
 

 
 

 
 
 
 
 
 
 
 

ABSTRACT 
 

Integration of Potential Field Theory and Proportional Navigation Theory to 
Autonomously Guide an Unmanned Aerial Vehicle 

 
Patrick L. Friudenberg, M.S.E.C.E. 

 
Mentor: Scott Koziol, Ph.D. 

 
 
 Industrial robotics, military, surveying, and delivery applications have laid a 
foundation for research into full autonomy of machines, including Unmanned Aerial 
Vehicles (UAV). This thesis supports this research by surveying the methods used to 
guide UAVs, and developing a new method by combining potential fields, typically used 
for obstacle avoidance, and proportional navigation, a popular missile guidance 
algorithm. The new algorithm modifies the old algorithms to allow a UAV to track an 
optimal path to, and rendezvous with, a moving target while avoiding obstacles in its 
path. A model for a quad rotor style UAV is developed and controlled using feedback 
linearization. A simulator is built for deploying a number of environments and taking 
performance measurements. Aspects of the hardware implementation are introduced. 
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 CHAPTER ONE
Introduction 

 An unmanned aerial system (UAS) is an unmanned aircraft and all of the 
associated support equipment, control station, data links, telemetry, communications, and 
navigation equipment, etc. necessary to operate an unmanned aircraft. A subsystem 
within the UAS is the aerial robot itself, referred to as an Unmanned Aerial Vehicle 
(UAV). Controlling the UAV may be done by remote human control, or it may be by 
algorithms that give it full or partial autonomy. As of July, 2015, there were 
approximately 50 organizations developing and producing approximately 155 unmanned 
aircraft designs for use in military, commercial, and recreational applications. The most 
common uses are military applications for surveillance and weapon delivery in Iraq and 
Afghanistan, and on the Mexico/US Border [1]. Commercial use is somewhat limited due 
to FAA regulations concerning shared airspace with commercial airliners, but some 
exceptions are given when the need for a UAS is apparent. Such is the case with BP Oil 
for use in surveying the vast landscape of Alaska for drilling oil [1]. Recreational and 
educational aircraft are supplied by companies such as 3D Robotics, from whom the test 
aircraft for our project was acquired. 
 The International Aerial Robotics Competition (IARC) is a self-proclaimed 
"technology sport" whose motivation is best represented by the competition's stated 
purpose: 
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The primary purpose of the International Aerial Robotics Competition 
(IARC) has been to “move the state-of-the-art in aerial robotics forward” 
through the creation of significant and useful mission challenges that are 
'impossible' at the time they are proposed, with the idea that when the 
aerial robotic behaviors called for in the mission are eventually 
demonstrated, the technology will have been advanced for the benefit of 
the world. [2] 

The competition is international with venues held in the Unites States and China. 
Adhering to their decree of only proposing challenges that are impossible at the time of 
proposal, the IARC presents mission challenges that require the use of new technologies 
to meet difficult specifications such as requiring the vehicle to act completely 
autonomously, without any human interference. On average a challenge requires over 
three years’ time to be completed, meaning that in twenty two years’ time, only six 
missions have been successfully completed. The first round of mission seven was 
completed in August of 2014, a picture of which can be seen in Figure 1.1. To provide 
incentive for institutions to participate, the organization offers significant cash rewards 
along with compelling accolades such as journal publications. 

Early in the life of the competition, GPS technology was fairly new to the 
marketplace, and therefore, missions one and two consisted of using GPS technology 
without the use of inertial systems and differential GPS technology, respectively, to 
perform object retrieval and deposit. Mission three advanced the field of computer vision 
by having a UAV perform a search and rescue mission that required the UAV to 
differentiate between injured survivors and the dead while avoiding damaging obstacles 
such as fire and water geysers in a cluttered, smoke obscured environment. The ability to 
fly long distances and find a specific building, in a specific village, and deposit a sub-
robot was demonstrated in mission four. Mission five and six extended and refined 
mission four by having the sub-robot use simultaneous localization and mapping (SLAM) 
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techniques to map the unknown interior of the building, and demonstrate the ability to 
read and interpret printed directions on the walls to locate a specific room, retrieve a 
specified object from the room, and carry it from the building. 

 
Figure 1.1 IARC Venues 

 Mission 7 proposes a challenge which moves away from stationary scenarios to a 
dynamic field for both obstacles that the UAV must avoid, and friendly robots with 
which the UAV must interact. The three main objectives of the mission are to 
demonstrate interaction between UAV and moving objects, navigate in an environment 
without the use of GPS or SLAM techniques, and interaction between competing 
autonomous aerial robots[2]. 
 As depicted in Figure 1.2(a), mission seven is to be held in a twenty meter by 
twenty meter arena with no major static objects available for assistance in spatial 
awareness for the aerial robot via a common SLAM algorithm. At the heart of the 
mission, there are a total of ten iRobots that are positioned in a circle facing outwards, as 
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depicted in Figure 1.2(c). The idea is to get as many of the iRobots to one end of the 
arena as possible within the allotted ten minute time frame. Once time starts, the iRobots 
will move in a path that can change up to twenty degrees clockwise every five seconds, 
and they will reverse direction every twenty seconds.  

 
Figure 1.2 Elements of IARC Mission Seven 

 The ability of the UAV to control one of the iRobots is obtained through the use 
of magnets. A magnet is placed on the top of the iRobot that triggers it to change its path 
by forty five degrees clockwise whenever the magnet is touched by a second magnet 
fixed to the aerial robot. Control of the iRobot can also be obtained by bumping its front 
bumper which will cause it to reverse directions. This must be done all while insuring no 

(a) IARC arena (b) IARC obstacles 

(c) IARC iRobots 
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contact is made with "obstacle robots", Figure 1.2(b), moving in a circular path around 
the arena. For each iRobot that makes it to the appointed side of the arena, the team will 
get two thousand points, while losing one thousand points for every iRobot that crosses 
any of the three other arena boundaries. These points, combined with other points for 
things such as workmanship, a journal paper, and team t-shirts, are totaled to determine 
the winning teams. The winning teams will receive a thirty thousand dollar cash reward 
and a chance to enter the second part of mission 7, mission 7b. The judges will determine 
who the "best of the best" is in 7a and grant an invitation to them to participate in 7b. 7b 
is the same as 7a except for two aerial robots will go head to head in the same run to try 
and get as many of the iRobots to their respective ends of the arena. The invitation to 7b 
is not based solely on points obtained in 7a, but also on the judge’s opinions of the 
UAV’s obstacle avoidance capabilities. This requirement is incorporated to keep the two 
team's aerial robots from colliding while running the mission at the same time. Even if a 
team is not invited to 7b, any team's robot that demonstrates the skills required to make it 
to 7b is awarded a cash prize of a thousand dollars. An award amount for winning 7b is 
not specified, however the competition does state that it will be larger than the amount 
awarded for 7a, making the total a team can win over sixty thousand dollars [2]. 
  A quad rotor style of UAV has been chosen to perform at the IARC due to its 
ability to hover, and the ease of housing the physical apparatuses to prevent damage 
caused by a collision in a cluttered environment. In the next section the general structure 
of a UAS system is covered with respect to a quad rotor. The particular UAV chosen, 3D 
Robotics’ X8, is covered on page 69 in the section 3D Robotic’s X8. On page 24, the 
section Potential Fields-Proportional Navigation Guidance Law develops an algorithm 
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for making navigation decisions in real time, which is the focus of this thesis. Simulating 
the Algorithm on page 56 describes techniques used to simulate the environment for 
testing the algorithm, and the results are discussed on page 79. 

UAS Subsystem Structure 
General paradigms describing the chain of processes an autonomous robot 

experiences or performs have been developed. The inception of pick-and-place industrial 
robotics fostered the development of the “sense-think-act” paradigm for autonomous 
robotic movements. With the development of multi-robot tasks and superior telemetry 
systems, the appendage of communication to the “sense-think-act” paradigm has de facto 
been added according to [3]. In this thesis, the think part of the paradigm is split into two 
categories, mission level decisions and navigation decisions. This paradigm is related to 
nature in the sense that biological creatures tend to develop strategy in order to 
accomplish a particular task, but basic navigation from one point to another through most 
environments comes rather quickly without much thought. In the case of the IARC, the 
UAS’s decision algorithm to determine which iRobot will be the optimal agent to control 
to complete the mission is separate from the algorithm used to cautiously navigate to that 
intended iRobot through an obstacle filled environment. The acting portion of the 
paradigm is encapsulated in the control structure of the UAS. These four subsystems, 
Sensors, Mission Level Decisions, Navigation Decisions, and the Control Structure, 
makeup the architect of the UAV. A diagram of the subsystems is shown in Figure 1.3. 
The World block represents everything in the physical area that the aerial robot may 
encounter during a competition including the arena itself, the ten iRobot robots, four 
iRobots with tall apparatuses fixed to them to serve as obstacles, and any markings on the 
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arena floor, again as depicted in Figure 1.2. As we will see later, these items will have to 
be modeled, simulated, and analyzed before actually placing the algorithms onto the 
hardware of the aerial robot.  

 
Figure 1.3 Planning Structure for Aerial Robot 

Sensors 
Robotic sensors are typically classified as either contact or noncontact sensors. 

Contact sensors include devices that measure touch, proximity, and slip. Noncontact 
sensors are comprised of optical, magnetic, capacitive, resistive, ultrasound and air 
pressure [4]. The capabilities of sensors have reached a scope far beyond that of the 
typical senses described in biological creatures: touch, sight, smell, hearing, and taste.  
For example, robotic sensors can detect electromagnetic waves that are outside the 
frequency range that humans are able to detect with eyes or ears. To further accentuate 
the capabilities of robotic sensors, the idea of sight can be extended beyond just a typical 
optical sensor that works like an eye, to sensors such as radar, which is capable of seeing 
through walls, or infrared, which is capable of seeing temperature. 
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To give a robot full autonomy the sensor system may be thought of as a system of 
three subsystems: sensing for the purpose of the mission, sensing to survive in the 
mission environment, and sensing one’s own configuration [5]. The aerial robot can 
approximate its own configuration, location and orientation, through the use of an Inertial 
Measurement Unit (IMU). An IMU typically consists of three components: a 3 axis 
gyroscope to measure rotational acceleration, a 3 axis accelerometer for measuring linear 
acceleration, and a magnetometer to assist with calibration of the unit. These components 
use vibrations caused by acceleration of the robot to determine the magnitude and 
direction of the acceleration [6]. Taking into account the initial position and velocity of 
the robot and integrating the measured accelerations gives the robot a since of where it is 
and how fast it is going. This method, known as 'dead reckoning', has inherent issues due 
to the error of integral calculations. Any error in the UAV’s position grows linearly 
relative to the initial velocity error estimate, quadratically with uncorrected bias, and at a 
cubic rate with attitude error [7]. 

To give an accurate position and velocity, the use of a device that can give a 
measurement based on features that are external to the UAV is usually required. 
Commonly sonar will be used to determine the robot's altitude. Sonar, short for Sound 
Navigation and Ranging, uses sound waves to determine the altitude of the aerial robot 
by transmitting an acoustic signal toward the earth and then measuring the time it takes to 
receive a reflected "echo"[8]. Special algorithms are required to overcome the inherent 
limitation of the sonar that manifests itself when the aerial robot passes over a large 
object that may trigger the sonar to give an altitude reading that is smaller than the robot's 
actual altitude. Typically an aerial robot is equipped with a device that provides it with 
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some sense of sight such as a typical video camera, or radar. By detecting objects around 
the robot in successive time frames, the robot can accurately determine its position and 
speed relative to its surroundings. 

The combination of the IMU and external sensing apparatuses give the robot a 
single measurement vector that it can rely on to know its position, velocity, and 
acceleration. However, combining these measurements into a single measurement vector 
isn't easy either. Typically the IMU measurements are recorded at higher frequencies than 
the rate at which a video camera or radar can record measurements. On top of this, every 
sensor has a margin of error inherent in its measuring capabilities to begin with. To 
overcome errors the use of stochastic processes and estimation theory are used typically 
through either a Kalman Filter or Extended Kalman Filter. Typically noise in the sensor 
can be thought of as distributed normally and therefore, has a variance inherent in it. The 
basic idea of the Kalman Filter in this situation is to continually reduce the variance over 
successive measurements until the margin of error goes to zero[9]. The estimate from the 
Kalman Filter is then used as a more accurate measurement for the robot to base mission 
level decisions.  

Mission Level Decisions 
 Mission level decisions are largely application based, although work has been 
done to present some general formulation of the area. For instance, Team-Soars is an 
experiment geared toward modeling human team decision making[10]. Multi-UAV 
missions are modeled using Petri nets and Markov models in [11]. Modeling a mission 
through learning and goal-directed decision making is commonly used as seen in [12-14]. 
For successful completion of the IARC, the UAV will need to use collected sensor data to 



 

10 
 

determine the optimal iRobot to control in order to maximize the total number of iRobots 
herded to one end of the arena. For this thesis, it will be assumed that the UAV has made 
this decision and is ready to decide an optimal path to the iRobot that avoids any 
obstacles in the environment.  

Navigation Level Decisions  
 Studies for navigating a UAV through an environment are in large part based on 
localization, mapping, and path planning. The ability for a UAV to localize itself with its 
environment using visual sensors can be found in [15] and [16]. These methods use 
cameras to gather information about the environment which the UAV is in. When dealing 
with an environment that geometrically has curvature, sometimes a video camera may not 
be the best solution. [17] presents a technique for localization in a tunnel using RF signal 
fading. Coupled with localization and mapping comes the actual navigation of the UAV 
through the mapped environment. Dijkstra’s shortest path algorithm is used in [18] to 
facilitate navigation within a search and rescue scheme. Reinforcement learning coupled 
with a heuristic search algorithm is used in [19] to plan an optimal path in a construction 
environment. Limit cycles are extended beyond the limited two dimensional method into 
three dimensions in order to plan a path for a UAV in [20]. To navigate in a cluttered 
environment, an artificial potential field algorithm is used in most of literature for 
obstacle avoidance, and will be used for the obstacle avoidance component of the 
algorithm presented in this thesis. A literature review and discussion is in the introduction 
to Potential Fields-Proportional Navigation Guidance Law on page 24.  
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Control Structures 
 The control structure encompasses the algorithms required to actuate the UAV to 

a desired position or velocity determined by the Navigation Decision system. The 
complexities of the nonlinear quad rotor model and the methods to control it have been 
studied extensively. A comparison of the techniques can be found in [21]. Feedback 
linearization of the system for PID control is covered extensively in [22], [23], and [24]. 
Optimal Control techniques, including LQR and LPV, can be found in [25] and [26]. 
Adaptive control methods are applied in [27]. By far the most documented nonlinear 
control strategy used is a sliding mode approach found in [28-32]. In our simulation, a 
simple feedback linearization control scheme will be used. In this particular scheme, the 
UAV model is linearized about an operating point using a truncated Taylor series 
expansion. This linear model is used to estimate what the UAV performance will be to a 
particular set of inputs when it is close to the operating point. Then a basic PID controller 
is put in place to give actuation commands to the motors.  



 

12 
 

 CHAPTER TWO
Quad Rotor Control Structure 

 The dynamics and control of the quad rotor model were modified from the 
presentation in [23]. Their approach is based on a Y configuration quadrotor, whereas our 
quadrotor is an X configuration. This simply means that the body frame reference has 
been rotated 4/݅݌ radians about the body frame’s z axis as depicted in Figure 2.1. This 
will change the rigid body dynamics of the quad rotor which will affect the mathematical 
models used for feedback linearization. Another deviation from [23] is in our control 
structure itself. They use an attitude control inner loop with a position control outer loop. 
We will be modifying this structure to a simpler velocity control outer loop to match the 
units of our reference input from the guidance algorithm developed in Potential Fields-
Proportional Navigation Guidance Law on page 24. 

 
Figure 2.1 Rotating from Y Configuration to X Configuration 
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 Two frames of reference are used in the model, ݔ௕ , ௕ݕ ,  ௕ is the body frame ofݖ
reference where ݔ௕ is pointed in the direction that the front of the UAV is pointed, ݕ௕ is 
pointed to the left of the UAV, and ݖ௕ is pointed normal to the top plane of the UAV. 
ாݔ , ாݕ ,  ா is the earth frame of reference. We will use a state space model with a 12ݖ
dimensional state vector.  

ࢄ  = ቎
ષદ࢜࢘

቏ , rԦ = ቈ
xyz቉ , ሬԦሶ࢘ = ൥xሶݕሶ

ሶݖ
൩ , ષ = ቈ

቉ݎݍ݌ , દ = ൥
ϕ
θψ൩ (2.1) 

 
The state vector is composed of four 3 dimensional column vectors as expressed in 
Equation (2.1). The position of the UAV expressed in the world frame is noted by ݎԦ, the 
velocity expressed in the world frame by ݎԦሶ , the angular velocity expressed in the body 
frame by ષ, and the Euler angles by દ.  

Equations of Motion 
 We will develop the rigid body dynamics via Newtonian mechanics. As depicted 
in Figure 2.2, all forces created by the rotors are directed in the positive ݖ௕ direction, and 
all moments created by the rotors are in the ݔ௕ ,  ௕ plane. The only other forcesݕ
considered in this model is the force caused by gravity which will always be in the −ݖா 
direction. The equations of motion are already developed for a Y configured UAV in 
[23]. By utilizing a rotation matrix, we can adjust the equations to suit our X 
configuration. 
 We know a moment about an axis is simply the cross product of the force and the 
position vector of the force from the axis of rotation. Seen from the Y configured UAV in 
Figure 2.1, each force lay on an axis and is pointed normal to the ݔ௕ ,  ௕ plane, whichݕ
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reduces the cross product to a simple product of each force and its respective ݔ஻ or ݕ஻ 
component. 

 
Figure 2.2 Forces and Moments of the Quadrotor 

 The moment about the ݖ௕ axis is the sum of moments of the motors, M1–M4 in 
Figure 2.2. The angular acceleration is then described by  

ષሶܬ  = ቎
Fଶ)ܮ − Fସ)
Fଷ)ܮ − Fଵ)

ଵܯ) − ଶܯ + ଷܯ − (ସܯ
቏ (2.2) 

[23] 
To modify the equations to represent our X configured UAV we will use a rotation 
matrix about the ݖ axis by గ

ସ. The rotation matrix to fix the model is 

ܴெ =
ێۏ
ێێ
ۍ 1

√2
1

√2 0
− 1

√2
1

√2 0
0 0 ۑے1

ۑۑ
ې
 

To see a brief overview of rotation matrices refer to the appendix on Rotations on page 
94. Applying the rotation matrix leads to  
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 JΩሶ = R୑ ቎
L(Fଶ − Fସ)
L(Fଷ − Fଵ)

(Mଵ − Mଶ + Mଷ − Mସ)
቏ =

ێۏ
ێێ
ۍێ

1
√2 L[(Fଶ + Fଷ) − (Fଵ + Fସ)]
1

√2 L[(Fଷ + Fସ) − (Fଵ + Fଶ)]
൫(Mଵ + Mଷ) − (Mଶ + Mସ)൯ ۑے

ۑۑ
 (2.3) ېۑ

 The linear forces acting on the UAV due to the rotors are always in the ݖ௕ 
direction, therefore the rotation from the Y configuration to X configuration has no effect 
as to how the forces act on the UAV. The gravity is always with respect to the earth 
frame, therefore, the rotation has no effect on this force either.  

 ݉rԦሷ = ൥
00−݃൩ + ܴா

ێۏ
ۍێ

00
෍ ௜ܨ

௜ ۑے
 (2.4) ېۑ

[23] ܴா is a rotation matrix that transforms the accelerations in the body to accelerations in the 
earth frame. It is dependent on 3 angles, ߶, ,ߠ ߰, which represent angular rotations about 
the 3 axes in 3 successive frames of reference. These angles are called Euler angles. For 
more see the appendix Representing Frames with Euler Angles on page 96.     
 The relationship between the applied force and the angular rotor speed, ߱, is 
found to be proportional to the square of ߱. 
௜ܨ  =   ி߱௜ଶ (2.5)ܭ
[23] 
Likewise the moment produced by each rotor is found to be proportional to the square of 
the angular speed. 

௜ܯ  =  ெ߱௜ଶ (2.6)ܭ
[23] 
The dynamics of the motor speed are modeled by a first order differential equation. 
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 ሶ߱ ௜ = ݇௠௢൫߱௜௥௘௙ − ߱௜൯ (2.7) 
[23] 

StateModel 
 Substituting equations(2.5) and (2.6) into (2.3) and (2.4), and solving for the 
accelerations give us the of the pieces of our state model. 

 ષሶ = ଵିܬ

ێۏ
ێێ
ۍێ

1
√2 ி[(߱ଶଶܭܮ + ߱ଷଶ) − (߱ଵଶ + ߱ସଶ)]
1

√2 ி[(߱ଷଶܭܮ + ߱ସଶ) − (߱ଵଶ + ߱ଶଶ)]
ெ൫(߱ଵଶܭ + ߱ଷଶ) − (߱ଶଶ + ߱ସଶ)൯ ۑے

ۑۑ
 (2.8) ېۑ

 

 rԦሷ = ൥
00−݃൩ + 1

݉ ܴா
ێۏ
ۍێ

00
ிܭ ෍ ߱௜ଶ

௜ ۑے
 (2.9) ېۑ

 
To quantify the change in the Euler angles we use a relationship between the Euler angle 
rates and the body frame angular rates. 

 દሶ =
ێۏ
ێێ
1ۍ ఏݏథݏ

ܿఏ
ܿథݏఏ

ܿఏ0 ܿథ థݏ−
0 థݏ

ܿఏ
ܿథ
ܿఏ ۑے

ۑۑ
ې

ષ (2.10) 

 This relationship is developed in the appendix section Body Frame Angular Rates 
and Euler Angle Rates on page 97. Intuitively it is simple to see that if the UAV were 
rotated by 90 degrees about either x or y axis, the forces would be directed parallel to the 
face of the earth. The orientation would not provide any lift for the UAV, therefore, it 
would descend and crash. This is represented in equation (2.10) by the cosines in the 
denominator of some of the terms. If the rotation about the y axis is 90 degrees then the 
matrix will become singular. If a different order Euler angle transformations was chosen 
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to transform the body frame points to the earth frame, then the rotation about the x axis, 
߶, would be in the denominator causing singularity when the UAV is tilted 90 degrees 
about the x axis. Less intuitive may be the fact that the Euler rates are not dependent on 
the Euler angle position ߰. 

Feedback Linearization Method  
 Now that an accurate state model has been developed a control technique called 
feedback linearization will be used to create a control structure that will allow the UAV 
to accurately track a reference velocity as an input. To do this first an inner feedback loop 
will be developed to handle the attitude control of the UAV. Then an outer feedback loop 
will be developed to control the velocity of the UAV. A high level development will be 
covered in this section. If detailed steps of the algebraic calculations are desired, refer to 
the appendix Feedback Linearization on page 99. 
 Inherently a quad rotor UAV is unstable. Without constant input, and constant 
feedback control it may drift at best, or at worst completely lose control. One equilibrium 
point in the model is when ߶ = ߠ = ሶ݌ ,0 = ሶݍ = ሶݎ = 0, and ߱௜ = ߱௛. ߱௛ is the rotor 
speed with which each rotor must turn in order to keep the UAV hovering in place, ݖሷ =
0. In equation (2.9) ܴா =  the identity matrix, when all angles are zero like our ,ܫ
hovering point. Therefore, we can then conclude the following. 

 ߱௛ = ඨ݉݃
ிܭ4

 (2.11) 

We will linearize the rigid body dynamics about this point using a truncated Taylor series 
truncated at the first order terms. Then the linearized model will be coupled with a basic 
PID style of control to provide stability and controllability to the UAV. The control 
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structure contains an inner control loop that controls the attitude of the UAV and an outer 
control structure that controls the linear velocity of the UAV. For a diagram of the 
structure refer to Figure 2.3. For a detailed presentation of the truncated Taylor series 
expansion refer to the appendix Feedback Linearization on page 99. 

 
Figure 2.3 Control Structure for the UAV 

PD Attitude Control 
 For the attitude controller we want a model that uses the desired orientation of the 
UAV to send rotor speed commands to the motor dynamics of the UAV model. 
Linearizing equation (2.8) about the chosen operating point leads to the following linear 
equations. 
,ሶ(߱ଵ݌  ߱ଶ, ߱ଷ, ߱ସ) ≈ 2߱௛ܭܮி

௫௫ܬ 2√
൫(߱ଷ + ߱ଶ) − (߱ଵ + ߱ସ)൯ (2.12) 

ሶݍ  (߱ଵ, ߱ଶ, ߱ଷ, ߱ସ) ≈ 2߱௛ܭܮி
௬௬ܬ2√

൫(߱ସ + ߱ଷ) − (߱ଵ + ߱ଶ)൯ (2.13) 

,ሶ(߱ଵݎ  ߱ଶ, ߱ଷ, ߱ସ) ≈ 2߱௛ܭெ
௭௭ܬ

൫(߱ଵ + ߱ଷ) − (߱ଶ + ߱ସ)൯ (2.14) 

These equations will be used to control the rate of change of our Euler rates. To 
determine a linear relationship between the Euler angles and the body angle rates we 
apply a truncated Taylor series expansion to equation (2.10). 
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቎
߶ሶ
ሶߠ

ሶ߰ ቏ ≈ ቈ
 ቉ (2.15)ݎݍ݌

 To use equations (2.12)-(2.14) consider Figure 2.4. F1-F4 are forces from the 
rotors in the z direction (coming out of the page), and M1-M4 are the moments from each 
rotor that cause a total moment about the z axis.  

 
Figure 2.4 Top View of Forces and Moments 

 Now we consider that the sum of the motor speeds will cause a change in 
orientation of the UAV in the following manner. 

Δ߱థ = −߱ଵ + ߱ଶ + ߱ଷ − ߱ସ 
Δ߱ఏ = −߱ଵ − ߱ଶ + ߱ଷ + ߱ସ 
Δ߱ట = ߱ଵ − ߱ଶ + ߱ଷ − ߱ସ 

Δ߱థ, Δ߱ఏ , Δ߱ట should be read as the total motor speed causing a perturbation of the 
respective subscripted angle. Likewise the sum of all four motor speeds should be equal 

 



 

20 
 

to 4 times the rotor speed required to make the rotor hover, ߱௛, plus the motor speed 
causing a perturbation in the z position. 

4߱௛ + Δ߱௭ = ߱ଵ + ߱ଶ + ߱ଷ + ߱ସ 
Putting these together we get the following. 
 

ێۏ
ۍێ
4߱௛ + Δ߱௭Δ߱థΔ߱ఏΔ߱ట ۑے

ېۑ = ൦
1 1 1 1−1 1 1 −1−1 −1 1 11 −1 1 −1

൪ ൦
߱ଵ߱ଶ߱ଷ߱ସ

൪ (2.16) 

   
By inversion we are now able to get a basis for our reference inputs to the motor 
dynamics. 

 
ێۏ
ۍێ
߱ଵ௥߱ଶ௥߱ଷ௥߱ସ௥ۑے

ېۑ = 1
4 ൦

1 −1 −1 11 1 −1 −11 1 1 11 −1 1 −1
൪

ێۏ
ۍێ
4߱௛ + Δ߱௭Δ߱థΔ߱ఏΔ߱ట ۑے

 (2.17) ېۑ

  
By substituting equation (2.17) into equations (2.12)-(2.14) we get the following. 
ሶ୰ୣ୤݌  ≈ 2߱௛ܭܮி

௫௫ܬ 2√
Δωథ (2.18) 

ሶ௥௘௙ݍ  ≈ 2߱௛ܭܮி
௬௬ܬ2√

Δωఏ (2.19) 

ሶ୰ୣ୤ݎ  ≈ 2߱௛ܭெ
௭௭ܬ 

Δωట (2.20) 

 Considering equation (2.17) and equations (2.18)-(2.20) we are ready to 
implement a PD controller for the position of our Euler angles. We implement a PD 
controller to make the UAV track a reference orientation via Euler angles. 
 Δ߱థ = ݇௣,థ൫߶௥௘௙ − ߶൯ + ݇ௗ,థ൫݌௥௘௙ −  ൯݌

Δ߱ఏ = ݇௣,ఏ൫ߠ௥௘௙ − ൯ߠ + ݇ௗ,ఏ൫ݍ௥௘௙ −  ൯ݍ
Δ߱ట = ݇௣,ట൫߰௥௘௙ − ߰൯ + ݇ௗ,ట൫ݎ௥௘௙ −  ൯ݎ

(2.21) 
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,௥௘௙݌  ,௥௘௙ݍ  ௥௘௙ are determined by integrating equations (2.18)-(2.20). By substituting ourݎ
PD controller in   into equation   we have developed the full attitude control that takes 
reference angles, ߶௥௘௙ , ௥௘௙ߠ , ߰௥௘௙, and outputs desired motor speeds ߱ଵ௥ − ߱ସ௥. A block 
diagram of the control structure can be viewed in  Figure 2.5. Notice with this controller 
alone the altitude of the UAV will decrease if the orientation has any magnitude about the 
x or y axes. This is handled with the velocity controller and simply passed through the 
attitude controller to the mixer that supplies the motor references. 

 
 Figure 2.5 Attitude Controller Block Diagram 

PID Velocity Control 
 For the outer loop we want a structure that takes a reference velocity vector and 
outputs desired Euler rates to the attitude control. The velocity controller should also 
output desired motor speeds to the motor input mixer for velocity in the z direction. By 
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referring back to Figure 2.4 it is obvious that the velocity components are dependent on 
the ߰ component of the UAV orientation, and the model will be unstable if this angle is 
not fully taken into consideration. For this reason we will have a semi linear system 
involving two trigonometric equations with ߰ as the argument. All other components will 
be linearized. From here on we will use the word linearize with this understanding 
implied.  
 We start by linearizing equation.(2.9). Multiplying through by the ܴா term 
renders the following form. 

ሶ࢜  = ிܭ ∑ ߱௜ଶ௜
݉ ൥

థݏటݏ + ܿథݏఏܿటݏటݏఏܿథ − ܿటݏథܿథܿఏ
൩ − ൥

00−݃൩ (2.22) 

Going through the process of linearization covered in detail on page 101, the linearized 
model of equation (2.22) is as follows. 
,߱)ሷௗ௘௦ݔ  ߶, ,ߠ ߰) ≈ ݃[ϕୢୣୱsin(߰) + θୢୣୱcos(߰)] (2.23) 
,߱)ሷௗ௘௦ݕ  ߶, ,ߠ ߰) ≈ ௗ௘௦ߠ]݃ sin(߰) − ߶ௗ௘௦ cos(߰)] (2.24) 

,߱)ሷௗ௘௦ݖ  ߶, ,ߠ ߰) ≈ 2 ிܭ
݉ [߱ଵ + ߱ଶ + ߱ଷ + ߱ସ − 4߱௛] (2.25) 

 Referring back to equation (2.16) and substituting the relative elements in 
equation (2.25) we obtain a relationship for the motor mixer with respect to the z 
component of the UAV’s position. 

(4߱௛ + Δ߱௭)ௗ௘௦ = ݉
2 ∗ ிܭ

ሷௗ௘௦ݖ + 4߱௛ 

Now we can invert equations (2.23) and (2.24) to form a relationship between our desired 
input into the attitude controller and their respective accelerations. 
 ߶ௗ௘௦ = ݃(sin(߰) ሷௗ௘௦ݔ − cos(߰)  ሷௗ௘௦ (2.26)ݕ
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ௗ௘௦ߠ  = ݃(cos(߰)ݔሷௗ௘௦ + sin(߰)  ሷௗ௘௦)  (2.27)ݕ
To find the desired accelerations we use a simple proportional controller to convert 
reference velocity vector. 
ሶௗ௘௦ݒ  = ݇௣,௩(ݒௗ௘௦ −  (2.28) (ݒ
Now we have a complete control structure that accepts a reference velocity and a desired 
yaw angle and outputs desired motor speeds to have the UAV track appropriately. A 
block diagram of the velocity control structure can be seen in Figure 2.6. Notice the 
reference yaw angle is simply passed straight through to the attitude controller as would 
be expected.  

 
Figure 2.6 Velocity Control Block Diagram 
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 CHAPTER THREE
Potential Fields-Proportional Navigation Guidance Law 

 The use of vectors and vector fields to control UAV’s has been widely adopted 
due to the physical nature of a vector. The use of general vector fields to direct a UAV on 
both straight and circular paths were developed and proven to be stable via the Lyaponuv 
method in [36-38]. A method of generating a vector field is through the gradient of a 
potential field. This approach to developing the vector field is beneficial when obstacle 
avoidance, dynamic fields, or rendezvous with a target is desired. They have been applied 
to UAV’s [39], nonholonomic wheeled robots [40, 41], and robotic arms [42]. To 
overcome limitations, such as local minima in the field, potential fields have been 
coupled with other algorithms such as fuzzy logic [43] and genetic algorithms. In our 
approach, we too will couple the potential field method with another method, 
proportional navigation, to overcome the inherent tail chase that ensues when using 
potential fields, and to add obstacle avoidance capabilities to proportional navigation.The 
potential field approach utilizes 2 sets of functions to produce a control vector. One set of 
functions are for developing the control vector component that guides the UAV to the 
intended target, while the 2nd set of functions are for guiding the UAV away from any 
obstacles. We will show that the functions for guiding the UAV away from obstacles can 
be optimized by using vector correlation as a scaling function. Furthermore, we will show 
that the function set that guides the UAV to the intended target can be optimized by 
combining them with proportional navigation theory.  
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 Proportional navigation is an interception guidance technique where control 
commands are meant to control of the rotational rate of the line of sight, LOS, vector 
[44]. The most widespread implementation is to control the robot’s acceleration 
component that is normal to the line of sight between it and the target. In [45], the authors 
use a proportional navigation guidance technique to catch a ball with a robotic arm. They 
define their general interception task as “approaching a moving object while matching its 
location and velocity in the shortest possible time [45]”. Some have even utilized the 
theory with two wheeled robots, [46, 47], although it isn’t used prominently in robotics 
due to its trait to make contact with a target instead of rendezvous with the target. We 
will attempt to remedy this pitfall while adding the benefit of obstacle avoidance by 
coupling the method with potential field theory. Explicitly, a control vector will be 
constructed to control the UAV's velocity in two pieces. The direction will be determined 
using proportional navigation missile guidance theory, and the magnitude through a 
potential field obstacle avoidance theory. This will give the UAV the ability to 
rendezvous or land on a moving target, while effectively avoiding obstacles in the field. 
The idea of rendezvousing and landing on a target has been presented before. In [48] a 
helicopter follows the LOS, and bases the velocity magnitude on the distance from the 
target for effective landing. For moving targets, they simply add the target’s velocity to 
the helicopter velocity magnitude. This method of simply following the LOS is known 
for creating a tail chase before arriving at a moving target, because the UAV does not 
take an angle to the target. Proportional navigation addresses this issue. Similar to our 
paper, in [49] and [50] the velocity of the robot is perturbed based on the motion of the 
target. However, rather than taking the targets velocity into account directly, the robot’s 
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velocity is perturbed using a proportional control structure that relies on successive 
measurements of the LOS vector. 

ோݒ = ଴ݒ + ߙ ∗  ܱܵܮ
This would not be ideal if an evasive target was present. Our methodologies rely on the 
sensors of the UAV to obtain true velocity data of the target, and perturb the UAV 
velocity based on that information. 
Certain assumptions were made to restrict the scope of this work: 

1. The states of any obstacles in the field and of the target have been obtained 
through the sensors subsystem. 

2. The environment variables have been analyzed at the Mission Decisions Level 
and an optimum target has been chosen. 

3. The sampling time, ܶ, may be chosen small enough that target and obstacle 
velocities may be considered constant and linear between samples without 
effecting performance. 

4. The performance of the UAV is superior to that of the target in general.  
 In the next section potential fields will be described in detail as applied to our 
UAV. First it will be developed in two dimensions and then it will be shown how to 
extend the method to the third dimension. Following that, proportional navigation will be 
developed as applied to our UAV. Like the potential field method, it is easier to grasp the 
proportional navigation concept in two dimensions before showing how it is extended to 
three dimensions. A section on how to combine the two laws to give one velocity 
reference for input into the UAV control structure is covered. To end the chapter, an 
algorithm to fine tune the obstacle avoidance portion of the potential field method is 
presented. 
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Potential Field Guidance Law 
 Potential fields takes the concepts of potential energy fields and the gradient of 
that field, traditionally force in physics, and applies them to a control vector which allows 
a target to autonomously track a path to a designated target while avoiding any obstacles 
obstructing the path. The idea of using a potential field is a subset of control using an 
energy function. The goal is to develop a function that minimizes when a desired goal is 
reached. One way to think of it is in terms of electric potential. Consider the UAV having 
a charge, the intended target as having a charge with a sign opposite that of the UAV, and 
all obstacles as having a charge with the same sign as the UAV. In this case the UAV 
would be attracted by the target while at the same time, being repelled by any obstacles it 
comes close to. If the magnitude of attraction is proportional to the distance between the 
UAV and the target rather than inversely proportional as in electric potential, then the 
function created by this attraction, along with the repulsion from obstacles, would 
minimize at the target and maximize at a distance from the target or at the point of any 
obstacles. Oussama Khatib develops the appropriate equations in [42] which will be 
presented here. For appropriate notation throughout this section refer to Table 3.1. 
 It's important to distinguish a generalized potential energy function from well-
known potential energy fields in physics. The restraints of units do not apply here; the 
energy function is not necessarily Joules and the gradient does not necessarily have to be 
Newtons. Rather than being restrained by physics, the potential energy field is purely 
artificial, denoted ܷ௔௥௧, and is developed solely with idea of developing a velocity control 
vector for the UAV. The attractive component contributed by the target is itself an 
artificial energy function, denoted ܷ௔௧௧, as well as the repulsive component contributed 



 

28 
 

by the obstacles collectively, denoted ௥ܷ௘௣. Together they form the total artificial 
potential energy function. 

Table 3.1 Notation for Potential Field Algorithms 
Symbol Units Description 

 Ԧ Meters UAV position vector relative to the World Frameݎ
Ԧሶݎ  Meters per second UAV velocity vector relative to World Frame 

 ሶ௠௔௫ Meters per second Maximum magnitude of UAV velocity vectorݎ
 Ԧ Meters Target position vector relative to the World Frameݐ
 Ԧሶ Meters per second Target velocity vector relative to the World Frameݐ
 Ԧ Meters Obstacle position relative to the World Frame݋
Ԧሶ݋  Meters per second Obstacle velocity vector relative to the World Frame 

ܷ௔௥௧  Artificial Potential Field 
ܷ௔௧௧  Attractive component of ܷ௔௥௧ 

௥ܷ௘௣  Repulsive component of ܷ௔௥௧ 
݇௥௘௣  Proportional gain for ௥ܷ௘௣ 
݇௔௧௧  Proportional gain for ܷ௔௧௧ 
 Ԧሶ௥௘௙ Meters per second UAV reference velocity vectorݎ

 
Defining the Attractive Field 
 First we develop the attractive component. A common method used to minimize 
an energy function is to take the negative gradient, ∇ ܷ௔௧௧, of the function and then step 
down it iteratively. This method is prone to stabilizing in a local minimum when the 
desired result is to completely minimize the function and stabilize at the global minimum. 
To try and minimize the local minima and saddles, it's ideal to have a function with a 
quadratic form, which also makes finding gradients easier in general. The idea is to 
develop an energy function that minimizes at the position of the target so that its use in 
the control of the UAV will result in directing the UAV to the target. Taking this into 
consideration ܷ௔௧௧ can be defined as:  

 ܷ௔௥௧ =  ܷ௔௧௧ +  ௥ܷ௘௣ (3.1) 
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 Uୟ୲୲ = 1
2 ݇௔௧௧൫หݐԦ −  Ԧห൯ଶ (3.2)ݎ

where ݐԦ is the position of the target, ݎԦ is the position of the UAV, and ݇௔௧௧ is a designer 
controlled gain. As expected, ܷ௔௧௧ reaches a minimum when the UAV reaches the 
target,ݐԦ = Ԧ and ܷ௔௧௧ݎ =  0, and grows without bound as the distance from the target 
increases. From a gravitational potential field prospective, this artificial field can be 
thought of as tricking a UAV into thinking it is forced to climb a hill when moving away 
from the target, and moving downhill when approaching the target as shown in Figure 
3.1. Here both the target and the UAV would be positioned in the ݔ,  plane with the ݕ
target located at (−8, −8). Here the UAV can start anywhere in the plane and it will 
move toward the target just as a ball placed on the function itself would roll to the 
minimum. Furthermore, if gradient decent is used to minimize the function, the 
projection of the path of a free rolling ball onto the ݔ,  plane would be the expected path ݕ
of the UAV. Notice no matter where the UAV starts, it is guaranteed to reach the target 
through a gradient descent method without ending up stuck in a local minimum.  
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Figure 3.1 Uୟ୲୲ Component of Uୟ୰୲ 

 To allow the UAV to minimize Equation (3.2), the gradient of (3.2) will be used 
to create a vector field telling the UAV what direction to move.  
 ∇ ܷ௔௧௧ =  ݇௔௧௧(ݐԦ −  Ԧ) (3.3)ݎ
Now the UAV has more than just a scalar value that just tells it a general idea of how 
close it is. ݐԦ −  .Ԧ is a vector pointing directly at the target and scaled by design by ݇௔௧௧ݎ
The further away the UAV is, the larger the magnitude of the control vector and it goes to 
zero as the UAV approaches the target. This is the kind of behavior expected from the 
velocity of the UAV, so we'll define the gradient vector as the velocity control vector for 
the UAV. 
Ԧ௔௧௧ሶݎ  = ∇ ܷ௔௧௧  = ݇௔௧௧ Ԧݐ   −  Ԧ (3.4)ݎ
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Developing the Repelling Field 
 For the repelling component of the artificial field, ௥ܷ௘௣, the energy function is 
expected to minimize as the UAV moves away from the obstacle and grow without 
bound as the UAV approaches the obstacle. At some point the UAV will be far enough 
from the obstacle that the obstacle shouldn't contribute to the overall effect of the field. 
This distant should be set by the designer and will be denoted here as ߩ. Staying with the 
idea of quadratic energy functions and gradient descent, ௥ܷ௘௣ is defined as   

 ௥ܷ௘௣ = ቐ
1
2 ݇௥௘௣ ൬ 1

Ԧݎ| − |Ԧ݋ − 1
൰ߩ

ଶ

0 ,
, Ԧݎ|       − |Ԧ݋ ≤ ߩ

݁ݏ݅ݓݎℎ݁ݐ݋  (3.5) 

[42] 
where ݋Ԧ represents the position of the obstacle. ߩ denotes the radius of repulsion defined 
by the designer and makes ௥ܷ௘௣ → 0 as|ݎԦ − |Ԧ݋ →  or as the UAV approaches the radius ,ߩ
of no repulsion. Conversely, as ݎԦ →  ,Ԧ, or as the UAV approaches the obstacle, ௥ܷ௘௣݋
grows without bound. By definition after the UAV reaches a distance of ߩ from the 
obstacle, ௥ܷ௘௣ = 0 to prevent any further manipulation from that particular obstacle. If all 
of the obstacles in the field have an artificial field attached to them, then the total 
repulsive factor of the field ܷ௔௥௧ is simply the sum of all the individual repulsive fields.  

 ௥ܷ௘௣  = ቐ෍ 1
2 ݇௥௘௣ ൬ 1

Ԧݎ| − |Ԧ௜݋ − 1
൰ߩ

ଶ

௜ 0
Ԧݎ|   , − Ԧݐ ≤ ߩ

 (3.6) ݁ݏ݅ݓݎℎ݁ݐ݋

From a gravitational potential field prospective, this produces a set of steep ‘hills’ that the 
UAV would have to climb in order to reach the obstacle as shown in Figure 3.2.  
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Figure 3.2 U୰ୣ୮ component of Uୟ୰୲ 

 Now we want to provide a vector valued function for the UAV to have an idea of 
what direction to travel by taking the gradient of equation (3.6). 

 ∇ ௥ܷ௘௣ = ቐ෍ k୰ୣ୮ ൬ 1
Ԧݎ| − |Ԧ௜݋ − 1

൰ߩ ൬ 1
Ԧݎ| − Ԧ௜|ଶ൰݋ ቆ Ԧݎ − Ԧݎ|Ԧ௜݋ − Ԧ௜|ቇ௜݋ 0

, Ԧݎ| − |Ԧ௜݋ ≤ ߩ
݁ݏ݅ݓݎℎ݁ݐ݋  (3.7) 

Ԧݎ −  Ԧ௜ in the numerator is a vector pointing away from obstacle in the direction of the݋
UAV, and the |ݎԦ −  Ԧ௜| terms in the denominator make the magnitude grow inversely݋
proportional to the distance between the UAV and the obstacle. This again is the behavior 
expected from the velocity of the UAV, so it will be used as a velocity control vector. 
Ԧሶ௥௘௣ݎ  = ∇ ௥ܷ௘௣ (3.8) 

Developing the Total Potential Field 
 By substituting equations (3.2) and (3.6) into equation (3.1), the total artificial 
potential field, ܷ௔௥௧, effecting the UAV is determined. Figure 3.3 shows a plot of ܷ௔௥௧ 
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with a stationary target, ݐԦ ≡ (−8, −8)், and three stationary obstacles, ܱ = ,Ԧଵ݋]  ,Ԧଶ݋  .[Ԧଷ݋
To get the UAV to the target while simultaneously avoiding obstacles we'll take the 
gradient of ܷ௔௥௧ to produce a vector field that points away from the objects and towards 
the target and can be used as a velocity control vector. 
 ∇ܷ௔௥௧  = ∇൫ܷ௔௧௧  + ௥ܷ௘௣൯  = ∇ܷ௔௧௧  + ∇ ௥ܷ௘௣ (3.9) 
From Equations (3.3) and (3.7), equation (3.9) is solved, leading to a final velocity 
control vector, ݎԦሶ௥, from equations (3.4) and (3.8). 
Ԧሶ௥௘௙ݎ  = Ԧሶ௔௧௧ݎ +  Ԧሶ௥௘௣ (3.10)ݎ 
 To demonstrate to ability of equation (3.10) an environment with two obstacles 
positioned in the direct path between the UAV and the target was setup and the UAV was 
fed the velocity control vector at a rate of 10 hertz. The performance is captured in Figure 
3.4.. 
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Figure 3.3 Uୟ୲୲ + U୰ୣ୮ = Uୟ୰୲ 

 The target in this scenario is held in position rather than moving. If the target were 
in motion then equation (3.3) shows that the UAV would not rendezvous with the target. 
Equation (3.3) goes to 0 when the UAV reaches the target, therefore, ݎԦሶ௔௧௧ → 0 as the 
UAV approaches the target, so at the point of rendezvous, the UAV’s velocity is 0, but 
the target’s velocity is not. Inevitably the control vector to the UAV would simply reach 
the same magnitude and direction of the target’s velocity at some point away from the 
target, and equilibrium would be reached where the UAV travels a fixed distance behind 
the target. In the following section we will look at popular guidance laws  show how they 
are developed in a way that remedies this scenario. We’ll also nuance the methods to see 
which provides the more optimal path toward a moving target. 
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Figure 3.4 Plot of ݎԦ trajectory using Potential Fields 

Proportional Navigation Guidance Law 
Typical guidance laws for impact with a target use the line of sight, ܱܵܮ, between 

the target and the pursuer in one way or another. Guidance laws normally fall within two 
basic methods that have been researched extensively: pursuit and proportional navigation 
[51]. The angle of the ܱܵܮ, ߰, is a common metric used to guide the pursuer to the target. 
In one of the most basic, though popularly used schemes, the heading of the pursuer is 
adjusted to bring the angle of the heading equal to ߰. This is called pursuit and amounts 
to constantly pointing the pursuer directly at the target without regard to the target's 
velocity. In many cases this results in the pursuer falling in behind the target and having 
to catch the target in a tail chase, or a race to catch up from behind. Proportional 
navigation was developed to enable missiles to better track an evasive target than the 
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capabilities of the more simplistic algorithm used by pursuit. The algorithm gets its name 
from the fact that the rotation of the velocity vector of the pursuer is proportional to the 
rotation of the ܱܵܮ, or ሶ߰  [52]. To better explain proportional navigation, first pursuit will 
be covered and then it will be shown that not only is the proportional navigation 
algorithm more robust in terms of the target trajectories that it can make contact with, but 
the algorithm also typically out performs a simple pursuit algorithm on trajectories that 
the pursuit algorithm can handle. Including the notation for potential fields, refer to Table 
3.2 for added notation in this section. 

Table 3.2 Added Notation for Proportional Navigation 
Symbol Units Description 

ேሬሬሬሬԦሶݎ  Meters per second Desired velocity of UAV normal to ܱܵܮ 
ሬሬሬԦሶݎ்  Meters per second Desired velocity of UAV tangent to ܱܵܮ 
ܲ  Projection matrix onto ܱܵܮ ୄܱܵܮ Meters Line of Sight vector from UAV to Target 
߰ Radians Angle of ܱܵܮ ሶ߰  Radians per second Rate of change of ܱܵܮ angle 
ܶ Seconds Sampling Time of UAV 

 
 Here both algorithms will assume a constant linear velocity for the target, ݐԦሶ, over 
a time sample. It is assumed that the sampling time is frequent enough that the pursuer 
will be able to adjust to any nonlinearity and still make contact. For this assumption to be 
true, it is also assumed that the pursuer has better performance capabilities than the target, 
including maximum velocity, and maximum acceleration.  
 Since the UAV accepts a velocity control input vector, a pursuit algorithm will 
now be developed to produce that velocity control vector. First the LOS needs to be 
defined in terms of the position of the pursuer and the position of the target,  
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ܱܵܮ  = Ԧݐ  −  Ԧ (3.11)ݎ
By normalizing the ܱܵܮ vector, a pure direction is obtained and then the magnitude can 
be set so that the pursuer is traveling with its velocity vector pointing in the appropriate 
direction. 

Ԧሶ௥ݎ  = ݇௥ ൬ ܱܵܮ
 ൰ (3.12)|ܱܵܮ|

݇௥ may be a constant or a function of time to set the magnitude of the velocity, but 
regardless of how the magnitude of ݇௥ is set, or how the target evades the pursuer, the 
velocity vector is always pointed directly at the target [51]. Though this algorithm is 
simple, it is pervasive in many tracking algorithms. This is closely related to the attractive 
portion of the potential field method described previously. If ݇௔௧௧ were a time varying 
function then substituting equation (3.11) back into equation (3.12) yields equation (3.3) 
with ݇௔௧௧  = ௞ೝ

|௅ைௌ|. However this would defeat the purpose of trying to catch a moving 
target as discussed earlier. Equation (3.12) is utilized more appropriately by letting the 
ቀ ௅ைௌ

|௅ைௌ|ቁ portion simply be a directional unit vector, and using ݇௥ to adjust the speed as 
desired. Figure 3.5 shows a trajectory plot of a pursuer pursuing a moving target using 
the pursuit algorithm, where the pursuer’s velocity is held at a constant maximum 
magnitude.  
 Notice the pursuer does not take an angle when chasing the target. Instead, the 
pursuer continually points at the target, creating a tail chase scenario before reaching the 
target. When reviewing the attractive element of Potential Fields, it's easily inferred that 
the potential field algorithm has the same debilitating trait. 
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Figure 3.5 Path to Target using Pursuit guidance law 

 Proportional navigation tries to avoid this pitfall by setting a trajectory that 
indirectly takes the targets velocity into account. Rather than use the ܱܵܮ as a heading 
reference, proportional navigation attempts to provide an optimal straight line path to the 
target by controlling the motion perpendicular to the ܱܵܮ. In its basic form, proportional 
navigation is defined as: 
Ԧሷேݎ  = ݇ ߰ ሶ Ԧሶ்ݎ  (3.13) 
[53] 
Ԧሶ்ݎ ,ܱܵܮ Ԧሷே is the acceleration normal to theݎ  is the velocity tangent to the ܱܵܮ, or the 
closing velocity, and ሶ߰  is the rate of change of the ܱܵܮ angle. The main idea of the 
algorithm is that if a straight line path is taken such that there will be contact made with 
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the target, then there will be no rotation of the ܱܵܮ. The acceleration normal to the ܱܵܮ 
does indeed go to zero when the rotation of the ܱܵܮ, ሶ߰ , is zero. Furthermore, ݎሶ்  in the 
algorithm accommodates the fact that the faster the pursuer is approaching the target, the 
faster it will have to adjust to ensure contact. To simplify Equation (3.13) the closing 
velocity is sometimes considered to be a constant and encapsulated with the control gain. 
This reduces the equation to 
Ԧሷேݎ  = ݇ ሶ߰  (3.14) 
Keeping with the idea of developing a velocity control vector from Section Potential 
Field Guidance Law, a velocity control vector will now be developed using proportional 
navigation.  
 Intuition implies that simply integrating equation (3.14) will get the desired 
normal component of the control vector. 
Ԧሶேݎ  = ∫ ݇ ሶ߰ ݐ݀  = ݇∫ ߰ ሶ ݐ݀  = ݇ ቀ൫߰௙ − ߰଴൯ݐ +  Ԧሶேబቁ (3.15)ݎ
This equation produces a velocity vector that is reactive to the change in ߰ after the 
change has already occurred. If there isn't any change in ߰, equation (3.15) reduces to a 
constant, which shows that if ߰ is constant, then the normal component of the velocity 
can be held constant and contact will be made. More importantly, if a scenario exists 
where there is an optimal straight line path to make contact with the target, there exists 
some ܱܵܮ angle that can be used to set the normal component of the velocity control 
vector. If this angle can be determined then the velocity control vector can be set directly. 
To calculate the angle an estimated contact point would have to be calculated, which 
proves to be computationally intensive. The same idea of proportional navigation can be 
looked at as saying, if the normal component of the velocity vector is known such that 
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contact will be made with the target, then ߰ will can be a constant proportional to that 
normal component of the velocity. From equation (3.14), 

߰ = ∫ܥ ݐ݀ Ԧሷேݎ = ܥ ൬ቀݎԦሷே೑ − Ԧሷேబቁݎ ݐ + Ԧሶேబ൰ (3.16)ݎ

where ܥ = ଵ
௞. If the velocity is constant, this reduces to 

߰ = Ԧሶேబ (3.17)ݎ ܥ
The question now becomes how the velocity can be determined directly. Rather than 
trying to analytically develop a relationship for ݎԦሶே or ߰, geometrical methods will be a bit 
friendlier.  
 To determine the direction the UAV should take to insure contact with a moving 
target, first consider the simple example in Figure 3.6. At an initial time, ݐ଴, the UAV is 
positioned at the origin traveling along the x axis. The anticipated target is traveling 
parallel to the x axis and crosses the y axis at exactly ݐ଴. At this moment the UAV desires 
a velocity control vector that will point it in a direction that at some point ݐ >  ଴ willݐ
result in contact with the target. Obviously both the UAV and the target will share the 
same coordinates when contact is made, but what may not be immediately obvious is the 
fact that if both the target and UAV are traveling at constant velocities, then at every ݐ, 
଴ݐ < ݐ ≤  .௙, the two must share the same x coordinate in order to make contactݐ
Essentially the UAV can construct a velocity control vector by matching the target's 
velocity in the x direction and then applying whatever power is left in the UAV along the 
y direction. The velocities in the x and y direction are called the normal velocity and 
closing velocity, respectively. The closing velocity is called such because it is the part of 
the velocity vector that intends to bring the UAV closer to the target, and the normal 
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velocity is called so because it is normal to the line of sight, ܱܵܮ, between the UAV and 
target. In this case the ܱܵܮ is simply the y axis at ݐ଴, and a set of lines parallel to the y 
axis at each successive ݐ. 

Figure 3.6 Proportional Navigation along the X axis 

 It may not be immediately obvious from Figure 3.6 that the target does not have 
to be traveling parallel to the x axis in order for the two agents to share x coordinates for 
all ݐ. The significant attribute of this scenario that makes this so is the fact that at ݐ଴ the 
line of sight, ܱܵܮ, was the y axis. If the target was traveling on a path other than the path 
parallel to the x axis, then only the x component of its velocity vector would need to be 
considered and matched by the x component of the UAV velocity vector so long as the 
  .଴ݐ at ݕ was ܱܵܮ
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 To further generalize this concept, rather than thinking in terms of the x axis, 
simply using the proper term, the normal component of the velocity vector, brings to light 
the fact that if the velocity components normal to the line of sight of both the UAV and the 
target are matched, the UAV has a higher velocity magnitude than the target, and the 
component of the UAV's velocity parallel to the line of sight is pointed at the target, then 
contact will be made at some time ݐ >  ଴. This reduces the complexity of the problem toݐ
performing a change of basis on the target's velocity vector to get parallel and normal 
components to the ܱܵܮ as shown in Figure 3.7. To do this let's consider two unit basis 
vectors, ሬܾԦଵ pointing parallel to ܱܵܮ, and ሬܾԦଶ pointing normal to ܱܵܮ; and define them as 
the basis ߚ. 

= ߚ  [ሬܾԦଵ, ሬܾԦଶ] 
The target's velocity can then be expressed relative to ߚ. 

Ԧሶݐ = tଵ ሬܾԦଵ + tଶ ሬܾԦଶ =  ቀProj௕ሬԦభ Ԧሶቁݐ  + ቀProj௕ሬԦమ Ԧሶቁݐ  (3.18)

Calculating ሬܾԦଶ is straight forward since the line of sight vector is easily computed by 
equation (3.11), ሬܾԦଶ can be calculated by normalizing this equation. 

 If contact is to be made, then the two agents must share the same coordinates 
relative to ሬܾԦଵ, therefore their velocities relative to ሬܾԦଵ must be matched. 

ሬܾԦଶ = ܱܵܮ
|ܱܵܮ| (3.19)
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Figure 3.7 General Proportional Navigation 

,
Rather than calculating ሬܾԦଵ directly, the projection of the target's velocity, ݐԦሶ,

onto ሬܾԦଵ, ݆ܲ݋ݎሬ௕Ԧభ ݐԦሶ can be calculated directly from the projection of ݐԦሶ onto ሬܾԦଶ,
Ԧሶݐ ሬ௕ሬሬሬమԦ݆݋ݎܲ

. 

௕ሬԦభ݆݋ݎܲ Ԧሶݐ  = Ԧሶݐ − ௕ሬԦమ݆݋ݎܲ Ԧሶݐ  (3.20)
This is the desired quantity to facilitate constructing a velocity control vector. Therefore, 

Ԧሶ୒ݎ = Ԧሶݐ − Proj௕ሬԦమ Ԧሶ (3.21)ݐ 
where ݎԦேሶ  is the velocity control vector component normal to the line of sight. Since ߚ is a 
set of unit vectors, ݆ܲ݋ݎ௕ሬԦమ  ሶ can be calculated byݐ 

Proj௕ሬԦమ Ԧሶݐ  = ቀݐԦሶ ⋅ ሬܾԦଶቁ ሬܾԦଶ = ቀtԦሶ୘bሬԦଶቁ bሬԦଶ = ሬܾԦଶ ቀሬܾԦଶ் Ԧሶቁݐ = ൫ሬܾԦଶ ሬܾԦଶ் ൯ݐԦሶ (3.22)
which leads to 
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Ԧሶேݎ = Ԧሶݐ − ൫ሬܾԦଶ ሬܾԦଶ் ൯ݐԦሶ = ൫ܫ − ሬܾԦଶ ሬܾԦଶ் ൯ݐԦሶ (3.23)
where ܫ is the identity matrix. Referring back to Figure 3.7 and equation (3.11) shows all 
elements of equation (3.23) are known quantities. Furthermore, the form of equation 
(3.23) is such that the desired velocity normal to ܱܵܮ can be calculated in just two 
calculations: constructing the projection matrix, and then using it to transform the target's 
velocity. Defining ݎԦሶே in terms of a projection matrix, equation (3.23) becomes 

Ԧሶேݎ = ܲ ∗ Ԧሶ (3.24)ݐ
where ܲ = ܫ − ሬܾԦଶ ሬܾԦଶ் . 
 A moment of care should be given to the idea that ܲ actually is a projection 
matrix. Since ݐԦሶ can be any vector, the statement that ܲ is a projection matrix suggests that 
any vector transformed by ܲ will produce a corresponding vector projected onto ܾଶ. One 
check that is readily available as to whether ܲ is in fact a projection matrix is to check 
that it is idempotent, or ܲଶ = ܲ. Although the discussion has only be in ℝଶ thus far, here 
it will be proven that ܲ is in fact a projection matrix in ℝ௡ to avoid repeating the exercise 
later. Proving it is fairly straight forward. First consider the general unit vector ݔԦ =
. ଶݔ ଵݔ] . .  ௡]். Thereforeݔ

Ԧ்ݔԦݔ =  ൥
ଵݔଵݔ ⋯ ⋮௡ݔଵݔ ⋱ ଵݔ௡ݔ⋮ ⋯ ௡ݔ௡ݔ

൩

Notice each element of ݔԦݔԦ்  is simply (ݔԦݔԦ்)(௜,௝) =  ଶ can be(Ԧ்ݔԦݔ) ௝. Each element ofݔ௜ݔ
represented as 

ଶ(௜,௝)(Ԧ்ݔԦݔ) = ෍ ௝ݔ௞ଶݔ௜ݔ
௞

= ௝ݔ௜ݔ ෍ ௞ଶݔ
௞

 

Recall that ݔԦ is a unit vector, therefore ∑ ௞ଶ௞ݔ = 1, which leads to 
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ଶ(௜,௝)(Ԧ்ݔԦݔ) = ௝ݔ௜ݔ = ்Ԧ(௜,௝)ݔԦݔ  
Ԧ்ݔԦݔ Ԧ் is idempotent. This is expected becauseݔԦݔ  represents the projection ሬܾԦ ሬܾԦ் in 
Equation (3.22). From here ܲ can be shown to be idempotent directly. 

ܲଶ = ܫ) − Ԧ்)ଶݔԦݔ = ܫ) − ܫ)(Ԧ்ݔԦݔ − (Ԧ்ݔԦݔ = ଶܫ − Ԧ்ݔԦݔ2 + ଶ(Ԧ்ݔԦݔ) = ܫ − Ԧ்ݔԦݔ2 + Ԧ்ݔԦݔ

= ܫ − Ԧ்ݔԦݔ = ܲ 
So ܲ is idempotent, therefore there is no immediate reason to believe that this isn't indeed 
the projection matrix sought. 
 Now that the normal component of the velocity control vector,ݎԦሶே, has been found, 
a final velocity control vector, ݎԦሶ௥௘௙ may be calculated by finding the tangential 
component to the ݎ,ܱܵܮԦሶ் . 

Ԧሶ௥௘௙ݎ = Ԧሶ்ݎ + Ԧሶேݎ (3.25)
 For a typical missile guidance application, full throttle would be held in order to 
reach the target in a minimum time. This allows for easy calculation of the final velocity 
control vector. Consider at full throttle the missile reaches a maximum velocity 
magnitude, ݎሶ௠௔௫. Then the magnitude of the tangential component can be found by  

Ԧሶ்ݎ| | = ටݎሶ௠௔௫ଶ − หݎԦሶேଶห = ටݎሶ௠௔௫ଶ − Ԧሶே்ݎ Ԧሶேݎ
giving a final velocity control vector as: 

Ԧሶ௥௘௙ݎ = ቆටݎሶ௠௔௫ଶ − rԦሶே்ݎԦሶேቇ ሬܾԦଶ + Ԧሶேݎ (3.26)

A plot of the trajectory in pursuit of the target using the proportional navigation algorithm 
can be viewed in Figure 3.8.  
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Figure 3.8 UAV Path using Proportional Navigation with Constant Speed 

 Notice that by calculating the velocity normal to the ܱܵܮ, the rate of rotation of 
the ܱܵܮ is zero as we set out to do. This means ܱܵܮ lines at various time samples are 
parallel. A target going a constant velocity in a straight line may be an oversimplification 
of the problem so an evasive target is viewed next. Figure 3.9 shows a scenario where the 
target is told to try and move away from the UAV, rather than a straight line. Notice how 
even when the target evades the UAV, all the line of sight vectors are parallel, which 
means a zero rate of rotation as desired. A noticeable downfall to this approach for the 
purposes of the competition presents itself in the final contact speed in both Figure 3.8 
and Figure 3.9. The UAV is traveling full speed. Since the strategy desired here is to 
rendezvous, the magnitude of the velocity on approach should change inversely to the 
magnitude of the ܱܵܮ vector. Also, there is no mechanism built into the proportional 
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navigation scheme to handle scenarios where obstacles obstruct the flying path of the 
UAV. Both of these issues will be addressed in the next section. 

Figure 3.9 Proportional Navigation Response to an Evasive Target 

Combining the Two Guidance Laws 
 In order to allow for the UAV to take a straight line solution to the target and 
rendezvous, rather than collide with target, ݐԦሶ, ,Ԧݐ  Ԧ will be developed so that theݎ ݀݊ܽ
magnitude of the UAV's velocity, |ݎԦሶ |, can be adjusted using potential fields. Since the 
UAV also needs to avoid obstacles, it makes since that the potential field approach 
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discussed in section Potential Field Guidance Law should be used. However, the 
magnitude of the UAV’s velocity needs to account for the velocity of a moving target in 
order to rendezvous, so ܷ௔௧௧ will be adjusted to include the speed of the target, ݐԦሶ. To 
avoid simply pointing directly at the moving target and creating a tail chase proportional 
navigation will be used to set the direction of the UAV's reference velocity vector. To 
account for ݐԦሶ, 

ܷ௔௧௧ = 1
2 ݇௔௧௧൫หݐԦ − Ԧห൯ଶݎ + 1

2 ݇௩௘௟ ቚݐԦሶቚଶ (3.27)

The new energy equation for the attractive portion of the potential changes the vector 
field associated with it.  

∇ܷ௔௧௧ = ݇௔௧௧൫ݐԦ − Ԧ൯ݎ + ݇௩௘௟ݐԦሶ (3.28)
The repelling portion of the potential field, ௥ܷ௘௣, will remain unchanged for the moment. 
The new gradient for the potential field, ∇ܷ௔௧௧, will be used to set the magnitude of the 
attractive reference vector. 

หݎԦሶ௔௧௧ห = |∇ܷ௔௧௧| = |݇௔௧௧൫ݐԦ − Ԧ൯ݎ + ݇௩௘௟ݐԦሶ| (3.29)
 Now that the magnitude of attractive component of the velocity control vector is 
determined, |ݎԦሶ ௔௧௧| can be substituted for ݎ௠௔௫ in equation (3.26), giving a final control 
law for the attractive portion of the reference velocity vector: 

Ԧሶ௔௧௧ݎ = ቆටหݎԦሶ௔௧௧หଶ − rԦሶே்ݎԦሶேቇ ሬܾԦଶ + Ԧሶேݎ (3.30)

A final total control law is obtained by substituting equation (3.30) back into (3.10). 
Ԧሶ௥௘௙ݎ = Ԧሶ௔௧௧ݎ +  Ԧሶ௥௘௣ݎ 
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Notice in Figure 3.10 that the UAV takes a straight line approach to the target, but when 
the UAV reaches the target its speed is relatively close to the target's speed. 

Figure 3.10 UAV Path using Proportional Navigation with Controlled Speed 

Optimizing the Repelling Vector 
 Equation (3.5) creates a repulsive energy field that is circularly symmetric about 
the object, and depends only on position of the UAV and the obstacles. The symmetry 
causes the UAV to stay a radial distance from the object regardless of the direction of the 
UAV’s velocity. Figure 3.11 depicts this.  
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Figure 3.11 UAV Path using Equation (3.5) 

 By simply taking the direction of ݎԦሶ  into account, the path can be smoothed 
significantly. To do this consider the angle between the UAV’s velocity vector and the 
line of sight from the UAV to the obstacle in question, ߠ, as depicted in Figure 3.12.  
 The correlation between the vectors is cos(ߠ), and in this case we will restrict the 
domain to ߠ =  ቂ− గ

ଶ , గ
ଶቃ. This implies, 0 < cos(θ) < 1, which is ideal for a scaling 

function. Following algebraic calculations for the correlation of two vectors yields: 

ሬሬሬԦሶ(ݎ)݂ = ൜ܿݎݎ݋൫ݎԦሶ , Ԧ݋ − Ԧ൯ݎ
0 , Ԧሶݎ൫ݎݎ݋ܿ , Ԧ݋ − Ԧ൯ݎ ≥ 0

݁ݏ݅ݓݎℎ݁ݐ݋ (3.31)

,ሬԦݑ)ݎݎ݋ܿ (Ԧݒ = ሬԦݑ ⋅ Ԧݒ
|Ԧݒ||ሬԦݑ| = cos൫ߠ௨,௩൯
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Figure 3.12 Correlation of UAV Velocity and LOS to Obstacle 

 If the UAV is traveling straight toward the obstacle then ݂൫ݎԦሶ൯ =  (Ԧሶݎ)݂ .1
decreases as the UAV’s velocity vector rotates out of the direction of the obstacle until 
the UAV is perpendicular to the LOS, at which point ݂൫ݎԦሶ൯ =  can be used to scale (Ԧሶݎ)݂ .0
the magnitude of ௥ܷ௘௣ in Equation (3.5) according to magnitude of the UAV’s velocity 
tangent to the LOS to the obstacle. 

௥ܷ௘௣ = ቐ
1
2 ݇௥௘௣݂(ݎԦሶ) ൬ 1

Ԧݎ| − |Ԧ݋ − 1
൰ߩ

ଶ

0 ,
, Ԧݎ|       − |Ԧ݋ ≤ ߩ

݁ݏ݅ݓݎℎ݁ݐ݋  (3.32)

As the UAV gets alongside the obstacle, ݂൫ݎԦሶ൯ → 0, making ௥ܷ௘௣ → 0 and allowing the 
UAV to continue pursuit of the target. However, if the UAV is directed toward the target 
then ݂൫ݎԦሶ൯ → 1, and ௥ܷ௘௣ goes unchanged from equation (3.5). Figure 3.13shows a 
simulation with the same environment as Figure 3.11 except this time the correlation 
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scaling is applied. Notice the UAV takes a significantly smoother path, allowing it to cut 
its time to reach the target by 18.4 seconds! 

Figure 3.13 Path using Equation (3.32) 

Extending the Algorithm to the Third Dimension 
 Until now the UAV and the target have been considered to be in the ݔ,  .plane ݕ
Now we will extend the method to the third dimension. To do this the competition rules 
will be taken into consideration. The height of the UAV cannot exceed three meters and 
the obstacles can be up to two meters tall. Taking this into consideration with the fact that 
the obstacle’s radii are only the size of an iRobot, it is assumed that the UAV will lose 
minimal performance by going around the obstacles rather than over them. This allows us 
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to leave the repelling portion of the field, ௥ܷ௘௣, as is. The repelling portion will act as if 
the obstacle in infinitely tall.  
 In general the UAV must fly which requires us to take gravity, and the altitude of 
the UAV into account. As far as gravity is concerned, it is assumed that if a velocity 
vector is passed to the UAV, the control structure is developed to handle outside forces to 
allow it to follow the velocity vector, including gravitational forces. Therefore, we are 
left only with the task of setting the altitude of the UAV. The way our current algorithm 
is developed, the proportional navigation portion sets the direction of the velocity vector. 
The idea that the UAV needs to gain altitude when away from the target suggests that the 
velocity vector needs to have a ݖ component. This is the approach we will take. To 
develop the third dimension 3 new variables will be defined for control as shown in Table 
3.3. 

Table 3.3 Third Dimension Algorithm Constants 
Symbol Units Description 

 ఘ Meters Radius from target to ignore altitude commandsݐ
 ௔௟௧ Meters Height above target to fly to from the far fieldݐ
௔௥௧ Meters Artificialݐ position of target 

 Rather than trying to command the UAV to try and reach a specific altitude, we’ll 
realize that for the competition we simply want to be sure it is above the height of the 
iRobot, which is relatively low, and that it doesn’t crash into the ground. To accomplish 
this we will have the UAV fly toward a set point, ݐ௔௥௧ which is ݐ௔௟௧ above the target, 
when in the farfield, หݎԦ − Ԧหݐ <  ఘ. This in essence is simply raising the target into the air aݐ
set amount. So for equation (3.28), an artificial position is set above the target by ݐ௔௟௧. Of 
course if we want to actually touch down on the target, we will have to move our 
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reference point back to the top of the target. This is the purpose of defining ݐఘ. So the 
new target location is set as 

Ԧ௔௥௧ݐ = ൞ݐԦ + ൥
௔௟௧ݐ00

൩
Ԧݐ

′  หݎԦ − Ԧหݐ ≥ ఘݐ
หݎԦ − Ԧหݐ < ఘݐ

 (3.33)

 The only question now is will proportional navigation indeed provide a straight 
path solution in three dimensions toward the artificial target, and then a straight line 
solution from the boundary of ݐఘ to the target. In general, will proportional navigation 
work in three dimensions? By using vectors, we can see that the target’s velocity vector 
along with the LOS creates a two dimensional plane that slices the three dimensional 
space. In this plane, proportional navigation will guide the UAV on a straight path to the 
target. In our case we have a plane up to and including ݐఘ, and then back down to the 
target from ݐఘ. 

Summary of Developed Algorithm 
 To summarize the development of the algorithm, we modified a velocity control 
vector developed using potential fields. 

Ԧሶ௥௘௙ݎ = Ԧሶ௔௧௧ݎ +  Ԧሶ௥௘௣ݎ
Where ݎԦሶ௔௧௧ is the component of the control vector that guides the UAV to the target, and 
 .Ԧሶ௥௘௣ is the component of the control vector that guides the UAV away from any obstaclesݎ
The two components are defined with potential fields as below. 

Ԧሶ௔௧௧ݎ = ∇ܷ௔௧௧ = ݇௔௧௧(ݐ −  (ݎ
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Ԧሶ௥௘௣ݎ = ∇ ௥ܷ௘௣ = ቐ෍ k୰ୣ୮ ൬ 1
Ԧݎ| − |Ԧ௜݋ − 1

൰ߩ ൬ 1
Ԧݎ| − Ԧ௜|ଶ൰݋ ቆ Ԧݎ − Ԧݎ|Ԧ௜݋ − Ԧ௜|ቇ௜݋ 0

, Ԧݎ| − |Ԧ௜݋ ≤ ߩ
݁ݏ݅ݓݎℎ݁ݐ݋

We used proportional navigation theory to modify the direction of ݎԦሶ௔௧௧ as follows. 

Ԧሶ௔௧௧ݎ = ቆටหݎԦሶ௔௧௧หଶ − rԦሶே்ݎԦሶேቇ ሬܾԦଶ + Ԧሶேݎ

Ԧሶேݎ = ൫ܫ − ሬܾԦଶ ሬܾԦଶ் ൯ݐԦሶ

Notice that the use of Pythagorean’s theorem insures that the magnitude of ݎԦሶ௔௧௧ remains 
unchanged. Only the direction is modified to give a more optimal path to the target. 
 We then used a correlation function to scale ݎԦሶ௥௘௣ according to the direction of the 
UAV’s velocity relative to the position of an obstacle. In other words, we took the 
correlation between the UAV’s current velocity vector and the line of sight vector from 
the UAV to the intended obstacle. Taking the correlation of two vectors produces cos (ߠ), 
where ߠ is the angle between the two vectors. Furthermore  

Ԧሶ௥௘௣ݎ = ቐ෍ k୰ୣ୮݂(ݎԦሶ) ൬ 1
Ԧݎ| − |Ԧ௜݋ − 1

൰ߩ ൬ 1
Ԧݎ| − Ԧ௜|ଶ൰݋ ቆ Ԧݎ − Ԧݎ|Ԧ௜݋ − Ԧ௜|ቇ௜݋ 0

, Ԧݎ| − |Ԧ௜݋ ≤ ߩ
݁ݏ݅ݓݎℎ݁ݐ݋

ሬሬሬԦሶ(ݎ)݂ = ൜ܿݎݎ݋൫ݎԦሶ , Ԧ݋ − Ԧ൯ݎ
0 , Ԧሶݎ൫ݎݎ݋ܿ , Ԧ݋ − Ԧ൯ݎ ≥ 0

݁ݏ݅ݓݎℎ݁ݐ݋

,ሬԦݑ)ݎݎ݋ܿ (Ԧݒ = ሬԦݑ ⋅ Ԧݒ
|Ԧݒ||ሬԦݑ| = cos൫ߠ௨,௩൯
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 CHAPTER FOUR
Simulating the Algorithm 

 A simulator to test our developed algorithm has been built. The model for the 
quadrotor and the guidance algorithm has been modeled as presented in this thesis. A 
simple linear model is developed to use as a target, and obstacles are placed as stationary 
cylinders in the field. Various scenarios have been run and measurements acquired to 
ensure the algorithm meets performance metrics. The block representations of the quad 
rotor have been shown in Figure 2.5 and Figure 2.6 therefore they will not be covered in 
this chapter. .A simple target model, a simple obstacle model, and a simple model to 
determine when contact has been made with the target will be covered. An extensive 
model representing the actual IARC has also been built for use after a mission planning 
algorithm has been developed. For the purpose of this thesis, it is assumed that all 
required sensory data to execute the path planning algorithm is obtainable. Therefore, the 
sensor block and mission level decision block in Figure 1.3 is bypassed, and the iRobot 
states, along with the obstacle states, are passed straight through to the Potential Fields 
algorithm. As discussed in Chapter 3, the guidance algorithm produces a reference 
velocity vector for the quad rotor to follow.  

iRobot and Obstacle Model 
 The iRobot model used for proving the algorithm need not be an actual 
representation of the model. We are merely looking for a moving target whose 
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performance is less than that of the quadrotor. To make a model that resembles the real 
world, but is not overly complicated, we will use a second order equation. 

௧ାଵ݌ = ௧݌ + ௧ܶݒ + 1
2 ܽ௧(ܶ)ܶଶ 

௧ݒ = ܽ(ܶ)ܶ 
 (ܶ)ܽ is the position of the iRobot, v is the velocity, ܶis the sampling time and ݌
represents the acceleration dependent on each sample, but not on any time frame less than 
the sampling time. In other words the acceleration will be treated constant in each time 
frame, but will be allowed to change with each time frame to provide a space of paths to 
test the UAV on.  
 Obstacles will be placed in the field as constants. The number of obstacles placed 
in the field at each trial and their location is random so the UAV can run a Monte Carlo 
style simulation 

Collision Detection 
 A block is built to check if the UAV has collided with obstacles. By checking if 
the norm of the line of sight vector is less than the sum of their radii, we can tell if they 
made a collision.   

Ԧݎ)݉ݎ݋݊ − (Ԧ݋ < .ݎ ݏݑ݅݀ܽݎ + .݋  ݏݑ݅݀ܽݎ
This model implies that all the obstacles are cylindrical; and for the IARC, they are.  
To detect when the UAV actually rendezvous with the target, the same equation will be 
used. 

Ԧݎ൫݉ݎ݋݊ − Ԧ൯ݐ < .ݎ ݏݑ݅݀ܽݎ + .ݐ  ݏݑ݅݀ܽݎ
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At the point of rendezvous, the UAV and the target speed are compared to see if indeed a 
rendezvous has happed or if the UAV has merely crashed into it. 

World Model 
 The world model is made to resemble the playing field specified by the IARC, 
including the arena, iRobots, and all obstacles. It has been developed for testing the full 
UAS with mission level decision capabilities to show that competition can be completed, 
and therefore will not be used to obtain results in this thesis. For the purpose of proving 
our algorithms are robust, various parameters are made tunable in the start.m file even 
though they would be set in the competition. Figure 4.1 shows the available variables. 
The real time parameters that these variables control are the runtime of the simulation, 
maxtime, the rate at which the states of the various robots are updated, maxtimeinc, the 
number of obstacles placed in the arena, maxobstacles, the number of iRobots placed in 
the arena, maxpieces, the number of aerial robots running the mission, maxplayers, and 
the respective maximum velocities of the iRobots and obstacles. The help the processor 
run multiple missions quickly, mgraphics controls whether each mission is plotted or not. 
Data from multiple missions can be collected in numerical form for use in performance 
measurements.  
 After saving the tunable parameters, the classes necessary for functionality are 
instantiated, and the various states of the world model are updated with time. Figure 4.2 
is a flowchart that represents the discussion to follow. The top level class of the World 
Model is called RefereeClass. Analogous to an actual referee, the referee class stores the 
rules of the mission, points earned, and time. When the class is initiated, it pulls 
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parameters from the Mission Rules class such as the size of the arena, and how and when 
points are accrued. 

Figure 4.1 Tunable Variables for World Model 

 Then the referee class instantiates the number of obstacle, iRobot, and aerial robot 
agents specified by the user. It also instantiates the collision detection class, and if the 
mgraphics flag is set it instantiates the graphics data class. To make the model active, the 
Referee class provides an event notifier that triggers all other classes under it to perform 
functions every time the referee class time property is updated. Upon a time update, all 
agents in the world block have their states updated according to their specific trajectory 
algorithm.  
 The new positions of all agents are then sent to the Collision Detection Block, 
which detects if any agent has made contact with any other agent, including Aerial Robot 
contact with any iRobot or obstacle, and iRobot contact with any other iRobot or 
obstacle. The collision detection block adjusts the trajectories accordingly if a collision 
has been made. If the mgraphics flag is set in start.m then the graphics data class will 
structure and record the appropriate data for post mission plotting. At this point the world 
model has performed all necessary functions and waits for another time update.  
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Figure 4.2 Program Flow for World Model Block 
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iRobot and Obstacle Trajectories 
 When the referee class's time parameter is updated, each robot's state is updated 
according to the time increment and the velocity during the previous time increment. At 
this time the velocities specified in the start.m file, Figure 4.1, are propagated through the 
entirety of the simulation, effectively giving the iRobot and obstacle agents a constant 
magnitude for their velocity vectors. Therefore there is only a need to calculate any 
rotation that the velocity may incur. The position for the obstacles is fairly simple to 
obtain, because per the mission rules, they simply drive in a circle.  

Ԧ݋ = ൤݇௥௔ௗ cos(ݐݒ)
݇௥௔ௗ sin(ݐݒ)൨

݇௥௔ௗ represents the desired radius of the circle the obstacles will traverse, and ݒ 
represents the velocity of the obstacle. 
 The trajectories of the iRobots are dependent on the position of the aerial robot, 
the time, and whether or not it is colliding with one of the obstacles. Figure 4.3 shows the 
logic used to determine the direction of travel for each time stamp. Per the mission rules, 
every five seconds the iRobot trajectory will change randomly up to 20° clockwise, and 
every 20 seconds it will reverse its trajectory. If the collision class has determined that the 
aerial robot has made contact with the top of the iRobot, then its trajectory will be altered 
by 45° clockwise. The velocity vector is rotated using a standard rotation matrix 

ܴ = ൤cos(ߠ) − sin(ߠ)
sin(ߠ) cos(ߠ) ൨ (4.1)

Ԧ௧ାଵݒ = ܴ ∗  Ԧ௧ݒ
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Θ is the amount the iRobot is rotated clockwise as discussed above and shown in Figure 
4.3, and ݒԦ is the velocity of the iRobot. Over a single time increment the iRobot is 
assumed to have a constant velocity which makes the position easily calculated by 

Ԧ௧ାଵ݌ = Ԧ௧݌ +  ݐԦ௧ݒ
  .is the time increment since the last update ݐ Ԧ is the position of the iRobot and݌

 
Figure 4.3 Program Flow for iRobot trajectories 

Collision Detection Block 
 When the states are passed to the Collision Detection block, for loops are used to 
first check for aerial robot contact with any obstacles or iRobots, and then each iRobot is 
checked for collision with any obstacles or other iRobots. Refer to Figure 4.6 for the 
logical flowchart. Since each agent is cylindrical, the task of determining if a collision 
has been made is greatly reduced. All information needed to calculate collision with the 
aerial robot or obstacles are position vectors, radii, and heights, along with the aerial 
robots altitude. Let ݎԦ, ,Ԧݐ  Ԧ represent the aerial robot, iRobot, and obstacle's position݋ ݀݊ܽ
vectors, respectively. Let ݎ. ,ݏݑ݅݀ܽݎ .ݐ ,ݏݑ݅݀ܽݎ .݋ ݀݊ܽ  represent their radii, and ݏݑ݅݀ܽݎ
.ݎ ℎ݁݅݃ℎݐ, .ݐ ℎ݁݅݃ℎݐ, .݋ ݀݊ܽ ℎ݁݅݃ℎ  represent their respective heights. The aerial robot’s 
altitude is represented by ݎ.  If the aerial robot has made a collision with an .݁݀ݑݐ݅ݐ݈ܽ
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obstacle the distance in the ݔ,  plane between the center of the aerial robot and center of ݕ
the obstacle will be less than the sum of their radii, and the altitude of the aerial robot will 
be less than the height of the obstacle. 

Ԧݎ)݉ݎ݋݊ − (Ԧ݋ < .ݎ ݏݑ݅݀ܽݎ + .݋ .ݎ & ݏݑ݅݀ܽݎ ݁݀ݑݐ݅ݐ݈ܽ < .݋ ℎ݁݅݃ℎݐ 
 If a collision with an obstacle is detected, the collision detection class notifies the 
referee class, which stores the state of the mission at time of collision and then ends the 
mission immediately. A basic collision of the aerial robot or obstacle with an iRobot can 
be calculated the same way, but the addition of the front bumper and control magnet 
make it necessary to determine where the contact is made with the robot to properly 
adjust the velocity vector. Figure 4.4 shows the logical flow of how the aerial robot can 
control an iRobot.  
 To determine if the aerial robot has made contact with the top of the iRobot the 
following equation is used,  

Ԧݎ൫݉ݎ݋݊ − Ԧ൯ݐ < .ݎ ݏݑ݅݀ܽݎ + .ݐ .ݎ & ݏݑ݅݀ܽݎ ݁݀ݑݐ݅ݐ݈ܽ = .ݐ ℎ݁݅݃ℎݐ 
When this is true the iRobot's velocity vector is rotated 45° clockwise using Equation 
(4.1). However if the aerial robot has descended lower than the height then a collision has 
been made and it must be determined if the front bumper has made contact or some other 
area of the iRobot. Since the velocity vector, ݐԦሶ, of the iRobot always points in the forward 
direction, it can be used to represent the orientation of the agent. ݎԦ −  Ԧ produces a vectorݐ
pointing directly from the iRobot to the aerial robot. By taking the correlation of these 
two vectors, the cosine of the angle between them, cos(߰), can be found. Since the 
bumper traverses the circumference of the iRobot, its entirety can be represented by an 
interval of angles with endpoints at the edge of the bumper, ߶. By comparing cos (߰) and 
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 it can be determined if the aerial robot is in contact with the front bumper or some ,߶ݏ݋ܿ
other portion of the iRobot. 

|cos (߰)| > cos (߶) (4.2)

cos(߰) = ൫ݎԦ − Ԧ൯ݐ ⋅ Ԧሶݐ
หݎԦ − Ԧหݐ ቚݐԦሶቚ  

The bumper covers the front half of the circumference of the iRobot, or 90° in both 
directions from the front, ߶ = గ

ଶ. Refer to Figure 4.5. Since the cosine function decreases 
from 1 to 0 as the angle moves from 0° to േ90°, a larger correlation value indicates the 
aerial robot being positioned toward the front of the iRobot, hence the greater than sign in 
equation (4.2). When it is determined that the aerial robot has indeed made contact with 
the front bumper, the iRobot's velocity vector is rotated 180. 

Figure 4.4 Program Flow for Aerial Robot Control of the iRobot 

 If it has been determined that the aerial robot has bumped the iRobot somewhere 
other than the magnet or front bumper, then a direct translation of the iRobot is applied, 
analogous to what would happen if a crash were to actually happen in the real world. In 
order to make this happen, first our Rotation matrix needs to be extended to a 
Homogeneous Transformation matrix, ܪ that includes both Rotations, ܴ, and 
Translations,ܶ. 
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ܪ = ቂܴ  ܶ  0  1 ቃ
Ԧ௧ାଵ݌ = ܪ ∗  Ԧ௧݌

 matrix with ܴ being the rotation matrix from equation (4.1), and ܶ is a 2x1 3ݔis a 3 ܪ
column vector to represent a translation. In the case of a contact with the iRobot not 
involving either of its control mechanisms there are no rotations and ܴ just becomes the 
identity matrix, ܫ. To determine the magnitude of the translation the physical overlap 
between the aerial robot and iRobot is used, and the direction is pointed directly away 
from the aerial robot.  

ܶ = ቀݎ. ݏݑ݅݀ܽݎ + .ݐ ݏݑ݅݀ܽݎ − Ԧݐ൫݉ݎ݋݊ − Ԧ൯ቁݎ ቆ Ԧݐ − Ԧݎ
หݐԦ − Ԧหቇݎ

Once the appropriate ܪ matrix is calculated, it is returned to the iRobot agent class so that 
the globTran property can be updated to represent the new position and orientation. 

Figure 4.5 Correlation between iRobot Front Bumper and Quad Position 
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Figure 4.6 Program Flow for Collision Detection Block 
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 Finally the iRobots are checked for collision with any other iRobots or any of the 
obstacles. This is performed in the exact same way as the aerial robot was checked, with 
the exclusion of the magnetic control on the top. Because all obstacles and iRobots are 
ground robots, no heights or altitudes are needed. Whether the agents are within each 
other’s radii and whether the iRobot has made contact with the front bumper or not are 
the only parameters that need to be considered. Calculating rotation and translations 
follow the same logic as above; if the front bumper of the iRobot is hit reverse direction, 
and if not, simply bump the iRobot over. 
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 CHAPTER FIVE
Hardware Progress 

 Significant progress has been made on the hardware implementation, however, 
there is still much left to accomplish before the UAV will be competition ready. The 
work load was divided into 3 phases: give the UAV control and vision to track one 
iRobot, give the UAV control and vision to track more than one iRobot and avoid 
obstacles, and then give the UAV mission level decision making capabilities along with 
safety features required by competition guidelines. If time permits we would like to 
embed all developed algorithms onboard the UAV, however we use a telemetry unit to 
communicate with the UAV and do all processing on a ground computer at the moment. 
Having the algorithms embedded on the UAV is not pertinent for the competition. 
Although phase 1 is not complete, it is all but complete, and while working on phase 1 
some of the required algorithms for future phases were also implemented. In this chapter 
our UAV will be introduced along with details of our progress, and ideas as to the next 
steps needed to move forward. 
 When running the UAV simulation, it was assumed that all required data had been 
acquired by the sensors of the system and was readily available to the UAV. 
Unfortunately it is not that easy when dealing with the hardware implementation. In order 
to acquire the states of the target and obstacles in the field, computer vision algorithms 
have to be implemented. While acquiring data in successive time frames a memory block 
has to be built to give the UAV a sense of its surroundings wider than the camera view, 
and to allow for localization of itself. The UAV firmware and its communication 
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software also present a learning curve to getting the UAV to respond to the developed 
guidance algorithm. With these considerations in mind, the Senior Design team at Baylor 
was hired to research UAV’s and select one appropriate for competing in the IARC. 
Based on high payload capabilities for carrying required telemetry and video peripherals, 
optimum performance, and open source firmware, their conclusion was that 3D Robotic’s 
X8 would be the best candidate to complete the competition. 

3D Robotic’s X8 
 The X8 is called so because it is in the configuration of an X configured 
quadrotor, but is has 8 rotors total, one on top and one on bottom for every one rotor that 
a true quadrotor has. Refer to Figure 5.1 to see the configuration. The rotor pairs spin 
opposite direction which gives the X8 redundancy in the controllability of its yaw 
position, and a boost in performance from the added propulsion from an extra set of 
rotors. Each motor has its own electronic speed control (ESC) to maximize motor 
performance while tracking an input as shown in Figure 5.2. It can carry up to a 1.7 lb. 
payload, and fly for up to 15 minutes [33].  

Figure 5.1 X8 from 3D Robotics 
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Figure 5.2 Electronic Speed Controllers 

 The X8 comes with a Pixhawk autopilot, a second generation to the PX4. The 
Pixhawk comes equipped with its own inertial measurement unit (IMU), microprocessor 
and backup microprocessor, and multiple interface connections for peripherals. In its 
entirety it has the following. 

 Microprocessor:  
 32-bit STM32F427 Cortex M4 core with FPU 
 168 MHz/256 KB RAM/2 MB Flash 
 32 bit STM32F103 failsafe co-processor 

 
 Sensors (Stock sensors and GPS/Compass – we added an ultrasonic range sensor): 

 ST Micro L3GD20 3-axis 16-bit gyroscope 
 ST Micro LSM303D 3-axis 14-bit accelerometer / magnetometer 
 Invensense MPU 6000 3-axis accelerometer/gyroscope 
 MEAS MS5611 barometer 
 3DR GPS and compass module w/ antenna, noise regulations, EEPROM 

and case 
 

 Interfaces: 
 5x UART (serial ports), one high-power capable, 2x with HW flow 

control 
 2x CAN 
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 Spektrum DSM / DSM2 / DSM-X® Satellite compatible input up to DX8
(DX9 and above not supported)

 Futaba S.BUS® compatible input and output
 PPM sum signal
 RSSI (PWM or voltage) input
 I2C®
 SPI
 3.3 and 6.6V ADC inputs
 External micro USB port

As add-ons, we purchased 3D Robotics’ Mini high resolution 1/3" Sony Super HAD 
Color CCD 520TV line camera to give the X8 vision, and their self-made 915 MHz 
radios to allow the X8 to communicate with a ground station computer. Refer to Figure 
5.3. 

 (a) Autopilot Assembly  (b) Motor Assembly 
Figure 5.3 X8 Electronic Components 

Computer Vision 
 To give the UAV vision we used a Python version of openCV. Links to 
documentation and install files can be found in the appendix section OpenCV on page 
119. The first type of vision we wished to give the UAV was the ability to see an iRobot 
directly below it with its downward facing camera. To do this we considered the iRobot 
as a simple circle and through setting thresholds on noise and the radius of the iRobot we 
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were able to use a Hough Transform to consistently get detection of multiple iRobots. 
Refer to Figure 5.4 for a code snippet showing the function and the parameters use for 
noise filtering. Through experimentation we found these parameters were required for an 
optimal detection rate with minimal false detections.  

 
Figure 5.4 Circle Detection with Hough Transform 

 OpenCV packages the Hough Transform into one nice function, but inside the 
function many operations are occurring that a user should know about in order to 
properly adjust parameters and maximize performance. First, the video frame must 
change color spaces to a gray scale image. Then the frame is transformed with a Canny 
edge detection algorithm which transforms grayscale frames into black and white images 
where edges are white and the background is black. In the edge detection process, the 
derivative of each pixel’s color is taken with respect to its position in both the x and y 
directions. In a gray scale image, pixels on edges have higher derivatives than pixels 
away from images so a threshold can be used to determine if a pixel should be white or 
black. However, noise tends to have a higher derivative; therefore a band pass filter must 
be used rather than simply a high pass filter. This upper noise threshold is what is being 
set by the cannyUpperThresh parameter in the Hough Transform [34] 
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 Once the edges have been detected, the Hough Transform algorithm can be 
applied. Figure 5.5 illustrates the algorithm. From each edge lines are projected normal to 
the edge which give each pixel it passes through a weight. If the lines are weighted at 1 
for example, then any pixel that has a line going through it will be weighted one, and any 
pixel lands where lines cross will have a weight equal to the number of lines crossing the 
pixel. Since the properties of circle make lines projected inward and normal to its surface 
cross the center of the circle, the centers of circles are where the highest weighted pixels 
will be [34]. To account for noise, the threshold with which the transform will detect a 
circle can be set by the centerThresh parameter, and a minimum distant can be set which 
governs how far apart two detections must be in order to be considered two circles. Then 
the radii of the detected circles can be restricted as a method to extract a desired circle 
from the list of detected circles, like an iRobot.  
 The feed from the onboard camera is transmitted to a computer on the ground 
through its own dedicated telemetry unit. Therefore, we can process the images on the 
computer and send control commands back in parallel.  
 To prepare for the competition, we needed to be able to handle detecting more 
than one iRobot at a time. We also needed to consider the fact that the X8 would only be 
equipped with a forward facing and a downward facing camera at the time of the 
competition, therefore it would not be able to see the entire competition field at all times. 
Lastly, the Hough Transform method produces both noisy measurements and false 
detections. 
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Figure 5.5 Hough Transform Algorithm 

 The specific algorithms needing developed were the ability to remember what 
iRobots were detected and where for a period of time, the ability to match detected 
iRobot states in successive time frames with iRobot states in the memory block, the 
ability to filter successive noisy measurements into a precise state measurement, and the 
ability to forget states that are products of false detection. The code to produce these 
abilities is too long to provide snippets here so the code in its entirety has been provided 
in the appendix section Multiple iRobot Detection and Memory Block on page 108.  
 We defined a class, Mem, which contained a block of memory for the states of the 
iRobot, a threshold for determining whether new detections were existing in the memory 
block already or if they were new iRobots, a method for correlating new detections with 
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the states in the memory block, and kalman filter methods to filter noisy measurements 
and make predictions on existing states in the memory block with no new detections. 
 To determine if a newly detected iRobot was already in the memory block we 
determined the norm of the vectors pointing from the iRobot to each element in the 
memory block and compared this to a predefined threshold. 

࢚)݉ݎ݋݊ − (࢏࢓ ≤ ℎ (5.1)
 represents each state vector in the memory ࢏࢓ ,is the state vector of the iRobot detected ࢚
block, and ℎ represents a predefined threshold based on the shutter rate of 50 Hz of the 
camera [35]. If (5.1) is true then ࢏࢓is updated with ࢚. If it is not true for all i then the 
iRobot is considered a new detection with no previous detections and added to the end of 
the memory block. In the competition there will only be 10 iRobots, so the memory block 
is capped at 10 to reduce the probability of a false detection entering the memory block as 
time passes. After a period of time, if no new measurement is made for a particular state 
in the block then the track is considered a noise track and dropped from the block to 
provide room for a positive detection. 
 As measurements come in from the camera they are passed through a kalman 
filter to remove any noise from successive measurements. The estimate of the kalman 
filter is what is used as the true detection of the iRobot. Once the state has been passed 
through the kalman filter, the same filter can be used to predict the state of the iRobot in 
the event of a failed detection. This will give the UAV a sense of its surroundings for a 
period of time after the iRobot has gone out of view of the camera. This sense of 
surrounding will get more inaccurate as time passes without a new detection. This idea, 
along with the time limit set to decay noise out of the memory block is the heuristic 
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intended to be used in developing the control for the yaw of the UAV. This controller has 
yet to be developed.  

Control Software 
 To control the UAV we had to establish a communication loop with that allows us 
to both receive state parameters from the UAV and send control commands back. The 
position and velocity of the UAV can be determined through the camera feed, but for 
higher accuracy, data coming from the inertial measurement unit will also be taken and 
fused with the camera using a kalman filter. 
 The protocol used for communication with UAV’s that have the ardupilot 
firmware is called MAVLink. Documentation on the structure of the protocol can be 
found by following the link on page 119. There is also a class of Python functions called 
pymavlink that the MAVLink user community has developed as a user friendly wrapper 
to MAVLink. When the functions are called, they invoke packaging and sending 
functions that structure the data according to the protocol and sends it to the UAV. Before 
any communication with the UAV can happen, a connection needs to be established and 
the baud rate defined using the function mavlink_connection(Port,baud=k), where Port is 
the COM port number the radio is connected to obtained from device manager in 
windows, and k is the baud rate that the radio is set to; usually 57600. To get states from 
the inertial measurement unit there is a set of param_fetch_* functions. To see the code 
implemented to fetch parameters refer to Fetch Parameters from UAV on page 112. Table 
5.1 shows experiments performed to determine the lag time from the requesting 
parameters to receiving parameters. It turns out that the communication link from the 
computer to the UAV is slower than desired. The lag from both the parameter telemetry 



77 

unit and the camera telemetry unit is a reason to want to obtain both measurements and 
try to merge the data.  

Table 5.1 Average Time to Receive Parameters 
Timeout (s) Avg params received Avg time (s) Trials
0 0.77 0.060050213 200
0.1 5.005 0.196600499 200
0.2 5.825 0.18172945 200
0.3 5.915 0.206181965 200
0.4 5.985 0.200707571 200
0.5 5.895 0.308520924 200
0.6 5.83 0.387252246 200
0.7 5.82 0.398728337 200
0.8 5.91 0.371041759 200
0.9 5.895 0.416568048 200
1 5.84 0.564434116 150
Total Avg 5.32372093 0.293088986 2150

 Once we have information from the UAV we will want to adjust its states 
according to our control laws. We control the UAV by sending reference commands for 
attitude angles to the rc override ports. There are 8 total ports on the Pixhawk that can be 
used for commands via the r_channels_override_send function. Channel 1 controls the 
pitch, channel 2 controls the roll, channel 3 controls the throttle, and channel 4 controls 
the yaw. The channels are pwm which usually operate between 1165 pwm and 1600 
pwm. These numbers can be set, but going lower than 1165 will cause the throttle safety 
to engage and leave the UAV stuck in land mode. A linear mapping is made between the 
minimum and maximum rc channel values and the minimum and maximum angles. Each 
angle will have a min and max value in the parameters. For instance YAW_MAX can be 
seen by receiving all the parameters, get_all_params. Each channel also has an 
RC_TRIM value that acts as neutral. It would normally be set to the midpoint of the min 
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and max on the channel and be used to represent an angle of zero. Since the throttle 
should never be set to zero in flight, the trim is set low and used as a safety feature to 
land the UAV if it is reached. With the linear mapping from pwm to radians in place, the 
velocity controller from our simulation can be used to set the desired angel. For test code 
used to test the rc override channels refer to the appendix on Motor Control on page 114. 
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 CHAPTER SIX
Results 

 To show performance on our guidance algorithm we use the idea of comparing 
proportional navigation coupled with potential fields and just potential fields alone. The 
performance metric we utilize is the time to contact with the target, while insuring no 
obstacles are contacted. A monte carlo style of simulation is developed to test the 
algorithms in many scenarios. We will also show how gains were found for our linearized 
UAV model and show simulations of the performance of both the attitude controller and 
the velocity controller. Finally, we will demonstrate the guidance algorithm coupled with 
the model itself in a 3 dimensional environment. 

Guidance Algorithm 
 To set up an initial test environment for the guidance algorithm a square area of 
obstacles were simulated. The square area consists of 49 obstacles with a radius of 1 
meter, evenly spaced at 5 meters in both the x and y directions. First a particular scenario 
is chosen where the target moves along the top of the obstacle square from the west to the 
east, and the UAV is placed at the origin. Figure 6.1 demonstrates the scenario with the 
simple pursuit algorithm for tracking, along with potential fields for obstacle avoidance. 
As expected the UAV consistently heads directly toward the target, only veering off its 
course to avoid obstacles. With this algorithm it takes the UAV a total of 191.7 seconds 
to rendezvous with the moving target. Figure 6.1 shows a time stamp at every 20 seconds 
to add a time component to the path for easy understanding of what is going on. At the 
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actual time of contact, a black asterisk is displayed to show where, and the time of 
contact is mentioned towards the bottom of the figure, along with the legend. This format 
is the same for Figure 6.1-Figure 6.4 where both algorithms are shown with and without 
the optimizing factor applied to the repelling vector. 

Figure 6.1 Pursuit Algorithm with Potential Fields 

 Notice that the path taken by the UAV contains large radial portions around the 
obstacles. We added the optimization scaling factor to the algorithm to see how it may 
impact the effectiveness of a simple pursuit algorithm. Figure 6.2 depicts the path with 
this added feature. As expected the radii of the obstacle avoidance portions of the path are 
reduced to allow the UAV to take a shorter overall path to the target. By adding the 
optimization factor, the UAV reduced its time to rendezvous by 6.5 seconds to 185.2 
seconds.  
 The proportional navigation was then tested in the same scenario as the pursuit 
algorithm. Figure 6.3 shows this scenario. Notice the UAV takes almost a straight path to 
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the target, only veering off course in order to avoid obstacles. Without any optimized 
repelling vector, the proportional navigation algorithm still reduces the time to contact 
from the pursuit algorithm by over 20 seconds to 162.25 seconds.  

Figure 6.2 Pursuit with Optimize Repelling Function 

 Lastly, Figure 6.4 shows the scenario simulated with the proportional navigation 
algorithm and the repelling vector optimized. In this particular case the optimization only 
provides a minimum boost in performance when compared to the pursuit algorithm. We 
were able to gain an additional 1.5 seconds with the optimized algorithm. Although the 
time is minimal, the extra smoothness delivered from the algorithm puts less stress on the 
control structure to make fast adjustments and is therefore still a useful feature. 
 To make it easier to compare the 4 paths taken by the UAV, they have been 
casted together onto one plot in Figure 6.5. It is easier to see that optimized vector does 
indeed provide a smoother path for both algorithms. To be able to quantify the 
performance, we used the energy function developed by ܷ௔௥௧. The faster this function is 
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minimized directly correlates with how fast the UAV reaches the target. Figure 6.6 shows 
the 4 algorithms’ energy functions plotted with respect to time.  

 
Figure 6.3 Proportional Navigation Algorithm with Potential Fields 

 
Figure 6.4 Proportional Navigation with Optimized Repelling Function 
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Figure 6.5 All Four Algorithms Together 

Figure 6.6 Energy of Four Algorithms 

 The sudden increases in energy are from the UAV having to avoid obstacles, and 
therefore momentarily losing ground on the target. It’s interesting to see how the pursuit 
algorithms look superior to the proportional navigation algorithms upon first inspection. 
Since the UAV is pointed directly at the target, the closing velocity is much faster at the 
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start of the simulation, which decreases the energy function rapidly. Closer inspection 
shows that once the UAV has reached the targets path and is caught in a tail chase, it 
dissipates energy slower. For this reason, its energy function levels out while the 
potential field energy function decreases at a steady rate until the energy is minimized. 
Figure 6.7 shows Figure 6.6 zoomed in at 140 seconds. Notice that just after 120 seconds 
the proportional navigation algorithms overtake the pursuit algorithms. From this time to 
when the energy functions are minimized, we can see the 20 second gain that the 
proportional navigation techniques provide. 

 
Figure 6.7 Zoomed Graph of Energies 

 After obtaining favorable results in our initial test scenario, we decided to expand 
the test to include a number of scenarios. To test a multitude of scenarios, we expanded 
the field to 100 X 100 meters. We tested performance by varying the number of obstacles 
in the field. For each set of obstacles, the course was ran 50 times, while perturbing the 
initial position of the UAV down the x axis by 2 meters for each trial. For a depiction of 
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this refer to Figure 6.8. Once the 50 scenarios are ran for both potential fields and 
potential fields combined with proportional navigation, the number of objects in the field 
is changed and another 50 scenarios are ran.  

Figure 6.8 Test Scenario Setup 

 A total of 1200 scenarios were ran, 600 with potential fields and 600 with 
potential fields combined with proportional navigation. Figure 6.9 shows the time to 
contact with the potential field method verses the time to contact with the combined 
method. A line with a slope of 1 is plotted as a reference. Any trials that resulted in the 
both algorithms performing the same will land on this line. If the combined law performs 
better, the trial will be plotted below the line, and if the potential field theory alone 
performs better, the trial will be plotted above the line. The overwhelming majority of the 
trials turned out to have a better performance using the combined law method we 
developed.  



 

86 
 

 
Figure 6.9 Comparison of Time to Contact 

 To quantify the increase in performance of the combined method, we took each 
data point and calculated the percent difference. 

݂݌ − ݊݌
݂݌ ∗ 100 

 is the data collected ݂݌ is the data collected using just the potential field method, and ݂݌
using the combined method. Plotting the data in a histogram shows that the combined 
algorithm gives a 15%-25% increase in performance. Refer to Figure 6.10.  
 All data collected from a respective obstacle configuration was then averaged, and 
the mean time to contact was compared to the density of obstacles in the field. Refer to 
Figure 6.11. As expected, as the density of the obstacles increase, the average time to 
contact also increases. The average time to contact is still improved roughly 20% over the 
domain of densities. 
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Figure 6.10 Percent Difference of Algorithm Performances 

Figure 6.11 Mean Time to Contact by Density of Obstacles 
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UAV Model 
 To implement the model, gains were searched for and found using a simple 
particle swarm optimization search, PSO. The basic idea of PSO is to create possible 
solutions to the search either randomly or by some other method, and treat them as if 
individually they are simpletons that follow a simple rule or two, with the hope that the 
group as a whole will accomplish a complex task like search. In this search we set the 
velocity of the individual agents by 

௜ݒ = ܿଵݎଵ(ܤܩ − ௜ܵ) + ܿଶݎଶ(ܲܤ௜ − ௜ܵ) 
where ܿଵ, ܿଶ are the chosen by the designer as a maximum step size for the agent. Care 
must be taken to choose an appropriate step size because an agent may get stuck in a 
local minimum if the step size is too small, or jump over the global maximum if the step 
size in too large. ݎଵ,  ଶ are both random numbers between 0 and 1. ௜ܵ is the individualݎ
agent, ܲܤ௜ is the personal best solution that the agent has found as of yet, and ܤܩ is the 
best solution that any agent has found as of yet. In essence the algorithm drives the agents 
toward the global best, while also driving them to their personal best to see if they can do 
better than the current global best. Table 6.1 shows the final solutions found by the PSO. 
 To be more specific the gains for the attitude controller only were found by the 
PSO, as the gains for the velocity controller were simple to find manually. Figure 6.12 
shows the control commands and the response from ߶,  and ߰. The coupling of the ,ߠ
motors to each orientation angle becomes obvious when plotting the control commands. 
While each angle individually performs well, each angle is also perturbed from its steady 
state by other angles undergoing a change in control reference. These perturbations have 
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been circled in the figure. The three graphs are all relevant to the same time axis as the 
bottom figure.  

Table 6.1 Controller Gains found with PSO 
Gain Value Description 
݇௣,థ 151.2 Proportional gain for the rotation about x 
݇ௗ,థ 10.2 Differential gain for the rotation about x 
݇௣,ఏ 151.2 Proportional gain for the rotation about y 
݇ௗ,ఏ 10.2 Differential gain for the rotation about y 
݇௣,ట 216.4 Proportional gain for the rotation about z 
݇ௗ,ట 28.3 Differential gain for the rotation about z 
݇௣,௫ .025 Proportional gain for the velocity along x 
݇௣,௬ .025 Proportional gain for the velocity along y 
݇௣,௭ .5 Proportional gain for the velocity along z 

Figure 6.12 Attitude Control of UAV 

 Notice that each circled perturbation is paired with a control perturbation from 
one of the other angles. This, along with the errors in large perturbations due to 
linearizing the model forced us to restrict ߶ and ߠ to less than a గ

଼ perturbation from 0. 



90 

Furthermore, ߰ was able to reach the full 2ߨ circumference as is necessary, but the 
reference command can only perturb is at గ

଼ increments from its current position. 
  After the attitude controller was working efficiently, the velocity controller had to 
be tuned also. Considering that the controller is only a proportional controller with 3 
gains, it was easily tuned by manual experimentation. Figure 6.13 shows the performance 
of the velocity controller in the ݔ,   .directions ݖ and ,ݕ

Figure 6.13 Velocity Control of UAV 

 Compared to the attitude controller, the velocity controller has lag when first 
perturbed. Anytime the UAV is tilted in order to produce a velocity in either the x or y 
directions, it begins lose altitude briefly until the motors can catch up. The bottom figure 
is the z direction. Notice, like the attitude controller, the z component is coupled to the x, 
y component such that any controller commands given to the x and y components cause a 
momentary perturbation of the z velocity component. Furthermore, if the velocity is 
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controlled too quickly, the UAV becomes unstable. By experiment it was found that the 
UAV model could travel at a max of about 6 m/s, or about 11 mph. 

Combined Algorithm on Quad Model 
 The combined algorithm was placed on the linearized UAV model. Refer to 
Figure 6.14 and Figure 6.15 to see an example with one obstacle to avoid, and an 
example with multiple obstacles. The UAV successfully avoids the obstacles and 
rendezvous with the target as expected. 

Figure 6.14 Quad Model with One Obstacle 

 The desired altitude when in the far field from the target was set to 2 meters. The 
UAV is successfully guided by the combined law to 2 meters while simultaneously 
taking an optimum path to the target, and taking obstacles into consideration. Once the 
UAV reaches the short field of the target, the artificial target position is moved back to 
the top of the target, and the combined law successfully guides the UAV back down to 
rendezvous with the target. 



 

92 
 

 
Figure 6.15 Quad Model with Multiple Obstacles 
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  APPENDIX A
Rotations 

 A detailed explanation of rotation matrices can be found in [54] and [55]. They 
are also well documented in many places online. They can also be derived from by 
considering them as a change of basis. They are of a class of matrices called special 
orthogonal matrices, ܱܵ(݊), where n is the dimension of the matrix. For our purposes we 
only need to know that they can be used to rotate a reference frame around a particular 
axis, and the properties of the matrix that are important for that purpose.  

Representing Frames with Rotation Matrices 
 Consider Figure A.1 where a point is placed at ܲ(ݔଶ, ,ଶݕ  ଶ) and we want aݖ
representation of the point in the standard Cartesian coordinate system, {ݔଵ, ,ଵݕ  ଵ}. Forݖ
simplification the point is in the ݔ,  plane in both coordinate systems. In both coordinate ݕ
systems the basis vectors are unit vectors.  The 2 reference frame has been rotated by ߰ 
about the z axis which would be pointing our of the page. We are looking for a matrix 
that will perform a transformation on ܲ to give a new set of coordinates that are a 
representation of ܲ in the 1 frame. By taking the projection of the 2 frame onto the 1 
frame we get 

ܴ = ൥
ଶݔ ⋅ ଵݔ ଶݕ ⋅ ଵݔ ଶݖ ⋅ ଶݔଵݔ ⋅ ଵݕ ଶݕ ⋅ ଵݕ ଶݖ ⋅ ଶݔଵݕ ⋅ ଵݖ ଶݕ ⋅ ଵݖ ଶݖ ⋅ ଵݖ

൩ = ൥cos(߰) − sin(߰) 0
sin(߰) cos(߰) 0

0 0 1
൩ 
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Figure A.1 Rotation about the Z Axis 

 Since this is a projection onto the 1 frame, we could use this matrix to transform a 
point given to us in the 2 frame to a representation of that point in the 1 frame.  

ଵ݌ =  ଶ݌ܴ
Similarly, if we want to rotate a set of points from the 2 frame to the 1 frame 

ଵ݌ = ଶଵ݌]ܴ …  [ଶ௡݌
where the superscripts represent the individual points.  
If we want to move from {ݔଵ, ,ଵݕ ,ଶݔ} ଵ} toݖ ,ଶݕ – ଶ} we would be rotating byݖ ߰. 

ܴ(−߰) = ൥cos(−߰) − sin(−߰) 0
sin(−߰) cos(−߰) 0

0 0 1
൩ = ൥ cos(߰) sin(߰) 0

−sin(߰) cos(߰) 0
0 0 1

൩ = ܴ(߰)் 

It’s is trivial to see that the inverse of a rotation is a rotation of equal magnitude in the 
opposite direction, or through an angle with equal magnitude and opposite signs. The 
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rotation in the opposite direction can be obtained through the transpose of the original 
rotation matrix, therefore 

ܴିଵ = ்ܴ 
In the section Equations of Motion on page 13 we want to represent points given in the Y 
configuration to points represented in the X configuration. This can be thought of as 
rotating the UAV ߰ = గ

ସ radians, or as rotating the reference frame ߰ = − గ
ସ radians. 

Which leads to our rotation matrix for ܴெ. 

ܴெ =
ێۏ
ێێ
ۍ cos ቀߨ

4ቁ sin ቀߨ
4ቁ 0

−sin ቀߨ
4ቁ cos ቀߨ

4ቁ 0
0 0 ۑے1

ۑۑ
ې

=
ێۏ
ێێ
ۍ 1

√2
1

√2 0
− 1

√2
1

√2 0
0 0 ۑے1

ۑۑ
ې
 

Using the same approach as rotating around the z axis, rotation matrices about the x and y 
axis can be found also. In summary the three rotation matrices are  

ܴ௭(߰) = ൥cos(߰) − sin(߰) 0
sin(߰) cos(߰) 0

0 0 1
൩ 

ܴ௬(ߠ) = ൥ cos(ߠ) 0 sin(ߠ)
0 1 0− sin(ߠ) 0 cos(ߠ)൩ 

ܴ௫(߶) = ൥
0 0 10 cos(߶) − sin(߶)
0 sin(߶) cos(߶) ൩ 

Representing Frames with Euler Angles 
 The orientation of a UAV represented in the earth frame may have to be rotated 
about all three axes. To handle this Euler angles are commonly used. Consider the UAV 
represented in the body frame, {ݔ௕ , ௕ݕ ,  ௕}, and we want the orientation in the earthݖ
frame, {ݔா , ாݕ ,  ா}. To obtain this representation we consider having two intermediateݖ
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frames, {ݔଵ, ,ଵݕ ,ଶݔ} ଵ}, andݖ ,ଶݕ  ଶ}. Then we set an order with which we will use ourݖ
rotation matrices to move through these frames, and we keep that order for all 
calculations. In this thesis we transform from {ݔ௕ , ௕ݕ , ,ଵݔ} ௕}, toݖ ,ଵݕ  ଵ} by rotating aboutݖ
the ݔ௕ axis. Then we go from {ݔଵ, ,ଵݕ ,ଶݔ} ଵ} toݖ ,ଶݕ  .ଵ axisݕ ଶ} by rotating about theݖ
Finally the {ݔா , ாݕ ,  ଶ axis. Theseݖ ா} representation is found by rotating about theݖ
rotations can be presented as one rotation matrix by left multiplying successive rotation 
matrices. 

ܴா = ܴ௭(߰) ∗ ܴ௬(ߠ) ∗ ܴ௫(߶) 
To save space we let cos(ߠ) = ܿఏ and sin(ߠ) =  .ఏݏ

ܴா = ቎
ܿటܿఏ ఏܿటݏథݏ − ܿథݏట థݏటݏ + ܿథݏఏܿటܿఏݏట టݏఏݏథݏ + ܿథܿట ఏܿథݏటݏ − ܿటݏథ−ݏఏ థܿఏݏ ܿథܿఏ

቏

Now any vector represented in the body frame can be represented in the earth frame by 
Ԧாݒ = ܴாݒԦ௕ 

Body Frame Angular Rates and Euler Angle Rates 
 To represent the change in Euler rates we cannot simply transform the body rates 
to the earth frame. This would represent the angular rates of the UAV with respect to the 
earth frame, but the Euler rates represent not only the earth frame, but also two 
intermediate frames. In our construction of the ܴா matrix, we used a combination that 
rotated first by ߶ around the x axis of the UAV body frame, and then by ߠ around this 
rotated intermediate frame, and then by ߰ around this second rotated intermediate frame 
to finally end up in the earth frame. We have to determine how to each of these angles 
change in their respective frames, relative to the angular rates in the body frame. 
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ቈ
቉ݎݍ݌ = ቎

1 0 00 ܿథ థ0ݏ థݏ− ܿథ
቏ ൥߶ሶ

00
൩ + ቎

1 0 00 ܿథ థ0ݏ థݏ− ܿథ
቏ ൥

ܿఏ 0 ఏ0ݏ− 1 ఏݏ0 0 ܿఏ
൩ ൥0

ሶߠ
0

൩

+ ቎
1 0 00 ܿథ థ0ݏ థݏ− ܿథ

቏ ൥
ܿఏ 0 ఏ0ݏ− 1 ఏݏ0 0 ܿఏ

൩ ൥
ܿట టݏ 0

టݏ− ܿట 0
0 0 1

൩ ൥
00ሶ߰ ൩  

This reduces to  

ቈ
቉ݎݍ݌ = ቎

1 0 ఏ0ݏ− ܿథ థܿఏ0ݏ థݏ− ܿథܿఏ
቏ ቎

߶ሶ
ሶߠ
߶ሶ ቏ 

Then by inverting this equation, Equation (2.10) is obtained. 

቎
߶ሶ
ሶߠ
߶ሶ ቏ =

ێۏ
ێێ
1ۍ ఏݏథݏ

ܿఏ
ܿథݏఏ

ܿఏ0 ܿథ థݏ−
0 థݏ

ܿఏ
ܿథ
ܿఏ ۑے

ۑۑ
ې

ቈ
 ቉ݎݍ݌
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  APPENDIX B
Feedback Linearization 

 To linearize the state space model a truncated Taylor Series is used. If ݂ =
,ଵݔ)݂ ଶݔ …  ௡) is a nonlinear equation, then ݂ can by approximated by a linear equationݔ
about an operating point, ൛ݔଵబ , ଶబݔ , … ,  ௡బൟ byݔ

݂ ≈ ݂൫ݔଵబ , ଶబݔ , … , ௡బ൯ݔ + ෍ ߲݂൫ ଵబ , ଶబݔ , … , ௡బ൯ݔ
௜ݔ߲

൫ݔ௜ − ௜బ൯ݔ
௜

For our model we choose an operating point based on the UAV hovering in place, 
{߱௜ = ߱௛, ߰ = ߰, ݌ = 0, ݍ = 0, ݎ = 0, ߠ = 0, ߶ = 0. Due to the nature of the 
dependency of the UAV velocity on the yaw angle, ߰, the operating point is left floating 
for better performance. 

Angular Acceleration 
Here we’ll copy equation (2.8) of our state model. 

ષሶ = ଵିܬ

ێۏ
ێێ
ۍێ

1
√2 ி[(߱ଶଶܭܮ + ߱ଷଶ) − (߱ଵଶ + ߱ସଶ)]
1

√2 ி[(߱ଷଶܭܮ + ߱ସଶ) − (߱ଵଶ + ߱ଶଶ)]
ெ൫(߱ଵଶܭ + ߱ଷଶ) − (߱ଶସ + ߱ସସ)൯ ۑے

ۑۑ
ېۑ

Handling each element of ષሶ  independently, {݌ሶ , ሶݍ ,  ሶ}, the truncated Taylor series is usedݎ
to establish a linearized approximation of (2.8).  
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,ሶ(߱ଵ݌ ߱ଶ, ߱ଷ, ߱ସ)

≈ ,ሶ(߱௛݌ ߱௛) + ,ሶ(߱௛݌߲ ߱௛)
߲߱ଶ

(߱ଶ − ߱௛) + ,ሶ(߱௛݌߲ ߱௛)
߲߱ସ

(߱ସ − ߱௛)

+ ,ሶ(߱௛݌߲ ߱௛)
߲߱ଷ

(߱ଷ − ߱௛) + ,ሶ(߱௛݌߲ ߱௛)
߲߱ଵ

(߱ଵ − ߱௛)

= ிܭܮ
௫௫ܬ 2√

൫2߱௛(߱ଶ − ߱௛) − 2߱௛(߱ସ − ߱௛) − 2߱௛(߱ଵ − ߱௛)

+ 2߱௛(߱ଷ − ߱௛)൯ = 2߱௛ܭܮி
௫௫ܬ 2√

൫(߱ଷ + ߱ଶ) − (߱ଵ + ߱ସ)൯ 

ሶݍ (߱ଵ, ߱ଶ, ߱ଷ, ߱ସ)

≈ ሶݍ (߱௛, ߱௛) + ሶݍ߲ (߱௛, ߱௛)
߲߱ଶ

(߱ଶ − ߱௛) + ሶݍ߲ (߱௛, ߱௛)
߲߱ସ

(߱ସ − ߱௛)

+ ሶݍ߲ (߱௛, ߱௛)
߲߱ଷ

(߱ଷ − ߱௛) + ሶݍ߲ (߱௛, ߱௛)
߲߱ଵ

(߱ଵ − ߱௛)

= ிܭܮ
௬௬ܬ2√

൫2߱௛(߱ସ − ߱௛) − 2߱௛(߱ଶ − ߱௛) − 2߱௛(߱ଵ − ߱௛)

+ 2߱௛(߱ଷ − ߱௛)൯ = 2߱௛ܭܮி
௬௬ܬ2√

൫(߱ସ + ߱ଷ) − (߱ଵ + ߱ଶ)൯ 

,ሶ(߱ଵݎ ߱ଶ, ߱ଷ, ߱ସ)

≈ ,ሶ(߱௛ݎ ߱௛) + ,ሶ(߱௛ݎ߲ ߱௛)
߲߱ଶ

(߱ଶ − ߱௛) + ,ሶ(߱௛ݎ߲ ߱௛)
߲߱ସ

(߱ସ − ߱௛)

+ ,ሶ(߱௛ݎ߲ ߱௛)
߲߱ଷ

(߱ଷ − ߱௛) + ,ሶ(߱௛ݎ߲ ߱௛)
߲߱ଵ

(߱ଵ − ߱௛)

= ெܭ
௭௭ܬ

൫−2߱௛(߱ଶ − ߱௛) − 2߱௛(߱ସ − ߱௛) + 2߱௛(߱ଵ − ߱௛)

+ 2߱௛(߱ଷ − ߱௛)൯ = 2߱௛ܭெ
௭௭ܬ

൫(߱ଵ + ߱ଷ) − (߱ଶ + ߱ସ)൯ 

Consider the following relationships. 
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Δ߱థ = (߱ଶ + ߱ଷ)−(߱ଵ + ߱ସ) 
Δ߱ఏ = (߱ଷ + ߱ସ) − (߱ଵ + ߱ଶ) 
Δ߱ట = (߱ଵ + ߱ଷ) − (߱ଶ + ߱ସ) 

Now by direct substitution we obtain the linearized model used in this thesis. 

,ሶ(߱ଵ݌ ߱ଶ, ߱ଷ, ߱ସ) ≈ 2߱௛ܭܮி
௫௫ܬ 2√

Δωథ

ሶݍ (߱ଵ, ߱ଶ, ߱ଷ, ߱ସ) ≈ 2߱௛ܭܮி
௬௬ܬ2√

Δωఏ

,ሶ(߱ଵݎ ߱ଶ, ߱ଷ, ߱ସ) ≈ 2߱௛ܭெ
௭௭ܬ 

Δωట

We can further implement it as a state space model simply expressing the equations in 
matrix form. 

ષሶ ࢌࢋ࢘ ≈

ێۏ
ێێ
ێێ
ிܭܮ2߱௛ۍ

௫௫ܬ2√
0 0

0 2߱௛ܭܮி
௬௬ܬ2√

0
0 0 2߱௛ܭܮெ

௭௭ܬ ۑے
ۑۑ
ۑۑ
ې

቎
ΔωథΔωఏΔ߱ట

቏

Linear Acceleration 
For convenience equation (2.9) is copied here. 

rԦሷ = ൥
00−݃൩ + 1

݉ ܴா
ێۏ
ۍێ

00
ிܭ ෍ ߱௜ଶ

௜ ۑے
ېۑ

By substituting ܴா and simplifying we get the following. 

rԦሷ = ிܭ ∑ ߱௜ଶ௜
݉ ൥

థݏటݏ + ܿథݏఏܿటݏటݏఏܿథ − ܿటݏథܿథܿఏ
൩ − ൥

00−݃൩
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Now the truncated Taylor series will be applied to each element of ࢜ሶ ሷݔ} , , ሷݕ ,  ሷ}, to obtain aݖ
hybrid linearized model. It is considered a hybrid model because there will not be a set 
operating point for ߰. 

ሷݔ = ிܭ
݉ ቀ(߱ଵଶ + ߱ଶଶ + ߱ଷଶ + ߱ସଶ)൫ܿథݏఏܿట + థ൯ቁݏటݏ

ሷݔ (߱௛, ߰, 0) = 4߱௛ଶ
ிܭ
݉ (cos(0) sin(0) cos(߰) + sin(0) sin(߰)) = 0

෍ ,ሷ(߱௛ݔ߲ ߰, 0)
߲߱௜

(߱௜ − ߱௛)
௜

= 2߱௛ ෍ (cos(߰) sin(0)cos (0) + sin(0) sin (߰))(߱௜ − ߱௛) = 0
௜

 

ሷݔ߲ (߱௛, ߰, 0)
߲߶ (߶) = 4߱௛ଶ

ிܭ
݉ (− cos(0) sin(߰))(߶) = 4߱௛ଶ

ிܭ
݉ sin (߰)(߶)

,ሷ(߱௛ݔ߲ ߰, 0)
ߠ߲ (ߠ) = 4߱௛ଶ

ிܭ
݉ cos(߰) cos(0)cos (0) (ߠ) = 4߱௛ଶ

ிܭ
݉ cos(߰) (ߠ)

,ሷ(߱௛ݔ߲ ߰଴, 0)
߲߰ (߰ − ߰) = 0

Combining the terms leads to the linearized equation for ݔሷ . 
,߱)ሷݔ ߶, ,ߠ ߰) ≈ 4߱௛ଶ

ிܭ
݉ [ϕsin(߰) + θcos(߰)]

Now the equation for ݕሷ  is developed. 

ሷݕ = ிܭ
݉ ቀ(߱ଵଶ + ߱ଶଶ + ߱ଷଶ + ߱ସଶ)൫ݏటݏఏܿథ − ܿటݏథ൯ቁ

ሷݕ (߱௛, ߰, 0) = 4߱௛ଶ
ிܭ
݉ (sin(߰) sin(0) cos (0) − cos(߰) sin(0)) = 0

෍ ሷݕ߲ (߱௛, ߰, 0)
߲߱௜

(߱௜ − ߱௛) = 0
௜
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ሷݕ߲ (߱௛, ߰, 0)
߲߶ (߶) = −4߱௛ଶ

ிܭ
݉ (cos(߰) cos(0))(߶) = ௛ଶ߱ܥ4−] cos(߰)]߶

ሷݕ߲ (߱௛, ߰, 0)
ߠ߲ (ߠ) = 4߱௛ଶ

ிܭ
݉ (sin(߰) cos(0) cos (0))(ߠ) = ௛ଶ߱ܥ4] sin(߰)]ߠ

ሷݕ߲ (߱௛, ߰, 0)
߲߰ (߰ − ߰) = 0

Combining the terms leads to the linearized equation for ݕሷ . 
ሷݕ (߱, ߶, ,ߠ ߰) ≈ 4߱௛ଶ

ிܭ
݉ ߠ] sin(߰଴) − ߶ cos(߰଴)]

Finally the equation for ݖሷ is developed. 

ሷݖ = ிܭ
݉ ቀ(߱ଵଶ + ߱ଶଶ + ߱ଷଶ + ߱ସଶ)ܿథܿఏቁ − ݃

,ሷ(߱௛ݖ ߰, 0) = 4߱௛ଶ
ிܭ
݉ − ݃

෍ ,ሷ(߱௛ݖ߲ ߰, 0)
߲߱௜

(߱௜ − ߱௛) = 2߱௛
ிܭ
݉ ෍(߱௜ − ߱௛) = 2߱௛

௜
ிܭ
݉ ൥෍(߱௜) − 4߱௛

௜
൩

௜
 

,ሷ(߱௛ݖ߲ ߰, 0)
߲߶ (߶) = 0

,ሷ(߱௛ݖ߲ ߰, 0)
ߠ߲ (ߠ) = 0

,ሷ(߱௛ݖ߲ ߰, 0)
߲߰ (߰ − ߰) = 0

Combining the terms leads to the linearized equation for ݖሷ. 

,߱)ሷݖ ߶, ,ߠ ߰) ≈ 4߱௛ଶ
ிܭ
݉ − ݃ + 2߱௛

ிܭ
݉ ൥෍(߱௜) − 4߱௛

௜
൩ 

Now we consider the following two relationships. 
߱௛ଶ = ݉݃

ிܭ4
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4߱௛ + Δ߱௭ = ߱ଵ + ߱ଶ + ߱ଷ + ߱ସ = ෍ ߱௜
௜

 

Substituting these relationships into our linearized equations gives us the following. 
,߱)ሷݔ ߶, ,ߠ ߰) ≈ ݃[ϕsin(߰) + θcos(߰)] 

ሷݕ (߱, ߶, ,ߠ ߰) ≈ ߠ]݃ sin(߰଴) − ߶ cos(߰଴)] 
,߱)ሷݖ ߶, ,ߠ ߰) ≈ 2߱௛

ிܭ
݉ Δω୸ 

Our hybrid linearized state space model is represented as 

ሶ࢜ = ൦
(߰)݊݅ݏ݃ (߰)ݏ݋ܿ݃ 0

(߰)ݏ݋ܿ݃− (߰)݊݅ݏ݃ 0
0 0 2߱௛

ிܭ
݉

൪ ൥
߶
Δ߱௭ߠ

൩ 

Euler Rates 
 Now a linear model will be developed for the Euler angle’s rate of change. 
Equation (2.10) is copied here for convenience. 

દሶ =
ێۏ
ێێ
1ۍ ఏݏథݏ

ܿఏ
ܿథݏఏ

ܿఏ0 ܿథ థݏ−
0 థݏ

ܿఏ
ܿథ
ܿఏ ۑے

ۑۑ
ې

ષ 

We will now develop an approximate linear model by applying the truncated Taylor 
series expansion to the individual elements of દሶ , {߶ሶ , ሶߠ , ሶ߰ }. We start with ߶ሶ . 

߶ሶ ,ߠ) ,݌ (ݎ = ݌ + ݍఏݐథݏ + ܿథݐఏݎ 
߶ሶ (0) = 0 + sin(0) tan (0)(0) + cos(0) tan (0)(0) = 0 

߲߶ሶ (0)
݌߲ (݌) = (݌)(1) =  ݌

߲߶ሶ (0)
ݍ߲ (ݍ) = sin(0) tan(0) ݍ = 0 
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߲߶ሶ (0)
ݎ߲ (ݎ) = cos(0) tan (0)(ݎ) = 0

Combining the terms leads to the linearized equation for ߶ሶ . 
߶ሶ ≈  ݌

Now the equation for ߠሶ  is developed. 
,ߠ)ሶߠ ߶, ,݌ ,ݍ (ݎ = ܿథݍ −  ݎథݏ

ሶ(0)ߠ = cos (0)(0) + sin (0)(0) = 0 
ሶ(0)ߠ߲

ߠ߲ (ߠ) = ߠ(0) = 0
ሶ(0)ߠ߲

߲߶ (߶) = [− sin(0) (0) − cos(0) (0)]߶ = 0

ሶ(0)ߠ߲
݌߲ (݌) = ݌(0) = 0

ሶ(0)ߠ߲
ݍ߲ (ݍ) = cos(0)ݍ = ݍ

ሶ(0)ߠ߲
ݎ߲ (ݎ) = −sin (0)ݎ = 0

Combining the terms leads to the linearized equation for ߠሶ . 
ሶߠ ≈  ݍ

Finally the equation for ሶ߰  is developed. 
ሶ߰ ,ߠ) ߶, ,݌ (ݎ = థݏ

ܿఏ
ݍ + ܿథ

ܿఏ
ݎ

ሶ߰ (0) = tan(0) (0) + cos(0)
cos(0) (0) = 0

߲ ሶ߰ (0)
ߠ߲ (ߠ) = ൤ 1

cos(0)ଶ sin (0)(0) + 1
cos(0)ଶ cos(0) (0)൨ ݎ = 0
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߲ ሶ߰ (0)
߲߶ (߶) = ቈcos(0)

cos(0) (0) − sin(0)
cos(0) (0)቉ ߶ = 0 

߲ ሶ߰ (0)
݌߲ (݌) = ݌(0) = 0 

߲ ሶ߰ (0)
ݍ߲ (ݍ) = ቈsin(0)

cos(0)቉ ݍ = 0 

߲ ሶ߰ (0)
ݎ߲ (ݎ) = ቈcos(0)

cos(0)቉ ݎ =  ݎ

Combining the terms leads to the linearized equation for ሶ߰ . 
ሶ߰ ≈  ݎ

Putting the terms into vector form we have the following. 
દሶ ≈ ષ 

Summarized Modified State Model 
Putting all the sections of this appendix together we get a semi-linear state model 
summarized here. 

ሶ࢘ =  ࢜

ሶ࢜ = ൦
(߰)݊݅ݏ݃ (߰)ݏ݋ܿ݃ 0

(߰)ݏ݋ܿ݃− (߰)݊݅ݏ݃ 0
0 0 2߱௛

ிܭ
݉

൪ ൥
߶
Δ߱௭ߠ

൩ 

ષሶ ࢌࢋ࢘ ≈

ێۏ
ێێ
ێێ
ிܭܮ2߱௛ۍ

௫௫ܬ2√
0 0

0 2߱௛ܭܮி
௬௬ܬ2√

0
0 0 2߱௛ܭܮெ

௭௭ܬ ۑے
ۑۑ
ۑۑ
ې

቎
ΔωథΔωఏΔ߱ట

቏ 

દሶ ≈ ષ 
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  APPENDIX C
Python Code for Hardware Implementation 

iRobot Detection with Hough Transform 
# Authors:          Patrick Friudenberg(patrick_friudenberg@baylor.edu) # Organization:     Baylor University # Project:          IARC Avionics Research # Description:      Functions to detect iRobot as circles and returncenters.  #                      Tested 3DR Video/OSD System Kit # Date Created:     10/13/14  import numpy as np import cv2 import cv2.cv as cv import sys as sys  cap = cv2.VideoCapture(0)  while(True): 

# Capture frame-by-frameret, img = cap.read() if img == None:     cap.release()     cv2.destroyAllWindows() sys.exit('Error: Unable to connect video')
 # Convert BGR to Gray Scale  imgGray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)          # cv2.HoughCircles(grayscaleImg,DetectionMethod,dp=1,MinDistBetweenCenters,CannyUpperThresh,CenterDetectThresh,MinRad,MaxRad)     cannyUpperThresh = 50     centerThresh = 15 minRadius = 85 maxRadius = 87     minCenterDist = 2*minRadius     circles = cv2.HoughCircles(imgGray,cv.CV_HOUGH_GRADIENT,1,minCenterDist,param1=cannyUpperThresh,param2=centerThresh,minRadius=minRadius,maxRadius=maxRadius)  
# Draw circles on Image if circles != None:     for i in circles[0,:]:         cv2.circle(img,(i[0],i[1]),i[2],(255,255,255),2)print circles 



108 

       cv2.imshow('Camera View',img) 
k = cv2.waitKey(1) & 0xFFif k == 27:         break cap.release() cv2.destroyAllWindows()

 
Multiple iRobot Detection and Memory Block 

# Authors:          Patrick Friudenberg(patrick_friudenberg@baylor.edu) #                   Andres Bizzarri (andres_bizzarri@baylor.edu)# Organization:     Baylor University # Project:          IARC Avionics Research # Description:      Functions to detect multiple iRobots and place inMemory Block.  #                   Kalman filter applied to predict states of faileddetection  # Date Created:     11/23/14 import numpy as np import cv2 import cv2.cv as cvimport sys as sys import math as m 
 class Mem:     """ A class for a memory block with applicable methods@author: Patrick Friudenberg // Andres Bizzarri """ def __init__(self,size,minCenterDist):     self.state = 0; 

#---- Main Memory Block self.memBlock = np.zeros([size,3]) self.threshold = (minCenterDist)*(1.1)#--- Kalman Filter Blocks self.kalmen = [] self.kalmen_state = [] self.kalmen_process_noise = [] self.kalmen_measurement = []  self.kalmen_state_gain = [1,2]      def memoryCorr(self,circ):    """     correlates given circle with memory, returns its index         using min distance between circles to see if circle we're putting into memory is a new circle or the old one         using minimum distance of new circle vs all mem circles to seewhich one it most likely is         @author: Andres Bizzarri        """ 
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rowcount = 0index = 0 u = self.memBlock[0,0:3]b = circ - u mindist = m.sqrt(pow(b[0],2)+pow(b[1],2)+pow(b[2],2))         if self.state == 0:    #If memory is empty, Place new circle infirst index             self.memBlock[0,:] = circ            self.state = 1            return 0         elif self.state == 1:   #If 0 < memory < full, correlate energyof memory and cirlce                     #------ Find index of closest entity in memory to circle -----                             rowcount = 0    # Initialize temporary variablesindex = 0 u = self.memBlock[0,:] b = circ - u mindist = m.sqrt(pow(b[0],2)+pow(b[1],2))             for k in self.memBlock:       # Find index of closestcircle in memory                 if k[2] == 0:                    break else:           v = [(circ[0] - k[0]),(circ[1] - k[1]),(circ[2] - k [2])]           measdiff = m.sqrt(pow(v[0],2)+pow(v[1],2))if mindist >= measdiff:     mindist = measdiff         index = rowcount     rowcount += 1 if mindist > self.threshold: #Consider Circles outside
threshold as new circles                 index = rowcount                 self.memBlock[index,:] = circ         return index;  def kalmanManager(self,circ,index): 

"""         Class to manage the self.kalmen array of cv.kalman objects including          creating new kalman in the array; and correcting and predictingwith kalman         objects already in the array. The kalman array is managed visthe index         of the corresponding element in self.memBlock, and correctionis made         with the circ value.         @author: Andres Bizzarri // Patrick Friudenberg"""                        if len(self.kalmen) < index+1:  # Initiate new Kalman objectfor new self.memBlock entity             self.kalmen.append(cv.CreateKalman(4, 2, 0))             self.kalmen_state.append(cv.CreateMat(2, 1, cv.CV_32FC1))            self.kalmen_process_noise.append(cv.CreateMat(4, 1, cv.CV_32FC1)) 
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            self.kalmen_measurement.append(cv.CreateMat(2, 1, cv.CV_32FC1))             self.kalmen[index].transition_matrix[0,0] = self.kalmen_state_gain[0]#1             self.kalmen[index].transition_matrix[0,1] = 0#0             self.kalmen[index].transition_matrix[0,2] = self.kalmen_state_gain[1]#2             self.kalmen[index].transition_matrix[0,3] = 0#0             self.kalmen[index].transition_matrix[1,0] = 0#0             self.kalmen[index].transition_matrix[1,1] = self.kalmen_state_gain[0]#1             self.kalmen[index].transition_matrix[1,2] = 0#0             self.kalmen[index].transition_matrix[1,3] = self.kalmen_state_gain[1]#2             self.kalmen[index].transition_matrix[2,0] = 0#0             self.kalmen[index].transition_matrix[2,1] = 0#0             self.kalmen[index].transition_matrix[2,2] = self.kalmen_state_gain[0]#1             self.kalmen[index].transition_matrix[2,3] = 0#0             self.kalmen[index].transition_matrix[3,0] = 0#0             self.kalmen[index].transition_matrix[3,1] = 0#0             self.kalmen[index].transition_matrix[3,2] = 0#0             self.kalmen[index].transition_matrix[3,3] = self.kalmen_state_gain[0]#1 
             # Set Filter             cv.SetIdentity(self.kalmen[index].measurement_matrix, cv.RealScalar(1))             cv.SetIdentity(self.kalmen[index].process_noise_cov, cv.RealScalar(1e-5))             cv.SetIdentity(self.kalmen[index].measurement_noise_cov, cv.RealScalar(1e-1))             cv.SetIdentity(self.kalmen[index].error_cov_post, cv.RealScalar(.1))             kalman_estimated = cv.KalmanPredict(self.kalmen[index])          else:             self.kalmen[index].state_pre[0,0] = self.memBlock[index,0]             self.kalmen[index].state_pre[1,0] = self.memBlock[index,1] 
                                 # predict new point             self.kalman_prediction = cv.KalmanPredict(self.kalmen[index])                          #correction             if circ != None:                 self.kalmen_measurement[index][0, 0] = circ[0]                 self.kalmen_measurement[index][1, 0] = circ[1]                 kalman_estimated = cv.KalmanCorrect(self.kalmen[index], self.kalmen_measurement[index])             elif circ == None:                 kalman_estimated = cv.KalmanPredict(self.kalmen[index])                            #Return predicted center of circle         x = kalman_estimated[0,0]         y = kalman_estimated[1,0]         return(x,y,0) 
     def getUndetectedIndexes(self,detectedIndexes):         undetectedIndexes = range(len(self.memBlock))   
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count = 0 for i in detectedIndexes:     undetectedIndexes.__delitem__(i-count)return undetectedIndexes 
 ##------------------------ Main ------------------------------------------  #--- Hough variables cannyUpperThresh = 50        # Edge detection Threshold centerThresh = 18            # Circle detection ThresholdminRadius = 85               # Radius Threshold maxRadius = 87 minCenterDist = 2*minRadius  # Distance between circles Threshold
 iCreates = 10                  #number of iCreates mem = Mem(iCreates,minCenterDist)                 #init memory 
 cap = cv2.VideoCapture(1)     # Opening video streamif cap.isOpened() != True:     cap.open(0)      while(True):     # Capture frame-by-frameret, img = cap.read() if img == None:     cap.release()     cv2.destroyAllWindows() sys.exit('Error: Unable to connect video')

       # Convert BGR to Gray Scale  imgGray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 
# Extract circle center and radius [x y r]    circles = cv2.HoughCircles(imgGray,cv.CV_HOUGH_GRADIENT,1,minCenterDist,param1=cannyUpperThresh,param2=centerThresh,minRadius=minRadius,maxRadius=maxRadius)      detectedIndexes = []     if circles != None:                 for circ in circles[0,:]:             index = mem.memoryCorr(circ) # Find Correlating entity inmem.memBlock             detectedIndexes.append(index) xy=mem.kalmanManager(circ,index) #Process kalman from

mem.kalman[index] object             cv2.circle(img,(circ[0],circ[1]),circ[2],(255,255,255),4)             cv2.circle(img,(int(xy[0]),int(xy[1])),circ[2],(0,0,0),2) 
       for f in mem.getUndetectedIndexes(detectedIndexes): # Make 

Prediction, but no Correction         xy = mem.kalmanManager(None,f)         cv2.circle(img,(int(xy[0]),int(xy[1])),minRadius,(0,0,0),2) 
           cv2.imshow('Camera View',img)  k = cv2.waitKey(1) & 0xFF if k == 27:     break   
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cap.release() cv2.destroyAllWindows() 
 

Fetch Parameters from UAV 
# Authors:          Samuel Taylor (samuel_taylor@baylor.edu) #                   Matt Tinsley (matt_tinsley@baylor.edu)  # Organization:     Baylor University # Project:          IARC Avionics Research # Description:      Functions to fetch parameters from arducopter drone.  #                      Tested using Pixhawk and arducopter v3.1.5 # Date Created:     1/23/15 # Date Modified:    1/26/15 - Added get_all_params fuction  import sys, os, time from math import radians from pymavlink import mavutil  # function to fetch specified parameters from arducopter # parameters: mavonn - mavlink_connection # params: list of parameters to fetch in the form of ['PARAM_1', PARAM_2,...] def get_specified_params(mavconn, params):     '''given a mavlink_connection, gets the parameters with the names     specified in params'''     received_params = [] 
     # send all the "get parameter" requests     for param in params:         mavconn.param_fetch_one(param)      # try to receive a number of parameters equal to the length of params.     # note that because we pass a timeout to recv_match, if a parameter     # isn't found, None will be returned     while len(received_params) < len(params):         msg = mav1.recv_match(type='PARAM_VALUE', blocking=True, timeout=1)         received_params.append(msg) 
     return received_params 
 # function to fetch all parameters from arducopter # parameters: mavonn - mavlink_connection def get_all_params(mavconn):     '''given a mavlink_connection, gets the parameters with the names     specified in params'''     received_params = []      # send the "get all parameters" request     mavconn.param_fetch_all() 
     # wait until the mavfile object (mav1) is done fetching params     # note that because we pass a timeout to recv_match, if a parameter 
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    # isn't found, None will be returned     while not mav1.param_fetch_complete:         msg = mav1.recv_match(type='PARAM_VALUE', blocking=True, timeout=1)         received_params.append(msg)      return received_params 
  # set port of 3DR antenna - COM3 or COM4 in our tests so far Port = 'COM4' baudrate = 57600 rc1_channel = 0 rc2_channel = 1 rc3_channel = 2 rc4_channel = 3 rc5_channel = 4 rc6_channel = 5 rc7_channel = 6 rc8_channel = 7  values = [1165]*8 
 # establish mavlink connection on proper port and baudrate mav1 = mavutil.mavlink_connection(Port,baud=baudrate) print("Waiting for HEARTBEAT")  # receive heartbeat to begin interaction with the system mav1.wait_heartbeat() print("Heartbeat from APM (system %u component %u)" % (mav1.target_system, mav1.target_system))   # assume mav1 is a properly-initialized mavlink_connection  # uncomment the following line to fetch specific parameters # params = get_specified_params(mav1, ['THR_MIN', 'THR_MAX', 'RC3_MIN', 'RC3_MAX'])  # uncomment the following line to fetch all parameters params = get_all_params(mav1)  # print out fetched parameters' param_id and param_value for p in params: 
    # don't print None params - ones we requested that didn't exist     if not p:         continue     print str(p.param_id), '\t', p.param_value  # close mavlink connection mav1.close() 
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Motor Control 
# -*- coding: utf-8 -*-""" Created on Sun Nov 23 17:30:35 2014 Main File for offboard control of X8 quadrotor @author: Patrick Friudenberg (patrick_friudenberg@baylor.edu)  """  import sys, os, time from math import radians from pymavlink import mavutil  Port = 'COM3' baudrate = 57600rc1_channel = 0 rc2_channel = 1rc3_channel = 2rc4_channel = 3rc5_channel = 4rc6_channel = 5rc7_channel = 6rc8_channel = 7 values = [1165]*8 mav1 = mavutil.mavlink_connection(Port,baud=baudrate)print("Waiting for HEARTBEAT") mav1.wait_heartbeat() print("Heartbeat from APM (system %u component %u)" %(mav1.target_system, mav1.target_system)) time.sleep(5) mav1.arducopter_arm() print('The system should now be armed')time.sleep(10) values[rc3_channel] = 1600 mav1.mav.rc_channels_override_send(mav1.target_system,mav1.target_component, *values) print('WOAH!!! the motors are humming pretty good!')time.sleep(10) values[rc3_channel] = 1210 mav1.mav.rc_channels_override_send(mav1.target_system,mav1.target_component, *values) print('And now they are at Throttle suitable for orientation tests')time.sleep(10) values[rc1_channel] = 1750 mav1.mav.rc_channels_override_send(mav1.target_system,mav1.target_component, *values) print('Now the motors should be doing full roll')time.sleep(10) values[rc1_channel] = 1500 mav1.mav.rc_channels_override_send(mav1.target_system,mav1.target_component, *values) print('Now running evenly again') time.sleep(10) values[rc1_channel] = 1250 
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mav1.mav.rc_channels_override_send(mav1.target_system,mav1.target_component, *values) print('Now the motors should be doing full reverese roll')time.sleep(10) values[rc1_channel] = 1500 mav1.mav.rc_channels_override_send(mav1.target_system,mav1.target_component, *values) print('Now running evenly again')time.sleep(10) values[rc2_channel] = 1750 mav1.mav.rc_channels_override_send(mav1.target_system,mav1.target_component, *values) print('Now the motors should be doing full pitch') time.sleep(10) values[rc2_channel] = 1500 mav1.mav.rc_channels_override_send(mav1.target_system,mav1.target_component, *values) print('Now running evenly again')time.sleep(10) values[rc2_channel] = 1250 mav1.mav.rc_channels_override_send(mav1.target_system,mav1.target_component, *values) print('Now the motors should be doing full reverse pitch')time.sleep(10) values[rc2_channel] = 1500 mav1.mav.rc_channels_override_send(mav1.target_system,mav1.target_component, *values) print('Now running evenly again')time.sleep(10) values[rc4_channel] = 1750 mav1.mav.rc_channels_override_send(mav1.target_system,mav1.target_component, *values) print('Now the motors should be doing full yaw') time.sleep(10) values[rc4_channel] = 1500 mav1.mav.rc_channels_override_send(mav1.target_system,mav1.target_component, *values) print('Now running evenly again')time.sleep(10) values[rc4_channel] = 1250 mav1.mav.rc_channels_override_send(mav1.target_system,mav1.target_component, *values) print('Now the motors should be doing full reverse yaw')time.sleep(10) values[rc4_channel] = 1500 mav1.mav.rc_channels_override_send(mav1.target_system,mav1.target_component, *values) print('Now running evenly again')time.sleep(10) values[rc3_channel] = 1165 mav1.mav.rc_channels_override_send(mav1.target_system,mav1.target_component, *values) print('And now they are at minimum Throttle again') time.sleep(10) mav1.arducopter_disarm() print('The system should now be disarmed')mav1.close() 
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  APPENDIX D
List of all Links to Project Resources 

 The hardware implementation portion of this thesis required data sheets, software, 
schematic diagrams, and tutorials. Below is a list of links to most of the resources used. 
In the General Resources list, the Cheetah Drone was built with computer vision 
capability, along with localization and target tracking. This is very similar to our project. 
Also, the Pixhawk autopilot itself was built originally for this purpose. For general 
computer vision techniques, TUM Computer Vision is a good resource. The next section 
covers all data sheets, firmware, websites, and manuals for the required hardware. After 
that all required software from computer vision to control is listed with many items 
having links to actual source code. 

General Resources 
Similar Projects and Papers 
1. Cheetah Drone 

1.1. https://pixhawk.ethz.ch/micro_air_vehicle/quadrotor/cheetah 
2. TUM Computer Vision Group  

2.1. http://vision.in.tum.de/publications 
3. Optic Flow Paper 

3.1. http://www.sciencedirect.com.ezproxy.baylor.edu/science/article/pii/0042698986
900787 

4. PIxhawk Group Publications 
4.1. https://pixhawk.ethz.ch/overview/publications 
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Hardware Links 
Pixhawk Autopilot 
1. Specifications, schematics

1.1. http://pixhawk.org/modules/pixhawk 
2. User Manual:

2.1. http://www.3drobotics.com/wp-content/uploads/2014/03/pixhawk-manual-
rev7.pdf 

3. Product Page
3.1. https://store.3drobotics.com/products/3dr-pixhawk 
3.2. http://3drobotics.com/learn/pixhawk-autopilot-system/ 

4. Software
4.1. https://pixhawk.ethz.ch/software/start 
4.2. https://pixhawk.ethz.ch/installation/start 

5. Sounds & LED's Explained
5.1. http://copter.ardupilot.com/wiki/common-apm-board-leds/#PixhawkPX4_Sounds 

GPS Mast 
1. Product Page

1.1.  http://store.3drobotics.com/products/3dr-gps-ublox-with-compass 
2. Setup

2.1.  http://www.3drobotics.com/wp-content/uploads/2014/02/GPS-Mast-Doc-V1.pdf 
3. User manual

3.1. http://www.3drobotics.com/wp-content/uploads/2013/08/3DR-uBlox-GPS-web-
version.pdf 

3DR Video/OSD System Kit 
1. Product Page

1.1. https://store.3drobotics.com/products/3dr-fpv-osd-kit 
2. User Manual:

2.1. http://3drobotics.com/wp-content/uploads/2014/05/FPVOSD-Kit-Manual-A.pdf 
3. Sony HAD 520 line camera

3.1. http://store.3drobotics.com/products/super-had-ccd-camera-1-3-sony-520tv-lines 
4. On-Screen Display Board
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4.1. http://store.3drobotics.com/products/apm-minimosd-rev 
 

3DR 915 Mhz Telemetry (X8 / GCS communication) 
1. Product Page 

1.1. http://store.3drobotics.com/products/3dr-radio 
1.2. http://copter.ardupilot.com/wiki/common-using-the-3dr-radio-for-telemetry-

with-apm-and-px4/ 
2. FirmWare 

2.1. https://github.com/tridge/SiK 
3. User Manual 

3.1. http://www.3drobotics.com/wp-content/uploads/2013/10/3DR-Radio-V2-
doc1.pdf 

4. Developer:  
4.1. https://code.google.com/p/ardupilot-mega/wiki/3DRadio 

 
Spektrum DX7s (Radio) 
1. User Manuals and Software 

1.1. https://www.spektrumrc.com/Products/Default.aspx?ProdId=SPM7800 
1.1.1. Choose Manuals and Software Tab 

Software Links 
PX4 Toolchain 
1. Installation 

4.2. http://pixhawk.org/dev/toolchain_installation_win 
2. USB driver 

2.1. http://pixhawk.org/firmware/downloads  
 

Ground Control Stations 
1. QGround Control 

1.1. Install 
1.1.1. http://qgroundcontrol.org/downloads 

1.2. Source Code 
1.2.1. http://www.qgroundcontrol.org/dev/build_source#ii_clone_the_repository 

2. Mission Planner 
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2.1. Install 
2.1.1. http://firmware.diydrones.com/Tools/MissionPlanner/ 

MAVProxy / MAVLink 
1. MAVLink Documentation

1.1. http://www.samba.org/tridge/UAV/pymavlink/apidocs/classIndex.html#mavlink.
MAVLink 

2. MAVProxy START
2.1. http://dev.ardupilot.com/wiki/mavproxy-on-windows-7/ 

OpenCV 
1. Python Install

1.1. http://docs.opencv.org/trunk/doc/py_tutorials/py_setup/py_setup_in_windows/py
_setup_in_windows.html#install-opencv-python-in-windows 

1.1.1. Follow Installing OpenCV from pre-built libraries 
2. C++ Install

2.1. https://www.youtube.com/watch?v=POpMQPM9YlY 
3. Documentation

3.1. http://docs.opencv.org/ 
4. Tutorials

4.1. http://docs.opencv.org/trunk/doc/py_tutorials/py_tutorials.html 
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