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We define a class of set-valued functions called irreducible functions and show

that their inverse limits are indecomposable continua. We go on to further explore

this class of inverse limit spaces. This includes a characterization of chainability

and a characterization of endpoints of inverse limits of certain irreducible functions.

Additionally, we develop multiple tools for determining when two inverse limits of

irreducible functions are or are not homeomorphic. This culminates in a topological

classification of the inverse limits of four specific families of irreducible functions.
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CHAPTER ONE

Introduction

The topic of inverse limits has been studied in the context of continuum theory

for decades. Inverse limits provide a useful tool both for generating interesting spaces

and for studying known spaces. In 2004, Mahavier began the study of a generalized

notion of inverse limits which accommodates set-valued functions [40]. In that paper,

only set-valued functions on [0, 1] are considered, but in 2006, Ingram and Mahavier

generalized the results to set-valued functions on compact Hausdorff spaces [29].

In these papers, it is shown that many of the results concerning inverse limits of

continuous, single-valued functions fail to hold in the more general setting without

additional assumptions. In the years since, research into generalized inverse limits

has grown rapidly and includes a variety of topics [11,12,15,16,25,37,46,47,50].

In this dissertation, we focus on the inverse limits of a particular class of

set-valued functions called irreducible functions. We demonstrate that irreducible

functions may be used to generate indecomposable continua as inverse limits, and

we explore properties of these inverse limits, including chainability and endpoints.

We also establish conditions under which two inverse limits from this family are or

are not homeomorphic.

In Chapter Two, we give preliminary definitions and theorems and a review

of the relevant literature. Then, in Chapter Three, we define irreducible functions

and demonstrate that they may be used to construct indecomposable continua as

inverse limits. This generalizes results due to Ingram and Varagona [23,50,51].

In the subsequent chapters, we investigate other properties of this class of

inverse limits spaces. We give a characterization for chainability in Chapter Four

which builds upon the work of Ingram, [26], and in Chapter Five we characterize
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endpoints of inverse limits of certain set-valued functions. Finally, in Chapter Six, we

establish sufficient conditions for two inverse limits from this class to be (or to not be)

homeomorphic which generalize results due to Watkins, Varagona, and Smith and

Varagona [49,52,54]. This culminates in Section 6.3 in a topological classification of

certain families of inverse limits of irreducible functions. This dissertation includes

results which have previously been published [34–36].
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CHAPTER TWO

Preliminary Definitions and Theorems

We begin with some preliminary definitions from continuum theory. For a

more in-depth introduction to continuum theory see [44].

A set X is a continuum if it is a non-empty, compact, connected metric space.

A subset of a space X which is a continuum is called a subcontinuum of X. A

continuum is called decomposable if it is the union of two proper subcontinua. A

non-degenerate continuum which is not decomposable is called indecomposable.

Let Y be a metric space and X ⊆ Y be a continuum. If A,B ⊆ Y are closed,

we say that X is irreducible between A and B if X intersects each of A and B but no

proper subcontinuum of X does. If X is irreducible between {a} and {b} for some

a, b ∈ X, we will simply say that X is irreducible between a and b. We say that X

is irreducible if there exist two points between which it is irreducible.

A chain in a metric space X is a collection {C1, . . . , Cn} of open sets such that

for i, j = 1, . . . , n, Ci ∩ Cj 6= ∅ if, and only if, |i − j| ≤ 1. A continuum is called

chainable if for every ε > 0, it can be covered by a chain {C1, . . . , Cn} such that

for all i = 1, . . . , n, diamCi < ε. Given continua X and Y , a continuous function

f : X → Y is called an ε-map if for each y ∈ Y , diam f−1(y) < ε. A continuum

X is said to be arc-like if for every ε > 0, there exists an ε-map f : X → [0, 1].

Chainability and arc-likeness are equivalent. (See [44, p. 235] for a proof.)

A continuum X is called unicoherent if any two subcontinua of X whose union

is X have a connected intersection. A continuum is called hereditarily unicoherent

if each of its subcontinua is unicoherent. Equivalently, a continuum is hereditarily

unicoherent if any two of its subcontinua have a connected intersection. In [7], Bing

shows that every chainable continuum is hereditarily unicoherent.
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Given a continuum X, a point p is called an endpoint of X if for any two

subcontinua of X, each of which contains p, one of them is a subset of the other.

2.1 Traditional Inverse Limits

Inverse limits have been widely used and studied in the context of continuum

theory. The definitions in the traditional setting are as follows: Given a sequence,

X = (Xi)
∞
i=1, of topological spaces and a sequence, f = (fi)

∞
i=1, of continuous func-

tions such that for each i ∈ N, fi : Xi+1 → Xi, the pair {X, f} is called an inverse

sequence. The inverse limit of this inverse sequence is defined to be the set

lim←− f =

{
x ∈

∞∏
i=1

Xi : xi = fi(xi+1) for all i ∈ N

}
.

Each space, Xi is called a factor space, and each function, fi, is called a bonding

map. Given n ∈ N, we define πn : lim←− f → Xn to be projection onto the nth factor

space.

Capel shows in [10] that if {X, f} is an inverse sequence where each factor

space is a continuum, then lim←− f is a continuum. Another well known result, due to

Isbell, [32], is that a continuum X is chainable (or equivalently arc-like) if, and only

if, there exists an inverse sequence {X, f} where for each i ∈ N, Xi = [0, 1], such

that lim←− f is homeomorphic to X.

A property which has been widely studied with regard to inverse limits is

indecomposability. Recall that a continuum is indecomposable if it is not the union

of two of its proper subcontinua. In the traditional setting, there are many results

concerning indecomposability of inverse limits. One particularly well-known result

establishes a definition of an indecomposable map, and shows that the inverse limit

of indecomposable maps is an indecomposable continuum.

Definition 2.1. Let X and Y be continua. A map f : X → Y is called indecomposable

provided that for any two subcontinua A and B of X with A ∪ B = X, either

f(A) = Y or f(B) = Y .
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Theorem 2.2. Let {X, f} be an inverse sequence with indecomposable bonding maps.

Then lim←− f is an indecomposable continuum.

For a proof of this theorem, see [44, p. 21]. Central to the proof is the fact that

if K is a subcontinuum of lim←− f , and πn(K) = Xn for infinitely many n ∈ N, then

K = lim←− f . This is important, because under the generalized notion of an inverse

limit which we will introduce in Section 2.2, this does not always hold.

Another sufficient condition for indecomposability was established by Ingram

in [21].

Definition 2.3. Let G be a graph. A map f : G → G is said to be a two-pass

map provided there exist two non-overlapping subgraphs G1 and G2 of G such that

f [Gi] = G for i = 1, 2.

Theorem 2.4 (Ingram). If T is a tree with no more than one branch point and f :

T → T is a two-pass map, then lim←− f is indecomposable.

For additional reading on the topic of traditional inverse limits, see [19,30].

2.2 Inverse Limits of Set-valued Functions

In 2004, Mahavier, [40], introduced a generalized notion of an inverse limit

which allows for the bonding functions to be set-valued. This was further built

upon in [29] by Ingram and Mahavier. They show that many of the properties

which hold for traditional inverse limits fail to hold for inverse limits with set-valued

functions. Since then, there has been considerable research concerning inverse limits

of set-valued functions. Much of it has focused on determining what conditions are

necessary for the results of traditional inverse limit theory to extend to inverse limits

of set-valued functions. Ingram provides a thorough introduction to inverse limits

of set-valued functions in [25].
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2.2.1 Definitions

Given a topological space X, we define the following hyperspaces of X:

2X = {A ⊆ X : A is nonempty, closed, and compact}

C(X) =
{
A ∈ 2X : A is connected

}
.

Hence, if X is a metric space, then C(X) is the set of all subcontinua of X.

Given spaces X and Y and a point x0 ∈ X, a function F : X → 2Y is upper

semi-continuous at x0 provided that if V ⊆ Y is an open set containing F (x0), then

there exists an open set U ⊆ X containing x0, such that for all x ∈ U , F (x) ⊆ V .

We say that F is upper semi-continuous if it is upper semi-continuous at each x ∈ X.

Given spaces X and Y , and a function F : X → 2Y , we define the graph of F

to be the set

Γ(F ) = {(x, y) ∈ X × Y : y ∈ F (x)} .

Ingram and Mahavier show in [29] that a set-valued function between compact Haus-

dorff spaces is upper semi-continuous if, and only if, its graph is closed. Since all

of the spaces considered in this dissertation are compact Hausdorff spaces, we will

consider this to be the definition of upper semi-continuous.

A set-valued function F : X → 2Y is called surjective if
⋃
x∈X F (x) = Y , and

the inverse of F is defined to be the set-valued function F−1 : Y → 2X where

F−1(y) = {x ∈ X : y ∈ F (x)} .

Let X = (Xi)
∞
i=1 be a sequence of topological spaces and F = (Fi)

∞
i=1 be a

sequence of upper semi-continuous, set-valued functions such that for each i ∈ N,

Fi : Xi+1 → 2Xi . The pair {X,F} is called an inverse sequence, the spaces, Xi, are

called factor spaces, and the set-valued functions, Fi, are called bonding functions.

The inverse limit of such an inverse sequence is defined to be

lim←−F =

{
x ∈

∞∏
i=1

Xi : xi ∈ Fi(xi+1) for all i ∈ N

}
.
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A sequence of sets which are useful in the study of these inverse limits is Γ = (Γn)∞n=1,

where for each n ∈ N,

Γn(F) =

{
x ∈

n∏
i=1

Xi : xi ∈ Fi(xi+1) for 1 ≤ i < n

}
.

For each n ∈ N, Γn(F) is called the n-fold inverse graph of F. When no ambiguity

shall arise, we will simply write Γn.

Given a space X, and a set-valued function F : X → 2X , there is an induced

inverse sequence {X,F} where for each i ∈ N, Xi = X and Fi = F . All of the

examples and many of the results in this dissertation concern the inverse limits of

inverse sequences induced by a single function.

Let {X,F} be an inverse sequence, and let j, k ∈ N with j < k. Then we

define πj : lim←−F → Xj to be projection onto the jth factor space, and we define

π[j,k] : lim←−F →
∏k

i=j Xi by π[j,k](x) = (xj, xj+1, . . . , xk). At times, we will use the

same notation to refer to projection maps whose domain is Γn for some n ∈ N. In

context, the intended domain should be clear.

2.2.2 Connectedness

Mahavier, [40], and Ingram and Mahavier, [29], demonstrate that many well-

known results concerning traditional inverse limits do not hold in general for inverse

limits of set-valued functions. In particular, if {X,F} is an inverse sequence where

for each i ∈ N, Xi is a continuum, lim←−F need not be connected. It is however true

that lim←−F is connected if, and only if, Γn is connected for all n ∈ N. For example,

Ingram and Mahavier show that the inverse limit of the set-valued function whose

graph is pictured in Figure 2.1 is not connected. They do this by showing that the

point (1/4, 1/4, 3/4) is isolated in Γ3.

They also give the following results concerning connectedness.

Theorem 2.5 (Ingram and Mahavier). Let {X,F} be an inverse sequence. If for each

i ∈ N, Xi is a continuum and Fi : Xi+1 → C(Xi), then lim←−F is a continuum.
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Figure 2.1. Set-valued function with a disconnected inverse limit

Theorem 2.6 (Ingram and Mahavier). Let {X,F} be an inverse sequence. If for

each i ∈ N, Xi is a continuum and Fi : Xi+1 → 2Xi is surjective such that for each

x ∈ Xi, F
−1
i (x) is connected, then lim←−F is a continuum.

Connectedness of inverse limits has also been studied by Nall. He presents the

following results in [46].

Theorem 2.7 (Nall). Let X be a continuum, and let {Fα : X → C(X) : α ∈ A} be

a collection of upper semi-continuous continuum-valued functions such that for each

x ∈ X,
⋃
α∈A Fα(x) is compact. Define F : X → 2X by F (x) =

⋃
α∈A Fα(x). If F is

surjective and Γ(F ) is connected, then lim←−F is a continuum.

Theorem 2.8 (Nall). Let X be a continuum, and let F : X → 2X be surjective and

upper semi-continuous. Then lim←−F is a continuum if, and only if, lim←−F−1 is a

continuum.

Additional results concerning the connectedness of inverse limits of set-valued

functions can be found in [14,16,17,22–24,31].

2.2.3 Topological Conjugacy

One result which does naturally extend to the generalized theory of inverse

limits concerns topological conjugacy. To define topological conjugacy we must first
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define what is meant by composition of set-valued functions. If X, Y , and Z are

sets, F : X → 2Y and G : Y → 2Z , then we define G ◦ F : X → 2Z by

G ◦ F (x) =
⋃

y∈F (x)

G(y).

Let X and Y be topological spaces, and let F : X → 2X and G : Y → 2Y be upper

semi-continuous. We say that F and G are topologically conjugate if there exists

a homeomorphism ϕ : X → Y such that ϕ ◦ F = G ◦ ϕ. The following theorem

appears in [29].

Theorem 2.9 (Ingram and Mahavier). Let X and Y be compact Hausdorff spaces,

and let F : X → 2X and G : Y → 2Y be upper semi-continuous. If F and G are

topologically conjugate, then lim←−F is homeomorphic to lim←−G.

2.2.4 Full Projection Property and Indecomposability

It was noted that essential to the proof of Theorem 2.2 is the fact that no

proper subcontinuum of an inverse limit can have full projection in infinitely many

coordinates. This does not hold in general for inverse limits of set-valued functions,

and it is an important property in the study of indecomposability of inverse limits.

Definition 2.10. Let {X,F} be an inverse sequence where for each i ∈ N, Xi is

a continuum. We say that lim←−F has the full projection property provided that if

K ⊆ lim←−F is a continuum such that πi(K) = Xi for infinitely many i ∈ N, then

K = lim←−F.

The full projection property seems to be indispensable in obtaining an inde-

composable continuum as an inverse limit. While it has not been proven to be a

necessary condition for the inverse limit to be indecomposable, there are no results

concerning indecomposability known to the author which do not include the full

projection property as an assumption. The most notable results concerning the full

9



projection property and indecomposability of inverse limits with set-valued functions

are due to Ingram, [23], and Varagona, [50, 51].

Example 2.11 (Varagona). For each n ∈ N, let Ln be a line segment whose endpoints

are

(1) (2−n+1, 1) and (2−n, 0) if n is odd

(2) (2−n+1, 0) and (2−n, 1) if n is even,

and let L0 be the line segment whose endpoints are (0, 0) and (0, 1). Let F : [0, 1]→

2[0,1] be the set-valued function whose graph is equal to
⋃∞
n=0 Ln (pictured on the

left in Figure 2.2). Then lim←−F is an indecomposable continuum.

Example 2.12 (Ingram). Let G : [0, 1] → 2[0,1] be the set-valued function whose

graph consists of three line segments, the first from (0, 0) to (1/2, 1), the second

from (1/2, 1) to (1/2, 0), and the third from (1/2, 0) to (1, 1) (pictured on the right

in Figure 2.2). Then lim←−G is an indecomposable continuum.

In each of these examples, the proof includes demonstrating that the inverse

limit has the full projection property. The respective authors differ substantially

in how they go about proving this which led Ingram to ask in [25, Problem 6.26]

whether there was a single theorem which would establish the full projection property

for both inverse limits. We give such a result in Theorem 3.15.

2.2.5 Additional Topics

The topics of the previous subsections are of the greatest pertinence to this

dissertation, but there are many other interesting topics concerning inverse limits

of set-valued functions which have been explored. Illanes, [18], shows that a simple

closed curve cannot be obtained as the inverse limit of a single set-valued function

on [0, 1], and Nall, [45, 47], extends this to include all finite graphs other than the

10
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Figure 2.2. Set-valued functions with indecomposable inverse limits

arc. Charatonik, Roe, and Vernon have each explored properties of inverse limits

generated by systems indexed by sets other than the natural numbers [12, 13, 53].

Also, Banič, Charatonik and Roe, and Ingram have studied the topic of dimension

of inverse limits of set-valued functions, [4, 11,27,28].
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CHAPTER THREE

Indecomposability

In this chapter, we generalize Theorem 2.2 as well as Examples 2.11 and 2.12.

In Section 3.1 we develop a generalized definition for an indecomposable function

which can accommodate set-valued functions and demonstrate that such functions

have indecomposable inverse limits so long as the inverse limits are connected and

have the full projection property. We go on to give a sufficient condition for an

inverse limit to have the full projection property.

Then in Section 3.2 we define a class of set-valued functions called irreducible

functions, and we prove that they yield inverse limits which have the full projection

property and are indecomposable continua. This class of function includes those

from Examples 2.11 and 2.12. Hence, the main result of the section, Theorem 3.15,

generalizes these examples.

This chapter includes work done in collaboration with Jonathan Meddaugh.

3.1 Indecomposable Set-valued Functions and the Full Projection Property

We begin with the definition of an indecomposable set-valued function.

Definition 3.1. Let X and Y be continua. An upper semi-continuous set-valued

function F : X → 2Y is indecomposable provided that for any two subcontinua A

and B of Γ(F ) with A ∪B = Γ(F ), then either π2(A) = Y or π2(B) = Y .

This is one of several possible ways to generalize the notion of indecomposable

from single-valued functions to set-valued functions. It is important to note that an

indecomposable set-valued function does not necessarily result in an indecomposable

inverse limit without additional conditions (Theorem 3.3). The following lemma

verifies that this definition is consistent with the original.
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Lemma 3.2. Let f : X → Y be a continuous, single-valued function, and define

F : X → 2Y by F (x) = {f(x)}. Then f is indecomposable as a single-valued

function if, and only if, F is indecomposable as a set-valued function.

Proof. Note that since f : X → Y is continuous and single-valued, X is homeomor-

phic to Γ(f) = Γ(F ). Thus, if A and B are subcontinua of X whose union is X,

then Γ(F |A) and Γ(F |B) are subcontinua of Γ(F ) whose union is Γ(F ). Similarly, if

C and D are subcontinua of Γ(f) whose union is Γ(f), then π1(C) and π1(D) are

subcontinua of X whose union is X. Moreover, if A ⊆ X, then f(A) = π2(Γ(f |A)).

The result follows.

This brings us to our generalization of Theorem 2.2.

Theorem 3.3. Let {X,F} be an inverse sequence for which each Fi is indecompos-

able. If lim←−F is connected and has the full projection property, then lim←−F is an

indecomposable continuum.

Proof. Let {X,F} be an inverse sequence for which each bonding function is inde-

composable. Furthermore, suppose that lim←−F is connected and has the full projec-

tion property.

Let A and B be subcontinua of lim←−F with A ∪ B = lim←−F. Then, for each

i > 1, the projections π[i,i+1](A) and π[i,i+1](B) are subcontinua of Γ[i,i+1] for which

π[i,i+1](A) ∪ π[i,i+1](B) = Γ[i,i+1]. As observed earlier, Γ[i,i+1] is the graph of F−1
i .

Since Fi is indecomposable, it follows that one of πi(A) or πi(B) is equal to Xi.

Since this holds for all i > 1, it follows that for some Z ∈ {A,B}, πi(Z) = Xi

for infinitely many i ∈ N. Since lim←−F has the full projection property, Z = lim←−F.

Thus one of A or B is equal to lim←−F, and so lim←−F is indecomposable.

Unfortunately, the indecomposability of the bonding functions alone is not

sufficient for the inverse limit to be indecomposable. As was noted in the previous
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chapter, there is extensive literature on connectedness of inverse limits. There is

significantly less on the full projection property. We give a sufficient condition for

an inverse limit to have the full projection property here.

Theorem 3.4. Let {X,F} be an inverse sequence such that lim←−F is a continuum. If

for each n ∈ N, there exist closed sets A,B ⊆ Xn, such that Γn is irreducible between

the sets

{x ∈ Γn : xn ∈ A} and {x ∈ Γn : xn ∈ B} ,

then lim←−F has the full projection property.

Proof. Let K be a subcontinuum of lim←−F with πi(K) = Xi for infinitely many

i ∈ N. Choose j ∈ N such that πj(K) = Xj and choose A,B ⊆ Xj such that Γj is

irreducible between the sets

{x ∈ Γj : xj ∈ A} and {x ∈ Γj : xj ∈ B} .

Since πj(K) = Xj, it contains both A and B, so the continuum π[1,j](K) must

intersect both

{x ∈ Γj : xj ∈ A} and {x ∈ Γj : xj ∈ B} .

Since Γj is irreducible between these sets, this means that π[1,j](K) = Γj. It follows

that for all i ∈ N with 1 ≤ i ≤ j, π[1,i](K) = Γi.

Since there are infinitely many such j ∈ N, it follows that π[1,i](K) = Γi for all

i ∈ N. Therefore, K = lim←−F.

3.2 Irreducible Set-valued Functions

In this section, we will define a type of upper semi-continuous set-valued func-

tion which we call an irreducible function. The purpose of this definition will be

realized in Theorem 3.15 where we state that sequences of irreducible functions may

be used to yield an inverse limit which has the full projection property and is an

indecomposable continuum. Towards this end, we will first show in Lemma 3.14
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that irreducible functions are also indecomposable functions. Thus, once it has been

established that the inverse limits described in Theorem 3.15 have the full projec-

tion property, the fact that they are also indecomposable continua will follow from

Theorem 3.3.

3.2.1 Irreducible Collections of Maps

The definition of an irreducible function is given in terms of the function’s

inverse. Its inverse must be the union of a collection of single-valued maps. The

criteria such a collection must meet are outlined in this next definition. In this

definition as well as in the rest of this dissertation, given a subset Λ of the real

numbers, Λ′ refers to the set of limit points of Λ.

Definition 3.5. Let X and Y be irreducible continua, and Λ ⊆ [0, 1] be a closed set

with 0, 1 ∈ Λ and Λ \ Λ′ = Λ. Let {fλ}λ∈Λ be a collection of continuous functions

from Y to X. We say that {fλ}λ∈Λ is irreducible with respect to a, b ∈ X and

c, d ∈ Y if X is irreducible between a and b, Y is irreducible between c and d, and

the following hold:

(1) a ∈ fλ(Y ) if, and only if, λ = 0, and b ∈ fλ(Y ) if, and only if, λ = 1.

(2) If 0 /∈ Λ′, then f−1
0 (a) = {c} or f−1

0 (a) = {d}.

(3) If 1 /∈ Λ′, then f−1
1 (b) = {c} or f−1

1 (b) = {d}.

(4) If λ, µ ∈ Λ with λ < µ, then fλ(y) 6= fµ(y) for all y /∈ {c, d}, and Γ(fλ) ∩

Γ(fµ) 6= ∅ if, and only if, (λ, µ) ∩ Λ = ∅.

(5) If (λi)i∈N is a sequence of points in Λ and λi → λ as i→∞, then fλi → fλ

uniformly as i→∞.

When no ambiguity shall arise, or when mention of the points, a, b ∈ X and

c, d ∈ Y is unnecessary, we will simply say that {fλ}λ∈Λ is an irreducible collection

of maps.

15
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Figure 3.1. Irreducible collections of maps

Figure 3.1 provides examples of the graphs of irreducible collections of maps.

On the left is a collection {fλ}λ∈Λ where Λ = {0, 1/5, 2/5, 3/5, 4/5, 1}. f0 is the

bottom function and is the only function which takes on the value of 0; f1/5 is the

function immediately above f0 whose graph intersects the graph of f0 only at 1;

and so on. Notice that since Λ has no limit points, no function is a limit of other

functions.

On the right is a collection {gω}ω∈Ω. Perhaps the simplest indexing set for this

collection would be

Ω =

{
2n − 1

2n+1
: n ∈ N

}
∪
{

2n + 1

2n+1
: n ∈ N

}
∪
{

2n+1 − 1

2n+1
: n ∈ N

}
∪
{

1

2
, 1

}
,

but any closed subset Ω ⊆ [0, 1] could be used so long as 0 ∈ Ω, and Ω has exactly

two limit points–one of which is 1, and the other is a two-sided limit point which

lies in (0, 1).

Another thing worth noting about the collection pictured on the right in Fig-

ure 3.1 is that g−1
1 (1) = [0, 1/2]. This is allowed because 1 is a limit point of Ω. Since

0 is not a limit point of Ω, g−1
0 (0) must be a singleton subset of {0, 1}. Specifically,

in this case, g−1
0 (0) = {0}.

This definition of an irreducible collection of maps can be generalized to the

context of irreducibility with respect to closed sets in the following way.
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Definition 3.6. Let X and Y be irreducible continua, and Λ ⊆ [0, 1] be a closed set

with 0, 1 ∈ Λ and Λ \ Λ′ = Λ. Let {fλ}λ∈Λ be a collection of continuous functions

from Y to X. We say that {fλ}λ∈Λ is irreducible with respect to A,B ⊆ X and

C,D ⊆ Y if X is irreducible between the sets A and B, Y is irreducible between the

sets C and D, and the following hold:

(1) A ∩ fλ(Y ) 6= ∅ if, and only if, λ = 0, and B ∩ fλ(Y ) 6= ∅ if, and only if,

λ = 1.

(2) If 0 /∈ Λ′, then f−1
0 (A) ⊆ C or f−1

0 (A) ⊆ D.

(3) If 1 /∈ Λ′, then f−1
1 (B) ⊆ C or f−1

1 (B) ⊆ D.

(4) (a) If λ, µ ∈ Λ with λ < µ, then fλ(y) 6= fµ(y) for all y /∈ C ∪ D, and

Γ(fλ) ∩ Γ(fµ) 6= ∅ if, and only if, (λ, µ) ∩ Λ = ∅.

(b) If λ, µ ∈ Λ, and L ∈ {C,D}, then Γ(fλ|L) ∩ Γ(fµ|L) 6= ∅ implies that

Γ(fλ|L) ∩ Γ(fσ|L) = ∅ for all σ ∈ Λ \ {λ, µ}.

(c) If L ∈ {C,D} and A ∩ f0(L) 6= ∅, then Γ(f0|L) ∩ Γ(fλ|L) = ∅ for all

λ ∈ Λ \ {0}; and if B ∩ f1(L) 6= ∅, then Γ(f1|L) ∩ Γ(fλ|L) = ∅ for all

λ ∈ Λ \ {1}.

(5) If (λi)i∈N is a sequence of points in Λ and λi → λ as i→∞, then fλi → fλ

uniformly as i→∞.

When no ambiguity shall arise, or when mention of the sets, A,B ⊆ X and

C,D ⊆ Y is unnecessary, we will simply say that {fλ}λ∈Λ is an irreducible collection

of maps.

Note that if A,B,C, and D are singleton sets, then Definition 3.6 is equivalent

to Definition 3.5.

Figure 3.2 gives an example of an irreducible collection of maps on an irre-

ducible continuum other than [0, 1]. The continuum X is pictured at the top, and
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f1(X)

Figure 3.2. Irreducible collection of maps on a continuum other than an interval

below it are the images of four maps f0, f 1
3
, f 2

3
, f1 : X → X which could satisfy

Definition 3.6. Since it is impossible to show the graphs of these functions with only

two dimensions, only their images are shown, but one can easily imagine a collection

of functions with the given images that satisfy Definition 3.6.

Lemma 3.7. Let {fλ}λ∈Λ be an irreducible collection of maps from Y to X. Then⋃
λ∈Λ Γ(fλ) is a continuum.

Proof. Let K =
⋃
λ∈Λ Γ(fλ). First, to show that K is compact, define a function

H : Λ× Y → Y ×X by H(λ, y) = (y, fλ(y)). From Property 5 of Definition 3.6, it

follows that H is continuous. Since Λ× Y is compact, H(Λ× Y ) = K is compact.

Next, suppose that K is not connected. Then there exist non-empty, closed,

disjoint sets A,B ⊆ K with K = A ∪ B. Since each fλ is a continuous function, its

graph is connected, so either Γ(fλ) ⊆ A or Γ(fλ) ⊆ B. Let A = {λ ∈ Λ : Γ(fλ) ⊆ A}

and B = {λ ∈ Λ : Γ(fλ) ⊆ B}.
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Since A and B are both non-empty, A and B are both non-empty. Without

loss of generality, suppose that 1 ∈ B, and let α = maxA. Then [α, 1]∩B is a closed

set, so it has a minimal element β. Since α /∈ B, β 6= α, so β > α. In particular, β

is the smallest element of Λ greater than α. This means that (α, β) ∩ Λ = ∅, so by

Property 4 of Definition 3.6, we have that Γ(fα)∩Γ(fβ) 6= ∅. This is a contradiction

since Γ(fα) ⊆ A, Γ(fβ) ⊆ B, and A and B are disjoint.

Therefore, K must be connected and is thus a continuum.

Corollary 3.8. Let {fλ}λ∈Λ be a collection of maps irreducible with respect to A,B ⊆

X and C,D ⊆ Y . Then
⋃
λ∈Λ fλ(Y ) = X.

Proof. Let K =
⋃
λ∈Λ Γ(fλ). Then

⋃
λ∈Λ fλ(Y ) = π2(K) where π2 : Y × X →

X. From Lemma 3.7, K is a continuum, so since π2 is continuous,
⋃
λ∈Λ fλ(Y )

is a continuum. Also, since A ∩ f0(Y ) 6= ∅ and B ∩ f1(Y ) 6= ∅,
⋃
λ∈Λ fλ(Y ) is a

subcontinuum of X which intersects both A and B. Since X is irreducible between

A and B, it follows that
⋃
λ∈Λ fλ(Y ) = X.

Lemma 3.10 and Corollary 3.11 below should begin to make apparent the

purpose of each element of Definition 3.6 as well as why the word “irreducible” was

chosen to describe these collections of maps. This next theorem appears in [44, p.

72] and will be useful in the proof of Lemma 3.10.

Theorem 3.9 (Cut-wire Theorem). Let X be a compact metric space, and let A and

B be closed subsets of X. If no component of X intersects both A and B, then

X = X1 ∪ X2 where X1 and X2 are disjoint closed subsets of X with A ⊆ X1 and

B ⊆ X2.

Lemma 3.10. Let {fλ}λ∈Λ be irreducible with respect to A,B ⊆ X and C,D ⊆ Y . Let

K be a subcontinuum of
⋃
λ∈Λ Γ(fλ), and let ΩK = {λ ∈ Λ : K ∩ Γ(fλ) 6= ∅}. Then

ΩK is the intersection of a closed (possibly degenerate) interval with Λ. Moreover,

if λ ∈ ΩK \ {min ΩK ,max ΩK}, then Γ(fλ) ⊆ K.
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Proof. First, for each λ ∈ Λ, let Cλ = Γ(fλ|C) and Dλ = Γ(fλ|D).

Suppose that there exist λ0, µ0 ∈ ΩK with λ0 < µ0, and (λ0, µ0) ∩ Λ 6= ∅. We

must show that [λ0, µ0] ∩ Λ ⊆ ΩK . In fact, to prove the latter part of the lemma,

we must show that for all ω ∈ (λ0, µ0) ∩ Λ, Γ(fω) ⊆ K. Towards this end, choose

ω ∈ (λ0, µ0) ∩ Λ.

Case 1: Suppose that ω is isolated in Λ. We will first show that Cω and Dω

each intersects K.

Let ω be the element of Λ immediately preceding ω, and ω the element of Λ

immediately succeeding ω. From Definition 3.6, either

(1) Cω ∩ Cω 6= ∅ and Dω ∩Dω 6= ∅, or

(2) Cω ∩ Cω 6= ∅ and Dω ∩Dω 6= ∅.

If (1) holds, then the sets

U1 =
⋃

λ∈[0,ω]∩Λ

Γ(fλ) \ Cω and V1 =
⋃

λ∈[ω,1]∩Λ

Γ(fλ) \ Cω

are mutually separated, as are the sets

U2 =
⋃

λ∈[0,ω]∩Λ

Γ(fλ) \Dω and V2 =
⋃

λ∈[ω,1]∩Λ

Γ(fλ) \Dω.

Since λ0 < ω, and λ0 ∈ ΩK , one of two things holds. First, it’s possible that

λ0 = ω and that Γ(fω) ∩ K ⊆ Cω ∩ Cω. If this is the case, then we have that

K ∩ Cω 6= ∅.

Second, it could be the case that either λ0 < ω or that λ0 = ω, but K ∩Γ(fλ0)

is not a subset of Cω ∩ Cω. In either case we have that K must intersect U1. Also,

since µ0 > ω, K intersects V1. Thus since K is connected, it cannot be contained

in U1 ∪ V1, so K ∩ Cω 6= ∅. Similarly, we may use U2 and V2 to demonstrate that

K ∩Dω 6= ∅.
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If (2) holds, then we will proceed in a nearly identical manner except that we

will define

Ũ1 =
⋃

λ∈[0,ω]∩Λ

Γ(fλ) \Dω and Ṽ1 =
⋃

λ∈[ω,1]∩Λ

Γ(fλ) \Dω,

and we will define

Ũ2 =
⋃

λ∈[0,ω]∩Λ

Γ(fλ) \ Cω and Ṽ2 =
⋃

λ∈[ω,1]∩Λ

Γ(fλ) \ Cω.

In either case, it holds that Cω and Dω each intersects K. In particular, we

have established that ω ∈ ΩK . To go further and show that Γ(fω) ⊆ K, we will

consider K ∩ Γ(fω).

If there exists a component L of K ∩ Γ(fω) which intersects both Cω and Dω,

then since Γ(fω) is irreducible between these sets, we must have that L = Γ(fω).

Hence, Γ(fω) ⊆ K.

If no component of K∩Γ(fω) intersects both Cω and Dω, then by the Cut-wire

Theorem, there exist mutually separated sets A and B with Cω ⊆ A, Dω ⊆ B, and

A∪B ⊇ (K ∩ Γ(fω)). Again using possibilities (1) and (2) above, if (1) holds, then

K is separated by

⋃
λ∈[0,ω]∩Λ

Γ(fλ) ∪ A and
⋃

λ∈[ω,1]∩Λ

Γ(fλ) ∪B.

If (2) holds, then K is separated by

⋃
λ∈[0,ω]∩Λ

Γ(fλ) ∪B and
⋃

λ∈[ω,1]∩Λ

Γ(fλ) ∪ A.

In either case, we have a contradiction, so it follows that Γ(fω) ⊆ K. This

concludes Case 1.

Case 2: Suppose that ω ∈ Λ′. Since Λ\Λ′ is dense in Λ, there exists a sequence

of isolated points (ωi)i∈N in (λ0, µ0) ∩ Λ limiting to ω. From Case 1, we have that

for each i ∈ N, Γ(fωi) ⊆ K, and from Definition 3.5 Property (5), we have that for
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each y ∈ Y , the sequence (y, fωi(y))i∈N converges to (y, fω(y)). Therefore, since K

is closed, we have that Γ(fω) ⊆ K.

Corollary 3.11. Suppose {fλ}λ∈Λ is irreducible with respect to A,B ⊆ X and C,D ⊆

Y . Then the continuum
⋃
λ∈Λ Γ(fλ) is irreducible between the sets Y ×A and Y ×B.

Proof. Let K be a subcontinuum of
⋃
λ∈Λ Γ(fλ) which intersects both Y × A and

Y ×B, and let ΩK = {λ ∈ Λ : Γ(fλ)∩K 6= ∅}. Then, from Definition 3.6, it follows

that 0, 1 ∈ ΩK . Hence, by Lemma 3.10, for all λ ∈ (0, 1) ∩ Λ, Γ(λ) ⊆ K, so to show

that K =
⋃
λ∈Λ Γ(fλ), it suffices to show that Γ(f0) and Γ(f1) are contained in K.

Suppose that 0 is a limit point of Λ, then there is a sequence of functions

whose graphs are contained in K which converge to f0. It follows that Γ(f0) ⊆ K.

If 0 is isolated in Λ, then let λ = min(0, 1] ∩ Λ. Since K intersects Γ(f0)

and Γ(fλ) it must intersect their intersection. Since K also intersects Y × A, it

follows that K intersects both Γ(f0|C) and Γ(f0|D). Then, just as in the proof of

the previous lemma, it follows that Γ(f0) ⊆ K.

Similarly, Γ(f1) ⊆ K.

3.2.2 Irreducible Functions

We are now ready to define the term irreducible function.

Definition 3.12. A function F : X → 2Y is called irreducible with respect to A,B ⊆ X

and C,D ⊆ Y , if there exists a collection of maps {fλ}λ∈Λ which is irreducible with

respect to A,B ⊆ X and C,D ⊆ Y such that for all x ∈ X,

F (x) =
⋃
λ∈Λ

f−1
λ (x).

When no ambiguity shall arise, or when mention of the sets, A,B ⊆ X and

C,D ⊆ Y is unnecessary, we will simply say that F is an irreducible function.

Figure 3.3 shows an irreducible collection of maps (left) and its corresponding

irreducible function (right).
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Figure 3.3. Irreducible collection of maps and its corresponding irreducible function

Corollary 3.8 stated that given an irreducible collection of maps {fλ}λ∈Λ from

Y to X, the union of their images,
⋃
λ∈Λ fλ(Y ), is equal to X. Thus, the maps in

the collection can be inverted to yield an irreducible function F : X → 2Y . Thus,

any of the irreducible collections from Figures 3.1 or 3.2 correspond to irreducible

functions.

Lemma 3.13. If F : X → 2Y is an irreducible function, then F is upper-semi con-

tinuous, and Γ(F ) is a continuum.

Proof. Let {fλ}λ∈Λ be the irreducible collection corresponding to F . then Γ(F ) =⋃
λ∈Λ Γ(f−1

λ ) which is homeomorphic to
⋃
λ∈Λ Γ(fλ). Therefore, by Lemma 3.7, Γ(F )

is a continuum. In particular, Γ(F ) is also closed, so F is upper semi-continuous.

Lemma 3.14. Every irreducible set-valued function is an indecomposable function.

Proof. Let F : X → 2Y be an irreducible function with the corresponding collection

{fλ}λ∈Λ irreducible with respect to A,B ⊆ X and C,D ⊆ Y . Suppose that K and

L are subcontinua of Γ(F ) with K ∪ L = Γ(F ).

Case 1: Suppose that there exists λ ∈ Λ such that Γ(f−1
λ ) ∩ K = ∅. Then

Γ(f−1
λ ) ⊆ L, so π2(L) ⊇ π2[Γ(f−1

λ )] = Y . Similarly, if there exists λ ∈ Λ such that

Γ(f−1
λ ) ∩ L = ∅, then π2(K) = Y .
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Case 2: Suppose that for all λ ∈ Λ, Γ(f−1
λ ) ∩ K and Γ(f−1

λ ) ∩ L are both

nonempty. Let λ0, λ1 be adjacent elements of Λ. Without loss of generality, suppose

that Γ(fλ0 |C) ∩ Γ(fλ1 |C) 6= ∅.

In a way similar to what was done in the proof of Lemma 3.10, Γ(F ) \

Γ[(fλ0|C)−1] is not connected, and it can be separated by the sets U and V , where

if λ1 < λ0, U and V are defined by

U =
⋃

λ∈[0,λ1]∩Λ

Γ(f−1
λ ) \ Γ[(fλ0|C)−1], and

V =
⋃

λ∈[λ0,1]∩Λ

Γ(f−1
λ ) \ Γ[(fλ0|C)−1],

and if λ0 < λ1,

U =
⋃

λ∈[λ1,1]∩Λ

Γ(f−1
λ ) \ Γ[(fλ0 |C)−1], and

V =
⋃

λ∈[0,λ0]∩Λ

Γ(f−1
λ ) \ Γ[(fλ0 |C)−1].

In either case, since for all λ ∈ Λ, Γ(f−1
λ ) ∩ K and Γ(f−1

λ ) ∩ L are each

nonempty, they each intersect U and V . Thus, since they are connected, they must

both intersect Γ[(fλ0|C)−1]. Now, since Γ(F ) = K ∪L, at least one of K and L must

intersect Γ[(fλ0|D)−1]. Without loss of generality, we will say that K does. Then,

we may apply the Cut-wire Theorem (Theorem 3.9) in the same way as in the proof

of Lemma 3.10 to say that Γ(f−1
λ0

) ⊆ K. Thus, π2(K) = Y .

We are now ready to prove the main result of this section.

Theorem 3.15. Let {X,F} be an inverse sequence where for each i ∈ N, Fi : Xi+1 →

2Xi is irreducible with respect to Ai+1, Bi+1 ⊆ Xi+1 and Ai, Bi ⊆ Xi. Then lim←−F has

the full projection property and is an indecomposable continuum.

Proof. Since each Fi is an irreducible function, for each i ∈ N there is a corresponding

collection {f (i)
λ : Xi → Xi+1}λ∈Λi which is irreducible with respect to Ai+1, Bi+1 ⊆
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Xi+1 and Ai, Bi ⊆ Xi. From Lemma 3.7, we have that Γ2 =
⋃
λ∈Λ1

Γ(f
(1)
λ ) is

connected, and from Corollary 3.11, Γ2 is irreducible between the sets X1 ×A2 and

X1 ×B2.

Now suppose that for some n ∈ N, Γn is a continuum and is irreducible between

the sets

A = {x ∈ Γn : xn ∈ An} and B = {x ∈ Γn : xn ∈ Bn}.

For each λ ∈ Λn, define a function f
(n)
λ : Γn → Xn+1 by f

(n)
λ (x1, . . . , xn) = f

(n)
λ (xn).

Then the collection of maps {f(n)
λ }λ∈Λn is irreducible with respect to An+1, Bn+1 ⊆

Xn+1 and A,B ⊆ Γn. Also Γn+1 =
⋃
λ∈Λ Γ(f

(n)
λ ). By Lemma 3.7,

⋃
λ∈Λ Γ(hλ) is a

continuum, and by Corollary 3.11, it is irreducible between the sets Γn × An+1 and

Γn ×Bn+1.

By induction we can say that for each n ∈ N, Γn is a continuum which is irre-

ducible between the sets Γn−1×An and Γn−1×Bn. Therefore, lim←−F is a continuum,

and by Theorem 3.4, lim←−F has the full projection property.

Finally, by Lemma 3.14, each Fi is an indecomposable function, so by Theo-

rem 3.3, lim←−F is an indecomposable continuum.
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CHAPTER FOUR

Chainability of Inverse Limits of Irreducible Set-valued Functions on [0, 1]

Now that we have defined this class of functions, it is natural to further study

the properties of their inverse limits. In this chapter, we give a characterization for

chainability of inverse limits with irreducible functions on [0, 1]. Ingram considers

chainability of inverse limits in [26] and gives the following theorem.

Theorem 4.1 (Ingram). Suppose X is a sequence of continua and Fn : Xn+1 → 2Xn

is an upper semi-continuous function for each positive integer n. If Γn is a chainable

continuum for each n ∈ N, then lim←−F is a chainable continuum.

In some circumstances, each Γn is homeomorphic to a subcontinuum of lim←−F.

This is significant when discussing chainability because if a continuum is chainable,

so are all of its subcontinua. Hence, in these circumstances, each Γn being a chainable

continuum would be both sufficient and necessary for lim←−F to be chainable. In [41],

Marsh gives a specific condition which implies that for each (or for some) n ∈ N, Γn

is homeomorphic to a subcontinuum of lim←−F.

Theorem 4.2 (Marsh). Let {X,F} be an inverse sequence. Suppose there exists an

n ∈ N such that for every i ≥ n, there exists a continuous single-valued map fi :

Xi → Xi+1 with Γ(fi) ⊆ Γ(F−1
i ). Then for each i ≥ n, there exists a subcontinuum

A(i) of lim←−F which is homeomorphic to Γi through the projection map π[1,i]|A(i) :

A(i)→ Γi.

From Definition 3.12, we have that if F : X → 2Y is an irreducible function,

then there is a collection {fλ}λ∈Λ of maps such that for any λ ∈ Λ, Γ(fλ) ⊆ Γ(F−1).

Hence, we have the following corollary.

26



Corollary 4.3. Suppose {X,F} is an inverse sequence where for each i ∈ N, Fi →

Xi+1 → 2Xi is an irreducible function. Then for each n ∈ N, Γn is homeomorphic

to a subcontinuum of lim←−F.

Hence, we can restate Theorem 4.1 in the context of irreducible functions.

Corollary 4.4. Suppose {X,F} is an inverse sequence where for each i ∈ N, Fi :

Xi+1 → 2Xi is an irreducible function. Then lim←−F is chainable if, and only if, Γn is

chainable for all n ∈ N.

4.1 Structure of Γn

Some of what makes inverse limits of irreducible functions nice to work with

is that they lend themselves naturally to proofs by induction on the sequence Γ.

Ingram pointed out in [25, p. 53] that if F : [0, 1]→ 2[0,1] is an upper semi-continuous

function, then for each n ∈ N,

Γn+1 = {x ∈ [0, 1]n+1 : (x1, . . . , xn) ∈ Γn and xn+1 ∈ F−1(xn)}.

By looking at these sets in this way, we can see that if F : [0, 1]→ 2[0,1] is an

irreducible function with the corresponding irreducible collection of maps {fλ}λ∈Λ,

that for each n ∈ N,

Γn+1 =
{
x ∈ [0, 1]n+1 : (x1, . . . , xn) ∈ Γn and xn+1 ∈ F−1(xn)

}
=

⋃
λ∈Λ

{
x ∈ [0, 1]n+1 : (x1, . . . , xn) ∈ Γn and xn+1 = fλ(xn)

}
.

Note that for each λ ∈ Λ, the set {x ∈ [0, 1]n+1 : (x1, . . . , xn) ∈ Γn and xn+1 =

fλ(xn)} is homeomorphic to Γn. Thus, Γn+1 is a union of homeomorphic copies of

Γn. Looking at these sets in this way is crucial to the discussion of their structure

in this section.

Recall that in the proof of Theorem 3.15, it was shown that if F : [0, 1]→ 2[0,1]

is an irreducible function, then for all n ∈ N, Γn is irreducible between the sets
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{x ∈ Γn : xn = 0} and {x ∈ Γn : xn = 1}. These sets are discussed extensively in

this section and the next, so we establish the following notation.

Notation 4.5. Let F : [0, 1]→ 2[0,1] be an irreducible function. For each n ∈ N, let

An = {x ∈ Γn : xn = 0} and

Bn = {x ∈ Γn : xn = 1} .

Lemma 4.6. Let F : [0, 1] → 2[0,1] be an irreducible function. If F (0), F (1) ∈

{{0}, {1}, [0, 1]}, then An and Bn are continua for each n ∈ N.

Proof. First, if F (0) and F (1) are both singleton sets, thenAn and Bn are degenerate

for all n ∈ N and are hence continua. Similarly, if F (0) = {0}, then An is a

degenerate continuum for all n ∈ N, and if F (1) = {1}, then Bn is a degenerate

continuum for all n ∈ N.

Next, if F (0) = [0, 1], then for all n ∈ N,

An = {(x1, . . . , xn−1, 0) : (x1, . . . , xn−1) ∈ Γn−1}

which is homeomorphic to Γn−1. Then since Γn−1 is a continuum by Lemma 3.11, it

follows that An is a continuum. Similarly, if F (1) = [0, 1], then Bn is homeomorphic

to Γn−1 for all n ∈ N, and hence is a continuum.

This leaves only two cases to check. We must verify that if F (0) = {1} and

F (1) = [0, 1], then An is a continuum, and that if F (1) = {0} and F (0) = [0, 1],

then Bn is a continuum. In the first case, if F (0) = {1}, and F (1) = [0, 1], note that

as we have already observed, Bn is a continuum for all n ∈ N. Also, for all n ∈ N,

An+1 = {x ∈ Γn+1 : (x1, . . . , xn) ∈ Bn and xn+1 = f0(xn)}

which is homeomorphic to Bn. Hence An+1 is a continuum.

Similarly, if F (1) = {0}, and F (0) = [0, 1], then for each n ∈ N, Bn+1 is

homeomorphic to An and is thus a continuum.
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In [39, Section 48], Kuratowski defines the notion of “layers” of an irreducible

continuum. More specifically, if X is an hereditarily decomposable, irreducible con-

tinuum, there exists a decomposition D of X into continua such that X/D is an arc,

and for any other decomposition E of X into continua such that X/E is an arc, each

element of E is a union of elements of D. The elements of this decomposition D are

called the Kuratowski layers of X.

Let g : X → X/D be the decomposition map (called the Kuratowski function).

If a and b are the endpoints of X/D, then the layers g−1(a) and g−1(b) are called the

end layers of X. Another way to view the end layers of an irreducible continuum is

to say that a point p ∈ X is in an end layer of X if, and only if, X is irreducible

between p and some other point. Thus, one can say that the end layers of an

hereditarily decomposable, irreducible continuum X are the two maximal continua

between which X is irreducible. In [42], Minc and Transue prove the following result

concerning ε-maps and end layers of a continuum.

Theorem 4.7 (Minc and Transue). Suppose X is a chainable, hereditarily decom-

posable continuum, A and B are end layers of X, ε > 0, f : A ∪ B → R is an

ε-map with f(A) = [a1, a2], f(B) = [b1, b2] and a2 < b1. Then there exists an ε-map

f : X → [a1, b2] with f |A∪B = f .

Corollary 4.8. Suppose X is a chainable, hereditarily decomposable continuum, A is

an end layer of X, ε > 0, and f : A → R is an ε-map with f(A) = [a1, a2]. Then

for any b > a2, there exists an ε-map f : X → [a1, b] with f |A = f .

Proof. Let B be the end layer of X other than A, and let b1 ∈ R with a2 < b1 < b.

Since B is a subcontinuum of a chainable continuum, there exists an ε-map g : B →

R such that g(B) = [b1, b]. Then the function h : A ∪ B → R defined piecewise by

h(x) = f(x) if x ∈ A and h(x) = g(x) if x ∈ B is an ε-map. Thus by Theorem 4.7,

h can be extended to an ε-map on X whose image is [a1, b].
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The following corollary follows from Theorem 4.7 and iterative applications of

Corollary 4.8.

Corollary 4.9. Suppose that X is a chainable, hereditarily decomposable continuum

with end layers A and B. Suppose also that there exist sequences A1 ⊆ A2 ⊆ · · · ⊆

An = A and B1 ⊆ B2 ⊆ · · · ⊆ Bm = B, n,m ≥ 1, such that for each i = 1, . . . , n−1,

Ai is an end layer of Ai+1, and for each j = 1, . . . ,m − 1, Bj is an end layer of

Bj+1. If ε > 0, f : A1 ∪ B1 → R is an ε-map with f(A1) = [a1, a2], f(B1) = [b1, b2],

and a2 < b1, then there exists an ε-map f : X → [a1, b2] with f |A1∪B1 = f .

One of our main goals of this section is to show that under the right conditions,

any ε-map defined on An ∪ Bn may be extended to an ε-map on Γn. To do this we

will show that An and Bn either are end layers of Γn, or that there exist sequences

An = A1 ⊆ · · · ⊆ Ak = Γn and Bn = B1 ⊆ · · · ⊆ Bm = Γn as in Corollary 4.9. We

do this in the following two lemmas. In these lemmas, we use the following notation.

Definition 4.10. Let F : [0, 1]→ 2[0,1] be an irreducible function with the correspond-

ing irreducible collection {fλ}λ∈Λ. For each n ∈ N and λ ∈ Λ, define f
(n)
λ : Γn → [0, 1]

by

f
(n)
λ (x1, x2, . . . , xn) = fλ(xn).

Remark 4.11. It can be easily verified that for each n ∈ N, the collection of maps

{f(n)
λ : Γn → [0, 1]}λ∈Λ is irreducible with respect to {0}, {1} ⊆ [0, 1] and An,Bn ⊆

Γn. Thus, Lemma 3.11 and Lemma 3.10 apply to this collection. Moreover, for each

n ∈ N,

Γn+1 =
⋃
λ∈Λ

Γ(f
(n)
λ ).

Lemma 4.12. Let F : [0, 1] → 2[0,1] be an irreducible function with the associated

irreducible collection {fλ}λ∈Λ. If 0 ∈ Λ′, then for all n ∈ N, Γ(f
(n)
0 ) is an end layer

of Γn+1. Likewise, if 1 ∈ Λ′, then for all n ∈ N, Γ(f
(n)
1 ) is an end layer of Γn+1.
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Proof. Suppose that 0 ∈ Λ′. We will show that for any n ∈ N, Γn+1 is irreducible

between Γ(g
(n)
0 ) and Bn+1. Note that we already have from Lemma 3.11 that for all

n ∈ N, Γn+1 is irreducible between An+1 and Bn+1. We also have from Definition 3.5,

Property (1), that An+1 ⊆ Γ(f
(n)
0 ) and Bn+1 ⊆ Γ(f

(n)
1 ).

Let n ∈ N and suppose that K is a subcontinuum of Γn+1 which intersects

Γ(f
(n)
0 ) and Bn+1. Let ΩK = {λ ∈ Λ : Γ(f

(n)
λ )∩K 6= ∅}. Since K intersects Γ(f

(n)
0 ) and

Bn+1 (which is a subset of Γ(f
(n)
1 )), we have that 0, 1 ∈ ΩK . Thus, by Lemma 3.10,

ΩK = Λ. Lemma 3.10 also gives us that for all λ ∈ Λ \ {0, 1}, Γ(f
(n)
λ ) ⊆ K.

Since 0 ∈ Λ′, we may choose a sequence (λi)i∈N in Λ\{0, 1} which converges to

0. Then by Definition 3.6, Property (5), for each x ∈ Γn, (x, f
(n)
λi

(x)) → (x, f
(n)
0 (x))

as i → ∞. Since K is closed, this implies that (x, f
(n)
0 (x)) ∈ K for all x ∈ Γn, so

Γ(f
(n)
0 ) ⊆ K.

In particular then, An+1 ⊆ K. Since Γn+1 is irreducible between An+1 and

Bn+1, it follows that K = Γn+1. This shows that Γn+1 is irreducible between Γ(f
(n)
0 )

and Bn+1, so Γ(f
(n)
0 ) must be contained in an end layer.

To show that Γ(f
(n)
0 ) must in fact be equal to one of the end layers, we will show

that for any λ ∈ Λ\{0, 1} and any point x ∈ Γ(f
(n)
λ ), Γn+1 is not irreducible between

x and any other point. To show this, fix λ0 ∈ Λ \ {0, 1} and a point x ∈ Γ(f
(n)
λ0

). Let

y ∈ Γn+1, and choose µ ∈ Λ so that y ∈ Γ(f
(n)
µ ). Let J be the closed interval whose

endpoints are µ and λ0. Since λ0 ∈ (0, 1), J is a proper subset of [0, 1], so J ∩ Λ

is a proper subset of Λ. Thus,
⋃
λ∈J∩Λ Γ(f

(n)
λ ) is a proper subcontinuum of Γn+1.

Moreover, since µ, λ0 ∈ J ∩ Λ, x,y ∈
⋃
λ∈J∩Λ Γ(f

(n)
λ ). So Γn+1 is not irreducible

between x and any other point, so x is not in an end layer. This means that in

general, the end layers of Γn+1 are contained in Γ(f
(n)
0 ) and Γ(f

(n)
1 ). Therefore, in

this case, we have that Γ(f
(n)
0 ) is an end layer.

In the same way, if 1 ∈ Λ′, then for all natural numbers n, Γ(f
(n)
1 ) is an end

layer of Γn+1.
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We give one more lemma before we establish the main result of this section.

Lemma 4.13. Let F : [0, 1]→ 2[0,1] be an irreducible function such that F (0), F (1) ∈

{{0}, {1}, [0, 1]}. For all n ∈ N, there exists a sequence of continua An = A1 ⊆ A2 ⊆

· · · ⊆ Ak = Γn with 2 ≤ k ≤ n such that for each i = 1, . . . , k−1, Ai is an end layer of

Ai+1. Likewise, there exists a sequence of continua Bn = B1 ⊆ B2 ⊆ · · · ⊆ Bm = Γn

with 2 ≤ m ≤ n such that for each i = 1, . . . ,m− 1, Bi is an end layer of Bi+1.

Proof. Let {fλ}λ∈Λ be the irreducible collection of maps corresponding to F .

Since Γ1 = [0, 1], we have that A1 = {0} and B1 = {1} are end layers of Γ1.

For n ≥ 2 notice first that if we have that F (0) = [0, 1] (so f−1
0 (0) = [0, 1]), then,

by Definition 3.5, Property (2), 0 ∈ Λ′, and for all n ≥ 2, Γ(f
(n−1)
0 ) = An. Thus by

Lemma 4.12, An is an end layer of Γn. Similarly, if F (1) = [0, 1], then for all n ≥ 2,

Bn is an end layer of Γn

For the other cases we will use induction, so suppose that for some n ∈ N, we

have sequences of continua An = A1 ⊆ A2 ⊆ · · · ⊆ Ak = Γn and Bn = B1 ⊆ B2 ⊆

· · · ⊆ Bm = Γn such that for each i = 1, . . . , k − 1, Ai is an end layer of Ai+1, and

for each i = 1, . . . ,m− 1, Bi is an end layer of Bi+1.

First we will show that we can create a new sequence An+1 = Ã1 ⊆ · · · ⊆

Ãk̃ = Γn+1 such that for i = 1, . . . , k̃ − 1, Ãi is an end layer of Ãi+1.

Case 1: Suppose that 0 is not a limit point of Λ. Then there exists a smallest

element of (0, 1]∩Λ. Call this element λ0. Then either f0(0) = 0 and f0(1) = fλ0(1),

or f0(1) = 0 and f0(0) = fλ0(0).

Sub-case 1(a): Suppose that f0(0) = 0 and f0(1) = fλ0(1). Then we have that

An+1 = Γ(f
(n)
0 |An) and Γ(f

(n)
0 |Bn) = Γ(f

(n)
λ0
|Bn). By assumption, Ak−1 and Bm−1 are

the end layers of Γn, and Γn is homeomorphic to Γ(f
(n)
0 ) through the homeomorphism

x 7→ (x, f
(n)
0 (x)). Thus Γ(f

(n)
0 |Ak−1

) and Γ(f
(n)
0 |Bm−1) are the end layers of Γ(f

(n)
0 ).

Then since it is within the set Γ(f
(n)
0 |Bm−1) that Γ(f

(n)
0 ) intersects Γn+1 \ Γ(f

(n)
0 ), we

have that Γ(f(n)|Ak−1
) must be an end layer of Γn+1. Thus for each i = 1, . . . , k − 1,

32



let Ã = Γ(f
(n)
0 |Ai), and let Ãk = Γn+1. Then we have that Ãi is an end layer of Ãi+1

for i = 1, . . . , k − 1, and Ãk−1 is an end layer of Ãk = Γn+1.

Sub-case 1(b): Suppose that f0(1) = 0 and f0(0) = fλ0(0). Just as in Sub-case

1(a), we have that Γ(f
(n)
0 |Ak−1

) and Γ(f
(n)
0 |Bm−1) are the end layers of Γ(f

(n)
0 ), but this

time it is within Γ(f
(n)
0 |Ak−1

) that Γ(f
(n)
0 ) intersects Γ(f

(n)
λ0

). Therefore, we will define

for each i = 1, . . . ,m − 1, Ãi = Γ(f
(n)
0 |Bi) and Ãm = Γn+1. This will give us our

desired sequence.

Case 2: Suppose that 0 is a limit point of Λ and that F (0) ∈ {{0}, {1}}. Since

0 ∈ Λ′, we have by Lemma 4.12 that Γ(f
(n)
0 ) is an end layer of Γn.

Sub-case 2(a): Suppose that f0(0) = 0. Then An+1 = Γ(f
(n)
0 |An). Just as

before, Γ(f
(n)
0 ) is homeomorphic to Γn by the homeomorphism x 7→ (x, f

(n)
0 (x)).

Thus, for i = 1, . . . , k, let Ãi = Γ(f
(n)
0 |Ai), and let Ãk+1 = Γn+1. Then we have a

sequence An+1 = Ã1 ⊆ · · · ⊆ Ãk ⊆ Ãk+1 = Γn+1. Through the homeomorphism

between Γ(f(n)) and Γn, we have that for all i = 1, . . . , k − 1 that Ãi is an end layer

of Ãi+1. Then Ãk = Γ(f
(n)
0 ) which is an end layer of Γn+1 = Ãk+1.

Sub-case 2(b): Suppose that f0(1) = 0. Then An+1 = Γ(f
(n)
0 |Bn) so we similarly

define for i = 1, . . . ,m Ãi = Γ(f
(n)
0 |Bi) and Ãm+1 = Γ′n+1. This yields the desired

sequence.

In either case, we have a sequence An+1 = Ã1 ⊆ · · · ⊆ Ãk̃ = Γn+1 such that

for all i = 1, . . . , k̃, Ãi is an end layer of Ãi+1. In a similar way we may construct a

sequence Bn+1 = B̃1 ⊆ · · · ⊆ B̃m̃ = Γn+1 such that for i = 1, . . . , m̃− 1, B̃i is an end

layer of B̃i+1.

This concludes the induction step. Thus we have shown that for all n ∈ N,

there exist ascending sequences beginning at An and Bn respectively and ending at

Γn such that each term of the sequence is an end layer of the next.

Lemma 4.13 in conjunction with Corollary 4.9 yields the following result which

is the main result of this section.
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Corollary 4.14. Let F : [0, 1]→ 2[0,1] be an irreducible function such that F (0), F (1) ∈

{{0}, {1}, [0, 1]}. For all n ∈ N such that Γn is chainable and all ε > 0, if f :

An ∪ Bn → R is an ε-map with f(An) = [a1, a2], f(Bn) = [b1, b2], and a2 < b1, then

there exists an ε-map h : Γn → [a1, b2] with h|An∪Bn = f .

4.2 Chainability

In this section we put the results of previous section to use as we give a

characterization of chainability for inverse limits with irreducible functions on arcs.

We begin with Theorem 4.16 where we demonstrate various conditions under which

lim←−F is not chainable. Each of these conditions in fact yields not only that lim←−F is

not chainable, but more specifically that Γ3 is not chainable.

Additionally, given an irreducible function F : [0, 1] → 2[0,1], if the graph of

F contains a simple closed curve, then by Corollary 4.3, so does lim←−F, so lim←−F is

not chainable. (For an example of an irreducible function whose graph contains a

simple closed curve, see Figure 4.2.)

The rest of the section builds towards Theorem 4.20 where we demonstrate

that if F : [0, 1] → 2[0,1] is an irreducible function whose graph does not contain a

simple closed curve, and if F meets none of the criteria of Theorem 4.16, then lim←−F

is chainable. Theorems 4.16 and 4.20 together give a characterization of chainability

of lim←−F which requires one only to check whether Γ(F ) contains a simple closed

curve and to examine the sets F (0) and F (1). This characterization is stated in

Theorem 4.21.

Additionally, each of the conditions in Theorem 4.16 leads to the continuum

Γ3 not being chainable. Thus, we conclude in Theorem 4.21 that given an irreducible

function F : [0, 1]→ 2[0,1], lim←−F is chainable if, and only if, Γ3 is chainable.

We define the following terms which will be used in the statement and proof

of Theorem 4.16.
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Definition 4.15. An arc is a continuum which is homeomorphic to a closed interval.

A simple closed curve is a continuum which is homeomorphic to a circle. For n ≥ 3,

a simple n-od is a continuum which is the union of n arcs, each sharing a common

endpoint which is the only point common to any two of them. A simple 3-od is also

called a simple triod.

Note that neither a simple closed curve nor a simple n-od, n ≥ 3, is chainable

nor is any continuum which contains a simple closed curve or a simple n-od.

Theorem 4.16. Suppose F : [0, 1] → 2[0,1] is an irreducible function, and let α ∈

{0, 1}.

(1) If F (α) is not connected, then lim←−F contains a simple closed curve.

(2) If F (α) is a non-degenerate proper sub-interval of [0, 1], then lim←−F contains

a simple triod.

(3) If F (α) = {y0} where y0 ∈ (0, 1), then lim←−F contains a simple four-od.

Proof. First, let {fλ}λ∈Λ be the irreducible collection of maps associated with F .

Note that if any of the above conditions hold, then α is a limit point of Λ, so in

particular, Λ contains infinitely many points, so we may choose λ ∈ Λ \Λ′, λ 6= 0, 1.

Then there exist, µ1, µ2 ∈ Λ such that µ1 < λ < µ2, and (µ1, λ)∩Λ = (λ, µ2)∩Λ = ∅.

Then the graph of fλ must meet the graph of fµ1 at either 0 or 1, and it must meet

the graph of fµ2 at the other. Let µ ∈ {µ1, µ2} such that fµ(α) = fλ(α), and let

p = fµ(α) = fλ(α).

Case 1: Suppose that F (α) is not connected. Choose a, b ∈ F (α), a < b, so

that F (α) ⊆ [0, a] ∪ [b, 1], and consider the following two sets:

M1 = {(x1, x2, x3) : x1 ∈ [a, b], x2 = fα(x1), x3 = fλ(x2)}

M2 = {(x1, x2, x3) : x1 ∈ [a, b], x2 = fα(x1), x3 = fµ(x2)} .
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Since fα, fλ, and fµ are continuous, M1 and M2 are arcs, and they share their

endpoints (a, α, p), (b, α, p). Since fα(x) ∈ (0, 1) for all x ∈ (a, b) and fλ(x) 6= fµ(x)

for all x ∈ (0, 1), it follows that the only points common to M1 and M2 are their

endpoints. Therefore M1 ∪M2 is a simple closed curve. By construction, M1,M2 ⊆

Γ3, and by Corollary 4.3, Γ3 is homeomorphic to a subcontinuum of lim←−F. Therefore,

lim←−F contains a simple closed curve.

Case 2: Let F (α) = [a, b] be a proper sub-interval of [0, 1]. Then either a 6= 0

or b 6= 1. Suppose that a 6= 0, and consider the following three sets:

M1 = [a, b]× {α} × {p}

M2 = {(x1, x2, x3) : x1 ∈ [0, a], x2 = fα(x1), x3 = fλ(x2)}

M3 = {(x1, x2, x3) : x1 ∈ [0, a], x2 = fα(x1), x3 = fµ(x2)} .

Again, since fα, fλ, and fµ are continuous, each of these sets is an arc, and

they all share the endpoint (a, α, p). In fact, this is only point any two of these arcs

share. To see this, notice that if (x1, x2, x3) ∈ M1 ∩M2, then x1 ∈ [a, b] ∩ [0, a], so

x1 = a, which means that x2 = α and x3 = p. Likewise if (x1, x2, x3) ∈M1 ∩M3.

Then if (x1, x2, x3) ∈M2∩M3, it follows that fλ(x2) = fµ(x2). This only holds

when x2 = α. Hence, fα(x1) must equal α, and since x1 ∈ [0, a], fα(x1) = α if, and

only if, x1 = a.

If b 6= 1, then we use a similar construction and define

M1 = [a, b]× {α} × {p}

M2 = {(x1, x2, x3) : x1 ∈ [b, 1], x2 = fα(x1), x3 = fλ(x2)}

M3 = {(x1, x2, x3) : x1 ∈ [b, 1], x2 = fα(x1), x3 = fµ(x2)} .

In either case M1 ∪ M2 ∪ M3 is a simple triod. Then, just as in Case 1,

M1 ∪M2 ∪M3 is a subcontinuum of Γ3 which is homeomorphic to a subcontinuum

of lim←−F. Therefore lim←−F contains a simple triod.
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Case 3: Suppose F (α) = {y0} where y0 ∈ (0, 1). Consider the following four

sets:

M1 = {(x1, x2, x3) : x1 ∈ [0, y0], x2 = fα(x1), x3 = fλ(x2)}

M2 = {(x1, x2, x3) : x1 ∈ [y0, 1], x2 = fα(x1), x3 = fλ(x2)}

M3 = {(x1, x2, x3) : x1 ∈ [0, y0], x2 = fα(x1), x3 = fµ(x2)}

M4 = {(x1, x2, x3) : x1 ∈ [y0, 1], x2 = fα(x1), x3 = fµ(x2)} .

Each of these is an arc, and the only point common to any two of them is

(y0, α, p). Therefore M1∪M2∪M3∪M4 is a simple four-od which is a subcontinuum

of Γ3 and is therefore homeomorphic to a subcontinuum of lim←−F.

Before we are able to give the statement of Theorem 4.20, we will need three

more lemmas.

Lemma 4.17. Let {fλ}λ∈Λ be an irreducible collection of maps such that
⋃
λ∈Λ Γ(fλ)

does not contain a simple closed curve. For any ε > 0, there exists a finite covering

{[λ1, µ1], . . . , [λn, µn]} of Λ by mutually disjoint closed intervals of length less than ε

such that for all i = 1, . . . , n the following hold:

(1) 0 = λ1 ≤ µ1 < λ2 ≤ µ2 < · · · ≤ µn−1 < λn ≤ µn = 1.

(2) For each i = 1, . . . , n− 1, µi and λi+1 are adjacent in Λ.

(3) If fµi−1
(α) = fλi(α), then fµi(1− α) = fλi+1

(1− α).

Proof. The existence of a finite covering of Λ by mutually disjoint closed intervals

{U1, . . . , Us} of length less than ε follows from the fact that Λ is a compact totally

disconnected set (Definition 3.6). Without loss of generality suppose that the sets

Ui are in ascending order (i.e. for all i, j ∈ {1, . . . , s} with i < j, λ < µ for all λ ∈ Ui

and µ ∈ Uj).
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This collection {U1, . . . , Us} meets Criteria 1 and 2, but not necessarily Cri-

terion 3. We will construct from this collection, a new collection of closed intervals

W = {W1, . . . ,Wn} where for each i = 1, . . . , s, either Ui is equal to a member of

W , or Ui is the union of two members of W . This new collection W will be our

desired partition.

Let W1 = U1, and let α1 ∈ {0, 1} be the element such that fmaxU1(α1) =

fminU2(α1). Then suppose that for some k, Wj and αj have been defined for all 1 ≤

j ≤ k so that
⋃k
i=1 Wi =

⋃m
i=1 Ui for some m ≤ s, and fmaxWk

(αk) = fminUm+1(αk).

If fmaxUm+1(1−αk) = fminUm+2(1−αk), then let Wk+1 = Um+1, and let αk+1 =

1−αk. Note that if Um+1 is degenerate, then this will be the case. If fmaxUm+1(αk) =

fminUm+2(αk), then Um+1 is non-degenerate, so there exists an isolated point ω ∈

Um+1. Let ω be the immediate predecessor of ω in Λ, and ω the immediate successor

of ω in Λ.

If fω(αk) = fω(αk), then fω(1 − αk) = fω(1 − αk). In this case, let Wk+1 =

[minUm+1, ω], Wk+2 = [ω,maxUm+1], αk+1 = 1− αk, and αk+2 = αk.

If fω(1 − αk) = fω(1 − αk), then we let Wk+1 = [minUm+1, ω], Wk+2 =

[ω,maxUm+1], αk+1 = 1− αk, and αk+2 = αk.

In this way, the desired covering of Λ is defined.

Lemma 4.18. Let {fλ}λ∈Λ be an irreducible collection of maps from a continuum

Y to a continuum X, and let dY be the metric on Y and dY×X be the metric

on Y × X. Suppose ε > 0, Ω ⊆ Λ is a closed set such that for λ, µ ∈ Ω,

dY×X [(y, fλ(y)), (y, fµ(y))] < ε for all y ∈ Y , and W =
⋃
ω∈Ω Γ(fω). Then there

exists δ > 0 such that if y1, y2 ∈ Y with dY (y1, y2) < δ and ω ∈ Ω, it follows

that dY×X [(y1, fω(y1)), (y2, fω(y2))] < ε. Moreover, if h : Y → Z is a δ-map, then

h ◦ π1|W : W → Z is a 2ε-map.

Proof. First, let dX be the metric on X. Now to establish the existence of such a

δ, note that for each ω ∈ Ω, fω is a continuous function with a compact domain,
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so it is uniformly continuous. Thus, for each ω ∈ Ω, there exists δω > 0 such

that when a, b ∈ Y with dY (a, b) < δω, it follows that dX(fω(a), fω(b)) < ε. From

Definition 3.6, Property (5), we have that δω is a continuous function of ω, so since

Ω is a compact set, the collection {δω : ω ∈ Ω} has a minimum element. Choose δ

to be this minimum.

Now let h : Y → Z be a δ-map. To show that h ◦ π1|W is a 2ε-map, let z ∈ Z,

and let (y1, x1), (y2, x2) ∈ (h◦π1|W )−1(z). Choose λ, µ ∈ Ω such that (y1, x1) ∈ Γ(fλ)

and (y2, x2) ∈ Γ(fµ). Then in particular, y1, y2 ∈ h−1(z), so dY (y1, y2) < δ. Thus, if

λ = µ, then by the choice of δ, dY×X [(y1, x1), (y2, x2)] < ε.

If λ is not equal to µ, then consider the point (y1, fµ(y1)). This point is an

element of Γ(fµ) as is (y2, x2), so dY×X [(y1, fµ(y1)), (y2, x2)] < ε. Also, from the

construction of the set Ω, we have that dY×X [(y1, fµ(y1)), (y1, x1)] < ε. Hence, by

the triangle inequality, dY×X [(y1, x1), (y2, x2)] < 2ε.

Lemma 4.19. Let (X, d) and (Z, d′) be metric spaces, and let A1, . . . , An ⊆ X such

that for i, j ∈ {1, . . . , n}, Ai∩Aj = ∅ if |i− j| > 1. Suppose that ε > 0, and for each

i ∈ {1, . . . , n}, fi : Ai → Z is an ε-map such that the following hold.

(1) For each i, j ∈ {1, . . . , n}, fi(Ai) ∩ fj(Aj) = ∅ if |i− j| > 1.

(2) For each i ∈ {1, . . . , n− 1}, fi|Ai∩Ai+1
= fi+1|Ai∩Ai+1

.

(3) For each i ∈ {1, . . . , n− 1}, fi(Ai ∩ Ai+1) = fi(Ai) ∩ fi+1(Ai+1).

Then the function h : X → Z defined piecewise by h(x) = fi(x) if x ∈ Ai is a

2ε-map.

Proof. First, from Condition 2, we may apply an extension of the Pasting Lemma,

[43, p. 108], to get that h is continuous.

Now to check that h is a 2ε-map, let z ∈ Z. If there exists j ∈ {1, . . . , n} such

that z ∈ fj(Aj) and z /∈ fi(Ai) for i 6= j, then h−1(z) = f−1
j (z), so since fj is an

ε-map, the diameter of h−1(z) is less than ε which is less than 2ε.
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Now, suppose that z ∈ fj(Aj)∩fj+1(Aj+1) for some j ∈ {1, . . . , n−1}, and let

x, y ∈ h−1(z). If x and y are both in Aj, then x, y ∈ f−1
j (z), so d(x, y) < ε. Likewise,

if x and y are both in Aj+1, then x, y ∈ f−1
j+1(z), and d(x, y) < ε. If however, x ∈ Aj

and y ∈ Aj+1, then we use the assumption that fj(Aj)∩fj+1(Aj+1) = fj(Aj ∩Aj+1),

and we choose a ∈ f−1
j (z)∩Aj ∩Aj+1. Then a, x ∈ f−1

j (z), so d(a, x) < ε, and a, y ∈

f−1
j+1(z), so d(a, y) < ε. By the triangle inequality, it follows that d(x, y) < 2ε.

We are now ready to state conditions under which the inverse limit of an

irreducible function on [0, 1] will be chainable.

Theorem 4.20. Let F : [0, 1] → 2[0,1] be an irreducible function. If Γ(F ) does not

contain a simple closed curve and F (0), F (1) ∈ {{0}, {1}, [0, 1]}, then lim←−F is chain-

able.

Proof. First, let {fλ}λ∈Λ be the irreducible collection of maps corresponding to F .

Since Γ(F ) does not contain any simple closed curves, for λ, µ ∈ Λ with λ and

µ adjacent in Λ, Γ(fλ) ∩ Γ(fµ) is degenerate. In other words, fλ(0) = fµ(0) or

fλ(1) = fµ(1) but not both.

For each n ∈ N, let ρn be the metric on Γn given by ρn(x,y) = max{|xi− yi| :

1 ≤ i ≤ n}.

By Theorem 4.1, we must only show that Γn is chainable for all n ∈ N. We

have that Γ1 = [0, 1] is chainable, so proceeding by induction, suppose that for some

n ∈ N, Γn is chainable, and let ε > 0.

Define a function H : Λ× Γn → Γn+1 by

H(λ, x1, . . . , xn) = (x1, . . . , xn, fλ(xn)).

H is continuous by Definition 3.5, Property (5), and since Λ× Γn is compact, H is

uniformly continuous. Hence there exists δ > 0 such that for λ, µ ∈ Λ and x,y ∈ Γn,

whenever |λ − µ| < δ and ρn(x,y) < δ, it follows that ρn+1(H(λ,x), H(µ,y)) < ε.
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Then, let {[λ1, µ1], . . . [λm, µm]} be the covering of Λ given by Lemma 4.17 (with

respect to δ). Let α = (αi)
m−1
i=1 be a sequence of zeros and ones such that fµi(αi) =

fλi+1
(αi). From Lemma 4.17, we have that for each i = 1, . . . ,m− 1, αi = 1− αi+1.

For each i = 1, . . . ,m, let

Wi = H [([λi, µi] ∩ Λ)× Γn] .

Note that the collection {Wi}mi=1 covers Γn+1.

Case 1: Suppose that An and Bn are degenerate. Let An = {a} and Bn = {b}.

From Corollary 4.14, there exists a δ-map h : Γn → [0, 1] such that h(a) = 0 and

h(b) = 1. Define a function ĥ : Γn+1 → [0, 1] by ĥ = h ◦ π[1,n]. By Lemma 4.18, for

each i = 1, . . . ,m, ĥ|Wi
is a 2ε-map. We will use this function ĥ to define a function

on all of Γn+1 =
⋃m
i=1Wi which will be a 4ε-map onto an arc.

Sub-case 1(a): Suppose that α1 = 1 (so fµ1(1) = fλ2(1)). From Lemma 4.17,

we have that the αi alternate between 0 and 1, so it must be the case that αi = 1

for all odd i, and αi = 0 for all even i.

Define for each i = 1, . . . ,m a function Φi : Wi → [i− 1, i] as follows:

(1) If i is odd, Φi = i− 1 + ĥ|Wi
.

(2) If i is even, Φi = i− ĥ|Wi
.

Claim: If x ∈ Wi ∩Wi+1, then Φi(x) = Φi+1(x).

First, note that if x ∈ Wi∩Wi+1, then fµi(xn) = xn+1 = fλi+1
(xn), so xn = αi.

Now if i is even, then we have that xn = αi = 0, so π[1,n](x) = a, and thus ĥ(x) = 0.

Then, Φi(x) = i− ĥ(x) = i, and Φi+1(x) = i+ ĥ(x) = i. Hence Φi(x) = Φi+1(x).

Similarly, if i is odd, then xn = αi = 1, so π[1,n](x) = b, and hence ĥ(x) = 1.

Then Φi(x) = i−1+ ĥ(x) = i−1+1 = i, and Φi+1(x) = i+1− ĥ(x) = i+1−1 = i,

so Φi(x) = Φi+1(x). This proves the claim.

Additionally, these setsWi and the 2ε-maps Φi meet the criteria of Lemma 4.19,

so the function Φ : Γn+1 → [0,m], defined by Φ(x) = Φi(x) if x ∈ Wi, is a 4ε-map.
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Sub-case 1(b): Suppose that α1 = 0 (so fµ1(0) = fλ2(0)). Then αi = 0 for all

odd i, and αi = 1 for all even i. We proceed almost identically as in Sub-case 1(a),

but instead, we define Φi : Wi → [i− 1, i] as follows:

(1) If i is odd, Φi(x) = i− ĥ(x).

(2) If i is even, Φi(x) = i− 1 + ĥ(x).

Just as in Sub-case 1(a), these functions agree where their domains intersect, so we

can define Φ : Γn+1 → [0,m] by Φ(x) = Φi(x) if x ∈ Wi, and Φ will be a 4ε-map.

This concludes Case 1.

Case 2: Suppose that An and Bn are both non-degenerate. Let ϕ1 : An∪Bn →

[0, 3] be a δ-map such that ϕ1(An) = [0, 1] and ϕ1(Bn) = [2, 3]. Define another δ-

map ϕ2 : An ∪ Bn → [0, 3] so that ϕ2|An = 1 − ϕ1|An and ϕ2|Bn = 5 − ϕ1|Bn . By

Corollary 4.14, there exist δ-maps h1, h2 : Γn → [0, 3] such that h1|An∪Bn = ϕ1 and

h2|An∪Bn = ϕ2.

Define two functions ĥ1, ĥ2 : Γn+1 → [0, 3] by ĥ1 = h1◦π[1,n] and ĥ2 = h2◦π[1,n].

Just as in Case 1, from Lemma 4.18, we have that for each i = 1, . . . ,m, ĥ1|Wi
and

ĥ2|Wi
are each 2ε-maps. Also, as was done in Case 1, for each i = 1, . . . ,m, we will

define a 2ε-map Φi : Wi → [2(i− 1), 2i+ 1].

Sub-case 2(a): Suppose that αi = 1 for odd i, and αi = 0 for even i. Then

define Φi as follows:

(1) If i is odd, Φi = ĥ1|Wi
+ 2(i− 1).

(2) If i is even, Φi = 5− ĥ2|Wi
+ 2(i− 2).

Claim: If x ∈ Wi ∩Wi+1, then Φi(x) = Φi+1(x).

First, note that if x ∈ Wi∩Wi+1, then fµi(xn) = xn+1 = fλi+1
(xn), so xn = αi.

In particular, either π[1,n](x) ∈ An or π[1,n](x) ∈ Bn.
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Now, if i is even, then we have that xn = αi = 0, so π[1,n](x) ∈ An. Recalling

that ϕ2|An = 1− ϕ1|An , we have that

Φi(x) = 5− ĥ2(x) + 2(i− 2)

= 5− ϕ2 ◦ π[1,n](x) + 2(i− 2)

= 5− (1− ϕ1 ◦ π[1,n](x)) + 2(i− 2)

= ϕ1 ◦ π[1,n](x) + 2i.

Then i+ 1 is odd, so

Φi+1(x) = ĥ1(x) + 2((i+ 1)− 1)

= ϕ1 ◦ π[1,n](x) + 2i.

Thus Φi(x) = Φi+1(x).

If i is odd, then we have that xn = αi = 1, so π[1,n](x) ∈ Bn, and

Φi(x) = ĥ1(x) + 2(i− 1)

= ϕ1 ◦ π[1,n](x) + 2(i− 1).

Then i+ 1 is even, so, recalling that ϕ2|Bn = 5− ϕ1|Bn ,

Φi+1(x) = 5− ĥ2 + 2((i+ 1)− 2)

= 5− ϕ2 ◦ π[1,n](x) + 2(i− 1)

= 5− (5− ϕ1 ◦ π[1,n](x)) + 2(i− 1)

= ϕ1 ◦ π[1,n](x) + 2(i− 1),

so again we get that Φi(x) = Φi+1(x). This proves the claim.

Now, observe that Φi(Wi) = [2(i− 1), 2i+ 1], so for any i = 1, . . . ,m− 1,

Φi(Wi) ∩ Φi+1(Wi+1) = [2(i− 1), 2i+ 1] ∩ [2i, 2(i+ 1) + 1] = [2i, 2i+ 1],
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and this is also equal to Φi(Wi ∩Wi+1) and Φi+1(Wi ∩Wi+1). Thus, since each Φi is

a 2ε-map, by Lemma 4.19, we have that the function Φ : Γn+1 → [0, 2m+ 1], defined

by Φ(x) = Φi(x) if x ∈ Wi, is a 4ε-map.

Sub-case 2(b): If αi = 0 for odd i, and αi = 1 for even i, then we will define

Φi : Wi → [2(i− 1), 2i+ 1] as follows:

(1) If i is odd, Φi = 5− ĥ1 + (i− 1).

(2) If i is even, Φi = ĥ2 + (i− 2).

Just as in Sub-case 2(a), it works out that for i = 1, . . . ,m − 1, Φi and Φi+1 agree

on Wi ∩Wi+1. Then since each of these is a 2ε-map, by Lemma 4.19, the function

Φ : Γn+1 → [0, 2m + 1] defined by Φ(x) = Φi(x) when x ∈ Wi is a 4ε-map. This

concludes Case 2.

Case 3: For our final case, suppose that one of An and Bn is degenerate and

the other not. For simplicity, we suppose that An = {a} is degenerate, and Bn is

non-degenerate. The case where these roles are reversed is not meaningfully different.

Let ϕ1, ϕ2 : {a} ∪ Bn → [0, 2] be δ-maps such ϕ1(a) = ϕ2(a) = 0, ϕ1(Bn) =

ϕ2(Bn) = [1, 2], and ϕ2|Bn = 3− ϕ1|Bn . Then by Corollary 4.14, there exist δ-maps

h1, h2 : Γn → [0, 2] such that h1|Bn = ϕ1, h2|Bn = ϕ2, and h1(a) = h2(a) = 0.

Then define ĥ1, ĥ2 : Γn+1 → [0, 2] by ĥ1 = h1 ◦ π[1,n] and ĥ2 = h2 ◦ π[1,n]. Again by

Lemma 4.18, ĥ1|Wi
and ĥ2|Wi

are 2ε-maps for each i = 1, . . . ,m.

Sub-case 3(a): Suppose that αi = 1 for odd i, and αi = 0 for even i. Then we

will define for each i = 1, . . . ,m a 2ε-map Φi : Wi → R as follows:

(1) If i is odd, Φi = ĥ1|Wi
+ 3

2
(i− 1).

(2) If i is even, Φi = 3− ĥ2|Wi
+ 3

2
(i− 2).

Just as before, we claim that with this definition for each i = 1, . . . ,m − 1,

Φi|Wi∩Wi+1
= Φi+1|Wi∩Wi+1

. To prove this, suppose that x ∈ Wi ∩ Wi+1. Then

fµi(xn) = xn+1 = fλi+1
(xn), so either π[1,n](x) = a or x ∈ Bn.
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If i is even, then xn = αi = 0, so π[1,n](x) = {a}. Hence ĥ1(x) = ĥ2(x) = 0.

Then since i is even,

Φi(x) = 3− ĥ2(x) +
3

2
(i− 2) =

3

2
i,

and since i+ 1 is odd,

Φi+1(x) = ĥ1(x) +
3

2
((i+ 1)− 1) =

3

2
i.

Then if i is odd, then xn = αi = 1, so π[1,n](x) ∈ Bn, so ĥ1(x) = ϕ1 ◦ π[1,n](x),

and ĥ2(x) = ϕ2 ◦ π[1,n](x). Then

Φi(x) = ĥ1(x) +
3

2
(i− 1)

= ϕ1 ◦ π[1,n](x) +
3

2
(i− 1),

and i+ 1 will be odd, so (recalling that ϕ2|Bn = 3− ϕ1|Bn)

Φi+1(x) = 3− ĥ2(x) +
3

2
((i+ 1)− 2)

= 3− ϕ2 ◦ π[1,n](x) +
3

2
(i− 1)

= 3− [3− ϕ1 ◦ π[1,n](x)] +
3

2
(i− 1)

= ϕ1 ◦ π[1,n](x) +
3

2
(i− 1).

This proves the claim. Then by Lemma 4.19, the function Φ : Γn+1 → R

defined by Φ(x) = Φi(x) when x ∈ Wi is a 4ε-map whose image is an arc.

Sub-case 3(b): Suppose that αi = 0 for odd i, and αi = 1 for even i. Then we

will define for each i = 1, . . . ,m a function Φi : Wi → R as follows:

(1) If i is odd, Φi = 2− ĥ1|Wi
+ 3

2
(i− 1);

(2) If i is even, Φi = ĥ2|Wi
+ 3

2
i− 1.

Similarly, these definitions work out so that the function Φ : Γn+1 → R defined

by Φ(x) = Φi(x) if x ∈ Wi is well-defined and a 4ε-map whose image is an arc.
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Thus, in every case, there exists a 4ε-map from Γn+1 to an arc. Therefore

Γn+1 is chainable, and by induction Γj is chainable for all j ∈ N. Therefore, by

Theorem 4.1, lim←−F is chainable.

Notice that if F : [0, 1] → 2[0,1] is an irreducible function, then if F (0) (or

F (1)) is not an element of {{0}, {1}, [0, 1]}, then one of the three conditions of

Theorem 4.16 applies. In addition, for each condition in Theorem 4.16, we have not

only that lim←−F is not chainable, but that Γ3 in particular is not chainable. This is

also the case if the graph of F contains a simple closed curve. Thus, we have the

following characterization of chainability for inverse limits of irreducible functions

on [0, 1].

Theorem 4.21. Let F : [0, 1] → 2[0,1] be an irreducible function. Then the following

are equivalent.

(1) lim←−F is chainable.

(2) Γ3 is chainable.

(3) The graph of F does not contain a simple closed curve, and

F (0), F (1) ∈ {{0}, {1}, [0, 1]} .

Finally, if F : [0, 1] → 2[0,1] is an irreducible function, while we have not

discussed anything about lim←−F−1 (where F−1 is the constant sequence (F−1)n∈N),

we can state the following corollary.

Corollary 4.22. Let F : [0, 1] → 2[0,1] be an irreducible function. If Γ(F ) does not

contain a simple closed curve and F (0), F (1) ∈ {{0}, {1}, [0, 1]}, then lim←−F−1 is

chainable.
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Proof. This follows from the fact that for each n ∈ N, Γn(F ) and Γn(F−1) are

homeomorphic under the homeomorphism h : Γn(F )→ Γn(F−1) where

h(x1, . . . , xn) = (xn, . . . , x1).

Then if Γ(F ) does not contain any simple closed curves and F (0), F (1) ∈

{{0}, {1}, [0, 1]}, we have from Theorem 4.20 that lim←−F is chainable and hence, by

Corollary 4.4, so is Γn(F ) for each n ∈ N. Therefore it follows that Γn(F−1) is a

chainable continuum for each n ∈ N, so lim←−F−1 is chainable.

4.3 Examples

Example 4.23. Let F : [0, 1]→ 2[0,1] be the irreducible function pictured on the left

in Figure 4.1. Then lim←−F contains a simple closed curve.

Proof. Since F (0) = {0, 1} is not connected, F meets Condition 1 of Theorem 4.16.

To make this more explicit, let {fλ}λ∈Λ be the irreducible collection of maps

corresponding to F (pictured on the right of Figure 4.1) where

Λ =

{
. . . ,

1

16
,
1

8
,
1

4
,
1

2
,
3

4
,
7

8
,
15

16
, . . .

}
∪ {0, 1} .

Let f3/4 be the function whose graph is the line segment from (1, 1/2) to (0, 3/4), and

let f7/8 be the function whose graph is the line segment from (0, 3/4) to (1, 7/8).

Then f3/4(0) = f7/8(0) = 3/4. Thus, we may use λ = 3/4 and µ = 7/8 for the

construction of the arcs M1 and M2 from Case 1 of the proof of Theorem 4.16.

Example 4.24. Let F : [0, 1]→ 2[0,1] and G : [0, 1]→ 2[0,1] be the irreducible functions

pictured in Figure 4.2 on the left and right respectively. Then lim←−F contains a simple

triod, and lim←−G contains a simple closed curve.

Proof. F (1) = [0, 1/2] which is a proper sub-interval of [0, 1]. Therefore, by Theo-

rem 4.16 Condition 2, lim←−F contains a simple triod.
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Figure 4.1. Irreducible function whose inverse limit contains a simple closed curve

0 1

1

0
0 1

1

0

Figure 4.2. Irreducible functions with non-chainable inverse limits

The graph of G contains a simple closed curve, and Γ(G) is homeomorphic to

Γ2(G). Thus, lim←−G contains a simple closed curve.

Example 4.25. Let C be the Cantor middle thirds set, and let A be the set consisting

of the midpoint of each removed interval. Then let Ω = C ∪ A. For each ω ∈ Ω

we define a continuous function hω : [0, 1] → [0, 1]. If ω ∈ C, let hω(x) = ω for all

x ∈ [0, 1]. If ω ∈ A, then let ω and ω be the endpoints of the deleted interval of

which ω is the midpoint. Then let hω be the function whose graph is the straight

line from (1, ω) to (0, ω).

The resulting collection, {hω}ω∈Ω, is irreducible, and if H : [0, 1]→ 2[0,1] is the

corresponding irreducible function (pictured in Figure 4.3), then lim←−H is chainable.
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0 1

1

0

Figure 4.3. Irreducible function with chainable inverse limit

Proof. The graph of H does not contain a simple closed curve. Also, since 0, 1 ∈ C,

f0([0, 1]) = {0}, and f1([0, 1]) = {1}, so H(0) = H(1) = [0, 1]. Therefore, by

Theorem 4.20, lim←−H is chainable.

One last thing worth noting is that if F : [0, 1] → 2[0,1] is an irreducible

function whose corresponding irreducible collection of maps {fλ}λ∈Λ is finite, then

lim←−F is chainable. To see this, note that since Λ is finite, it has no limit points. In

particular, 0 and 1 are not limit points, so from Definitions 3.5, F (0) = f−1
0 (0) and

F (1) = f−1
1 (1) are each either {0} or {1}. Also, because there are no limit points of

Λ, there can be no simple closed curves in the graph of F . Thus, by Theorem 4.20,

lim←−F is chainable.

We will show in Chapter Six that, more specifically, if F : [0, 1] → 2[0,1] is

an irreducible function whose inverse is the union of finitely many single-valued

maps, then lim←−F is a particular type of chainable continuum known as a Knaster

continuum.
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CHAPTER FIVE

Endpoints of Inverse Limits with Set-valued Functions

We now investigate the topic of endpoints of inverse limits of set-valued func-

tions. Given a compact metric space X, a point p ∈ X is called an endpoint of X if

given any two continua, H,K ⊆ X, each containing p, either H ⊆ K or K ⊆ H.

Much has been written concerning endpoints of traditional inverse limits. In

[6], Barge and Martin give a characterization of endpoints of inverse limits with

a single continuous bonding function on [0, 1]. They also show that the study of

endpoints of the inverse limit can be related to the study of the dynamics of the

function. Since then, there have been many more results concerning endpoints and

other characterizations (see [1–3, 8, 9, 20, 33]). All of these results have been in the

case of a single bonding function on [0, 1], and most of them focus on unimodal

functions.

One of the main reasons endpoints of inverse limit spaces are studied is that

endpoints are a topological invariant, so they can be used to show that two inverse

limit spaces are not homeomorphic. Watkins uses this in his classification of the

inverse limits of certain piecewise linear open functions in [54], and the study of

endpoints played a large role in the work leading to the proof of the Ingram Conjec-

ture which ultimately proven in [5].

5.1 A Characterization of Endpoints of Certain Inverse Limits

In this section, we give a characterization of endpoints of inverse limits of

set-valued functions whose inverse is the union of mappings. We begin with the

following lemma.

Lemma 5.1. Let {X,F} be an inverse sequence. Let H and K be closed sets in lim←−F.

If for all n ∈ N, π[1,n](H) ⊆ π[1,n](K), then H ⊆ K.

50



Proof. Let x ∈ H. Then, for each n ∈ N, π[1,n](x) ∈ π[1,n](H) ⊆ π[1,n](K). Therefore,

for each n ∈ N, there exists a point y(n) ∈ K such that π[1,n](y(n)) = π[1,n](x). It

follows that y(n)→ x as n→∞, so since K is closed, and each y(n) ∈ K, we have

that x ∈ K.

This brings us to the following result which gives a sufficient condition for a

point of the inverse limit space to be an endpoint.

Theorem 5.2. Let {X,F} be an inverse sequence. For any point p ∈ lim←−F, if π[1,n](p)

is an endpoint of Γn for infinitely many n ∈ N, then p is an endpoint of lim←−F.

Proof. Let H,K ⊆ lim←−F be two continua, each containing p. We will show that

either π[1,n](H) ⊆ π[1,n](K) or π[1,n](K) ⊆ π[1,n](H) will hold for all n ∈ N.

Let n ∈ N such that π[1,n](p) is an endpoint of Γn. Note that each of π[1,n](H)

and π[1,n](K) is a subcontinuum of Γn containing π[1,n](p), so either π[1,n](H) ⊆

π[1,n](K) or π[1,n](K) ⊆ π[1,n](H).

Hence, for all n ∈ N for which π[1,n](p) is an endpoint of Γn, we have that

the continua π[1,n](H) and π[1,n](K) are nested. Since there are infinitely many such

n ∈ N, it follows that either π[1,n](H) ⊆ π[1,n](K) for infinitely many n ∈ N, or

π[1,n](K) ⊆ π[1,n](H) for infinitely many n ∈ N.

Now, note that, if for some N ∈ N, π[1,N ](H) ⊆ π[1,N ](K), then π[1,n](H) ⊆

π[1,n](K) for all n ≤ N . Therefore, if π[1,n](H) ⊆ π[1,n](K) holds for infinitely many

n ∈ N, then it holds for all n ∈ N. Likewise, if π[1,n](K) ⊆ π[1,n](H) holds for

infinitely many n ∈ N, then it holds for all n ∈ N.

It follows then from Lemma 5.1 that either H ⊆ K or K ⊆ H. Therefore, p

is an endpoint of lim←−F.

The main result of this section deals with the special case where each bonding

function is the inverse of a union of maps. In this case, we have a characterization

of the endpoints of the inverse limit.
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Theorem 5.3. Let {X,F} be an inverse sequence. Suppose that for each i ∈ N there

exists a collection {f (i)
α : Xi → Xi+1}α∈Ai of continuous functions such that

Γ(F−1
i ) =

⋃
α∈Ai

Γ(f (i)
α ).

Then for every p ∈ lim←−F, the following are equivalent.

(1) p is an endpoint of lim←−F.

(2) π[1,n](p) is an endpoint of Γn for infinitely many n ∈ N.

(3) π[1,n](p) is an endpoint of Γn for all n ∈ N.

Proof. Clearly (3) implies (2), and by Theorem 5.2, (2) implies (1). Thus, we must

only show that (1) implies (3).

We will show that the negation of (3) implies the negation of (1). Suppose

that p ∈ lim←−F, and there exists an n ∈ N such that π[1,n](p) is not an endpoint of

Γn. Then there exist two continua, H,K ⊆ Γn such that π[1,n](p) ∈ H ∩ K, and

neither H nor K is contained in the other.

By assumption, for each i ∈ N, and each x ∈ Xi,

F−1
i (x) =

⋃
α∈Ai

f (i)
α (x).

Thus, since for each i ∈ N, pi+1 ∈ F−1
i (pi), there exists a sequence (αi)

∞
i=1 with

αi ∈ Ai such that pi+1 = f
(i)
αi (pi) for all i ∈ N. Define two sets, H̃ and K̃, by

H̃ =
{
x : (xi)

n
i=1 ∈ H, and xi+1 = f (i)

αi
(xi) for i ≥ n

}
.

K̃ =
{
x : (xi)

n
i=1 ∈ K, and xi+1 = f (i)

αi
(xi) for i ≥ n

}
.

Then each of H̃ and K̃ is a subcontinuum of lim←−F, each contains p, and neither

is contained in the other. Therefore p is not an endpoint of lim←−F.
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5.2 Endpoints of Inverse Limits with Irreducible Functions

Notice that, in particular, irreducible functions satisfy the hypotheses of The-

orem 5.3. Not every inverse limit of an irreducible function has endpoints, and for

those that do, the set of endpoints is not necessarily simple to determine. How-

ever, there are two restrictions we will place on the irreducible functions we consider

which will ensure that the endpoints of the inverse limit are precisely the points of

the inverse limit consisting only of zeros and ones.

Recall that if F : [0, 1]→ 2[0,1] is an irreducible function with the corresponding

irreducible collection {fλ}λ∈Λ, then for each n ∈ N and λ ∈ Λ, f
(n)
λ : Γn → [0, 1] is

defined by f
(n)
λ (x) = fλ(xn).

Lemma 5.4. Let F : [0, 1] → 2[0,1] be an irreducible function with the associated

irreducible collection {fλ}λ∈Λ. Suppose that

(1) Γ(F ) does not contain any simple closed curves,

(2) if 0 is a limit point of Λ, then F (0) = [0, 1], and

(3) if 1 is a limit point of Λ, then F (1) = [0, 1].

For each n ∈ N, if En is the set of endpoints of Γn, then En ⊆ Γn ∩ {0, 1}n.

Proof. Clearly, this holds for Γ1 = [0, 1], so, suppose that for some n ∈ N, En ⊆

Γn ∩ {0, 1}n.

We will show that Γn+1 \ {0, 1}n+1 ⊆ Γn+1 \ En+1. Let x ∈ Γn+1 \ {0, 1}n+1.

Case 1: Suppose that (x1, . . . , xn) ∈ {0, 1}n. Then xn+1 /∈ {0, 1}.

Sub-case (a): Suppose there are two elements λ, µ ∈ Λ such that xn+1 =

fµ(xn) = fλ(xn). Then each of Γ(f
(n)
λ ) and Γ(f

(n)
µ ) is a continuum containing x, so x

is not an endpoint of Γn+1.

Sub-case (b): Suppose there is a unique λ0 ∈ Λ such that xn+1 = fλ0(xn). We

will show that λ0 6= 0, 1. Suppose that λ0 = 0. Then, since xn+1 6= 0, it follows
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from Property (2) that 0 is not a limit point of Λ. Hence, there is a unique smallest

element, λ1, of Λ \ {0}. Then either f0(0) = 0 and f0(1) = fλ1(1) or f0(1) = 0 and

f0(0) = fλ1(0). However, since xn ∈ {0, 1}, this would mean that either xn+1 = 0 or

xn+1 = f0(xn) = fλ1(xn). The former contradicts the assumption of Case 1, and the

latter contradicts the assumption of Sub-case (b), so λ0 cannot equal 0. Similarly,

λ0 cannot equal 1. Thus, λ0 ∈ Λ \ {0, 1}, and we may define two subcontinua of

Γn+1 as follows:

H =
⋃

λ∈Λ∩[0,λ0]

Γ(f
(n)
λ ), and

K =
⋃

λ∈Λ∩[λ0,1]

Γ(f
(n)
λ ).

Each of H and K contains x, and neither is contained in the other. Therefore,

x is not an endpoint of Γn+1.

Case 2: Suppose that (x1, . . . , xn) /∈ {0, 1}n. Then by the induction hypothesis,

(x1, . . . , xn) is not an endpoint of Γn, so there are two continua L and M such that

(x1, . . . , xn) ∈ L∩M , and neither L nor M is contained in the other. Choose λ ∈ Λ

such that xn+1 = fλ(xn), and define two subcontinua of Γn+1:

L̃ = Γ(f
(n)
λ |L), and

M̃ = Γ(f
(n)
λ |M).

Each of L̃ and M̃ contains x, and neither is contained in the other. Therefore,

x is not an endpoint of Γn+1.

Recall from Chapter Two that every chainable continuum is hereditarily uni-

coherent. Hence, for a chainable continuum, any two subcontinua have a connected

intersection. This will be useful in the proof of the following lemma where we show

that for certain irreducible functions, every point of {0, 1}n ∩ Γn is an endpoint of

Γn.
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Lemma 5.5. Let F : [0, 1] → 2[0,1] be an irreducible function with the associated

irreducible collection {fλ}λ∈Λ. Suppose that

(1) Γ(F ) does not contain any simple closed curves, and

(2) if α = 0, 1 is a limit point of Λ, then F (α) = [0, 1].

For each n ∈ N, if En is the set of endpoints of Γn, then En ⊇ Γn ∩ {0, 1}n.

Proof. This clearly holds for Γ1 = [0, 1], so, proceeding by induction, suppose that

for some n ∈ N, En ⊇ Γn ∩ {0, 1}n.

First note that since Γ(F ) does not contain any simple closed curves, and F (0)

and F (1) are each either degenerate or equal to [0, 1], it follows from Theorem 4.21

that Γn+1 is chainable and thus is hereditarily unicoherent. In particular, given a

subcontinuum L of Γn+1 and λ ∈ Λ, we have that L ∩ Γ(f
(n)
λ ) is a continuum.

Also note that, as it was shown in Corollary 6.25, if any subcontinuum L ⊆

Γn+1 intersects both An+1 and Γ(f
(n)
λ ) for some λ 6= 0, then L ⊇ Γ(f

(n)
0 ).

Now, let x ∈ Γn+1 ∩ {0, 1}n+1, and let H and K be subcontinua of Γn+1, each

containing x. For simplicity, we will suppose that xn+1 = 0. (The proof is not

different for xn+1 = 1.) Since xn+1 = 0, we have that x ∈ An+1 ⊆ Γ(f
(n)
0 ).

Case 1: Suppose that H and K are each subsets of Γ(f
(n)
0 ). Since Γ(f

(n)
0 ) is

homeomorphic to Γn, and since (x1, . . . , xn) is an endpoint of Γn, it follows that H

and K are nested.

Case 2: Suppose that H is a subset of Γ(f
(n)
0 ), but K is not. Then, K must

intersect Γ(f
(n)
λ ) for some λ 6= 0, so, as was previously noted, this implies that

K ⊇ Γ(f
(n)
0 ) ⊇ H. Similarly, if K is a subset of Γ(f

(n)
0 ) while H is not, then H ⊇ K.

Case 3: Suppose that neither H nor K is contained in Γ(f
(n)
0 ). Let

ΛH =
{
λ ∈ Λ : H ∩ Γ(f

(n)
λ ) 6= ∅

}
, and

ΛK =
{
λ ∈ Λ : K ∩ Γ(f

(n)
λ ) 6= ∅

}
.
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Let λ1 = max ΛH , and let λ2 = max ΛK . If λ1 < λ2, then by Lemma 3.10,

K ⊇
⋃

λ∈Λ∩[0,λ1]

Γ(f
(n)
λ ) ⊇ H.

Similarly, if λ2 < λ1, then H ⊇ K.

Finally, suppose that λ1 = λ2. Then by Lemma 3.10, for all λ ∈ Λ∩ [0, λ1), H

and K each contain Γ(f
(n)
λ ). Hence, to show that H and K are nested, it suffices to

show that H ∩ Γ(f
(n)
λ1

) and K ∩ Γ(f
(n)
λ1

) are nested.

Sub-case (a): Suppose that λ1 = λ2 is a limit point of Λ ∩ [0, λ1]. Then by

Lemma 6.24, Γ(f
(n)
λ1

) is a C-set in

⋃
λ∈Λ∩[0,λ1]

Γ(f
(n)
λ ),

so H and K must both contain it. Hence H = K.

Sub-case (b): Suppose that λ1 = λ2 is isolated in Λ ∩ [0, λ1]. Then let µ be

the point of Λ immediately preceding λ1. Suppose that fλ1(0) = fµ(0). (It is not

meaningfully different if fλ1(1) = fµ(1) instead.) Since

F (0), F (1) ∈ {{0} , {1} , [0, 1]} ,

it follows that there is a point p ∈ An ∩ {0, 1}n which, by the induction hypothesis,

is a subset of An ∩ En.

By Lemma 3.10, H and K each contain Γ(f
(n)
µ ), and since p ∈ An, we have that

f
(n)
µ (p) = f

(n)
λ1

(p). Therefore, both H and K contain the point (p1, . . . , pn, fλ1(pn))

which is an endpoint of Γ(f
(n)
λ1

).

As was noted previously, H ∩ Γ(f
(n)
λ1

) and K ∩ Γ(f
(n)
λ1

) are both continua, so

since they contain a common endpoint, they must be nested. Therefore, H and K

must be nested, and hence, x is an endpoint of Γn+1.

The following theorem follows immediately from Lemma 5.4, Lemma 5.5, and

Theorem 5.3.
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Theorem 5.6. Let F : [0, 1] → 2[0,1] be an irreducible function with the associated

irreducible collection {fλ}λ∈Λ. Suppose that

(1) Γ(F ) does not contain any simple closed curves,

(2) if 0 is a limit point of Λ, then F (0) = [0, 1], and

(3) if 1 is a limit point of Λ, then F (1) = [0, 1].

If E is the set of endpoints of lim←−F, then E = lim←−F ∩ {0, 1}N.
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CHAPTER SIX

Towards a Classification of Inverse Limits with Irreducible Set-valued Functions

We now turn our attention the question of when two inverse limits are or are

not homeomorphic. We already have two tools for distinguishing between inverse

limits, chainability and endpoints. In this chapter we develop an additional tool

for demonstrating two inverse limits are topologically distinct. We also establish a

sufficient condition for two inverse limits to be homeomorphic. This culminates in

Section 6.3 with a topological classification of four families of inverse limits with

irreducible functions.

6.1 Homeomorphisms between Inverse Limits of Irreducible Functions

In Subsection 6.1.1 we will establish sufficient conditions for two inverse se-

quences of irreducible functions to have homeomorphic inverse limits. We will estab-

lish our conditions first for sequences of functions which are irreducible with respect

to points. This will lead to one of our main results, Theorem 6.6.

Next, in the context of irreducibility with respect to sets, the conditions will be

more restrictive, but we will be able to establish conditions under which two inverse

sequences of irreducible functions will have homeomorphic inverse limits. This result

will be stated in Theorem 6.11.

In Subsection 6.1.2, we will discuss some applications of Theorem 6.6. Specifi-

cally, we will focus on the case where all of our factor spaces are [0, 1], and all of the

bonding functions are the same irreducible function whose corresponding irreducible

collection is finite. We show that the inverse limit of such a function is homeomor-

phic to the inverse limit of an open mapping on [0, 1]. Thus we may use the existing

classification of open mappings on the interval to classify the inverse limits of these

irreducible functions.
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6.1.1 Consistent Irreducible Functions

We begin with the following definition and lemma which will be applied ex-

tensively in this section.

Definition 6.1. Let {X,F} be an inverse sequence where for each i ∈ N, Fi :

Xi+1 → 2Xi is an irreducible function with the associated irreducible collection

{f (i)
λ : Xi → Xi+1}λ∈Λi . Define the itinerary map for {X,F} to be the func-

tion F : X1 ×
∏∞

i=1 Λi → lim←−F given by F(x, λ1, λ2, . . .) = y where y1 = x and

yi+1 = f
(i)
λi

(yi) for i ∈ N.

Lemma 6.2. Let {X,F} be an inverse sequence where for each i ∈ N, Fi : Xi+1 → 2Xi

is an irreducible function with the associated irreducible collection {f (i)
λ }λ∈Λi. Then

the itinerary map F for this inverse sequence is continuous and a closed map.

Proof. F is clearly continuous in its first coordinate, and its continuity in all other

coordinates follows from Property 5 of Definition 3.6. Then, since its domain is

compact and its range is Hausdorff, F is a closed map.

Definition 6.3. Let X and Y be irreducible continua, and let {fλ}λ∈Λ and {gλ}λ∈Λ

each be irreducible with respect to a, b ∈ X and c, d ∈ Y . Let these collections have

the additional property that each of f−1
0 (a), f−1

1 (b), g−1
0 (a), and g−1

1 (b) is either a

subset of {c, d} or is equal to Y . We say that {fλ}λ∈Λ and {gλ}λ∈Λ are consistent if

the following hold:

(1) f−1
0 (a) = g−1

0 (a) and f−1
1 (b) = g−1

1 (b), and

(2) for each λ, µ ∈ Λ,

{y ∈ Y : fλ(y) = fµ(y)} = {y ∈ Y : gλ(y) = gµ(y)} .

Two irreducible functions are said to be consistent if their corresponding irre-

ducible collections are consistent.
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The following terminology will be useful in the proof of Lemma 6.5. If {fλ}λ∈Λ

and {gλ}λ∈Λ are consistent, then given a pair (α, l) ∈ {(0, a), (1, b)}, we say that

(α, l) is Type I if f−1
α (l) = g−1

α (l) ⊆ {c, d}, and we say that (α, l) is Type II if

f−1
α (l) = g−1

α (l) = Y .

Example 6.4. The irreducible collections pictured in Figure 6.1 are consistent.

Proof. Let {fλ}λ∈Λ be the irreducible collection pictured on the left and let {gω}ω∈Ω

be the collection on the right.

We will use the set

Λ = {. . . , 1/16, 1/8, 1/4, 1/2, 3/4, 7/8, 15/16 . . .} ∪ {0, 1}

as the indexing set. f−1
0 (0) = {0, 1} = g−1

0 (0), and f−1
1 (1) = [0, 1] = g−1

1 (1), so

in particular, f−1
0 (0) = g−1

0 (0) and f−1
1 (1) = g−1

1 (1) which satisfies Property 1 of

Definition 6.3. In addition, we have that the pair (0, 0) is Type I, and (1, 1) is Type

II. For Property 2 of the definition to be met, we must have that for λ, µ ∈ Λ,

fλ(x) = fµ(x) if, and only if, gλ(x) = gµ(x).

Note that there are infinitely many ways that Λ can be used to index these

collections of maps. Specifically, we may say that f3/4 is the function which goes

from (0, 3/4) to (1, 7/8) and that g3/4 is the function which goes from (0, 7/8) to

(1, 15/16). We may then index the rest of the functions accordingly. This insures

that fλ(x) = fµ(x) if, and only if, gλ(x) = gµ(x).

Thus, these irreducible collections meet the conditions of Definition 6.3, so

they are consistent.

Lemma 6.5. Let {X,F} and {X,G} be inverse sequences such that for each i ∈ N,

Fi : Xi+1 → 2Xi and Gi : Xi+1 → 2Xi are irreducible with respect to ai+1, bi+1 ∈ Xi+1

and ai, bi ∈ Xi. Let F be an itinerary map for {X,F}, and let G be an itinerary

map for {X,G}. If for each i ∈ N, Fi and Gi are consistent, then the composition

G ◦ F−1 is a well-defined function from lim←−F to lim←−G.
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Figure 6.1. Consistent irreducible collections of maps

Proof. For each i ∈ N, let {f (i)
λ : Xi → Xi+1}λ∈Λi and {g(i)

λ : Xi → Xi+1}λ∈Λi be the

irreducible collections associated with Fi and Gi.

Let x ∈ lim←−F, let (x1, λ1, λ2, . . .), (x1, µ1, µ2, . . .) ∈ F−1(x), and let y =

G(x1, λ1, λ2, . . .) and z = G(x1, µ1, µ2, . . .). To show that G ◦ F−1 is well-defined,

we must show that y = z. By the definitions of F and G, z1 = y1 = x1.

Proceeding by induction, suppose that for some n0 ∈ N, yi = zi for all i ≤ n0.

If λn0 = µn0 , then g
(n0)
λn0

(yn0) = g
(n0)
µn0

(zn0), so yn0+1 = zn0+1. If λn0 6= µn0 , we will show

that xn0 = yn0 = zn0 . Then since f
(n0)
λn0

(xn0) = xn0+1 = f
(n0)
µn0

(xn0), it follows from

Property 2 of Definition 6.3 that g
(n0)
λn0

(yn0) = g
(n0)
µn0

(zn0), and therefore yn0+1 = zn0+1.

Towards this end, note that since f
(n0)
λn0

(xn0) = f
(n0)
µn0

(xn0), it follows from

the fact that {f (n0)
λ : Xn0 → Xn0+1}λ∈Λn0

is an irreducible collection that xn0 ∈

{an0 , bn0}. This means λn0−1 = µn0−1 ∈ {0, 1}. If (λn0−1, xn0) ∈ {(0, an0), (1, bn0)}

is Type I, then we also have that xn0−1 ∈ {an0−1, bn0−1}, and thus λn0−2 = µn0−2 ∈

{0, 1}. Then if we supposed that (λn0−2, xn0−1) was also Type I, then we could

continue on in this manner. This leads us to Case 1.

Case 1: Suppose that for all j ∈ N with 1 < j ≤ n0, λj−1 = µj−1 ∈ {0, 1},

xj ∈ {aj, bj}, and the pair (λj−1, xj) is Type I. Then since y1 = z1 = x1, it follows

that yj = zj = xj for all j ≤ n0, and in particular, yn0 = zn0 = xn0 .

61



Case 2: Suppose that for some 1 < j ≤ n0, λj−1 = µj−1 ∈ {0, 1}, xj ∈ {aj, bj},

and the pair (λj−1, xj) is Type II. Then let k be the largest integer less than or

equal to n0 such that (λk−1, xk) is Type II. Then from the definition of Type II,

(f
(k−1)
λk−1

)−1(xk) = (g
(k−1)
λk−1

)−1(xk) = Xk−1 which means that yk = f
(k−1)
λk−1

(yk−1) = xk.

Since µk−1 = λk−1, we can similarly show that zk = xk. Thus, we in fact have that

zk = yk = xk. If k = n0, then we have our result. If not, then by assumption,

(λj−1, xj) is Type I for all k < j ≤ n0, so from the same argument used in Case 1,

it follows that xn0 = yn0 = zn0 .

In either case, we have that xn0 = yn0 = zn0 , so as already noted, this implies

that yn0+1 = zn0+1. Therefore, by induction, yi = zi for all i ∈ N, so y = z.

Therefore G ◦ F−1 is well-defined.

Theorem 6.6. Let {X,F} and {X,G} be inverse sequences such that for each i ∈ N,

Fi : Xi+1 → 2Xi and Gi : Xi+1 → 2Xi are irreducible with respect to ai+1, bi+1 ∈ Xi+1

and ai, bi ∈ Xi. If for each i ∈ N, Fi and Gi are consistent, then lim←−F and lim←−G

are homeomorphic.

Proof. Let F and G be itinerary maps for {X,F} and {X,G} respectively. By

Lemma 6.5, the composition G ◦F−1 is a well-defined function from lim←−F to lim←−G.

Let Φ = G ◦ F−1. We may also apply Lemma 6.5 to state that F ◦ G−1 is well-

defined. This implies that Φ is invertible and, hence, bijective. Therefore, since

lim←−F is compact and lim←−G is Hausdorff, to show that Φ is a homeomorphism, we

need only show that Φ is continuous.

From Lemma 6.2, we have that G is continuous and F is a closed map. There-

fore given a closed set A ⊆ lim←−G, Φ−1(A) = F(G−1(A)) is closed. Hence Φ contin-

uous and thus a homeomorphism between lim←−F and lim←−G.

Example 6.7. Let F and G be the irreducible functions pictured in Figure 6.2 (on

the left and right respectively). Then lim←−F is homeomorphic to lim←−G.
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Figure 6.2. Consistent irreducible functions

Proof. These functions correspond to the irreducible collections of maps pictured in

Figure 6.1. From Example 6.4, we have that those collections of maps are consistent,

so by definition, F and G are consistent. Therefore, by Theorem 6.6, their inverse

limits are homeomorphic.

Example 6.8. Let Λ be the set consisting of the standard Cantor set along with one

point from each removed interval. Let F,G, F̃ , and G̃ each be irreducible functions,

as pictured in Figure 6.3, where each of their corresponding irreducible collections

is indexed by Λ. Then lim←−F, lim←−G, lim←− F̃, and lim←− G̃ are all homeomorphic.

Proof. First note that F and G are consistent, as are F̃ and G̃. Thus Theorem 6.6

gives us that lim←−F is homeomorphic to lim←−G, and lim←− F̃ is homeomorphic to lim←− G̃.

Hence, to show that they are all homeomorphic it suffices to show that lim←−G is

homeomorphic to lim←− G̃. Towards this end, note that for each x ∈ [0, 1], G(1− x) =

1−G(x) = G̃(x) (where by 1−G(x) we mean the set {1− y : y ∈ G(x)}).

Claim: This property implies that lim←−G and lim←− G̃ are homeomorphic.

To prove this claim, define a function ϕ : lim←−G→
∏∞

i=1[0, 1] by

ϕ(x1, x2, x3, . . .) = (x1, 1− x2, x3, 1− x4, . . .).
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Figure 6.3. Irreducible functions with homeomorphic inverse limits

This function is continuous and injective, so we need only check that ϕ(lim←−G) =

lim←− G̃. First, to show that ϕ(lim←−G) ⊆ lim←− G̃, let x ∈ lim←−G and y = ϕ(x). For

even n, yn = 1 − xn, and for odd n, yn = xn. Let n ∈ N be even. Then G̃(yn) =

G̃(1 − xn) = G(xn) 3 xn−1 = yn−1, so yn−1 ∈ G̃(yn). Now let n ∈ N be odd. Then

G̃(yn) = G̃(xn) = (1−G(xn)) 3 (1− xn−1) = yn−1, so again, yn−1 ∈ G̃(yn).

Therefore y ∈ lim←− G̃, so ϕ(lim←−G) ⊆ lim←− G̃. Now, given y ∈ lim←− G̃, the same

argument which was just presented will show that the point

(y1, 1− y2, y3, 1− y4, . . .) ∈ lim←−G

and y is the image of this point. This means that ϕ(lim←−G) ⊇ lim←− G̃, and ϕ is a

homeomorphism.
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This example is interesting because F and F̃ do not satisfy the property that

F (1 − x) = 1 − F (x) = F̃ (x), nor are they consistent. Thus it would not be

immediately clear that lim←−F and lim←− F̃ were homeomorphic if it were not for G and

G̃ acting as intermediaries.

Obtaining a result such as Theorem 6.6 for functions which are irreducible

with respect to sets is a bit more complicated. We would like to define the term

“consistent” in the context of irreducibility with respect to sets, and we would like

to do it in a way so that the inverse limits of consistent functions are homeomorphic

(as in Theorem 6.6).

In order to do this, we will have to make the definition in this context more

stringent than in Definition 6.3.

Definition 6.9. Let {X,F} and {X,G} be inverse sequences where for each i ∈ N,

Fi : Xi+1 → 2Xi and Gi : Xi+1 → 2Xi are irreducible with respect to Ai+1, Bi+1 ⊆

Xi+1 and Ai, Bi ⊆ Xi. Let {f (i)
λ }λ∈Λi and {g(i)

λ }λ∈Λi be the irreducible collections

corresponding to Fi and Gi respectively. We say that these inverse sequences are

consistent if for each i ∈ N and λ, µ ∈ Λi,{
y ∈ Xi : f

(i)
λ (y) = f (i)

µ (y)
}

=
{
y ∈ Xi : g

(i)
λ (y) = g(i)

µ (y)
}

and either of the following hold:

(1) For all i ∈ N, if (α,Li+1) ∈ {(0, Ai+1), (1, Bi+1)}, then

(f (i)
α )−1(Li+1) = (g(i)

α )−1(Li+1) ⊆ Ai ∪Bi,

and f
(i)
α |(f (i)α )−1(Li+1)

= g
(i)
α |(g(i)α )−1(Li+1)

;

(2) For all i ∈ N,

(f
(i)
0 )−1(Ai+1) = (g

(i)
0 )−1(Ai+1) = (f

(i)
1 )−1(Bi+1) = (g

(i)
1 )−1(Bi+1) = Xi,

and if Li ∈ {Ai, Bi}, then whenever λ, µ ∈ Λi with Γ(f
(i)
λ |Li)∩Γ(f

(i)
µ |Li) 6= ∅,

it follows that f
(i)
λ |Li = f

(i)
µ |Li .
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Lemma 6.10. Let {X,F} and {X,G} be inverse sequences such that for each i ∈ N,

Fi : Xi+1 → 2Xi and Gi : Xi+1 → 2Xi are irreducible with respect to Ai+1, Bi+1 ⊆

Xi+1 and Ai, Bi ⊆ Xi. Let F be an itinerary map for {X,F}, and let G be an

itinerary map for {X,G}. If {X,F} and {X,G} are consistent, then the composi-

tion G ◦ F−1 is a well-defined function from lim←−F to lim←−G.

Proof. Let x ∈ lim←−F, let (x1, λ1, λ2, . . .), (x1, µ1, µ2, . . .) ∈ F−1(x), and let y =

G(x1, λ1, λ2, . . .) and z = G(x1, µ1, µ2, . . .). We must show that y = z. This will be

done by induction.

By the definition of G, y1 = z1 = x1. Now suppose that for some n0 ∈ N,

yi = zi for all i ≤ n0. We want to show that this implies that yn0+1 = zn0+1. If

λn0 = µn0 , then this will clearly hold, since yn0+1 = gλn0 (yn0) and zn0+1 = gµn0 (zn0).

Suppose then that λn0 6= µn0 .

Case 1: Suppose that {X,F} and {X,G} satisfy Property (1) of Definition 6.9.

Since f
(n0)
λn0

(xn0) = f
(n0)
µn0

(xn0), we must have that xn0 ∈ An0 ∪ Bn0 . We have that

(f
(i)
0 )−1(Ai+1) ⊆ Ai ∪Bi and (f

(i)
1 )−1(Bi+1) ⊆ Ai ∪Bi for all i ∈ N. Another way of

saying this is to say that Fi(Ai+1) and Fi(Bi+1) are subsets of Ai ∪Bi for all i ∈ N.

Thus, xi ∈ Ai ∪Bi for all i ≤ n0.

This also means then that λi = µi ∈ {0, 1} for all i < n0 and that xi ∈

(f
(i)
0 )−1(Ai+1) ∪ (f

(i)
1 )−1(Bi+1) for all i < n0. Now specifically, we know that x1 =

y1 = z1 and that this point is either an element of (f
(1)
0 )−1(A2) or of (f

(1)
1 )−1(B2).

Because we are supposing that Property (1) holds, we know that f0 and g0 are

equal when restricted to (f
(1)
0 )−1(A2), and we know that f1 and g1 are equal when

restricted to (f
(1)
1 )−1(B2). This means that x2 = y2 = z2. Continuing on in this

manner, we conclude that xi = yi = zi for all i ≤ n0

Therefore, since f
(n0)
λn0

(xn0) = f
(n0)
µn0

(xn0), it follows that g
(n0)
λn0

(yn0) = g
(n0)
µn0

(zn0),

so yn0+1 = zn0+1.
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Case 2: Suppose that {X,F} and {X,G} satisfy Property (2) of Definition 6.9.

Again, since f
(n0)
λn0

(xn0) = f
(n0)
µn0

(xn0), we must have that xn0 ∈ An0 ∪ Bn0 . In this

case, we may only infer that λn0−1 = µn0−1 ∈ {0, 1}. Let Ln0 ∈ {An0 , Bn0} be the

set containing xn0 . Because there is some value of Ln0 at which fλn0 and fµn0 are

equal (specifically xn0), we have that the equality f
(n0)
λn0

(x) = f
(n0)
µn0

(x) must hold for

all x ∈ Ln0 . It follows that g
(n0)
λn0

(x) = g
(n0)
µn0

(x) for all x ∈ Ln0 . Also, since we are

supposing that Property (2) holds, we know that

(g
(n0−1)
λn0−1

)−1(Ln0) = (g(n0−1)
µn0−1

)−1(Ln0) = (f
(n0−1)
λn0−1

)−1(Ln0) = Xn0−1.

This means that yn0 = zn0 ∈ Ln0 . Then, since it has already been established

that g
(n0)
λn0

and g
(n0)
µn0

are equal when restricted to Ln0 , it follows that g
(n0)
λn0

(yn0) =

g
(n0)
µn0

(zn0).

In either case, yn0+1 = zn0+1, and hence, by induction, zi = yi for all i ∈ N,

and y = z.

Just as in Theorem 6.6, once it has been established that G◦F−1 is well-defined,

it follows easily that it is in fact a homeomorphism.

Theorem 6.11. Let {X,F} and {X,G} be inverse sequences such that for each i ∈ N,

Fi : Xi+1 → 2Xi and Gi : Xi+1 → 2Xi are irreducible with respect to Ai+1, Bi+1 ⊆

Xi+1 and Ai, Bi ⊆ Xi. If {X,F} and {X,G} are consistent, then lim←−F and lim←−G

are homeomorphic.

6.1.2 Applications

Below is a corollary to Theorem 6.6, and it deals with the case of an irreducible

function on [0, 1] whose corresponding irreducible collection is finite. Recall that two

set-valued functions F : X → 2X and G : Y → 2Y are topologically conjugate if

there exists a homeomorphism ϕ : X → Y such that ϕ ◦ F = G ◦ ϕ.
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Corollary 6.12. Let F,G : [0, 1]→ 2[0,1] be irreducible functions. If their correspond-

ing irreducible collections are each finite and contain the same number of maps, then

lim←−F is homeomorphic to lim←−G.

Proof. Let k be the cardinality of the irreducible collections corresponding to F and

G. Let h : [0, 1]→ [0, 1] be the map consisting of k straight lines–the first from (0, 0)

to (1/k, 1), the second from (1/k, 1) to (2/k, 0), and so on. Notice that h and 1− h

are both irreducible functions.

Claim: lim←−h is homeomorphic to lim←− (1− h).

To see that this is true, notice that if k is odd, then h(1 − x) = 1 − h(x).

Thus, in this case, just as in Example 6.8, lim←−h is homeomorphic to lim←− (1− h).

If k is even, then if ϕ : [0, 1] → [0, 1] is defined by ϕ(x) = 1 − x we have that

ϕ ◦ h = (1− h) ◦ϕ. Therefore, in this case, h and 1− h are topologically conjugate,

so by Theorem 2.9, lim←−h is homeomorphic to lim←− (1− h).

Since F−1 is the union of k maps, it will be consistent with either h or 1 −

h. Since lim←−h and lim←− (1− h) are homeomorphic though, in either case, lim←−F is

homeomorphic to lim←−h. Similarly, lim←−G is homeomorphic to lim←−h, so lim←−F and

lim←−G are homeomorphic to each other.

In [54], Watkins discusses functions such as h from the above proof. He would

call h the kth degree hat function. More specifically, given n ∈ N, the nth degree hat

function is an open mapping on [0, 1], such that f(0) = 0, and for each i = 1, . . . , n,

f restricted to [(i − 1)/n, i/n] is linear and onto [0, 1]. The inverse limits of these

functions are the class of continua known as the Knaster continua. The main theorem

of [54] is the following:

Theorem 6.13 (Watkins). Let n,m ∈ N. If f : [0, 1] → [0, 1] is the nth degree

hat function and g : [0, 1] → [0, 1] is the mth degree hat function, then lim←− f is

homeomorphic to lim←−g if, and only if, n and m have the same prime factors.
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In light of Corollary 6.12, we may generalize Watkins’s classification in the

following way.

Theorem 6.14. Let n,m ∈ N. Suppose F : [0, 1] → 2[0,1] is an irreducible function

whose inverse is the union of n maps, and G : [0, 1]→ 2[0,1] is an irreducible function

whose inverse is the union of m maps. Then lim←−F is homeomorphic to lim←−G if,

and only if, n and m have the same prime factors.

6.2 Additional Method for Demonstrating Inverse Limits are not Homeomorphic

We now consider the question of when two inverse limits are not homeomor-

phic. We develop an additional tool beyond chainability and endpoints for distin-

guishing topologically between two inverse limits.

6.2.1 Proper Subcontinua of the Inverse Limit

In this subsection, we consider proper subcontinua of the inverse limits of

irreducible functions. First, we discuss a method for defining proper subcontinua

of inverse limits, then we move toward the main result of this subsection, Theo-

rem 6.17, which says that if F : X → 2X is irreducible with respect to a, b ∈ X, and

F (a), F (b) ∈ {{a}, {b}, {a, b}, X}, then every proper subcontinuum of lim←−F is home-

omorphic to a subcontinuum of Γn for some n ∈ N. This fact will be instrumental

for the results concerning distinguishing between inverse limits in Subsection 6.2.2.

Recall that Corollary 4.3 stated that if F : X → 2X is an irreducible function,

then for each n ∈ N, Γn is homeomorphic to a subcontinuum of lim←−F. This provides

a method for defining specific subcontinua of an inverse limit. We now move towards

the primary result of this section where we show that, with one added restriction,

every proper subcontinuum of the inverse limit is homeomorphic to a subcontinuum

of Γn for some n ∈ N.

We now introduce the following notation which will be utilized for the remain-

der of the subsection.
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Notation 6.15. Suppose F : X → 2X is an upper semi-continuous function and K is a

closed subset of lim←−F. For each n ∈ N, let Kn = πn(K), and K[n,n+1] = π[n,n+1](K).

Lemma 6.16. Let F : X → 2X be irreducible with respect to a, b ∈ X with the

corresponding irreducible collection of maps {fλ}λ∈Λ. If K is a subcontinuum of

lim←−F, then the following hold.

(1) If for some n ∈ N, either a /∈ Kn or b /∈ Kn, then there exist λ, µ ∈ Λ such

that

K[n,n+1] ⊆ Γ(fλ|Kn) ∪ Γ(fµ|Kn).

(2) If for some n ∈ N, Kn contains neither a nor b, then there exists λ ∈ Λn

such that Kn+1 = fλ(Kn).

(3) If for some n ∈ N, either a /∈ Kn or b /∈ Kn, and a ∈ Kn+1 (b ∈ Kn+1), then

Kn+1 = f0(Kn) (Kn+1 = f1(Kn)).

Proof. First, note that for any n ∈ N,

K[n,n+1] ⊆ Γ(F−1) =
⋃
λ∈Λ

Γ(fλ).

More specifically,

K[n,n+1] ⊆
⋃
λ∈Λ

Γ(fλ|Kn).

By Definition 3.5, if λ, µ, and ω, are consecutive elements of Λ with λ < µ < ω,

then Γ(fµ) intersects both Γ(fλ) and Γ(fω), but Γ(fλ) and Γ(fω) are disjoint. Thus,

either fλ(a) = fµ(a), and fµ(b) = fω(b), or vice versa. In either case, if for some

n ∈ N, either a /∈ Kn or b /∈ Kn, then one of Γ(fλ|Kn) and Γ(fω|Kn) is disjoint from

the other and from Γ(fµ|Kn). This establishes (1).

If for some n ∈ N, Kn contains neither a nor b, then for any λ, µ ∈ Λ, λ 6= µ,

the graphs of fλ|Kn and fµ|Kn would be disjoint. Thus, there must exists a single
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element λ ∈ Λ such that K[n,n+1] ⊆ Γ(fλ). It then follows that K[n,n+1] = Γ(fλ|Kn),

and hence, Kn+1 = fλ(Kn). This establishes (2).

Finally, to establish (3), note if a ∈ Kn+1, then K[n,n+1] intersects Γ(f0|Kn).

Case 1: Suppose 0 is a limit point of Λ. If Kn+1 did not equal f0(Kn), that

would imply that K[n,n+1] intersected Γ(fλ|Kn) for infinitely many λ ∈ Λ. From (1),

we know that this cannot happen, so Kn+1 = f0(Kn).

Case 2: Suppose 0 is not a limit point of Λ. Then, by Definition 3.5, f−1
0 (a) =

{a} or f−1
0 (a) = {b}. Moreover, if λ0 is the smallest element of Λ larger than 0,

then either f0(a) = a and f0(b) = fλ0(b), or f0(b) = a and f0(a) = fλ0(a). Thus,

for a to be an element of Kn+1, Γ(f0|Kn) must be disjoint from Γ(fλ0|Kn). Hence

Kn+1 = f0(Kn).

Theorem 6.17. Let F : X → 2X be irreducible with respect to a, b ∈ X with the

corresponding irreducible collection of maps {fλ}λ∈Λ. If

F (a), F (b) ∈ {{a} , {b} , {a, b} , X} ,

then every proper subcontinuum of lim←−F is homeomorphic to a subcontinuum of Γn

for some n ∈ N.

Proof. Let K be a proper subcontinuum of lim←−F. By Theorem 3.15, lim←−F has the

full projection property, so there exists N ∈ N such that for all n ≥ N , Kn is a

proper subcontinuum of X. Hence, for each n ≥ N , either a /∈ Kn or b /∈ Kn.

Case 1: Suppose that for all n ≥ N , Kn ∩ {a, b} 6= ∅. Then by Lemma 6.16

Part (3), there exists a sequence (αn)∞n=N , where for each n ≥ N , αn ∈ {0, 1}, and

Kn+1 = fαn(Kn). It follows that K is homeomorphic to π[1,N ](K) ⊆ ΓN .

Case 2: Suppose there exists n0 ≥ N such that for all n ≥ n0, Kn contains

neither a nor b. Then by Lemma 6.16 Part (2), for each n ≥ n0, there exists λn ∈ Λ

such that Kn+1 = fλn(Kn). Hence, K is homeomorphic to π[1,n0](K) ⊆ Γn0 .
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Case 3: Suppose there exists n0 ≥ N such that Kn0 contains neither a nor b,

but Kn0+1 contains a. By Lemma 6.16 Part (3), it follows that Kn0+1 = f0(Kn0).

Moreover, since Kn0 does not contain a or b, this implies that f−1
0 (a) = F (a) is not

a subset of {a, b}. Thus, by assumption, f−1
0 (a) = F (a) = X.

Hence, we have, in fact, that Kn0+1 = f0(Kn0) = {a}. Then, for all n ≥ n0 +1,

we have that Kn is degenerate, so K is homeomorphic to π[1,n0](K) ⊆ Γn0 .

Similarly, if there exists n0 ≥ N such that Kn0 contains neither a nor b, but

Kn0+1 contains b, then for all n ≥ n0 + 1, Kn is degenerate, and K is homeomorphic

to π[1,n0](K) ⊆ Γn0 .

Another way to state Theorem 6.17 is in terms of composants of the inverse

limit. The composant of a point x in a continuum X is the union of all proper

subcontinua of X which contain x.

Corollary 6.18. Let F : X → 2X be irreducible with respect to a, b ∈ X with the

corresponding irreducible collection of maps {fλ}λ∈Λ. Suppose further that

F (a), F (b) ∈ {{a} , {b} , {a, b} , X} .

Then, for x ∈ lim←−F, the composant of x in lim←−F is the set of all y ∈ lim←−F such that

there exists a natural number N and a sequence (λi)
∞
i=N ∈ ΛN such that for i ≥ N ,

xi+1 = fλi(xi), and yi+1 = fλi(yi).

6.2.2 Some Classification Results

For the remainder of the chapter, we will only consider irreducible functions

on [0, 1]. Hence, we introduce the following notation.

Notation 6.19. Let I represent the set of all pairs (F, {fλ}λ∈Λ) such that F : [0, 1]→

2[0,1] is an irreducible function and {fλ}λ∈Λ is its corresponding irreducible collection

of maps. If (F, {fλ}λ∈Λ) ∈ I, we say that (F, {fλ}λ∈Λ) is an irreducible pair.
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Remark 6.20. Open mappings on [0, 1] are irreducible functions, and their corre-

sponding irreducible collections are finite. Moreover, continua which are inverse

limits of open mappings on [0, 1] are collectively called Knaster continua, and they

have the property that every proper subcontinuum is an arc. It follows from Corol-

lary 6.12 that for any (F, {fλ}λ∈Λ) ∈ I such that Λ is finite, lim←−F is a Knaster

continuum.

Once again, recall that for (F, {fλ}λ∈Λ) ∈ I, n ∈ N, and λ ∈ Λ, f
(n)
λ : Γn →

[0, 1] is defined by f
(n)
λ (x) = fλ(xn).

Theorem 6.21. Let (F, {fλ}λ∈Λ), (G, {gω}ω∈Ω) ∈ I. If Λ is finite and Ω is infinite,

then lim←−F and lim←−G are not homeomorphic.

Proof. By Remark 6.20, lim←−F is a Knaster continuum, so every proper subcontinuum

of lim←−F is an arc.

Since Γ2(G) = Γ(G−1) is the union of infinitely many mappings, each one

having [0, 1] as its domain, Γ2(G) is not an arc. Then, by Corollary 4.3, Γ2(G) is

homeomorphic to a proper subcontinuum of lim←−G. Hence lim←−F and lim←−G are not

homeomorphic.

Recall that if (F, {fλ}λ∈Λ) ∈ I, then for each n ∈ N and λ ∈ Λ, the function

f
(n)
λ : Γn → [0, 1] is defined by

f
(n)
λ (x1, . . . , xn) = fλ(xn).

Note that for each n ∈ N,

Γn+1 =
⋃
λ∈Λ

Γ(f
(n)
λ ),

and that for each λ ∈ Λ, Γ(f
(n)
λ ) is homeomorphic to Γn.

Another definition which will be utilized in this section is the following.

Definition 6.22. Given a continuum X, a set A ⊆ X is called a C-set in X if every

subcontinuum of X which intersects both A and X \ A contains A.
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The following remark will be useful in the proof of Lemma 6.24 below. It is a

specific case of Lemma 3.10

Remark 6.23. Let (F, {fλ}λ∈Λ) ∈ I. Let n ∈ N, let K be a subcontinuum of Γn+1,

and let ΩK = {λ ∈ Λ : K ∩ Γ(f
(n)
λ ) 6= ∅}. Then ΩK is the intersection of a closed

(possibly degenerate) interval with Λ. Moreover, if λ ∈ ΩK \ {min ΩK ,max ΩK},

then Γ(f
(n)
λ ) ⊆ K.

Lemma 6.24. Let (F, {fλ}λ∈Λ) ∈ I. If λ0 is a limit point of [λ0, 1]∩Λ, then for each

n ∈ N, Γ(f
(n)
λ0

) is a C-set in ⋃
λ∈Λ∩[λ0,1]

Γ(f
(n)
λ ).

Likewise, if λ0 is a limit point of [0, λ0] ∩ Λ, then for each n ∈ N, Γ(f
(n)
λ0

) is a C-set

in ⋃
λ∈Λ∩[0,λ0]

Γ(f
(n)
λ ).

Proof. Suppose that λ0 is a limit point of [λ0, 1] ∩ Λ. Fix n ∈ N, and let

X =
⋃

λ∈Λ∩[0,λ0]

Γ(f
(n)
λ ).

Let K be a subcontinuum of X which intersects both Γ(f
(n)
λ0

) and X \Γ(f
(n)
λ0

), and let

ΩK = {λ ∈ Λ : K ∩Γ(f
(n)
λ ) 6= ∅}. By Remark 6.23, ΩK is an interval in Λ. Moreover,

since K intersects Γ(f
(n)
λ ) and X \ Γ(f

(n)
λ0

), ΩK is non-degenerate.

Therefore, λ0 is a limit point of ΩK , so there is a sequence, (λi)
∞
i=1, in ΩK \

{min ΩK ,max ΩK} converging to λ0. By Lemma 6.23, we have that Γ(f
(n)
λi

) ⊆ K for

all i ∈ N. It then follows from Property (5) of Definition 3.5 that Γ(f
(n)
λ0

) ⊆ K.

Recall that, given a pair (F, {fλ}λ∈Λ) ∈ I, we define for each n ∈ N the sets

An = {x ∈ Γn : xn = 0}, and Bn = {x ∈ Γn : xn = 1}.

From Definition 3.5, for any two λ, µ ∈ Λ, if the graphs of fλ and fµ intersect,

they do so at either 0 or 1. Hence, if for some n ∈ N, the graphs of f
(n)
λ and f

(n)
µ
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intersect, they do so over the set An or over Bn. This makes these two sets crucial

to the structure of Γn+1. We elaborate on this in the following two results.

Corollary 6.25. Let (F, {fλ}λ∈Λ) ∈ I. If for some n ≥ 2, An (Bn) is a C-set in

Γ(f
(n−1)
0 ) (Γ(f

(n−1)
1 )), then An (Bn) is a C-set in Γn

Proof. Let n ≥ 2, and suppose that An is a C-set in Γ(f
(n−1)
0 ). If 0 is a limit point

of Λ, then by Lemma 6.24, Γ(f
(n−1)
0 ) is a C-set in Γn. It follows that An is a C-set

in Γn.

If 0 is not a limit point of Λ, then suppose that K is a subcontinuum of Γn

intersecting An and its complement. If K is a subset of Γ(f
(n−1)
0 ), then since An is

a C-set in Γ(f
(n−1)
0 ), K must contain An. If K is not a subset of Γ(f

(n−1)
0 ), and λ0 is

the smallest element of Λ larger than 0, then K must intersect Γ(f
(n−1)
λ0

). Note that

the graphs of f
(n−1)
0 and f

(n−1)
λ0

intersect either over An−1 or Bn−1, and f
(n−1)
0 maps

the other to 0.

Hence, for K to intersect An and Γ(f
(n−1)
λ0

), it must intersect Γ(f
(n−1)
0 |An−1) and

Γ(f
(n−1)
0 |Bn−1). It was shown in the proof of Lemma 3.10, that this implies that K

contains Γ(f
(n−1)
0 ). In particular then, K contains An. Therefore, An is a C-set in

Γn.

Before we may prove the main result of this section, Theorem 6.27, we must

prove one more lemma.

Lemma 6.26. Let (F, {fλ}λ∈Λ) ∈ I. Let n ∈ N, and let λ0 ∈ Λ. Suppose that

{Ki}∞i=1 is a collection of subcontinua of Γn+1, each of which intersects both Γ(f
(n)
λ0

)

and Γn+1 \ Γ(f
(n)
λ0

). If

F (0), F (1) ∈ {{0} , {1} , {0, 1} , [0, 1]} ,

then there is an infinite subset A ⊆ N such that for all i, j ∈ A, Ki intersects Kj.

75



Proof. First, if λ0 is a limit from the right, and for infinitely many i ∈ N, there is

λi > λ0 such that Ki intersects Γ(f
(n)
λi

), then by Lemma 6.24, Ki contains Γ(f
(n)
λ0

) for

all such i ∈ N. Hence, any two such members of {Ki}∞i=1 must intersect each other.

The same holds if λ0 is a limit from the left, and for infinitely many i ∈ N, there is

λi < λ0 such that Ki intersects Γ(f
(n)
λi

).

Thus it suffices to show that if µ ∈ Λ is adjacent to λ0 in Λ, and Ki intersects

Γ(f
(n)
µ ) \ Γ(f

(n)
λ0

) for infinitely many i ∈ N, then the result holds.

To do this, we will demonstrate that for each n ∈ N, An and Bn are each either

C-sets in Γn or a finite union of C-sets in Γn. Since these are the sets over which

the graphs of f
(n)
λ0

and f
(n)
µ intersect, the result will follow. This will be shown in five

cases.

Before beginning these cases, note that Γ1 = [0, 1], A1 = {0}, and B1 = {1}.

Hence, since singleton sets are always C-sets, we have that A1 and B1 are C-sets in

Γ1. For the following cases, we will suppose that n ≥ 2.

Case 1: Suppose that both F (0) and F (1) are finite (i.e. either {0} {1}, or

{0, 1}). Then for all n ≥ 2, An and Bn are both finite sets. Since singleton sets are

C-sets, it follows that for each n ≥ 2, An and Bn are each a finite union of C-sets in

Γn.

Case 2: Suppose that F (0) = {0} and F (1) = [0, 1]. Then for all n ≥ 2, An is

a singleton set, so it is a C-set. Also, since F (1) = [0, 1], it must be the case that 1 is

a limit point of Λ. Thus, by Lemma 6.24, it follows that for all n ≥ 2, Bn = Γ(f
(n−1)
1 )

is a C-set in Γn. (The same argument applies if F (1) = {1} and F (0) = [0, 1].)

Case 3: Suppose that F (0) = {1} and F (1) = [0, 1]. Just as in Case 2, the fact

that F (1) = [0, 1] implies that for all n ≥ 2, Bn is a C-set in Γn. Then, note that for

all n ≥ 2, Γ(f
(n−1)
0 ) is homeomorphic to Γn−1. Also, since F (0) = {1}, we have that

An = Γ(f
(n−1)
0 |Bn−1). Therefore, An is a C-set in Γ(f

(n−1)
0 ), so by Corollary 6.25, An is

a C-set in Γn. (Again, the same argument applies if F (1) = {0} and F (0) = [0, 1].)
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Case 4: Suppose that F (0) = F (1) = [0, 1]. Then, just as in the previous two

cases, this implies that for all n ≥ 2, An and Bn are each C-sets in Γn.

Case 5: Suppose that F (0) = [0, 1], and F (1) = {0, 1}. Once again, since

F (0) = [0, 1], for all n ≥ 2, An is a C-set in Γn.

We will show that for each n ≥ 2, Bn is a finite union of C-sets in Γn using

induction. As has already been established, B1 = {1} is a C-set in Γ1. Now suppose

that for some n ∈ N, Bn = B1 ∪ · · · ∪ Bk where for each i = 1, . . . , k, Bi is a C-set

in Γn.

Since F (1) = {0, 1},

Bn+1 = Γ(f
(n)
1 |Bn) ∪ Γ(f

(n)
1 |An).

Thus, for each i = 1, . . . , k, define B̃i to be Γ(f
(n)
1 |Bi), and define B̃k+1 to be Γ(f

(n)
1 |An).

Then Bn+1 = B̃1 ∪ · · · ∪ B̃k+1. Moreover, since each of B1, . . . , Bk, An is a C-set

in Γn, it follows that for each i = 1, . . . , k + 1, B̃i is a C-set in Γ(f
(n)
1 ). Then by

Corollary 6.25, for each i = 1, . . . , k + 1, B̃i is a C-set in Γn+1. Therefore, Bn+1

is finite union of C-sets in Γn+1. (The same argument holds if F (1) = [0, 1] and

F (0) = {0, 1}.)

Given Λ,Ω ⊆ [0, 1], Λ′ and Ω′ refer to the sets of limit points of Λ and Ω

respectively.

Theorem 6.27. Let (F, {fλ}λ∈Λ), (G, {gω}ω∈Ω) ∈ I. If 0 < card Λ′ < card Ω′ < ∞,

and

G(0), G(1) ∈ {{0} , {1} , {0, 1} , [0, 1]} ,

then lim←−F and lim←−G are not homeomorphic.

Proof. To prove that lim←−F and lim←−G are not homeomorphic, we will construct a

proper subcontinuum of lim←−F and demonstrate that it is not homeomorphic to any

proper subcontinuum of lim←−G.
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Fix a point λ0 ∈ Λ′, and let (λi)i∈N be a monotonic sequence in Λ \ Λ′ such

that λi and λi+1 are adjacent for all i ∈ N, and λi → λ0 as i → ∞. (The fact that

card Λ′ <∞ guarantees that this is possible.)

Claim: For each i ≥ 0, let Li = Γ(f
(2)
λi

). The collection {Li}∞i=0 has the following

properties:

(1) For each i ≥ 0, Li is homeomorphic to Γ(F ).

(2) L0 = limi→∞ Li.

(3) For each i, j ≥ 1, Li ∩ Lj 6= ∅ if, and only if, |i− j| ≤ 1.

(4) For each i ≥ 1, Li ∩ L0 = ∅.

(5) For any N ≥ 1,
⋃∞
i=0 Li is homeomorphic to either L0 ∪

⋃∞
i=N Li or to

L0 ∪
⋃∞
i=N+1 Li.

(6) For any N ≥ 1,
⋃∞
i=N Li is connected.

Let L =
⋃∞
i=0 Li. Since L is a subcontinuum of Γ3(F ), by Corollary 4.3, lim←−F

contains a subcontinuum homeomorphic to L. We will show that lim←−G does not

contain a subcontinuum homeomorphic to L by showing that Γn(G) does not for

any n ∈ N and then appealing to Theorem 6.17.

First, Γ1(G) = [0, 1], so it does not contain a subcontinuum homeomorphic to

L. Proceeding by induction, suppose that for some n ∈ N, Γn(G) does not contain

a subcontinuum homeomorphic to L.

Suppose that Γn+1(G) does contain a subcontinuum homeomorphic to L. Then

Γn+1(G) contains a sequence, (Ki)
∞
i=1, of continua and a continuum K0 that satisfy

all the properties above which are satisfied by (Li)
∞
i=0 such that

⋃∞
i=0Ki is home-

omorphic to L. Specifically, we have that the collection (Ki)
∞
i=0 satisfies all of the

following:
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(1) For each i ≥ 0, Ki is homeomorphic to Γ(F ).

(2) K0 = limi→∞Ki.

(3) For each i, j ≥ 1, Ki ∩Kj 6= ∅ if, and only if, |i− j| ≤ 1.

(4) For each i ≥ 1, Ki ∩K0 = ∅.

(5) For any N ≥ 1,
⋃∞
i=0 Ki is homeomorphic to either K0 ∪

⋃∞
i=N Ki or to

K0 ∪
⋃∞
i=N+1Ki.

(6) For any N ≥ 1,
⋃∞
i=N Ki is connected.

We will show that this leads to a contradiction.

Case 1: Suppose that there exists ω0 ∈ Ω such that K0 ⊆ Γ(g
(n)
ω0 ). Then

since Γ(g
(n)
ω0 ) is homeomorphic to Γn(G), Γn(G) contains a subcontinuum K̃ which

is homeomorphic to K0 and hence to Γ(F ). If n = 1, then this is already a contra-

diction. If n ≥ 2, then since Ω contains more limit points than Λ, K̃ will necessarily

be a proper subcontinuum of Γn(G). Thus, from Corollary 3.11, K̃ is disjoint either

from {x ∈ Γn(G) : xn = 0} or from {x ∈ Γn(G) : xn = 1}. It follows that K0 is

disjoint either from {x ∈ Γ(g
(n)
ω0 ) : xn = 0} or from {x ∈ Γ(g

(n)
ω0 ) : xn = 1}.

Sub-case (a): Suppose that for all but finitely many i ∈ N, Ki is disjoint from

Γ(g
(n)
ω0 ). Then, by Property (5) without loss of generality, we may suppose that this

holds for all i ∈ N.

As was previously noted, for either α = 0 or α = 1, K0 is disjoint from the set

{x ∈ Γ(g
(n)
ω0 ) : xn = α}. Since K0 ⊆ Γ(g

(n)
ω0 ), we may say more generally that K0 is

disjoint from the set {x ∈ Γn+1 : xn = α}. Therefore, since Ki → K0 as i → ∞,

we have that there exists N ∈ N such that for i ≥ N , Ki is disjoint from the set

{x ∈ Γn+1 : xn = α}.

Now, let

Σ =
{
ω ∈ Ω : Γ(g(n)

ω ) ∩Ki 6= ∅ for some i ≥ N
}
.
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Since Ki is disjoint from Γ(g
(n)
ω0 ) for all i ∈ N, we have that ω0 is not in Σ. However,

since Ki → K0 as i→∞, it follows that ω0 is a limit point of Σ, so Σ is infinite.

However,
⋃∞
i=N Ki is disjoint from {x ∈ Γn+1 : xn = α}, and it follows from the

definition of an irreducible collection of functions (Definition 3.5) that a connected

subset of Γn+1 which is disjoint from {x ∈ Γn+1 : xn = α} can intersect the graphs

of at most two members of {g(n)
ω }ω∈Ω. Thus, we have a contradiction.

Sub-case (b): Suppose that Ki intersects Γ(g
(n)
ω0 ) for infinitely many i ∈ N.

From Lemma 6.26 and Property (3) above, we have that Ki can intersect both

Γ(g
(n)
ω0 ) and Γn+1 \ Γ(g

(n)
ω0 ) for at most finitely many i ∈ N. Hence, Ki ⊆ Γ(g

(n)
ω0 ) for

all but finitely many i ∈ N, so there exists n0 ∈ N such that for i ≥ n0, Ki ⊆ Γ(g
(n)
ω0 ).

Then
⋃∞
i=n0

Ki is a subset of Γ(g
(n)
ω0 ), and by Property 5, either K0∪

⋃∞
i=n0

Ki or

K0∪
⋃∞
i=n0+1 Ki is homeomorphic to L. However, Γ(g

(n)
ω0 ) is homeomorphic to Γn(G),

so this contradicts the assumption that Γn(G) does not contain a subcontinuum

homeomorphic to L.

Case 2: Suppose that K0 is not contained in the graph of any member of

{g(n)
ω }ω∈Ω. Just as before, K0, cannot contain any of these graphs, so by Lemma 6.23,

K0 must be contained in Γ(g
(n)
ω1 ) ∪ Γ(g

(n)
ω2 ) for some ω1, ω2 ∈ Ω. Moreover, by as-

sumption, K0 intersects both Γ(g
(n)
ω1 ) \ Γ(g

(n)
ω2 ) and Γ(g

(n)
ω2 ) \ Γ(g

(n)
ω1 ).

It follows from Definition 3.5 that the only way that the sequence(Ki)
∞
i=1 could

converge to K0 is if for infinitely many i ∈ N, Ki intersects both Γ(g
(n)
ω1 ) \ Γ(g

(n)
ω2 )

and Γ(g
(n)
ω2 ) \ Γ(g

(n)
ω1 ). By Lemma 6.26, the sequence (Ki)

∞
i=0 cannot satisfy this

requirement while also satisfying Property (3) above. Thus, once again, we have a

contradiction.

Hence, Γn+1(G) does not contain a subcontinuum homeomorphic to L, so by

induction, for all n ∈ N, Γn(G) fails to contain a subcontinuum homeomorphic to L.

Hence, by Theorem 6.17, lim←−G also fails to contain a subcontinuum homeomorphic

to L, so lim←−G and lim←−F are not homeomorphic.
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We conclude this section with one final theorem. This theorem is nearly iden-

tical to Theorem 6.27, and its proof too is almost exactly the same as the proof of

Theorem 6.27.

Theorem 6.28. Let (F, {fλ}λ∈Λ), (G, {gω}ω∈Ω) ∈ I. If

0 < card [Λ′ \ {0, 1}] < card [Ω′ \ {0, 1}] <∞,

and

G(0), G(1) ∈ {{0} , {1} , {0, 1} , [0, 1]} ,

then lim←−F and lim←−G are not homeomorphic.

6.3 Topological Classification of Four Families of Inverse Limits

In this final section, we define four specific families of irreducible pairs. We

show that (topologically speaking) the sets of inverse limits which come from these

respective families are mutually exclusive. Moreover, within each family, we give a

full classification of the inverse limits which arise. The proofs in this section use

the results from Subsection 6.2.2 as well as the results concerning endpoints from

Chapter Five.

We now define the four families of irreducible pairs whose inverse limits we

classify in this section. We define each family by first defining a family of subsets of

[0, 1] which may be used to index irreducible collections of maps. We then use that

family of indexing sets to define a corresponding family of irreducible pairs. The

inverse limits which arise from these families are classified in Theorems 6.30, 6.32,

6.33, 6.34, and 6.35.

Definition 6.29.

(1) K is the set of all finite subsets of [0, 1] which include both 0 and 1.

FK = {(F, {fλ}λ∈Λ) ∈ I : Λ ∈ K}
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(2) L is the set of all closed subsets Λ ⊆ [0, 1] in which the isolated points are

dense, and such that

(a) 0 < card Λ′ <∞,

(b) 0 and 1 are isolated in Λ, and

(c) every limit point of Λ is a two-sided limit.

FL = {(F, {fλ}λ∈Λ) ∈ I : Λ ∈ L}

(3) M is the set of all closed subsets Λ ⊆ [0, 1] in which the isolated points are

dense, and such that

(a) 0 < card Λ′ <∞,

(b) either 0 or 1 is isolated in Λ while the other is a limit point of Λ, and

(c) every other limit point of Λ is a two-sided limit.

FM = {(F, {fλ}λ∈Λ) ∈ I : Λ ∈M, for α = 0, 1,

if α ∈ Λ′, then F (α) = [0, 1]}

(4) N is the set of all closed subsets Λ ⊆ [0, 1] in which the isolated points are

dense, and such that

(a) 0 < card Λ′ <∞,

(b) both 0 and 1 are limit points of Λ, and

(c) every other limit point of Λ is a two-sided limit.

FN = {(F, {fλ}λ∈Λ) ∈ I : Λ ∈ N , and F (0) = F (1) = [0, 1]}

A representative of each of these families is pictured in Figure 6.4.

The inverse limits which arise from the family FK have already been classified

in Theorem 6.14. We restate this theorem below for completeness.
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Figure 6.4. Four families of irreducible functions

Theorem 6.30. Let (F, {fλ}λ∈Λ), (G, {fλ}λ∈Λ) ∈ FK. Suppose that card Λ = m and

card Ω = n. Then lim←−F and lim←−G are homeomorphic if, and only if, m and n have

the same prime factors.

We will now give a classification for each of the remaining families. The inverse

limits arising from FL are classified in Theorem 6.32, the inverse limits from FM are

classified in Theorem 6.33, and those arising from FN are classified in Theorem 6.34.

Finally, we show in Theorem 6.35 that if (F, {fλ}λ∈Λ) is an irreducible pair

from one of these families, and (G, {gω}ω∈Ω) is a pair from a different family, then

lim←−F and lim←−G are not homeomorphic. All together these theorems give a full

classification of the inverse limits arising from FK ∪ FL ∪ FM ∪ FN .
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Remark 6.31. For any (F, {fλ}λ∈Λ) from any of the families defined in Definition 6.29,

each limit point of Λ other than 0 and 1 is a two-sided limit point, so Γ(F ) contains

no simple closed curves. Hence Theorem 5.6 applies to (F, {fλ}λ∈Λ).

Theorem 6.32. Let

FL,1 = {(F, {fλ}λ∈Λ) ∈ FL : F (0) = F (1)} , and

FL,2 = {(F, {fλ}λ∈Λ) ∈ FL : F (0) 6= F (1)} .

(1) If (F, {fλ}λ∈Λ) ∈ FL,1 and (G, {gω}ω∈Ω) ∈ FL,2, then lim←−F and lim←−G are

not homeomorphic.

(2) Suppose (F, {fλ}λ∈Λ), (G, {gω}ω∈Ω) ∈ FL,i for some i = 1, 2. Then lim←−F is

homeomorphic to lim←−G if, and only if, Λ and Ω have the same number of

limit points.

Proof. First, to see that (1) holds, let (F, {fλ}λ∈Λ) be in FL,1, and let (G, {gω}ω∈Ω)

be in FL,2.

By Theorem 5.6, the endpoints of lim←−F and lim←−G are precisely the points

consisting only of 0s and 1s. Since (F, {fλ}λ∈Λ) ∈ FL,1, we have that F (0) = F (1).

Also, since 0 and 1 are not limit points of Λ, either F (0) = F (1) = {0} or F (0) =

F (1) = {1}. Thus, lim←−F will have exactly one endpoint, either the point (0, 0, 0, . . .)

or the point (1, 1, 1, . . .).

Since (G, {gω}ω∈Ω) ∈ FL,2, we have that G(0) 6= G(1). Thus, one of them

equals {0} while the other equals {1}. If G(0) = {0} and G(1) = {1}, then the

points (0, 0, 0, . . .) and (1, 1, 1, . . .) will both be in lim←−G, and if G(0) = {1} and

G(1) = {0}, then (0, 1, 0, 1, . . .) and (1, 0, 1, 0, . . .) will both be in lim←−G.

In either case, lim←−G has exactly two endpoints, so lim←−F is not homeomorphic

to lim←−G. This establishes (1).
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Next, to see that (2) holds, suppose that (F, {fλ}λ∈Λ), (G, {gω}ω∈Ω) ∈ FL,1.

Theorem 6.27 gives us that if Λ and Ω have different numbers of limit points then

lim←−F and lim←−G are not homeomorphic.

Suppose then that Λ and Ω have the same number of limit points.

Case 1: Suppose that F (0) = F (1) = G(0) = G(1). We will show that F and

G are consistent as defined in Definition 6.3.

Since Λ and Ω have the same number of limit points, there is an order preserv-

ing homeomorphism from Ω onto Λ. This means that the collection {gω}ω∈Ω could

also be indexed by Λ. Since every limit point of Λ is a two-sided limit point, if λ1

and λ2 are consecutive limit points of Λ, then the elements of Λ between λ1 and λ2

form a bi-infinite sequence. In other words, if Λ were to be used to index {gω}ω∈Ω,

there would be no choice as to which functions would be designated gλ1 and gλ2 , but

for the functions situated between these two, there would be infinitely many ways

that they could be indexed by the elements of (λ1, λ2) ∩ Λ.

Hence there is an indexing of {gω}ω∈Ω by Λ such that for each λ, µ ∈ Λ,

{y ∈ [0, 1] : fλ(y) = fµ(y)} = {y ∈ [0, 1] : gλ(y) = gµ(y)} .

It then follows from the assumption that F (0) = F (1) = G(0) = G(1) that

(F, {fλ}λ∈Λ) and (G, {gλ}λ∈Λ) are consistent, so by Theorem 6.6, lim←−F is home-

omorphic to lim←−G.

Case 2: Suppose that F (0) = F (1) 6= G(0) = G(1). We will show that G is

conjugate to an irreducible function which is consistent with F .

Define ψ : [0, 1] → [0, 1] by ψ(x) = 1 − x. Since neither 0 nor 1 is a limit

point of Λ, and every limit point is a two-sided limit, there is an order reversing

homeomorphism ϕ : Λ→ Ω such that for each λ, µ ∈ Λ,

{y ∈ [0, 1] : fλ(y) = fµ(y)}

=
{
y ∈ [0, 1] : ψ ◦ gϕ(λ) ◦ ψ−1(y) = ψ ◦ gϕ(µ) ◦ ψ−1(y)

}
.
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Therefore, if we define G̃ = ψ ◦ G ◦ ψ−1, and for each λ ∈ Λ we define,

g̃λ = ψ ◦ gϕ(λ) ◦ ψ−1, then (F, {fλ}λ∈Λ) and (G̃, {g̃λ}λ∈Λ) are consistent. Thus, by

Theorem 6.6, lim←−F and lim←− G̃ are homeomorphic, and since G̃ is conjugate to G, it

follows that lim←−F is homeomorphic to lim←−G.

A similar argument holds for (F, {fλ}λ∈Λ), (G, {gω}ω∈Ω) ∈ FL,2.

Theorem 6.33. Let

FM,1 = {(F, {fλ}λ∈Λ) ∈ FM : either F (0) = {0} or F (1) = {1}} , and

FM,2 = {(F, {fλ}λ∈Λ) ∈ FM : either F (0) = {1} or F (1) = {0}} .

(1) If (F, {fλ}λ∈Λ) ∈ FM,1 and (G, {gω}ω∈Ω) ∈ FM,2, then lim←−F and lim←−G are

not homeomorphic.

(2) Suppose (F, {fλ}λ∈Λ), (G, {gω}ω∈Ω) ∈ FM,i for some i = 1, 2. Then lim←−F is

homeomorphic to lim←−G if, and only if, Λ and Ω have the same number of

limit points.

Proof. First, to see that (1) holds, let (F, {fλ}λ∈Λ) be in FM,1, and let (G, {gω}ω∈Ω)

be in FM,2.

By Theorem 5.6, the set of endpoints of each of these inverse limits is the

intersection of that inverse limit with the set {0, 1}N. We will show that lim←−F has

countably many endpoints while lim←−G has uncountably many.

By the definition of FM,1, either F (0) = {0} and F (1) = [0, 1], or F (1) = {1}

and F (0) = [0, 1]. Let α ∈ {0, 1} be the point which is fixed by F , and let β ∈ {0, 1}

be the point whose image is [0, 1]. Then {0, 1}N∩ lim←−F contains the point (α, α, . . .),

the point (β, β, . . .), and any point x such that there exists N ∈ N with xi = α for

xi ≤ N , and xi = β for i > N . These are the only points which are endpoints of

lim←−F, and there are countably many.
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By the definition of the sub-family FM,2, we have that either G(0) = {1} and

G(1) = [0, 1], or that G(1) = {0} and G(0) = [0, 1]. As before, we label 0 and 1 as

α and β in such a way that G(α) = {β}, and G(β) = [0, 1]. Then

{0, 1}N ∩ lim←−G =
{

x ∈ {0, 1}N : if xi = β for some i ∈ N, then xi+1 = α
}
.

We may define an injection h : NN → lim←−G∩{0, 1}N by setting h(n1, n2, n3, . . .)

equal to the sequence which begins with a β, followed by n1 many αs which are

followed by a β which is followed by n2 many αs which are followed by a β and so

on. It follows that lim←−G has at least as many endpoints as the cardinality of the set

NN which is uncountable.

Next, a similar argument to the one used for Part (2) of Theorem 6.32 will

show that Part (2) of this theorem holds.

Theorem 6.34. Suppose (F, {fλ}λ∈Λ), (G, {gω}ω∈Ω) ∈ FN . Then lim←−F is homeomor-

phic to lim←−G if, and only if, Λ and Ω have the same number of limit points.

Proof. In this case, since F (0) = F (1) = G(0) = G(1) = [0, 1], if Λ and Ω have

the same number of limit points, then (F, {fλ}λ∈Λ) and (G, {gω}ω∈Ω) are consistent.

The result follows.

The inverse limits arising from each individual family have been classified. We

now show that the inverse limits arising from each of these families are topologically

distinct from those arising from any other family.

Theorem 6.35. Let F and G be distinct members of {FK,FL,FM,FN}, and sup-

pose that (F, {fλ}λ∈Λ) ∈ F , and (G, {gω}ω∈Ω) ∈ G. Then lim←−F and lim←−G are not

homeomorphic.

Proof. We have from Theorem 6.21 that if either F or G is FK, then lim←−F is not

homeomorphic to lim←−G.
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If F = FL, and G is either FM or FN , then it follows from Theorem 5.6 that

lim←−F has either one or two endpoints, while lim←−G has either countably many or

uncountably many endpoints, so these inverse limits would not be homeomorphic.

Finally, suppose that F = FM and G = FN . If Λ and Ω have different numbers

of limit points, then by Theorem 6.27, lim←−F and lim←−G are not homeomorphic. If Λ

and Ω have the same number of limit points, then by the definitions M and N , 0

and 1 are both limit points of Ω, while only one of them is a limit point of Λ. Hence

card [Ω′ \ {0, 1}] < card [Λ′ \ {0, 1}] ,

so by Theorem 6.28, lim←−F is not homeomorphic to lim←−G.
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Topol., 16(4):2481–2516, 2012.

[6] Marcy Barge and Joe Martin. Endpoints of inverse limit spaces and dynamics.
In Continua (Cincinnati, OH, 1994), volume 170 of Lecture Notes in Pure
and Appl. Math., pages 165–182. Dekker, New York, 1995.

[7] R. H. Bing. Snake-like continua. Duke Math. J., 18:653–663, 1951.

[8] Louis Block, James Keesling, Brian Raines, and Sonja Štimac. Homeomor-
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