
ABSTRACT

On the Measurement of Blinding in Randomized, Controlled Trials

Forrest C. Williamson, Ph.D.

Chairpersons: Jane L. Harvill, and James D. Stamey

A key feature to many randomized, controlled trials is that they implement a

blind; that is, subjects, experimenters, or both are unaware as to which treatment

arm an individual has been assigned. The purpose of the blind is to reduce bias and

improve retention. The importance of blinding has been emphasized by groups such

as the FDA and CONSORT, but the reporting of blinding is not standard and the

quantification of blinding success is rare. Two blinding indexes have been proposed

to measure the success of blinding in randomized, controlled trials. The James index

relies heavily on respondents saying that they do not know which treatment group

an individual is assigned to. The Bang index looks more at the proportion of guesses

and whether or not they suggest random or informed guessing. The theory behind

the Bang index does not allow respondents to guess among more than two groups,

including the control group. We have generalized the Bang index to allow for any

number of arms. We find that our index, FBI, is powerful to detect events that

cannot be measured using the James index. Also, implementing a Bayesian approach

using a flat conjugate prior structure yields similar results to the frequentist approach

James and Bang take. A guidance is given to aid in educating regulatory officials and

trial investigators on the importance reporting blinding results and providing at least

one quantitative measure of blinding success. We suggest that investigators report



indexes from both paradigms (James and Bang) to measure blinding efficacy for all

blinded trials.
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CHAPTER ONE

A Generalized Approach to Blinding Indexes

1.1 Why Measure Blinding?

A key feature to many randomized clinical trials is that they are blinded or

double blinded. In a blinded trial, the subjects (and researchers in a double blind)

do not know which treatment is being administered to an individual. The purpose

of the blind is to eliminate bias incurred from the subject’s or researcher’s knowledge

of the treatment being given, and to reduce drop out rate in the placebo or sham

groups. In some cases subjects and/or researchers have good intuition as to which

treatment is being administered, an intuition usually based on side effects or clini-

cal results. In the Beta Blocker Heart Attack Study trial, Byington et al. Byington

et al. (1985) reported that 80 percent of subjects who received propranolol correctly

identified their treatment assignment, with an even higher accuracy among clinic per-

sonnel. Even though there was no formal unblinding in this circumstance, the belief

in one treatment over others reintroduces the bias that we aim to eliminate through

blinding. It is necessary to determine how well a study is blinded. The Food and

Drug Administration (FDA) suggests that investigators, “administer a questionnaire

at study completion to investigate the effectiveness of blinding the subjects and treat-

ing and evaluating the physicians” USF (2006). Unfortunately there is no standard

for measuring blinding efficacy, nor does the FDA suggest how to approach the issue.

The movement for blinding assessment is relatively new. In trials that imple-

ment blinds, it is still uncommon for researchers to measure or report the success of

blinding procedures. Hrbjartsson et al. Hrobjartsson et al. (2007) showed that only

31 out of 1599 trials (< 2%) reported tests for the success of blinding. Yet blinding

is essential to assure the internal validity of the study findings Park et al. (2008).

Particularly, blinding can be a more serious issue in studies with a soft/subjective
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endpoint Bang et al. (2010). One reason measuring blinding efficacy is not often

implemented is because little is known about how to approach the issue statistically.

Even though regulatory agencies encourage investigation in to blinding, limited sta-

tistical approaches make it difficult to require this analysis. Recent work has been

done to further the idea of measuring blinding. Sections 1.3–1.6 provide an overview

of existing approaches and explain why these methods are inadequate, followed by an

overview of two blinding indexes. In Sections 1.8–1.10 we conclude this chapter by

presenting our new approach to blinding indexes. Examples accompany each of the

blinding measures.

1.2 Terminology

Before we go into further detail, we introduce some vocabulary that is used

throughout the paper. Definitions come from www.clinicaltrials.gov/ct/info/glossary.

To start, a trial arm refers to any treatment group in a clinical trial. Arms, trial arms,

study arms, treatment arms, treatment groups, and groups are used synonymously

in this text. A blinded trial is one in which participants are unaware of whether they

are in a control arm or experimental arm of the study. The term blinded may also

be extended to the investigators. A trial in which both participants and investigators

are blinded is referred to as a double blind trial.

The control arm of a study often uses a placebo, an inactive substance (pill,

liquid or powder) with no treatment value. Another possibility is to administer a

sham treatment to the control group. A sham treatment is one which mimics the

investigative treatment but omits a key element of the treatment or procedure. To

distinguish between the two, consider a trial in which Arm A receives an experimental

capsule to treat chronic headache and Arm B receives a capsule with sugar, known

not to treat chronic headache. The capsule given to participants assigned to Arm

B is a placebo. Imagine another trial in which Arm A receives an experimental

procedure which requires surgery for which an abdominal incision is made, and Arm

B receives a procedure in which a similar incision is made on the abdomen but the
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experimental part of the surgery is not performed. In this case, Arm B is receiving

a sham treatment. It is also possible that the control group receive neither placebo

nor sham, but an already adopted standard treatment to which investigators wish to

compare the experimental therapy.

Blinding efficacy and successful blinding are used to suggest that individuals

are unable to identify correct arm allocations. An example of blinding efficacy is

when participants or researchers are randomly guessing ; that is, they are attempting

to identify treatment allocation but the accuracy rate is similar to that expected by

guessing randomly among the possibilities. For example, in a trial with two arms we

would expect a person guessing at random to correctly identify treatment allocations

fifty percent of the time. If participants or investigators are able to correctly iden-

tify treatment allocations at a rate higher than expected, we say that this group is

unblinded. Make note that this does not necessarily mean that the group has been

formally unblinded, where they are told which arm participants have been assigned

to. Rather, it suggests that blinding efficacy/success has not been achieved because

participants or investigators are successful at identifying treatment allocations. Fi-

nally, reverse unblinding (also referred to as opposite guessing) is a phenomenon in

which participants or researchers are unsuccessful at identifying treatment allocations,

beyond what would be expected by random guessing.

Finally, a quick review of study phases. Preclinical trials use non-human sub-

jects, such as animals and bacteria. A Phase I trial tests a new drug for safety on a

small group, usually healthy volunteers. In this stage, side effects are identified and

doses are determined. Phase II can often be thought of as a trial-run for the big

study to come. Researchers test the investigational treatment on subjects who have

the condition being treated to determine if there are signs of efficacy, and to further

investigate safety in the investigational group. The number of subjects enrolled in a

Phase II trial can be small. The larger trial, which is used to show safety, measure

efficacy, and report findings for regulatory approval is Phase III of the investigational

3



procedure. Finally, Phase IV describes the post-marketed performance of the treat-

ment. Investigators can observe performance in subjects who were not considered for

the Phase III trial, and can gather information on long-term efficacy and side effects.

1.3 Assessing Blinding: How it was Done in the Past

Many aspects of blinding assessment are widely debated. What questions do we

ask to assess blinding integrity? When do we ask these questions? How do we analyze

that data? What constitutes evidence for blinding? What are the implications on

study findings? The answers to all of these questions and more lack a consensus among

those who study blinding effectiveness. The most common approach to measuring

blinding uses a questionnaire that would be administered with an exit survey. In the

questionnaire, subjects are asked which treatment they believe they were on during

the trial – or in the case of researchers, they are asked what treatment they believe

individuals were on during the trial. All possible options are given so that nothing

is hidden from the respondent. If the respondent is truly unsure about treatment,

“Don’t Know” (DK) is an available answer. It should be stated, however, that even

the use of DK is somewhat controversial. The main concern is that more people will

respond DK if given as an option, as it may be seen as the socially desirable answer

(response bias) Bang et al. (2010).

From this exit-survey style data, a contingency table of actual treatment by

guessed treatment is assembled. If there is a large proportion of correct guesses, then

successful blinding may not have been achieved. We arrive at another debated issue:

how to measure blinding success. As we have already stated, regulatory groups such

as the FDA and protocolists such as the Consolidated Standards of Reporting Trials

(CONSORT) encourage investigation of blinding success, but no specific method has

been recommended. Due to the lack of a standard approach, numerous methods have

been used to gauge how well a study is blinded Bang et al. (2010). An early means to

quantify the success of blinding was taken by Hughes and Krahn Hughes and Krahn

(1985) where they looked at the proportion of correct guesses versus the proportion
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of incorrect guesses; if there was a significant difference between these proportions

then blinding was deemed unsuccessful.

Park Park et al. (2008) summarized a number of other approaches that have

been taken. The approaches all attempt to determine whether actual treatment and

guessed treatment are associated. Hughes and Krahn Hughes and Krahn (1985) and

Margraf et al. Margrat et al. (1991) used a traditional chi-square test for indepen-

dence. Kolahi et al. Kolohi et al. (2009) used McNemar’s test. These methods provide

industry desired p-values, but not a numerical measure of the success of blinding. Wis-

ner et al. Wisner et al. (2001) used the kappa (κ) statistic which measures agreement.

However in blinding scenarios, disagreement is the more desirable outcome. Therefore

the interpretability of κ is not obvious in this context. It is important to note that all

of these approaches ignore the DK responses. DK responses are essentially thrown out

before the analysis. So not only do these approaches leave out information, they also

inflict bias upon themselves by omitting data that could be indicative of a successful

blind.

1.4 What is Successful Blinding?

The methods mentioned in Section 1.3 ignore all DK responses, resulting in a

source of bias in measuring blinding efficacy. There are two schools of thought on

blinding indicators. The first states, “If subjects are properly blinded, they will guess

‘randomly’ among the available options.” For example, it there are two treatment

arms then we would expect randomly guessing subjects to guess correctly fifty percent

of the time (one chance out of two). Anything other than fifty percent accuracy sug-

gests guessing is not random; furthermore greater than fifty percent accuracy might

suggest knowledge of treatment assignment. The second thought on blinding is, “If

a person truly does not know their assignment, they have been successfully blinded.”

This is the source of DK responses. Thus, blinding success refers to one or both of

these schools of thought being true. The more traditional statistical approaches that

have been applied in the past have ignored the second school of thought (incorporat-
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ing DK responses), making it easier to conclude that a blinding was unsuccessful. In

general, blinding indexes try to harmonize the two components by measuring the ran-

domness of the guesses while also incorporating information from the DK responses.

1.5 The James Blinding Index

James, Bloch, Lee, Kraemer and Fuller James et al. (1996) were the first to

introduce a statistic that was built specifically to address the issue of blinding efficacy.

James et al. claim that “the [DK] responses, if honestly reported, are the strongest

indicator of success of the blinding procedures.”

1.5.1 James BI

The James blinding index, BI, is a variant of the κ coefficient which measures

agreement. James organizes the data in to a (k + 1) × k frequency table, where k

is the number of treatment arms. The actual treatment arms are represented in the

columns, and the responses in the rows. An example frequency table using three

treatment groups, along with some necessary notation, is given in Table 1.1. In each

cell, nij is the frequency of guesses for treatment arm i, i = 1, 2, . . . , k + 1, among

subjects assigned to arm j, j = 1, 2, . . . , k. Please note that the notation presented

in this section is the notation presented in James et al. (1996) . Notation will change

for the Bang Blinding Index, and then will remain unchaged to the end.

Table 1.1: Frequency Table for James BI

Guessed Treatment Actual Treatment
Treatment A Treatment B Placebo Total

Treatment A n11 n12 n13 n1·
Treatment B n21 n22 n23 n2·

Placebo n31 n32 n33 n3·
Don’t Know n01 n02 n03 n0·
Total sample n·1 n·2 n·3 N

James lists a few reasons why the κ statistic should not be used to measure the

success of blinding procedures. First, κmeasures agreement rather than disagreement.
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Also, the bounds of the statistic depend on the number of response categories, which

some consider to be an undesirable property for any index. Finally, κ ignores the DK

responses. Therefore, James introduces a variation of a κ coefficient that is sensitive

to the degree of disagreement rather than agreement, and also incorporates the DK

responses.

The traditional κ measures agreement, and therefore assigns a weight of one to

correct guesses and a weight of zero to incorrect guesses, with no venue for including

DK responses. The measure is then related to what the score would have been

had all guesses been random and to perfect agreement. Since correct guesses are

“undesirable,” the James κD assigns these a weight of zero, while a DK response

receives a weight of one. Since incorrect guesses could be a sign of successful blinding,

an intermediate weight is assigned to these guesses. James et al. use one-half as

the weight for correctly guessing medicine but wrong dose (or guessing the wrong

treatment while on a treatment), and three-fourths as the weight for guessing the

wrong medication (or guessing between placebo or active treatment). They suggest

that the result is not sensitive to the choice of this intermediate weight. This claim is

supported by a simulation study summarized in the manuscript James et al. (1996).

The variant of κ that measures discordance is defined as

κD =
(pD0 − pDe)

pDe

,

where pD0 is the weighted proportion of observed guesses, defined as

pD0 =
k∑
i=1

k∑
j=1

wijpij
1− PDK

, for PDK 6= 1,

and pDe is the weighted proportion of expected guesses, defined as

pDe =
k∑
i=1

k∑
j=1

wijpi·(p·j − p0j)
(1− PDK)2

.

The pij denote the expected relative frequency, and wij the weight given to the re-

sponse in row i column j of the (k + 1) × k frequency table. The James blinding

index, BI, is defined as

BI =
[1 + PDK + (1− PDK)κD]

2
.
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Denote the estimated probabilities by p̂. Thus p̂ij = nij/N , p̂0j = n0j/N , p̂·j = n·j/N ,

p̂i· = ni·/N , and P̂DK = n0·/N .

In this formulation, κD is similar to κ for the upper k × k portion of the table

and is between negative one and one. The proportions PDK and (1−PDK) apportion

the DK’s and the guesses, respectively. Finally, adding one and dividing by two shift

and scale the index so that it can take on any value between zero and one. For the

James BI index, smaller values (closer to zero) indicate poor blinding and larger

values (closer to one) represent successful blinding. For example, if every respondent

in the study answers “DK” the index takes on a value of one; however if all responses

are correct then BI equals zero. A value of one-half represents “random guessing.”

James denotes the estimator as

B̂I =
1 + P̂DK + (1− P̂DK)κ̂D

2
,

with asymptotic variance

Var(B̂I) = N−1


k∑
i=1

k∑
j=1

pij(1− pDK)
2

[
(1− pDK)wij − (1 + κD)

k∑
r=1
{pr·wrj + (p·r − p0r)wir}

]2
4

[
k∑
i=1

k∑
j=1

pi·(p·j − p0j)wij

]2
+pDK(1− pDK)− (1− pDK)(1 + κD)

[
pDK +

(1− pDK)(1 + κD)

4

]}
.

A jackknife procedure was also used to obtain variance estimates for the James index.

1.5.2 Cooperative Study No. 107

The U.S. Department of Veterans Affairs (VA) Cooperative Study No. 107

was a controlled, double-blinded, multicenter study of disulfiram treatment to treat

alcoholism Fuller et al. (1986). One of three treatments – disulfiram 1mg, disulfiram

250mg, or riboflavin (placebo) – were administered to 605 men, along with counseling.

The study concluded that disulfiram may reduce drinking frequency after relapse, but

does not help in sustained abstinence along with counseling. James et al. (1996) use

this study as an application to their blinding index, which most heavily depends on

the DK responses.
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Table 1.2 shows the study coordinator responses for VA Cooperative Study

No. 107. It is of interest to examine if the investigators who dealt with patients were

able to successfully determine which of those patients received an active treatment

versus the placebo. The data is pooled across nine different hospital sites. For this

study, B̂I = 0.556. The jack-knife confidence limits are 0.520 to 0.592, which is a

near match to the reported asymptotic confidence limits, 0.521 to 0.592. James et

al. interpret this as, “a response pattern close to that expected by random guessing,

that is, partial but not complete blindness with no [DKs].” Nonetheless, the James

blinding index was significantly greater than what would be expected for random

guessing, at the 0.05 level.

Table 1.2: VA Coop Study No. 107 Study Coordinator Responses

Guessed Treatment Actual Treatment

Disulfiram Disulfiram Riboflavin Total

1mg 250mg

Disulfiram 1mg 41 27 22 90

Disulfiram 250mg 66 72 36 174

Riboflavin 30 24 64 118

Don’t Know 44 51 52 147

Total 181 174 147 529

1.6 The Bang Index

Bang et al. Bang et al. (2004) constructed an alternative index to assess the

efficacy of blinding in clinical trials. The index can be used for any blinded group;

i.e., study subjects, researchers, etc. The basic form of the data is shown in Table

1.3. In the table, pij = P (guess j|assigned treatment i) for i = 1 (drug), 2 (placebo),

3 (DK) where DK denotes “Don’t know,” and N is the total number of participants.
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Table 1.3: Number of Subjects by Treatment Assignment and Guess in 2× 3 Format

Assignment Response
Drug Placebo DK Total

Drug n11(p11) n12(p12) n13(p13) N1

Placebo n21(p21) n22(p22) n23(p23) N2

Total n·1 n·2 n·3 N

Motivation for the Bang index arises from that fact that different treatment

arms don’t necessarily have to reflect the same level of blinding or “unblinding.” An

aggregate statistic may be misleading because it forces a compromise between the

non-homogeneous responses across treatment arms. A big criticism of the James

index is that it cannot detect different behaviors between arms. For example, the

James index could conclude that a trial is unblinded overall when only one of the

arms guessed accurately even though all other arms are randomly guessing. On the

other hand, it could also suggest adequate overall blinding even though some of the

arms may be inadequately blinded.

1.6.1 Bang BIi

Bang et al. introduced an arm-specific index in order to detect some of the

features mentioned above. Define rii = pii/(pi1 + pi2) to be the proportion of correct

guesses among respondents in treatment arm i. We can rewrite this proportion as

rii = nii/(ni1 + ni2). In the absence of DK responses, we expect rii to be around

one-half for random guessing. However, in the presence of DK’s, the Bang index is

BIi = (2rii − 1)
(ni1 + ni2)

(ni1 + ni2 + ni3)
, (1.1)

which represents the proportion of individuals in the ith treatment arm who cor-

rectly guess their treatment beyond random balance. Bang et al. impose a trinomial

distribution on the counts in the ith arm, with equal probabilities for each treat-

ment arm, then a remainder probability (such that the probabilities sum to one) for

DK responses. Note that the index can be negative, which would represent reverse

unblinding, a scenario in which subjects incorrectly guess the treatment arm more
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often than would be expected by random guessing. The statistic can be any number

between negative one and one, where for the ith treatment arm

• negative one represents complete reverse unblinding,

• zero represents random guessing, and

• one represents complete unblinding,

and random guessing is evidence for blinding. The Bang index focuses on the balance

between correct and incorrect guesses, as opposed to the James index which is more

dependent on DK responses. Furthermore, James cannot detect reverse unblinding.

Under the trinomial assumption, we can calculate the variance of BIi as,

V ar(BIi) =
pi1(1− pi1) + pi2(1− pi2) + 2pi2pi2

Ni

, (1.2)

and the estimated variance is easily obtained by replacing pij with the observed pro-

portion.

1.6.2 Cholesterol Reduction in Seniors Program

The Cholesterol Reduction in Seniors Program (CRISP) was a five-center pilot

study to assess feasibility of recruitment and efficacy of cholesterol lowering in men

and women over the age of 65 years LaRosa et al. (1994). Four hundred thirty one

subjects with low-density lipoprotein cholesterol levels between 4.1 and 5.7 mmol/l

were randomized into the study. Participants were followed for one year while on

a cholesterol-lowering diet plus either placebo or the study drug, Lovastatin. As-

sessment of blinding is particularly important because whether or not patients found

out their treatment assignment may have affected their compliance or attitude toward

participation in the study. Not all people participated in the post-trial data collection

process.

Table 1.4 shows the results from asking the subjects if they knew what treatment

they were assigned to, along with the Bang index and 95% confidence interval. We

see that the Lovastatin arm showed significant excess of correct guesses whereas the

placebo group displays a pattern consistent with a random distribution of responses
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between the two arms. We interpret the index as follows: 21% of participants correctly

guessed their treatment beyond random chance in the Lovastatin arm, whereas only

1% did in the placebo arm. Bang admits the index is not developed for purposes

of statistical testing, rather the index is to give a measurement for the extent of

unblinding.

Table 1.4: CRISP Study Data

Assignment Response Total Bang BIi

Lovastatin Placebo DK (95% CI)

Lovastatin 82 25 170 277
0.21

(0.15, 0.26)

Placebo 27 29 83 139
0.01

(−0.07, 0.10)

Total 109 54 253 416

If we were to calculate the James BI on this same data, we would see that

BI = 0.75 (95% CI: 0.71, 0.78), implying that the CRISP study was well-blinded.

Bang has shown us that, when looking at the treatment arms individually, there may

be some concern as to the blinding success in the Lovastatin arm. However, because

the placebo group was unable to guess their treatment beyond random chance the

James index was biased toward a more conservative value.

1.7 James and Bang: What’s the Difference and What’s Missing?

The James index is very flexible because it can be applied to different types of

data structures; most beneficially it can be applied for any number of treatment or

control groups. However, because the index generates a single value for the entire

study it can be misleading when a well blinded arm and a poorly blinded arm are

both present within a trial, as seen in the CRISP trial. These arms conflict with each

other, and the final index is a type of average of blinding success across arms. Bang
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et al. (2004) developed another index to assess blinding. To address various concerns

with the James index, the Bang index is treatment-arm specific. Thus it is capable

of detecting dissimilar behavior between blinding arms. Furthermore the Bang index

can detect “reverse unblinding” where an incorrect treatment is guessed at a higher

rate than the correct treatment, a feature that would have gone undetected if using

the James index Bang et al. (2010).

So far, the Bang index has only been developed under the case where there

are two arms – specifically an active treatment arm and a placebo or control arm.

The authors state that a “generalization to more than two arms is straightforward.”

However, this isn’t necessarily the case. The rest of this chapter is dedicated to the

development of an index that is similar to Bang’s in theory, but that can accommodate

any number of treatment groups, like the James BI.

1.8 A New Blinding Index

For reasons outlined in the previous section we prefer Bang et al.’s approach

to measuring blinding. However, perhaps the biggest pitfall of Bang’s index is that

it is only useful when there are two groups: active treatment and placebo. In some

cases, all “control” groups could be assigned to one placebo category, and all active

treatments (whether experimental or current standard) into one treatment category.

However, the problem with dichotomizing the groups after surveying the subjects

is that there needs to be an equal number of controls to treatment groups, to keep

with the equal probability “random guessing” assumption of Bang. Alternatively, we

could dichotomize before administering the survey, only allowing subjects to respond:

placebo, treatment, or DK. However, we lose information in doing this.

One of the advantages the Bang index holds over the James index is that it

is treatment-arm specific. We can actually see which arms the sponsor had more

trouble (ease) in maintaining the blind. If we merge groups from the beginning, we

lose the ability to detect the specific arms in which blinding was most heavily broken,

and therefore insight is lost in to what we need to do to better maintain blinding
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success. We assert that the only time treatments should be combined in to one

possible response is when there are multiple dosage levels of the same experimental

treatment.

In what follows, we develop a new blinding index, FBIi, i = 1, 2, . . . , k, which

can be used for any number of treatment arms and maintains Bang’s philosophical

approach to numerically assessing blinding. Table 1.5 extends notation used by Bang

in previous sections.

Table 1.5: k × (k + 1) Frequency Table for the FBI

Assignment Response Total

1 2 · · · i · · · k DK

1 n11 n12 · · · n1i · · · n1k n1,k+1 N1

2 n21 n22 · · · n2i · · · n2k n2,k+1 N2

...
...

...
. . .

...
. . .

...
...

...

i ni1 ni2 · · · nii · · · nik ni,k+1 Ni

...
...

...
. . .

...
. . .

...
...

...

k nk1 nk2 · · · nki · · · nkk nk,k+1 Nk

Total n·1 n·2 · · · n·i · · · n·k n·k+1 N

1.8.1 The FBIi Statistic

Suppose we have k treatment arms. Then nij represents the number of subjects

in treatment arm i who guessed to be in treatment arm j, i = 1, . . . , k and j =

1, . . . , k, k + 1, where j = k + 1 represents a DK response (See Table 1.5). Consider

again rii = pii/(pi1 + pi2) in the two-arm case. This is the proportion of respondents

in arm i who guessed correctly, among those in arm i who did not respond “DK.”

The straightforward generalization is

rii =
pii∑k
j=1 pij

.
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The generalized blinding index can be expressed as

FBIi =
krii − 1

k − 1

k∑
j=1

pij, (1.3)

which is the average of the “pairwise” Bang BIi. We explore the concept of pairwise

BIi indexes in a later section.

1.8.1.1 Bounds. Recall that BIi is between negative one and one, with a value

of zero representing the best measure for blinding success. Positive values of BIi

represent unblinding and negative values suggest reverse unblinding. We consider

three extreme cases to explore the bounds of the generalized index, FBIi.

(1) First suppose all respondents guess correctly (with no DK responses). Then

for each arm i, i = 1, . . . , k,

nii = Ni

pii = nii/Ni = Ni/Ni = 1 =⇒ pij = 0∀j 6= i

rii =
pii∑k
j=1 pij

=
1

1
= 1

FBIi =
krii − 1

k − 1

k∑
j=1

pij =
k × 1− 1

k − 1
× 1 = 1.

The most extreme degree of unblinding is represented by a FBIi value of one.

For this to happen, all guesses among subjects in arm i must guess correctly,

with no DK guesses. This is the only scenario in which the statistic achieves

its upper bound. The presence of any incorrect guesses or DK responses

draws the FBIi closer to zero.
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(2) Next suppose the opposite where all respondents guess incorrectly (with no

DK responses). Now, for i = 1, . . . k,

nii = 0

pii = nii/Ni = 0

rii =
0∑k

j=1 pij
=

0

1
= 0

(
no DK responses =⇒

k∑
j=1

pij = 1

)

FBIi =
krii − 1

k − 1

k∑
j=1

pij =
k × 0− 1

k − 1
× 1 =

−1

k − 1
.

The most extreme case for “reverse unblinding” is represented by FBIi =

−(k − 1)−1. This is the only scenario in which the statistic reaches its lower

bound. The presence of any correct guesses or DK responses draws the FBIi

closer to zero.

(3) Finally suppose every subject responds DK. Then for all i = 1, . . . , k,

nii = 0

pii = 0

rii = 0

(
all DK responses =⇒

k∑
j=1

pij = 0

)

FBIi =
krii − 1

k − 1

k∑
j=1

pij =
k × (−1)

k − 1
× 0 = 0.

The “best case” scenario when nobody attempts to guess what they are

on (presumably because the blind is completely effective) is represented by

FBIi = 0. This is not the only scenario under which the FBIi can achieve

a value of zero. We show in Section 1.8.4 that the null value of FBIi is zero;

that is,

FBIi = 0 ⇐⇒ pii =
1

k − 1

k∑
j 6=i

pij . (1.4)

Note that (1.4) is satisfied when all subjects respond DK since pi1 = pi2 =

· · · = pik = 0.

Therefore FBIi ∈ [−(k − 1)−1, 1], where for any i = i, . . . , k,
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• −(k − 1)−1 represents complete reverse unblinding,

• zero represents successful blinding (either random guessing or no guessing

between treatment arms), and

• one represents complete unblinding.

It is important that the index is zero under the two cases where we have either com-

pletely random guessing, or where nobody guesses at treatment (all DK responses).

At the beginning of the chapter, we discussed two paradigms of successful blinding:

random guessing and DK responses. Either of these paradigms, or even a combination

of the two, yield the same value of the blinding index. DK responses and random

guessing both push the index toward zero, indicating effective blinding. This behavior

is not present in the James index, which is in part why we prefer the Bang approach.

Unlike the James and Bang approaches, the lower bound of the FBIi is dependent

upon the number of groups. We rely on simulation to see how powerful the statistic

is in detecting reverse unblinding, since the presence of more groups pushes the lower

bound closer to zero and could possibly yield insignificant results when, in fact there

is reverse unblinding.

1.8.1.2 Special Case for k = 2. Suppose we have k = 2 treatment arms. It is easy

to show that the FBIi simplifies to the Bang blinding index. Assume k = 2, then

FBIi =
2rii − 1

2− 1

2∑
j=1

pij

= (2rii − 1)
2∑
j=1

pij

= BIi .

Thus BIi is a special case of FBIi when k = 2.
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1.8.1.3 Estimating FBIi. The estimated FBIi index is given by

F̂BI i =
kr̂ii − 1

k − 1

k∑
j=1

p̂ij, (1.5)

where

r̂ii =
p̂ii∑k
j=1 p̂ij

,

p̂ij =
n∗ij
Ni

,

and n∗ij represents the observed value of the random variable nij, the number of

subjects who were in treatment group i but guessed group j. We expand of the form

of the estimated index in the next section, which gives another formulation of FBIi.

1.8.2 Alternative Representation

Since we can easily visualize the data in terms of the frequencies of responses

in Table 1.5, it may be more intuitive to rewrite the statistic from (1.3) in terms of

these frequencies. Knowing that for all i, j we can write pij = nij/Ni, we can express

rii as

rii =
pii∑k
j=1 pij

=
(nii/Ni)(∑k
j=1 nij

)
/Ni

=
nii∑k
j=1 nij

,

which represents the proportion of correct guesses among those who did not respond

DK. Therefore, we rewrite the FBIi index as

FBIi =
krii − 1

k − 1

k∑
j=1

pii

=

k

(
nii∑k

j=1 nij

)
− 1

k − 1

k∑
j=1

nij
Ni

=
k
(
nii

Ni

)
− 1

Ni

∑k
j=1 nij

k − 1

=
knii −

∑k
j=1 nij

(k − 1)Ni

=
(k − 1)nii −

∑k
j 6=i nij

(k − 1)Ni

. (1.6)
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It is easy to see how we would estimate FBIi from data simply by substituting the

observed frequencies for their corresponding random variables. An alternative form

for the estimator given in expression (1.5) is

F̂BI i =
(k − 1)n∗ii −

∑k
j 6=i n

∗
ij

(k − 1)Ni

. (1.7)

Recall that BIi only applied when k = 2. Suppose k > 2. Then we can compute

“pairwise BIi,j” which are simply the BIi statistic comparing the two treatment

groups i and j 6= i. Thus, there are k − 1 pairwise BIi,j. Then FBIi becomes the

average of the k − 1 pairwise Bang blinding indexes, BIi,j.

FBIi =
(k − 1)nii −

∑k
j 6=i nij

(k − 1)Ni

=
1

k − 1

k∑
j 6=i

(
nii − nij
Ni

)

=
1

k − 1

k∑
j 6=i

BIi,j .

We have established a solid link between the Bang blinding index and the generalized

FBIi index, providing additional insight into the equivalence of FBIi and BIi when

k = 2.

1.8.3 Distributional Assumptions and Moments

As in Bang, we still have an arm-specific index. Each index is essentially condi-

tioned on the true treatment assignment, and the FBIi are calculated independently

of one another. We consider a fixed treatment group, i, and work through the details

of the index conditioned on being in the ith group. Contained in Table 1.6 is all of

the data we need to compute FBIi. Note Table 1.6 is simply the ith row of Table

1.5.

Table 1.6: Frequency Table for Respondents in the ith Group

Assignment Response Total

1 2 · · · i · · · k DK

i ni1 ni2 · · · nii · · · nik $ni,k+1 Ni
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The blinding index for group i is

FBIi =
(k − 1)nii −

∑k
j 6=i nij

(k − 1)Ni

.

The total number of respondents Ni in group i is fixed, and is Ni =
∑k+1

j=1 nij. How-

ever, the number of guesses for each response level is random, with some probability

assumed for each response level. To model this relationship, we assume a multinomial

distribution on the nij. Specifically,

ni1, ni2, . . . , nik ∼ multinom (Ni, pi1, pi2, . . . , pik) . (1.8)

Once we impose this assumption, we know the following about the random variables,

E [nij] = Nipij, (1.9)

V ar [nij] = Nipij(1− pij), (1.10)

Cov [nij, nil] = −Nipijpil . (1.11)

The FBIi statistic is a linear combination of the random variables nij, j 6= i =

1, . . . , k. Thus it is a straightforward exercise to find the expected value and variance

of FBIi.

The expected value of FBIi is

E [FBIi] = E

[
(k − 1)nii −

∑k
j 6=i nij

(k − 1)Ni

]

=
1

(k − 1)Ni

E

[
(k − 1)nii −

k∑
j 6=i

nij

]

=
1

(k − 1)Ni

{
(k − 1)E [nii]−

k∑
j 6=i

E [nij]

}

=
1

(k − 1)Ni

{
(k − 1)Nipii −Ni

k∑
j 6=i

pij

}
by (1.9)

= pii −
1

k − 1

k∑
j 6=i

pij . (1.12)
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To find the variance of FBIi, note that for any random variables X and any index of

sequenced random variables Yi,

V ar
[
aX −

∑
Yi

]
= a2V ar [X] + V ar

[∑
Yi

]
+ 2Cov

[
aX,−

∑
Yi

]
= a2V ar [X] +

∑
V ar [Yi] + 2

∑
i<j

Cov [Yi, Yj]

−2a
∑

Cov [X, Yi] . (1.13)

Using (1.13), we obtain a closed form expression for the variance of FBIi.

V ar [FBIi] = V ar

[
(k − 1)nii −

∑k
j 6=i nij

(k − 1)Ni

]

= {(k − 1)Ni}−2 V ar

[
(k − 1)nii −

k∑
nij

]

= {(k − 1)Ni}−2
{

(k − 1)2V ar [nii] +
k∑
j 6=i

V ar [nij]

−2(k − 1)
k∑
j 6=i

Cov [nii, nij] + 2
k∑
j 6=i
j<l

Cov [nij, nil]

 by (1.13)

= {(k − 1)Ni}−2
{

(k − 1)2Nipii(1− pii) +
k∑
j 6=i

Nipij(1− pij)

+2(k − 1)
k∑
j 6=i

Nipiipij − 2
k∑
j 6=i
j<l

Nipijpil

 by (1.10), (1.11)

=
{

(k − 1)2Ni

}−1{
(k − 1)2pii(1− pii) +

k∑
j 6=i

pij(1− pij)

+2(k − 1)
k∑
j 6=i

piipij − 2
k∑
j 6=i
j<l

pijpil

 . (1.14)

1.8.4 Behavior Under Random Guessing

Our assumption for good blinding is that subjects who are guessing are guessing

randomly; that is, we expect an equal proportion of guesses in each treatment group.

Thus, the null hypothesis is

H0 : pi1 = pi2 = · · · = pii = · · · = pik . (1.15)

21



We also have the constraint that
∑k+1

j=1 pij = 1, and hence under the null hypothesis

pij ≤ 1/k. Note that nothing is assumed about pi,k+1, the proportion of DK responses.

One consequence of (1.15), which is less restrictive, is that pii =
∑k

j 6=i pij/(k − 1).

Therefore by using expression (1.12), the expected value of FBIi under the null

hypothesis of random guessing is zero,

E [FBIi] = pii −
1

k − 1

k∑
j 6=i

pij .

E0 [FBIi] = 0.

Therefore, no matter the number of groups, we are comparing FBIi against zero.

Similarly, we can reevaluate the variance given in (1.14) under the restriction in

(1.15). First, we define new notation. Under the null hypothesis. pi1 = · · · = pik ≡ p.

With this notation, we write the variance under the null for FBIi

V ar [FBIi] =
{

(k − 1)2Ni

}−1 {
(k − 1)2p(1− p) + (k − 1)p(1− p)

+2(k − 1)2p2 − (k − 1)(k − 2)p2
}

=
(k − 1)p− (k − 1)p2 + p− p2 + 2(k − 1)p2 − (k − 2)p2

(k − 1)Ni

=
[−(k − 1)− 1 + 2(k − 1)− (k − 2)] p2 + [(k − 1) + 1] p

(k − 1)Ni

=
kp

(k − 1)Ni

.

1.8.5 Theoretical Simplification of Distributional Theory

From expression (1.6) it is apparent that the FBIi statistic is measuring the

difference between the number of correct guesses and the number of incorrect guesses.

Additional weight is added to a correct guess. This additional weight is intuitively

appealing since for more treatment groups, guessing correctly under a “random guess-

ing” hypothesis is less likely. The weights are chosen so that the expected value under

the null hypothesis is zero.

For measuring blinding success of subjects who were assigned to group i, the

FBIi statistic does not distinguish between the types of incorrect guesses. Therefore,
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Table 1.6 can be simplified to Table 1.7. Using the notation introduced in Table 1.7,

we have

FBIi =
(k − 1)ni1 − ni2

(k − 1)Ni

.

The main advantage to this approach is that, no matter how many groups there are,

we can use a trinomial distribution to describe the frequencies. Implied with this

advantage is that we have less pij to estimate (k > 2) than we would have otherwise.

This will be more helpful when we study these blinding indexes under the Bayesian

paradigm. For now, it serves well for computational simplicity.

Table 1.7: Simplification of Frequency Table for Respondents in ith Group

Actual Response Total

Correct (i) Incorrect DK

i ni1 (pi1) ni2 (pi2) ni3 (pi3) Ni

Formally written, using the format in Table 1.7, we assume

ni1, ni2 ∼ trinom(Ni, pi1, pi2). (1.16)

From here we rewrite the expectation and variance for FBIi. First, the expected

value is

E [FBIi] = E

[
(k − 1)ni1 − ni2

(k − 1)Ni

]
=

(k − 1)E [ni1]− E [ni2]

(k − 1)Ni

=
(k − 1)Nipi1 −Nipi2

(k − 1)Ni

=
(k − 1)pi1 − pi2

k − 1

= pi1 −
1

k − 1
pi2,

which is equivalent to expression (1.12) because here pi1 represents the probability of

a correct guess and pi2 represents the total probability of guessing incorrectly. There

is no real computational advantage to the trinomial approach when calculating FBIi
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or the expected value. However, the variance is more simplistic. Using the new

notation, the variance is

V ar [FBIi] = V ar

[
(k − 1)ni1 − ni2

(k − 1)Ni

]
=

(k − 1)2V ar [ni1] + V ar [ni2]− 2(k − 1)Cov [ni1, ni2]

(k − 1)2N2
i

=
(k − 1)2Nipi1(1− pi1) +Nipi2(1− pi2) + 2(k − 1)Nipi1pi2

(k − 1)2N2
i

=
(k − 1)2pi1(1− pi1) + pi2(1− pi2) + 2(k − 1)pi1pi2

(k − 1)2Ni

.

Note that the null hypothesis is now

H0 : pi1 =
1

k − 1
pi2,

or equivalently

H0 : (k − 1)pi1 = pi2 .

Thus, the expected value and variance of FBIi under the null hypothesis are

E [FBIi] = pi1 −
1

k − 1
pi2 = 0

V ar [FBIi] =
(k − 1)2pi1(1− pi1) + pi2(1− pi2) + 2(k − 1)pi1pi2

(k − 1)2Ni

=
(k − 1)2pi1(1− pi1) + (k − 1)pi1 [1− (k − 1)pi1] + 2(k − 1)2p2i1

(k − 1)2Ni

=
(k − 1)pi1(1− pi1) + pi1 [1− (k − 1)pi1] + 2(k − 1)p2i1

(k − 1)Ni

=
[−(k − 1)− (k − 1) + 2(k − 1)] p2i1 + [(k − 1) + 1] pi1

(k − 1)Ni

=
kpi1

(k − 1)Ni

,

which is exactly what we get from Section 1.8.4.

1.8.6 Expressed Using Shrinkage

We look one last time at FBIi to gain a deeper understanding of how the

two paradigms of successful blinding play in to the final value of the index. When

looking at the bounds of the FBIi statistic in Section 1.8.1.1, we made the claim

that the index achieves its maximum (minimum) value only under scenarios where
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nobody responds DK. Furthermore the presence of incorrect (correct) guesses or DK

responses brings the index closer to zero.

To see why this is the case, rewrite the FBIi index as

FBIi =
(k − 1)nii −

∑k
j 6=i nij

(k − 1)
∑k

j=1 nij
×
∑k

j=1 nik

Ni

. (1.17)

The first factor in the product in expression (1.17) is the proportion “beyond random

guessing” among subjects who did not respond DK. This factor measures the degree

of random guessing, with completely random guessing represented numerically by

zero. A simplistic approach would be to test this factor against the null hypothesis.

However, if we were to only work with this first component we would be ignoring

the DK responses, making the generalized approach comparable to approaches that

predate James and Bang (see Section 1.3).

The second factor in the product in expression (1.17) yields insight in to pre-

cisely how we incorporate information from the DK responses. This term is the

proportion of people who guessed a treatment group. Hence, as the proportion of

DK responses increases, this term decreases so that the FBIi statistic is shrunk to-

ward zero. The factorization in expression (1.17) best shows how both paradigms

contribute to the index. A high proportion of accurate guessing yields an index value

close to one, but even in the presence of high accuracy among subjects who guessed,

if there is a large proportion of DK responses then the index will not be as extreme

(not as close to one). By a similar means, if there is a relative high degree of re-

verse unblinding among subjects who guessed the statistic will be negative, but not

many subjects guessed a treatment, then there is less evidence of poor blinding and

the statistic is made less negative by the shrinkage term. If there really is random

guessing, the statistic will be around zero; the addition of DK responses are not as

influential but FBIi will still be brought closer to zero. It is easy to see how random

guessing, or DK responses, or both, yield a desirable value for FBIi .
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1.8.7 Simultaneous Inference

For a study with k arms, we compute FBIi, i = 1, . . . , k, indices. For most

clinical trials, the number of arms is not large. When testing the null hypothesis

of random guessing, we are performing k simultaneous tests. The same applies to

constructing simultaneous confidence sets. Thus there is a need to adjust for multiple

testing. Because the tests are independent, we use the familywise error rate as defined

below. For a global experiment significance level α, we have

α = 1− (1− α∗)k ,

where α∗ is the significance level per comparison, and k is the number of independent

comparisons. We in turn use this α∗ value to obtain critical values to build confidence

intervals around each of the FBIi statistics. For example, if we have k = 3 arms and

desire a 5% familywise error rate, then

α∗ = 1−
k√

1− α

= 1−
3√

1− 0.05

= 1− 0.983

= 0.017. (1.18)

Using normal theory, for two-sided confidence intervals, the critical value would be

cv = 2.388. An alternative to using normal theory approximations is to use a com-

putational approach such as the jackknife or a bootstrap James et al. (1996).

1.9 Investigation of the FBIi Statistic via Simulation

There are two approaches to investingating FBIi in simulation studies. First,

we look at how the value of the generalized index changes with response to changes

in the blinding scenarios and DK responses. Second, we compare FBIi to the James

BI, interested in how the two differ conditioned on the same simulated data sets.

The first simulation does not look at the James index, focusing on the generalized

index and its properties as discussed in previous sections.

26



1.9.1 Nine Settings - Simulation Design

To understand the FBIi statistic, we simulate blinding survey responses for a

single arm of a three-arm trial. It is unnecessary to simulate responses for all three

arms when investigating FBIi alone because the index is arm-specific. The value

of FBIi is dependent on two factors: a blinding scenario (random, unblinded and

opposite), and DK response rate.

Concerning the three blinding scenarios, random means that all non-DK re-

sponses are equally likely, hence the subject is randomly guessing among all possibili-

ties. For simulation purposes we define unblinded to mean that of non-DK responses,

a subject guesses correctly with probability 0.8; thus unblinded means high guessing

accuracy. The two incorrect options are chosen with probability 0.1, each. Finally,

opposite guessing means that of non-DK responses, a subject is correct with probabil-

ity 0.2. Under the opposite guessing blinding scenario, the two incorrect guesses are

chosen with probability 0.4, each. Note that these definitions represent fixed proba-

bilities for simulation purposes only, and do not mathematically define what it means

to be unblinded or reverse unblinded (opposite guessing).

Table 1.8: Nine Settings

Blinding Scenario DK Response Rate

random guessing (blinded) 0%

random guessing (blinded) 25%

random guessing (blinded) 70%

unblinded 0%

unblinded 25%

unblinded 70%

opposite guessing (reverse unblinded) 0%

opposite guessing (reverse unblinded) 25%

opposite guessing (reverse unblinded) 70%
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The actual percentage of correct/incorrect responses depends on the percent of

DK responses. The marginal probabilities defined in the paragraph above are valid

for non-DK responses only. We consider three levels of DK response: 0% to represent

an “extreme low” case, 25% to represent a moderate amount of DK responses, and

70% to represent a large DK response rate.

There are three blinding scenarios, each of which can be matched with one

of three levels of DK response rate. Thus, there are nine distinct settings under

consideration.

We have fixed the number of subjects per treatment arm to be Ni = 200.

Rejection percentages are based on 95% two-sided confidence intervals. We ran 1000

iterations for each scenario. Interval estimates are not shown. However for each

setting we provide the mean and standard error of the 1000 simulated values, along

with the empirical rejection rate, empirical coverage probability, and the mean and

standard error of the empirical interval width.

1.9.2 Nine Settings - Results

This empirical distribution of FBIi for each of the nine settings is shown in

Figure 1.1. This figure is a square matrix of nine frequency histograms, one for each

of the nine settings considered in this section. The columns of the matrix represent

the different levels of DK responses (0%, 25% and 70%, respectively), and the rows

represent the three blinding scenarios (random, unblinded and opposite, respectively).

Below each histogram is the empirical mean (standard error). We see that

as the DK rate increases, FBIi tends toward zero. We have already shown this

mathematically in Section 1.8.6. Table 1.9 gives additional descriptive statistics,

including rejection percentage, coverage percentage, and mean (standard error) of

the interval width. Note that a simultaneous inference correction was made (see

Section 1.8.7) to show what the results might look like in a single arm of a three-arm

trial.
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Coverage is consistently large, however the rejection percentage rapidly de-

creases as percent DK responses increases in the opposite guessing (reverse unblinded)

group. Otherwise simulations demonstrate what we already know to be true: FBIi

gets closer to zero as DK responses increase (all else constant); the point estimate

of FBIi is positive in the unblinded group, negative in the opposite guessing group,

and zero in the randomly guessing group; and the standard error of FBIi decreases

at DK response rate increases, all else constant.

Table 1.9: Simulation Results: Nine Settings

Scenario DK (%) FBI

FBI (SEE) Rejection (%) Coverage Width (SEE)

Random 0 0.00 (0.051) 2.1 97.9 0.238 (0.006)

Unblinded 0.70 (0.044) 100 97.5 0.202 (0.011)

Opposite −0.20 (0.042) 98 97.8 0.202 (0.011)

Random 25 0.00 (0.044) 2.2 97.8 0.207 (0.007)

Unblinded 0.052 (0.042) 100 96.1 0.183 (0.010)

Opposite −0.15 (0.037) 92.2 97.1 0.176 (0.011)

Random 70 0.00 (0.027) 2 98 0.130 (0.010)

Unblinded 0.21 (0.033) 100 96.8 0.143 (0.006)

Opposite −0.06 (0.024) 53.7 97.8 0.114 (0.010)

1.9.3 Sample Size

We have yet to see how sample size plays a role in the power of FBIi. In general,

small samples should not be of great concern because blinding is often measured at

the end of Phase III trials. However, FBIi can be applied to subgroups (for example,

measuring blinding in men versus women or across demographics) which could results

in smaller sample sizes. Therefore, we look at power across a full range of sample sizes

from as small as ten subjects per arm up to 1000 per arm. Results are summarized

in the power plots in Figures 1.2 and 1.3. Note that the null case is included, and
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therefore for this case (random guessing) we are not presenting power but rather 1−α∗,

the size. For the other two blinding scenarios, unblinding and opposite guessing,

power is reported. We consider Ni ∈ {10, 50, 100, 200, 500, 750, 1000} subjects per

arm.
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Figure 1.2: Power Study Comparing %DK Responses

Figure 1.2 shows empirical power plotted against sample size across the three

DK levels considered from previous simulations (0%, 25% and 70%). We fix the

number of treatment arms to be k = 3. In all three plots, the randomly guessing

group displays large confidence even for small sample sizes. We see that FBIi is
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more powerful to detect unblinding than opposite guessing. For low to moderate DK

responses, the power for unblinding is very large with as little as 50 subjects per arm,

but with a large amount of DK responses we require about 100 subjects per arm to

achieve the same power. Opposite guessing is more sensitive to the proportion of DK

responses. A large proportion of DK responses requires upwards of 500 subjects per

arm to achieve power close to one.
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Figure 1.3: Power Study Comparing Number of Arms

Figure 1.3 illustrates an interesting story. We have fixed DK responses at 70%,

because it yields the largest separation between groups (Figure 1.2). Now we look at
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power plotted against sample size across number of arms. We investigate power for

k = 3, 4 and 5 arms. Note the first plot of Figure 1.3 is the same as the third plot

in Figure 1.2. We observe that for the random and unblinded arms, the relationship

between power and sample size is preserved as we increase the number of treatment

arms. However we notice a dissimilar trend for the opposite guessing group: as

the number of arms increases the power is decreasing (for a fixed N). Even more

surprisingly, for k = 5 arms, as sample size increases power decreases for the opposite

guessing group. This is not a surprise, because the opposite guessing group should

have a negative FBIi index. As the number of groups increases, the index shrinks

toward the null value of zero (we see this because the lower bound approaches zero

as number of arms increases).

We make an interesting discovery about FBIi: at some point there become too

many treatment groups to detect reverse unblinding. How many treatment groups

is too many? This is actually not a matter of percent DK responses but of how

inaccurately this group guesses opposite to their true assignment. We used the same

definitions for unblinded and opposite guessing as we did in previous simulations,

unblinded subjects guess correctly 80% of the time they guess, and opposite guessing

subjects guess correctly only 20% of the time they guess. To explain the loss in

power, note that we have 20% guessing correctly in the opposite guessing arm, if

they guess (not DK). Therefore the other 80% of non-DK guesses are divided among

the remaining arms. So if we have k = 5 arms, the unblinded group is guessing

20% of the time in each of the five assignments. This is exactly the same as the

random guessing group for k = 5 arms. Because there are so many other options,

the difference between random guessing and opposite guessing becomes smaller and

smaller. Note this is true for any amount of DK responses. For example, if we redefine

opposite to mean subjects guess correctly only 10% of the time, then the distribution

of FBIi for opposite guessing group and the randomly guessing group are identical

at k = 10 arms.
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1.9.4 More Treatment Arms

Under all of the simulation work thus far, we have limited ourselves to three

treatment arms. We continue to look at the nine settings proposed in Table 1.8.

Recall the histogram matrix from Section 1.9.2. We have made similar graphics

for k = 4 and k = 5 arms (see Figures 1.4 and 1.5, respectively). To stay consistent

with previous simulation work, we keep the definitions for random guessing, unblinded

and opposite guessing; we assign 200 subjects per group; and results shown are based

on 1000 simulations. One thing that is consistent across the graphics is that the

FBIi statistic always has a mean value of zero in the random group, as should be

the case. For all nine cases, as the number of groups increases the standard error of

FBIi decreases. Because we fixed the percentage of correct non-DK responses in the

unblinded group at 80%, and the percentage of incorrect non-DK responses in the

opposite guessing group at 20%, it happens that as the number of groups increases the

FBIi statistics for the unblinded and opposite guessing groups increases as well. FBIi

is increasing in the unblinded group because we have a fixed 80% correct among non-

DK responses, and in the calculation of the index the weight given to correct guesses

is k − 1 and therefore increases with increasing k. The reverse unblinded (opposite

guessing) group also shows an increase in FBIi with increasing k because the lower

bound of the statistic approaches zero as k increases (ref. Section 1.8.1.1). Note that

for k = 5 the opposite guessing group and the randomly guessing group show the

same distributions for FBIi. An explanation for this is given in Section 1.9.3.

1.10 Simulation Study Comparing FBIi to BI for Various Blinding Scenarios

We designed a simulation study to compare FBIi to James’s BI. We do not

compare FBIi to Bang’s BIi, because for the data to be conformable would require

k = 2 arms. We proved for this case, the indexes are identical (ref. Section 1.8.1.2).

Therefore, we repeat a similar process as Bang et al. to compare FBIi and Jame’s
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BI with special consideration given to k > 2 arms. We use the same combinations of

blinding scenarios and DK response rate as described in Section 1.9.

1.10.1 Ten Cases of Blinding

Because the James index is aggregate for all treatment arms, there are more

than just the nine distinct settings from Table 1.8. Table 1.10 describes ten cases for

k = 3 arms. Each case is a unique combination of blinding scenarios and DK response

rates for a three-arm trial.

We have fixed the number of subjects per treatment arm to be Ni = 200.

Rejection percentages are based on 95% confidence intervals (one-sided for BI, and

two-sided simultaneous intervals with a multiple comparison correction for FBIi). We

ran 1000 iterations for each scenario. We used the jackknife procedure described in

James (1996) to obtain interval estimates, which in turn are used to compute rejection

rates. Interval estimates are not reported. However for each occurrence of BI and

FBIi we give the empirical mean and standard error from the 1000 simulated values,

along with the empirical rejection rate and empirical coverage probability (global

coverage, the probability of all three indices capturing the true value in each case,

is reported for FBIi). Because the James index uses one-sided intervals we do not

compute interval width. For information on interval width of the FBIi indices, refer

to Table 1.9.

Note that not all distinct scenarios are present in Table 1.10 for the James BI.

However each of the nine distinct possibilities for FBIi are represented at least once

(ref. Section 1.9.2). We address other variations of the randomization assignments in

Section 1.10.2.2. For the purpose of calculating BI, we let assignment A represent

37



Table 1.10: Simulation Design
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Table 1.10: Simulation Design (cont’d)
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the placebo group and use the weighting scheme described in Section 1.5.1. Results

are presented in Table 1.11.

Looking at the results in Table 1.11, we notice a few trends. First, for each of

the cases, as the proportion of DK responses increases the James index also increases.

This is not unexpected, we have already said that James’s index is dominated by the

amount of DK responses. Thus, no matter the blinding situation, if more people

answer DK, then there is more evidence for blinding (see specific case descriptions

below for information on how extreme this relationship is). Next, as the percent

of DK responses increases we see that the FBIi index shrinks toward zero, as it

should. For arms guessing at random, the value of FBIi is already zero, so the only

change is in the standard error which gets smaller as the DK response rate increases.

Additionally, we see that James BI is not powerful in detecting unblinding in the

presence of a large percent of DK responses. Each case is considered individually in

the proceeding text.

Case 1: Case 1 represents the null hypothesis of “random guessing” for all three

arms under each of the three DK response rates. The null value for BI is

one-half (ignoring DK responses) and is zero in each arm for FBIi. When DK

responses are present, we see that the FBIi is not affected and remains zero.

However, we know that BI increases with the proportion of DK responses.

The empirical rejection rate of BI is 4.7%, which is close to the advertised

significance level of 5%. For the FBIi indexes, we see they are all centered

at zero. As the percentage of DK responses increases, the standard errors

decrease. From expression (1.18) we know the empirical rejection percentages

for each of the FBIi should be approximately 1.7%.

Case 2: Case 2 is similar to Case 1, but with arm C unblinded. The James index

detects the unblinding in the absence of DK responses. This suggests the

study as a whole is not adequately blinded when really the problem is coming

from only one of the three arms. However, under moderate and high DK
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response rates the unblinded arm does not carry enough weight to suggest

poor overall blinding. The FBIi index for the two blinded arms is the same

is at was in the previous case whereas we see a positive value of FBI3, the

unblinded group. The FBIi index shrinks toward zero as the DK response

rate increases, but the empirical rejection rate is not compromised.

Case 3: Rather than having one unblinded arm as in Case 2, Case 3 introduces an

opposite guessing (reverse unblinded) arm in its place, with the other two

arms still randomly guessing. James BI does not detect opposite guessing,

but rather uses it as evidence in support of blinding. We see this in that

the James blinding index values are consistently larger in this case than in

Case 1. The small (zero) empirical rejection rate for no DK responses also

demonstrated how the James index confuses reverse unblinding with blinding.

We see that the FBIi index has large power to detect reverse unblinding

(opposite guessing) for no to moderate DK responses. It is more difficult for

FBIi to detect reverse unblinding when there is a large DK response rate

because the FBIi index is approaching the null value, zero.

Case 4: Case 4 consists of one blinded (random guessing) arm and two unblinded

arms. FBIi clearly shows which arm follows which blinding scenario. How-

ever, even though two of the three arms are unblinded, the power of James

drops quickly as DK responses increase. For a large proportion of DK re-

sponses, James has zero power to detect unblinding. This serves as a reminder

that the James index was not made to measure the degree of unblinding. The

FBIi index clearly rejects that groups B and C are blinded. But how does

this work when 70% of respondents don’t know? Along with random guess-

ing, DK responses are also supposed to be evidence of blinding. At this point

it seems the Bang paradigm is dominated by equality of guessing among non-

DK groups. However the interpretation of FBIi holds an advantage over

James’s BI . For 0% and 70% DK responses we reject random guessing in
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arms B and C using FBIi. The difference between these is that with 0% DK

responses subjects are guessing 70% beyond random chance (F̂BIi = 0.70),

and at 70% DK responses subjects are guessing 21% beyond random chance

(F̂BIi = 0.21). There is a degree of severity of unblinding. So, despite the

large proportion of DK responses, FBIi still detects the imbalance of guesses

in these arms. James’s index cannot do this. Later we discuss the advantage

of using the indexes together, but for now note that this is a good example of

when it would be beneficial to consider both indexes for the same data set.

Case 5: Case 5 has one randomly guessing arm and two opposite guessing arms. For

James, opposite guessing is evidence of blinding. Therefore, there is not much

difference from Case 3 for the James index. The FBIi, on the other hand,

show a clear difference between these two blinding scenarios.

Case 6: One of each blinding scenario (random, unblinded and opposite guessing) is

present in this case. The FBIi approach has a clear advantage here, as it can

detect all three scenarios. With James we conclude either “well blinded” or

“not well blinded.” Unsurprisingly, James’s conclusion falls in line with the

amount of DK responses because the hodgepodge of blinding schemes allows

BI to bounce between conclusions easily.

Case 7: From here on out there are no more randomly guessing arms. Case 7 in

particular has all unblinded arms. For zero and moderate DK responses,

James picks up on the unblinded nature of the groups. However, even though

all arms are unblinded, for large DK responses James concludes that the study

as a whole is adequately blinded. On the other extreme, FBIi always rejects

the null hypothesis of random guessing. Mathematically this is correct, but

again we have the issue where it seems the DKs are being ignored. If we look

not only at the hypothesis test but also at the value of the FBIi index itself,

we see the difference in FBIi for the different levels of DK responses. We
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emphasize again the importance of the point estimate of FBIi, not only the

statistical significance.

Table 1.11: Simulation Results
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Table 1.11: Simulation Results (cont’d)

Case 8: Case 8 consists of two unblinded arms and one reverse unblinded arm. Re-

verse unblinding falls under the category of blinding support for James, so

this is very similar to Case 7, but now the James BI doesn’t hold out as

44



long to support blinding. With increasing DK responses the value of BI

approaches one faster than in the previous case.

Case 9: Case 9 consists of two reverse unblinded arms and one unblinded arm. For

moderate and large DK response rates, the James BI suggests blinding is

achieved, although none of the arms are unblinded. Further evidence that

BI is dominated by the DK response rate.

Case 10: In this last case, all three arms are reverse unblinded. James has no power to

detect this event and uses it as support for blinding. The FBIi indexes behave

as we have already seen for other opposite guessing arms in the previous cases.

In considering each case individually, we have seen some examples where BI and

FBIi agree and others where they disagree. Most importantly we are beginning to

see that there is an advantage to considering both of the indexes together in order

to obtain a better picture of blinding success. We talk more about the practical use

of FBIi in Chapter 3, a guidance for blinding indexes. The ideas in Chapter 3 are

similar to those expressed by Bang Bang et al. (2010) and Park Park et al. (2008).

1.10.2 Limitations to the Bang Paradigm

For FBIi, it does not matter which of the treatment groups (A, B or C) repre-

sents the placebo. Take for example Case 2 from Table 1.10. We have assignments A

and B guessing randomly and assignment C unblinded. For the FBIi statistic, this is

the same as any other permutation of two randomly guessing arms and one unblinded

arm because we measure blinding independently in each arm. This is not the case

for the James index, it makes a difference if the unblinded arm is the placebo arm or

not.

The James index does not treat all incorrect guesses equally (recall the weight

structure in Section 1.3.1). For a subject in a non-placebo group, the weight of

their guess depends on the guess itself – guessing placebo is weighted more than

guessing another treatment. However, FBIi assigns equal weight to each incorrect
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guess within an arm. There are some concerns that arise when using the weight

structure, for example

(1) What happens when the blinding scenarios are permuted across trial arms

from the simulations in Table 1.10?

(2) What happens when the incorrect guesses are not split evenly among incorrect

responses?

Mathematically the James BI changes with concerns (1) and (2), but the FBIi does

not. Bang did not have to address this issue because there are not different types of

incorrect guesses for k = 2 arms. However it could be of concern when working with

the more generalized FBIi.

1.10.2.1 Does a Weighted Index Make Sense? Can we create a weighted index that

accounts for the concerns above? First, we are able to write the FBIi index in a

weighted form,

FBIi =
wiinii +

∑k+1
j 6=i wijnij

(k − 1)Ni

,

where the weights, wij, are as follows,
wii = k − 1

wij = −1 for j ∈ {1, . . . , k}\{i}

wi,k+1 = 0

With the weight structure above, we get back the FBIi index. However, we

could try to change the weighting scheme to create a new index for which the general

form is

WFBIi =
wiinii +

∑k+1
j 6=i wijnij

(k − 1)Ni

for any general weight structure. Consider a trial with three arms. We could calculate

WFBIi for any choice of weight matrix W = [wij], i = 1, . . . k, j = 1, . . . , k + 1.

Consider two possible choices for W, given in Table 1.12.

Minor challenges arose when trying to determine the weights for WFBIi that

parallel the weight scheme used by James. Firstl, the James null value is 0.5 whereas
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for FBIi it is zero. For James BI, values close to one represent successful blinding

whereas it is the opposite for FBIi. These basic differences must be accounted for in

obtaining a comparable weighting scheme. Taking into account that positive values

of FBIi indicate unblinding, the largest weight is given to the unblinding scenarios.

Table 1.12: Weight Choices for WFBIi

(a) FBIi Weights

Assignment Guess

Placebo Treatment B Treatment C DK

Placebo 2 −1 −1 0

Treatment B −1 2 −1 0

Treatment C −1 −1 2 0

(b) James BI Weight Equivalence

Assignment Guess

Placebo Treatment B Treatment C DK

Placebo wii −0.5 −0.5 0

Treatment B −0.5 wii −0.75 0

Treatment C −0.5 −0.75 wii 0

One approach would be to place weight only on incorrect responses and not

change anything about correct responses. Consider the null value of WFBIi under

the weighting scheme in Table 1.12b, where wii = k − 1 = 2 (same as FBIi weight).

For a placebo group,

WFBI1 (H0) =
2p11 − 0.5p12 − 0.5p13

2

=
1

2
if H0 : p11 = p12 = p13.
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For a non-placebo group (say group B, WLG),

WFBI2 (H0) =
2p22 − 0.5p21 − 0.75p23

2

=
3

8
if H0 : p21 = p22 = p23.

There are three problems here. First, the null values of pij are not preserved so that

we are no longer comparing WFBIi against zero for “random guessing.” Second, the

null value of the index is now dependent on the number of groups and which arm

is being measured. The third problem, not addressed here, is that the lower bound

of the index is not constant for fixed k. The lower bound of FBIi depends on the

number of arms, k, and therefore is constant for all FBIi from the same study. For

WFBIi it is easy to see that when there are no correct guesses, the lower bound

depends on both k and W.

Perhaps some of the above concerns are amenable. When developing FBIi,

the weight of correct guesses was chosen so that the index has a value of zero under

the null hypothesis. Is it possible to choose weights such that the expacted balue

of FBIiiszerounderthenullhypothesis?Intheexampleabove, letw11 = 1 and w22 =

w33 = 1.25. The indexes are recentered at zero. An obvious result is that in this

choice of weights, we are stating that a correct guess is not equal for all groups. In

this example, a correct guess is more valuable if you’re not on the placebo than if

you are, as it is given more weight. Philosophically this does not make sense in the

context of this problem. But even if we were to accept this, the bounds of the index

are still not constant between arms, for fixed k.

A final concern with choosing weights to center the index is that the interpre-

tation of the FBIi is no longer valid. If we were to introduce uneven weights among

incorrect guesses, the index would no longer be measuring the proportion guessing

correctly beyond random balance, because we would be giving equally probable events

unequal weights. For all of the reasons addressed in this section, we conclude that

a weighted index does not naturally follow under the Bang paradigm to measuring

blinding. We would have to alter our approach to measuring unblinding to be able

48



to add weights to the responses. Bang does propose an alternate BIi statistic which

uses a weighting scheme for responses, but the weights are self-reported confidence

of guesses and do not discriminate against different types of incorrect answers. Also,

because Bang only considers k = 2 arms, the weights are not a complication as they

are in the generalized case.

1.10.2.2 Are We Really Missing Out? We have learned that a weighted index for

our approach is not feasible. How much information is being lost by not adding

the weight feature? We have designed a simulation to consider the two scenarios

listed above: permutation of groups guessing incorrectly, and uneven distribution of

incorrect responses. We apply each of these changes to one of the cases we considered

in the simulation from Section 1.10.1.

Recall Case 2 from Table 1.10. In this scenario, we have two arms randomly

guessing and one arm unblinded. This scenario is reproduced in Table 1.13, along

with variations of this scenario which address the two concerns mentioned above.

Recall that for purposes of computing the James index, arm A represents the placebo

group. The cases investigated in this simulation are as follows:

• 2a – Case 2 from Table 1.10;

• 2b – rather than the unblinded group being a treatment group, we make it so

that the unblinded group is the placebo group (no change in the allocation

of incorrect guesses);

• 2c – same unblinding scenario as 2a, but with all incorrect guesses being the

other treatment group; and

• 2d – same unblinding scenario as 2a, but with all incorrect guesses being the

placebo group.
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Table 1.13: Special Examination Scenarios

To determine the effect the weighs have to detect differences in blinding schemes,

Cases 2b–2d are compared to Case 2a which is simply Case 2 from previous simulation

work. The value of FBIi should not change between these four cases, but due to its

weighting scheme BI may change. Case 2b is the case where we permute which

arm is unblinded. Note that having arm B as the unblinded arm is equivalent to
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case 2b where we flip arms B and C. Because B and C are both treatment arms

(not placebo), there would be no difference in the James index. Cases 2c and 2d

are extreme examples of for when incorrect guesses are not split equally among the

incorrect responses. Case 2c forces all incorrect guesses to be for the other treatment

(which counts more towards unblinding when the guesser is in a treatment arm),

and Case 2d forces all incorrect guesses to be for the placebo arm (which counts less

towards unblinding when the guesser is in a treatment arm). Case 2a is a balance

of these two, having half guess the placebo and half guess the other treatment. The

extent to which the James index changes from Case 2a under each of the other three

cases (2b–2d) gives an indication of how much more insight the James BI is providing

over FBIi.

As with before, 200 subjects are allocated to each treatment arm and the results

are based on 1000 replications. The results are summarized in Table 1.14, and the

values for Case 2a in Table 1.14 are identical to the results of Case 2 in Table 1.11.

To compare the FBIi index with the James BI for Case 2a, read the description in

the previous section. The FBIi index does not change between cases here, so we do

not re-summarize.

Case 2a: In brief, The James BI for Case 2a increases as the percent DK responses

increases, which is always true for the James BI (all else constant). For no

DK responses, we find that the one group being unblinded is sufficient for the

study overall to be deemed unsuccessful in preserving the blind via James BI.

In fact, it is strong enough that H0 is rejected 100% of the time. However,

for 25% and 70% DK responses we never rejected H0. This again supports

that the James BI is dominated by DK responses.

Case 2b: We have made the placebo arm unblinded and both treatment arms blinded

(randomly guessing). The value of the James index decreases only slightly un-

der this scenario – 0.022, 0.016 and 0.006 for 0%, 25% and 70% DK responses,

respectively. These changes did not yield any difference in rejection percent-
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age. We still reject 100% of the time when there are no DK responses, and

0% of the time for 25% and 70% DK responses. Thus, there is no difference

in the conclusions.

Case 2c: Arm C is again the unblinded group, with the others randomly guessing.

The difference here is that all incorrect guesses among respondents assigned

to arm C are for the other treatment group, B. According to James, this is

more evidence for unblinding than incorrectly guessing the placebo group,

therefore we expect a larger value of BI than in Case 2a. Indeed this is the

case. The value of the James index increases by 0.008, 0.005 and 0.003 for

0%, 25% and 70% DK responses, respectively. Again, there are no differences

in the conclusion we would make about either of these scenarios as it relates

to blinding.

Case 2d: This extreme case is the complement to Case 2c – now all incorrect guesses

among respondents assigned to C are for the placebo group, A. James claims

this is not as strong of evidence for unblinding, and therefore we expect

the James index values to decrease. This does happen for all three values:

decreases of 0.007, 0.005 and 0.002 for 0%, 25% and 70% DK responses, re-

spectively. As with the other cases, there is no change in rejection percentage.

All conclusions based on the hypothesis test are the same.

Although the value of the BI index does change under the different scenarios

above, none of the scenarios lead to a change in conclusion for any of the 1000 repli-

cations. Also, because the James index does not have a meaningful interpretation,

the small changes in BI are meaningless. Any change in FBIi represents a change

in accuracy beyond random balance (recall the interpretation of the index). James

does not offer such an interpretation, and therefore BI = 0.813 versus BI = 0.817

has no practical difference, because there are several ways in which BI increases and

thus the index value alone does not tell us why it increases.
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Table 1.14: Special Examination Results

Therefore, although the BI can measure special situations that are mathemat-

ically equal under FBIi, the conclusion does not differ. James shows that even if

we change the choice of weights, the value of BI does not change considerably. This

is further evidence of the importance of DK responses for BI. We do not feel as

if FBIi is at a disadvantage to James by not detecting these differences. James is
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not powerful to detect these differences, therefore these special situations are not a

criteria on which to judge the competing indexes.

1.11 Application

We bring back the James application from Section 1.5.2 of disulfiram to treat

alcoholism. The data is re-summarized in Table 1.15 in the k×(k+1) format structure

we use for the BIi and FBIi indexes. Recall that for this data, the James blinding

index had a value of 0.556 with 95% jackknife confidence limits 0.520 and 0.592. James

concluded this is “a response pattern close to that expected by random guessing.”

As we have already mentioned, the value of the index itself has no interpretation. So

even though the value is close to the null value, one-half, we can only judge it by it

being significantly greater than one-half and thus must conclude there is a degree of

blinding (in this case, blinding by random guessing).

Table 1.15: VA Coop Study No. 107 Study Coordinator Responses

Actual Treatment Guessed Treatment

Riboflavin Disulfiram Disulfiram DK Total

1mg 250mg

Riboflavin 64 22 36 52 174

Disulfiram 1mg 30 41 66 44 181

Disulfiram 250mg 24 27 72 51 174

Total 118 90 174 147 529

To demonstrate how the FBIi index can be used in conjunction with the James

index, we apply the FBIi to the same set of data. Table 1.16 gives FBIi point es-

timates and simultaneous 95% confidence intervals for the data in Table 1.15. For

subjects assigned to the placebo group, study coordinators were able to guess as-

signment allocation accurately 20% beyond random guessing (F̂BIi = 0.20). We see

that this result is statistically significant at the 5% global level. Study coordinators
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were not successful, however, at identifying subjects in the 1mg disulfiram group

(F̂BIi = −0.04, not significant). Finally, subjects assigned to the 250mg disulfiram

group were correctly identified by study coordinators 27% beyond random chance

(F̂BIi = 0.27). This result is also statistically significant.

Recall that the James index is dominated by DK responses. For the VA Co-

operative Study No. 107, approximately 28% of respondents answered “DK”. Thus

it is not surprising that the index was significantly greater than one-half, indicating

successful blinding beyond random guessing. However, when we look at the results

by treatment arm, the only arm that was not identified beyond random chance by

coordinators was the 1mg disulfiram group. Study coordinators were able to identify

the correct treatment for patients assigned to the riboflavin (placebo) and 250mg

disulfiram groups beyond random chance. However, does this necessarily indicate

poor blinding of study coordinators for these two groups? We already know about

the influence of the DK responses on the James BI. But we have also shown via

simulation that, even with a large amount of DK respondents, the FBIi index is

powerful for detecting non-random guessing. Looking back to the motivation for this

index, we pointed out that both DK responses and a lack of random guessing should

contribute to the final determination of blinding success.

Table 1.16: VA Coop Study No. 107 measured using FBIi

Treatment Arm FBIi Confidence Interval

Riboflavin (placebo) 0.20 (0.086, 0.315)

Disulfiram (1mg) −0.04 (−0.145, 0.068)

Disulfiram (250mg) 0.27 (0.153, 0.381)

Consider only the placebo group. Responders were accurate 20% beyond ran-

dom guessing, as indicated by the point estimate of the FBIi statistic. According to

the FBIi index, this is a degree of unblinding. But note that for this treatment group

nearly 30% of responses were “DK”. This should carry some weight. If we were to
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compute FBIi ignoring DK responses, the riboflavin arm would have had a blinding

index of F̂BIi = 0.29. This is the true proportion of guessing beyond random chance,

without the shrinkage term that accounts for DK responses. This is a good reminder

of what Bang has stated about the BIi index from the beginning that the index was

not developed for the purpose of hypothesis testing, but rather as a metric. We agree

with Bang to this extent: a significant value for FBIi (BIi) does not necessarily

indicate poor blinding, but rather that the guessers were more accurate than chance

should allow; and it is necessary to look at the value of the index itself rather than

the significance alone.

We find that the enormous advantage the generalized approach holds over

James’s approach is that we can talk about the degree to which a treatment arm

is unblinded. We go in to more discussion on how to use and interpret the statistic in

Chapter 3, which is a review intended to serve as a regulatory guidance on blinding

indexes. But first, we investigate the question: does a Bayesian approach to blinding

have anything to offer?
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CHAPTER TWO

Blinding Indexes Under the Bayes Paradigm

The Bayes approach has not been considered in estimating blinding success.

We take the opportunity to go back over work presented in Chapter One, this time

using a Bayesian approach. First we look at the prior structure used for all results in

the chapter. Then we discuss the results of two simulation studies – the first a replica

of simulations presented in Bang Bang et al. (2010) for k = 2 arms, and the second

a repeat of simulations presented in Section 1.10.1. Next we reanalyze the CRISP

study introduced in Section 1.6.2 from the Bayesian perspective, and finally end with

a discussion and ideas for future investigation.

2.1 Prior Structure

Refer to the notation introduced in Section 1.8. Recall that the random vari-

ables ni1, ni2, . . . , ni,k+1 represent the frequency of guesses for each possible outcome

among respondents assigned to the ith arm. The total number of subjects allo-

cated to (or who guessed from) the ith arm is denoted by Ni. That is, Ni =

ni1 +ni2 + · · ·+ni,k+1. Let ni denote the vector of random variables, (ni1, . . . , ni,k+1)
′.

Rather than thinking in terms of frequencies, we can consider the probability of guess-

ing in the jth arm when assigned to arm i. This is denoted by pij, j = 1, . . . , k + 1.

Let pi ≡ (pi1, . . . , pi,k+1)
′. In Section 1.8.3 parametric forms were applied to derive

moments for the FBIi statistic. Recall that the set of random variables n have a

multinomial distribution

ni|Ni,pi ∼Mk+1(Ni;pi), (2.1)

with probability mass function

p(ni|pi) =
Ni!∏k+1
j=1 nij!

k+1∏
j=1

p
nij

ij . (2.2)
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E(nij) = Nipij, V ar(nij) = Nipij(1 − pij), and Cov(nij, nil) = −Nipijpil. To model

prior information about probability vector pi, we use a Dirichlet distribution with

hyperparameter vector αi = (αi1, αi2, . . . , αi,k+1)
′. We write,

pi ∼ Dk+1(αi), (2.3)

with probability density function

π(pi|αi) =
Γ(αi0)∏k+1
j=1 Γ(αij)

k+1∏
j=1

p
αij−1
ij . (2.4)

E(pij) = αij/αi0, V ar(pij) = [αij(αi0 − αij)]/[α
2
i0(αi0 + 1)], and Cov(pij, pil) =

−(αijαil)/[α
2
i0(αi0 + 1)], where αi0 ≡

∑k+1
j=1 αij.

With likelihood (2.2) and prior (2.4), the posterior p(pi|ni) is

p(pi|ni) ∝ p(ni|pi)π(pi)

=
Ni!∏k+1
j=1 nij!

k+1∏
j=1

p
nij

ij ×
Γ(αi0)∏k+1
j=1 Γ(αij)

k+1∏
j=1

p
αij−1
ij

=
Γ(Ni + 1)Γ(αi0)∏k+1
j=1 Γ(nij + 1)Γ(αij)

k+1∏
j=1

p
nij+αij−1
ij

∝ Γ(Ni + αi0)∏k+1
j=1 Γ(nij + αij)

k+1∏
j=1

p
nij+αij−1
ij , (2.5)

which is the probability density function of a Dk+1(ni + αi). Thus, the Dirichlet

distribution is conjugate for the multinomial distribution. The following are true

about the posterior distribution of pi,

Ep(pij) =
nij + αij
Ni + αi0

(2.6)

V arp(pij) =
(nij + αij)[(Ni + αi0)− (nij + αij)]

(Ni + αi0)2(Ni + αi0 + 1)
(2.7)

Covp(pij, pil) =
−(nij + αij)(nil + αil)

(Ni + αi0)2(Ni + αi0 + 1)
. (2.8)

For the simulation studies and application that follow, we have chosen to use

a non-hierarchical, diffuse prior such that αi = 1′ for each i ∈ 1, . . . , k. Under the

frequentist analysis, each arm has an index calculated independently from the other

arms. We mimic this under the Bayes paradigm by using independent priors for each
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of the treatment arms (i.e., each treatment arms is given its own Dirichlet prior). In

the discussion section (2.4) we allude to other options for the prior structure.

2.2 Simulation Studies

Because the blinding indexes are a function of pi, rather than solving for the

closed-form distribution of BI or FBIi, we have chosen to use WinBUGS to compute the

posterior estimates. To run the full simulations presented in this section, R2WinBUGS

was used.

For all simulations, we use one chain with a burn-in period of 2, 000 iterations,

using the subsequent 10, 000 iterations for estimation, and setting the thinning option

to one (no thinning). In total, each WinBUGS run is comprised of 12, 000 iterations.

To stay consistent with simulation work presented in Chapter One, we use 1, 000

replications. Thus, WinBUGS reports posterior information after 12, 000 iterations,

and that posterior information is stored in R which then calls WinBUGS to run another

12, 000 iterations. We do this 1, 000 times to obtain the Bayes estimators reported

below. Note the difference in the use of the word “iteration” between this chapter

and the previous chapter (what was called an iteration in Chapter One is now called

a replication).

For all simulations, the prior structure discussed in Section 2.1 is used. Descrip-

tive plots are provided in Appendix D. These include: dynamic trace, time series,

kernel density, and autocorrelation function plots. One of each plot is provided for

one random WinBUGS run for each of the three blinding scenarios (blinded, unblinded,

reverse unblinded) at each of three DK response rates (low, medium, high). In gen-

eral, the autocorrelation function figures show that problems with mixing were not

an issue (using a thinning value larger than one is unnecessary). The dynamic trace

and time-series plots do not show large fluctuations between successive iterations,

suggesting that the Markov Chains have converged. The kernel-smoothed histograms

are symmetrical, so the posterior mean is an adequate summary of the center of the
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distribution. In brief, we have checked that convergence is not an issue and that our

choice of simulation arguments, such as thinning and length of chain, are adequate.

For simulation results in this chapter, a multiple comparison correction is not

performed to compute interval estimates. That idea was part of the novel approach

in the previous work. We go back to the convention of not using a correction factor

for the BIi and therefore also for FBIi.

2.2.1 Two Arms

Because this is the first time these indexes have been computed using Bayes, it is

necessary to go back to the simulation study in Bang Bang et al. (2010) to investigate

performance with two treatment arms. Due to slight differences in simulation design,

Bang’s simulation scenarios have been rerun. Refer to Appendix E.1 for Bang’s

published results and details on the difference between the original simulations and

the ones rerun here.

Bang considers six cases, each at three rates for DK responses. Bang uses 0%

for a low DK response rate, 30% for a moderate DK response rate, and 70% for a high

DK response rate. For Case 1, both arms are randomly guessing, for Case 2 both

are reverse unblinded, and for Case 3 both are unblinded. Cases 4, 5 and 6 allow

for different permutations of the three blinding scenarios between treatment arms.

As before, we assume Arm A represents the placebo arm when computing BI. Each

arm has a sample size of 250. Design of the six cases is given in Table 2.1. Results

are summarized in Table 2.2.1. As before, there are three blinding scenarios each

investigated at three levels of DK response. Thus, there are nine distinct settings for

which we compute FBIi (BIi). Histograms of the empirical posterior means for each

of the nine settings are given as a histogram matrix in Figure 2.1.

Note that Bang does not use a correction factor for simultaneous inference. All

results in this section use the correction factor proposed in Section 1.8.7. To see Bang’s

original findings, as well as a reproduction of our Frequentist and Bayesian findings

without using a correction factor, refer to Appendix E: Supplemental Material.
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Table 2.1: Simulation Setting from Bang et al. (2004)
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Frequentist and Bayesian methods yield similar results. This alone is an inter-

esting find, as we did not know how the indexes would perform using the Bayesian

paradigm. We move on to the case of a three-arm trial with Bayes methods.

Table 2.2: Bayes Simulation Results for k = 2 Arms

62



0%
 D

K

0 
 ( 

0.
06

3 
)

Random

−1
.0

−0
.5

0.
0

0.
5

1.
0

050100200300

30
%

 D
K

0 
 ( 

0.
05

4 
)

−1
.0

−0
.5

0.
0

0.
5

1.
0

050100200300

70
%

 D
K

0 
 ( 

0.
05

4 
)

−1
.0

−0
.5

0.
0

0.
5

1.
0

050100150200250

0.
79

  (
 0

.0
37

 )

Unblinded

−1
.0

−0
.5

0.
0

0.
5

1.
0

050100150200250

0.
49

  (
 0

.0
43

 )

−1
.0

−0
.5

0.
0

0.
5

1.
0

050100150

0.
1 

 ( 
0.

03
3 

)

−1
.0

−0
.5

0.
0

0.
5

1.
0

050100150200250

−0
.7

9 
 ( 

0.
03

7 
)

Opposite

−1
.0

−0
.5

0.
0

0.
5

1.
0

050100150200250

−0
.4

9 
 ( 

0.
04

1 
)

−1
.0

−0
.5

0.
0

0.
5

1.
0

050100150

−0
.4

9 
 ( 

0.
04

1 
)

−1
.0

−0
.5

0.
0

0.
5

1.
0

050100150200
F
ig
u
re

2.
1
:

H
is

to
gr

am
M

at
ri

x
of
F
B
I i

P
os

te
ri

or
M

ea
n
s

fo
r
k

=
2

A
rm

s

63



2.2.2 Three Arms

Simulation work from Sections 1.9 and 1.10 is reproduced here using the Bayes

approach defined in Section 2.1. Figures 2.4 and 2.2 show the empirical posterior

distribution and empirical coverage, respectively, for the nine settings introduced in

Section 1.9. Figure 2.2 displays both frequentist and Bayesian summaries for easy

comparison. Figure 2.3 is a matrix of box plot summaries for the empirical interval

width of FBIi under the nine settings, compared to the empirical width using the

Frequentist approach in the previous chapter (ref. Table 1.9).

The empirical distributions of the nine FBIi values under Frequentist and

Bayesian approaches are very similar (ref. Figure 1.1). Empirical coverage under

the Bayes approach is at least as good as coverage under the Frequentist approach

from the previous chapter. Interval width is also similar between the Frequentist and

Bayesian paradigms. It appears that using the prior structure from expression (2.3)

does not heavily influence the FBIi statistic.
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Figure 2.3: Empirical Interval Width

Table 2.3 is a summary of the ten cases (ref. Section 1.10.1) using the Bayesian

approach to estimate the posterior distributions of BI and FBIi. Expression (2.3)

assumes independent responses between arms, thus we retain this assumption when

computing James’s BI under the Bayes paradigm. Previously, it was discovered that

that the empirical posteriors of FBIi are similar to their frequentist analogs (ref.
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Figure 2.4), thus the values in Table 2.3 are similar to those in Table 1.11 for FBIi.

We also find that the James BI is similar under frequentist and Bayesian approaches.

Table 2.3: Bayes Simulation Results for k = 3 Arms
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Table 2.3: Bayes Simulation Results for k = 3 Arms (cont’d)
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2.3 CRISP Application

Recall the CRISP application used by Bang, and represented in Section 1.6.2

of this dissertation. Men and women over the age of 65 with high cholesterol were

randomized to receive either Lovastatin to reduce cholesterol or a placebo. We use

the same prior structure from Section 2.1. Of the 431 subjects in the study, 416 par-

ticipated in the blinding survey at the end of the study. Simulations were performed

using WinBUGS, with a burn-in of 2, 000 iterations, 10, 000 iterations to compute pos-

terior estimates, no thinning, and 1, 000 replications (same as in Section 2.2).

Figures 2.5-2.8 show the dynamic trace, time series, kernel density, and auto-

correlation function for the simulated values. The posterior mean of James BI is 0.75

with a standard error of 0.022. A 95% credible interval for BI is 0.71 to 0.79. The

posterior mean of FBIPlacebo (also BIPlacebo) is 0.01 with a standard error of 0.053. A

95% credible interval for FBIPlacebo is −0.09 to 0.12. Finally, the posterior mean of

FBILovastatin (also BILovastatin) is 0.20 with a standard error of 0.035. A 95% credible

interval for FBILovastatin is 0.14 to 0.27.

Comparing the FBI posterior estimates to the frequentist equivalents in Table

1.4, we see that the point estimates are nearly identical. The interval estimates under

the Bayes approach are slightly wider, but not by much. The posterior point and

interval estimates of James BI for the CRISP data match the results reported in

Bang’s manuscript Bang et al. (2010). Simulation results from the previous chapter

confirm that the Bayesian results should be close to the frequentist values, so the

addition of Bayesian methods to the CRISP study behaved as expected.
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Figure 2.5: Dynamic Trace Plots for CRISP

Figure 2.6: Time Series Plots for CRISP
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Figure 2.7: Kernel Density Plots for CRISP

Figure 2.8: Autocorrelation Function Plots for CRISP

2.4 Discussion

There is great potential for the use of Bayesian methods in measuring blinding.

The first step taken here shows that, under the most simplistic approach, a Bayesian

approach tells the same story as the frequentist approach. However, there is much

still open to investigation. To start, it would be of interest to change the diffuse

prior structure in (2.3). For example, it would be interesting to see how the Jeffery’s

prior with hyperparameter αi = 0.5×1′ influences the posterior. On the other hand,
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what about an informative prior that allows for unequal values of αij, j = 1, . . . , k?

Imagine a scenario in which researchers know that the DK response rate is likely to

be extreme (either very large of very small). For example, say researchers are more

prone to answer DK, or perhaps subjects in the placebo arm are expected to answer

DK often. In this case, it would be interesting to use a prior structure such that the

hyperparameter of the Dirichlet corresponding to the probability of a DK response,

αi,k+1, is not equal to the other αij hyperparameters. It would be interesting to see

how an informative prior would affect the value of the blinding indexes when we have

prior information about DK response rates.

Another possibility is to model dependence between treatment arms by our

choice of hyperparameters. Rather than using prior distributions with independent

hyperparameters between treatment arms, a hierarchical structure can be used. It

would be interesting to see how adding dependence between the arms changes the

results, if at all.

Also, if an expert has an opinion about the value of the index itself rather than

the guessing, a prior structure could be placed on the index. We can look at the

induced prior on the response probabilities (2.3) to see how the opinion about the

index transfers information back about the multinomial probabilities. For example,

in a trial with two treatment arms we could start with a uniform(−1, 1) prior on

FBIi and see what this implied about pi1, pi2 and pi3. From here, we would change

the prior structure to something non-flat such as a beta distribution that is shifted

and scaled as necessary.

These may seem like theoretical exercises, but the truth is any one of the above

scenarios is possible. The struggle with choosing more informative priors is determin-

ing if anything stands a good chance of having a practical application – are researchers

really less likely to respond with DK, do subjects in the placebo group respond DK

more often on average, etc. Without more published findings on blinding results, it

would be difficult to get away with using a more informative prior structure. However,
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if a researcher is conducting a trial which includes a treatment used in another pub-

lished study, then informative priors could be a useful way to incorporate knowledge

from the previous study. Many of these questions can be addressed via simulation,

but the applicability is dependent on researchers publishing blinding data.
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CHAPTER THREE

A Guidance on Blinding Indexes for Regulatory Agencies and Clinical Trialists

3.1 Introduction

In clinical trials, blinding is desirable due to its ability to reduce information

bias and improve compliance and retention. However, just because we don’t tell study

participants or researchers which treatment is being administered on an individual

basis does not mean blinding has been successful. Once blinding has been imple-

mented we assume it has been achieved. More dangerously, trialists carry forward

making conclusions about study outcomes as if blinding were maintained throughout

the study, ignoring possible biases that may have occurred due to a lack of blinding

Schulz and Grimes (2002). Currently, blinding is more of a concern during trial de-

velopment and initiation rather than something to investigate during the study or at

trial completion. It is important for researchers to assess the success of blinding for

all trials implementing single-, double-, or even triple-blinds.

There is not a standard approach for measuring blinding, nor is there a con-

sensus on how to collect data on blinding. However, there are methods available to

researchers who wish to report on blinding. A range of statistical approaches has been

used, but the most recent trend is in blinding indexes: estimators that are developed

specifically with the intent to measure how well a study has been blinded. We walk

through the various statistical methods, including blinding indexes, in the Methods

section. Then in Section 3.3 we look at simulation results to compare blinding indexes.

In Section 3.4 we look at a Bayesian approach to blinding, then an application in the

following section. We end with concluding remarks and goals for blinding reporting.
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3.2 Methods

There is a lack of agreement about when to ask about blinding. The options

are: before randomization, shortly after randomization, during trial, and/or at study

completion Bang et al. (2010). Most commonly investigators ask at study completion,

but this convention has been criticized. A primary concern is that, by the time the

trial has ended, correct guesses could be confounded with efficacy and side-effects.

Regardless of when we administer the blinding survey, the data structure is the

same. The process is slightly different, depending on which party is blinded. Study

participants are asked which treatment they believe they are on. The subjects are

allowed to choose among the treatment options, or say that they don’t know (DK).

On the other hand, if we are assessing the blind in a non-patient group (i.e. among

researchers, coordinators, etc.) then we ask them about the assignment of several

patients they have been involved with during the study. Experimenters are required

to guess what each of their patients is assigned to, and again are allowed to answer

among the treatment options or DK.

Blinding data can be easily summarized in a contingency table, where the

columns and rows are represented by actual treatment assignment and guessed treat-

ment (including DK). Correct guesses are evidence of unblinding, and incorrect guesses

are used as evidence for blinding. DK responses are thought to suggest blinding be-

cause, after all, the point is that subjects should not know what group they are

assigned to. We must be careful when we say subjects are blinded and unblinded.

Unblinded, in this case, does not necessarily mean that an individual found out they

were definitely assigned to a certain group (although this is a possibility), rather we

use it to say that someone has a good notion of the treatment group to which they

have been assigned.

In the next two subsections we go through a brief history of blinding as a statis-

tical problem. First we look at some of the ways in which researchers have analyzed

blinding data using common statistical approaches. Then we go in to the newest
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trend in blinding reporting, which is to use a blinding index. We will convince you

that using a blinding index is superior to using a traditional statistical approach, and

that to use these indexes is a straightforward process that can be easily incorporated

in to any study protocol where blinding and randomization are implemented.

3.2.1 Traditional Statistical Approaches

Early analysis of blinding data was quite simple. An excellent review of sta-

tistical methods for blinding assessment is given in Bang 2010 Bang et al. (2010),

we merely summarize their work here. Hughes and Krahn Hughes and Krahn (1985)

looked at the proportions of correct and incorrect guesses. Blinding was deemed

unsuccessful if the proportion of correct guesses was larger than the proportion of

incorrect guesses. They, along with Margraf et al. Margrat et al. (1991) and others,

used a traditional Chi-square test on the contingency table of blinding data. Kolahi

et al. Kolohi et al. (2009) used McNemar’s test for the case where there were two

arms in the trial. Wisner et al. Wisner et al. (2001) reported the κ statistic as an

improvement on the previous approaches which merely test for significance but in no

way measure the degree of blinding. A criticism of the κ statistic as a measure of

blinding is that is measures agreement which is not the desirable outcome for blinding

survey responses.

A pitfall with the above mentioned approaches is that each one neglects the

DK responses. We have already stated that a DK response should be indicative of

blinding, but up to now we have thrown away all of that information. We seem

to accept that we need to compare correct guesses to incorrect guesses in order to

determine if people are adequately blinded (random guessing should also indicate

blinding). It is not important, however, to compare the proportion of DK responses

with the proportion of correct and incorrect guesses. Thus, even though we could have

included the DK responses when performing the Chi-square test, it makes little sense

to do so. We transition out of traditional approaches and look at a few approaches

that are specific to our problem.
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3.2.2 Blinding Indexes

James et al. James et al. (1996) realized the value in using a κ-like statistic to

measure blinding as opposed to only testing for it. A modification was made to the

κ statistic and James’s blinding index, BI, was born. With the James BI we can

measure blinding in a meaningful way. The index is on a scale from zero to one, with

smaller numbers representing unblinding and larger numbers representing blinding.

The middle, one-half, represents random guessing. Thus a value of one-half may seem

adequate, accepting that random guessing acts as a surrogate for blinding. In the

presence of DK responses, the index shifts toward one. James BI places weight on

various responses. For example, a correct guess (undesirable) is assigned a weight of

zero whereas a DK response is assigned a weight of one. The weight of an incorrect

guess depends on the guess itself. James et al. distinguish types of incorrect guesses.

For example if there are multiple treatment groups then a subject could guess the

wrong treatment. If said subject is on a treatment but guesses a different treatment,

this carries less weight than if he or she is assigned to the placebo group but guesses

an active treatment. The weight structure for the different types of incorrect guesses

does not often change our conclusion, as James et al. have shown in a simulation

study.

The James index has received slight criticism because of the influence DK re-

sponses on determining its value. Recall that according to the standard survey struc-

ture there are two indicators of blinding: DK responses and random guessing among

non-DK responses. The James index focuses on DK responses to indicate blinding.

For example, if nobody answers DK in a blinding assessment and subjects are ran-

domly guessing, then the James BI would have a value of one-half. But a “complete

blind” is indicated by a value of one, which only occurs when all respondents give a

DK response James et al. (1996). Therefore, Bang et al. Bang et al. (2004) took a

different approach to creating a blinding index. First off, the Bang blinding index,
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BIi, is on a scale from negative one to one, with zero representing “blinding.” Bang’s

index seems to have the following advantages over the James index:

(1) Mathematically, zero represents the case of random guessing or all DK re-

sponses, or a mix of random guessing and DK responses. Thus, for both

indicators of blinding the value of the Bang index approaches the same con-

stant (not the case in James).

(2) Also, BIi can detect something known as reverse unblinding – where guessers

are incorrect more often than they would be if they were randomly guess-

ing. Opposite guessing could be an indication of adequate blinding, because

subjects clearly are unable to determine their treatment allocation. However,

there are practical reasons why reverse unblinding is undesirable; for exam-

ple in some studies the dropout rate in a placebo group can be higher, so

if respondents believe they are in a placebo group then trial enrollment and

retainment could suffer Montgomery (1999). Note that reverse unblinding is

suggested by negative values of the blinding index.

(3) Additionally, the Bang index is arm-specific, meaning that it is calculated

for each treatment arm independently. The advantage here is that we can

look at blinding success within each arm. This is important because not all

arms are necessarily blinded/unblinded to the same degree. A disadvantage

is that Bang does not give an overall blinding index for the study as a whole,

but we believe that the advantage of arm-specific investigation outweighs the

disadvantage of no study-wide index score.

(4) Lastly, the Bang index is very interpretable. The value of the index represents

the proportion of correct guesses beyond random guessing. Imagine we have

study with a placebo group and a control group and the Bang blinding index

for these groups is calculated to be 0.15 and 0.8, respectively. We interpret

these values as correct guessing 15% and 80% beyond what random chance

would suggest, respectively. Although the James index serves well as an
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index, it is unclear what the practical difference between 0.6 and 0.7 is for

the James BI.

There are, however, some limitations to Bang’s approach.

(1) First of all, the Bang index is only valid for a binary response (placebo/treat-

ment), ignoring DK. The theory behind BIi assumes that within each treat-

ment arm, the probability of guessing correctly and the probability of guessing

incorrectly are equal, with random guessing. This is true only if: there are

only two arms, or the subjects are only allowed to guess between two options.

James et al. had their own way of addressing different types of incorrect an-

swers using the weight structure, but to Bang et al. the answer is either

correct or incorrect. If the survey is designed so that each person is only

given two options (e.g. placebo or experimental treatment), then the index is

valid no matter the number of arms in the trial. Also, if there are only two

arms to begin with then the Bang index is always valid. However, it is untrue

to assume equal probabilities of guessing correctly and incorrectly if given

more than two options, with only one being a correct response. For such a

scenario, we cannot apply Bang and therefore are forced to use James’s BI.

(2) Second, Bang admits that the purpose of the index is not for hypothesis

testing. James et al. make a similar claim about their index. However,

the advantage Bang’s index holds over James’s index is the interpretability.

Neither were developed for the sole purpose of hypothesis testing, and each

index places an emphasis on understanding the point estimate. So in this

regard we still find Bang’s approach to be preferable to James’s approach.

We should note that Bang et al. proposed a variant of the BIi index which uses

weights. The weights are not determined by the guess, but rather by the guesser.

Some people may be more confident in their response than others, and therefore

Bang decided these should have more weight in the index.
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We tend to prefer the Bang approach to measuring blinding, but there are some

properties that need addressing before trying to make it the standard in blinding

reporting. Most obviously, we require an extension to the Bang BIi that allows for

more than two study arms.

We have developed a statistic that stays true to the Bang paradigm of measuring

blinding success, but that has been generalized to measure blinding for any amount

of study arms. For k arms theFBI ranges from −(k − 1)−1 to one, with zero still

serving as the reference for blinding (random guessing and/or DK responses). This

index can detect both unblinding and reverse unblinding, preserves the null constant

representing blinding success, is treatment-arm specific, is interpretable, and can be

used for any number of treatment groups. We can calculate a blinding index under the

Bang paradigm for any study which looks at blinding. FBI is merely a generalization

of Bang’s BIi, and in the case of two treatment arms the indexes are exactly the same.

From this point forward, we refer to James’s blinding index as BI and the Williamson

blinding index as FBI. Keep in mind that any reference to FBI also implies Bang’s

BIi when there are k = 2 arms.

The lower bound of FBI is dependent on the number of treatment arms. James

et al. James et al. (1996) suggest this is an undesirable property for an index (referring

to the κ statistic). Negative values for FBI suggest reverse unblinding and therefore

it is not of great concern for us to measure the degree of reverse unblinding, merely

being able to detect it (as indicated by a negative value of the index) is advantageous.

Therefore, the “lack of interpretability” for negative values of FBI is not alarming.

We did investigate a weight structure to FBI. However, the mathematics yield an

index with undesirable properties. Therefore, we present no weighted alternative to

the FBI.

3.2.3 Blinding Surveys

One of the benefits of the blinding indexes is that they are capable of being used

no matter when the data are collected. An additional benefit of FBI is that the host

80



can decide before hand a degree of unblinding that would be acceptable (e.g. setting a

maximum unblinding threshold). This degree of unblinding could account for biases

in survey administration timing. For example, if measuring post-trial responses a

larger value of FBI may be more acceptable than if the data were collected shortly

after randomization. Thresholds could be set for the James BI as well, but the

interpretability of FBI yields a less abstract definition of the blinding threshold.

3.3 Simulation Findings

We already mentioned simulation work conducted by James et al. that showed

blinding results are robust to the choice of the weight structure. In this simulation,

James fixed the weights for correct guesses and DK responses at zero and one, re-

spectively. Then, assuming guessing an incorrect treatment is better indication of

blinding that guessing the correct treatment but incorrect dose, the weights of these

two incorrect guess types were varied between 0.2 and 0.9 with only the constraint

that the weight of the former be larger than the weight of the latter James et al.

(1996).

Bang et al. performed simulations to compare their approach with James’s

approach. Recall that Bang’s index measures each arm independently, and therefore

we end up with two BIi for each BI in the simulation. Additionally, there are three

blinding scenarios for any arm: random guessing, unblinded, and reverse unblinded.

Bang considers three levels of DK responses: 0% to represent no DK responses, 30% to

represent a moderate amount of DK responses, and 70% to represent a large amount

of DK responses. There are three blinding scenarios each of which can occur at

the three DK response levels, thus forming nine possible “cases” for the simulation.

Bang et al. report six of these cases in their manuscript Bang et al. (2004). In

fact this is more than necessary to look at the Bang index: remember each “case”

yields two BIi values, one for each arm, which gives twelve in total using the six

cases. There are only nine unique simulation scenarios for the Bang index (three

blinding scenarios matched with three DK response levels). Because the Bang index
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is arm-specific, which group represents the placebo arm and which one represents the

experimental arm is irrelevant. However, because of the weight structure, the cases

are not interchangeable for the James index. Thus, although reporting six cases does

not fully cover the unique setting for the James index, Bang more than sufficiently

shows the properties of BIi.

Bang discovers that under most blinding scenarios the James index shows sig-

nificant “blind success”. As we have already stated, DK responses increase the James

index. For all blinding scenarios paired with 30% or 70% DK responses (with the ex-

ception of one: both arms being unblinded), the James index had a 0% rejection rate.

Furthermore, BI is not built to detect opposite guessing (reverse unblinding), and

this scenario actually inflates the index making it appear that blinding was achieved.

It is not necessarily incorrect to interpret opposite guessing as successful blinding,

but looking at James’s BI alone we would not know where the evidence of blinding

is coming from. Bang’s index was powerful to detect all three blinding scenarios,

regardless of the percent DK responses.

We recreated Bang’s simulations, but using k = 3, 4, and 5 arms. The results

were similar: FBI is powerful to detect each of the blinding scenarios at various

levels of DK responses. It was of interest to us to keep an eye on the unblinding

group as the number of arms increases. Recall the lower bound of FBI approaches

zero as the number of arms increases. We worried there would be a significant loss of

power as we increased the number of arms. It turns out this is true, for an interesting

reason. FBI is based on the assumption of random guessing, that is to say that

subjects should be guessing in each group with an equal probability (aside from DK).

At some point, there become too many treatment groups to tell the difference between

opposite guessing and random guessing. For example, let’s say that a certain arm is

reverse unblinded to a degree such that only 10% of them are guessing correctly (of

the subjects who are guessing and not responding “DK”). A 10% accuracy rate is to

be expected in a group that is guessing randomly among k = 10 arms. Essentially,
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the accuracy of the reverse unblinded group and of the randomly guessing group are

the same, meaning there is no mathematical difference between opposite guessing

and random guessing. This problem seems to be paradoxical: if a group is reverse

unblinded but responding as would be expected for random guessing, are they reverse

unblinded? Simply put, the power of FBI does decrease as the number of treatment

arms increases, all else constant.

Our simulations and Bang’s simulations proved some of our concerns about

the James index. First of all, we can now see how sensitive BI is to DK responses.

Additionally, we see that the James index does not properly describe what is happen-

ing when the blinding scheme between treatment arms is not the same. If all arms

happen to be unblinded to some degree, or all arms are randomly guessing, then the

James index is fine. But when behavior differs between arms, the James index tries

to compromise and leaves us with a less clear picture of what is going on. The James

index does not do a great job at harmonizing the two indicators of blinding: random

guessing and DK responses. A plus side to BI is that it can distinguish between

random guessing and DK responses. We just criticized this in the previous sentence,

but it could also be considered a good thing. FBI yields a value “close” to zero

in either case, which would suggest to us blinding success. Theoretically the James

index can tell us which of the indicators of blinding is dominant (but we’ll mention

one final time that DK response overwhelm random guessing).

Finally, to summarize our simulation findings, FBI is shown to have decent

power even for small sample sizes. Sample size is not a big issue in blinding, because

usually we are measuring and reporting blinding in Phase III studies which have larger

enrollment. However, there can be opportunity for using the index on small sets of

data. For example, if we administer the blinding surveys shortly after randomization

we might want to do an interim analysis when the number of subjects per arm is not

substantial. Also, it is not impossible that we investigate blinding in a Phase II trial,

or even a very small Phase III trial. And finally, we could apply the index to subsets
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of the study population (e.g.: look at blinding in males versus females, or across other

demographic or geographic variables).

3.4 Bayesian Approach to Blinding Indexes

A Bayesian approach to measuring blinding has potential to add valuable in-

formation. For the first time Bayesian methods have been used with the blinding

indexes. The prior structure examined is simple, a conjugate Dirichlet prior with

equal hyperparameters so that we have a “flat” prior. Posterior point and interval

estimates under the Bayesian approach matched very closely the results from the

frequentist simulations.

However, the potential influence of Bayesian methods is much more interesting.

With different prior structures, it is possible we could gain additional information

about blinding success. This could be a particularly interesting approach for small

sample sizes, modeling dependence between treatment arms under the Bang approach,

and for cases where DK responses are extreme (very low or very high). Additionally, if

investigators believe they know something about the distribution of the index rather

than the guesses themselves, we could look at the induced prior on the multinomial

frequencies. There is decent potential for Bayes in this field.

3.5 Application

A four month double-blind, placebo-controlled trial was conducted between

September 2006 and February 2011 on 138 overweight but otherwise healthy, middle-

aged to older adults to determine if omega-3 polyunsaturated fatty acid (n-3 PUFA)

supplementation would decrease serum cytokine production and depressive symp-

toms. The trial consisted of three arms: 2.5 g/d n-3 PUFAs, 1.25 g/d n-3 PUFAs,

and placebo capsules mirroring the proportion of fatty acids in the average American

diet. The manufacturer of the drugs added fish flavoring to the placebo capsules to

aid in blinding. The study investigators were interested in the success of the blind
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among study participants and experimenters. Blinding surveys were administered to

participants at the final visit during the study Kiecolt-Glaser et al. (2012).

Table 3.1: Omega-3 and Inflammation Participant Responses

Actual Assignment Guessed Assignment Total

1.25 g/d 2.5 g/d Placebo DK

1.25 g/d n-3 PUFAs 17 3 12 12 44

2.5 g/d n-3 PUFAs 14 5 9 16 44

Placebo 9 4 17 14 44

Total 40 12 38 42 132

Participant responses to the blinding questionnaire are summarized in Table 3.1.

The authors reported the James index for the participants, omitting one observation.

Unsure of which observation was dropped, we recalculated the index for the full data

in Table 3.1. The James index for study participants is 0.61 (95% CI: 0.53–0.68).

Kiecolt-Glaser et al. report that “blinding is considered adequate if the index is

greater than one-half.” Because participants (and experimenters) were allowed to

guess between all three arms, the investigators were limited to use the James index

as apposed to Bang et al.’s alternative.

With the generalized index, we may now look at blinding results under Bang’s

paradigm. The Williamson blinding index for participants at the end of the study

in the 50% fish group (1.25 g/d n-3 PUFAs) is 0.22 (95% CI: −0.02–0.45). For the

100% Fish group (2.5 g/d n-3 PUFAs), the index is −0.15 (95% CI: −0.31–0.02).

Finally, for the placebo group the FBI index is 0.24 (95% CI: 0.01–0.46). The only

significant finding is in the placebo arm, but note that the lower confidence bound

is very close to 0. Additionally, note that the confidence bounds for the two active

treatment arms are also close to 0. In this case, the two approaches agree: there are

minimal concerns that unblinding occurred in this study.
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We also examined the experimenters’ responses using the FBI statistic. There

was an overwhelming rate of DK responses among experimenters, which yielded large

values of BI. Values of FBI were close to zero for all treatment arms. In the

experimenter group, our approaches again agree that unblinding is not a concern.

3.6 Suggested Use of Blinding Indexes

We have considered two ways to measure blinding: the James method and the

Bang method (with the Williamson generalization). The Williamson (Bang) FBI

allows us to look at blinding in each arm independently and can detect reverse un-

blinding, whereas James BI gives a study-wide measure of blinding and distinguished

between blinding due to random guessing and blinding as a result of DK responses.

We have seen that these two methods do not necessarily agree with one another. We

therefore recommend using both indexes when assessing a blind. There is not much

to consider when both of the indexes agree with one another, but it can be equally

advantageous to see when the two methods disagree Bang et al. (2010). Thus, al-

though the indexes were developed under different philosophies of blinding success,

it seems more practical that they be used complementary to one another.

Blinding is a complex issue, and we hope that study sponsors and investigators

begin to recognize the importance of reporting blinding results at the end of any

trial which implements a blind. It can give insight to other investigators who wish to

maintain blinds in similar studies, especially for determining a threshold of acceptable

unblinding a priori. The interpretability of FBI is especially useful when trying to

define a threshold. We are not limited to accepting or rejecting blinding with the use

of these indexes, rather we can measure the degree to which studies are unblinded.

To us, this is the biggest improvement blinding indexes hold over the traditional

statistical approaches – we don’t have to classify a trial as blinded or unblinded,

instead we can describe the blind in meaningful terms and determine if the results

meet a standard established in the protocol.
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3.7 Conclusion

Since James et al. introduced their blinding index, there have been an increasing

amount of articles dedicating to how to assess blinding in randomized, controlled

trials. Researchers such as Park Park et al. (2008) and Bang Bang and Park (2013)

have been creating awareness for the need to report blinding with trial findings. They

have also debated the appropriateness of blinding questionnaires, when they should

be administered, and how freely we should accept DK responses. Park is leading a

project, blindingindex.org, where clinical trialists can deposit data on the success

of blinding. It is evident that blinding is becoming a new hot-topic in the world of

clinical trials.

Statistically we have developed indexes which aim to measure the success of

blinding. First was the James index, followed by the Bang index which was then

generalized by Williamson et al. These indexes can be applied to data collected at

any time in the trial, and can be applied to any blinded group (subjects, researchers,

etc.). For larger studies, we could even assess blinding across various demographic

and geographic groups. For example, we could assess blinding separately at different

clinical sites James et al. (1996). Our goal is that it becomes standard for researchers

to report at least one of the aforementioned blinding indexes when summarizing study

findings.

It will require additional research and expertise to decide what to do with our

information on blinding. Should it simply serve us so that we may try to implement

better blinds in the future, or should we leverage the degree of unblinding against

study conclusions? Zhang et al. (2013) have done research in this area, suggesting a

causal model between placebo and treatment-specific effects. To be able to effectively

determine the role blinding will play in the future of trial conclusions, we need more

trialists to assess blinding. With the current statistical approaches, we have provided

them easy, efficient reporting tools that can be used for all types of randomized,

controlled trials.
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APPENDIX A

R Functions to Compute Blinding Indexes

A.1 Function to Compute the James Blinding Index

James.BI <- function(d,w){

###################################################################

# Function: James.BI #

# #

# Purpose: Function to calculate the BI statistic and asymptotic #

# variance proposed in James et al. (1996) #

# #

###################################################################

# INPUT #

# d A (k+1 x k) matrix of frequencies: #

# - columns are actual treatment #

# - rows are guessed treatment #

# - last row is "dont know" #

# w A (k+1 x k) matrix of weights corresponding #

# to the types of responses in the matrx d. #

# #

# OUTPUT #

# BI.hat The blinding index statistic #

# var.asymp Asymptotic variance of BI.hat #

# #

###################################################################

# To call function: #

# James.BI(d,w) #
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# #

###################################################################

# Initial definitions

k = dim(d)[2]

N = sum(d)

n0 = sum(d[k+1,])

p = d/N

PDK = n0/N

pD0 = pDe = 0

# pD0

for(i in 1:k){

for(j in 1:k){

pD0 = pD0 + w[i,j]*p[i,j]/(1-PDK)

}

}

# pDe for(i in 1:k){

pi. = sum(p[i,])

for(j in 1:k){

p.j = sum(p[,j])

p0j = p[k+1,j]

pDe = pDe + w[i,j]*pi.*(p.j-p0j)/(1-PDK)^2

}

}

# Blinding Index

kD = (pD0-pDe)/pDe

BI = (1+PDK+(1-PDK)*kD)/2
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# Asymptotic variance

var.pt1 = 0

for(i in 1:k){

for(j in 1:k){

inner = 0

for(r in 1:k){

inner = inner + sum(p[r,]*w[r,j]+(sum(p[,r])-p[k+1,r])*w[i,r])

}

var.pt1 = var.pt1 + p[i,j]*(1-PDK)^2*((1-PDK)*w[i,j]-(1+kD)*inner)^2/

(4*(sum(p[i,])*(sum(p[,j])-p[k+1,j])*w[i,j])^2)

}

}

var.asymp = (var.pt1 + PDK*(1-PDK)-(1-PDK)*(1+kD)*(PDK+(1-PDK)*(1+kD)/4))/N

# Output

list(BI.hat=BI, var.asymp=var.asymp)

}

1.1.1 Example Run

> # Data from James et al. (1996), p. 1425

> w = matrix(c(0,.5,.75,1,.5,0,.75,1,.75,.75,0,1),nrow=4)

> w

[,1] [,2] [,3]

[1,] 0.00 0.50 0.75

[2,] 0.50 0.00 0.75

[3,] 0.75 0.75 0.00

[4,] 1.00 1.00 1.00

> d11 = matrix(c(29,0,0,4,0,29,0,4,0,0,29,4),nrow=4)

> d11
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[,1] [,2] [,3]

[1,] 29 0 0

[2,] 0 29 0

[3,] 0 0 29

[4,] 4 4 4

>

> # James Blinding Index

> James.BI(d11,w)

$BI.hat

[1] 0.1212121

$var.asymp

[1] NaN

A.2 Function to Jackknife the James Blinding Index

jack.BI <- function(d,w){

###############################################################

# Function: jack.BI #

# #

# Purpose: Function to jackknife the BI statistic #

# #

# Written by: Forrest Williamson #

# #

###############################################################

# INPUT #

# d A (k+1 x k) matrix of frequencies: #

# - columns are actual treatment #

# - rows are guessed treatment #

# - last row is "dont know" #
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# w A (k+1 x k) matrix of weights #

# corresponding to the types of #

# responses in the matrx d. #

# #

# OUTPUT #

# BI.hat The blinding index estimate #

# jack.estimates A (k+1 x k) matrix of the new #

# jackknife estimates corresponding #

# to omiting one observation from #

# each element of d. #

# jack.mean Jackknife mean estimate #

# jack.var Jackknife variance estimate #

# jack.se Jackknife standard error estimate #

# jack.CI95 95% jackknife confidence interval; #

# jack.mean(+-)1.96*jack.se #

# reject Indicator: #

# 1 reject H0 #

# 0 FTR H0 #

# #

###############################################################

# To call function: #

# jack.BI(d,w) #

# #

###############################################################

# Initial definitions

k = dim(d)[2]

N = sum(d)
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# Compute overall blinding index

BI.hat = James.BI(d,w)$BI.hat

# Matrix of new BI values (leave one out per cell)

T = matrix(NA,nrow=k+1,ncol=k)

for(i in 1:(k+1)){

for(j in 1:k){

dummy = matrix(0,nrow=k+1,ncol=k)

if(d[i,j]>0){ dummy[i,j] = -1 } #no negatives

d.temp = d + dummy

T[i,j] = James.BI(d.temp,w)$BI.hat

}

}

# Matrix of jackknife estimates

jack.estimates = N*BI.hat - (N-1)*T

# Jackknife mean, variance, se, and 95% CI

jack.mean = sum(d*jack.estimates)/N

jack.var = sum(d*(jack.estimates-jack.mean)^2)/(N-1)

jack.se = sqrt(jack.var/N)

jack.CI95 = jack.mean + 1.96*c(-jack.se,jack.se)

# Reject at 5% level (one-sided)?

if(jack.mean+qnorm(.95)*jack.se<0.5) {reject=1} else {reject=0}

# Names

list(BI.hat=BI.hat, jack.estimates=jack.estimates,
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jack.mean=jack.mean, jack.var=jack.var, jack.se=jack.se,

jack.CI95=jack.CI95, reject=reject)

}

1.2.1 Example Run

> # Cooperative Study No.107 (James et al. p.1427)

> study = matrix(c(41,66,30,44,27,72,24,51,22,36,64,52),nrow=4)

> study

[,1] [,2] [,3]

[1,] 41 27 22

[2,] 66 72 36

[3,] 30 24 64

[4,] 44 51 52

>

> # James BI

> w = matrix(c(0,.5,.75,1,.5,0,.75,1,.75,.75,0,1),nrow=4)

> w

[,1] [,2] [,3]

[1,] 0.00 0.50 0.75

[2,] 0.50 0.00 0.75

[3,] 0.75 0.75 0.00

[4,] 1.00 1.00 1.00

> jack.BI(study,w)

$BI.hat

[1] 0.5564209

$jack.estimates

[,1] [,2] [,3]

[1,] 0.02150165 0.6829181 0.8186271
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[2,] 0.57112654 0.1016612 0.8026661

[3,] 0.77415572 0.8699067 -0.1264497

[4,] 1.00000000 1.0000000 1.0000000

$jack.mean

[1] 0.5562377

$jack.var

[1] 0.176728

$jack.se

[1] 0.01827784

$jack.CI95

[1] 0.5204131 0.5920623

$reject

[1] 0

A.3 Function to Compute the Bang Blinding Index

Bang.BI <- function(d, alpha=0.05){

##################################################################

# Function: Bang.BI #

# #

# Purpose: Function to calculate the "2x3-format" BI statistic #

# and variance proposed in Bang et al. (2004) #

# #

# Written by: Forrest Williamson #

# #
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##################################################################

# INPUT #

# d A (k+1 x k) matrix of frequencies: #

# - columns are actual treatment #

# - rows are guessed treatment #

# - last row is "dont know" #

# alpha Significance level for 2-sided CI #

# #

# OUTPUT #

# BI.hat A k-dimensional vector of blinding index #

# statistic by treatment arm #

# var.hat A k-dimensional vector of estimated #

# variances corresponding to each BI.hat #

# CI A 2-sided 95% confidence interval for #

# each BI.hat #

# #

##################################################################

# To call function: #

# Bang.BI(d,.05) #

# #

##################################################################

# Define number of treatment arms

k = dim(d)[2]

# Create empty vectors

BI.hat = var.hat = c()

# Evaluate the statistic within each treatment arm

for(i in 1:k) {
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# P vector (P_k|i) of length k

ni = apply(d,2,sum)[i]

P = d[1:k,i]/ni

# Blinding Index in treatment arm i

r.hat = d[i,i] / sum(d[1:k,i])

BI.hat[i] = (2*r.hat-1)*(sum(P))

# Variance of the blinding index in treatment arm i

var.hat[i] = (sum(P*(1-P)) + 2*prod(P))/ni

}

# Confidence intervals

z = qnorm(1-alpha/2)

CI = cbind(BI.hat - z*sqrt(var.hat), BI.hat + z*sqrt(var.hat))

# Output

list(BI.hat=BI.hat,var.hat=var.hat,CI=CI)

}

1.3.1 Example Run

> # CRISP data from Bang 2004

> CRISP = matrix(c(82,25,170,27,29,83),nrow=3)

> CRISP

[,1] [,2]

[1,] 82 27

[2,] 25 29

[3,] 170 83

>
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> # Results

> Bang.BI(CRISP)

$BI.hat

[1] 0.20577617 0.01438849

$var.hat

[1] 0.001241653 0.002896911

$CI

[,1] [,2]

[1,] 0.13671275 0.2748396

[2,] -0.09110258 0.1198796

A.4 Function to Compute the Williamson Blinding Index

FBI = function(DatMat,alpha=0.05) {

#############################################################

# Function: FBI #

# #

# Purpose: To calculate the FBIi indexes for all groups, #

# as well as the variance for each FBIi. #

# #

# Written by: Forrest Williamson #

# #

#############################################################

# INPUT #

# DatMat The frequency contingency table, as an R #

# matrix object, where the rows are the actual #

# treatment assignments and the columns are the #

# guessed assignments (in the same order as the #
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# rows), and the last column must be the DK #

# responses. Thus, dim(DatMat) = k x (k+1). #

# alpha Probability of a Type I Error for a 2-sided #

# test (double desired significance level for #

# 1-sided test). Default = .05 #

# #

# OUTPUT #

# FBI.pe A vector of length k of point estimates of #

# the FBI index, in the same order as the #

# input matrix, DatMat. #

# FBI.var A vector of length k of variance estimates #

# under the null hypothesis of random guessing. #

# Reject A vector of length k binary responses: #

# 1 = reject null hypothesis, 0 = FTR H0 at the #

# specified signifigance level, alpha (2-sided).#

# #

#############################################################

# To call function: #

# library(gdata) #

# FBI(data,0.05) #

# #

#############################################################

# Dimension

k = dim(DatMat)[1]

# Critical value

cv = qnorm(1-alpha/2)
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# Compute FBI and Var for each group

FBI.pe = c()

FBI.var = c()

Reject = c()

for(i in 1:k) {

# Definitions

N = sum(DatMat[i,])

p = sum(DatMat[i,1:k]) / (k*N)

# FBI measures

FBI.pe[i] = (k*DatMat[i,i] - sum(DatMat[i,1:k])) / ((k-1)*N)

FBI.var[i] = (k^2*P[i]*(1-P[i]) + P%*%(1-P) + 2*k*sum(P[i]*P) -

2*sum(lowerTriangle(P%*%t(P)))) / ((k-1)*N)

# CI

lower = max(-1/(k-1), FBI.pe[i] - cv*sqrt(FBI.var[i]))

upper = min(FBI.pe[i] + cv*sqrt(FBI.var[i]), 1)

# Reject or FTR

if(lower<0 & 0<upper) {Reject[i]=0

} else {Reject[i]=1}

}

# Output

results = list(FBI.pe=FBI.pe, FBI.var=FBI.var, Reject=Reject)

return(results)

}
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1.4.1 Example Run

> # Cooperative Study No.107 (James et al. p.1427)

> study = t(matrix(c(41,66,30,44,27,72,24,51,22,36,64,52),nrow=4))

> study

[,1] [,2] [,3] [,4]

[1,] 41 66 30 44

[2,] 27 72 24 51

[3,] 22 36 64 52

>

> #FBIi

> FBI(t(study))

$FBI.pe

[1] -0.03867403 0.26724138 0.20114943

$FBI.var

[1] 0.00770607 0.01191196 0.01106221

$Reject

[1] 0 1 0

A.5 Function to Jackknife the Williamson Blinding Index

jack.FBI = function(DatMat,Alpha=.05) {

#############################################################

# Function: jack.FBI #

# #

# Purpose: to obtain simultaneous jackknife interval #

# estimates for the FBIi statistics, using a #

# Bonferroni correction. #

# #
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# Written by: Forrest Williamson #

# #

#############################################################

# INPUT #

# DatMat The frequency contingency table, as an R #

# matrix object, where the rows are the actual #

# treatment assignments and the columns are the #

# guessed assignments (in the same order as the #

# rows), and the last column must be the DK #

# responses. Thus, dim(DatMat) = k x (k+1). #

# Alpha Global probability of a Type I Error for k #

# 2-sided tests. Default = .05 #

# #

# OUTPUT #

# FBI.pe A vector of length k of point estimates of #

# the FBI indexes, in the same order as the #

# input matrix, DatMat. #

# FBI.j A vector of length k of point estimates of #

# the jackknife mean FBI index, in the same #

# order as the input matrix, DatMat. #

# FBI.cs A matrix of dimension k x 2 of confidence #

# sets (1st and 2nd columns represent lower and #

# upper bounds, respectively, and the rows #

# represent the groups in the same order as #

# DatMat). Note: Bonferroni Multiple Correction #

# Factor used to create simultaneous intervals. #

# Reject A vector of length k binary responses: #

# 1 = reject null hypothesis, 0 = FTR H0 at the #

# specified global significance level, alpha. #
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# #

#############################################################

# To call function: #

# jack.FBI(data,0.05) #

#############################################################

# Dimension

k = dim(DatMat)[1]

# Bonferroni correction

alpha.star = 1 - (1-Alpha)^(1/k)

# Critical Value

cv = qnorm(1-alpha.star/2)

# Set up null vectors and matrices

FBI.pe = c()

FBI.j = c()

FBI.cs = matrix(ncol=2,nrow=k)

Reject = c()

for(i in 1:k) {

# Definitions

N = sum(DatMat[i,])

nii = DatMat[i,i]

# FBI

T0 = (k*DatMat[i,i] - sum(DatMat[i,1:k])) / ((k-1)*N)

FBI.pe[i] = T0
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# T1 - omit 1 from correct guess, T2 = omit 1 from incorrect guess

T1 = ((k-1)*(nii-1) - (sum(DatMat[i,1:k])-nii)) / ((k-1)*(N-1))

T2 = ((k-1)*nii - (sum(DatMat[i,1:k])-nii-1)) / ((k-1)*(N-1))

# ’IF’ statement to protect against when there 100% DK responses

if(sum(DatMat[i,1:k]) == 0) {Ti = 0

} else {Ti = c(rep(T1,nii), rep(T2,(sum(DatMat[i,1:k])-nii)))}

# Pseudo values

Ji = N*T0 - (N-1)*Ti

# Jackknife mean

J = mean(Ti)

FBI.j[i] = mean(Ti)

# Jackknife variance

Sj2 = sum((Ji-J)^2)/(N-1)

# Confidence interval (adj.)

SEj = sqrt(Sj2/N)

lower = J - cv*SEj

upper = J + cv*SEj

FBI.cs[i,] = c(lower, upper)

# Reject

if(lower<0 & 0<upper) {Reject[i]=0

} else {Reject[i]=1}

}
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# Output

results = list(FBI.pe=FBI.pe, FBI.j=FBI.j,

FBI.cs=FBI.cs, Reject=Reject)

return(results)

}

1.5.1 Example Run

> # Cooperative Study No.107 (James et al. p.1427)

> study = t(matrix(c(41,66,30,44,27,72,24,51,22,36,64,52),nrow=4))

> study

[,1] [,2] [,3] [,4]

[1,] 41 66 30 44

[2,] 27 72 24 51

[3,] 22 36 64 52

>

> #FBIi

> jack.FBI(study)

$FBI.pe

[1] -0.03867403 0.26724138 0.20114943

$FBI.j

[1] -0.03860503 0.26660087 0.20065384

$FBI.cs

[,1] [,2]

[1,] -0.14498048 0.06777042

[2,] 0.15253322 0.38066853

[3,] 0.08603318 0.31527450
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$Reject

[1] 0 1 1
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APPENDIX B

R Code for Chapter 1 Simulations

B.1 Cases

Below we provide R code for Case 1 with 0% DK responses (ref. Table 1.10).

Each of the ten cases and special examinations have similar code, with the only

difference being the probabilities of the multinomial distributions. The R directory is

set so that the appropriate functions (ref. A) can be read in.

######################################################################

# CASE 1: rrr #

######################################################################

# Read in functions

source("jack.BI.R")

source("jack.FBI.R")

# Global parameters

its = 1000

N = 200

w = matrix(c(0,.75,.75,1,.75,0,.5,1,.5,.75,0,1),nrow=4)

#############

## DK = 0% ##

#############

# Set seed

set.seed(11100)
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# Multinomial probabilities

pA = c(1/3,1/3,1/3,0)

pB = c(1/3,1/3,1/3,0)

pC = c(1/3,1/3,1/3,0)

# Simulation objects (Point Estimates & Rejection vectors)

FBI.peA = FBI.peB = FBI.peC = James.pe = c()

FBI.RejA = FBI.RejB = FBI.RejC = James.Rej = c()

# Simulation

for(i in 1:its) {

# Simulate data

A = t(rmultinom(1,N,pA))

B = t(rmultinom(1,N,pB))

C = t(rmultinom(1,N,pC))

DatMat = rbind(A,B,C)

# FBI

fbi= FBI(DatMat)

# Save FBI results

FBI.peA[i] = fbi$FBI.pe[1]

FBI.peB[i] = fbi$FBI.pe[2]

FBI.peC[i] = fbi$FBI.pe[3]

FBI.RejA[i] = fbi$Reject[1]

FBI.RejB[i] = fbi$Reject[2]

FBI.RejC[i] = fbi$Reject[3]

# James
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James = jack.BI(t(DatMat),w)

# Save James BI results

James.pe[i] = James$BI.hat

James.Rej[i] = James$reject

}

# Create data frame

Case1.0 = data.frame(James.pe=James.pe, James.Rej=James.Rej,

FBI.peA=FBI.peA, FBI.peB=FBI.peB,

FBI.peC=FBI.peC, FBI.RejA=FBI.RejA,

FBI.RejB=FBI.RejB, FBI.RejC=FBI.RejC)

##################

## Write Output ##

##################

write.csv(Case1.0, "Case1.0.csv")

B.2 Sample Size and Power

The following two sections provide R code used to create Figures 1.2 and 1.3,

respectively

2.2.1 Over DK Response Rates

######################################################################

# Sample Size & Power Simulation #

######################################################################

# Read in functions

source("jack.FBI.R")
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# Global parameters

its = 1000

N = c(10,50,100,200,500,750,1000)

##################

## DK = 0%, k=3 ##

##################

# Set seed

set.seed(12345)

# Multinomial probabilities

pA = c(1/3,1/3,1/3,0)

pB = c(.1,.8,.1,0)

pC = c(.4,.4,.2,0)

# Higher level simulation objects

Power = matrix(nrow=3,ncol=length(N))

# Simulation

for(j in 1:length(N)) {

# Lower level simulation objects

FBI.RejA = FBI.RejB = FBI.RejC = c()

for(i in 1:its) {

# Simulate data

A = t(rmultinom(1,N[j],pA))

B = t(rmultinom(1,N[j],pB))

C = t(rmultinom(1,N[j],pC))

DatMat = rbind(A,B,C)

111



# FBI

fbi= FBI(DatMat)

# Save FBI results

FBI.RejA[i] = fbi$Reject[1]

FBI.RejB[i] = fbi$Reject[2]

FBI.RejC[i] = fbi$Reject[3]

}

Power[,j] = c(1-mean(FBI.RejA), mean(FBI.RejB), mean(FBI.RejC))

}

# Create data frame

SS.0 = as.data.frame(Power,row.names=c(’R’,’U’,’O’))

###################

## DK = 25%, k=3 ##

###################

# Set seed

set.seed(12345)

# Multinomial probabilities

pA = c(1/4,1/4,1/4,1/4)

pB = c(.075,.6,.075,.25)

pC = c(.3,.3,.15,.25)

# Higher level simulation objects

Power = matrix(nrow=3,ncol=length(N))
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# Simulation

for(j in 1:length(N)) {

# Lower level simulation objects

FBI.RejA = FBI.RejB = FBI.RejC = c()

for(i in 1:its) {

# Simulate data

A = t(rmultinom(1,N[j],pA))

B = t(rmultinom(1,N[j],pB))

C = t(rmultinom(1,N[j],pC))

DatMat = rbind(A,B,C)

# FBI

fbi= FBI(DatMat)

# Save FBI results

FBI.RejA[i] = fbi$Reject[1]

FBI.RejB[i] = fbi$Reject[2]

FBI.RejC[i] = fbi$Reject[3]

}

Power[,j] = c(1-mean(FBI.RejA), mean(FBI.RejB), mean(FBI.RejC))

}

# Create data frame

SS.25 = data.frame(Power,row.names=c(’R’,’U’,’O’))

###################
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## DK = 70%, k=3 ##

###################

# Set seed

set.seed(12345)

# Multinomial probabilities

pA = c(.1,.1,.1,.7)

pB = c(.03,.24,.03,.7)

pC = c(.12,.12,.06,.7)

# Higher level simulation objects

Power = matrix(nrow=3,ncol=length(N))

# Simulation

for(j in 1:length(N)) {

# Lower level simulation objects

FBI.RejA = FBI.RejB = FBI.RejC = c()

for(i in 1:its) {

# Simulate data

A = t(rmultinom(1,N[j],pA))

B = t(rmultinom(1,N[j],pB))

C = t(rmultinom(1,N[j],pC))

DatMat = rbind(A,B,C)

# FBI

fbi= FBI(DatMat)
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# Save FBI results

FBI.RejA[i] = fbi$Reject[1]

FBI.RejB[i] = fbi$Reject[2]

FBI.RejC[i] = fbi$Reject[3]

}

Power[,j] = c(1-mean(FBI.RejA), mean(FBI.RejB), mean(FBI.RejC))

}

# Create data frame

SS.70 = data.frame(Power,row.names=c(’R’,’U’,’O’))

#####################################################

## Create Graphics ##

#####################################################

# Global plotting parameters

colA = "red"

colB = "blue"

colC = "green"

ltyA = 1

ltyB = 2

ltyC = 3

lwd = 2

# Plot: Power vs. Sample Size by %DK

par(mfrow=c(2,2))

plot(N,SS.0[1,],main="0% DK",xlab="Subjects per Arm",ylab="Power",

ylim=c(0,1),xlim=c(0,1000),’l’,col=colA,lwd=lwd,xaxt=’n’)

axis(1,at=N)
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lines(N, SS.0[2,], col=colB, lty=ltyB, lwd=lwd)

lines(N, SS.0[3,], col=colC, lty=ltyC, lwd=lwd)

plot(N,SS.25[1,],main="25% DK",xlab="Subjects per Arm",ylab="Power",

ylim=c(0,1),xlim=c(0,1000),’l’,col=colA,lwd=lwd,xaxt=’n’)

axis(1,at=N)

lines(N, SS.25[2,], col=colB, lty=ltyB, lwd=lwd)

lines(N, SS.25[3,], col=colC, lty=ltyC, lwd=lwd)

plot(N,SS.70[1,],main="70% DK",xlab="Subjects per Arm",ylab="Power",

ylim=c(0,1),xlim=c(0,1000),’l’,col=colA,lwd=lwd,xaxt=’n’)

axis(1,at=N)

lines(N, SS.70[2,], col=colB, lty=ltyB, lwd=lwd)

lines(N, SS.70[3,], col=colC, lty=ltyC, lwd=lwd)

frame()

legend(0,1,c("Random","Unblinded","Opposite"),col=c(colA,colB,colC),

lty=c(ltyA,ltyB,ltyC),lwd=lwd)

2.2.2 Over Number of Trial Arms

######################################################################

# Sample Size & Power Simulation #

######################################################################

# Read in functions

source("jack.FBI.R")

# Global parameters

its = 1000

N = c(10,50,100,200,500,750,1000)

###################

## DK = 70%, k=3 ##
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###################

# Set seed

set.seed(12345)

# Multinomial probabilities

pA = c(.1,.1,.1,.7)

pB = c(.03,.24,.03,.7)

pC = c(.12,.12,.06,.7)

# Higher level simulation objects

Power = matrix(nrow=3,ncol=length(N))

# Simulation

for(j in 1:length(N)) {

# Lower level simulation objects

FBI.RejA = FBI.RejB = FBI.RejC = c()

for(i in 1:its) {

# Simulate data

A = t(rmultinom(1,N[j],pA))

B = t(rmultinom(1,N[j],pB))

C = t(rmultinom(1,N[j],pC))

DatMat = rbind(A,B,C)

# FBI

fbi= FBI(DatMat)

# Save FBI results

FBI.RejA[i] = fbi$Reject[1]
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FBI.RejB[i] = fbi$Reject[2]

FBI.RejC[i] = fbi$Reject[3]

}

Power[,j] = c(1-mean(FBI.RejA), mean(FBI.RejB), mean(FBI.RejC))

}

# Create data frame

SS.70 = data.frame(Power,row.names=c(’R’,’U’,’O’))

###################

## DK = 70%, k=4 ##

###################

# Set seed

set.seed(12345)

# Multinomial probabilities

pA = c(.3/4,.3/4,.3/4,.3/4,.7)

pB = c(.02,.24,.02,.02,.7)

pC = c(.08,.08,.06,.08,.7)

# Higher level simulation objects

Power = matrix(nrow=3,ncol=length(N))

# Simulation

for(j in 1:length(N)) {

# Lower level simulation objects

FBI.RejA = FBI.RejB = FBI.RejC = c()
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for(i in 1:its) {

# Simulate data

A = t(rmultinom(1,N[j],pA))

B = t(rmultinom(1,N[j],pB))

C = t(rmultinom(1,N[j],pC))

DatMat = rbind(A,B,C,A)

# FBI

fbi= FBI(DatMat)

# Save FBI results

FBI.RejA[i] = fbi$Reject[1]

FBI.RejB[i] = fbi$Reject[2]

FBI.RejC[i] = fbi$Reject[3]

}

Power[,j] = c(1-mean(FBI.RejA), mean(FBI.RejB), mean(FBI.RejC))

}

# Create data frame

SS.70b = data.frame(Power,row.names=c(’R’,’U’,’O’))

##########################

## DK = 70%, k=5 (ruorr)##

##########################

# Set seed

set.seed(12345)
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# Multinomial probabilities

pA = c(.3/5,.3/5,.3/5,.3/5,.3/5,.7)

pB = c(.06/4,.24,.06/4,.06/4,.06/4,.7)

pC = c(.06,.06,.06,.06,.06,.7)

# Higher level simulation objects

Power = matrix(nrow=3,ncol=length(N))

# Simulation

for(j in 1:length(N)) {

# Lower level simulation objects

FBI.RejA = FBI.RejB = FBI.RejC = c()

for(i in 1:its) {

# Simulate data

A = t(rmultinom(1,N[j],pA))

B = t(rmultinom(1,N[j],pB))

C = t(rmultinom(1,N[j],pC))

DatMat = rbind(A,B,C,A,A)

# FBI

fbi= FBI(DatMat)

# Save FBI results

FBI.RejA[i] = fbi$Reject[1]

FBI.RejB[i] = fbi$Reject[2]

FBI.RejC[i] = fbi$Reject[3]

}
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Power[,j] = c(1-mean(FBI.RejA), mean(FBI.RejB), mean(FBI.RejC))

}

# Create data frame

SS.70c = data.frame(Power,row.names=c(’R’,’U’,’O’))

#####################################################

## Create Graphics ##

#####################################################

# Global plotting parameters

colA = "red"

colB = "blue"

colC = "green"

ltyA = 1

ltyB = 2

ltyC = 3

lwd = 2

# Plot: Power vs. Sample Size by k

par(mfrow=c(2,2))

plot(N,SS.70[1,],main="3 Arms",xlab="Subjects per Arm",ylab="Power",

ylim=c(0,1),xlim=c(0,1000),’l’,col=colA,lwd=lwd,xaxt=’n’)

axis(1,at=N)

lines(N, SS.70[2,], col=colB, lty=ltyB, lwd=lwd)

lines(N, SS.70[3,], col=colC, lty=ltyC, lwd=lwd)

plot(N,SS.70b[1,],main="4 Arms",xlab="Subjects per Arm",ylab="Power",

ylim=c(0,1),xlim=c(0,1000),’l’,col=colA,lwd=lwd,xaxt=’n’)

axis(1,at=N)
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lines(N, SS.70b[2,], col=colB, lty=ltyB, lwd=lwd)

lines(N, SS.70b[3,], col=colC, lty=ltyC, lwd=lwd)

plot(N,SS.70c[1,],main="5 Arms",xlab="Subjects per Arm",ylab="Power",

ylim=c(0,1),xlim=c(0,1000),’l’,col=colA,lwd=lwd,xaxt=’n’)

axis(1,at=N)

lines(N, SS.70c[2,], col=colB, lty=ltyB, lwd=lwd)

lines(N, SS.70c[3,], col=colC, lty=ltyC, lwd=lwd)

frame()

legend(0,1,c("Random","Unblinded","Opposite"),col=c(colA,colB,colC),

lty=c(ltyA,ltyB,ltyC),lwd=lwd)

B.3 Distribution of FBIi

Figures 1.1, 1.4 and 1.5 plot simulated values of FBIi for the three blinding

scenarios (blinded, unblinded, reverse unblinded) across different levels of percent-

DK responses for k = 3, 4 and 5 trial arms, respectively. The code below was used

to create Figure 1.1. The code to recreate the other figures is similar, with only

the multinomial probabilities changed to accommodate more trial arms. (Note: to

generate the data, use the code in Appendix 2.2.1.)

####################################################

## Create graphics ##

####################################################

# Global plotting params

f1 = 2 ; c1 = 1.3

# Mean (SE) labels

x11 = bquote(.(pe3.0[1])~" ("~.(se3.0[1])~")")

x12 = bquote(.(pe3.25[1])~" ("~.(se3.25[1])~")")

x13 = bquote(.(pe3.70[1])~" ("~.(se3.70[1])~")")

x21 = bquote(.(pe3.0[2])~" ("~.(se3.0[2])~")")

122



x22 = bquote(.(pe3.25[2])~" ("~.(se3.25[2])~")")

x23 = bquote(.(pe3.70[2])~" ("~.(se3.70[2])~")")

x31 = bquote(.(pe3.0[3])~" ("~.(se3.0[3])~")")

x32 = bquote(.(pe3.25[3])~" ("~.(se3.25[3])~")")

x33 = bquote(.(pe3.70[3])~" ("~.(se3.70[3])~")")

# Histogram matrix

par(mfrow=c(3,3),oma=c(0,0,0,0)+0.1,mar=c(4,5,1,1)+0.1)

hist(SS.0[,1],ylab="Random",,main="0% DK",xlim=c(-.5,1),

font.lab=f1,cex.lab=c1,xlab=x11)

hist(SS.25[,1],ylab="",,main="25% DK",xlim=c(-.5,1),cex.lab=c1,xlab=x12)

hist(SS.70[,1],ylab="",,main="70% DK",xlim=c(-.5,1),cex.lab=c1,xlab=x12)

hist(SS.0[,2],ylab="Unblinded",,main="",xlim=c(-.5,1),

font.lab=f1,cex.lab=c1,xlab=x21)

hist(SS.25[,2],ylab="",,main="",xlim=c(-.5,1),cex.lab=c1,xlab=x22)

hist(SS.70[,2],ylab="",,main="",xlim=c(-.5,1),cex.lab=c1,xlab=x23)

hist(SS.0[,3],ylab="Opposite",,main="",xlim=c(-.5,1),

font.lab=f1,cex.lab=c1,xlab=x31)

hist(SS.25[,3],ylab="",,main="",xlim=c(-.5,1),cex.lab=c1,xlab=x32)

hist(SS.70[,3],ylab="",,main="",xlim=c(-.5,1),cex.lab=c1,xlab=x32)
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APPENDIX C

R2WinBUGS Code for Chapter 2 Simulations

C.1 Two Study Arms

3.1.1 WinBUGS Script

model;

{

# Dirichlet prior on response probabilities

p1[1:3]~ddirch(alpha1[])

p2[1:3]~ddirch(alpha2[])

# Likelihood of response probabilities

y1[1:3]~dmulti(p1[1:3],n1)

y2[1:3]~dmulti(p2[1:3],n2)

# FBIi statistics for each arm (k=2)

FBI1<-(p1[1]-p1[2])

FBI2<-(p2[2]-p2[1])

# Proportion of DK responses

pDk<-(p1[3]*n1+p2[3]*n2)/N

# Weighted proportion of observed guesses

pDo<-(w1[1]*p1[1]*n1/N+w2[1]*p2[1]*n2/N+

w1[2]*p1[2]*n1/N+w2[2]*p2[2]*n2/N)/(1-pDk)

# Row proportions
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p1.<-(p1[1]*n1+p2[1]*n2)/N

p2.<-(p1[2]*n1+p2[2]*n2)/N

# Column proportions

p.1<-(p1[1]*n1+p1[2]*n1)/N

p.2<-(p2[1]*n2+p2[2]*n2)/N

# Weighted proportion of expected guesses

pDe<-(w1[1]*p1.*p.1+w2[1]*p1.*p.2+

w1[2]*p2.*p.1+w2[2]*p2.*p.2)/((1-pDk)*(1-pDk))

# Kappa-statistic variant

kD<-(pDo-pDe)/pDe

# James’s BI

BI<-1/2*(1+pDk+(1-pDk)*kD)

}

list(alpha1 = c(1, 1, 1), alpha2 = c(1, 1, 1),

y1=c(82, 25, 170),

y2=c(27, 29, 83),

n1=277, n2=139, N=416,

w1=c(0, .5, 1),

w2=c(.5, 0, 1))

3.1.2 R2WinBUGS Program

######################################################################

# CASE 1: rr #

######################################################################
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# Global parameters

its = 1000

alpha1 = alpha2 = c(1,1,1)

n1 = n2 = 250

w1 = c(0,.5,1)

w2 = c(.5,0,1)

N = n1+n2

#############

## DK = 0% ##

#############

# Set seed

set.seed(11100)

# Simulation objects (posterior point estimates & rejection vectors)

FBI1.post = FBI2.post = BI.post = c()

FBI1.rej = FBI2.rej = BI.rej = c()

# BUGS lists

params = list("BI","FBI1","FBI2")

data = list("alpha1","alpha2","y1","y2",

"n1","n2","N","w1","w2")

inits = list(p1=rep(1/3,3),p2=rep(1/3,3))

# Multinomial probabilities

pA = c(50,50,0)

pB = c(50,50,0)

for(i in 1:its){
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# Simulate data

y1 = as.vector(rmultinom(1,n1,pA))

y2 = as.vector(rmultinom(1,n2,pB))

# BUGS simulation

sims = bugs(

data=data,inits=list(inits),

parameters.to.save=params,

model.file="computing_BIs.txt",

n.chains=1,n.burnin=2000,n.iter=12000,n.thin=1,

DIC=FALSE)

Post = sims$sims.matrix

# Save posterior means

BI.post[i] = mean(Post[,1])

FBI1.post[i] = mean(Post[,2])

FBI2.post[i] = mean(Post[,3])

# Save rejection indicator

if(quantile(Post[,1],.95) < 0.5) {BI.rej[i] = 1

} else {BI.rej[i] = 0}

if(quantile(Post[,2],.025)<0 & 0<quantile(Post[,2],.975)) {

FBI1.rej[i] = 0 } else {FBI1.rej[i] = 1}

if(quantile(Post[,3],.025)<0 & 0<quantile(Post[,3],.975)) {

FBI2.rej[i] = 0 } else {FBI2.rej[i] = 1}

}

# List output

case1.0.bayes2 = data.frame(BI.post=BI.post,BI.rej=BI.rej,
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FBI1.post=FBI1.post,FBI1.rej=FBI1.rej,

FBI2.post=FBI2.post,FBI2.rej=FBI2.rej)

C.2 Three Study Arms

3.2.1 WinBUGS Script

model;

{

# Dirichlet prior on response probabilities

p1[1:4]~ddirch(alpha1[])

p2[1:4]~ddirch(alpha2[])

p3[1:4]~ddirch(alpha3[])

# Likelihood of response probabilities

y1[1:4]~dmulti(p1[1:4],n1)

y2[1:4]~dmulti(p2[1:4],n2)

y3[1:4]~dmulti(p3[1:4],n3)

# FBIi statistics for each arm (k=3)

FBI1<-(2*p1[1]-(p1[2]+p1[3]))/2

FBI2<-(2*p2[2]-(p2[1]+p2[3]))/2

FBI3<-(2*p3[3]-(p3[1]+p3[2]))/2

# Proportion of DK responses

pDk<-(p1[4]*n1+p2[4]*n2+p3[4]*n3)/N

# Weighted proportion of observed guesses

pDo<-(w1[1]*p1[1]*n1/N+w2[1]*p2[1]*n2/N+w3[1]*p3[1]*n3/N+

w1[2]*p1[2]*n1/N+w2[2]*p2[2]*n2/N+w3[2]*p3[2]*n3/N+

w1[3]*p1[3]*n1/N+w2[3]*p2[3]*n2/N+w3[3]*p3[3]*n3/N)/(1-pDk)
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# Row proportions

p1.<-(p1[1]*n1+p2[1]*n2+p3[1]*n3)/N

p2.<-(p1[2]*n1+p2[2]*n2+p3[2]*n3)/N

p3.<-(p1[3]*n1+p2[3]*n2+p3[3]*n3)/N

# Column proportions

p.1<-(p1[1]*n1+p1[2]*n1+p1[3]*n1)/N

p.2<-(p2[1]*n2+p2[2]*n2+p2[3]*n2)/N

p.3<-(p3[1]*n3+p3[2]*n3+p3[3]*n3)/N

# Weighted proportion of expected guesses

pDe<-(w1[1]*p1.*p.1+w2[1]*p1.*p.2+w3[1]*p1.*p.3+

w1[2]*p2.*p.1+w2[2]*p2.*p.2+w3[2]*p2.*p.3+

w1[3]*p3.*p.1+w2[3]*p3.*p.2+w3[3]*p3.*p.3)/((1-pDk)*(1-pDk))

# Kappa-statistic variant

kD<-(pDo-pDe)/pDe

# James’s BI

BI<-1/2*(1+pDk+(1-pDk)*kD)

}

list(alpha1 = c(1, 1, 1, 1),

alpha2 = c(1, 1, 1, 1),

alpha3 = c(1, 1, 1, 1),

y1=c(41, 66, 30, 44),

y2=c(27, 72, 24, 51),

y3=c(22, 36, 64, 52),
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n1=181, n2=174, n3=174, N=529,

w1=c(0, .5, .75, 1),

w2=c(.5, 0, .75, 1),

w3=c(.75, .75, 0, 1))

3.2.2 R2WinBUGS Script

######################################################################

# CASE 1: rrr #

######################################################################

# Global parameters

its = 1000

alpha1 = alpha2 = alpha3 = c(1,1,1,1)

n1 = n2 = n3 = 200

w1 = c(0,.5,.75,1)

w2 = c(.5,0,.75,1)

w3 = c(.75,.75,0,1) N = n1+n2+n3

#############

## DK = 0% ##

#############

# Set seed

set.seed(11100)

# Simulation objects (posterior point estimates & rejection vectors)

FBI1.post = FBI2.post = FBI3.post = BI.post = c()

FBI1.rej = FBI2.rej = FBI3.rej = BI.rej = c()

# BUGS lists

params = list("BI","FBI1","FBI2","FBI3")
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data = list("alpha1","alpha2","alpha3","y1","y2","y3",

"n1","n2","n3","N","w1","w2","w3")

inits = list(p1=c(.25,.25,.25,.25),p2=c(.25,.25,.25,.25),

p3=c(.25,.25,.25,.25))

# Multinomial probabilities

pA = c(1/3,1/3,1/3,0)

pB = c(1/3,1/3,1/3,0)

pC = c(1/3,1/3,1/3,0)

for(i in 1:its){

# Simulate data

y1 = as.vector(rmultinom(1,n1,pA))

y2 = as.vector(rmultinom(1,n2,pB))

y3 = as.vector(rmultinom(1,n3,pC))

# BUGS simulation

sims = bugs(

data=data,inits=list(inits),

parameters.to.save=params,

model.file="computing_BIs.txt",

n.chains=1,n.burnin=2000,n.iter=12000,n.thin=1,

DIC=FALSE)

Post = sims$sims.matrix

# Save posterior means

BI.post[i] = mean(Post[,1])
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FBI1.post[i] = mean(Post[,2])

FBI2.post[i] = mean(Post[,3])

FBI3.post[i] = mean(Post[,4])

# Save rejection indicator

if(quantile(Post[,1],.95) < 0.5) {BI.rej[i] = 1

} else {BI.rej[i] = 0}

if(quantile(Post[,2],.025)<0 & 0<quantile(Post[,2],.975)) {

FBI1.rej[i] = 0 } else {FBI1.rej[i] = 1}

if(quantile(Post[,3],.025)<0 & 0<quantile(Post[,3],.975)) {

FBI2.rej[i] = 0 } else {FBI2.rej[i] = 1}

if(quantile(Post[,4],.025)<0 & 0<quantile(Post[,4],.975)) {

FBI3.rej[i] = 0 } else {FBI3.rej[i] = 1}

}

# List output

case1.0.bayes3 = data.frame(BI.post=BI.post,BI.rej=BI.rej,

FBI1.post=FBI1.post,FBI1.rej=FBI1.rej,

FBI2.post=FBI2.post,FBI2.rej=FBI2.rej,

FBI3.post=FBI3.post,FBI3.rej=FBI3.rej)

132



APPENDIX D

Convergence Plots for Chapter 2 Simulations

To show convergence was achieved and that thinning was unnecessary, we pro-

vide descriptive plots from WinBUGS after random iterations from the simulation

study presented in Section ####. We have chosen to use Case 6 from Table ####

so that we may consider each of the blinding scenarios considered (random, unblinded,

opposite guessing). Thus, FBI1 represents random responses, FBI2 represents an un-

blinded group, and FBI3 represents a reverse unblinded group. To stay consistent

with the simulation work presented in this research, we consider Case 6 for each of

the three levels of DK responses reported in Section ####. We use the same sim-

ulation parameters as in Section ####: thinning set to 1, a burn-in of 2, 000 and

10, 000 updates. Plots provided include: dynamic trace, time series, kernel density,

and autocorrelation function.

D.1 Low DK Response Rate

Figure D.1: Dynamic Trace (DK= 0%)
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Figure D.2: Time Series (DK= 0%)
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Figure D.3: Kernel Density (DK= 0%)

Figure D.4: Autocorrelation Function (DK= 0%)
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D.2 Moderate DK Response Rate

Figure D.5: Dynamic Trace (DK= 25%)
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Figure D.6: Time Series (DK= 25%)
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Figure D.7: Kernel Density (DK= 25%)

Figure D.8: Autocorrelation Function (DK= 25%)
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D.3 High DK Response Rate

Figure D.9: Dynamic Trace (DK= 70%)
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Figure D.10: Time Series (DK= 70%)
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Figure D.11: Kernel Density (DK= 70%)

Figure D.12: Autocorrelation Function (DK= 70%)
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APPENDIX E

Supplemental Material

E.1 Bang’s Published Simulation Results

Table E.1: Reproduced Table of Simulation Results (Bang 2004)
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E.2 Bang’s Simulations Reproduced

Table E.2: Simulation Results from Bang Cases
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E.3 Section 2.2.1 Simulation Results without Multiple Comparisons Correction

Table E.3: Bayes Simulation Results for k = 2 Arms
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E.4 Section 1.10.1 Simulation Results without Multiple Comparisons Correction

Table E.4: Simulation Results Without Multiple Comparison Correction
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Table E.4: Simulation Results Without Multiple Comparison Correction (cont’d)
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E.5 Section 2.2.2 Simulation Results without Multiple Comparisons Correction

Table E.5: Bayes Simulation Results for k = 3 Arms
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Table E.5: Bayes Simulation Results for k = 3 Arms (cont’d)
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