool 

all showed excellent performances in regards to the classification of silk.  The models for 

rayon, unfortunately yielded a large number of misclassifications.  The sample size for 

the rayon models is not large enough.  The spectra for the rayon and silk samples can be 

seen in Figure 4.29.  Since the spectral features are so broad and ill-defined, the principal 

components analysis is not able to ascertain the differences between the two fabric types.  

A suspect silk textile was identified and can be seen in Figure 4.30.  The sample has the 

characteristic peak at approximately 1678, indicative of polyester.   
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Figure 4.28. Savitzky-Golay smoothed diffuse near-infrared reflectance spectra of misclassified acetate 
sample with representative acetate and polyester fibers  
 
 

 
 
Figure 4.29. Savitzky-Golay smoothed diffuse near-infrared reflectance spectra of representative rayon and 
silk fiber samples 
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The models for acetate, cotton, polyester, and rayon show no misclassifications 

for wool fibers.  There are, however, a large number of errors in classification when the 

silk models were used.  Both silk and wool are protein based natural fibers.  Though the 

proportions of amino acid residues they possess are different, there are some similarities 

in the minor constituents.  Wool fibers contain, predominantly serine, cystine, arginine, 

and glutamic acid, while silk fibers contain no cystine and little to no arginine.  Both 

fibers do contain an ample supply serine.  Wool and silk contain 7-10 g and 13-17 g of 

serine per 100 g of fiber, respectively.  The amounts of the amino acids valine, 

phenylalanine, tryptophan, histidine, and lysine are quite similar in both silk and wool.  

The overall serine content, as well as these other components, could give rise to the 

misclassifications found with these models. 

 
 

 
 
Figure 4.30. Savitzky-Golay smoothed diffuse near-infrared reflectance spectra of representative samples 
and the suspected “fake” silk textile 
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 The final validation step was to use the model sets to attempt to classify the 

remaining fiber samples in the data set, which include: acrylic, linen, mohair, nylon, 

olefin, and PVC.  The acrylic, mohair, and olefin fibers had no false classifications.  The 

linen fibers were erroneously marked as cotton and rayon.  Cotton and rayon are seed 

fibers, while linen is a bast fiber.  This difference not withstanding, they are all cellulosic 

natural fibers.  The misclassification here is similar to the error of cotton fibers being 

misidentified as rayon by the rayon designed models.  A number of nylon fiber samples 

were identified as acetates in the validation.  The spectra for the samples can be seen in 

Figure 4.31.  The spectra for the acetate and nylon samples overlap and cross, but still 

have distinctly different spectral bands at 1688 to 1818 nm.   

 
 

 
 
Figure 4.31. Savitzky-Golay smoothed diffuse near-infrared reflectance spectra of nylon and acetate 
samples from 1334-1906 nm with inset from 1674-1846 nm 
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Conclusion 

 The preliminary study into the use of soft independent modeling of class analogy 

(SIMCA) with the diffuse near-infrared reflectance spectra of textile samples as a means 

of classification was very promising.  It was shown that a principal components model 

could differentiate a grouping of natural fibers from those that were manufactured.  The 

principal component coordinate system plotted the samples along the various axes in 

order of decreasing variance in order to explain the most amount of variance in the 

sample matrix with the least number of factors.  The PCA models were also shown to 

segregate samples of two different types of natural fibers.  The example shown in this 

work was between collections of cotton and silk samples.  The further investigations also 

showed the samples of each fiber type would sequester themselves into relatively 

compact clusters.  This clustering behavior was the key to the construction of models to 

be used in a SIMCA classification.   

Though there was no sample pretreatment in this study, it was deemed appropriate 

to use a Savitzky-Golay smoothing routine, using 5 averaging points at either end of the 

sample point being averaged.  Model classifications improved after the use of the 

smoothing routine. 

 Determining the number of principal components in the models was also an 

obstacle.  The residual variance for the different models usually dropped to below 1% at a 

point far before the calculation of the third principal component (PC).  The recommended 

number of PCs usually was between 1 and 3, which depended on the model and the fiber 

that model was derived from.  Samples of cotton, linen, and rayon are all cellulose 
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polymers.  The subtle deviations in the spectra of these fibers, among others, necessitated 

the use of more PCs than was recommended by the chemometric software program.   

The limited number of samples in the preliminary study was a hindrance; 

however, it was still possible to build PCA models that could be used in subsequent 

sample classifications.  The expanded study showed that the increased number of samples 

of the different fiber types helped to better define the fiber types as a whole, 

spectroscopically.  The inherent variations from sample to sample in a single fiber group 

allowed the PCA models to account for these changes in the classifications.  It is what 

allowed the cotton and rayon samples to be distinguished from one another.   
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CHAPTER FIVE 
 

Identification of Chemically Treated Textiles by Soft Independent Modeling of Class 
Analogy Analysis of Diffuse Near-Infrared Reflectance Spectra 

 
 

Introduction 
 

 In the previous studies discussed in Chapter 4, various examples of secondary 

clustering could be observed within the scores plots of principal components analysis.  

The degree of variability in the sample population for the study was quite high, due to 

over 800 samples in the investigation.  While the primary clusters of samples observed is 

mainly due to fiber type, manufacturing process residues, topical finishes, weave pattern, 

and dye content undoubtedly contribute to variability of fibers of a given type.   

 In this Chapter, the clustering patterns of laboratory-prepared samples will be 

investigated in an effort to determine what effect chemical finishing and dying has on the 

behavior of textile samples in a principal components analysis.   

 
Background 

 
 Chemical finishing can be defined as the use of chemicals to achieve a desired 

fabric property.  Chemical finishing has always been an important component of textile 

processing; however, in recent years, the trend of using more high-tech products has 

increased the interest in the use of chemical finishes.  The use of high performance 

textiles has grown, and with it, the need for chemical finishes to provide the fabric 

properties required in special-use applications.  The estimated amount of textile chemical 

auxillaries sold and used globally was about one tenth the world’s fiber production.107   
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 Chemical finishing, also referred to as ‘wet’ finishing, can change the chemical 

composition of a fabric as the finish is applied.  By doing so, an elemental analysis of the 

finished fabric would be different than that of the same fabric done prior to the treatment.  

Chemical treatments can be durable, if they can undergo numerous launderings and dry 

cleanings without losing their effectiveness.  They are non-durable, if they are temporary 

properties or if the fabric is not intended to be washed.  The methods for application of 

textile finishes vary based on the particular chemical finish, the fiber to be treated, and 

the machinery available.  The type of textile finishes include: softeners, hand builders, 

easy-care and durable press agents, repellents, soil-release agents, flame retardants, 

antistatics, anti-pillers, elastomerics, ultraviolet protectants, antimicrobials, as well as 

other novel finishes like anti-odor and fragrant finishes.  A sampling of important 

chemical finishes and dyes are discussed below.   

 
Softening Finishes 
 
 Softening finishes are among the most important chemical after-treatments.  The 

purpose of softening finishes is to achieve an agreeable, soft hand, some smoothness, 

along with better drape and flexibility.  The hand of a fabric is a subjective sensation felt 

by the skin when a textile fabric is touched with the finger tips and gently compressed.  

Softeners provide their main effects on the surface of the fibers.   

Cationic softeners orient themselves with their positively charged ends toward the 

partially negatively charged fiber.  This process creates a new surface of hydrophobic 

carbon chains that provide the characteristic excellent softening and lubricity.  Anionic 

softeners mode of action is exactly the opposite of cationic softeners.  The negatively 

charged heads of the softener are repelled away from the fiber.  The result is a higher  
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Figure 5.1. Schematic orientation of (a) cationic and (b) anionic softeners on fiber surfaces107 
 
 
hydrophilicity and less softening effects than seen with cationic softeners.  The modes of 

action for both cationic and anionic fiber finishes can be seen in Figure 5.1.  Non-ionic 

softeners are also used; however, the orientation of them is dependent on the nature of the 

fiber surface, where hydrophobic portions of the softener are attracted to hydrophobic 

portions of the fiber.  Common examples of both cationic and anionic softeners can be 

seen in Table 5.1.  Silicone based cationic and non-ionic softeners are also available that 

provide very high softness.  A common example of a silicone softener is polydimethyl 

siloxane.   

 
Flame-retardant Finishes 
 
 The protection of the consumer is the most important criteria for a company 

manufacturing a product for the general public.  Flame-retardant finishes provide textiles 

with an important performance characteristic by inhibiting the decomposition of fibers 

when exposed to heat or an open flame.  Fire fighters and other emergency personnel  
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Table 5.1. Chemical structures of typical cationic and anionic softeners 
 

Cationic 

Quatenary ammonium salt 
N
CH2

R1
CH3

R2 X

 

X = HSO4
-,  Cl- 

R1 = (CH2)nCH3, n = 11-17 

R2 = CH3, (CH2)nCH3, n = 11-17 

Amine salt NH3R1 X  R1 = long alkyl chain 

Imidazoline 

CH3(CH2)16 C
N

N

CH2

R3

CH2  

R3 = H, CH2CH2NH2 

Anionic 

Alkylsulfate salt OR1 SO3 Na  
Alkylsulfonate salt SO3R1 Na  

R1 = long alkyl chain 

 
 
require flame resistant clothing and other items when they enter into a dangerous 

situation.  The military and airline industry also have multiple needs for flame retardant 

textiles.   

 
 

 
 

Figure 5.2. Combustion cycle of fibers (Adapted from reference 107. Copyright 2004 CRC Press, LLC) 
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 When a fiber is heated, the fiber’s temperature increases until it reaches the 

pyrolysis temperature, TP.  The fiber begins to decompose , producing carbon dioxide, 

water vapor, higher oxides of nitrogen and sulfur, carbonaceous char, tars, and flammable 

gases.  If the temperature continues to rise, it will reach the temperature of combustion, 

TC, where the flammable gases will then ignite and burn off.  The free radical reactions 

occurring at the point of combustion are highly exothermic, producing large amounts of 

heat and light.  The heat expelled perpetuates the reaction by providing thermal energy to 

further pyrolyze the fiber and produce more flammable gases.   

 A main goal of researchers has been to disrupt the combustion cycle.  One attempt 

was the insertion of a heat sink on or in the fiber itself, using materials that thermally 

decompose through strongly endothermic reactions.  If enough energy can be absorbed 

by the heat sink, the pyrolysis temperature of the fiber will not be reached and no 

combustion will take place.  Aluminum oxide and calcium carbonate have been used as 

fillers in polymers and coatings to inhibit combustion.  Another approach seeks to apply a 

material that will form an insulating layer around the fibers to be sure they do not reach 

their pyrolysis temperature.  Flame retardancy can also be achieved through a 

dehydration reaction that influences the pyrolysis reaction to produce less flammable 

volatiles as well as more residual char.  The condensed phase mechanism (Figure 5.3)  

 
 

O

O
OH

CH2OH

OH

O H+ O O

O

+ 3H2O

 
 

Figure 5.3. Dehydration of cellulose by strong acids 
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can be seen in the action of phosphorous-containing flame retardants , which, after 

producing phosphoric acid through thermal decomposition, crosslink hydroxyl containing 

polymers, thereby altering the pyrolysis to yield less flammable byproducts.   

 One thermal degradation mechanism for cellulose fibers, such as cotton, rayon, 

and linen, is the formation of the small depolymerization product levoglucosan.  This 

material and its volatile pyrolysis products are extremely flammable and are the main 

contributors to cellulose combustion.  Compounds that inhibit the formation of 

levoglucosan (Figure 5.4) are expected to act as flame retardants for cellulose-based 

fibers.  The crosslinking of cellulose polymer chains, as mentioned above, reduces 

levoglucosan generation, catalyzes dehydration and carbonization.  A variety of inorganic 

salts have long been known as flame retardants.  Gay-Lussac proposed the use of borax 

and ammonium sulfate as a flame retardant for cotton as far back as 1820.  The three 

commercially important flame retardants today are diammonium phosphate, ammonium 

sulfamate, and ammonium bromide.   

 
 

O O

O

CH2OH

OH
O

OH CH2OH

OH

OH

O
350 oC

O

HO
OH

O

OH
 

 
Figure 5.4. Thermal degradation of cellulose polymer to levoglucosan 

 
 
 The three approaches to flame-retard polyester have included additives to the 

polymer melt, flame-retardant copolymers, and topical finishes.  Each of these methods 

has been used commercially to produce flame-retardant polyester textiles and employ 

phosphorus- or bromine-containing compounds.  A common example is 
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trisbromopropylphosphate (Figure 5.5a), more commonly known as “tris”.  This bromine 

containing phosphate ester is an extremely versatile and effective product.  The  
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Figure 5.5. Polyester flame retardants (a) trisbromopropylphosphate, (b) cyclic phosphate/phosphonate, and 
(c) hexabromocyclodecane 
 

use of tris was abandoned, however, after the material was found to be a carcinogen.  The 

current standard for flame retardants of polyester is a mixture of cyclic 

phosphate/phosphonates (Figure 5.5b) used in a dry-pad-heat set process of 190-210 °C 

for 0.5-2 minutes.  Another approach to durable flame retardant finishes is the use of 

highly brominated chemicals as topical finishes.  One example of these compounds that is 

particularly useful is hexabromocyclodecane (Figure 5.5c).  

 
Chemical Dyes 
 
 Dyes used in coloring textiles absorb discrete packages or quanta of light raising 

the dye molecule to an excited, higher energy state.85  Normally, the absorbed energy is 

dissipated through increased vibration within the dye molecule as heat.  If the energy 
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absorbed is transferred to the fibers of the textile, chemical damage will occur.  Organic 

molecules that contain a series of unsaturated double bonds can absorb light within a 

given wavelength range, usually in the ultraviolet (UV).  With sufficient conjugation, the 

molecule will absorb light in a lower energy visible wavelength range and be considered 

a dye or a pigment.  The Munsell system uses standard hues and numerical values for a  

textile’s chroma and lightness to define color.   

 The dyes used to color textiles must have an affinity for the fibers in the textile to 

have a uniform application.  Physical forces such as hydrogen bonding, van der Waals 

interactions, and in certain cases chemical covalent bonding are responsible for the 

bonding of dyes to textile fibers.  The chemical composition and basis of application are 

the most widely used methods of dye classification.  The basic classes of dyes are 

anionic, cationic, and chemically reactive.   

 
 1. Dyes containing anionic functional groups.  Acid dyes are large dyes 

containing one or more sulfonic or carboxylic acid salt functional groups.  The driving 

force behind dye diffusion and migration into the textile fibers when using acid dyes is  

 
 

O

O

NH2
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NaO3S  
 

Figure 5.6. Chemical structure for anionic acid dye Acid Blue 78. 
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the development of a positive charge withiun a fiber in acidic solution.  Fibers suitable 

for acid dyes include wool, silk, other protein fibers, and nylon.  An example of an acid 

dye, acid blue 78, can be seen in Figure 5.6.   

 Direct dyes are another subclass of anionic dyes.  Typically, direct dyes have a 

long, narrow, or flat molecular structure.  This makes direct dyes highly suitable for 

coloring cellulosic fibers.  This group of dyes often contains azo groups connecting 

aromatic chromophores.  The driving force of diffusion is not based on the development 

of charge in the fibers, and as a result, direct dyes are applied in basic media, where 

cellulosics are more stable.  An example of a direct dye is Direct Red 185 (Figure 5.7).   
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Figure 5.7. Chemical structure for anionic dye Direct Red 185 
 
 
 Mordant dyes are a type of acid dyes that have special sites other than acid salt 

anionic groups that can react with a metal salt mordant.  Common mordants for these 

dyes include salts of chromium, aluminum, copper, iron, tin, and cobalt.  The mordant 

dye Brown 35 can be seen in Figure 5.8.   
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Figure 5.8. Chemical structure of anionic dye Mordant Brown 35 
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 The final group of anionic dyes are called reactive dyes.  These molecules have 

the same basic chemical structures of other acid, direct, and mordant dyes; however, they 

contain functional groups that are capable of chemically bonding the dye to the fiber of 

the textile.  The dye, Reactive Red 1, seen in Figure 5.9 is a common reactive dye.  

Cellulosic, protein, and nylon fibers are routinely dyed with this class.   
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Figure 5.9. Chemical structure of anionic dye Reactive Red 1 
 
 
 2. Dyes containing cationic functional groups.  Cationic or basic dyes are colored 

cationic salts of amine derivatives.85  The cations will migrate toward negative charges 

inside the fibers.  Cellulose, protein, nylon, acrylic, and specially modified synthetic  
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Figure 5.10. Chemical structure of cationic dye Basic Blue 1 
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fibers perform well when dyed with cationic agents.  One drawback to basic dyes is the 

colorfastness of the finished textile is usually poor.  The dye Basic Blue 1, a cationic dye, 

can be seen in Figure 5.10.   

 
 3. Dyes requiring chemical reaction before application.  The final type of dye is 

those that require a chemical reaction to proceed application of the dye to the textile 

fibers.  Vat dyes are usually water-insoluble compounds that can be chemically reduced 

in the presence of base to form a water-soluble and colorless leuco-form of the dye.  This 

species is then applied to the desired fiber.  Vat dyes work well with cellulosic and most 

synthetic fibers.  However, care must be taken when using vat dyes with wool and other 

protein based materials due to the high basicity of the leuco dyer solution, which can 

damage protein fibers.  One common example of a vat dye is Indigo (Figure 5.11).   
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Figure 5.11.  Chemical structure of vat dye Blue I (Indigo) 
 
 
 Sulfur dyes are inexpensive complex reaction mixtures of selected aromatic 

compounds with sodium polysulfide.  These dyes are chemically reduced in the presence 

of base before the application to the textile fibers, and they are then oxidized while on the 

fiber in the presence of oxygen or by the application of hydrogen peroxide or other mild 

oxidizing agent.  An example of a sulfur dye, Sulfur Green 6, can be seen in Figure 5.12.   
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Figure 5.12. Chemical structure of sulfur dye Green-6 
 
 
 Azoic dyes or napthol dyes formed in situ on the textile fabric through a coupling 

reaction of an aromatic alcohol or amine, such as napthol (Figure 5.13a), with a 

diazonium salt (Figure 5.13b).   
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NH2Cl

NO2  
(a) (b) 

 
Figure 5.13. Chemical structures of coupling component napthol (a) and diazonium salt (b) of an azoic dye 
 
 

Methods and Materials 
 
Experimental 

 Textile flame retardants ammonium bromide  and ammonium sulfamate were 

obtained from Alrich Chemical Co., while ammonium phosphate was obtained from 

Fluka Chemical Co.  The textile softeners dimethylpolysiloxane and sodium dodecyl 

sulfate were also obtained from Aldrich Chemical Co.  Chemcial dyes 

hexamethylpararosaline chloride (Gentian Violet) and Indigo-5,5’-disulfonic acid (Indigo 

Carmine) were obtained from Fisher Chemical, and 5-(4-Nitrophenylazo) salicylic acid 

(Mordant Orange) was acquired from Aldrich Chemical Co.  Commercially available 

fabric dyes, Rit scarlet and dark brown, distributed by Phoenix Brands, were purchased at 

local area stores.   
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 The ammonium sulfamate, ammonium bromide, sodium dodecyl sulfate, Mordant 

Orange, Indigo Carmine, and Gentian Violet finishing solutions were prepared by 

dissolving an appropriate amount of solid into 100 ml of deionized water to produce an 

approximately 1.0 M solution.  A 40-ml aliquot of the 2.5 M stock solution of ammonium 

phosphate was diluted to 100 ml, to afford a concentration of approximately1.0 M.  The 

Rit scarlet and dark brown dyes were prepared by diluting a 5-ml aliquot to a total 

volume of 30 ml.  A 20% (v/v) solution of dimethylpolysiloxane in chloroform was 

prepared by mixing 20 ml of dimethylpolysiloxane with 80 ml of chloroform.   

 Untreated fabric samples of natural linen, 65%/35% polyester (Dacron)/cotton 

blend, cotton twill, and textured polyester (Dacron) were acquired from Dr. Judith Lusk 

of the Baylor University Department of Family and Consumer Science.  A group five, 

untreated cotton textiles , desized Texcellona, Texas, pima desized, organic desized, and 

natural color organic desized, were obtained from the textiles lab at Texas Tech 

University.  The remaining untreated cotton fabrics, organdy, #4 Greige duck, fine 

filtercloth, bleached combed 80x84, percale sheeting, and bleached mercerized poplin 

were acquired from Testfabrics, Inc.  The fabrics were cut into strips, approximately 1.5 

inches wide and 3 inches long.   

 All the fabric samples were submerged into the different prepared solutions and 

allowed to soak for 5 to 10 minutes.  The samples were then removed and allowed to dry 

on paper towels in a fume hood for a period of no less than 48 hours.  Each sample was 

then subjected to analysis using NIR reflectance spectroscopy.   
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NIR Spectroscopy 

NIR analysis of textile samples was carried out on a dual-channel spectrometer 

assembled in our laboratory.18  The textile samples were placed in the sample holder at 

the sample window of the intergrating sphere.  NIR reflectance scans were run from 1100 

to 2200 nm, with a sampling interval of 2.0 nm.  Measurements were reported as log 1/R, 

where R is the reflectance.  Data were written into ASCII tables by the LabView software 

and converted to Microsoft® Excel spreadsheets used in chemometric analysis. 

 
Chemometric Analysis 
 
 The spectral data, contained in the Excel spreadsheet files, were imported into the 

Unscrambler© software package (versions 9.1 and 9.6 – CAMO, Inc., Woodbridge, NJ).  

The data were then transposed to list the wavelengths as the x-variables and the samples 

as the y-variables.  The multivariate principal components analysis was performed on the 

data.  Raw spectral data as well as data subjected to a Savitzky-Golay smoothing routine, 

using a zero degree polynomial with 5 averaging points on both ends, were used in the 

principal components analysis.   

 
 

Results and Discussion 
 
 Patterning in the data sets from the principal components analyses had been seen 

to varying degrees throughout the expanded study discussed in Chapter 4.  For instance, 

in Figure 5.14, the three-dimensional scores plot output for the complete set of wool 

samples, totaling 192 samples, shows some degree of scatter within the data.  A small 

collection samples (a) can be seen segregating from the main cluster designated (b).  

Figure 5.15 shows the scores plot analysis for the 287 cotton samples in the data set.  The 
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samples take on the shape of the letter “V”, with the vertex about the cluster labeled (a).  

The remaining samples in the data swarm fan out towards the points designated (b) and 

(c).   

Both cotton and wool are natural fibers, with cotton being cellulose based and 

wool is a keratin protein.  Similar clustering behaviors can also be seen in manufactured 

fibers.  Figure 5.16 demonstrates a separation between two subclasses of rayon samples.  

The scores plot clearly shows two groupings at points (a) and (b) with a plane of 

separation between them.   

 
 

 

 
Figure 5.14. Groupings in three-dimensional scores plot for principal components analysis of diffuse near-
infrared reflectance spectra for wool samples with a wavelength window of 1334 to 1906 nm 
 
 

The behavior seen in rayon is also mirrored in the performance of polyester 

samples in the principal components analysis (Figure 5.17).  Rayon is a regenerated 
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cellulose fiber, while polyester is completely synthetic.  In principal components analysis, 

the samples in a data set are plotted on a new coordinate system, based on the principal 

components (PCs) calculated.   

 
 

 
 
Figure 5.15. Groupings in three-dimensional scores plot for principal components analysis of diffuse near-
infrared reflectance spectra for cotton samples with a wavelength window of 1334 to 1906 nm 
 
 

 
 
Figure 5.16. Groupings in three-dimensional scores plot for principal components analysis of diffuse near-
infrared reflectance spectra for rayon samples with a wavelength window of 1334 to 1906 nm 
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The axes for the coordinate system are chosen so that the largest amount of 

variation in the samples is explained by the first PC.  The next largest amount of variation 

is explained by the second PC, and so on.  The differentiation of samples within a single 

fiber class could be the result of variability in the samples expressed by their relative 

positions within the scores plot.  The variability of the subclasses could be caused by the 

fiber content, the fiber’s origin, manufacturing process residues, topical finishes, dyes, 

weave pattern, or other factors.   

 
 

 

 
Figure 5.17. Groupings in three-dimensional scores plot for principal components analysis of diffuse near-
infrared reflectance spectra for polyester samples with a wavelength window of 1334 to 1906 nm 
 
 
Finishes and Groupings 
 
 Untreated samples of raw polyester, cotton, linen, and a 65:35 polyester/cotton 

blend were treated with ammonium bromide and ammonium phosphate.  One sample of 

each textile was left untreated to be used as a control.  The diffuse near-infrared 
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reflectance spectra for these samples can be seen in Figure 5.18.  The samples of the 

different fiber types stack on top of one another from polyester up to linen.  The 

polyester/cotton blend sample falls between the samples of 100% cotton and polyester.  

Between approximately 1400 to 1650 nm, the spectra for the blend samples are analogous 

to that of the pure cotton and linen samples, which are both cellulosic fibers.  The blend 

fibers then diverge from the pure samples, and the characteristic peak of polyester at 

approximately 1672 nm is seen.   

 
 

 

 
Figure 5.18. Diffuse near-infrared reflectance spectra for cotton, linen, 65:30 polyester/cotton blend, and 
polyester (untreated, ammonium bromide, ammonium phosphate) from 1400 to 1900 nm 
 
 

The three-dimensional scores plot for the four treated sample sets can be seen in 

Figure 5.19.  The samples cluster together in a linear fashion by fiber type, as was seen in 

the preliminary and expanded studies in the previous Chapter.  The first two principal 
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components in the plot are along the X- and Y-axes.  The bulk of the information 

contained in both PCs seems to deal with the fiber type of the given sample, which gives 

rise to the clusters.  The third principal component, the Z-axis, differentiates the samples 

based on the topical finish applied.   

 
 

 
 

Figure 5.19. Groupings in three-dimensional scores plot for principal components analysis of diffuse near-
infrared reflectance spectra for cotton, linen, 65:30 polyester/cotton blend, and polyester samples that were 
untreated (U), and coated with ammonium bromide (B) and ammonium phosphate (P) with a wavelength 
window of 1334 to 1906 nm 
 
 
 The next step was to add an additional finishing treatment to see if the trend 

observed would continue in the four fiber types with the introduction more variability.  

Ammonium sulfamate, also a flame retardant, was coated onto samples of the cotton, 

linen, polyester, and blend fabrics.  The near-infrared reflectance spectra were collected 

and compared to those of the previous analysis (Figure 5.18).  The spectra of the samples 

are grouping together based on their fiber type, as was seen in Figure 5.20.  A 

PCA was performed on the spectral data, and it can be seen in Figure 5.21.  The results, 

as would be expected, are similar to the PCA done for bromide, phosphate, and untreated 
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samples.  The introduction of the ammonium sulfamate samples did not disrupt the 

clustering of the samples based on fiber type.  The relationship of the samples to one 

another in the Z-direction (third PC) is still roughly linear.   

 
 

 
 
Figure 5.20. Diffuse near-infrared reflectance spectra for cotton, linen, 65:30 polyester/cotton blend, and 
polyester (untreated, ammonium bromide, ammonium phosphate, ammonium sulfamate) from 1400 to 
1900 nm 
 
 

The samples in the previous two examples were from four different fiber classes.  

The underlying goals of this study also include the explanation of fragmentation for 

samples in a data swarm of a single fiber type.  The fiber chosen for this analysis was 

cotton, due to ease of obtaining samples as well as the importance of cotton in the global 

market.  A group of untreated cotton samples, 11 in all, were gathered from the Baylor 

University Department of Family and Consumer Science, Texas Tech University, and 
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Testfabrics, Inc.  The samples were each treated with a variety of chemical finishes, and 

their NIR reflectance spectra were taken.   

 
 

 
 
Figure 5.21. Groupings in three-dimensional scores plot for principal components analysis of diffuse near-
infrared reflectance spectra for cotton, linen, 65:30 polyester/cotton blend, and polyester samples that were 
untreated (U) and coated with ammonium bromide (B), ammonium phosphate (P), and ammonium 
sulfamate (S) with a wavelength window of 1334 to 1906 nm 
 
 
 In Figure 5.22, a three-dimensional scores plot for cotton samples of the 11 types, 

each coated with ammonium phosphate and an uncoated sample as a control.  There is 

inherent structure to the resulting data swarm.  The control samples, designated (a), are 

partitioned from the phosphate treated samples centered around point (b).  This is the first 

instance where it can be clearly seen that samples of a given fiber type will segregate 

based upon the finishing the textile receives.   

The situation is next complicated by the introduction of a new fiber coating, 

dimethylpolysiloxane (DMPS).  DMPS is used as a textile softener, often used to impart a 

particular feel and weight to a fabric.  The resulting PCA scores plot from the spectra of 

the samples can be seen in Figure 5.23.  As before, the untreated samples (a) partition  
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Figure 5.22. Groupings in three-dimensional scores plot for principal components analysis of diffuse near-
infrared reflectance spectra for cotton samples that were (a) untreated and (b) treated with ammonium 
phosphate for a wavelength window of 1334 to 1906 nm 
 

themselves away from the ammonium phosphate coated samples (b).  The DMPS coated 

samples (c) have formed a disparate cluster, removed from both the other treated or 

control samples.   

 Figure 5.24. shows the three-dimensional scores plot for the PCA of cotton 

samples coated with Gentian violet dye, DMPS, and a control.  The data set fragments 

into groupings consistent with each of the fabric treatments.  The structure of the clusters 

formed is linear and not a spherical shape as was seen in the previous example.  The 

clusters stack against one another from the untreated (a), to the Gentian violet dyed, and 

finally to the DMPS coated.  This analysis demonstrates that a chemical textile softener 

and dye can be distinguished from one another, as well as from an untreated fiber of the 

sample class.   
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Figure 5.23. Groupings in three-dimensional scores plot for principal components analysis of diffuse near-
infrared reflectance spectra for cotton samples that were (a) untreated, (b) treated with ammonium 
phosphate, and (c) dimethylpolysiloxane for a wavelength window of 1334 to 1906 nm 
 
 

 
 
Figure 5.24. Groupings in three-dimensional scores plot for principal components analysis of diffuse near-
infrared reflectance spectra for cotton samples that were (a) untreated, (b) treated with Gentian Violet, and 
(c) dimethylpolysiloxane for a wavelength window of 1334 to 1906 nm 
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 The final PCA was conducted on cotton samples that were untreated, as well as 

coated with DMPS and sodium dodecyl sulfate (DSS).  Both of the coatings are softening 

agents used in the textile industry.  The scores data can be seen in Figure 5.25.  The 

samples segregated themselves based on the finishing treatment applied, as was seen in 

previous examples.  The delineation of the sample group is reminiscent of planes, stacked 

side by side.   

 
 

 

 
Figure 5.25. Groupings in three-dimensional scores plot for principal components analysis of diffuse near-
infrared reflectance spectra for cotton samples that were (a) untreated, (b) treated with sodium dodecyl 
sulfate, and (c) dimethylpolysiloxane for a wavelength window of 1334 to 1906 nm 
 
 
 The patterning of the spectral data in the scores plot of a principal components 

analysis is not always dictated by the topical treatment applied.  The modeling of the data 

onto a new coordinate system is different for each group of samples introduced.  The 

principal component axes for the scores plot could have been influenced, by varying 
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degrees, by variables other than the chemical finish.  When examining the scores plot for 

cotton samples treated with Gentian violet and Indigo Carmine, the samples were not 

clearly being decomposed into clusters based on the dye that was selected.  The scores 

plot is depicted in Figure 5.26.  At first glance, there was no clear pattern to the data 

points in the swarm.  However, upon a closer assessment, there was logic to the data 

distribution.  The samples were correlating to one another, based upon which type of 

cotton the textile sample was cut from.  For example, the samples of cotton organdy, 

treated with the two different dyes, were plotted very close to one another.  The oval 

shapes in Figure 5.26 group the samples of the same cotton type together.   

 
 

 
 
Figure 5.26. Groupings in three-dimensional scores plot for principal components analysis of diffuse near-
infrared reflectance spectra for cotton samples that were treated with Gentian Violet and Indigo Carmine 
for a wavelength window of 1334 to 1906 nm 
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Water Content Modeling 
 
 There was no attempt to control or monitor the relative humidity or temperature 

of the laboratory when the NIR measurements for these studies were carried out.  Official 

textile analytical laboratories have their temperature and relative humidity levels 

moderated to afford relatively constant conditions.  The Baylor Sciences Building, where 

the Center for Analytical Spectroscopy is housed and these spectral measurements were 

recorded, does not internally regulate humidity.  The overtones and combination bands of 

water play a major role in the NIR spectrum.  Therefore, it could be a concern that the 

spectral variations seen and modeled in these studies could be merely a result of 

modeling water content variations in the textile fibers.  Samples of the same class had 

their NIR reflectance spectra collected at roughly the same period on the same day.  

Some sample sets were analyzed over several days due to the large number of samples in 

the set.  Barring any sudden change in climatological conditions, the water content of the 

samples would have remained nearly constant.  The following data analysis was 

conducted to determine if water was the overriding factor involved in the SIMCA 

classifications.   

Three cotton types, cotton organdy, Greige cotton duck, and cotton fine filtercloth 

were selected as the basis for the water-content modeling analysis.  A total of ten cotton 

samples from each type were treated with ammonium bromide, ammonium phosphate, 

ammonium sulfamate, dimethylpolysiloxane, sodium dodecyl sulfate, Gentian violet, 

Mordant orange, Indigo Carmine, Rit® scarlet, and Rit® dark brown.  The spectra for 

each treated group were collected on the same day.  The complete set of spectra can be 

seen in Figure 5.27.  If the clustering pattern of the samples, and in turn, the resulting 
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classification based on that patterning, was based on the moisture content of the fibers 

themselves, the samples would group themselves according to the day their spectra were 

collected.   

 

 
 
Figure 5.27. Diffuse near-infrared reflectance spectra for cotton organdy, Greige cotton duck, cotton fine 
filtercloth, and polyester coated with various fabric treatments from 1400 to 1900 nm 
 
 
The resulting PCA scores plot from the spectral data (Figure 5.28) shows that the samples 

clustered based upon the cotton type and not the type of finish applied.  This is consistent 

with the findings when Gentian violet and Indigo Carmine were applied to other cotton 

samples.  The samples of the same treatment were analyzed on the same day.  The 

moisture content for those samples would be similar, and as such, would be expected to 

cluster together.  The reality is, however, that the samples clustered together based solely 

on the cotton type, no matter what the treatment was, or when the sample’s spectrum was 

collected.   
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Figure 5.28. Groupings in three-dimensional scores plot for principal components analysis of diffuse near-
infrared reflectance spectra for (a) cotton fine filtercloth, (b) cotton organdy, (c) Greige cotton duck, and 
(d) polyester samples treated with various finishes for a wavelength region of 1334 to 1906 nm 
 
 

Conclusion 
 

 The clustering patterns in principal components analysis scores plots derived from 

diffuse near-infrared reflectance spectra of textiles can be affected by the different 

finishes and dyes applied to the textile’s surface.  Laboratory-prepared samples from 

different fiber categories were treated with a variety of finishes including flame retardants 

and had their NIR spectra collected.  The data swarm of the samples clustered into groups 

based upon the fiber type in the sample.  Secondary structure in the clusters was 

attributed to increased influence on the third principal component calculated by the 

factors relating to the flame retardant treatment.   

 Further work demonstrated that subclasses within a data cluster for a particular 

fiber type can be related to the finish treatment applied to the textile.  The behavior is 

seen when cotton textiles of different types are coated with a select group of flame 
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retardants, softeners, and dyes.  Sometimes, the clustering of the sample data is more 

heavily influenced by the type of cotton fiber used.  The subclass structure of the data 

cluster is often more heavily influenced by a variable other than chemical finish.  This is 

shown clearly when Gentian violet and Indigo Carmine were applied to two types of 

cotton samples.   

 The SIMCA classifications completed throughout this work are based upon the 

fiber type of the textile being analyzed.  Moisture levels in the sample set could vary 

depending on the ambient temperature and relative humidity of the laboratory.  But, when 

samples that had their NIR spectra collected on a given day were compared to samples 

taken on different days, the clustering of the samples was in accordance with the type of 

fabric that was present and not moisture content.   
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CHAPTER SIX 
 

Conclusions 
 
 

 The modeling of spectral data with chemometric methods can aid in the analysis 

of complex matrices of information to elucidate important information that would 

otherwise be buried.  Determining the hotness level of chili peppers is of importance in 

agricultural, as well as in the food industry as a means of quality control for spicy 

condiments.  The variations in pungency levels of raw materials become important in 

food processing operations designed to produce final food products rated as mild, 

medium, and hot.18  Previous work done in our laboratory showed a need for larger 

sample populations, smaller sample size, and ease of preparation.   

 A collection of partial-least-squares (PLS) regression models were prepared from 

the ultraviolet spectra of alcoholic habanero pepper extracts.  Total capsaicinoid content 

(capsaicin and dihydrocapsaicin) was determined independently by high-performance 

liquid chromatography to be included in the multivariate analyses.  Other studies 

investigating pepper hotness have used a much larger sample size, which is detrimental to 

the analysis if the end goal is to determine the pungency of a single chili.  The variations 

between peppers of the same type are lost due to the homogeneous nature of the samples 

after they have been blended together.  The sample size for this study was reduced to 

approximately 4 g of a single habanero pepper.  The validation samples of 9 test sets 

were shown to have, on average, a root mean square error of prediction (RMSEP) of ± 5 
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ppm.  The models were derived from 86 wavelengths from the UV spectra of 21 

calibration samples and used 4 PLS-components,  

 A full independent validation set of pepper extracts was prepared to assess the 

integrity of the PLS regression models.  The samples had an average RMSEP of ± 4 ppm.  

The samples were then stored for a period of 25 weeks to evaluate the stability of the 

model over time.  The UV lamp of the spectrophotometer failed and was replaced during 

the 25 week period.  The average RMSEP for the samples was again only ± 5 ppm, which 

demonstrates that the model developed to predict total capsaicinoid concentrations was 

stable enough, not only over time, but also due to instrumental adjustments.   

 Chemometric analysis was also instrumental in the development of a diffuse near-

infrared reflectance database used in the soft independent modeling of class analogy 

(SIMCA) to classify commercially available textiles.  The total number of samples in the 

database was 826.  There were 13 fiber categories, which included acetate, acrylic, 

cotton, linen, mohair, nylon, olefin, polyester, PVC, rayon, silk, wool, and a collection of 

fiber blends.  No sample pre-treatments were done for the samples in the preliminary and 

expanded studies reported on in Chapter 4.   

 The preliminary study was completed to gauge whether or not it was feasible to 

use the SIMCA classification methodology with NIR reflectance spectra to classify 

textiles.  SIMCA is a disjoint principal components analysis (PCA) technique, where 

samples of the same type are analyzed by PCA.  The resulting models are then combined 

with others derived from spectra of different fibers to make classification decisions.  The 

limited number of samples in the preliminary study was an obstacle; however, it was still 

possible to show that samples of different fiber types segregated into different regions of 
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space in the scores plot data of the PCA.  It was possible to construct PCA models, 

though limited, to correctly classify cotton, silk, and polyester textiles.   

 The expanded study in the latter portion of Chapter 4 shows that the expanded 

database, with more of each individual kind of fiber type, improved the predictive 

abilities of the PCA models in the SIMCA classification.  The number of principal 

components (PC) to be used for each fiber type model was of particular importance.  

Increasing the number of PCs in a model will often limit or eliminate any 

misclassifications in the validation set.  Models were developed that correctly classified 

acetate, cotton, polyester, rayon, silk, and wool fibers.  The classifications for these six 

fiber types were 94% accurate, on average.   

 Clustering of samples by fiber type was the anticipated and desired result for the 

PCA of the diffuse near-infrared spectra of the textile samples in both the preliminary and 

expanded studies in Chapter 4.  The samples in the data sets for a single category would 

segregate themselves into different clusters.  This behavior could be the result of a variety 

of factors, including: fiber type and origin, manufacturing process residues, topical 

finishes, weave pattern, and dye content.  The clustering patterns were investigated by 

first analyzing laboratory-prepared samples of different fiber types coated with various 

finishes, and then by examining various finishes on only one fiber type.  The results in 

Chapter 5 show that subclasses within a given data cluster can be the result of a particular 

finishing treatment applied to a textile.   
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APPENDIX A 
 
 

Selection of Principal Components for SIMCA Classification 
 

 The principal components analyses used for the soft independent modeling of 

class analogy classifications of textiles had a total of six principal components (PC) 

calculated.  The selection process for the optimum number of PCs used in the final 

predictions is discussed in Chapter 4.  Depicted in this appendix are the x-loadings plots 

for the six principal components calculated for the acetate, cotton, polyester, and rayon 

samples, Figures A.1 to A.5, respectively.  Each variable has a loading along each model 

principal component.  The loadings show how well a variable is taken into account by the 

model components.  The larger the magnitude of the loading, the more it contributes to 

the meaningful variation in the data.  Loadings can also be useful in interpreting the 

meaning of each model component.   

 The information contained within each variable, and subsequent PC, can improve 

the predictive abilities of the PCA models used in SIMCA.  The residual validation 

variance of a model plotted as a function of principal components can help to determine 

how many PCs are necessary to explain the spectral variation in the sample set.  Often 

times, the residual validation plot will indicate the use of fewer PCs than were calculated 

to explain the data set.  However, as was seen in Chapter 4, classifications generally 

performed better when more PCs were used than were recommended.   

 When Figure A.1 is examined, the loadings plots for PCs two through five are 

fairly smooth.  It is not until the sixth principal component is reached that the structure of 
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the plot begins to deteriorate slightly.  This demonstrates that the sixth principal 

component still has information that could be useful in classifying samples of similar 

origin (similar spectra) such as cotton and rayon, which are both cellulose.  Conversely, 

an examiner must still be careful that all the PCs selected to be used in a classification are 

explaining spectral variations and not simply instrument noise.   

 

 

 
 

Figure A.1. Principal components analysis X-loadings plots for acetate at the (a) first, (b) second, (c) third, 
(d) fourth, (e) fifth, and (f) sixth principal components 
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Figure A.2. Principal components analysis X-loadings plots for cotton at the (a) first, (b) second, (c) third, 
(d) fourth, (e) fifth, and (f) sixth principal components 
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Figure A.3. Principal components analysis X-loadings plots for polyester at the (a) first, (b) second, (c) 
third, (d) fourth, (e) fifth, and (f) sixth principal components 
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Figure A.4. Principal components analysis X-loadings plots for rayon at the (a) first, (b) second, (c) third, 
(d) fourth, (e) fifth, and (f) sixth principal components 
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Figure A.5. Principal components analysis X-loadings plots  for wool at the (a) first, (b) second, (c) third, 
(d) fourth, (e) fifth, and (f) sixth principal components 
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