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Information Overload is a state in which individuals have a vast amount of 

information that is readily available, almost instantaneously, without mechanisms to 

check the validity of the content and the potential risk of misinformation. The 

Information Age and growing excess of digitally available information amplifies the 

problem of Information Overload, which handicaps employees’ productivity and well-

being. This dissertation employs a non invasive customer oriented EEG sensor to explore 

how Information Overload affects the human brain, its executive parts and its cognitive 

functions and develops a theoretical mechanism for understanding the Information 

Overload phenomena.  
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CHAPTER ONE  
 

Introduction 
 
 

Modern organizations are operating on increasing amounts of mostly digital data 

and information.  Available data and information grow by 40% each year. According to 

current estimates, the size of business related data today is 17ZB or 17 x1021 bytes, while 

the total size of stored data nears 44ZB. To put this in perspective, if this amount of data 

is to be stored on letter size papers and stacked together, the paper stack would be 77 

light years tall1. To compound the problem even further, organizations are now expected 

to handle ever-growing non-traditional data sources. The non-traditional data sources are 

commonly accompanied by machine generated data and by data streams collected from 

the sensor devices. A few decades ago, organizations were not capable of storing, 

processing, analyzing and ultimately understanding the ever growing amount of data. As 

information technology advanced, organizations eventually became able to store and 

process the available data. As soon as information system solutions like Decision Support 

Systems and Data Analytics caught up with the hardware advances, organizations started 

to understand the available data. The newest breakthrough in Big Data and Data 

Analytics is gradually allowing organizations to better use the available data. However, it 

is still not uncommon for organizations to operate in a state where they are faced with 

more data than their systems can process.  

This state is defined by Speier (1999) as Information Overload (IO). The term 

itself was coined in 1964 by Gross (Gross 1964) and popularized in 1970 by Toffler 
                                                 
 1 Assuming 300 words per paper and 0.05 mm paper thickness 
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(Toffler 1970). Organizations are reporting limited success in mitigating this problem by 

implementing alternatives for searching (Lau et al. 2001; Turetken and Sharda 2001), 

visualizing (Turetken and Sharda 2001) or extracting content (Dale et al. 2005) from 

growing amounts of available data. These vast amounts of available information create 

spillover effects for the employees of these organizations. Information systems were 

always understood as a sum of software, hardware and organizational resources 

orchestrated together with a common goal.  That goal consisted of providing as much 

information as possible as quickly and efficiently as possible to the organizations which 

employ them and to the individuals who use them. Information was understood as one of 

the key organizational resources. This position motivated scholars to coin the term 

Information Age – an age where the most important resource is information, just as the 

most important resource in the Industrial Age was the industrial means of production. 

During the constant improvements in performances and efficiencies of information 

systems, insufficient attention has been given to the ability of humans employed in these 

organizations to process the ever growing amount of available information. And since the 

high tech and information driven companies slowly started to dominate the business and 

media landscape, the vast amount of available information started to impact individuals 

outside the organizational boundaries.  

In general an information age citizen is now swarmed with instantaneous and 

readily available sources of information. To illustrate this point, the average information 

age citizen of today processes around 122 emails per day (Radicati Group 2015). Newer 

communication channels and media sources are also keeping the average information age 

citizens constantly exposed to vast amounts of information. This exposure is so strong 
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that an average individual uses 5.54 social network accounts, while actively participating 

in 4 digital social networks. On average, individuals spend 1.77 hours per day using 

social media. Those individuals are on average exposed to information sources from 350 

connections (e.g. Facebook friends). Furthermore, individuals are required to passively 

read and process the information from all those sources, and they are also expected to 

participate.  To be perceived as active by their contacts, average information age citizens 

are recommended to post around 2 Facebook, 3 Google+, 5 Pinterest and around 3 

Twitter messages or posts per day (Buffer 2015). And the exposure to information does 

not stop there. The average information age citizen receives up to 40 messages per day 

and 12.3 voice calls per day. It is important to note that these numbers (Table 1) represent 

the average values across all age groups. The available data shows that older generations 

are in general less immersed in information systems. This lack of immersion limits their 

exposure to information. As a result of high levels of technology immersion, younger 

generations are exposed to higher amounts of information on a daily basis especially 

when compared to older generations. In contrast to the older generations, younger 

generations face the greater exposure to information technology and high information 

levels at a very early age. The differences seem to expand noticeably with the wider 

adoption of information and communication technologies characteristic for younger 

generations. As a result, the terms of Digital Migrants and Digital Natives are commonly 

used to distinguish these two population groups.  

The term Digital Native is used to represent a person born or raised during the age 

of widely available digital technology (1980s and later). On the one hand, Digital Natives 

are familiar with computers and the Internet from an early age and as such are under 
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greater exposure to the growing amount of digital information. On the other hand, Digital 

Migrants are individuals who were brought up before the widespread use of digital 

technology (before 1980s for highly industrialized countries). 

Table 1: Information Exposure for Average Information Age Citizen 

Source of Information Exposure Amount Reference 

Emails processed per day 122 (Radicati Group 2015) 

Social networks used 4 

(GWI 2015) Number of social networks accounts 5.54 

Time spent on Social networks 1.77 hours per day 

Number of Facebook friends 350 

“Recommended posts per day” FB  G+  PI  TW (Buffer 2015) 

2 3 5 3 

Texts messages per day 40 (Pew Research Center 
 2011, 2014) 

Number of voice calls per day 12.3 

Exposure to information is thus not limited to organizations, since the growing 

amount of data influences individuals as well. This state in which individuals have a vast 

amount of information that is readily available, without mechanisms to check the validity 

of the content and the potential risk of misinformation (Flew 2007; Graham 1999), is 

known as Information Overload. This term is not necessarily exclusive to the Information 

Age, but the Information Age and growing amounts of digitally available information 

amplify the problem of information overload. The state of Information Overload is 

known to handicap employees’ productivity and well-being. For example, the human 

brain works optimally only if less than seven information chunks (Miller’s Law) are 

being actively processed or memorized. It is also known that the human brain will try to 
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reconfigure itself in order to cope with the growing amount of information. Dishman 

(2014) argues that employees are prone to unconsciously discard textual information 

from email correspondence unless the available information pertains to the topic they are 

currently engaged with. Declining average memory spans in younger generations testify 

that the human brain also tries to cope with growing amounts of information by 

decreasing the length of the average attention spans. Ripples from Information Overload 

on individual levels also come back to haunt the organizations in which the overloaded 

individuals participate, even if the individual would otherwise perform exceptionally. 

Specifically, Information Overload negatively influences social capital formation in 

organizations and causes even “star employees” to fail to perform efficiently (Oldroyd 

and Morris 2012). This then results in less efficient business operations and decreases the 

overall wellbeing of the employees using information systems. 

The lack of theoretical understanding, compounded with the growing negative 

and everyday implications, creates a case for further investigation of the Information 

Overload phenomena. Furthermore, recent advances in understanding the ways in which 

the human brain works promise a novel, unexplored and abundant data source. This data 

source has the potential to improve understanding of the Information Overload 

phenomena, means of detecting it and ideally our ability to prevent the phenomena of 

Information Overload altogether. However, although our understanding of the human 

brain and the instruments of neuroscience have advanced well beyond Miller’s Law, old 

problems remain coupled with newer ones: most of the neural instruments are still tied to 

clinical environments, limiting their potential in researching real world phenomena. Most 

of those instruments also require participants to go through a series of uncomfortable 
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procedures. The procedures, especially in the case of intracranial instruments, can often 

be very invasive. This situation generally demands a constant monitoring by the highly 

trained medical personnel. Even noninvasive instruments like functional magnetic 

resonance (fMRI) and electroencephalograph (EEG) cause a significant amount of 

discomfort for participants and require highly trained medical personnel to oversee the 

process. Additionally, clinical instruments can sometimes generate a volume of data 

which cannot be meaningfully processed in real time. To make it worse, most of the data 

is recorded from the brain functions (e.g. muscle movements, unconscious reactions, life 

support etc.) of little importance to information systems research. This situation 

represents another disadvantage for information system researchers, as there is no need to 

collect brain data which cannot be tied to the constructs and theories used in information 

systems discipline. For example, information systems are rarely concerned with motoric 

functions of the human body since those functions have almost no relationship to either 

systems or information components of information systems constructs.  In order to 

bypass the problems of clinical settings, real time data, medical personnel and unusable 

data, this research tests if a mono-polar consumer oriented neural device is capable of 

detecting brain signals that were previously detected exclusively by clinical devices. This 

research also tests if the data stream from the Consumer Neural Devices (CND) can be 

used to detect, understand and test the Information Overload process in the human brain.  

This research uses two prominent information systems theories to position the 

study of information overload. Those two theories are Information Richness Theory 

(IRT) and Information Naturalness Theory (INT). On the one hand, IRT is used to 

describe a communication medium's ability to reproduce the information sent over it. 
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According to IRT, richer communication mediums are generally more effective for 

communicating equivocal topics than leaner, less rich media. On the other hand, INT 

posits that the course of human evolution has led to the development of the brain that is 

designed for face to face communication. From the standpoint of INT, other means of 

communication are too recent to create any evolutionary changes to the human brain. 

Implementing communication media that limits essential elements of face-to-face 

communication (e.g. text), thus results in building cognitive obstacles to communication.  

Ontology and semantics employed in IRT and INT are universal enough to 

encompass all communication and information dissemination channels used today. 

However, those two theories clash when it comes to selecting the best way of 

communicating information. This research uses the data gathered from the CND to add to 

this theoretical debate and to further the understanding of how the state in which a user is 

supplied with a growing amount of information (information influx) actually affects the 

user’s ability to avoid Information Overload and continue handling elementary cognitive 

tasks (ECT).  

This research uses a noninvasive mono-polar customer level 

electroencephalography (EEG) sensor (see Appendix A for further details) to explore 

how Information Overload affects information system users’ ECT performance in 

scenarios when the user is subjected to different information influxes. Specifically, this 

research utilizes a CND to gather signals from the executive parts of human brain. The 

executive parts of the human brain support the following actions: processing elementary 

cognitive tasks, conducting decision making and supporting information processing. 

Most of the executive parts of the human brain are stationed in the pre-frontal core of the 
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brain (PFC). This research positions a clustered 12-electrode sensor at the Fp1-A1 EEG 

system coordinates to record high and low alpha, high and low beta, gamma, theta and 

delta EEG frequency bands. EEG measurements are accompanied by supplemental data 

sources, namely participants’ pulse rates and SpO2 readings provided by the clinical 

grade oximeter and, where available, textual data. Heart rate and oxygen saturation 

measurements are used to control for undesired side effects that might distort the neural 

readings. These instruments and settings were used in order to record EEG readings 

which are known to demonstrate different states of participant’s memory performance, 

cognitive workload, fatigue, and task difficulty.    

Dissertation Potential 

This research has the potential to create new IS knowledge in multiple ways and 

in both a direct and indirect manner. To start, this study expands the theoretical and 

practical understanding of a prominent technostress phenomenon and proposes a 

theoretical mechanism which reconciles the differences between INT and IRT. This study 

also expands the theoretical boundaries and understanding of the workings of the pre-

frontal lobe under the state of Information Overload in real-world settings. Furthermore, 

this project pioneers a nonstandard data collection process based on using non-clinical 

neural interfaces for everyday business related purposes. This dissertation acknowledges 

that CND are nowhere near the capabilities of their clinical counterparts. However, this 

dissertation posits that Information Overload can be studied and detected using CNDs 

because most of the effects coming from Information Overload are known to come from 

the EEG coordinates used in this research. This dissertation does not posit that data 

resolution supplied by CNDs is in any way identical to the spatial and temporal resolution 
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of data provided by the clinical instruments. Finally, this project builds a base for 

businesses to create a better and more stress-free environment for their employees.  

In short, this dissertation answers the following research questions: How does 

Information Overload influence individual elementary task performances? What are the 

differences between Information Overload when it comes to Digital Natives  and Digital 

Migrants ? How are Information Richness and media naturalness influencing ECT 

performances under the state of information influx? How can Consumer Neural Devices 

compliment clinical neural devices and expedite the information systems research? These 

questions are further justified in Chapter Two of this dissertation.  

Figure 1: NeuroIS Research Framework (Vom Brocke and Liang 2014, p. 24) 

I use NeuroIS research framework (vom Brocke and Liang 2014) from Figure 1 to 

frame my dissertation. Thus, this dissertation proceeds as follows: In Chapter Two I 

review two literature sections on Information Overload and NeuroIS. This literature 

review is followed by a sub-chapter which elaborates on IRT and INT. Chapter Two ends 
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with explaining Theoretical Mechanism of Information Overload and the corresponding 

hypotheses. Chapter Three is used to illustrate the employed methodology, details the 

data collection process, experimental design and experimental procedures. Data analysis 

and discussions are presented in Chapter Four. This study ends with Chapter Five, which 

contains a discussion and an overview of theoretical and practical implications and 

limitations of the used approach. 
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CHAPTER TWO 
 

Literature Review 
 

 
This chapter covers methodological aspects of the literature review and two 

sections of literature that are crucial for understanding the foundations upon which this 

dissertation is built. Those two sections are Information Overload review and NeuroIS 

review. This chapter starts with the literature review methodology and proceeds with an 

overview of key publications. The first section presents an overview of Information 

Overload literature. The second section covers the central parts of NeuroIS research. The 

NeuroIS literature section is designed to acquaint the reader with the building blocks of 

NeuroIS, namely with the most important themes and topics in the NeuroIS field, 

constructs mapped to brain anatomy and the common instruments used in NeuroIS. Later 

parts of this chapter contain a theory literature review and a discussion on theoretical 

mechanisms of information overload. 

A methodology of strict systematic research review is used in this dissertation. 

The criteria for including and excluding literature are clearly defined. The use of strict 

and defined protocols in this literature review is motivated by two reasons. Firstly, these 

protocols minimize potential author bias (Feak and Swales 2009). Moreover, they also 

allow complete replicability of this literature review.  

The basket of Eight1 (BoE) Information Systems journals is used as a starting 

point for this literature review. BoE literature is further expanded with major IS 

conferences (ICIS, ECIS and AMCIS) and with NeuroIS specific publication venues such 
                                                 
 1  For more information about BoE please consult https://goo.gl/cBy44M. 
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as the proceedings from the Gmunden NeuroIS retreat. Conferences were added to ensure 

that emerging research ideas, which might not be published in journals due to relative 

novelty of the field, are also considered. Once the base body of the literature is 

assembled, this literature review continues with forward and backward reference search. 

Forward reference search is understood as a process in which a researcher collects 

articles that cite a specific publication of interest. Backward reference search involves 

identifying and examining the works cited in a reviewed article. Backward search is used 

to examine the development of a topic and to identify authors and organizations that 

focus on a specific topic of research. Backward reference search is followed by a second-

level backward reference search in which sources cited by the analyzed works are 

inspected and added to the analyzed literature. This step helps to identify potential 

inconsistencies in the literature. The initial search was conducted using the 

ABI/INFORMS database. The further searches had to go beyond the business journals in 

order to cover the seminal works from other disciplines – primarily from neuroscience.  

In the first step of the literature review the following code was used to search the 

ABI/INFORMS database for works of interest to this study: 

ab(KEYWORD) AND (pub(("MIS Quarterly" OR "Information Systems 
Research")) OR pub(("Journal of Management Information Systems" 
OR "European Journal of Information Systems")) OR pub(("Information 
Systems Journal" OR "Journal of the Association of Information 
Systems")) OR pub(("Journal of Strategic Information Systems" OR 
"Journal of Information Technology"))). 

The search function was performed multiple times with the following keywords: 

technostress, information overload, neuro*, EEG, neuroIS and experiment. These 

keywords were used as single keywords and in meaningful combinations with each other. 

Time limits for journal publication dates were not imposed. This allowed me to include 
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earlier works as well as the recent publications. Furthermore, submissions which did not 

undergo peer revision were discarded. The same search procedure was used with AIS 

eLibrary to search through the conference proceedings. For the Gmunden NeuroIS 

retreats, publicly available PDF proceedings were used to supplement the database not in 

existence. Since Gmunden deals exclusively with NeuroIS and neuroscience concepts in 

general, two keywords (Neuro* and NeuroIS) were not included in this search.  

This set of keywords was used for multiple reasons. One objective was to ensure 

that potentially diverse nomenclature for the same phenomena is not left out of the 

search. The keywords technostress and information overload, either on their own or in 

combination, allowed the inclusion of this diverse nomenclature. Moreover, this set of 

keywords was used to understand to what extents and in which ways are NeuroIS studies 

present in the field. The keywords also enabled me to detect all Information Overload 

studies conducted using EEG constructs. And finally, this study uses a set of EEG 

constructs in order to understand the phenomena of information overload. Encompassing 

already existing EEG studies of Information Overload is critical to establishing the 

borders of the current knowledge. Backward and forward searches were not limited to 

any keywords, but guided by the importance of the referenced works. The search results 

of the first step of this literature review are presented below (Table 2). These results 

position Information Overload as a topic of relatively low interest2 for IS researchers. 

Furthermore, IS scholars were even less concerned with the phenomena of technostress. 

These results can serve as partial support for the introductory arguments for motivating 

this study. It seems that IS researchers in general have not paid much attention to 

                                                 
 2 For the sake of the comparison, well researched topics like IT Strategy and Knowledge 
Management received 350 and 239 hits in the BoE respectively. Surveys appeared in 545 BoE publications 
and qualitative methods in 193 BoE publications.   
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understating negative aspects of technology usage. The results provided in Table 2 are 

consistent with previous literature reviews on information overload. Specifically, as 

Eppler and Mengis (2004) point out, the business disciplines that have researched the 

Information Overload concept in peer reviewed journals the most are marketing, 

organizational sciences and accounting. Surprisingly, out of 168 journal publications 

Eppler and Mengis had analyzed, only 13 came from MIS journals. Eppler and Mengis 

openly expressed their surprise (p. 339) since they had initially expected that MIS field 

had investigated this phenomenon extensively.  

Table 2: Literature search results – first step 

Keywords 

Source Technostress 
Information 

Overload 
Neuro* EEG NeuroIS Experiment 

BoE 8 11 6 4 6 209 
ICIS 7 20 18 3 6 610 
ECIS 0 20 7 1 1 357 

AMCIS 12 28 19 4 2 665 
Gmunden 6 3 * 37 * 57

Total 33 82 50 49 15 1898 

NeuroIS and Neuro* also scored a low number of hits. However, these results 

could be explained by the recent emergence of these two terms. Namely, the term 

NeuroIS and neuroscience in general was embraced by IS scholars for the first time in an 

ICIS 2007 panel. This ten year period could be one of the culprits for the low 

proliferation of NeuroIS topics, especially since the first BoE NeuroIS article was 

published in 2011. Similar logic holds for EEG based studies. It is therefore unreasonable 

to expect that IS scholars would include an instrument from neuroscience prior to 



15 

deciding to incorporate the concepts from neuroscience into IS domains. Interestingly, 

not a single study  had used any well established EEG metrics (e.g. (Berka et al. 2007a; 

Gevins and Smith 2006; Holm et al. 2009; Kramer 1990; Pope et al. 1995)) to study any 

form of Information overload, technostress or any of its sub constructs. An oversight of 

that magnitude signifies a large methodological and theoretical gap in the IS literature. It 

is not only that IS as a field lacks an objective methodology for encompassing and 

understanding this growing phenomenon but IS literature also lacks a general theory or a 

set of theories to understand negative aspects of technostress and Information Overload in 

particular. This dissertation posits that gaps of those proportions handicap our ability to 

understand and research important IS phenomenon. Thus, those gaps should not be left 

unfilled.  

I have read all content related BoE, ICIS, ECIS, AMICS and Gmunden 

publications that appeared in the first step of the literature review. I have also inspected 

all methodologically related hits as well in order to expand the understanding of the 

experimental standards in IS discipline. Backward search resulted in 63 additional hints 

of interest, while the forward search added 17 additional literary resources to this study. I 

have analyzed all hits based on the topic coverage, synthesis of previous works, 

methodological contributions and general significance to the Information Overload 

phenomena (Feak and Swales 2009). Not a single hit was excluded due to rhetorical, 

structural or reasons of coherence. The rest of this sub-chapter covers Information 

Overload and NeuroIS literature and the most prominent themes and topics in those 

bodies of literature.  
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Information Overload 

Information overload is widely understood as a state in which individuals have a 

vast amount of information that is readily available, almost instantaneously, without 

mechanisms to check the validity of the content and the potential risk of misinformation 

(Speier et al. 1999).  A slightly different definition of Information Overload takes into 

consideration the rate in which the information is presented to an individual. Specifically, 

it defines Information Overload as a state in which the information must be processed at a 

rate that exceeds the person's capacity to process the information influx within the given 

time (Schick et al. 1990; Tuttle and Burton 1999). Information Overload is also 

understood as the state of an individual in which not all information inputs can be 

processed and utilized. This definition is used by Jones et al. (2004). However, this 

approach adds an additional component to the Information Overload definition: mental 

breakdown as a result of information influx. Information overload is also portrayed as a 

state which occurs when the volume of information supply exceeds the limited human 

information processing capacity. This understanding of Information Overload does not 

include mental breakdowns, but only a set of dysfunctional effects such as stress and 

confusion as the result of growing information influx (Meyer 1998).  

Thus, it appears that the core understanding of Information Overload is relatively 

congruent among different authors and disciplines.  However, although the understanding 

of the Information Overload is congruent, an unambiguous definition that spans across 

disciplines is not agreed upon. As Eppler and Mengis (2000) point out, all literature 

review works on Information Overload take a narrow, discipline-wide approach. For 

example, Malhotra (1982) and Owen (1992) focus on consumer oriented research. 
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Schick et al. (1990) examined the accounting literature and IS evaluation scenarios. 

Edmunds and Morris (2000), Grise and Gallupe (1999), and Nelson (1994) approached 

the phenomena of Information Overload through the lenses of information systems 

discipline. Therefore, information systems authors focus on the Information Overload 

topics in environments where some form of IT was used.  

Overall, the central focus of most business disciplines is to understand how the 

performance in elementary cognitive tasks and in the case of an individual fluctuates with 

the levels of information influx. Interestingly, it seems that researchers across multiple 

disciplines agree on one point: elementary performances of an individual using 

information system correlate positively with the level of information influx but only up to 

a certain point. When the information influx grows over that point, the elementary 

cognitive performances of an individual tend to decline (e.g. Chewning and Harrell 1990; 

Cook 1993; Griffeth et al. 1988; Schroder and etc 1967; Swain and Haka 2000)). 

 
Information Overload Scopes 
 

According to Butcher (1995), there are three categories which can be used to 

define the scope of an Information Overload study. The first category is Information 

Overload on individual levels. This category explores individual abilities to cope with the 

growing information influx. The second category tackles organizational information 

overload, while the third category handles Information Overload in consumers during the 

purchases process. This research is primarily concerned with the first category of 

information overload.  
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Information Overload Themes 

Eppler et al. (2004) present a comprehensive review of Information overload. 

From it, the following themes were altered to fit the scope of this paper and updated with 

the newer IS findings. Those themes are Information Overload situations, causes, effects 

and countermeasures against information overload.   

Information Overload-Situations. The common narrative throughout the literature 

recounts the situation in which Information Overload occurs. Namely, Information 

Overload commonly occurs in situations where individuals are exposed to an abundance 

of information in different forms. Those situations include Internet browsing (Berghel 

1997), screening for medical information (Bawden 2001), financial analyses (Chewning 

and Harrell 1990), meetings (Grise and Gallupe 1999; Schick et al. 1990), email 

messages (Speier et al. 1999) and information analysis or processing situations in general. 

Information Overload is also present during different communication and decision 

processes. What is common for all Information Overload situations is that all those 

contents rely heavily on cognitive and memory performances and on the general 

wellbeing of an individual (i.e. fatigue).     

Information Overload-Causes. When it comes to the roots of information 

overload, the analyzed literature set mentions multiple causes. Anatomical limitations 

stemming from limited processing capacity of the human brain (e.g. (Herbig and Kramer 

1994) and (Dimoka, Pavlou, et al. 2010; Dimoka et al. 2012)), different performance 

levels caused by environmental factors (O’Reilly 1980; Owen 1992) age (Swain and 

Haka 2000) to unnaturalness of digital communication channels (Van Zandt 2004). 
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Bawden (2001), Edmunds and Morris ( 2000) and Schultze and Vandenbosch (1998) link 

Information Overload causes to storage capacities of information systems, speed of 

access to information, Internet, emails and other forms of digital information and 

communication technology. Ambiguity, novelty, intensity, quality and uncertainty of 

information (Schneider 1987) are also understood as causes of information overload. 

Finally, some causes of Information Overload extend beyond the individual categories 

into the domains of organizational theory and design. Since the organizational factors are 

beyond the scope of this literature review, those works were left out. 

 
Information Overload-Effects. The effects of Information Overload on individuals 

are similarly diverse. Effects range from performance related issues (Speier et al. 1999) 

to more general problems like lower well-being (Conger and Kanungo 1988). Thus, it 

seems that Information Overload affects not only measurable individual performances, 

but the welfare of the overloaded individuals. Moreover, Cook (1993) points out limited 

search directions and noncompensatory search patterns as other effects of information 

overload. Also Eppler and Mengis (2004) mention overlapping and inconsistent 

information outputs. Bawden ( 2001) elaborates on ignoring information and loss of 

control over information. Therefore, it becomes clear that Information Overload might be 

a vicious circle on its own: the more information an individual has, the more misdirected, 

error prone and chaotic that individual becomes. Assuming constant information flows, 

this means that the Information Overload might manifest as a self-propelling phenomena.  

Sparrow (1999) links information abstraction and misinterpretation as another symptom 

of information overload. And Jacoby (1984) links higher time requirements and 

information processing delays with the state of information overload. To synthesize, the 
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effects of Information Overload include both elementary individual performances and 

well being, as well as ability to interpret the coming information. Most importantly, it 

seems that Information Overload might results in a vicious circle of self-perpetuating 

negative effects on the individual level.  

Information Overload-Countermeasures. The analyzed literature is abundant with 

propositions of countermeasures against Information Overload. Commonly mentioned 

countermeasures include working on individual traits like time management skills 

(Bawden 2001), personal information management (Edmunds and Morris 2000) or 

information screening skills (Van Zandt 2004). Countermeasures based on the application 

of information systems are also widely presented. For example, Nelson (1994) argues for 

natural language processing systems. Information quality filters as countermeasures are 

mentioned as early as 1967 (Ackoff 1967). Denning (1982) claims that making users 

evaluate the information is yet another countermeasure. Another prominent theme in 

Information overload prevention literature is the actual characteristics of the supplied 

information, like information quality (Allert 2001), information customization (Ansari 

and Mela 2003), intelligent interfaces (Bawden 2001), information simplification (Herbig 

and Kramer 1994), information dynamics (Jones et al. 2004), information visualization 

(Chan 2001), information aggregatization (Grise and Gallupe 1999) and focus on value-

added information (Simpson and Prusak 1995). In summary, all countermeasures seem to 

include both the technical and design aspects of information systems which supplies 

information to the participating individuals. Literature also contains works that argue for 

organization and society wide countermeasures (Eppler and Mengis 2004), however 

those works are once again not fitting for the scope of this dissertation.  
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Themes Summary.  To summarize, the state of Information overload in individuals 

can occur in multiple situations in which some form of information systems are used. The 

state of Information Overload can be created by a vast array of causes and it can manifest 

itself in varying effects. Those effects vary from trivial issues (e.g. discomfort) to more 

serious ones (e.g. omitting information and negative wellbeing). Information overload 

countermeasures range from simple training and exercising, over altering existing 

communication channels to designing completely new information systems.   

However, the manner in which Information Overload manifests is almost identical 

throughout the analyzed literature. The first way is by increasing the sheer amount and 

influx of information, assuming the time to process the information remains constant. The 

second way is to decrease the available time in which an individual has to process the 

constant amount of information. Naturally, if the information influx increases in intensity 

and the time to process the available information shorten, individuals will also experience 

the state of information overload.   

 
Information Overload Synthesis 
 
 The literature review section on Information Overload ends with a synthesis of the 

analyzed literature. In it, I distinguish between what has been accomplished and what has 

to be done to further the Information Overload research. Existing literature is synthesized 

and used to produce an updated perspective on the Information Overload topic. I also 

place the existing literature in a broader scholarly and historical context and reflect on the 

connections between different disciplines. Information Overload is understood as both 

individual- and organizational-level phenomena. For the purpose of this dissertation, I 

limit the analysis on the individual-level. In general, the Information Overload literature 
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analyzes Information Overload effects on working professionals (i.e. IS auditors, project 

managers, middle and high level management) and regular individuals (i.e. email users or 

website visitors).  

Unsurprisingly, diverse research techniques coupled with varying field standards 

of multiple disciplines and approaches resulted in contradictory findings regarding the 

information overload. Different literature themes suggest that situations in which 

Information Overload manifests are meticulously catalogued, yet a coherent 

understanding of the underlying mechanisms behind Information Overload is not 

explicated nor understood. Similarly, multiple Information Overload causes have been 

reported but an overarching explanation fitting for all causes is still missing. Measures to 

counter Information Overload are also underdeveloped in the literature. Specifically, the 

vast majority of authors were eager to provide a narrow solution to a specific subset of 

Information Overload effects, but not a single study analyzed the root causes of 

Information Overload over different topics, situations, causes and disciplines. Literature 

on the effects of Information Overload provides a stark contrast to the literature covering 

situation, causes and countermeasures of information overload. In it, authors rely heavily 

on findings from other disciplines like cognitive sciences and psychology to better 

understand the effects of information overload. Overarching concepts like individual 

wellbeing and performances are also present throughout the literature.   

In short, it is obvious that information systems and other business disciplines have 

made some progress in understanding information overload. Consensus over the 

definition of Information Overload has not yet been reached, but a congruent narrative is 

beginning to take shape. This discipline spanning narrative revolves around the situations 



23 

in which information influx influences individual performances is well established in 

multiple methodologies, topics and points in time. This situation on the field anchors the 

discussion and provides a robust starting ground to position further studies. However, 

there is still a much work to be done.  

To start, it is imperative to create a unifying concept which encompasses 

Information Overload in an overarching manner and which spans through multiple 

disciplines. Currently, the existing granular understanding of isolated aspects of the 

phenomena are scattered throughout the literature and disciplines. That granularity 

handicaps the understanding of the underlying mechanisms behind information overload. 

And since individual cognitive performances are the main leitmotif in the analyzed 

literature, it might be beneficial to employ the toolsets of neuroscience to understand the 

underlying mechanism behind all Information Overload instances. The sole candidate for 

the role of those mechanisms is the human brain.  

It is well established that the human brain is the primary organ that humans use 

for information storing, accessing and processing. Insights from the literature are 

univocal: Information systems can no longer afford to treat the human brain as a black 

box. Past experiences in which concepts from psychology or cognitive sciences have 

been borrowed have proven to be only partially beneficial. Limited benefits mostly stem 

from an inability to understand universal root causes of information overload. 

Furthermore, previously used research methods are also incapable of explaining causal 

mechanism and capturing truly objective data in a realistic environment and in real time. 

Thus, if our understanding of Information Overload is to advance, we have to depart from 
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traditional research methods like surveys, qualitative interviews, formal modeling 

methods and case studies.  

That is why this chapter continues with a brief literature review of NeuroIS. In it, 

an overview of NeuroIS literature is presented and accompanied with a concise overview 

of research construct coming from the brain anatomy and research methods used in 

NeuroIS.  

NeuroIS Literature Review 

Neuroscience (or neurobiology) is the scientific study of the nervous system. 

NeuroIS combines neuroscience with Information Systems. As such, NeuroIS is 

understood as a field in the Information Systems discipline that relies heavily on 

neurophysiological tools and knowledge to deepen the development, adoption and impact 

of information and communication technologies. The formalization of NeuroIS as a field 

of IS research was championed by Prof. Pavlou, Prof. Davis and Prof. Dimoka at ICIS 

2007 in Melbourne, Australia (Pavlou et al. 2007). As the field progressed and as the 

number of NeuroIS scholars grew, the need for a specialized NeuroIS venue became 

evident. The Melbourne gathering of IS scholars led to the inaugural Gmunden IS retreat 

in 2009, which transformed into the premier global NeuroIS conference. Beginning in 

2009, the Gmunden NeuroIS retreat was held in Gmunden, Austria, on an annual basis. 

Creating NeuroIS allowed IS scholars to combine the social sciences with theories and 

tools of neuroscience and neurophysiology. Ideally, this coupling enables social scientists 

to examine various social phenomena with neuroimaging instruments.  

Neuroscience in general and cognitive neuroscience in particular focus on 

examining the brain mechanisms underlying mental processes. Cognitive neuroscience 
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has a proven record of propelling multiple social science disciplines towards new 

advances. The most prominent advances have been made in neuroeconomics (i.e. Aimone 

and Houser 2016), neuromarketing (i.e. Ariely and Berns 2010) and psychology. As 

Pavlou et al. (2007) point out, IS research is still largely unaware of those advances. 

While economics, marketing, and psychology have already grasped the potential of 

cognitive neuroscience and functional neuroimaging, IS researchers are still hesitant to 

consider how cognitive neuroscience can be used to augment IS theories. However, 

although a wide proliferation of neural methods has not occurred in the IS field yet, first 

steps toward including neural constructs are already happening.  

Specifically, NeuroIS has been used to enrich IS research and a number of 

relatively recent research findings occurred as a result. For instance, NeuroIS has been 

used to explore multiple issues, ranging from effects of technostress (Tams 2014), 

information processing biases in virtual teams (Minas et al. 2014a), through effects of 

emotional states on financial trading decisions (Astor et al. 2013), measures of risk 

perception to predict information security behavior (Vance et al. 2014) and 

complementing business process modeling tools (Shitkova et al. 2014). Most of the BoE 

papers, however, approach NeuroIS from conceptual and research policy driven grounds. 

Reflections on the Gmunden Retreat from 2009 (Riedl, R. D. Banker, et al. 2010)  re-

defined what NeuroIS is, which tools are relevant for NeuroIS, what IS can learn from 

neuroscience and what were the current challenges for NeuroIS at that time. The results 

of the subsequent retreats grew in diversity, breadth and length. Thus, the findings of the 

subsequent retreats were not published as journal papers, but as separate proceedings – 

similar to established IS conferences.  
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IS scholars are also starting to lay out theoretical and methodological grounds on 

which future theory-rich research can be built. A special JAIS issues on Methods, Tools, 

and Measurement in NeuroIS Research (Iss.10, 2014) serves as an explicit proof of that. 

A research commentary (Dimoka, Pavlou, et al. 2010) illustrated the potential of 

cognitive neuroscience for IS research, especially when it comes to localizing  the neural 

correlates of IS constructs, capturing hidden mental processes and challenging 

assumptions and enhancing IS theories. Vom Brocke and Liang (2014) also contributed 

to the discipline with a set of guidelines for NeuroIS studies. Those guidelines are 

designed to help researchers better understand phases typical for NeuroIS research and to 

guide NeuroIS research through the emerging standards of the discipline. Tams et al. 

(2014) use a technostress study to illustrate the holistic effects that come from using 

neurosciences and self reported data in tandem.  Tams et al. improved our understanding 

of triangulating different sources of data by showing the scenario in which different 

measures can constitute as alternative and/or complements in the prediction of 

theoretically-related outcomes. Specifically, Tams et al. demonstrated that physiological 

and psychological measures can actually lead to divergent findings.  Furthermore, Gregor 

et al. (2014) develop a nomological network with an overarching view of relationships 

among emotions and common constructs of interest in NeuroIS research. Finally, 

Müller-Putz et al. (2015) ventured deeply into the foundations, measurements and 

application of  electroencephalography in IS. Through their work, Müller-Putz et al. 

equip prospective NeuroIS researchers with solid methodological foundations for 

conducting EEG - based research. 
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Although NeuroIS continues to prove its value by expanding the knowledge on 

multiple IS related phenomena, and although sound theoretical and methodological 

foundations of NeuroIS have been laid out, many IS researchers still feel reluctant to 

incorporate cognitive neuroscience in their research. Some are turned away by significant 

resources required to conduct a NeuroIS study (Dimoka et al. 2012), while others are 

discouraged by the sheer breadth of non – IS knowledge required to successfully conduct 

a state of the art NeuroIS experiment (Müller-Putz et al. 2015a). For example, NeuroIS 

scholarship requires researchers to select a proper instrument and equipment that will 

adequately detect all elicited aspects of researched phenomena, create and maintain all 

required parameters for the instrument to operate optimally and finally to analyze the 

readings from the clinical grade neural interfaces (vom Brocke and Liang 2014; Müller-

Putz et al. 2015a; Tams et al. 2014). Few IS researchers are properly trained to conduct 

those studies and some can be deterred by administrative hurdles required to conduct 

medical-grade research on human subjects. Therefore, these factors combine to prevent 

NeuroIS from becoming one of the dominant areas of IS research. 

Additionally, preconceived notions of complexity, discomfort, ambiguity and 

dangers (Engber 2016; Piore 2015) of neural instruments may also be the culprits for 

relatively low proliferation of neural technologies outside the academia. Specifically, it 

has been known for four decades that the human brain can communicate directly to 

computers via brain to computer interfaces (Kübler et al. 2001), yet proliferation of those 

interfaces in IS never happened. Moreover, a similar scenario holds for the most basic 

customer-oriented neural sensors. Companies like Emotiv, Neurosky and Microsoft are 

known to work on neural sensors (Riedl, Banker, et al. 2010) and multiple EEG-based 
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products are even available to a wide consumer audience. Yet despite the diverse and 

growing arguments in favor of incorporating neural devices, IS practitioners and research 

are still not embracing NeuroIS to its fullest extent.  

In order to synthesize the existing themes and topics in NeuroIS and the most 

common neural instruments, this literature review proceeds with a rough overview of still 

nascent NeuroIS literature, as well as an overview of constructs based on the brain 

anatomy and functions. Finally, this sub-chapter ends with a review of most common 

NeuroIS instruments and maps their usage to the specific constructs and parts of the 

human brain.  

NeuroIS Themes 

The Table 3 provides an overview of BoE NeuroIS literature. My literature 

review returned similar results to the ones observed by Quazilbash and Asif (2017). 

However for the purposes of this study, I have structured the NeuroIS literature not only 

according to topics and outlets, but also according to themes and methods. I understand 

topics as matters dealt with in a journal publication. I define themes as a group of 

thematically similar topics. By structuring the literature in this way, as presented in the 

Table 3, a better insight into the state and structure of the discipline can be gained.  

To begin with, the biggest cluster of papers (seven papers) is a cluster in which 

each paper employs some form of EEG artifacts. Kuan et al. (2014) is one of the 

pioneering studies in using EEG constructs for IS research. They use Emotiv EPOC 14-

channel (AF3/4, F7/8, F3/4, FC5/6, T7/8, P7/8, and 01/2) wireless EEG CND to study 

social influence in group buying. Their study elaborates the different roles played by 

informational and normative social influence in affecting attitude, intention, and emotion. 
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Li et al. 2014 uses identical wireless EEG CND to prove that cognitive-related gaming 

elements, like game complexity and game familiarity, influence the density of theta 

oscillations. Another BoE EEG study comes from de Guinea et al. (2014). In it, the 

authors prove that implicit neurophysiological states (i.e. memory load and distraction) 

and explicit states (i.e. engagement and frustration) antecedents interact in the formation 

of perceived usefulness and perceived ease of use. Guinea et al. also follows the EEG 

reporting protocols to the letter, by reporting the type of equipment (B-Alert X10 device 

from Advance Brain Monitoring) and the exact EEG coordinates (F3, F4, Fz, C3, C4, Cz, 

P3, P4, and POz). Hu et al. 2015 rely on 65 sintered silver silver-chloride EEG system to 

study self control in security violations. They discover that the left and right hemispheres 

of the human brain were involved in security related decision making, and that the 

participants with low self-control had lower levels of neural recruitment in both brain 

hemispheres relative to those with high self-control. Gregor et al. (2014) is another study 

which uses EEG. This study uses EEG to demonstrate that neural correlates have 

predictive power for an emotion related outcome such as e-loyalty. Contrary to the 

established EEG protocol requirements, Gregor et al. did not provide a detailed overview 

of the used EEG instrument and EEG electrode coordinates. Vance et al. (2014) used the 

P300 component of an event-related potential, which is also a well-known EEG 

construct. Using the Iowa Gambling Task, a widely used technique shown to be 

correlated with real-world risky behaviors, they show that the differences in neural 

responses to positive and negative feedback strongly predict users' information security 

behavior. Minas et al. (2014) is another NeuroIS study conducted using Emotiv EPOC 

14-channel wireless EEG CND to research information processing bias. This study shows 
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that team members focus their cognitive resources on factual and normative information 

that supports their pre-discussion preferences, rather than deeply considering information 

that challenges them.  

The second largest methods cluster consists of papers that elaborate on the 

neurophysiological methods that can complement NeuroIS research. This cluster 

encompasses four papers. Riedl et al. (2014) argue that six factors are central for a 

rigorous NeuroIS research methodology. These factors are reliability, validity, sensitivity, 

diagnosticity, objectivity, and intrusiveness of a measurement instrument. Tams et al. 

(2014) set to explore whether NeuroIS and psychometrics/psychological methods 

constitute alternatives or complements. They found that the physiological stress measure 

(i.e. salivary alpha-amylase) explains and predicts variance in performance on the 

computer-based task over and above the prediction afforded by the self-reported stress 

measure, thus concluding that NeuroIS plays a critical complementary role in IS research. 

Léger et al. (2014) introduces eye-fixation related potential method to the NeuroIS set of 

methods. Dimoka’s (2012) exhaustive work on functional magnetic resonance imaging 

also belongs to the methodological set of NeuroIS papers.  

 The third largest cluster explores conceptual NeuroIS issues. These issues start 

from specific design guidelines on how biofeedback can be integrated into information 

systems (Astor et al. 2013), through a set of recommendations for using 

neurophysiological tools in IS research (Dimoka et al. 2012) and ending in guidelines on 

how to conduct a NeuroIS study (vom Brocke and Liang 2014). The remaining papers are 

either editorial papers or papers that employ different neural instruments like functional 

magnetic resonance, skin conductivity, heart rate or eye tracking. Interestingly, methods 
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like skin conductivity or heart rate tracking are not necessarily neurophysiological in 

nature, yet IS community understands those studies as parts of the NeuroIS literature. For 

example, Anderson et al. (2016) use eye tracking to show that eye movement-based 

memory (EMM) effect is a result of habituation to security messages – a phenomenon in 

which users unconsciously scrutinize stimuli that they have previously seen less than 

other stimuli. Anderson et al. also show that after only a few exposures to a warning, this 

neural aspect of habituation sets in rapidly, and continues with further repetitions. 

Teubner et al. (2015) uses a similar non-neural method of skin conductance response to 

study the impact of agency on human bidders’ affective processes and bidding behavior 

in an electronic auction environment. They use skin conductance response and heart rate 

measurements as proxies for the immediate emotions and overall arousal of participating 

bidders in a lab experiment with human and computerized counterparts. Their results 

show that digital agents mitigated the intensity of bidders’ emotions in response to 

auction events as well as the bidders’ overall arousal levels during the auction.  

When it comes to literature themes, cognitive neuroscience seems to be the most 

prominent one (i.e. Anderson et al. 2016; de Guinea et al. 2014; Hu et al. 2015; Li et al. 

2014). This means that one of the central points of NeuroIS research have been focused 

on the cognitive functions of the human brain. Second most prominent theme was based 

on understanding human emotions by using a set neural correlates or by building 

conceptual bases for importing neural correlates to human emotion (i.e. Astor et al. 2013; 

Gregor et al. 2014; Teubner et al. 2015). How-to (Dimoka et al. 2012; Léger et al. 2014; 

Tams et al. 2014) and high level concept papers (vom Brocke and Liang 2014; Dimoka et 

al. 2012; Riedl, Davis, et al. 2014) have been equally present. The remaining clusters are 
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smaller in size. For example, Belanger (2015) and Dimoka (2015) are two papers which 

provide a set of future research directions for NeuroIS field.  

Alongside presenting issues like using neural constructs to better understand 

topics like information strategy and decision making, Dimoka (2015) also argues that IS 

should employ neural constructs for studying information and cognitive overload in the 

brain, designing IT systems that can detect and prevent Information Overload and finally 

to refine information systems based on their effects on brain activity. Kuan et al. (2014) 

and Riedl (2014) use EEG and fMRI respectively to understand the social dimension of 

using information systems in online shopping and human-avatar interaction scenarios. 

Kuan et al. (2014) pioneers the usage of multi-polar neural recordings coming from non-

invasive EEG instruments that are marketed for semi professional and consumer use 

(Emotiv Epoch headband). Their work cements the path towards using non-clinical 

devices in NeuroIS field, since they have proven that even the neural constructs from non 

clinical devices can serve as an acceptable method of producing IS theories. This path is 

latter followed by multiple multi-polar CND studies (i.e. de Guinea et al. 2014; Li et al. 

2014; Minas et al. 2014). 



33 

Table 3: BoE NeuroIS Literature 

Paper Topic Theme Method Jour. 

Anderson et al. 
2016 

Response to security messages 

Cognitive 
neuroscience 

ET EJIS 

Li et al. 2014 Engagement in online gaming EEG JMIS 
de Guinea et al. 
2014 

Perceived ease of use and 
usefulness 

EEG JMIS 

Hu et al. 2015 Self-control in security 
violations  

EEG JMIS 

Teubner et al. 
2015 

Emotions and bidding in e-
auctions 

Emotional 
response 

SCR, HR JAIS 

Gregor et al. 
2014 

Emotions in IS  EEG JMIS 

Astor et al. 2013 Emotional regulation in 
financial decisions 

Conceptual JMIS 

Riedl et al. 2014 NeuroIS methodology 

High Level 
Concepts 

Methods JAIS 
vom Brocke and 
Liang 2014 

NeuroIS guidelines Conceptual JMIS 

Dimoka et al. 
2012 

Use of Neurophysiological 
tools in IS 

Conceptual MISQ 

Tams et al. 2014 NeuroIS for Technostress 

How-To 

Methods JAIS 
Léger et al. 2014 Application of EFRP to IS 

research 
Methods JAIS 

Dimoka 2012 How to conduct fMRI studies Methods MISQ 
Vance et al. 2014 Disregard of security warnings Decision 

making 
EEG JAIS 

Minas et al. 2014 Information processing bias  EEG JMIS 
Belanger and Xu 
2015 

Editorial on NeuroIS potential 
Future 

directions 

Editorial ISJ 

Dimoka et al. 
2011 

NeuroIS potential Comment ISR 

Riedl et al. 2014 Human-avatar interaction 
Social 

processes 

fMRI JMIS 
Kuan et al. 2014 Social influence in group-

buying 
EEG JMIS 

Goes 2013 IS research and behavioral 
economics  

Misc. 

Editorial MISQ 

Davern et al. 
2012  

Historical analysis Review JAIS 
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Although BoE provides a solid overview of how-to methods, one of the seminal 

how-to papers was not published in the BoE but in the Communications of the AIS 

journal. In it, Müller-Putz et al. (2015) give an extensive set of technical instruction on 

how to use EEG artifacts in IS research. Their paper provides high level conceptual 

details about experimental procedures and protocols and builds on mapping neural 

constructs and correlates to specific wavelengths of the brain activity.  

My dissertation now proceeds with a brief overview on brain anatomy and 

functions. The primary purpose of the following section is to acquaint the reader with the 

basic anatomical and functional characteristics of the human brain with the intention of 

mapping neural constructs and correlates to specific parts of the brain on the one hand 

and to the specific neural instruments on the other.  

Brain Functions and Anatomy 

Understanding of the anatomy of the human brain has progressed drastically in 

the late 20th and early 21st century (Anderson 2014; Bear et al. 2015; Carter and Shieh 

2015; Felten et al. 2015). The historically popular concepts like phrenology, which were 

initially understood as scientific, were proven to be pseudoscientific and the 

understanding of the inner working of the human brain was revolutionized. One of the 

biggest contributors in understanding how the human brain operates was the introduction 

of the neural imaging instruments like functional magnetic resonance and 

electroencephalography. Those instruments enabled neuroscientists to use high spatial 

and temporal resolutions to understand which parts of the brain “light up” under specific 

experimental stimuli (Carter and Shieh 2015). Detailed maps of the human brain were 

presented by Bear et al. (2015, p.223-p.224) and represented in the figure below. This 
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research uses those maps to provide an overview of the current understanding of the 

anatomy of the human brain and to map functional areas of the brain to potential neural 

constructs. According to medical conventions, the cerebrum of the brain is divided into 

lobes. The lobes are named after the bones of the skull that are positioned above them. 

Part of the brain known as the central sulcus divides the frontal lobe from the parietal 

lobe. The occipital lobe is positioned at the back of the cerebrum. The lower part of the 

brain is known as temporal lobe.  

 
 

 
Figure 2: Brain Anatomy 

 
 
 Each lobe contains a set of functional areas. Those areas differ from one another 

based on the function they perform and on the microscopic structures that can be found 

within them. The frontal lobe (marked with 13) is correlated with higher mental functions 

and cognitive processes. Those functions and processes are used during concentration, 

planning, judgment, emotional expressions, creativity and inhibition activities. Cerebral 
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cortex of the frontal lobe (12) regulates eye movement and orientation. The Broca’s Area 

(4) operates muscles of speech, while motor function area serves for initiation of

voluntary muscles. The parietal lobe contains sensory area (9) which process sensation 

from muscles and skin; and somatosensory association area which evaluates the feeling 

of weight, texture, temperature and serves as object recognition center. Occipatial 

spelling lobe (1) processes sight, image recognition and image perception. The 

Wernickes’ area (11) analyzes written and spoken language comprehension. The 

temporal lobe (2) serves as an association area. In it, short term memory, equilibrium and 

emotions are being processed.  

Information systems as a discipline studies people, technology, organizations, and 

the relationships among them. Information systems as a discipline generally understand 

humans as rational agents who use their intellectual abilities to employ technology inside 

organizations in order to augment human decision making capabilities. These intellectual 

abilities are almost exclusively based on the cognitive processes in PFC. Therefore most 

of, if not all, the brain areas that can be useful for producing IS knowledge are mapped in 

the frontal lobe of the human brain. At its current state and to the best of my knowledge, 

the information systems discipline does not express the desire to use the constructs 

stemming from the other brain lobes.  For example, information systems research did not 

approach any constructs that build on human motorics, fear or automatic life sustaining 

process in human brain. This research now proceeds with the review of neural 

instruments found in the analyzed literature.  

Instruments used in NeuroIS 
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NeuroIS frequently borrows data collection instruments from the neuroscience. 

Early research works in NeuroIS (e.g. Dimoka, Banker, et al. 2010; Pavlou et al. 2007; 

Riedl, R. Banker, et al. 2010) relied on the direct expertise of formally trained 

neuroscientists. However, in later works (i.e. most of BoE Neuro* hits) it was not 

uncommon for formally trained IS researchers to adopt a neuroscience data collection 

method and instruments without actually having any sort of formal training in 

neuroscience3. This research understands the trend of IS researchers using instruments 

from the neuroscience as a clear sign that sections of the IS community are slowly 

starting to feel comfortable using neural instruments in their work and without the 

supervision from the neuroscientists. This section of the literature review therefore 

summarizes the position NeuroIS literature has taken on neurophysiological tools. Also, 

it provides an overview of different neural tools used in throughout the literature.  

 
Position Towards Neurophysiological Tools. To begin with, NeuroIS studies 

ought to consider which neural device will be used to collect data from. Human behavior 

is understood as a complex set of different processes and activities. Throughout the 

literature, those processes and activities range from unconscious variations of emotional 

reactions to decision-making activities which are based on cognition and conscious 

thoughts. As Dimoka et al. (2012 p.680) point out “neurophysiological tools enable the 

measurement of human responses when people engage in various activities, such as 

decision making, or react to various stimuli, such as IT interfaces.” Most of those human 

behavior responses can also be captured by self-reported instruments like interview or 

surveys. It is widely believed that the data coming from the specific neurophysiological 

                                                 
 3 Most of the BoE NeuroIS authors did not have a neuroscience training component in their 
publicly available vitas.  



38 

device has higher levels of objectivity. Furthermore, data sets from the 

neurophysiological recordings also testify that neurophysiological tools can in general 

provide us with abundance of data that vastly surpasses in size the conventional datasets 

that have been gathered using the self reported techniques.  

Although the NeuroIS literature does not explicate the preference towards one 

specific form of data collection (i.e. self reported vs. neurophysiological), the literature 

synthesis points out towards one unambiguous conclusion: NeuroIS studies should 

triangulate self-reported data with the data coming from a neural sensor. For example, 

Kuan et al. 2014 use a semi-professional EEG sensor to study social influence in a group-

buying process. Their study did not rely solely on the neurophysiological metrics. On the 

contrary, it combined the self reported data (e.g. demographics and preferences) with 

system data, coming from the used software solution, which was combined with the 

neural readings from the sensor. Similar patterns can be found in all BoE NeuroIS studies 

where some form of neural data was collected.  

Thus it can be concluded that NeuroIS literature does not position 

neurophysiological tools as a substitute, but as a complement to existing data collection 

methods. NeuroIS literature also indirectly advocates that all NeuroIS research should be 

designed in the way where participants are asked to self report specific data points. Those 

data points range from socio-demographic data to subjective personal characteristics of 

the participants pertaining to the study (e.g. motivation and engagement).  

Neurophysiological Tools. The NeuroIS literature review presented in the 

introductory part of this sub-chapter provides an overview of the neurophysiologic tools 

and methods that were used in the BoE NeuroIS works. Although the most common tool 
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was electroencephalography, tools like skin conductance response, heart rate, eye-

tracking and functional magnetic resonance were also used. Conference proceedings add 

galvanic skin conductance, saliva analysis and facial electromyography to the pool of 

used methods. Unsurprisingly, most of these tools were believed (Dimoka et al. 2012) to 

be able to complement IS research. The only tool that was not initially understood as 

complementary to IS research is saliva testing. This review now proceeds with providing 

a short overview of the most common tools used in the NeuroIS literature.  

 
Electroencephalography:  Electroencephalography (EEG) belongs to the 

neuroimaging techniques which are used to measure electrical activity generated by the 

brain (Müller-Putz et al. 2015a). EEG systems use a set of portable sensors which are 

mounted on the scalp surface using conductive gels. The functioning principles of EEG 

electrodes and the 10-20 system of the positioning of the electrodes are presented in the 

figure below (Figure 3). Essentially, EEG in its purest form creates an electric circuit that 

consists of at least one sensor and one grounding electrode, mono-polar systems, or 

multiple sensors and one grounding electrode (multi-polar systems). The electric signals 

which come from the portable sensors (nodes) are amplified and processed to remove 

potential noise signals (e.g. eye movement). EEG detects the electrical activity of the 

human brain. In particular, this tool is known to reveal neuro-electrical mechanisms of 

the human brain. These mechanism are monitored to detect cognitive workload and task 

difficulty (Berka et al. 2007a; Gevins and Smith 2006; Holm et al. 2009), memory 

performance (Kramer 1990; Pope et al. 1995) and cognitive processes (Bartholow and 

Amodio 2009; Knyazev and Slobodskaya 2003).  
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Figure 3: EEG working principle and 10-20 map 
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human brain are used to processes visual cues (Bear et al. 2015). The human brain is also 

evolutionary fine-tuned to control eye movement. Thus, eye tracking tools can be useful 

in research that centers on IS concepts like consumer technology, websites, social 

interactions through technology, online payments, IT security and video games.   

There are two ways in which eye tracking have been used in the NeuroIS 

literature. The first one relies on collecting information on gaze position from an eye 

tracking device (e.g. Xu et al. 2011). Monitoring pupil dilation is the second one (e.g. 

Buetnerr 2016). The diameter of the pupil dilation can provide the researchers with 

insights into arousal and stress levels. Unlike gaze position, pupil dilation is an 

autonomic process and it cannot be consciously controlled.  The BoE literature contains 

only one eye tracking work (Anderson et al. 2016). This security-centered study uses an 

eye tracking device to collect gaze positions.  All Gmunden proceedings refer to eye 

tracking either directly (listed as a potential tool in a conceptual paper) or as a data 

collection tool in a particular study (e.g. (Gwidzka 2016) and (Buetnerr 2016).  

Galvanic skin response:  Galvanic skin response (SCR) measures the levels of 

sweat secretion from sweat glands in human skin. SCR employs electrodes that are 

positioned on the palmar side of the second phalanx of the first and second fingers. Those 

electrodes send a small electric current in order to capture the sweating levels (Jacob and 

Karn 2003). The higher the sweating level is, the higher the skin conductivity will be. 

When the participating individual is exposed to emotional stimuli, higher sweat levels are 

expected to occur. Furthermore, the parts of the brain which control subconscious 

emotional reaction are deeper and positioned in the parts of the brain developed in the 

early evolutionary processes. These parts are generally known as older brain structures. 
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This renders galvanic skin response complementary to EEG instruments, especially since 

EEG monitors cognitive and emotional processes that are handled by the newer and more 

accessible brain parts. Galvanic skin response was never used as a method in any of the 

BoE papers. However, this neurophysiological tool was used in one AMCIS 2015 work 

and in multiple works presented at the Gmunden retreats of 2011, 2012, 2013 and 2016.  

Functional Magnetic resonance:  fMRI is a noninvasive brain imaging method 

that measures differences in blood oxygenation to reflect neural activity  (Felten et al. 

2015).  Neural activity in a specific brain area results in an increase in blood oxygenation, 

generally peaking around 4 or 5 seconds after the start of neural activity (Dimoka et al. 

2012). According to Dimoka et al. the ability of fMRI to localize brain activity is useful 

to IS researchers because it is able to map experimental stimuli to the specific part of the 

brain with high accuracy. This allows IS researchers to better understand which stimuli 

activate the specific part of the brain, which further enables them to build the causal link 

between IS concepts and brain functions. The high spatial and temporal resolution of 

fMRI allows it to be used for any potential concept that is mapped to the specific part of 

the human brain and of interest to IS scholars. However, prohibitive factors like cost and 

required expertise could be inhibiting to smaller institutions.  

When it comes to IS research that use fMRI, there is only one BoE study (Riedl et 

al. 2014) which uses fMRI to understand collaboration effectiveness of human-avatar 

interactions. fMRI was used to research trust in human-avatar interactions, social 

networking sites and customer impulsiveness in multiple ICIS proceedings (2011,2013, 

2014). Finally, every single Gmunden proceeding contains at least one fMRI paper.  
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Table 4: Neurophysiological tools 

Tool How it works Characteristics Potential IS applications 

EEG 

It creates a closed 
electric circuit to detect 
electrical current in the 
brain caused by dendritic 
activity.  

Widely used, cheaper than 
fMRI/PET, partial tolerance 
to movement, silent. Low 
spatial resolution, insensitive 
to the activity coming from 
deeper brain areas. 

Mental load, affective and 
cognitive processes, positive and 
negative effects, memory 
performance, cognitive 
workload, task difficulty, fatigue, 
attention, arousal, hedonic 
preferences 

Eye 
Tracking 

Tracks eye gaze and eye 
retina using a set of 
cameras or a single 
camera  

Clear visualization, beyond 
self-reported measures. Does 
not capture peripheral vision. 

Web usability, search efficiency, 
GUI design, medium 
effectiveness, stress, arousal,  
information fixation 

GSR 

Voltage or resistance 
difference among two 
electrodes placed on 
human skin. 

Low cost, minimal 
intervention. Lack of 
predictable measurement. 
Habituation effects.  

Arousal, excitement, fear, 
emotion, and attention 

fMRI 

Uses strong magnetic 
field to visualize the 
blood flow inside the 
human brain. 

Widely used, well developed 
statistical standards. Low 
temporal resolution.  

Mapping IS constructs and 
stimuli to a particular brain area. 

Oximeter 
(heart 
rate) 

Emits light through a 
translucent part of the 
human body to measure 
heart rate and oxygen 
saturation   

Low cost, wide accessibility, 
minimal invasiveness. 
Interpretation and control 
problems – too many factors 
can influence heart rate.  

Arousal, joy, emotional arousal, 
stress, control for physical 
activity and medical condition 

EKG 

Records electrical 
activity coming from the 
heart 

Saliva 
analysis 

Laboratory analysis of 
saliva. 

Widely used, easily 
outsourced.  

Polymorphisms linked to 
aggression and violence, stress 
levels 

Facial 
electromy
- ography

Measures muscle activity 
by recording electrical 
impulses that are 
generated when face 
muscles contract 

High precision, real time, 
minimally intrusive, 
inexpensive. Limited to small 
number of muscles and low 
spatial resolution.  

Emotional reactions, mood 
states, positive and negative 
reactions, confusion, situation 
awareness.  
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Summary:  Table 4 provides a concise overview of the neurophysiological 

instruments, their most important characteristics and the manner in which they were used 

in the literature. For an exhaustive and comprehensive overview of the 

Neurophysiological tools, the reader is referred to the following sources: Guide to 

Research Techniques in Neuroscience (Carter and Shieh 2015) and Computational 

Neuroscience and Cognitive Modeling (Anderson 2014).  Another excellent source for 

understanding NeuroIS perspective on neurophysiological tools in provided in the 

Research Agenda for NeuroIS (Dimoka et al. 2012) 

Theory Literature Review 

This sub-chapter provides an overview of two established theories, Information 

Richness Theory (IRT) and Information Naturalness Theory (INT), used to explain the 

mechanisms by which information is understood, processed and transmitted by 

individuals inside organizations. IRT and INT are also known as Media Richness Theory 

and Media Naturalness Theory respectively. Both theories have been applied at the 

individual and organizational level. IRT is positioned as a theory which takes a 

behavioral approach to explaining the ability of information to change the understanding 

within a time interval. In particular, Daft and Lengel (1986) assume that organizations 

collect and process information in order to reduce uncertainty. As information is 

processed and analyzed, the environment for making decisions can become less uncertain 

and less unequivocal as time passes. This theory also suggests that the fit between the 

communication task and the used medium is crucial: the complex tasks are better suited 

for richer media, while the leaner media fits simple tasks better. IRT originated at the 

organizational level (Daft and Lengel 1986) yet later works use it at both individual and 
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organizational levels (e.g. Dennis and Kinney 1998). However, IRT was critiqued on its 

lack of biological and evolutionary basis (Kock 2002). This critique was eventually 

developed into INT (Kock 2004). INT takes a Darwinian stance (Kock 2004)  and argues 

that the human species had evolved to process the more natural information (i.e. face-to-

face communication) more efficiently. As such, INT takes an individual-level stance. INT 

thus takes a perspective close to that of cognitive neuroscience arguing that the human 

brain simply did not have enough time to evolve from focusing on processing the 

predominant face-to-face communication to more recent forms of communication.  

As I discuss in Chapter One, the average information age citizen is overloaded 

with vast amounts of digital information. This volume of information comes from 

different sources (i.e. individual and/or organizational activities) and is very 

heterogeneous in its nature and form. Thus, I argue that a theoretical framework for 

understanding how mechanism of Information Overload works has to be built on the 

foundations set by IRT and INT. On the one hand, IRT provides the base to theorize how 

information fit and richness can influence the effectiveness of communication and 

information dissemination; while INT creates the base on which neuro-cognitive aspects 

can be included into the theoretical mechanism.  

I also use IRT and INT to frame this dissertation and to link its findings to the 

ongoing discussion between these two theories.  Without the underlying mechanism to 

ground the narrative, it would be impossible to create theoretically compelling arguments 

and to extend the understanding of how an average information age citizen handles 

different Information Overload situations. After giving an overview of both theories, I 

then provide a summary of key characteristics from both theories.    
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Information Richness Theory 

Information Richness Theory (IRT) was developed as a framework to explain a 

communication medium’s capability to transmit the information sent over it. This theory 

was introduced by Daft and Lengel (1986) as an addition to the information processing 

theory. In particular, the central premise of information processing theory states that 

humans process the information they receive from the environment, rather than merely 

responding to environmental stimuli. Daft and Lengel further augment this theory by 

ranking different forms of information and organizational communication based on two 

forces that influence information processing. Those two forces are equivocality and 

uncertainty. They understand uncertainty as a measure of organization’s ignorance “of a 

value for a variable in the space”. Therefore, in situations when uncertainty is low, the 

organization poses the data that answers the variable-related questions. High uncertainty 

motivates further acquisitions of objective information about the world. Moreover, Daft 

and Lengel stipulate that equivocality is “similar to uncertainty, but with a twist” (p. 

554). They further define this force as a “measure of the organization’s ignorance of 

whether a variable exists in the space” (p. 557).  In other words, when message is 

equivocal it is unclear and more difficult for individuals to process it. Vice versa, when 

the organization is able to define which questions to ask, the equicovoality is low. Unlike 

uncertainty, equivocality motivates the exchange of predefined views among managers. 

This exchange is designed to resolve conflicts and define problems through a set of 

shared interpretations. 

To illustrate the central points of IRT, its authors provide a two dimensional 

framework (p.557) with equivocality and uncertainty as the defining dimensions. This 
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framework categorizes four different scenarios that can occur as combinations of high 

and low levels of equivocality and uncertainty. In this framework, low equivocality and 

low uncertainty define a clear situation, while high equivocality and high uncertainty 

mark ambiguous situations. Lengel and Daft also supply exhaustive description of all 

potential framework scenarios and argue that an organizational structure can be provided 

to facilitate equivocality reduction and/or to reduce uncertainty.   

 The authors further argue that the critical factor in reducing equivocality is “the 

extents to which structural mechanisms facilitate the processing of rich information” (p. 

559). They define Information Richness as the ability of information to change 

individual’s understanding within a specified time interval. The information which can 

change understanding in a time-efficient manner is defined as rich. The information that 

requires a long time to enable understanding is considered as “lower in richness”. Lengel 

and Daft also provide an example of multiple media channels in order of decreasing 

richness: face-to-face, telephone, personal documents such as letters or memos, 

impersonal written documents, and numeric documents. In short, Information Richness is 

understood as a function of the communication medium’s ability to handle multiple 

information cues simultaneously, facilitate rapid feedback, establish a personal focus, and 

utilize natural language (Lengel and Daft 1989).  

Daft and Lengel (1986) state that one of the purposes of IRT is to tie together “a 

number of threads from the organizational literature”. The figure below summarizes these 

treads. Specifically, Daft and Lengel (1986) integrated equivocality with uncertainty and 

argued that structural characteristics which determine the amount and richness of the 

information processing are used to cope with these two communication-influencing 
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factors. Figure 4 also stipulates the central importance of media richness fit to the 

medium used which is characteristic for the IRT and its further spinoffs.  

Figure 4: Information Richness Theory (Daft and Lengel 1986) 

IRT has been used extensively in multiple academic disciplines to explain 

information and communication related phenomena. Lengel and Daft (1989) analyzed 

executive communication patterns using IRT. Their analysis show that a rich medium 

like face-to-face communication should be matched with non-routine, difficult-to-

understand messages. A lean medium, such as the written memo, is best used for routine 

messages. Lengel and Daft further conclude that failure to make these matches often 

cause a misunderstanding. IRT can be used to measure appropriateness of media for 

different organizational communication activities (Rice 1993). Raman et al. (1993) uses 

similar theoretical lenses to study group decision support systems. According to their 

findings, groups using a communication medium that is too lean for their task seem to 

experience more difficulties than groups with a communication medium that is too rich 

for their task. Workman et al. (2003) used IRT to frame the investigation of teleworking 

and virtual teams. Their findings indicate that different cognitive styles and types of 
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media contribute to the member commitment to virtual teams. For example, jobs that are 

more defined (i.e. administration) can be sustained with lean media, whereas more 

uncertain jobs (i.e. software development) seem to be better supported by the richer 

media channels. Simon and Peppas (2004) designed an empirical study to examine 

website visitors’ preference when it comes to the richness of the presented information. 

Results of their study show that Internet users have more positive attitudes and higher 

levels of satisfaction with rich than lean sites, regardless of the complexity of the actual 

product they were looking for. Anandarajan et al. (2010) employ IRT to study the early 

Digital Natives and their adoption of instant messaging. Results of their field studies posit 

that the users will be more likely to believe a medium is useful for socialization if the 

said medium is information rich.  

IRT is also widely used to investigate email correspondence. O’Kane and Hargie  

(2007) suggest that e-mail is affecting computer mediated and face-to-face 

communication in both positive and negative ways, producing intended and unintended 

outcomes. O’Kane and Hargie also argue that high volumes of email (i.e. information 

overload) handicap individuals’ ability to answer them. Contrary to IRT predictions, 

individuals can understand email as being able to transmit more information than 

voicemail (El-Shinnawy and Markus 1997). These results fail to support IRT predictions, 

but they do support alternative explanations of people's media choice behavior. Although 

some users may perceive email as richer in information compared to voicemail, 

electronic mail richness perception varies across individuals (Schmitz and Fulk 1991). 

Choi and Toma (2014) also used IRT to ground their study on interpersonal media. In it 

they concluded that easily accessible and non-intrusive media (i.e. texting, Twitter) are 
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more likely to be used for sharing positive than negative events. They also concluded that 

intrusive and rich media (i.e. phone calling) are more likely to be used for sharing 

negative than positive events. 

From the standpoint of IRT, individuals are expected to select the mode of 

communication based on fine-tuning the equivocality of the message to the richness of 

the information channel. However, organizational communication practice tends to 

deviate from that standpoint. Those deviations are caused by organizational 

communication norms (Treviño et al. 2000), social presence (King and Xia 1997), social 

influence (Turner and Reinsch 2007) and relationships between individuals (Sheer and 

Chen 2004). Furthermore, Channel Expansion Theory (Carlson and Zmud 1994, 1999) 

posits that individual experiences can also create deviations. Carlson and Zmud (1994) 

classify those experiences in four categories: experience with the communication 

channel, experience with the messaging topic, experience with the organizational context 

and experience with communication co-participants. Another important upgrade to IRT 

comes in the form of communication concurrency (Valacich et al. 1993). Communication 

concurrency, defined as the supportive capacity of the environment, is used to introduce 

computer mediated information channels to the original concepts of IRT. Valacich et al. 

suggest that there is no “one best fit” between tasks and media, since the results of their 

study suggest that technology “fit” is more properly assessed at the sub-process level. In 

other words, to meaningfully examine and support communication, “future research 

aimed at evaluating media effectiveness should focus on fundamental communication 

processes embodied in the tasks themselves”. 
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Although the list of augmentations and congruent theoretical additions to the IRT 

is extensive, only one major critique for IRT is established in the literature. The substance 

of that theory is not designed to augment or compliment IRT like the works I discussed in 

the previous paragraphs, but to provide a completely different way of treating 

information processing and communication. That competing theory is Information 

Naturalness Theory (INT). I will now discuss premises of INT and juxtapose it with IRT 

to create theoretical base for this dissertation.  

 
Information Naturalness Theory 

 
Information Naturalness Theory4 (INT) presents a stark contrast to Information 

Richness Theory (IRT). Unlike IRT, the fundamentals of INT are positioned in 

Darwinian thinking (Kock 2002) and rooted deeply in neurophysiology and cognitive 

neuroscience. Its author (Kock 2004) argues that the problems arising from overloading 

individuals with vast amounts of digital and computer mediated information are not going 

away. He further posits that many flaws in the earlier “so-called rational choice theories” 

keep surfacing and that new theoretical fundamentals are needed to mitigate those gaps. 

Those fundamentals “should probe deeper” than any other behavioral or rational 

approach theory to find “the missing element of human nature” which defines human 

“biological communication apparatus”. Since the biological mechanisms used to produce 

and process communication in humans are located in the human brain, Kock (2004) uses 

neurophysiological themes like “neural functional language system” (Lieberman 2002) 

and “brain circuits” to root his theory in the existing concepts from neuroscience.  

                                                 
 4 Information Naturalness theory is also known as Media naturalness theory and as 
Psychobiological model.  
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INT notes that human ancestors communicated primarily through face-to-face 

communication. Kock (2004) explains that this form of communication was so important 

to early humans that a set of harmful mutations survived multiple evolutionary cycles just 

so that humans could be more proficient in communicating in face-to-face manner. He 

highlights the example of vocal cord mutations. This mutation enabled humans to 

produce a wide variety of articulated sounds needed for face-to-face communication. 

However, the handicap of greatly increasing the possibility of choking while eating had 

to be endured. Without the risks of choking, it would be hard to make vocal cords 

mutations possible. After the modification in vocal cords, humans gradually developed 

brain structures which facilitate information processing common for face-to-face 

communication. As a result of these evolutionary pressures, Kock (2002, 2004) posits 

that the face-to-face communication is the most effective and also the most rewarding 

form. Specifically, he states that this way of communication is tied to pleasurable feelings 

inside the human brain. He also argues that other forms of communication create 

cognitive pressures and may lead to Information Overload in humans. The figure below 

(Kock 2004, p. 340) represents Kock’s understanding of Information Naturalness.  

Figure 5: Information Naturalness Theory (Kock, 2004) 
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Although Kock explicitly states that all forms of communication which do not 

classify as face-to-face communication have a lower level of naturalness, he also argues 

that different ways in which the information is transmitted are not identical when it 

comes to their degree of naturalness. Figure 6 was developed on the basis of  “Context-

Specific Hypotheses Developed Based on the Psychobiological Model” from Kock’s 

seminal work (2004, p. 338). It is used to represent varying levels of naturalness in 

different communication settings. It is important to note that IRT essentially uses the 

same logic to group the media; with minor concept-based exceptions (i.e. there were no 

video conferencing mechanisms at the time when the IRT was formulated).   

One of the most unnatural forms of communication is email. Although widely 

used, emails are a very unnatural way of communicating for humans since the evolution 

of our brain has yet to catch up with this relatively recent technological development. 

Instant messaging is a more natural way of communicating because it eliminates 

asynchronous elements present in communicating via email. Audio conferencing presents 

a significantly more natural way of communicating since it uses parts of the brain and 

human anatomy which did have enough time to evolve to support efficient information 

processing. Finally, video conferencing is one of the most natural means of 

communicating because it closely resembles face-to-face communication. Thus, the more 

natural the communication channel is, the more efficient the communication would be. In 

his later work, Kock (2005) expands the definition of naturalness. In it, he assumes that 

natural communication involves five key elements: (1) high degree of co-location, (2) 

high degree of synchronicity, and the ability to convey and observe (3) facial expressions, 

(4) body language and (5) speech. Therefore, the naturalness of a medium can be 
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assessed based on the degree to which the technology selectively incorporates (or 

suppresses) those five elements. 

Figure 6: Varying levels of naturalness in different communication settings 

Furthermore, INT links a set of dependent communication constructs to one 

central independent construct. This central construct is the mismatch between human 

neurophysiological communication apparatus and communication media characteristics. 

Kock (2005) states that “inverse of this mismatch is defined as the naturalness of a 

communication medium—that is, the higher the mismatch, the lower the naturalness of a 

communication medium.“ He links four sets of predictions to this mismatch. 

The first set of predictions revolves around implications with cognitive effort, 

ambiguity of communication and arousal in physiological means. All things being equal, 

INT predicts that a decrease in the degree of naturalness will result in an increase in 

cognitive efforts, increase in communication ambiguity and in a decrease in arousal. A 

second set of predictions posit that digital communication will keep eliminating key 

elements of face-to-face communication to create other benefits. A third set of 

predictions argues that the level to which a digital communication medium supports an 
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individual’s ability to listen and convey speech is crucial in assessing naturalness. 

Finally, the fourth set of predictions focuses on compensatory adaptation. In it, Kock 

(2005) hypothesizes that individuals engaged in digital communication can change their 

behavior to overcome limitation of digital media.  

 In addition to relying on neurophysiological foundations, Kock (2004) also 

introduces the aspects of environment. INT treats cultural and social environments as a 

schema generating mechanisms. Individuals raised in different environments will develop 

different communication schemas. Different schemas ultimately lead to communication 

ambiguity, which can increase the probability of misinterpretations of particular 

communication elements.  

 Similar to IRT, INT was widely used in multiple disciplines and settings. Deluca 

(2003) uses it study business process improvements in asynchronous digital 

collaborations. Moreover, INT is also used to frame studies of virtual teams. For 

example, DeRosa et al. (2004) employ it to study solutions trust and leadership problems 

which are rooted explicitly in an evolutionary context. Similarly, an experimental study 

of credibility in e-negotiations (Citera et al. 2005) also takes the Darwinian approach 

used in Kock’s INT. Moreover, research on maintenance of distributed relationships 

(McKinney and Whiteside 2006) uses INT to explore the possibilities of maintaining 

meaningful relationships between business partners in and after cases of an emergency 

(i.e. 9-11 terror attacks). Media naturalness also plays a major role in designing new 

frameworks to help prepare students for roles that involve negotiating, supporting, and 

facilitating virtual global collaboration (Paretti et al. 2007). INT has been used to explore 

the barriers to knowledge transfer through the means of computer-mediated 
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communication (Schwartz 2007). Kock et al. (2007) similarly utilizes INT to investigate 

how media obstacles can be compensated in digital communication. This research 

demonstrates that the burden of compensating for electronic communication media 

obstacles falls primarily on those who attempt to convey information, as opposed to those 

who receive it. Moreover, media naturalness builds the base for understanding how 

gestures for online virtual environment interactions work (Verhulsdonck 2007). 

Hrastinski (2008) uses the synchonicity aspect of INT to study how potential problems of 

trust and leadership in virtual teams are affected by synchronous communication. Peng 

and Sutanto (2012) relied on INT to study knowledge sharing across functional and 

geographical boundaries. Media naturalness was also used in studies about deciding 

whether to accept or reject contract clauses in software purchasing contracts  (Kock et al. 

2015).  

Theory Review Summary 

Seminal information theories like Information Richness Theory (IRT) and 

Information Naturalness Theory (INT) are useful in providing a holistic picture of the 

communication and related information processing phenomena. I use this picture to 

ground this dissertation in those two theories. Table 5 provides a concise overview of 

IRT and INT and their major components.  A central premise in IRT is that different 

communication media have different abilities to transfer information. This ability is 

defined as Information Richness. INT posits that the human brain did not yet evolve to 

process unnatural communications effectively. Thus, the more communication medium 

differs from the face-to-face communication, the greater the cognitive effort will be 

required to communicate. In terms of Information Overload (IO), IRT posits that IO may 
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come not only from the sheer amount of available information but also from the 

mismatch between Information Richness and task complexity.  

For example, a short message might be more suited for arranging a meeting than a 

lengthy 4k video. INT argues that unnatural communication will require more cognitive 

effort. Thus, other things being equal, less natural media (i.e. email or asynchronous 

message) will create more cognitive pressures for the individual compared to a more 

natural media (i.e. voice conference) even in the case of IO.  Both IRT and INT 

incorporate communicational disturbances which can also play a role in understanding 

how IO might manifest. Specifically, IRT lists different organizational norms, skill sets 

and culture as potential culprits for reducing the communication effectiveness. It follows 

that the effects of IO can be further amplified if the sources of information influx are 

misaligned with the receiver’s characteristics. 

INT highlights cognitive schemas as potential disruptors of effective 

communication. Thus, if information influx is coming from a source which uses radically 

different cognitive schema compared to the schema which is used by the receiver, IO 

effects can be reasonably expected to amplify as well. In short, both IRT and INT explain 

the same phenomena (communication) by analyzing the core media of the said 

phenomena (information) from radically different perspectives. Taken together, these 

theories provide a solid ground for researching IO. The following sub-chapter will use 

that theoretical ground to build a theoretical mechanism for understanding IO through the 

CNDs and to explicate a set of hypothesis relating to it. 
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Table 5: IRT and INT components 

Component IRT INT 

Level of 
analysis 

Started at organizational; used at 
organizational and individual 
levels.  

Individual level. 

Central premise 

Communication media vary in 
ability to enable users to 
communicate and to change 
understanding. The degree of this 
ability is known as a medium's 
"richness." 

Human ancestors have 
communicated primarily in face-
to-face mode. Evolutionary 
pressures have led to the 
development of a brain that is 
consequently designed for that 
form of communication. 

Core concept 
Information richness should fit the 
communication task.  

The most natural way for humans 
to communicate is face-to-face.  

Media selection 

Richer media for complex tasks, 
lean media for simpler. 

The more natural the media is, the 
less cognitive efforts will be 
needed to communicate.   

Core 
characteristics/ 
constructs 

Speed of feedback, cue 
multiplicity, language variety, 
personalization  

Cognitive effort, communication 
ambiguity, and physiological 
arousal 

Communication 
disturbances 

Different skill sets, norms and 
cultures.  

Different cognitive schemas. 

Key difference 

Richness is not uniformly better. 
Fit between communication task 
and the medium used is central.   

Naturalness is always better – the 
more naturalness the lower the 
cognitive efforts will be.  

Theoretical 
spin- offs 

Channel expansion theory 
Communication concurrency 
theory 

/ 
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Theoretical Mechanism of Information Overload 

In this sub-chapter, I present the Theoretical Mechanism of Information Overload 

and the corresponding hypotheses. The mechanism and the hypotheses are based on the 

literature presented in the earlier parts of this chapter. Both the mechanism and the 

hypotheses are designed to further the existing theoretical and literature discussion and to 

build on the detected gaps and shortcomings I explain in previous parts of this chapter. I 

am using Gregor's (2006) understanding of the nature of theory in IS to develop 

Theoretical Mechanism of Information Overload. Thus, I hold that an IS theory should 

have the following structural components: means of representation, constructs, statements 

of relationship and scope. This sub-chapter also serves as an introduction to all structural 

elements and relationships of Theoretical Mechanism of Information Overload and the 

corresponding hypotheses.  Hypotheses 1a, 1b, 1c and 1d deal with elementary cognitive 

performances (ECT) and Information Overload (IO). This group of hypotheses tests if IO 

influences ECTs in a stronger way, how the growing amount of information influences 

ECTs and how derivates of cognitive schemas (Kock 2004) separate two distinct 

population groups. Hypotheses 2a and 2b put Information Richness and Information 

Naturalness Theories (IRT and INT respectively) to the test. In other words, hypotheses 

2a and 2b are designed to examine if IO is negatively related to the Information Richness 

and Information Naturalness. Finally, the third hypotheses includes and extends a specific 

Consumer Neural Devices (CND) study (Milic 2017) and sets the scene for testing how 

the same CND can be used to research IO phenomena in real-time and outside of the 

standard clinical settings. Combined, these hypotheses form a theoretical mechanism of 

understanding how the state of growing available information influences cognitive 
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performances through the state of Information Overload and how different cognitive 

schemes, Information Richness and naturalness shape the entire IO mechanism.  

Previous parts of this chapter provided a base for understanding how the general 

literature from the business disciplines understands IO. Although the situations in which 

some forms of IO occur are systematically listed throughout the literature (i.e. Eppler and 

Mengis 2004), an overarching understanding of the causal and cognitive mechanisms 

behind the IO is still missing. This is particularly clear in situations when different 

disciplines approach IO from multiple levels. For example, marketing studies are known 

to analyze IO just from the consumer’s perspective while accounting studies take 

auditor’s perspective as central. Similarly, managerial studies focus on executive and 

organizational narratives.  

Despite this diversity of topics and disciplines, two key IO elements are present in 

multiple literature themes and studies. These key elements are: 

1) state of abundant information and

2) constant and growing flow of information.

The IO definition proposed by Speier et al. (1999) directly encompasses the first element 

by understanding it as a state in which individuals have a vast amount of information that 

is readily available, almost instantaneously, without mechanisms to check the validity of 

the content and the potential risk of misinformation. This state is indirectly present in 

multiple studies. For example, Berghel (1997) elaborates about the state of abundant 

information which occurs during internet browsing. Bawden (2001) advocates that 

information excess occurs when individuals screen medical information.  Moreover, 

Meyer (1998) discusses that too much information is also characteristic for strategic 
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analysis and planning. Excesses of information are also known to manifest during 

meetings and telephone conversations (Schick et al. 1990), ideation processes (Grise and 

Gallupe 1999), face-to-face discussions (Sparrow 1999), product evaluations (Herbig and 

Kramer 1994) and even in regular shopping activities in supermarkets (Jacoby 1984). 

Thus, it can be concluded that individuals frequently experience situations in which they 

have a vast amount of information at their disposal. Similarly, individuals can frequently 

end up in a situation where they have a volume of readily available information and in 

scenarios with no mechanisms to mitigate the risk of misinformation. Thus, this 

dissertation uses the state of abundant information and labels it as Information Excess. I 

position Information Excess as one of the key constructs of my theoretical mechanism 

and a constituent element of IO. The conceptual definition of Information Excess is 

provided in this chapter and explicated in Table 6.  

The second key element of IO is the constantly growing amount of information. I 

define this growing amount of information as information influx. Regardless of the 

research setting or level of analysis, literature again paints a picture similar to the one I 

found for the first key element: multiple papers discuss the constantly growing amount of 

information in different ways and in multiple scenarios. For example, Chewning and 

Harrell (1990) argue that growing amount of information eventually results in a state 

where the available information is utilized to a lesser degree. They, as well as some other 

authors (i.e. Cook 1993; Griffeth et al. 1988; Schroder and etc 1967; Swain and Haka 

2000), argue that this relationship takes a inverted U-curve shape (Eppler and Mengis 

2004). Other authors (i.e. Jacoby 1984; Malhotra 1982; Meyer 1998) claim that 

information influx pushes individuals into the state of Information Overload only when 
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the amount of information exceeds the processing capacity of the human brain.  Keller 

and Staelin (1987) contribute to the literature by introducing a temporal aspect to the 

information influx. They posit that the state of Information Overload will occur when the 

available time to process the given task becomes greater than the time in which the new 

amount of information arrives. Some authors (i.e. Wurman 2000) take even higher 

perspective by claiming that information influx creates the state of Information Overload 

when the amount of “ingested” information exceeds the resources available for 

“digesting” information. Thus, it can be concluded that information influx is indeed 

present throughout the literature in both direct and indirect manners. Consequently, I 

stipulate that information influx occurs when an entity, be it an individual, website 

visitor, IS auditor, consumer or a manager, faces a situation in which the flow of 

information is constant and the amount of information is growing. This dissertation 

defines the state of constant information flow and growing amount of information as 

Information Influx. Information Influx plays the role of the second construct in my 

theoretical mechanism.  

The second part of NeuroIS sub-chapter provided grounds to include cognitive 

functions of the human brain into the study of IO. Those grounds are functional, 

anatomical and contextual. When it comes to the function of the brain, the executive part 

of the brain positioned in the frontal lobe processes higher cognitive efforts. This same 

area is known to be active when the brain uses the executive center (i.e. PFC) to process 

information and support activities like cognition and working memory. This creates the 

anatomical grounds for linking IO to elementary cognitive tasks. Finally, all NeuroIS 

studies in which causes and situations of IO might have occurred have used cognitive 
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perspectives. Thus, this dissertation uses a concept of elementary cognitive tasks (ETC) 

as both a conceptual and methodological measure of an individual’s cognitive 

performances.  I use a commonly accepted definition of elementary cognitive task (ETC) 

from Carroll (1993, p. 11) in which he defines ETCs in the following way: 

“An elementary cognitive task (ECT) is any one of a possibly very large 
number of tasks in which a person undertakes, or is assigned, a 
performance for which there is a specifiable class of "successful" or 
"correct" outcomes or end states which are to be attained through a 
relatively small number of mental processes or operations, and whose 
successful outcomes depend on the instructions given to, or the sets or 
plans adopted by, the person.” 

 
In other words, ECTs can be understood as basic tasks with which demand only a 

small set of mental processes and which have easily specified correct outcomes. To an 

extent, these tasks are congruent with mid-level tasks like report and planning specified 

in the second figure of Daft and Lengel’s (1986) information role structural framework 

(p. 561). This theoretical congruency renders the concept of ECT particularly useful for 

the role of the third construct in the IO mechanism.  

Theory literature review sub-chapter states the main characteristics of IRT and 

INT. Both theories have well developed definitions of Information Richness and 

Information Naturalness respectively. I adopt those definitions verbatim and use them as 

constructs in my IO theoretical mechanism. Therefore, the ability of a communication 

medium to reproduce the information sent over it is understood as Information Richness, 

while the level to which the communication medium is similar to human face-to-face 

communication is understood as Information Naturalness. Table 6 provides a concise list 

of all five constructs I use to explain the mechanism behind IO.  
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According to Gregor’s (2006) Structural Components of Theory (p. 620) a well 

developed IS theory should also have a clearly specified scope. Gregor (2006) defines 

theoretical scope as “the degree of generality of the statements of relationships” (p. 620). 

As stated in introductory chapter, the scope of this dissertation, and thus of my theoretical 

mechanism focuses completely on the individual level and on digital representations of 

information. Therefore, this theoretical mechanism is meant to explain the workings of 

Information Overload on individual scope. The next part in formalizing my theoretical 

mechanism includes explicating the relationships between the constructs. Taken together, 

the constructs presented in Table 6 are characteristic of most, if not all, IO situations. 

Thus, I believe that the first attempt at theorizing an overarching mechanism for 

understanding how IO manifests itself should incorporate all these constructs. 

Introductory parts of Chapter Two of this dissertation provide examples on how those 

constructs apply in specific situations. However, these situations alone do not provide an 

understanding of relationships among the core IO constructs. In particular, it is clear that 

information influx causes the state of IO.  

However, it is not clear if information influx causes a stronger effect on ECTs on 

its own or if stronger effects come only after the state IO is reached.  Furthermore, an 

indirect and partial consensus on Information Richness influencing IO negatively exists 

throughout the literature. Unfortunately, this relationship has not been empirically tested. 

Thus, it is certain that that these stances play an important but not fully understood role in 

the IO mechanism. As such, I believe they should be tested and potentially included as 

statements of relationship (i.e. constituent forces) of the IO theoretical mechanism.  
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Table 6: Key Constructs for IO Mechanism 

Key constructs Definition 

Information Excess A state in which individuals have vast amount of information 
that is readily available, almost instantaneously, without 
mechanisms to check the validity of the content and the potential 
risk of misinformation. This is the second key element of 
Information Overload. 

Information Influx The state of constant information flow followed with the 
growing amount of information. This is the second key element 
of Information Overload. 

Cognitive 
performances (ECT) 

Basic tasks which demand only a small set of mental processes 
and which have easily specified correct outcomes. 

Information Richness The ability of communication medium to reproduce the 
information sent over it. 

Information 
Naturalness 

The level to which the communication medium is similar to 
human face-to-face communication. 

When it comes to INT, a clear agreement exists: the more natural the information 

is, the lesser the amount of cognitive effort is exerted by the individuals consuming said 

information. Similarly to IRT, this consensus is not empirically tested – especially not 

with the experimental design which employs any form of neural equipment and explains 

the causal mechanisms behind the information overload. Paradoxically, although multiple 

works seems to be in line with Kock’s (2002, 2004) reasoning that evolutionary pressures 

have shaped the human brain, not a single study has tested these conclusions by 

employing actual measures from the human brain or any causal mechanisms whatsoever. 

Thus, a case for testing if these theorized relationships hold exists. In terms of this 
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Theoretical Mechanism of Information Overload, the case for testing is particularly 

strong for exploring if Information Richness and Information Naturalness relate to the 

levels of IO overload directly and negatively. Additionally, IRT introduces the concept of 

information fitness (i.e. short texts for scheduling meetings, face-to-face meetings for 

complex tasks) which might also influence the IO mechanisms. However, information fit 

is not tested in this dissertation since CNDs at their current level of development simply 

do not have the technical capabilities to reliably detect the neural constructs required to 

conduct such a study. Combined together, these gaps and key concepts provide a 

comprehensive ground for theorizing the relationships behind the core constructs of IO 

mechanism. Conveniently, this mechanism should be testable using CNDs, since the 

dependant variable (ECT) can be mapped with minimal dimension reductions to the 

neural correlates detectable by almost all CNDs. I use table below to list all statements of 

relationships present in the Theoretical Mechanism of Information Overload. Gregor 

(2006) also argues that IS theory is to be accompanied by the adequate means of 

representations. She specifies that a good IS theory should be “physically represented in 

different ways: in words, mathematical terms, symbolic logic, diagrams, tables or 

graphically” (p. 620). 
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Table 7: Relationships between Constructs of the Information Overload Mechanism 
 

 
Rel. # 

 
Statement of Relationships: Description 

 
1 

 
Stronger ECT effects are caused by Information Overload. However, 
information influx and information excess alone cannot create strong ECT 
effects. 
 

2 Stronger ECT effects are present even after the intensity of information 
influx returns to normal levels. 
 

3 Digital Natives are environmentally conditioned to process digital 
information more effectively than Digital Migrants. Therefore, Information 
Overload will create smaller ECT effects on Digital Natives compared to 
Digital Migrants.  
 

4 Digital Migrants are not environmentally conditioned to process digital 
information more effectively than Digital Natives. Therefore, Information 
Overload will create greater ECT effects on Digital Migrants compared to 
Digital Natives. 
 

5 Information richness reduces the cognitive efforts required for the human 
brain to process information. Thus, Information Richness reduces the 
strength of ECT effects of Information overload. 
 

6 Information naturalness reduces the cognitive efforts required for the human 
brain to process information. Thus, Information Naturalness reduces the 
strength of ECT effects of information overload.  
 

 
 

To satisfy this requirement, I use a graphical representation of the IO mechanism 

provided below (Figure 7) to accompany the means of representations (i.e. words and 

tables) I discussed earlier in this subchapter. Horizontal axis of Figure 7 defines the 

temporal dimension, while the vertical axis stands for the strength of ECT effects.  

 



68 

Figure 7: Information Overload Mechanism 

The straight light-gradient vertical arrow named “Normal Information Influx” 

represents the state in which individuals are exposed to standard (i.e. non-overloading) 

levels of information influx. This element of the mechanism serves as an orienteer for 

explanation and representation of causal relationships between key IO constructs and 

individual ECTs performances over time. 

The three curved dark-gradient arrows labeled “High Information Influx” 

represent the changes in information influx intensity. These changes occur under different 

key IO constructs, which transform the normal information influx into the states of high 

information influx, and ultimately create IO. To begin with, Kock (2004) claims that the 

environment in which an individual is located can influence the individual’s ability to 

process information. On that basis, I theorize that IO in Digital Natives will have smaller 

ECT effects, since Digital Natives are brought up in an information-abundant 
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environment and thus already partially conditioned to high information influxes and 

information excess. On the same basis, I theorize that the opposite relationship will hold 

in cases of Digital Migrants, especially since the environment in which they grew in were 

not as information-abundant as the one characteristic for Digital Natives. This part of the 

mechanism is represented graphically by the first two vertical arrows. The first vertical 

arrow shows how the membership in the Digital Migrants group amplifies the ECT 

effects coming from the high information influx. The amplified high information influx is 

represented by the curved arrow with the darkest gradient. The curvature of the arrow/s 

represents the change in the intensity of information influx, since I posit that every 

information influx starts as a normal information influx. The opposite relational logic 

holds for Digital Natives: the membership in the Digital Natives group weakens the ECT 

effects coming from the information overload. The weakened High information influx is 

represented by the curved arrow with the lightest gradient.  

The third and the fourth vertical arrows represent the part of the mechanism 

through which explanation of how Information Richness and Information Naturalness 

affect Information Overload is illustrated. Both Daft and Lengel (1986) and Kock (2002, 

2004) argue that the Information Richness and Information Naturalness respectively 

improve the efficiency of communication especially within the scenarios that are of 

interest to the IS discipline. In other words, both IRT and INT understand Information 

Richness and Information Naturalness as characteristics which exert positive influence on 

communication efficiency. And since Information Richness and Information Naturalness 

increase the communication efficiency, I posit that this increase in communication 

efficiency creates a lower cognitive load on the parts of the brain processing these 



70 

signals. Therefore, I theorize that the richer and the more natural the information is, the 

smaller the effects of ECTs will be.  

To summarize, my theoretical mechanism posits that Information Overload will 

manifest and create strong effects on ECTs only when both key elements of IO (i.e. 

information influx and information excess) are present. Normal information influx alone 

cannot cause significant effects on ECTs. Same holds for information excess: without the 

information influx individuals will eventually process or verify the available information 

and strong effects on ECT performances will be avoided. I also posit that this theoretical 

mechanism will not work universally for every type of information and for every age 

group. In particular, I theorize that richer and more natural information will weaken the 

strength of ECT effects of IO. Similarly, I also theorize that Digital Natives will 

experience smaller ECT effects compared to Digital Migrants. I ground this part of the 

mechanism on the environmental factors presented in INT (Kock, 2004). In short, this 

theoretical mechanism defines what Information Overload is on the individual level. The 

same theoretical mechanism also explains how and when information influx and 

information excess create stronger elementary cognitive task effects. Moreover, this 

mechanism explains why Information Overload results in stronger elementary cognitive 

task effects. Finally, Theoretical Mechanism of Information Overload provides basis on 

which it is possible to predict when stronger effects on elementary cognitive 

performances will occur. Thus, I believe that the theoretical mechanism I present here 

can be classified as the Type IV theory, or as an Explanation and Prediction theory in 

Gregor’s (2006) Taxonomy of Theory Types in Information Systems Research (p.620). 
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In the remainder of this sub-chapter I provide a set of hypotheses, designed to test if the 

mechanism I just theorized is supported with the data coming from the CND.  

 
Hypotheses Group One: Cognitive Performance and Information Overload 

 
Hypotheses from the Group One are designed to test if the first four relationships 

(Table 7) of the Theoretical Mechanism of Information Overload work in empirical 

settings and in measurable ways.  I present these hypotheses in the table bellow (Table 8). 

Hypotheses 1a and 1b test if strong ECT effects are caused by high information influx 

and the state of information overload. These two hypotheses are developed on the basis 

of the literature from earlier parts of this chapter, which concludes that IO influences user 

performances in different ways. As I discussed earlier, Chewning and Harrell (1990) 

argue that growing amount of information eventually results in a lesser use of 

information. Other works (i.e. Cook 1993; Griffeth et al. 1988; Schroder and etc 1967; 

Swain and Haka 2000) claim that this relationship is represented by a U-curved shape 

(Eppler and Mengis 2004). Another group of authors (i.e. Jacoby 1984; Malhotra 1982; 

Meyer 1998) relate Information Overload to the processing capacity of the human brain. 

 Keller and Staelin (1987) introduce a temporal aspect to the information influx by 

arguing that that the state of IO happens when information arrives faster than it can be 

processed. On this basis I concluded that information influx occurs when an individual 

faces a situation in which the flow of information is constant and the volume of 

information is increasing.   
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Table 8: Hypotheses Group One and the corresponding Statements of Relationships 

H.# Text Rel. # 
H1a Information Overload leads to strong Elementary Cognitive Task 

effects. 
1 

H1b Information Influx does not lead to strong Elementary Cognitive Task 
effects Information Overload is reached 

H1c Information Overload caused Elementary Cognitive Task effects endure 
even after the information influx is stopped  2 

H1d Information Overload leads to stronger Elementary Cognitive Task 
effects on Digital Natives compared to Digital Migrants. 3 & 4 

Therefore, Information Overload should result in stronger effects on basic tasks 

which demand only a small set of mental processes and which have easily specified 

correct outcomes. However, these effects will not occur unless information influx is 

accompanied by the information excess (i.e. Table 7, statements of relationships number 

1). Stated formally: 

H1a: Information Overload leads to strong Elementary Cognitive Task 
effects.  
H1b: Information Influx does not lead to strong Elementary Cognitive 
Task effects Information Overload is reached 

A seminal IO literature review (Eppler and Mengis 2004), as well as the literature review 

I have conducted, concur that IO can happen in multiple situations. However, to the best 

of my knowledge, all IO literature seems to focus on investigating situations, relations, 

effects and potential countermeasures in relation to IO. I theorized earlier that strong ECT 

effects should be present even after the intensity of information influx returns to normal 

levels (i.e. Table 7, statements of relationships number 2). However, not a single study 

focuses on researching if IO influences cognitive performances after the high information 
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influx, returns to the normal levels. And since a range of IO countermeasures have been 

developed, it can be assumed that IO does influence cognitive performance even after the 

information influx returns to normal values. I believe that this property of the IO 

mechanism can extend the understanding of this phenomenon and expand the dialogue 

from the literature. Therefore, I propose Hypothesis 1c: 

H1c: Information Overload caused Elementary Cognitive Task effects 
endure even after the information influx is stopped. 
.  

The figure below illustrates the part of the Theoretical Mechanism of Information 

Overload that is tested through the hypotheses H1a, H1b and H1c. Understanding of 

Theoretical mechanism of IO would be incomplete without incorporating the effects 

coming from individual’s membership in one of two distinctly different groups, with 

these groups being Digital Natives and Digital Migrants. As I theorized earlier (i.e. Table 

7, statements of relationships number 3 and 4), Digital Natives are environmentally 

conditioned to process digital information more effectively than Digital Migrants. 

Figure 8: The basic Information Overload effects 



74 

Therefore, Information Overload is theorized to create smaller ECT effects on 

Digital Natives compared to Digital Migrants. Similarly, Digital Migrants are not 

environmentally conditioned to process digital information more effectively than Digital 

Natives. Therefore, Information Overload should create greater ECT effects on Digital 

Migrants compared to Digital Natives. As I discussed earlier, both IRT and IRT are 

univocal about the directionality and nature of these effects. Namely, IRT states that 

different cultural and departmental norms can distort the process of communicating 

information between individuals. INT posits that individuals raised in different 

environments tend to develop different communication schemas. Based on those 

positions, I hold that no two individuals would experience an influx of information in the 

same way. Therefore, these distinctly separate groups might end up experiencing IO to 

different extents. As I elaborate earlier, the classification which appears to be the most 

suitable for applying in the context of digitally transmitted information is the one which 

separates the general population into Digital Natives and Digital Migrants (Prensky 

2001). On the one hand, Digital Natives can be defined as all individuals born or raised 

during the era of widely available digital technology (1980s and later). On the other, 

Digital Migrants are defined as all individuals born or raised during the times when 

digital technology was not as widely available or even available at all. Thus, it is 

reasonable to assume that Digital Natives have developed different cultural norms and 

cognitive schemas compared to Digital Migrants. Similarly, individual experiences 

(Carlson and Zmud 1999) between those two groups can be expected to differ 

significantly, which should further translate into differences in cognitive performance in 

digital environments between those two groups. Intriguingly, cognitive neuroscience does 
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not provide a univocal position on this topic. In particular, it seems that cognitive 

performances deteriorate with age (Glisky 2007), which could mean that Digital Migrants 

might be more seriously affected by IO than Digital Natives, especially since their 

cognitive abilities are deteriorating as a result of aging. Since the difference between 

Information Overload effects on Digital Natives and Digital Migrants plays a crucial role 

in the functioning of the Theoretical Mechanism of Information Overload (i.e. Table 7, 

statements of relationship number 3 and 4), I hold that this part of the mechanism should 

be tested. Presented formally: 

H1d: Information Overload leads to stronger Elementary Cognitive Task 
effects on Digital Migrants compared to Digital Natives.  
 

Figure 8 illustrates the part of the Theoretical Mechanism of Information Overload that 

H1d is set to test.  

 
 

 
 

Figure 9: Information Overload - Digital Natives vs. Digital Migrants 
 



76 

Hypothesis 1d marks the end of the first group of hypotheses. The next group of 

hypotheses explicates postulates from IRT and INT and relates them to IO, as I 

previously theorized.  

Hypotheses Group Two: Information Overload and Information Categories 

As I theorized earlier, Information Richness reduces the cognitive efforts required 

for the human brain to process information. This further means that Information 

Richness, assuming task fit, reduces the strength of ECT effects of Information Overload. 

Theoretical Mechanism of IO contains an identical relationship for Information 

Naturalness. Namely, I theorize that Information Naturalness reduces the cognitive 

efforts required for the human brain to process information. Therefore, Information 

Naturalness should reduce the strength of ECT effects of Information Overload. These 

relations also play a vital role in the Theoretical Mechanism of Information Overload. As 

such, they are explicated in Table 7 as statements of relationships number 5 and 6 

respectively. As I discussed earlier, both IRT and IRT are univocal about these effects. 

To formally test these elements of the theoretical mechanism I propose the following 

hypothesis: 

H2a: Information Overload is negatively related to the Information 
Richness of the information category  

Figure 10 represents the part of the theoretical mechanism that is formally tested by H2a. 
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Figure 10: Information Richness effects on Information Overload 
 
 

When it comes to the INT theory, the situation is much simpler. The more closely 

the communication resembles face-to-face communication, the less cognitive effort will 

be required to process the information. I incorporate this logic in the Theoretical 

Mechanism of Information Overload by stating that Information Naturalness reduces the 

ECT effects of Information Overload because Information Naturalness reduces the 

cognitive efforts required for the human brain to process information (i.e. statement of 

relationships number 6, Table 7). Hypothesis 2b, which is formally stated below is 

designed to test if this particular element of the mechanism is supported by data: 

 
H2b: Information overload is negatively related with the media 
naturalness of the information category  
 

Figure 10 illustrates the part of the theoretical mechanism that is formally tested by H2b.  
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Figure 11: Information Naturalness effects on Information Overload 

Hypotheses 3: CND IO Detection Potential 

Hypotheses groups one and two are designed to test if the theoreticized 

mechanism of IO works in practice. However, another important component of this 

dissertation relies on detecting and understanding IO in real-time and by non-clinical 

devices. To ground Hypotheses 3, I present in verbatim the paper I have already 

published at the last Gmunden NeuroIS retreat (Milic 2017). In it, I explain how CNDs 

can be positioned within the existing NeuroIS toolbox and what procedures can be used 

to gather EEG signals. This preliminary paper has been published in a peer-reviewed 

Springer outlet and it can serve as a prelude to Hypotheses 3 and Chapter Three.   

This research understands a Consumer Neural Device (CND) as a sum of 

hardware and software elements of a communications system that permits cerebral 

activity to control computers or external devices (Kübler et al. 2001; Lotte et al. 2007; 



79 

Nicolas-Alonso and Gomez-Gil 2012). CNDs can be grouped into two categories based 

on the invasiveness of the interface: instruments which are invasive and those which are 

noninvasive. Invasive interfaces require a medical procedure in which a physical part of a 

brain-to-computer interface is surgically inserted into a human brain (Engber 2016). 

Noninvasive CNDs stay outside of the human body – mostly in form of an easy-to-use 

headband. At the current level of technological development, CNDs are exclusively 

noninvasive. Main goal of this research is to position CNDs among other commonly used 

NeuroIS tools and to test the technical capabilities of a specific CND in a pilot study. 

This research proceeds as follows: a brief overview of thematic, methodological and 

theoretical advances in NeuroIS field is provided; followed by a two dimensional 

comparison of CNDs with widely used NeuroIS tools and with a set of available 

consumer grade brain to computer interfaces. Finally, this research concludes with a pilot 

study of a consumer grade CNDs and with a suggestion for future CND research topics.  

In recent years, the Information Systems (IS) discipline started to embrace neural 

instruments and methods with the intention to complement existing topics and expand 

understanding of the emergent phenomena. This led to the creation of a specific branch of 

IS research, known as Neuro – Information Systems (NeuroIS). NeuroIS improved the 

capacity of IS research significantly and a number of research breakthroughs occurred as 

a result. NeuroIS has been recently used to answer multiple questions, ranging from 

better understanding of technostress (Tams et al. 2014), information processing biases in 

virtual teams (Minas et al. 2014b), understanding effects of emotional states on financial 

trading decisions (Astor et al. 2013), using measures of risk perception to predict 
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information security behavior (Vance et al. 2014) and complementing business process 

modeling tools (Shitkova et al. 2014) to name a few.  

Thus, it is not surprising that IS scholars started to lay theoretical and 

methodological grounds on which future research can be built. Reflections on the 

Gmunden Retreat from 2009 (Riedl, R. Banker, et al. 2010) re-defined what NeuroIS is, 

which tools are relevant for NeuroIS, what IS can learn from neuroscience and what were 

the current challenges for NeuroIS at that time. A research commentary (Dimoka, Pavlou, 

et al. 2010) illustrated the potential of cognitive neuroscience for IS research, especially 

when it comes to localizing the neural correlates of IS constructs, capturing hidden 

mental processes and challenging assumptions and enhancing IS theories. Vom Brocke 

and Liang (vom Brocke and Liang 2014) also contributed to the discipline with a set of 

guidelines for NeuroIS studies. Those guidelines are designed to help researchers to 

better understand phases typical for NeuroIS research and to guide NeuroIS research 

through the emerging standards of the discipline. Tams et al. (2014) used a technostress 

study to illustrate the holistic effects that come from using neurosciences and self 

reported data in tandem.  Tams et al. improved our understanding on triangulating 

different sources of data by showing the scenario in which different measures can 

constitute as alternative and/or complements in the prediction of theoretically-related 

outcomes. Specifically, Tams et al. demonstrated that physiological and psychological 

measures can actually lead to divergent findings.  Furthermore, Gregor et al. (2014) 

developed a nomological network with an overarching view of relationships among 

emotions and common constructs of interest in NeuroIS research. Finally, Müller-Putz et 

al. (2016) ventured deeply into the foundations, measurements and application of 
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electroencephalography  in IS. By publishing their work, Müller-Putz et al. equipped 

prospective NeuroIS researchers with solid methodological foundations for conducting 

EEG based research. 

Although NeuroIS continues to prove its value by expanding the knowledge on 

multiple IS related phenomena; and although sound theoretical and methodological 

foundations of NeuroIS have been laid out, many IS researchers can still feel reluctant to 

venture into NeuroIS topics. Some are turned away by significant resources required to 

conduct a NeuroIS study (Dimoka 2012), while others are discouraged by the sheer 

breadth of non – IS knowledge required to successfully conduct a state of the art NeuroIS 

experiment (Müller-Putz et al. 2015a). For example, NeuroIS research requires 

researchers to select a proper instrument and equipment that will adequately detect all 

elicited aspects of researched phenomena, create and maintain all required parameters for 

the instrument to operate optimally and finally to analyze the readings from the clinical 

grade neural interfaces (vom Brocke and Liang 2014; Müller-Putz et al. 2015a; Tams et 

al. 2014). Few IS researchers are properly trained to conduct those studies and some can 

be deterred by administrative hurdles required to conduct medical-grade research on 

human subjects. All those factors combined prevent NeuroIS from becoming one of the 

dominant areas of IS research. 

Additionally, preconceived notion of complexity, ambiguity and dangers (Engber 

2016; Piore 2015) of neural instruments may also be one of the culprits for relatively low 

proliferation of neural technologies outside the academia. Specifically, it has been known 

for four decades that the human brain can communicate directly to computers via brain to 

computer interfaces (Kübler et al. 2001), yet proliferation of those interfaces never 
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happened. Companies like Emotiv, Neurosky and Microsoft are known to work on CNDs 

(Riedl, R. Banker, et al. 2010) and multiple CNDs are even available to a wide consumer 

audience – but to no avail. Organizations and individual users are still reluctant to include 

CNDs into their IS infrastructure.  

That situation on the ground can perplex IS researchers: Why is it so that despite a 

growing research momentum, wide use of CND did not happen? This research posits that 

a wide proliferation of CNDs did not happen because the consumer side of NeuroIS is 

still largely unexplored.  In order to explain our reasoning, an overview of the most 

common NeuroIS tools with accompanying acronyms is presented below (Figure 2). In 

this figure, the most commonly used NeuroIS tools are classified based on two 

dimensions: Ease of use (x axis) and Resource requirements (y axis). Ease of use is to be 

understood as the level of efforts required to use a NeuroIS tool: on the one hand, fMRI 

requires extensive efforts to set up and run, and considerable efforts to process the 

outputs of the device. On the other hand, a SCR requires significantly lower amount of 

efforts, since its use is much more natural to both experimenters and participants. The 

resource requirements scale should be perceived as the amount of resources (e.g. 

financial resources, infrastructure, manpower and time) required to successfully use a 

NeuroIS tools. For the purposes of illustration let us compare a PET and SCR on this 

scale: a PET requires a clinical level of infrastructure and comes with large upfront and 

running costs, which dwarfs the resource requirements for SCR. The listed NeuroIS tools 

in Figure 12 NeuroIS tools grouped together into clusters: Clinical clusters represent 

those devices which are mostly employed in a clinical settings; Lab clusters positioned 

between the Clinical and Office cluster since most of the devices that populate this cluster 
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are commonly used in laboratory settings; Office cluster consists of those devices that 

can be easily used in regular office settings. Currently the illegal cluster is populated with 

invasive BCIs which are not approved for use by FDA at this moment (Engber 2016). 

Finally, the Plug & play area depicts all NeuroIS tools which require little to no special 

conditions and which are ready to use with little or no difficulties.  

 
 

 
 

Figure 12: An overview of NeuroIS tools 
 

 
Clinical, Lab and Office clusters have been used within the NeuroIS literature and 

the available body of knowledge that originates from those clusters is expanding. 

However, the Plug & play area represents uncharted waters for NeuroIS and for potential 

organizational and individual users of CNDs. Noninvasive CNDs are cheap and easy to 

use, but little is known about their research or usage potentials. Apart from few 

pioneering studies (e.g. (Kuan et al. 2014; Minas et al. 2014b)) NeuroIS did not employ 

consumer grade noninvasive CNDs extensively.  

In order to further explore the Plug and play cluster, which is exclusively 

populated by noninvasive CND devices, this research provides a concise overview of 

different noninvasive consumer level CNDs. According to their respective manufacturers, 

those devices are potent to compliment NeuroIS research and organizational needs at 
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relatively low resource demands, while being easy to use. One device from this cluster 

(Emotiv Epoc) was used in the previously mentioned study (Kuan et al. 2014). 

All of the devices from Table 9 are extremely easy to operate when compared to 

the orthodox neural instrumentarium. After a simple driver and software installation, a 

CND is completely ready for use. Most of the devices from Table 9 support multiple 

operating systems (e.g. MS Windows, Apple OS, iOS, Android, Linux and/or Ubuntu) 

and provide either software or an API for collecting and storing raw neural data. In 

addition, those devices are extremely inexpensive compared to the commonly used 

NeuroIS tools. According to the manufacturers specifications and press releases, every 

single CND from Table 9 can be (or will be) available for purchase for well under a 

thousand US dollars.  

Table 9: An Overview of CNDs 

Name 
Technology used 

Manufacturer Released 
EEG EMG ECG EOG 

Open BCI Ganglion (R&D) X X X OpenBCI Summer 2016 

iFocusBand X iFocus October 2014 

Emotiv Epoc X EmotivSystems December 2009 

Emotiv Insight X EmotivSystems August 2015 

Muse X InteraXon April 2014 

Aurora Headband X Iwinks July 2015 

MindSet X NeuroSky March 2007 

MyndPlay X MyndPlay December 2011 

MelonHeadband X Melon Nov 2014 

XWave Sonic X PLX Devices February 2013 

MindWave X NeuroSky March 2011 

Mindflex X NeuroSky (Mattel) December 2009 

Neural Impulse Actuator X OCZ April 2008 
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With that in mind and with an intention to test a CND, a pilot study with one of 

the devices from Table 9 was conducted. The selected device, Neurosky Mindwave 

headband (headband in the following text), was used to gather data from a group of 12 

test subjects . Neuro Experimenter software v3.28 was used to access the API of the 

headband and to record EEG based CND data (Mellender 2016). All participating 

subjects of this pilot study were healthy PhD students at a medium-sized private 

university in the southern part of the United States. All subjects were right handed, and 

between ages of 27 and 35. Two participants were female. All recordings were gathered 

in a standard office environment, while subjects were working on light office tasks that 

required them to use a computer (e.g. checking email inbox, browsing the Internet and 

arranging files etc.). Participants were explicitly told to remove the headband as soon as 

they are done with their office tasks. According to the manufacturer’s specification, 

Headband is able to detect Alpha 1, Alpha 2, Beta 1, Beta 2, Gamma 1, Gamma 2, Delta 

and Theta  waves. According to manufacturer’s specification, the headband used in this 

pilot study records brainwave readings every 500ms, via a “cluster sensor” positioned on 

the participant’s forehead and targeted at the prefrontal cortex (PFC). PFC is known to be 

the executive center of the human brain (Dimoka 2012; Dimoka et al. 2011), where 

decision actions (e.g. calculations) are performed. Descriptive statistics of the gathered 

data are presented in Appendix E. In depth analysis of gathered data (e.g. outliers and 

ERPs) was omitted due to technical constraints of this venue of publication.  

To sum, this pilot study demonstrated that a CND can be used to collect EEG 

signals. Naturally, spatial and temporal resolutions of the recordings are not identical to 

the standards that are generally employed in EEG studies (Müller-Putz et al. 2015a) – 
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instead of dozens of simple sensors, the headband used in this pilot study has only one 

“clustered sensor”; and instead of recommended 200ms temporal resolution this device is 

capable of recording only 500 ms intervals. However, according to criterions presented in 

Kübler et al. (2001), the headband used in this study fits all the requirements for a CND 

because it successfully detected the  electrophysiological  activity  of  the  user's  brain, 

recorded the signals at 97.62% accuracy (which is above proposed 70% threshold) and 

bypassed most of the stated limitations.   

This pilot study paves the way for using CNDs to better understand and detects 

one of the growing technostress phenomena known as Information Overload (IO). IO can 

be defined from two perspectives. From the organizational perspective, IO occurs when 

the amount of input to a system exceeds its processing capacity (Speier et al. 1999) and 

thus causes negative or unwanted effects for the organization and its employees. For 

example, IO negatively influences social capital formation in organizations and causes 

“star employees” to fail to perform efficiently (Oldroyd and Morris 2012). To add to the 

problem, the amount of information processed by organizations grows exponentially - 

size of business related data today is 17 ZB (Oracle 2012), while the growth rate of 

corporately stored data grows by 40% each year (McKinsey 2011). Although 

organizations are reporting limited success in mitigating this problem by implementing 

alternatives for searching (Lau et al. 2001; Tams et al. 2014), visualizing (Turetken and 

Sharda 2001) or extracting content (Dale et al. 2005), individual IO problems are rarely 

addressed.  

Regardless of not being well addressed, IO manifest on the individual perspective 

as well.  Individuals experience IO as state in which vast amount of information is readily 
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available, almost instantaneously, without mechanisms to check the validity of the 

content and the potential risk of misinformation (Flew 2007; Graham 1999). In short, IO 

can be understood as a state in which there is just too much information to cope with 

(Sobotta 2016).  

Thus it is not surprising that IO, propelled by a wide use of information 

technology and a growing digital immersion, is considered to be a rampant problem. 

Previous research seems to support a relationship between the proliferation of 

information technology and IO (Bawden 2001). Some technologies appear to be more 

potent than others when it comes to causing IO. Internet is commonly portrayed as the 

main cause of IO on both individual and organizational level, followed by classical 

telecommunication networks and intra-organizational information systems (Hu et al. 

2009; Rutsky 1999).  

 The combination of these information technologies create tremendous 

Information Overload for average, digitally versed individuals – known as information 

age citizens. Specifically, an average information age citizen processes 122 emails per 

day (Radicati Group 2015), while actively using more than 5 accounts on more than 4 

social networks. An information age citizen spends around 2 hours per day just to 

manage his/her social network presence (GWI 2015) and a contact network of around 

350 members (Edison Research and Triton Digital 2015). In order to manage digital 

social networks, an information age citizen is recommended to post around 2 to 5 post per 

day - depending on the actual type of the used network (Pew Research Center 2014). 

Additionally, an average American processes around 40 SMS messages and 12 voice 

calls per day. Those numbers are significantly greater when it comes to younger 
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population – who process around 170 SMS messages per day (Pew Research Center 

2014).  

With all that in mind it follows that IO puts a tremendous strain on individuals 

and on individual cognitive performances – especially on the short term memory function 

of the human brain and on the executive center of the brain located in the pre frontal lobe 

(Dimoka 2012; Fuster et al. 2000; Goldman-Rakic et al. 1996; Riedl, R. Banker, et al. 

2010).  In previous research, a set of clinical grade instruments, like a FMR scan or EEG 

were used to further the understanding of the human brain (Dimoka, Banker, et al. 2010). 

However, IO would be rather difficult to induce in the clinical/lab environment and 

potential results might be unusable for practitioners. Therefore, if we are to detect and 

treat IO in real-life scenarios a more mobile and wearable technology is needed. CND 

seems to fit into that description perfectly. With that in mind, a study with two different 

consumer level neural interfaces (Epoc Emotiv and Neurosky Mindwave) is proposed. 

Ideally, author hopes that the mentioned study will provide additional insights about 

detection and prevention of IO overload through the use of CNDs. 

This research brings multiple contributions. Firstly, it provided a concise insight 

into the current state of NeuroIS field. Secondly, a classification of commonly used 

neural tools is proposed (Figure 2). In it, different neural tools are grouped on the basis of 

resource intensity and ease of use, which lead to creation of five distinct clusters. Thirdly, 

special attention has been given to one cluster which was not used as widely as the other 

clusters and an overview of different noninvasive consumer grade CNDs has been 

provided (Table 7). Fourthly, this research conducted a preliminary study in which a 

CND is used to collect and process brainwave readings. And finally, this research 
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proposed a potential study in which CNDs can be used to detect, prevent and better 

understand a rampant information age problem of information overload.  

In conclusion, this research might on the one hand encourage the novice and 

prospective IS researchers to consider joining the growing NeuroIS community by adding 

neural tools from the resource light and easy to use Plug & play cluster into their 

research. That should, ideally, allow novice research to circumvent seemingly 

overwhelming demands imposed by the sheer complexity of neuroscience. On the other 

hand, I hope that this research might point the attention of NeuroIS veterans and 

practitioners to a research worthy and partially neglected phenomena of noninvasive 

consumer level CNDs. 

As Milic (2017) posits, clinical environment are limiting the potential to research 

real world phenomena not only by daunting financial requirements and required 

technological expertise but also by the need of clinical environment. However, the mono 

polar CND used in the aforementioned study is capable of detecting EEG signals in a 

way which is methodologically comparable to some seminal EEG studies (e.g. Berka et 

al. 2007b; Gevins and Smith 2006; Holm et al. 2009; Kramer 1990; Pope et al. 1995). 

Thus, Hypothesis 3 presents the following: 

H3: Consumer Neural Devices are capable of detecting specific IO related 
brain states using the constructs tested on clinical neural devices. 
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CHAPTER THREE 

Methodology 

This dissertation employs a within group experimental design on 61 participants 

to answer the research questions stated in the introduction and test the hypotheses 

provided in the previous chapter. This experiment uses data supplied from a Consumer 

Neural Device (CND) and oximeter, system data and data from the paper sheets given to 

the participants. The basis of this experimental design is manifold. To begin with, this 

experiment builds on the observations made in the introductory chapter of this 

dissertation, which are further enhanced by my own stance on practitioners’ positions. 

This experiment also builds on Chapter Two of this dissertation by providing more 

information on how the questions of interests, theoretical mechanism and hypotheses for 

this experiment were developed and grounded in the literature. In this chapter, I discuss 

the rationale of using CNDs, experimental design and technical details behind data 

collection.  

The experiment used in this dissertation consists of multiple data sources and 

multiple types of stimuli. I have collected sensory data supplied from the CND and 

oximeter, system data (i.e. system time) from the computers used to run the experiment 

and, where available, textual data from the paper sheets that were given to the 

participants. To the best of my knowledge, a pre-set methodology that can fully 

encompass and create a mechanism for Information Overload experimentation using 

CNDs does not exist. This situation is further complicated by the need to include 
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different forms of data, specifically CND readings, oximeter supplied information and 

textual data coming from the paper notes.  

The scientific method I use consists of techniques for investigating phenomena, 

creating new knowledge, augmenting or correcting existing knowledge and integrating 

new findings with the existing ones. The goal for this dissertation is to create new 

knowledge and to integrate new findings into the ongoing scientific discussion in the 

Information Systems field. In order for it to be classified as scientific and thus 

positivistic, this method of inquiry has to be based on empirically measurable evidence 

and subject to specific principles of reasoning. The scientific method is an ongoing and 

iterative process. It starts from making observations (which are explained in Chapter 

One), through selecting areas of interest, formulating theoretical mechanism, developing 

testable predictions in form of hypotheses (Chapter Two), gathering data to test those 

predictions (Chapter Three) and either organizing the findings to produce new knowledge 

(Chapters Four and Five) or redesigning the study. I now proceed with proposing a 

standard for CND experimental procedures, discussing the rationales behind using CNDs 

and continue by arguing for the manner in which a CND is used in this dissertation under 

the paradigm of the methodology I have summarized in this sub-chapter.   

 
Experimental Procedures 

 
This study pioneers the use of neural constructs and correlates from cognitive 

neuroscience through the means of CNDs with intent to further the IS knowledge, settle 

the open debates and fill the gaps in IS literature. As a result of the novelty of this venue 

of exploration, established instrumental procedures are not in existence. Thus, to build a 

comprehensive set of instrumental procedures for this research, I incorporate the 
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procedures developed for clinical EEG devices.  Specifically, I rely on two seminal 

works: one written specifically for an IS audience (Muller-Putz et al. 2015) and the other 

used for medical researchers (Keil et al. 2014).  Muller-Putz et al. (2015) explain the 

fundamentals of using EEG based constructs in IS discipline. They also state that a clear 

set of comprehensive EEG procedures does not exist. In the same work, Muller et al. 

(2015) highlight the fact that different fields like psychophysiology, clinical 

neurophysiology and cognitive neurosciences have “enormous thematic depth” (p. 928) 

and vast amount of diverging procedures. They also summarize the principles behind 

reporting EEG studies in NeuroIS research (p. 929). I use their work to ground my 

instrumental CND procedure. I also consult Keil et al. (2014) to expand the 

understanding of the procedures and to fine-tune it for CND usage.  

Both sources argue for clearly stating hypotheses and theoretical background 

before putting the experiment in motion. The same sources also highlight the need for 

obtaining informed consent, providing information about sensor types and locations. And 

these two sources agree about reporting participants’ major characteristics, experimental 

instructions, equipment, protocols and stimuli. Both sources also agree on the need for 

reporting data preprocessing and segmentation details. Moreover, Keil et al. (2014) 

focuses deeply on the technical details of the equipment by advocating for explanations 

of spatial sampling, measuring sensor locations, reporting amplifier type, impedance 

levels and recording settings.  

Most of their recommendations are completely applicable for CNDs, with some 

exceptions. For instance, since the actual configuration of a CND is not modular, unlike 

the configuration of a clinical EEG device, I posit that a detailed description of the 
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equipment should be procedurally addressed by describing the hardware behind the used 

CND. Furthermore, in most cases the experimenter is not able to access the data from the 

CND on the same levels on which the data can be accessed from the clinical devices. 

Similarly, to fulfill their function as consumer devices, all CNDs are equipped with some 

data preprocessing mechanism. In other word, the data supplied from a CND is not as 

“raw” as the data supplied from a clinical device. With that in mind, I propose a 

preliminary set of instrumental procedures for using CNDs in NeuroIS research. These 

procedures are presented in Table 10.  

Each procedure was addressed in detail for this study. The theoretical grounds 

were established in Chapter Two. CND and the corresponding software are presented in 

Appendices A and B respectively. This chapter provides detailed information on 

experimental protocol, experimental stimuli, and data collection, as well as construct and 

participant specification. Highly detailed explanations of experimental protocol are 

further discussed in appendices C and D. And data analysis is discussed in the next 

chapter of this dissertation.  

 
The Rationale of Using Consumer Neural Devices 

 
This dissertation uses CNDs for multiple reasons. Most importantly, using CND 

comes with the loosen use requirements, which allow researchers to approach the topics 

that cannot be truthfully or meaningfully simulated in clinical environments. These loose 

requirements further empower researchers to use the experimental settings which either 

completely or to a significant degree match the settings in which the phenomenon occurs.   
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Table 10: CND Instrumental procedures 

Procedure Description 

Theoretical 
grounds 

A precise and comprehensive explanation of a congruent theoretical 
model or mechanism is necessary for every CND study. CND’s can be 
used for explorative purposes, but not for exploring new neural 
correlates since the technical characteristics of modern CND’s can 
produce usable data for existing constructs (Straub et al. 2004) but not 
the data with enough internal consistency needed to build new 
constructs (Cook and Campbell 1979).  

CND 
specification 

Technical details of CND and corresponding software which is used in 
the study should be presented with the study, or referenced directly 
from the manufacturer’s manual. Bases on which the connection 
between the capabilities of a CND and the capabilities of a comparable 
clinical tool are argued should be explicated and mapped to the 
terminology used for clinical devices (i.e. 10-20 EEG system).  

Construct 
specification 

Each construct which can be measured through the means of a CND 
should be specified in full and mapped to current standards applicable 
to comparable clinical equipment.  

Participant 
specification 

CND studies should describe participant’s general characteristics as 
well as the characteristics which are specific for the specific study. 

Experimental 
protocol 

Comprehensive description of experimental protocols should be 
reported. This report should include instructions and an overview for 
the CND experiment used in the study. 

Experimental 
stimuli 

All experimental stimuli should be made explicit and presented in 
sufficient detail.  

Data collection CND studies should report what construct was measured and in which 
manner.  

Data analysis Before a statistical instrument suited for the study is employed a 
descriptive statistics for the collected data should be provided.  
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These loose requirements further empower researchers to use the experimental 

settings which either completely or to a significant degree match the settings in which the 

phenomenon occurs.  To deepen the problem, the design of clinical devices causes 

Hawthorne effects more frequently than the design used in CNDs. In other words, it can 

be expected that the alteration of behavior by the subjects of a study due to their 

awareness of being observed will be pronounced more in clinical than in regular office 

settings used for CNDs. I posit that a clinical environment would not only limit the 

naturalness of the environment but could also create severe data noise as a result from 

environment-induced stressors. For example, multiple studies have shown that 

introducing the participants into a clinical settings can increase stress levels as measured 

by the cortisol levels in participants’ saliva (e.g. Kirschbaum et al. 1996; Riedl 2012; 

Tams et al. 2014) beyond the levels where data normalization and filtration is possible.  

 Moreover, clinical instruments come with high research costs and steep learning 

curves (Milic 2017). If the standardized clinical equipment was used in this dissertation, 

it would be harder to make this experiment readily scalable for potential future re-runs 

and modifications. This restricts IS researchers at smaller institutions or developing 

countries from the academic debate and thus greatly limits the audience for NeuroIS. 

Another reason that motivates the use of CNDs stems from the noticeable discomfort 

which comes from the lack of ergonomics generally accompanying clinical devices. For 

example, even a modest 10-20 EEG equipment would require participants to have 

multiple gel covered electrodes on their heads. Ergonomics aside, the danger of stressors 

contaminating data remains present. Furthermore, even if all the stated reasons are 

deemed as irrelevant, there is simply no need to use the clinical devices as most of the 
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collected data would end up being unused since the neural correlates  that are used to 

detect and define IO, namely cognitive workload and task difficulty, are generally 

measured by the use of mono-polar EEG setting consisting of one grounding and one 

sensory electrode (Kramer 1990). The CND used in this dissertation is designed to fulfill 

these requirements for mono-polar setting, as explained in Appendix A.  

The Implementation of Consumer Neural Devices 

The implementation of CNDs in this study follows recommendations provided by 

Mellender (2016) and protocol design proposed by Muller-Putz et al. (2016). Instead of a 

Thinkgear connector, which is provided by the device manufacturer, I use a third party 

open-source solution named NeuroExperimenter (NEx). Unlike the official software, 

NEx accesses the CNDs application port interface (API) to collect the data in the raw 

form. This allows researchers to export the data from the CND API and perform a range 

of statistical analysis. The original software does not support nor allow any form of data 

extraction, as of April 2016. NEx also enables exporting of the full data gathered from 

the CND amplifier. For detailed technical information about this software, please consult 

Appendix B. 

CND used in this dissertation provides raw data at the frequency of 512 times per 

second. Therefore, the CND’s temporal resolution provides a good ground to detect 

neural phenomena and to compare it with the clinically recorded elements. This raw data 

consists of the following categories: Delta, Theta, Alpha1, Alpha2, Beta1, Beta2, 

Gamma1, Gamma2, Blink and Power. The first eight categories are marked by Greek 

letters and represent the corresponding EEG waves. These categories are standard 

throughout EEG literature, although some authors argue for a slightly different frequency 



bands (Pizzagalli 2007). The table below provides more information about the recorded 

EEG frequencies as classified by the CND’s manufacturer. 

 

Frequency 
band 

 

Bandwidth 
(Hz) 

 

Associated mental 

Alpha 1 
 

8-9 
Mental coordination, 
calmness, 
 

Alpha 2 
 

10-12 

Beta 1 13-17 Fast idle, or musing
 

Beta 2 18-30 High engagement
focused attenti
complex thoughts
 

Delta 
 

1-3 Deep sleep, coma
empathy

Gamma 1 
 

31-40 Arousal, 
performance zenith
 
 

Gamma 2 
 

41-50 

Theta 4-7 Vivid dreams, 
meditation, 
drowsiness

Blink data points measure the strength of the electronic impulses generate

contraction of ocular muscles during the action of blinking, while the Power data points 

record the sum of all electrical changes. The Power category is crucial for normalizing 

the data and for making it mutually comparable for different individua

the manufacturer’s manuals, the power values are not represented in SI units, but in 
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. The table below provides more information about the recorded 

EEG frequencies as classified by the CND’s manufacturer.  

Table 11: EEG frequency bands 
 

Associated mental 
states 

 

Illustrations (wiki-commons)

ental coordination, 
calmness, readiness, 

ast idle, or musing 

igh engagement, 
focused attention, 
complex thoughts 

Deep sleep, coma, 
empathy 

Arousal, 
performance zenith 

Vivid dreams, 
meditation, 
drowsiness 

 
 

Blink data points measure the strength of the electronic impulses generate

contraction of ocular muscles during the action of blinking, while the Power data points 

record the sum of all electrical changes. The Power category is crucial for normalizing 

the data and for making it mutually comparable for different individuals. According to 

the manufacturer’s manuals, the power values are not represented in SI units, but in 

. The table below provides more information about the recorded 

commons) 

 

 

 

 

 

Blink data points measure the strength of the electronic impulses generated by the 

contraction of ocular muscles during the action of blinking, while the Power data points 

record the sum of all electrical changes. The Power category is crucial for normalizing 

ls. According to 

the manufacturer’s manuals, the power values are not represented in SI units, but in 
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relational terms. As such, these readings are only useful when compared to each other for 

the purposes of analyzing temporal aspects and relative quantity of power oscillations.  

This device also records “eSense” data in the form of Attention and Mediation 

variables once per second. However, the “eSense” data points are not real raw data even 

though they are reported by the device with the rest of the real data. The manufacturer 

claims that “eSense” values are calculated on scientific basis, but the actual formula 

behind that calculation has not been made available to the public, as of November 2015. 

As it is not possible to ascertain if “eSense” data points are produced in a rigorous and 

scientifically grounded way, this dissertation refrains from using any of the “eSense” data 

in any manner. Furthermore, NEx has proven to be more efficient than the standardized 

EEG signal processing tools since it does not report the data in the initial form, but only 

after the Fourier transformation is used and only after the signals are amplified. I believe 

this is particularly convenient for IS studies, since neuroscience as a discipline still have 

not reached an agreement on how to clean and normalize the initial form of EEG signals 

(for ongoing discussion on this topic please consult Babiloni et al. 2011; Bazanova 2012; 

Clapp et al. 2012; Freyer et al. 2012; Hung et al. 2013; Landsness et al. 2011) and since 

IS researchers simply do not have the expertise to join or resolve neuroscience debates. 

All NEx provided data is recorded as it is received. After data points are received, 

the processed data used in the report log is buffered and accumulated. When data is 

supplied to NEx, the data points corresponding with the actual neural event are placed in 

the buffer. To avoid overwriting the buffered data, new data is not written in the output 

file until new data points are supplied by the device. Timestamps of each data point are 

based on the system time at the moment of receiving the specific data point. Timestamps 
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for the log data are further normalized to one second epochs to allow full comparison of 

CND supplied data points with the data points supplied from the oximeter. In situations 

where participant does not blink, the Blink data point will remain unreported. The same 

result occurs when CND does not supply any other data point. This pattern of reporting 

does not handicap the implementation of CNDs in the experimental settings as long as 

data is screened and cleaned out of these anomalies.  

However, the manner in which CNDs are implemented to collect data in this 

experiment has its limitation. To begin with, it is impossible to record multiple blinks if 

these blinks occur in epochs which are shorter than one second. This pattern of reporting 

limits the usability of CNDs in studies where multiple blinks per second are to be 

reported. Since theoretical constructs and the corresponding neural correlates for 

Information Overload (IO) do not require absolute precision in recording eye blinks, this 

does not restrict the usage of the CND in this context. Next, the meanings of specific 

brain waves are related to the spatial coordinates of their occurrence. Since CNDs have 

significantly smaller spatial resolution compared to the medical grade EEG tools, this 

limits their ability to measure constructs which require multiple sensory locations. 

However, this dissertation uses constructs of cognitive workload and task difficulty 

which are also established in the mono-polar EEG settings with low spatial resolutions 

and within the spatial coordinates used by the CND (Holm et al. 2009; Kramer 1990).  

 
Experimental Design 

 
Experimental design is crucial for this dissertation for three reasons. In classical 

experimental settings, without a precise control of all external and internal factors 

influencing the experimental outcomes it would be impossible to link the neural measures 
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with the stimuli that are provided by the experimenter. However, I posit that controlling 

for all known and unknown factors which can influence Information Overload is 

unrealistic. That is why I use a randomized experimental design (Brown and Melamed 

1990) and assume that extraneous sources beyond my control (i.e. participant’s anatomic 

and genetic factors, weather, health condition, sleep deprivation etc.) are randomly 

distributed throughout the population. Next, to assure that experimental results are not 

caused by unwanted order effects (i.e. Galesic et al. 2008; Hogarth and Einhorn 1992; 

Schwarz et al. 1992), all but one experimental stimuli are presented to the participants in 

a random fashion.  Experimental design is also important for reasons of replicability. 

Precisely defined and thoroughly detailed design allows future studies to replicate this 

experiment as thoroughly and as fully as possible and to easily compare the future 

findings with the results of this dissertation. This design characteristic can be used to 

compare the results coming from the CND used in this study with other CND’s or, 

optionally, with other clinical instruments which are not obtrusive to the experimental 

tasks.  

The experiment used in this dissertation builds from 2 x 2 experimental 

framework presented below (Figure 13). This framework compares two groups of 

participants, namely Digital Migrants and Digital Natives, in two elicited experimental 

states: one where information influx is low and the other where IO is induced. The four 

quadrants of this experimental framework thus represent four different scenarios based on 

two groups of participants and on two groups of information influx. The upper left 

quadrant represents a set of events in which Elementary Cognitive Performances (ECT) 

of Digital Migrants are being measured by CND while IO is induced. Similarly, ECTs of 
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Digital Natives under IO are positioned in the upper right quadrant. The bottom right and 

left quadrants stand for the portion of the experiment which tests ECTs of Digital Natives 

and Migrants respectively under the situations in which the information influx is low. 

Testing Hypothesis 1a is conducted by analyzing the variance of experimental results (i.e. 

neural readings and textual data from paper notes) between top and bottom row of this 

framework, while the Hypothesis 1d is tested by analyzing the variance between the 

results of left and right columns of this framework.   

 
 

 
 

Figure 13: Experimental Framework 
 
 

 The experimental framework provides a high level tool for understanding the 

general elements of the experimental design and for testing two hypotheses. Other 

hypotheses are tested by analyzing the variance which occurs between different 

experimental stimuli. Figure 14 illustrates four different experimental stimuli.  

All stimuli are transcribed in full in Appendix D. All graphical interfaces leading to 

stimuli are presented in full in Appendix C.  



Small pieces of information

comparing the low information influx states with states where IO is induced. Other

stimuli are used to induce IO in participating individuals. Hypotheses 1b and 1c are

tested by analyzing the variance between the experimental results between these two

states. Hypotheses 2a and 2b are tested by analyzing the variance between different IO

stimuli. On the one hand, when it comes to Hypothesis 2a,

richer the information is the smaller the effects of IO on ECTs are expected. Therefo

richer information medium like

compared to a leaner information medium like a

the more natural the information category is, the smaller the effects of IO o

be. Thus, information presented in a natural way (i.e. voice) should produce smaller

effects compared to a less natural presentation like email. Hypothesis 3 is tested by

comparing the data patterns collected with the CND to the publicly avail

patterns provided by clinical equipment.
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Figure 14: Experimental Stimuli 

Small pieces of information (i.e. short messages) are used to provide base data fo

comparing the low information influx states with states where IO is induced. Other

stimuli are used to induce IO in participating individuals.  Hypotheses 1b and 1c are

tested by analyzing the variance between the experimental results between these two

tates. Hypotheses 2a and 2b are tested by analyzing the variance between different IO

stimuli. On the one hand, when it comes to Hypothesis 2a, assuming task fitness,

richer the information is the smaller the effects of IO on ECTs are expected. Therefo

richer information medium like a voice message should cause smaller effects

compared to a leaner information medium like a brief textual message. On the other hand,

the more natural the information category is, the smaller the effects of IO on ECT should

be. Thus, information presented in a natural way (i.e. voice) should produce smaller

effects compared to a less natural presentation like email. Hypothesis 3 is tested by

comparing the data patterns collected with the CND to the publicly avail

patterns provided by clinical equipment.  

are used to provide base data for 

comparing the low information influx states with states where IO is induced. Other 

stimuli are used to induce IO in participating individuals. Hypotheses 1b and 1c are 

tested by analyzing the variance between the experimental results between these two 

tates. Hypotheses 2a and 2b are tested by analyzing the variance between different IO 
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richer the information is the smaller the effects of IO on ECTs are expected. Therefore, a 

should cause smaller effects on ECTs 

. On the other hand, 
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be. Thus, information presented in a natural way (i.e. voice) should produce smaller 

effects compared to a less natural presentation like email. Hypothesis 3 is tested by 

comparing the data patterns collected with the CND to the publicly available EEG 
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Figure 15: Experiment Overview 
 
 

Figure 15 shows different experimental phases, sub-phases, and recorded forms of 

data. The experiment starts with briefing the participants about the purpose and main 

goals of this dissertation. After the participants are informed about the study and the 

experimental procedures it entails, a consent form is provided. Special care was taken to 

ensure that individuals understood that they were free to decline to participate in this 

experiment. Similarly, I also made it explicit that the participating individual could stop 

the experiment whenever he or she desired. After signing the printed consent form, the 

participant was asked to watch a specific video clip. This video informed the participants 

how to mount the CND on his or her head. Upon successful mounting of the CND, the 

experimenter mounted an oximeter on the participant’s non-writing hand index finger. 

Mounting an oximeter to the participant’s writing hand could distort the oximeter data, 

which is used to control for potential stressors, and limit the participant’s ability to take 

notes coming from the simulated system.  

Before running the experiment phase, the experimenter performed the signal 

checks. When CND or oximeter signals are missing, the participant was instructed to 
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mount the experimental equipment again. If signals were missing after three attempts, the 

participant was dismissed. In this dissertation, I refrain from discussing why the signals 

could be missing. Potentially, participants could have also been dismissed by failing to 

follow the participating procedures, as detailed in the Selection of Participants section of 

this chapter, and by having abnormal pulse readings (i.e. if having a heart condition or 

experiencing high levels of stress). However, participants were not dismissed if they did 

not fill the provided sheets. The reasons for this are explained in detail in Chapter Four.  

Once the experimental equipment was mounted and signals verified, the 

experimental phase began. This phase consisted of the following sub-phases: Internet 

browsing, CND game, Office task and breaks. In Internet browsing sub-phase, 

participants were required to browse the internet while having their signals recorded. 

These recording were used to further test if the equipment is properly mounted and to 

create base readings needed for processing CND data. This sub-phase lasted as much as 

the central sub-phase (shaded). After a short break, the participant was introduced to 

CND based games. These games use the participant’s brain waves and blinks to control 

the on-screen character or event. The games were used for the following reasons. To 

begin with, the games were used to make the participant more relaxed. This further 

prevents potential remaining stressors to influence the readings in the next sub-phase. 

Next, games allow the participant to get a “sense” of how the CND actually works. And 

most importantly, these games enable the researchers to measure the strength of the 

blinking signals. This is particularly important since blinking signals, if not treated 

properly, can pollute the data reported by the CND. After this phase was completed, 

participants were again instructed to rest for few minutes.  
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 The most important sub-phase of this experiment was the Office task. This sub-

phase required participants to organize a company-wide picnic list by writing down 

names of the participants, times of arrival and the food items which picnic attendees will 

bring. The participants also had a special rubric named “notes”, in case they wanted to 

write additional content down. In this sub-phase, participants were introduced to the 

simulation of an organizational information system. This system simulated a digital 

environment in which employees could exchange information inside an organization. To 

ensure participants understood how to use this system, a short tutorial explaining the use 

of the system was presented. The graphical user interface of the simulation is presented in 

Appendix C. The contents of the tutorial and the messages displayed through this system 

are presented in Appendix D. Since the functionalities and logic of this system are very 

common and basic, comparable to using an email client or Facebook, participants were 

not required to complete any tests to prove their understanding of the functioning of the 

system. After 60 seconds, the tutorial ended and participants were informed that the 

system simulation is about to begin. Ten seconds later the first simulation screen was 

displayed to the participants.  

 Every participant was introduced with an identical first message.  After this initial 

message, a series of stimuli were presented to the participant. The main experimental 

stimuli used in this experiment are low information influx messages and messages 

designed to induce IO. The later messages fall into three categories: messages with a 

large amount of text (“Wall of text”), voice messages (“Skype voice”) and chat messages 

(“Skype chat”). To eliminate the potential order effects, these messages were presented 

randomly, with “Wall of text” messages being the sole exception. Since all three “Wall of 
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text” messages are connected to each other by a storyline, it would be meaningless to 

present them in a random order. When this sub-phase of the experimental phase was 

completed, the participants were instructed to remove the experimental equipment from 

their heads and fingers. The initial design of this experiment included a set of qualitative 

interviews after the experimental phase. Unfortunately, most of the participants were too 

tired to provide usable qualitative data at that point. For these reasons, I decided to 

remove that part of the data collection altogether.  

During each experimental phase specific types of data, like heart rate, blink 

impulses and EEG recordings, were collected. To begin with, in the briefing and consent 

phase I collected written consent forms (Appendix G). During the experiment phase, the 

following data was collected and/or processed: heart rate, blink impulses and full CND 

data. The blink data collected in the CND game sub-phase was used to fine tune the 

instrument so that the electric potentials coming from blinking would not pollute the data 

for office task sub-phase. During the office task sub-phase I collected CND data, heart 

rates and participant’s notes. For additional information about oximeter and textual data, 

please consult Appendix E.   

Level of Analysis 

The research mechanism used for this dissertation is based on the Theoretical 

Mechanism of Information Overload I presented earlier. As discussed earlier, this 

mechanism is build on the base of IRT and INT. Information Richness theory has been 

used at both organizational and individual levels, while the Information Naturalness 

theory has been almost exclusively used at the individual level of analysis. With that in 

mind, this dissertation employs an individual level of analysis. More specifically, all 
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participating individuals in this experiment are understood as separate single entities for 

the purposes of statistical processing and analysis.  

 
Selection of Participants 

 
I personally recruited all the participants in this study. One local business and 

non-government organization graciously helped me in my recruiting efforts and in 

providing direct incentives for recruiting the participants. Baylor Information Systems 

department also provided some volunteers for this experiment. All non-faculty 

participants who successfully completed this experiment were given equal chances to win 

material incentives of approximately 500 USD in total after the completion of the study. 

The following criteria were used in selecting the participants: age, basic computer 

literacy and health condition.  

All participants in this study are 18 years old or older. Although individuals 

younger than 18 years could have easily completed the required tasks, I did not use them 

for this study because of ethical, procedural and attention span reasons. Furthermore, 

since one of the basic concepts tested by this study relies heavily on age, recruiting 

activities were orchestrated to attract roughly equal numbers of Digital Natives and 

Digital Migrants. As it is stated in Chapter One, this dissertation understands all 

individuals born after 1980’s and exposed to information technology since early age to be 

Digital Natives. Similarly, the population which was born before 1980’s is understood as 

part of Digital Migrants.  

Basic computer literacy is crucial for conducting the experiment phase of this 

study. That is why all participants have been screened for basic computer literacy skills. 

In particular, all participants were asked if they have used a digital device before (i.e. a 
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desktop, laptop, mobile phone or tablet) and if they feel like being at least basically 

proficient in using software with graphical user interfaces. Only one participant was 

dismissed as a result of potentially inadequate computer literacy.  

Finally, all participants were asked if they know any personal medical conditions 

that might prohibit them to participate in this study. Although there are no grounds to 

believe that participating in this study could harm anyone, potential severe health 

conditions ( e.g. schizophrenia, as described in Light et al. 2015; Rissling et al. 2014) 

could pollute the data. Not a single participant has reported that he or she feels incapable 

to participate in this study. In addition to the general health related questions, participants 

were also told not to consume any psychoactive substances or high doses of caffeine or 

sugar at least 24 hours prior to the start of the experiment. Participants were also 

informed that they should get plenty of sleep the day before the experiment, given that 

the lack of sleep is known to significantly alter the EEG readings in clinical devices (i.e. 

Felten et al. 2015; Hung et al. 2013; Landsness et al. 2011; Lopes da Silva 2004). All 

participants verbally confirmed that they have followed these suggestions in full. I did not 

test the participants to control for these factors, since the control would have to include 

blood sampling which is neither a comfortable nor non-invasive procedure and, as such, 

would be in violation of the basic premises of this dissertation.  

Participants’ Demographics 

For the purposes of the experiment, I recruited 98 participants ages 19 to 81. Due 

to the reasons explained in the previous parts of this chapter, only 61 participants were 

used to record neural data. The participants’ pool is heavily skewed towards Digital 
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Natives, since only 12 Digital Migrants reported for participation. Demographic details of 

for the participants are provided in the table below.  

Table 12: Participants’ Demographics 

Characteristic Number Percent 

Total participants 61 100% 

Digital Migrants 12 19.67% 

Digital Natives 49 80.33% 

Average age 25.66 - 

Gender  37 female/24 male 60.66% female/39.34% male 

Left handed 7 11.48% 

Right handed 54 88.52% 

Education 

 High school diploma 41 67.21% 

 College diploma 3 4.92% 

 Graduate diploma 13 21.31% 

 Other 4 6.56% 

Data Collection 

Experimental procedures set forth in the earlier parts of this chapter demand for a 

clear and thorough description of data collection details. This sub-chapter follows suit. 

The procedural specifics for data collection are presented bellow.  



Data collection process starts with the CND collecting the “raw” data from the

electrical activity at FP1 sensor coordinate and A1 grounding electrode coordinate

(picture below, shaded). The results of this phase of data collection are clean, “raw” and

unprocessed data streams. The second phase of data collection is pre

which was collected from the used equipment.

aligning the data stream with system time so that the experimental stimuli can be linked

with the neural measurements and imputing the data where values are missing or

distorted. Interestingly, the CND used in this dissertation was capable of providing the

signal clarity of 97.82% which is well above the clinical standards of 70%. The results of

this phase are processed data streams which can be plugged directly into the established

neural correlates. Final processing segment of data collection consists of plugging the

neural readings into the existing neural correlates. Data which is collected and processed

in this way provides a starting ground for data normalization, explanation o

measurements and application of neural correlates.
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Figure 16: Data Collection Overview 

Data collection process starts with the CND collecting the “raw” data from the

at FP1 sensor coordinate and A1 grounding electrode coordinate

The results of this phase of data collection are clean, “raw” and

unprocessed data streams. The second phase of data collection is pre-processing the data

llected from the used equipment. There are two crucial steps in this phase:

aligning the data stream with system time so that the experimental stimuli can be linked

with the neural measurements and imputing the data where values are missing or

nterestingly, the CND used in this dissertation was capable of providing the

signal clarity of 97.82% which is well above the clinical standards of 70%. The results of

this phase are processed data streams which can be plugged directly into the established

neural correlates. Final processing segment of data collection consists of plugging the

neural readings into the existing neural correlates. Data which is collected and processed

in this way provides a starting ground for data normalization, explanation of the collected

measurements and application of neural correlates. 

Data collection process starts with the CND collecting the “raw” data from the 

at FP1 sensor coordinate and A1 grounding electrode coordinate 

The results of this phase of data collection are clean, “raw” and 

processing the data 

There are two crucial steps in this phase: 

aligning the data stream with system time so that the experimental stimuli can be linked 

with the neural measurements and imputing the data where values are missing or 

nterestingly, the CND used in this dissertation was capable of providing the 

signal clarity of 97.82% which is well above the clinical standards of 70%. The results of 

this phase are processed data streams which can be plugged directly into the established 

neural correlates. Final processing segment of data collection consists of plugging the 

neural readings into the existing neural correlates. Data which is collected and processed 

f the collected 
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Figure 17: EEG sensor locations 

Data Normalization 

As a result of different conditions during which CND’s sensor rests on the skin of 

the participants, it is possible that data points between multiple participants or sessions 

are not directly comparable. Mellenger (2016) confirms this variability. There are two 

ways in which this problem can be mitigated. The first is to assure that all experimental 

procedures are strictly followed for each participating individual. This minimizes the 

potential data disturbances coming from factors which are in experimenter’s direct 

control. The second is to normalize data points before applying statistical tools for 

analyzing the data. The NEx is designed to normalize the power data by summing all the 

power data points first and by add dividing each power datum in the selected sample by 

total power supplied from CND’s API. NEx latter applies the logarithmic normalization 

for all data points to ensure that the data logs are normalized. The figure below shows the 

results of data normalization procedures between non-normalized and normalized data 
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collected for the purposes of this dissertation. Non normalized data on the left is 

characteristic for bio data, while the normalized data on the left is suitable for statistical 

analysis of variance needed for testing the hypotheses. Identical normalization process is 

used for all other EEG frequencies.  

Figure 18: Non-normalized and normalized data 

Measurements 

For the purposes of this dissertation, I have recorded the following measurement 

from the CND’s API: Delta, Theta, Alpha1, Alpha2, Beta1, Beta2, Gamma1, Gamma2, 

Blink and Power. I have also collected heart rate and SpO2 measurements from the 

oximeter in parallel, as well as written notes from the participants. To ensure that these 

measurements can be tied to specific stimuli, each measurement was collected using the 

same system time. In terms of the neural data which is collected for the IO experimental 

sub-phase, this means that 5076 aggregated (post-processed) data points are collected per 

each participant. The descriptive statistics for these measures are provided below.  
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Table 13: Descriptive Statistics EEG 

EEG Band 
/Variable* 

Min 1st Qu. Median Mean 3rd Qu. Max 

Alpha1 94 3950 8230 13362 16401 52899 

Alpha2 262 3947 7606 11829 14624 191770 

Beta1 172 3841 7398 11490 13178 615322 

Beta2 366 3950 7116 9532 11459 299266 

Gama1 129 1923 3428 4633 5742 134983 

Gama2 83 1218 2256 3072 3963 67819 

Delta 377 12951 34210 143470 107580 3171503 

Theta 772 13636 25805 44735 51700 953866 

Power* 7102 67332 112444 242121 229151 4257343 

Blink* 0 0 0 4.537 0 255 

Neural Correlates 

The neural correlates link the data streams from the experimental equipment with 

the established constructs from the cognitive neuroscience literature. To make these links 

possible, a key concept from the theoretical mechanism that corresponds to the neural 

correlates must be presented. For this dissertation, that key concept is elementary 

cognitive performance (ECT) through which the level of IO is measured. More 

specifically, I define my individual variable of ECT as basic tasks which demand only a 

small set of mental processes and which have easily specified correct outcomes. 

Similarly, I understand IO as a state in which individuals experience information influx 

and have a vast amount of information that is readily available, almost instantaneously, 

without mechanisms to check the validity of the content and the potential risk of 

misinformation. Both of these key concepts are presented in detail in Chapter Two.  



114 

To build the link between ECTs and IO, I employ two established constructs from 

cognitive neuroscience: cognitive workload and task difficulty as defined by Kramer 

(1991) and Pope et al. (1995). These two neural correlates stem from the environments 

which are similar to the experimental environment used for this dissertation. 

Furthermore, these two neural correlates have been tested with mono-polar EEG systems 

which use FP1 and A1 EEG coordinates on 10-20 EEG system map. This setting renders 

these constructs suitable for the CND device I use in this dissertation.  

In order to use the correlates of cognitive workload and task difficulty a specific 

ratio has to be calculated. This ratio is defined by the formula presented below: 

Equation 1: Information Overload Ratio 

Therefore, to calculate the extent to which IO influences ECTs the data stream coming 

from the Theta EEG frequency band has to be divided by a sum of high and low Alpha 

and Beta EEG frequency bands, known as Alpha 1, Alpha 2, Beta 1 and Beta 2 

respectively. The higher the value of this neural correlate, the greater the ECT effects 

coming from the IO are. Vice versa, the lower the value of the ratio, the lower are the 

effects of IO on ECTs.  
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CHAPTER FOUR 

Results 

This chapter uses one way analysis of variance (ANOVA) to test the hypotheses 

formalized in Chapter Two. Before the ANOVA results are presented, I discuss data 

screening procedures, correlate summary, correlate validity and testing for potential 

stressors. This chapter concludes with the formal results of hypotheses testing and 

discussion of these results.  

Data Screening 

As I explain in Chapter Three, I screened the data I have collected from three 

sources: CND, oximeter and paper notes. To assure each data source is accurately coded 

and represented, I have performed data cleansing on the digital portion of data. 

Specifically, I imputed average values for all missing CND readings. As reported in the 

previous chapter, CND failed to record the full EEG band in only 2.18% cases. Imputing 

values on such a small subset of the total data set is known not to cause any problems 

with statistical analysis (Hair et al. 2010). The oximeter I used did not fail to record any 

values at any point in time. Furthermore, it is known that ocular movements can distort 

the CND readings. That is why I have removed all data instances in which the spikes in 

neural correlate were caused by excessive blinking and inserted average values in missing 

places.  
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Correlate Summary 

Regardless of the chosen technique, presenting neural data is a challenging task. 

To begin with, a complete and concise tabular representation is impossible, especially 

because of the volume of the collected data. Descriptive statistics presented in the 

previous chapter can provide a rough understanding of the collected data but the sheer 

richness, trends and many other properties of the dataset are left buried in the data. 

Additionally, the amount of the raw data is so great that its actual visual representation is 

technically impractical. For example, as a result of 512 Hz frequency, the rawest data for 

the Office-task experimental sub-phase coming just from the CND used for this 

dissertation contains the population of 110,886,912 observations, while the total data set 

for the entire experiment contains well over 350 million observations1. It goes without 

saying that a complete visual representation of the data pool of that magnitude is 

impractical for digital formats and impossible to implement for the printed formats. 

Furthermore, even if it would be possible to report that vast amount of data in verbatim, it 

would be very hard for the reader to comprehend the meaning behind that dataset. 

Similarly, well know statistical instruments start to fail when faced with datasets of 

similar sizes (i.e. according to Rahmand and Govindarajulu  (1997) a standard 

normalization test, known as Shapiro Wilk, cannot process datasets which contain more 

than 5000 observations). That is why I do not perform the analysis of data in raw format, 

but only in the forms of the neural correlate presented at the end of Chapter Three. 

 Figure 19 maps the neural correlates to the system time and to the experimental 

stimuli used in the Office-task experimental sub-phase. The horizontal axis represents 

1 512 recordings per second, for 423+423+480 seconds over 8 EEG frequency bands, plus 
correlates, plus SpO2 and heart rate data for 61 participants.  
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system time. The zero coordinates marks the point in time when the sub-phase started 

(i.e. second zero), while the end of the graph (i.e. second 423) stands for the last second 

for which a neural correlate ratio is calculated. All randomized effects are rearranged to 

the default event order for the purposes of visualization and statistical analysis. 

Horizontal axis represents the value of the ratio behind the neural correlate. As explained 

in the previous chapter, the higher the value of the ratio is, the higher the effects of IO on 

the ECTs. The varying black line is the average value function of neural correlate over 

time. The boxed arrows (i.e. start, E1, E2 etc) and the corresponding shaded spaces mark 

the experimental stimuli and the duration of experimental stimuli respectively. 

Figure 19: Data and Experimental Stimuli 
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The table below explains all significant events and stimuli which have created 

abnormally high correlate readings. All events were elicited, with an unexplained 

exception of E2.   

Table 14: Events Specification 

Event name Explanation 

Start End of tutorial, start of the Office task.  

E1 The first message sent to the participant by the system 

E2 Unelicited spike present in 98.33% participants 

E3 Skype textual message sent to the participant by the system 

E4 First instance of “Wall of text” 

E5 Skype voice message sent to the participant by the system  

E6 Second instance of “Wall of text” 

E7 Third instance of “Wall of text” 

Figure 20 represents the value of the neural correlate for different groups. The 

average value for Digital Natives is presented at the top (AVGN), the average value for 

all participants (AVG) is in the middle, while the average value for Digital Migrants is 

presented at the bottom of the figure (AVGM).  

Even before the formal statistical analysis of variance is conducted, it is clear that 

AVGN and AVGM have noticeably different values. Similarly, different instances that 

elicit IO also seem to provide a contrast compared to the pieces of data where only a 

regular II was elicited. For example, Event 3 (i.e. Skype textual message) testifies that 
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Digital Natives almost did not experience any correlate spikes during that epoch, while 

Digital Migrants experienced a very strong spike 

Figure 20: Readings for Natives, All Groups and Migrants 

Figure 21 represents all minimal, average and maximal values of neural correlates 

over time plotted on an area chart. The black area stands for the highest value, the dark 

grey area marks average values, and the light gray area at the bottom stands for minimal 

values for each second. The system time dimension and the schedule of events are 

identical to the ones used in the previous figures. The smallest correlate value is 0.002, 

while the highest correlate value stands at 42.418. Interestingly, this value does not 

correspond to the point in time in which an IO stimulus is presented. It also does not 
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correspond to the time events in which the eye movement could have polluted the signals. 

Even more surprisingly, this value is recorded on a Digital Native. This and similar 

outliers cannot be explained by the mechanism I present in Chapter Two of this 

dissertation and provide an intriguing exception to the general trends that can be seen so 

far in the collected data. I address these and similar exceptions in Chapter Five. 

Figure 21: Overview of minimal, maximal and average values across the data 

Validity 

Validity is defined as an extent to which a set of measures truthfully represents 

the concept of the study, or as “the degree to which it is free from any systematic or 

nonrandom error” (Hair et al. 2010, p. 93). Establishing construct validity is more 

difficult in NeuroIS studies than in traditional quantitative IS studies.  The problems 

begin with the actual conditions that can influence the neural readings. For example, the 
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experimental environment in which neurophysiological tools are employed creates an 

artificial environment that limits the external validity of traditional neuro-cognitive 

studies. Furthermore, different neurophysiological tools are known to vary in their degree 

of artificiality (Dimoka et al. 2012). In short, this means that different experimental 

environments can produce different readings. Next, there remains the possibility of 

“mono-operationalization bias and construct validation concerns” (Dimoka et al. 2012, p. 

682). Neurophysiological tools are often used to collect signals for only a single measure 

and for a given constructs. Thus, it is impossible to establish a straightforward 

methodology to assess the internal consistency of measures.  It is also challenging to 

prove that the collected signals measure the neural correlate reliably (Cook 1979). 

Therefore, the measurement error beyond the simple signal clarity cannot be calculated 

because there is no way to filter the “true score” from the errors. In these situations, the 

only viable solution would be to conduct a series of retests with additional measurements 

of the same stimuli. This is impossible in many settings, including the experimental 

settings which I use in this dissertation. However, scholars do argue that even the data 

collected in this way still provides reasonable ground for sound statistical analysis 

(Straub et al. 2004). Consequently, assessing convergent validity would simply require 

multiple measures (i.e. Gefen et al. 2000) which are impossible to record in a mono-polar 

environment  

 
Testing for Unanticipated Stressors 

 
As explained in Chapter Three, I have measured participant’s heart rate 

throughout the experiment. Research demonstrates that certain physiological conditions 

like anxiety and stress can pollute the EEG signals (Keil et al. 2014) in clinical settings. 
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To the best of my knowledge, it is still unknown if these or similar stimuli can pollute the 

CND recordings. Regardless, I use heart rate to control for potential unanticipated 

stressors. Heart rate variation is established as a sensitive and selective measure of stress 

(Hjortskov et al. 2004). To test for unanticipated stressor, I conducted analysis of 

variance of heart rate between different sub-phases and experimental stimuli. The 

analysis of variance failed to reject the null hypotheses, which means that significant 

difference in unanticipated stressor between IO and regular II states does not exist in this 

study. This further leads to the conclusion that significant stressors were not present in 

this experiment. The results of the analysis of heart rates and paper notes are presented in 

Appendix H.  

Hypotheses Testing 

Neuroscience employs sophisticated and untested statistical models to process the 

data coming from the clinical instruments. Relying on untested statistical methods with 

major software flaws seriously damaged the reputation of neuroscience as a discipline in 

a variety of ways. For example, fMRI-based methods have detected statistically 

significant brain activity inside the brain of a dead frozen fish obtained from a local 

supermarket (Bennett et al. 2009). Furthermore, Eklund et al. (2012) prove that 

parametric significance thresholds used to process neural data can both be very 

conservative and very liberal at the same time. This severely handicaps the ability to 

analyze neural data in a statistically rigorous manner. The newest blow comes from a 

statistical problem which renders thousands of neuroscience studies inaccurate to the 

level of being incorrect (Oxenham 2016). Although fMRI is more than 25 years old, not a 

single statistical method has been used to validate real fMRI data. Eklund et al. (2016) 
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used 499 controls to conduct 3 million task group analyses. Instead of finding 5% results 

of false positives, the statistical method used for processing fMRI data delivered false-

positive rates of up to 70%. Thus, to avoid building this dissertation on unclear statistical 

grounds, I use a well tested parametric method which is suitable to test all hypotheses 

from Chapter Two (summarized below, Table 15) and which complements the 

experimental design and collected data.  

 
Table 15:  List of hypotheses 

 
H. # Text 
H1a Information Overload leads to strong Elementary Cognitive Task effects. 

 
H1b Information Influx does not lead to strong Elementary Cognitive Task effects 

until Information Overload is reached 
 

H1c Information Overload caused Elementary Cognitive Task effects endure even 
after the information influx is stopped  
 

H1d Information Overload leads to stronger Elementary Cognitive Task effects on 
Digital Natives compared to Digital Migrants. 
 

H2a Information overload is negatively related to the Information Richness of the 
information category 
 

H2b Information overload is negatively related with the media naturalness of the 
information category 
 

H3 Consumer neural devices are capable of detecting specific IO related brain 
states using the constructs tested on clinical neural devices. 
 

 
 
Parametric models are believed to offer “numerous benefits” in analyzing EEG 

data when compared to nonparametric approaches. The most important benefits are 

increases in robustness, reduction of noise, and volume conduction effects (Gordon et al. 

2013). To analyze variance of parametric data in this study, I employ one-way analysis of 
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variance (Fisher 1919) known as ANOVA. I use this statistical instrument whenever 

there is a need to detect if any statistically significant differences between the means of 

two or more independent groups exist.  

ANOVA builds on the assumptions  of independence of observations, data 

normality and homoscedasticity (Anderson et al. 2014). The independence of 

observations indicates that there is no relationship between the observations in each 

group or between the groups themselves (Kotz et al. 1988). The experimental design and 

the nature of the neural correlates I use guarantee that this assumption is fully met, 

especially since there are no known mechanisms in which EEG frequency bands 

influence each other. Assessing the normality, or the normal distribution of residuals, is 

generally conducted through the means of a standardized statistical test known as 

Shapiro-Wilk normality test. Unfortunately, this test cannot be used for my data set 

because it can only work up to 5000 samples (Rahman and Govindarajulu 1997). As 

stated in Chapter Three, my dataset contains 350 million observations in raw form, and 

around 25.8k samples in the neural correlate form. However, the data histogram and QQ 

plot for the neural correlated presented below (Figure 22) testify that the data coming 

from my experiment is normally distributed.  

As there is a wide disparity in size between two groups in my data set, there is one 

practical issue to consider at this point. Unequal sample sizes are known to affect the 

homogeneity of variance assumption. Although ANOVA is robust to smaller departures 

from this assumption, a clear rule for assessing the point in which this can become a 

problem does not exist (Keppel and Wickens 2004). When the variance of the error terms 

appears constant over a range of predictor variables, the data is understood as 
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homoscedastic. The assumption of equal variance of the population error is central to the 

proper application of many statistical techniques including ANOVA (Hair et al. 2010). 

 

 
 

Figure 22: Normalized Data 
 
 

The plot regression standardized residuals and neural correlate in this example 

(i.e. dependant variable) presented below demonstrates that the processed data collected 

from this experiment is almost perfectly homoscedastic (R2=0.997). On these bases I 

conclude that all assumptions for using ANOVA are met.  

 

 
 

Figure 23: Data Homoscedasticity 
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The graphical representations, known as candlesticks, and presented in Figure 24, 

illustrate the basic properties of two groups of neural correlates. The first one, marked as 

OVER represents the readings during periods of time in which the IO was induced, while 

the readings marked as REG represent readings from the regular II. It can be clearly seen 

that IO does manifest with higher neural correlate readings when compared to the regular 

II, although regular II has stronger outliers.  

Figure 24: Candlestick representation of IO Overload and regular II groups 

Furthermore, the independent between-groups ANOVA yielded a statistically 

significant effect, F(1, 25.8k) =17.72, p=0.0000000208. Thus, the null hypothesis of no 

differences between the means of OVER and REG groups was rejected. This provides 

support for Hypotheses 1a and1b.  

Hypothesis 1c states that Information Overload effects endure even after the 

information influx is stopped. To test this hypothesis, I group neural correlates in two 

groups: group one (AIO) contains all readings recorded after Information Overload 

stimuli, while group two (IO) is populated with readings during the information overload. 
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The illustrations below (Figure 25) show us that IO tends to have higher values of neural 

correlates, while the outliers are still slightly more pronounced in the AIO group.  

 

 
 

Figure 25: Candlestick representation of after IO and IO states 
 
 
 Next, the independent between-groups ANOVA resulted in a statistically 

significant effect, F(1, 14.8k) =9.515, p=0.00204. Thus, the null hypotheses of no 

differences between the means is rejected, lending support for Hypothesis 1c. 

Hypothesis 1d posits that the effects of IO on ECT will manifest more strongly on 

Digital Migrants compared to Digital Natives. The data support this hypothesis since the 

neural correlate has higher average values in the Digital Migrants group than in the 

Digital Natives group, although the outliers presented below have higher value in the 

Digital Natives group (Figure 26).  Once again, the analysis of variance presented below 

demonstrates that Digital Migrants and Digital Natives are two statistically different 

groups. 
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Figure 26: IO Differences between Digital Migrants and Digital Natives 

Specifically, the independent between-groups ANOVA returned a statistically significant 

effect, F(1, 25.8k) =144.6, p=2*10-16. Thus, the null hypothesis of no differences between 

these two groups is rejected. Combined, these results provide formal support for 

Hypothesis 1d. 

Hypotheses 2a and 2b are designed to test if the postulates of IRT and INT 

respectively hold true in neural readings coming from the CND. The graphical 

representations of neural correlate readings and ratio means under different experimental 

stimuli are presented on figures 27, 28 and 29 respectively.  

Figure 27: IO effects of different stimuli 
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Figure 28: IO effects of different stimuli (trimmed) 
 
 

 
 

Figure 29: Average correlate values for different experimental stimuli 
 
 
 These illustrations show that voice, the most natural form of information used in 

this experiment, creates the smallest IO effects, while the highest IO effects come from 

the less natural forms, especially from text-heavy messages (TEXTWALL). These 

findings support INT postulates since the more natural information creates smaller IO 

effects than the less natural information – just as predicted by the theory. The IRT 

postulates are also working in neural correlates, especially since the fittest information 

sources for the task used for equivocal tasks did not record high IO effects. However, 

before I can explicate a formal conclusion, I must conduct an analysis of variance 
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between these groups. The independent between-groups ANOVA yielded a statistically 

significant effect, F(7, 25.8k) =16.65, p=2*10-16. Thus, the null hypothesis of no 

differences in ECT effects between different experimental stimuli means was rejected, 

which renders the stated groups statistically different. However, to formally assess which 

group pairs were significantly different at p<0.01, I conduct a post hoc Tukey’s test and 

present the results below (Table 16).  

Table 16: Tukey's test results 

Items diff lwr upr p adj 
REG-INTRO 0.0274 -0.0188 0.0736 0.6224
SKYPEM-INTRO 0.1931 0.1195 0.2666 0.0000 
SKYPEV-INTRO 0.1229 0.0284 0.2174 0.0021 
TEXTWALL1-INTRO 0.1844 0.1024 0.2664 0.0000 
TEXTWALL2-INTRO 0.0072 -0.0899 0.1042 1.0000
TEXTWALL3-INTRO 0.0716 -0.0104 0.1536 0.1395
SKYPEM-REG 0.1657 0.1007 0.2307 0.0000 
SKYPEV-REG 0.0955 0.0075 0.1835 0.0225 
TEXTWALL1-REG 0.1570 0.0826 0.2314 0.0000 
TEXTWALL2-REG -0.0202 -0.1109 0.0705 0.9976
TEXTWALL3-REG 0.0442 -0.0302 0.1186 0.6200
SKYPEV-SKYPEM -0.0702 -0.1752 0.0348 0.4641
TEXTWALL1-SKYPEM -0.0087 -0.1025 0.0852 1.0000
TEXTWALL2-SKYPEM -0.1859 -0.2932 -0.0786 0.0000
TEXTWALL3-SKYPEM -0.1215 -0.2154 -0.0276 0.0022
TEXTWALL1-SKYPEV 0.0615 -0.0495 0.1725 0.7010
TEXTWALL2-SKYPEV -0.1157 -0.2383 0.0068 0.0805
TEXTWALL3-SKYPEV -0.0513 -0.1623 0.0597 0.8574
TEXTWALL2-TEXTWALL1 -0.1772 -0.2904 -0.0641 0.0001
TEXTWALL3-TEXTWALL1 -0.1128 -0.2134 -0.0122 0.0156
TEXTWALL3-TEXTWALL2 0.0644 -0.0488 0.1776 0.6709

The highlighted pairs were statistically different at a given alpha level (0.05), 

while the remainders of the group pairs were not statistically different. Thus, there is a 

significant difference in IO effects between Skype voice and textual messages and 
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introductory messages, as well as with the first occurrence of text wall and introductory 

messages. Both Skype messages were statistically different when compared to the regular 

information influx, and so was the first instance of text wall. The second and third 

occurrence of text walls was also statistically different when compared to both Skype 

message types. Interestingly, the second and first occurrences of text walls are also 

proven to be statistically distinct when compared to the first occurrence of text walls. In 

general, these results partially support Hypothesis 2a, while also providing partial support 

for Hypothesis 2b. However, the situation here is not as unambiguous as it was in the 

previous hypotheses. This requires additional discussion which I present at the end of this 

chapter.  

Finally, Hypothesis 3 posits that the Consumer Neural Devices are comparable to 

clinical instruments in detecting specific IO related brain states. To test this hypothesis, I 

compare the neural correlates gathered from the CND with the neural correlates of a 

clinical level study over comparable stimuli and at the identical EEG coordinates. If 

analysis of variance between these two sources demonstrates that the basic readings of an 

IO correlate coming from a clinical device are significantly different to CND supplied IO 

correlates, the Hypotheses 3 will be rejected. The reverse also holds true - if there is no 

statistically significant difference between the correlates coming from these two devices, 

the Hypotheses 3 will be supported.  

To form the groups required for this analysis, I use the CND supplied data and the 

data from the corresponding EEG sensor from a publicly available EEG data recorded in 

similar environment. Specifically, I use the most rigorous and detailed publicly available 

dataset published on the official webpage of Swartz Center for Computational 
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Neuroscience2.  I use Mathlab EEG lab to extract and process the signals from the clinical 

devices. According to the Swartz Center for Computational Neuroscience, Mathlab EEG 

lab is understood as the golden standard for analyzing clinical grade EEG data. Once I 

extracted the data from the clinical EEG device, I processed it in order to create the same 

type and quality of neural correlates I derived from the CND. The results of analysis of 

variance between these two data sets returned a statistically insignificant effect, F(1, 421) 

=1.02, p=0.313. Thus, the null hypothesis of no differences between these two groups is 

supported. These results show that the difference between these two data sets is not 

statistically significant. And since the Hypothesis 3 states that Consumer Neural Devices 

should produce data similar to clinical neural devices, this lack of statistically significant 

difference between the CND and clinical EEG readings provides formal support for 

Hypothesis 3.  

Results Discussion 

Results of hypotheses testing are presented in the table below. Before I start with 

the discussion of results, I address the concerns of multiple comparisons. As it can be 

seen in the previous part of this chapter, the analysis of variance was conducted on a case 

by case basis. All separate analyses of variance resulted in very low p-values. This allows 

me to conclude, even under the umbrella of most conservative Šidák corrections of 

multiple comparisons (Sidak 1967), that the results of the analysis hold true even when 

combined. 

2 The specific database I use is named “Psychophysics, various tasks (1Gb): more than 100 
datasets available”. I have downloaded it on April 15th 2016 from this link 
https://sccn.ucsd.edu/~arno/fam2data/publicly_available_EEG_data.html 
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Table 17: Hypotheses testing results 
 
H.# Text Result 

   
H1a Information Overload leads to strong Elementary Cognitive Task 

effects. 
 

Supported 

H1b Information Influx does not lead to strong Elementary Cognitive 
Task effects until Information Overload is reached 
 

Supported 

H1c Information Overload caused Elementary Cognitive Task effects 
endure even after the information influx is stopped  
 

Partially 
rejected  

H1d Information Overload leads to stronger Elementary Cognitive Task 
effects on Digital Migrants compared to Digital Natives. 
 

Supported 

H2a Information Overload is negatively related to the Information 
Richness of the information category 
 

Partially 
supported 

H2b Information Overload is negatively related with the media 
naturalness of the information category 
 

Supported 

H3 Consumer neural devices are capable of detecting specific IO 
related brain states using the constructs tested on clinical neural 
devices. 

Conditionally 
supported 

   
 
 

Hypotheses 1a and 1b are supported in a very clear and strong manner. This 

means that IO indeed creates strong ECT effects – but only when II influx accompanied 

with information excess moves to the IO levels. On these grounds, it is possible to 

conclude that, in general, the effects of IO are indeed stronger and thus detrimental to 

individual performance. Hypothesis 1c was partially rejected since the effects of IO on 

ECTs performance were not as strong after the IO as they were during the IO. These 

results allow me to conclude that IO effects are tied to the actual duration of the 

heightened II, and that the strong effects on ECT performances do diminish as soon as II 

is returned to normal. However, although these effects diminish, the neural correlate still 
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remains higher than during the regular II. Hypotheses 1d is supported since the extent to 

which Digital Migrants experience IO is stronger compared to Digital Natives. These 

findings should be treated as a warning. According to the experimental results, it seems 

that the migrant generations, who are still likely employed in their peek potential, suffer 

from IO more than the generations which are yet to dominate the workforce. In short, it 

seems that the hardest effects of IO are yet to come. Combined with the ever-growing 

amount of information, this paints a rather worrying picture. To make it worse, Digital 

Natives experienced higher IO during the Skype Voice message than their Migrant 

counterparts. This will probably render the generation change problematic, since the 

verbal instructions coming from Digital Migrants to Digital Natives might amplify the IO 

in Digital Natives instead of helping them to understand the messages (i.e. advices and 

instructions) coming from Digital Migrants. In summary, the hypotheses from group one 

tells us that IO creates strong ECT effects. These effects are not manifested during the 

normal II unless it is accompanied by information excess, and these effects do not last 

after the II is returned to normal conditions. Furthermore, in tune with the theoretical 

mechanism used for this dissertation, the Migrant generations seems to experience IO 

harder than Digital Natives. The only exception to this situation is verbal II.   

Results of Hypotheses 2a and 2b provide grounds to assess if IRT and INT 

respectively work inside the human brain and in the ways which can be measured by the 

CND I use for this dissertation. The premises of IRT were supported. This tells us that, 

assuming task fitness, the richer communication channels can amplify IO overload, rather 

than to diminish its effects – as initially theorized by Daft and Lengel. Similarly, INT 

postulates were proven to be correct, since the more natural information does provide 
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smaller (if any) ECT effects compared to non natural information. Another interesting 

finding comes from analyzing the differences in IO coming from series of Text Wall 

stimuli. Specifically, the results show that the IO is the strongest during the first stimuli. 

Finally, conditional confirmation of Hypothesis 3 furthers the basis on which future 

NeuroIS studies can use CNDs to study IO – especially since a clinical device provided 

similar results to the results coming from the CND under the assumptions that the data 

processing did not distort the data set coming from the clinical device.  
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CHAPTER FIVE 

Discussion 

In this final chapter of my dissertation, I build on the findings of the data analysis 

and discuss a set of implications, limitations, directions for future research and 

conclusions. I pay particular attention to theoretical, practical and methodological 

implications. This chapter also presents all the limitations of this dissertation in a separate 

sub-chapter. I believe this dissertation provides a solid ground for future IO and CND 

research. With that in mind, I also discuss the directions for future research endeavors. 

Finally, I end this chapter with a concise conclusion about my findings. This chapter 

mostly builds on the data analysis conducted in Chapter Four, although I also reflect on 

methodological basis from Chapter Three, as well as on theoretical and literature 

foundations from earlier chapters.  

Implications 

This dissertation has the potential to create wide-ranging implications for both 

academic and practitioners’ community. One practical consequence includes the use of 

CNDs to detect IO in “real world” and outside-the-lab environments. Furthermore, 

theoretical ramifications build the theoretical mechanism of information overload, while 

also providing the basis for creating a new theory for understanding how digital 

information influences ECTs. Additionally, the methodological implications of my 

research cover the changes in methodology I develop to facilitate the experiment on 

which I base this dissertation. Finally, the managerial and organizational implications are 
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designed to sum the findings of this study in a way that is fitting for augmenting the 

established managerial practices and organizational traditions.  

 
Theoretical Implications 
 

This chapter starts with a set of theoretical implications. To begin with, the neural 

readings I collected from the CND enable us to understand how Information Richness 

and Information Naturalness theories work inside the human brain. The conditional 

support for H2a, which states that IO is negatively related to the Information Richness of 

the information category, tells us that the IRT is grounded in the human brain given that 

task fit assumption is adequately set. In particular, rich media did reduce the effects of 

Information Overload, while the media-to-task fit reduces the effects of Information 

Overload in some instances (i.e. voice message) and amplified in others (i.e. Skype 

message). For example, Raman et al. (1993) advocate that groups using a communication 

medium that is too lean for their task end up experiencing more difficulties compared to 

groups with a communication medium that is too rich for their task. My neural readings 

echo their findings, since multiple neural measurements show that information rich 

messages (i.e. Skype voice stimuli) caused smaller levels of IOs. Other aspect of IRT also 

hold true in my neural readings. The information which was fitting for the task in terms 

of richness (i.e. regular information influx) did not cause IO. Similarly, electronic 

message richness, and the corresponding neural correlates, were also proven to vary 

across individuals, just as Schmitz and Fulk (1991) posit. Furthermore, some later works 

based on the IRT (i.e. Carlson and Zmud 1994, 1999) were also proven to hold true in the 

neural correlates I have collected. Specifically, different experiences with the 

communication channels did cause statistically significant differences between the 
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Digital Natives and Digital Migrants just as Hypothesis 1d posits. Thus, it seems that the 

core concept of IRT, which argues for fitting the media richness with the communication 

task, holds true for textual information influx inside the experimentally simulated system, 

and fails when the information is being transmitted outside the system (e.g. via Skype) or 

in more natural channels. Thus, my findings also testify that IRT is neither universally 

right (as implied by Daft and Lengel, 1986) not universally wrong (as claimed by Cook, 

2004). Core postulates of Information Naturalness Theory were mostly supported by the 

neural readings. Specifically, the hypothesis H2b stating that Information Overload is 

negatively related with the media naturalness of the information category was confirmed. 

This demonstrates that the core premise of this theory, which claims that the more natural 

the form of communication, the more efficient the information dissemination should be, 

is supported by the neural readings.  

In short, these theoretical implications demonstrate that both IRT and INT should 

be integrated to provide an overarching theory capable of explaining the congruency of 

digital information required for optimal processing of information influx by the human 

brain. I believe that the Theoretical Mechanism of Information Overload can be a good 

starting point for creating that overarching IO theory. This is especially true since the 

multiple constituent statements of relationships from the Theoretical Mechanism of 

Information Overload were supported by the data I collected. On a similar note, all 

theoretical constructs and causal mechanisms of the said mechanism were also present in 

the data. The only part of the mechanism that did not work as I have theorized is the one 

presented in the statement of relationship 2. This part of the mechanism posits that strong 

ECT effects are present even after the intensity of information influx returns to normal 
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levels. The reasons behind the failure of that specific part of the theoretical framework 

are unknown and that creates yet another theoretical implication that should be addressed 

in future IO theorizing attempts.  

 
Methodological Implications 
 

The methodological implications of this dissertation are twofold. Firstly, this 

study builds the methodological base on which further CND studies can be conducted. In 

Chapter Three, I provide a set of experimental procedures which detail the way in which 

the future research could approach CND experimentation in real-world environments. 

Secondly, I provide a neural correlate which was able to use the existing neural measures 

in a CND environment with a low spatial resolution and still provide usable results. This 

methodological approach allows future researchers to use exactly the same concept I have 

used, or to explore other constructs which can potentially work in similar settings.  

 
Practical Implications 
 

Instead of relying on clinical instruments, this study uses an inexpensive plug-

and-play Consumer Neural Device. Furthermore, this study uses a consumer device in an 

office environment that is more common in standard IS scenarios than a laboratory 

environment. All data points from the device are collected and stored in real time. 

Combined, these characteristics position the results of my dissertation very closely to 

potential practitioners because it allows an inexpensive real-time and real-world way of 

measuring a set of important brain activity parameters. This approach empowers all 

information-heavy organizations to inexpensively increase the welfare and productivity 

of their knowledge workers by using the neural readings. The same approach also enables 
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them to gather the neural readings to potentially allocate resource heavy tasks to the 

employees who are experiencing the lowest levels of Information Overload. My 

dissertation also provides ground for improving the contemporary information systems 

based on the neural feedback. In other words, the system developers and other software-

centric practitioners can use the process I describe throughout this dissertation to better 

understand how their users process the information coming from their systems. 

Specifically, I argue for paying the special attention to using the identical media formats 

throughout the system (i.e. using solely textual information instead of combining textual 

and voice messages). Furthermore, practitioners can also use the results from the previous 

chapter to redesign the manner in which their information systems disseminate the 

information to their employees. For example, it seems that information is disseminated 

best if only one information systems is used for information dissemination. Therefore, 

practitioners should focus on developing systems that can encompass multiple 

information sources and forms under one GUI. The practitioners can also use the NEx 

software data buffers and CND APIs explained in the Appendices to develop a real time 

application for monitoring IO levels. This can be helpful since the future software could 

be equipped with algorithms that detect information overloads and potentially decrease 

the information influx for the overloaded individuals.  

This project also enables organizations to efficiently and affordably detect and 

potentially prevent information overloads among its employees in real time. Although 

some organizations like the US AirForce use EEG based devices to monitor the 

performances of their members (i.e. pilots), since 1970s the technical properties of these 

devices (i.e. lack of ergonomic properties) have limited their applicability in office 
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environments. With the introduction of compact mono-polar CNDs, organizations can 

conveniently monitor neural parameters for the key employees and thus improve their 

overall wellbeing and performances. And, as CNDs get closer to average consumers (i.e. 

Elon Musk’s Neural Lace project), having an active CND installed on all employees 

might become as common as having them equipped with mobile phones or FitBits. The 

findings from Chapter Four also inform the managers about cognitive effects coming 

from different ways of communicating. In particular, switching from one form of 

communication to another generally results in strong cognitive effects. Similarly, Digital 

Natives exercise greater cognitive efforts when processing voice messages, while Digital 

Migrants struggle with all other forms of communication.  

Overall, concise textual information works best for simple tasks. However, to 

avoid unnecessary IO effects, managers should restrain from using multiple systems to 

transfer the information to their peers and subordinates. Furthermore, managers should 

also note that Digital Migrants and Digital Natives process different types of messages in 

a different manner. According to my findings, short voice messages are best suited for 

Digital Migrants, while Digital Natives seems to be responding best to short textual 

messages. Next, Digital Natives do appear to be overloaded more to a series of dense 

textual messages, while the Migrants prove to be better suited in handling these 

messages. All these findings allow the managers to alter their communication routines 

and potentially fine tune organizational structures to better accommodate overload-free 

work environments. Achieving overload-free environment could be important for 

managers, since the entire body of literature I present in Chapter Two - sub-chapter about 
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Information Overload effects, states that Information Overload amplifies stress and 

ultimately reduces the productivity on both individual and organizational levels.  

Data from the Consumer Neural Devices also constitutes a rich, objective, real 

time and real-world data source. As such, this data source can give businesses noticeable 

competitive advantages in multiple areas. For example, my study can be used to fine tune 

the information influx by implementing software algorithms to control for Information 

Overloads. This can prevent IO from influencing the performances of decision support 

systems and decision makers. Same holds for creating overload-free briefings, reports 

and presentations. Furthermore, rich neural data can also help businesses better 

understand how their consumer react to any information intense product – be it a digital 

magazine, a specific piece of software, computerized accessories, home appliances, car 

infotaiment systems, consumer electronics or any other information rich product.  

Limitations 

This dissertation is not without limitations. Most of the limitations come from the 

technical characteristics of the CND I use. The biggest limitation comes from the mono-

polar EEG environment. This limits the potential to gather data from all EEG locations 

that are known to manifest during a specific stimuli. Furthermore, the small number of 

electrode locations and the resulting low spatial resolution prevents me in entirety to use 

neural correlates that require EEG readings beyond FP1 and AP positions. Thus, some 

high-resolution neural correlates that might be capable of augmenting the understanding 

of IO are left out. These correlates are, for example, P200 readings that show cognitive 

matching, detection of target stimuli, selective attention, feature detection (Philips & 

Takeda, 2009), N200 which demonstrates detection of a deviation of a concrete stimulus 
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from an expectation, automatic novelty-sensing, hedonic preferences (Folstein & Van 

Petten 2008, Handy et al. 2008), left-frontal-asymmetry and right-frontal-asymmetry 

(Wheeler et al. 1993). Luckily for future CND research, almost all CND manufacturers 

are either developing or announcing the development of the next generation of CNDs 

with significantly higher spatial resolutions. This should empower the future researchers 

to use a wider spectrum of neural correlates and to expand the CND research well beyond 

the IO domains.  

The second technical limitation comes from the sheer novelty of the instrument I 

used to collect the data. To begin with, it is absolutely certain that the neural readings are 

influenced by experimental stimuli that are supposed to influence the readings (i.e. 

different levels of information influx). The same holds for the readings which come from 

a physiological activity which was not experimentally induced (i.e. blinking). Thus it is 

very clear that the data coming from this device is not likely to produce false positives 

comparable to brain activity in a dead salmon (Crowley et al. 2010; Katona et al. 2014; 

Yoh et al. 2010). However, the data I collected does have a non-negligible number of 

outliers. This demonstrates that CNDs are still limited when it comes to the data clarity 

caused by extraneous factors like electrical elevators, lightning systems (i.e. Harmon-

Jones & Beer 2012) or high stress levels (Tams 2014). The third and final technical 

limitation stem from the fact that consumer neuroscience research is a compilation of 

only loosely related subjects (Plassmann et al. 2007) and as such is still not capable of 

following the rigorous standards of neuroscience fully.  

Other limitations come from non-technical factors, like sample size and stimuli 

design. Although the sample of 61 participants is well above the samples used in similar 
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EEG studies, it is still possible to argue that the greater and more diverse sample could 

have expanded the generalizability of the findings. Moreover, the population used for this 

experiment is heavily skewed towards the Digital Natives, despite my best efforts to 

recruit similar numbers of Digital Natives and Digital Migrants. The design of the 

TEXTWALL stimuli could also mean that task-irrelevant information produces 

Information Overload and not just the property of the medium. Finally, this dissertation 

relies on measuring neural data created during a series of simple cognitive tasks. 

Although it is possible to speculate that the human brain might perform similarly in more 

challenging conditions, it is impossible to extend the speculation into more substantial 

conclusions without proper testing.  

Directions for Future Research 

This dissertation provides multiple directions for future research. To begin with, it 

opens the door of CNDs to investigate real-world IS phenomena that were previously 

impossible to investigate outside the clinical settings. My dissertation also sets the scene 

for CND based investigations of real-time phenomena. I hope that this study can motivate 

IS researchers to collaborate with neuroscientists in order to create a systematic 

representation of constructs and scenarios that can be measured by using only CNDs or 

clinical equipment and to seek for the constructs and scenarios which could be measured 

by both classes of devices. This can allow IS researchers to vastly expand the usage of 

CND and to create a process to systematically compare performances of the upcoming 

CNDs with the performances of their clinical counterparts. If conducted properly, I 

believe that this future research can gradually allow consumer NeuroIS studies to follow 

the standards set by the neuroscience. Similarly, future studies could explore 
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triangulating objective and quantifiable data coming from CNDs with qualitative sources 

(Milic 2016).  And since it is known that cultural values play “a common role in 

determining patterns of IT development, adoption, use, and outcomes” (Leidner and 

Kayworth 2006) future research can also use CNDs to understand if different cultures 

experience information overloads in similar manners. Finally, triangulating the 

quantitative neural data with qualitative data could allow us to deepen the understanding 

of differences between unconscious and conscious human reactions when it comes to 

using information systems or information intense products in general.  

 
Conclusion 

 
To conclude, this dissertation paired a novel CND with established concepts from 

the neuroscience to explain the mechanisms of Information Overload on an individual 

level. I have conducted an experiment on 61 participants and used the data collected from 

the device to test the theoretical mechanism of IO presented in Chapter Two. According 

to the results of my analysis, Information Overload leads to strong elementary cognitive 

task effects while the regular levels of information influx do not. Some effects of 

Information Overload are present after the information influx is stopped, however these 

effects are very small. Information Overload seems to have a stronger effect on Digital 

Migrants than on Digital Natives. Furthermore, Information Overload seems to be 

negatively related to the naturalness of the information, while Information Richness 

works in a more nuanced fashion. Finally, comparing the variance between the largest 

and the most detailed publicly available EEG dataset has proven that CND can indeed 

produce results comparable to the results produced by the clinical equipment at least 

when neural reading used to measure Information Overload are concerned.  
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APPENDIX A 

 
Consumer Neural Device – Technical Details 

 
 

This research uses Neurosky Mindwave, a Consumer Neural Device marketed to 

wider audience. This CND uses a clustered dry electrode which is easy to mount on 

user’s forehead and which eliminates the need to use any form of conductor gels to 

establish effective data stream. According to manufacturer’s specification, this device has 

the following characteristics: 

- 30mW rate power; 50mW max power 

- 2.420 - 2.471GHz RF frequency 

- 6dBm RF max power 

- 250kbit/s RF data rate 

- 10m RF range 

- 5% packet loss of bytes via wireless 

- UART Baud rate: 57,600 Baud  

- 1mV pk-pk EEG maximum signal input range  

- 3Hz – 100Hz hardware filter range  

- 12 bits ADC resolution 

- 512Hz sampling rate 

- 1Hz eSense calculation rate 

- Dry electrode 

- Mono-polar configuration 
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This device uses ThinkGear Connector software to communicate with host’s operating 

systems. Raw data is not accessible from the manufacturer’s software and the 

manufacturer refuses to provide the algorithm which is used to calculate different neural 

cognitive performances (e.g. concentration and meditation). That is why this dissertation 

employs a tested third party open source solution (Neuro Experimenter - NEx) to access 

the device’s API and to record the data stream in its raw format. NEx has a produced a 

proven set of replicable studies (Mellender 2016). 
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APPENDIX B 
  

Experimental Software - Neuro Experimenter 
 
 

This program (NEx) provides an interface to Neurosky Mindwave hardware 

(Mellender 2016). This program was originally developed for Neurosky Mobile and 

repurposed for Neurosky Mindwave in order to provide raw data streams for this 

dissertation. Thus, I hereby clarify that NEx is not my work, but a repurposed work of a 

dedicated individual. A Neurosky headset used for this study was purchased from 

Amazon. The official list of Neurosky devices that are expected to work with NEx are the 

following:  

 MindWave Mobile (Black headset, tested with NEx  ) 

 MindWave (White headset) 

 MindBand ThinkCap  

 TGAM module TGAT ASIC 

Neurosky MindWave comes with manufacturer’s drivers. Those drivers are 

compiled together in form of a ThinkGear connector software package. This software 

package is problematic because it does not allow raw signals to be captured. It is 

impossible to use the data stream coming from the device unless it is possible to trust 

fully that the values ThinkGear supplies are correct and representative of real EEG 

readings. Blindly trusting values from the manufacturer who denies disclosing the way in 

which those values are calculated is unacceptable for any scientific study. That is why 

this dissertation uses NEx application to access the raw signals from the CND sensors.  
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NEx application is extremely useful because it does not require ThinkGear 

connector to be active while the experimental is conducted. NEx however requires the 

system user (i.e. experimenter) to update systems drivers to the newest (as of spring 

2016) system drivers. This is necessary to ensure optional functioning of the hardware 

inside the CND. NEx application is designed to run exclusively under Windows systems. 

Author provides detail description about system test performances on Windows 7 

(Mellender 2016) and speculates that Windows 10 operating systems should also support 

NEx application. However, the tests I have conducted prove that NEx is not performing 

optimally on Windows 10, because COM ports failed to detect the CND inside the NEx 

environment multiple times. That is why I have collected all data for this dissertation 

using NEx on Windows 7 machines. NEx cannot be used without having at least .NET 

Framework 4.5 installed on the machine. According to Mellender (2016) notes, NEx is 

under constant development and it might be possible that by the time this dissertation is 

completed or published the aforementioned problems are fixed. As it creator states, the 

main function of NEx Is to collect brainwave readings from the Neurosky CNDs. NEx 

also has the functions which allow the experimenter to explore different “mind states” as 

defined by the manufacturer (i.g. meditation, relaxation and concentration). Moreover, 

NEx also has the option to combine different brainwaves to create a particular construct 

(e.g. as seen in Müller-Putz et al. 2015).  

NEx is freely accessible for download either through the Neurosky mind app store 

or directly from its creator’s website. At the time when this dissertation was written, NEx 

software package was available free of charge. Furthermore, NEx is a light weight 

software solution. Its installation will not update the system registry or any other system 
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or user files outside of the installation folder. The only exception occurred when NEx 

stored its settings and exported logs. This software allows its users to use it in “emulation 

mode”. Emulation mode serves as a simulation of the actual data stream recording from 

the CND, however all the data points are randomly generated. According to its creator, 

the emulator mode is designed to provide a safe training environment for new users. 

Emulator mode does not require a CND to be connected to the system.  

 
 

 
 

30 Figure B.1 : NEx Graphical User Interface 

  
 

To run NEx user has to complete a set of steps. Firstly, user needs to verify that 

the headset can connect to the machine which is used for recording EEG readings. In 

other words, NEx has to have an active connection through one of the common 

communication ports. The default port for communicating with the device is set to 

COM5. NEx has a support search application which can test if the device is connected to 

the system using different ports. Secondly, it is imperative to make sure that no other 
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neuro application is active because CND’s API cannot reliably supply the data stream to 

multiple applications at the same time. When those steps are completed, NEx can be 

activated to record the EEF signals from the device. Performance feedback section of 

NEx’s GUI allows user to select which reading should be recorded and/or displayed. At 

the moment of dissertation writing, NEx supported the following EEG band waves: 

Delta, Theta, Alpha 1, Alpha 2, Beta 1, Beta 2, Gamma 1 and Gamma 2. Alpha 1 and 

Alpha 2 data streams correspond to high and low Alpha bands respectively. Same logic 

applies to Beta and Gamma bands. In addition to EEG band waves, NEx also records data 

points for ocular eye movements (Blink) and total power (totPWR) which are used to 

control for outliers and to render readings under different power levels comparable. 

Finally, NEx can also record the values of Attention and Meditation parameters. 

According to the device manufacturer those parameters are calculated based on a set of 

patent algorithms. Up to the point of writing this dissertation, the device manufacturer did 

not provide a clear and unambiguous definition of those two parameters nor did it supply 

the algorithms behind its calculation. For those reasons, Attention and Mediation are 

impossible to link with any existing scientific studies. Thus, those two parameters were 

not used in my dissertation.  

NEx documentation provides a detailed description of the experiment which was 

conducted by the NEx creator to test if this software solution is actually accessing the 

CNDs API and to document the corresponding results. Experiment uses NEx to test if the 

data streams from the device can record the difference between two extreme brain states: 

meditation and ordinary mind states. Experiment was run on a set of volunteers with 

more than 20 years of experience in meditation. The experimental session was divided 
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into 2 parts. First part, the baseline recording, had the length of 17 minutes. Activities 

used for the baseline recordings are the following: internet browsing and reading. The 

second part, where the meditation occurs, had the length of 17 minutes. Approximate 

break between those two experimental phases was a1 minute. After the meditation phase 

was completed, data points were exported into an R-compatible database.  
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APPENDIX C 

Experimental Software Interface 

The screens below show a potential combination of messages as they would 

appear in the Experimental Software Interface. Please note that the content of the tutorial 

section did not change, while the letter parts of the experiment did change in order to 

mitigate potential order effects. 
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31 Figure C.1: Experimental Software Interface 
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APPENDIX D 

Experimental Software Content 

This appendix provides content which would have appeared on the specific 

experimental setting described in Appendix C. Msq# rubric contains number for the 

specific message. T# symbol represent tutorial messages. M# symbol represent actual 

messages participants were instructed to record. Message numbers do not represent the 

actual order of appearance of messages throughout the experiment. Message numbers 

represent the way in which messages were ordered for the purposes of data analysis. 

MsgContent Rubric is populated with the verbatim content that was displayed to the 

participants. MsgType rubric marks the type of the message. TXT stands for textual 

message within the experimental system. SM is used for textual messages displayed in 

Skype. SV is reserved for voice messages displayed in Skype. WTXT marks textually 

dense messages. Table D.1. lists all messages in chronological order compatible with 

Chapter Four of this dissertation. However, as a result of experimental randomization 

processes, some participants received these messages in a different chronological order.  

Table D.1: Message Content 

Msg# MsgContent MsgType 
T1 Welcome! This application shows you the messages you will receive 

from your contacts throughout this experiment. 
TXT 

T2 The content of the newest message will be shown to you in the 
“Message Content Window.” 

TXT 
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  Table D.1: Message Content--Continued

Msg# MsgContent MsgType 
T3  Names of the contact persons who sent you the message will appear 

on the left side of the screen, under the “Messages” textbox. You 
have just received a message from Alice. 

TXT 

T4 When you receive a new message, the old message will move one 
row down and turn green. The newest message will always be 
highlighted in white. Look, you have received a new message from 
Bob. 

TXT 

T5 If one contact sends you multiple messages, a message number will 
appear next to the contact’s name. In this specific case, Bob sent you 
another (second) message. Note the first message is labeled with a 
#1 and the newer message with a #2. 

TXT 

T6 Please keep in mind that some of your contacts may get in touch 
with you through different communication channels. For example, 
one or more of your contacts may decide to use Skype. When that 
happens, a new window will appear with the message in that 
alternative channel of communication. 

TXT 

T7 You task is to write down all of the picnic-related information on the 
piece of paper provided to you. This message marks the end of the 
tutorial. 

TXT 

T8 Get ready, the experiment will start soon! TXT 

M1 Hi! We are organizing a corporate picnic for our department this 
weekend. In the next few minutes our colleagues will be contacting 
you. Please make sure to note all of the important information on the 
paper provided to you. In short, we want everything to be organized 
neatly and recorded to the best of your ability – we do not want to 
organize a picnic with excess sodas and no chips! By the way, if 
someone sends you a message or two outside of this system, make 
sure to note it as well. Thank you in advance! NAME 

TXT 

M2 Hey, hey, hey! Just to let you know: I will definitely attend this 
picnic. I will arrive around 8AM and I will bring 10 sausages. 
Cheers, NAME 

TXT 

M3 Hi. I will join you at the picnic starting time and I will bring 15 cans 
of Coke. NAME 

TXT 



171 

Table D.1: Message Content--Continued

Msg# MsgContent MsgType 
M4 Hey! It is so cool that we are organizing a corporate picnic this 

weekend. Put me down for one tomato pie with fried bacon. By the 
way, make sure to write down that I cannot join you before half past 
nine. Best regards, NAME 

TXT 

M5 THIS PICNIC IS AWESOME!!! So, I’ll bring 24 cans of Coke, but 
I have to leave you around half past ten. 

TXT 

M6 Hi, NAME here. I will join you for the picnic and I will be bringing 
a cake. BR NAME 

TXT 

M7 Will be there. Will bring 2 buckets of chicken nuggets. SM 

M8 I’ll join @10 and I will bring five donuts. TXT 

M9 Hi, sweetheart, how are you doing today? I am so happy to hear that 
we are organizing a picnic for the entire department! I am looking 
forward to see you all in an informal and relaxing atmosphere. 
NAME told me that I have to tell you what I plan to bring to our 
picnic. NAME also told me that I have to let you know when I plan 
to arrive. With that in mind, I kindly ask you to write down that I 
will bring a wonderful and truly beautiful apple pie. I have inherited 
the pie recipe from my mother – and she inherited it from her 
granny! Can you believe it? We will have an apple pie from the 
times long gone made just like they used to make them! Even now I 
can promise you: that pie will be absolutely fantastic! Now, about 
my arrival time. Well, unfortunately, I cannot join you when I 
initially planned because I have to take Puflepie (Puffy is my older 
Labrador, you may know him) to the vet. But, just for the sake of 
noting it, let’s say that I will most likely join you sometime before 
noon. I wish you a wonderful day! NAME 

WTXT 

M10 CHANGE OF PLAN! I WILL NOT BRING 15 CANS OF COKE 
BECAUSE SOMEONE ELSE PLANS TO BRING COKE AS 
WELL. I’LL BRING DR. PEPPER INSTEAD! 

TXT 

M11 Oh, yes, I forgot to add this: I’ll join you around 10:30. TXT 

M12 BTW I will show up around 10 SM 

M13 Hi, we will have some guests from that foreign company coming, as 
well. Please put the following names down: NAME TIME; NAME 
TIME; NAME TIME; Thanks. 

TXT 
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Table D.1: Message Content--Continued

Msg# MsgContent MsgType 
M14 Just to let you know: my husband will come with me. His name is 

NAME, and he will bring some snacks. 
TXT 

M15 Hi NAME here. Is of come to picnics yes. NAME sayed me I no pie 
brought NAME is to pie. Exchange pie before meal fruits. Fireworks 
is me bringed too. 

TXT 

M16 Hi, sweetie, it is NAME again! Can you believe it? I just heard that 
NAME, my old acquaintance from Spain, has come across the ocean 
to join us! Isn’t that wonderful? The two of us met when I was sent 
there to open our branch office for the Iberian Peninsula. That was 
summer 2010. No, wait, it could have been autumn, as well. I do not 
know now… Anyway, he told me that he doesn’t fancy apples that 
much. Thus, I do not want to upset him with my apple pie. Please 
write down that I will not, I repeat, I will not bring an apple pie to 
this picnic. I will make a pumpkin pie instead – that blew his mind 
away the last time I saw him. Thank you so much for everything. 
Best regards, NAME 

WTXT 

M17 Hi, I am calling from my wife’s account. My name is NAME and I 
will bring non-alcoholic champagne to our picnic. Thanks. 

SV 

M18 Hey, I will not join you after all. Please remove me from the list. My 
car engine is misfiring again and I have to get that fixed as soon as 
possible! 

SM 

M19 Hi, it’s me again. It turns out that I messed up some things. NAME 
will not join us. His secretary just called me. He has to take a flight 
to Zurich at that time. He is so sorry. He will send NAME from 
marketing instead. 

TXT 

M20 And that guy from China will bring a translator with him. Keep that 
in mind and add NAME to the list. 

TXT 
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Table D.1: Message Content--Continued 

Msg# MsgContent MsgType 
M21 All right, this seems to be the last thing for today. NAME will bring 

his new friend NAME. It is starting to get clear now: we will not 
have enough food and drink for all the attendees. That creates a new 
task for you: please make sure to count all the attendees and put a 
lunch box for each attendee without a food item next to his or her 
name. I believe you are aware that we are in a financial pickle and 
that every dollar counts. That is why you must be as punctual as 
possible and write down the exact number of lunch boxes that 
NAME has to order. Thank you so much for your help! Thanks, 
NAME 

WTXT 

For the purposes of this research the experimental software graphical user interfaces was 

used with two language variants: English and Serbo-Croatian.  
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APPENDIX E 

Experimental Software Pre-Testing 

The combination of experimental software and the CND used in this research was 

pre-tested prior to conducting this experiment. The results of the preliminary study were 

presented at Gmunden 2016 NeuroIS retreat (Milic 2017). The part of the manuscript in 

which the device is tested is presented and expanded here for the purposes of this 

dissertation.  

The selected device, Neurosky Mindwave headband (headband in the following 

text), was used to gather data from a group of 12 test subjects. Neuro Experimenter 

software v3.28 was used to access the API of the headband and to record EEG based BCI 

data (“NeuroExperimenter” n.d.). All participating subjects of this pilot study were 

healthy PhD students at a medium-sized private university in the southern part of the 

United States. All subjects were right handed, and between the age of 27 and 35. Two 

participants were female. All recordings were gathered in a standard office environment 

while subjects were working on light office tasks that required them to use a computer 

(e.g. checking email inbox, browsing the Internet and arranging files etc.). Participants 

were explicitly told to remove the headband as soon as they were done with their office 

tasks. According to the manufacturer’s specification, Headband is able to detect Alpha 1, 

Alpha 2, Beta 1, Beta 2, Gamma 1, Gamma 2, Delta and Theta1 waves. 

1 For additional information about EEG Frequency Bands please consult Müller-Putz 
et al. 2015/ p.918 
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According to manufacturer’s specification, the headband used in this pilot study 

records brainwave readings every 500ms, via a “cluster sensor” positioned on the 

participant’s forehead and targeted at the prefrontal cortex (PFC). PFC is known to be the 

executive center of the human brain (Dimoka et al. 2012; Dimoka, Pavlou, et al. 2010), 

where decision actions (e.g. calculations) are performed. Descriptive statistics of the 

gathered data are presented in Table E.1.  

Table E.1: Descriptive Statistics Test Data 

EEG 
Bands N Minimum Maximum Mean 

Std. 
Deviation Variance 

Delta 16217 .50 98.64 47.48 27.12 735.28 
Theta 16217 .17 81.30 21.22 13.01 169.25 
Alpha1 16217 .01 71.88 7.45 6.93 47.98 
Alpha2 16217 .04 58.22 6.60 6.12 37.45 
Beta1 16217 .06 45.21 6.08 5.57 31.02 
Beta2 16217 .04 46.94 5.58 5.09 25.89 
Gamma1 16217 .02 37.46 3.26 3.25 10.54 
Gamma2 16217 .01 30.44 2.33 2.41 5.83 

In summation, this pilot study demonstrated that a CND can be used to collect 

EEG signals. Furthermore, CND clearly and unambiguously reacted to the external 

stimuli in the way that literature (CITE) suggested it should. Naturally, spatial and 

temporal resolutions of the recordings are not identical to the standards that are generally 

employed in EEG studies (Müller-Putz et al. 2015b) – instead of dozens of simple 

sensors, the headband used in this pilot study has only one “clustered sensor”; and instead 

of the recommended 200ms temporal resolution, this device is capable of recording only 

500 ms intervals. However, according to criteria presented in Kübler et al. 2001 (Kübler 

et al. 2001), the headband used in this study fits all the requirements for a neuro sensor 

because it successfully detected the  electrophysiological  activity  of  the  user's  brain, 
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recorded the signals at 97.62% accuracy (which is above the proposed 70% threshold) 

and bypassed most of the stated limitations.  This pilot study paves the way for using 

CNDs to better understand and detect one of the growing technostress phenomena known 

as Information Overload (IO). 



177 

 
 
 

APPENDIX F 
 

 Internal Review Board Approval 
 
 
This dissertation was approved by the Internal Review Board (IRB) of Baylor 

University. The initial IRB application was submitted on Feb 02 2016, conditionally 

accepted on April 4 2016 and fully approved after a series of changes on March 28 2017. 

The IRB submission case Baylor IRBnet ID is 871609-4. The approval letter is presented 

below.  I am eternally grateful to all involved IRB personnel. The diligent guidance and 

exemplary expedience they have demonstrated throughout this process serve as an 

example to the entire academia and all Internal Review Boards across the Universes.   
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32 Figure F.1: Baylor IRB Letter of Approval 
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APPENDIX G 

Consent Form 

This Baylor University 

MIS Department 

Consent Form for Research 

PROTOCOL TITLE:  Communication channel effects on elementary cognitive 

performances 

PRINCIPAL INVESTIGATOR: Nash Milic 

Introduction 

Please read this form carefully.  The purpose of this form is to provide you with 

important information about taking part in a research study.  If any of the statements or 

words in this form are unclear, please let us know. We would be happy to answer any 

questions. You have the right to discuss this study with another person who is not part of 

the research team before making your decision whether or not to be in the study. 

This study is designed for subjects over the age of 18. If you are not 18 or older you 

should not participate. 

Taking part in this research study is up to you.  If you decide to take part in this research 

study we will ask you to sign this form.  We will give you a copy of the signed form. 

The person in charge of this study is Nash Milic (PhD student, under advisement of Prof. 

Dorothy E. Leidner). We will refer to these persons as the “researcher/s” throughout this 

form.  
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Why is this study being done? 

The purpose of this study is to further the knowledge on elementary cognitive 

performances. We are asking you to take part in this study because you are accustomed 

with digital technologies, and as such very likely to be able to express your video 

watching experiences. 

About 60 subjects will take part in this research study at Baylor University. 

How long will I take part in this research study? 

We expect that you will be in this research study for around 30 minutes.  During this 

time, we will ask you to browse the internet, play non-violent games and create a picnic 

list while wearing a light headband.  

What will happen if I take part in this research study? 

If you agree to take part in this study, we will ask you to sign the consent form before we 

do any study procedures. After that, we will shortly brief you about the purpose of this 

study. When the briefing is finished, we will ask you to put a headband and oximeter and 

to browse Internet, play games and create a picnic list. The equipment you would be 

instructed to wear is a consumer grade neural interface, which is legally available for 

sale.  

To the best of our knowledge, taking part in this study will not hurt you. To the best of 

our knowledge, our equipment will not cause any harm to you. 

Loss of Confidentiality 

A risk of taking part in this study is the possibility of a loss of confidentiality. Loss of 

confidentiality includes having your personal information shared with someone who is 

not on the study team and was not supposed to see or know about your information. The 

researcher plans to protect your confidentiality. Their plans for keeping your information 

private are described later in this consent form. 
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There are no benefits to you from taking part in this research. 

You may choose not to take part in this research study. 

Storing Study Information for Future Use 

We would like to store your study information for a 3 years period. We might use it for 

future research related elementary cognitive performances.  We will label all your study 

information with a code instead of your name.  The key to the code connects your name 

to your study information.  The researcher will keep the code in a biometrically secured 

and password protected computer. 

Future use of study information is optional for this study. If you do not want your 

information to be used for future research, you should not be in this study.  

How Will You Keep My Study Records Confidential? 

We will keep the records of this study confidential by storing all files on biometrically 

protected devices.  We will make every effort to keep your records confidential. 

However, there are times when federal or state law requires the disclosure of your 

records. 

The following people or groups may review your study records for purposes such as 

quality control or safety: 

The Researchers and any member of their research team 

Authorized members of Baylor University who may need to see your information, such 

as administrative staff members from the Office of the Vice Provost for Research and 

members of the Institutional Review Board (a committee which is responsible for the 

ethical oversight of the study) 

The sponsor or funding agency for this study 
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Federal and state agencies that oversee or review research (such as the HHS Office of 

Human Research Protection or the Food and Drug Administration) 

The study data will be stored on a biometrically protected device.   

The results of this study may also be used for teaching, publications, or presentations at 

professional meetings. If your individual results are discussed, your identity will be 

protected by using a code number or pseudonym rather than your name or other 

identifying information. 

Study Participation and Early Withdrawal 

Taking part in this study is your choice.  You are free not to take part or to withdraw at 

any time for any reason.  No matter what you decide, there will be no penalty or loss of 

benefit to which you are entitled.  If you decide to withdraw from this study, the 

information that you have already provided will be kept confidential. You cannot 

withdraw information collected prior to your withdrawal.  

You may choose not to be in the study or to stop being in the study before it is over at 

any time.  This will not affect your class standing or your grades at Baylor University.  

You will not be offered or receive any special consideration if you take part in this 

research study. 

You may choose not to be in the study or to stop being in the study before it is over at 

any time.   You will not be offered or receive any special consideration if you take part in 

this research study. 

The researcher may take you out of this study without your permission.  This may happen 

because: 

The researcher thinks it is in your best interest 

You can’t make the required study visits 

Other administrative reasons 
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Will I get paid for taking part in this research study? 

You will not be paid for taking part in this study. 

What will it cost me to take part in this research study? 

There are no costs to you for taking part in this research study. 

What if I have any questions or concerns about this research study? 

You can contact us via email with any concerns or questions about the research. Please 

direct your emails to: 

Nash_Milic@baylor.edu 

If you want to speak with someone not directly involved in this research study, you may 

contact the Baylor University IRB through the Office of the Vice Provost for Research at 

254-710-1438. You can talk to them about:

Your rights as a research subject 

Your concerns about the research 

A complaint about the research 

Indicate your decision for the below optional research discussed earlier 

in this form: 

 Optional Consent for future research with study information: 

Do you agree to let us store your study information for future research related to user 

experience? 

______YES ______NO _______INITIALS 
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Future Contact 

We may like to contact you in the future either to follow-up to this study or to see if you 

are interested in other studies taking place at Baylor University.   

 

Do you agree to let us contact you in the future? 

 

______YES ______NO _______INITIALS 

 

Statement of Consent  

I have read the information in this consent form including risks and possible benefits.  I have 

been given the chance to ask questions.  My questions have been answered to my 

satisfaction, and I agree to participate in the study.   

 

______________________________________  ____________________ 

Signature of Subject  Date 

Signature of Person Obtaining Consent: 

I have explained the research to the subject and answered all his/her questions.  I will 

give a copy of the signed consent form to the subject. 

________________________________________  _______________________ 

Signature of Person Obtaining Consent  Date 
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APPENDIX H 

Supplemental Data 

In addition to the data collected from the CND I have also collected two sources 

of supplemental data for this dissertation. The first data source comes from the oximeter, 

while the second data source comes from the documents the participants were asked to 

fill during the Office task experimental sub-phase.  

For the purpose of this dissertation, I use CMS 50D+ Blue Finger Pulse Oximeter. 

This instrument can record heart rate and blood oxygen saturation (SpO2). Heart rate is 

understood as the number of heart beats per minute. I use heart rate to control for 

potential stressors. The normal heart rate for sedentary activities ranges from 60 to 100 

heart beats per minute, with minor alterations based on age and general health condition 

(AHA 2015; Laskowski 2015). Table H.1 provides descriptive statistics for this data 

source. In general, all heart rate values were within the normal heart rates. This means 

that it is highly unlikely that the EEG frequency bands I measured were influenced by the 

external factors like stress and fear. All SpO2 readings were above 95%, which also fits 

well within the recommended guidelines (Mayo Clinic 2015). Textual data was also 

collected during the Office task sub-phase. As explained in Chapter Three, all 

participants were provided with a printed sheet of paper. This paper sheet contained a 

table with four columns named “Name”, “Time”, “Item” and “Note”. Participants were 

instructed to use these sheets to fill in the names of the attendees, times of arrival, items 
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to be brought and additional notes where applicable. Upon closer examination of the 

textual data, a set of patterns emerged. These patterns are elaborated in Table H.2. 

 Table H.1: Heart Rate Descriptive Statistics 

Attribute Value 
Mean 68.21613 
Standard Error 0.055781 
Median 68 
Mode 67 
Standard Deviation 3.573445 
Sample Variance 12.76951 
Kurtosis 2.257995 
Skewness 0.758252 
Range 30 
Minimum 56 
Maximum 86 

 Supplemental textual data adds an extra perspective to the Information Overload 

phenomena; however its use in this experimental setting is problematic. The main reason 

for this is that there is no recorded data source (i.e. video material) which can precisely 

link the exact point in time when a participant had written the note down to the point in 

time when a particular experimental stimulus occurred. Although it is possible to 

speculate that the elicited stimulus occurred roughly at the time when the note writing 

was taking place or vice versa, this speculation could jeopardize the rigor of experimental 

design.  
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   Table H.2: Common Textual Data Patterns 

Pattern Description 

Missing details Small pieces of information are missing in less than four columns. 

Missing event An entire event is not recorded on the textual 

Illegible 
handwriting 

Handwriting becomes illegible after an evident designed to induce 
information overload.  

Fully completed All items are completed in full. All essential pieces of information 
are recorded in full.  

Strike-through An entry is annulled with a line. 

Incorrect names A name or a set of names is spelled incorrectly after an IO stimulus. 

Incorrect items The item does not match the one specified by the system. 

Incorrect time The time for a specific attendee is noted incorrectly.  

Incorrect note The specified note is not related to the stimulus event. 

Made-up 
information 

The provided information is complete, but not related to the 
information presented on the screen.  

Empty spaces At least one column attribute is missing. 

Change of writing 
style 

Sudden change of writing style after an IO stimulus (i.e. switching 
from caps to cursive).  

Symbolic 
annotations 

Use of special symbols to annotate a change in item or to link two or 
more items together (i.e. arrows, stars, minuses). 

Improper column 
use 

An entry is placed in a wrong column (i.e. a food item is annotated 
in the time column). 

Failure to 
complete 

More than one entire event is completely missing from the notes. 

Redundant 
information 

One or more events are annotated two or more times. 
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