
ABSTRACT 

Topology Optimization of Weakly Coupled Thermomechanical Systems for Additive 

Manufacturing 

Jackson S. Ramsey, M.S.M.E. 

Mentor: Douglas E. Smith, Ph.D. 

Topology optimization is a design optimization method that generates structures 

with complex geometries that are ideally suited for additive manufacturing. Most 

additively manufactured structures have anisotropic material properties, especially those 

composed of fiber-filled polymers. In addition, residual thermal stresses arise from 

nonisothermal cooling processes during manufacturing. This thesis presents a new 

topology optimization-based approach that incorporates both material anisotropy and 

weakly coupled thermomechanical loading into the design computations. Here, design 

derivatives are evaluated using the adjoint variable method specifically for the weakly 

coupled thermomechanical system. Two separate update schemes, the optimality 

criterion-based update scheme and the globally convergent method of moving 

asymptotes, minimize the compliance or strain energy within the design space over 

material density and anisotropic orientation. The relative performance of the objective 

functions and update schemes are compared to determine how to best optimize these 

structures. 
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CHAPTER ONE 

Introduction 

 

 

1.1 Additive Manufacturing and Topology Optimization 

 

The recent development of additive manufacturing has redefined what is possible 

to create. In its early years the technology was used primarily to accelerate the 

prototyping process, but as the technology has matured it is increasingly being used for 

end-use parts. The incredible amount of design freedom allows for extremely lightweight, 

complex, and strong parts to be produced. However, design methods have not yet caught 

up to the near-arbitrary complexity allowed in additively manufactured structures. 

Topology optimization is a group of structural optimization methods that seek to 

determine the best placement of material by optimizing an important response of the 

structure under consideration. The structures produced often mimic natural designs like 

plant root or spiderweb structures. The resultant structures are complex enough that, until 

the development of additive manufacturing, design solutions were often difficult or 

impossible to manufacture without significant design alteration in post-processing. Thus, 

topology-optimized parts have often been presented in research as computational models 

without producing physical parts for testing. 

Additive manufacturing and topology optimization are two technologies that 

complement each other. Topology optimization is a design method that fully utilizes the 

possibilities in a design space and is not constrained by traditional design and 

manufacturing procedures. Additive manufacturing is a viable approach capable of 
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producing these parts. Uniting these technologies will allow for ideal parts to be created 

for objectives such as stiffness, lightweighting, thermal efficiency, and many other 

parameters. In order to develop a topology optimization approach that fully models the 

additive manufacturing process, several advancements must be made from the current 

state of the art methods. 

 

1.2 Objective 

 

 The existing body of work on topology optimization addresses some of the factors 

present in additive manufacturing, however, many factors appear among various research 

publications which do not capture the full complexity needed to model and optimize an 

additively manufactured structure. For example, topology optimization under thermal 

loading has been considered, but prior work either assumes that the temperature field is 

given, or thermal loading is considered separate from the mechanical loading. Further, to 

the best of our knowledge, no transient thermal loading has been considered for 

optimization, which would be necessary to represent the cooling process in many of the 

common additive manufacturing methods such as fused-filament fabrication and selective 

laser sintering. In addition, the material properties in additively manufactured parts are 

often highly anisotropic and vary throughout the part, with the material properties 

dependent on the method of material deposition or extrusion. Topology optimization for 

anisotropic materials has been performed, but the models have been limited to systems 

including only mechanical loading. 

 This work seeks to model additive manufacturing in topology optimization by 

unifying several works that model partial elements of the additive manufacturing process 

and to advance the work one step closer to fully capturing the additive manufacturing 
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method. The research presented here considers weakly coupled thermomechanical 

systems, where a design-dependent temperature field generates thermal stresses that 

influence the mechanical equilibrium, is defined with a material that is orthotropic in both 

the thermal and mechanical analyses and is spatially varying. Two topology optimization 

algorithms are considered where we optimize the material density and orientation, and 

the relative performance of the algorithms is assessed. Two objective functions are 

considered for stiffness minimization, as in weakly coupled thermomechanical systems a 

stiffness inverse can be formulated as compliance or strain energy. The results presented 

here show the viability of optimizing in the model considered and offer recommendations 

for future work to more accurately optimize the structure of additively manufactured 

parts. 

 

1.3 Overview of Contents 

 

The current state of the additive manufacturing industry and research is discussed, 

along with an overview of different structural optimization methods, in Chapter two. The 

need for a new design approach is explained by examining many common additive 

manufacturing processes and noting the effect that the production process has on the 

performance of the part. Existing topology optimization methods are presented to provide 

an outline of currently available methods, their capabilities and existing applications, and 

their respective strengths and weaknesses. 

Following this overview, the model used for the optimization problem considered 

in this thesis is developed in Chapter three. First, compliance optimization of a 

mechanical system is presented. Compliance minimization is commonly used and has 

been well-established in the literature. Conduction heat transfer in structures is then 
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introduced, and the coupling between thermal and mechanical analyses is explored. 

Anisotropic material behavior is also considered, and an additional set of design variables 

is introduced to capture the orientation of the material’s preferred direction. The design 

sensitivities are determined for this system, and both the optimality criterion and globally 

convergent method of moving asymptotes are discussed as possible optimization 

methods. Additionally, another objective function, strain energy, is proposed as an 

alternate objective function as it also behaves as a stiffness inverse. 

In Chapter four the optimizations are conducted for a sample design domain. 

Several optimizations are performed for using either compliance or strain energy as the 

objective function, and the performance of the two optimization algorithms described 

above is considered. A series of tests with increasing thermal loading is performed to 

determine how the thermal effects affect the final topology for each objective function. 

Optimal results obtained with each of the objective functions mentioned above are 

compared and recommendations on which one is best suited to the problem posed here 

are made. Optimizations with varying amounts of thermal loading are discussed, which 

offers insight into how various objective functions affect the resultant structures. Also, 

the optimization algorithms are compared in a similar manner to determine which are 

more effective at optimizing the structures. Their relative advantages are discussed and 

design problems in which each would perform well are determined.  

Chapter five then summarizes the conclusions of this research and recommends 

future steps. While no physical testing of parts is done in this work, Chapter five outlines 

the necessary limitations of physically testing the material model used in this work and a 
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means of producing proof-of-concept parts. The limitations of the method used here and 

future work to improve it are given. 
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CHAPTER TWO 

Literature Review 

 

 

2.1 Introduction 

 

 The development of additive manufacturing has opened new design possibilities. 

The research presented in this thesis focuses specifically on additive manufacturing, as 

the rapid development of the method has already drastically affected manufacturing and 

will continue to do so as the technique matures.  

 

2.1.1 Overview and History 

 

 For most of its history, additive manufacturing (AM) has been used as a rapid 

prototyping method. It encompasses a family of techniques based on the CNC machining 

systems developed beginning in the 1960s [1]. Typical computer-aided machining 

involves beginning with a block of material larger than the desired part and then 

removing material with a drill bit, water jet, laser, or similar cutting tool to reach the 

desired shape. Additive manufacturing, in contrast, builds a part by adding material 

during the design process. Less material is generally used in AM compared to traditional 

processes because there is minimal material removal. In addition, there is greater design 

freedom in AM because the material at each point in the part can be individually placed.  

The AM method began with stereolithography printing in 1987 that solidified 

liquid polymer into a specific pattern by using directed ultraviolet radiation. Since then, 

AM has expanded to seven main techniques, which include binder jetting, direct energy 

deposition, material extrusion, material jetting, powder bed fusion, sheet lamination, and 
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vat photopolymerization [2]. While the first AM technique was a form of vat 

photopolymerization, material extrusion has become widespread as a cost-effective and 

efficient AM method. One variety, known as Fused-Filament Fabrication (FFF) or Fused 

Deposition Modeling (FDM), employs thermoplastic filament that is melted in an 

extruder and deposited with a CNC-type gantry system. FDM has been popularized in 

desktop printers that are inexpensive enough for hobbyists and students. Fused-filament 

fabricated parts have traditionally been poorly suited to high-precision or high-loading 

applications but are often used in the prototyping process. Recent developments such as 

short carbon fiber inclusions to form a polymer composite and large-area printers are 

challenging the limitations of FDM by drastically increasing the strength and size of AM 

parts [3]. Figure 2.1 illustrates another AM method, powder bed fusion. 

 

 

Figure 2.1: Powder Bed Fusion Process [4] 
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Powder bed fusion methods, such as selective laser sintering, can produce parts 

with extremely high geometric precision using high-performance materials such as steel 

and titanium. Metal AM systems can be significantly more expensive, but their parts are 

well-suited for end-use applications in industries like aerospace where high strength-to-

weight ratios are required. Metal AM devices have experienced exponential growth in 

sales as they are increasingly adopted for production in industry [5], as seen in Figure 2.2. 

 

 

Figure 2.2: Trends in Metal AM Sales [5] 

 

 The significant increase in sales visible in Figure 2.2 is likely due to widespread 

awareness of the benefits of AM described above, namely fast affordable production of 

arbitrarily complex geometries for parts that are mechanically strong and geometrically 

precise enough for production. 

 The research in this thesis is primarily aimed at fused-deposition modeling where 

high temperature material is deposited, and the resulting material properties are 

anisotropic. While much of the AM influence on the topology optimization approach 

presented here is driven by FDM, the design approach in the following chapters is not 
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limited to FDM and may well serve the design of parts produced with other AM 

technologies. For example, many aspects of the findings apply to selective laser sintering 

and other techniques. Current literature is somewhat limited with respect to the best way 

to use AM systems, as AM methods are just now becoming common industry. The work 

here seeks to advance our understanding of AM systems and offer recommendations on 

how to optimize part performance. 

 

2.1.2 Fused Filament Fabrication 

 

 The most common fused-filament fabrication technique usually consists of a 

desktop-sized device containing a polymer extrusion system mounted on a three-

dimensional gantry system. Material is supplied as a filament of thermoplastic polymer or 

polymer composite to an extruder that deposits material based on a given toolpath. The 

extruder forces the polymer filament through a heater to melt it and then deposits it onto a 

build platform through a nozzle. A standard FDM system has three axes of mobility, 

allowing material to be placed at any coordinate within the build volume to form the part. 

Some FDM systems allow the extruder to move in all three axes and fix the build 

platform. Other FDM devices allow the extruder to move only in directions parallel to the 

build plane and have the build plate raise and lower. Many permutations exist, but the 

build platform and extruder must have at least three axes of movement combined. Figure 

2.3 shows one such system. 
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Figure 2.3: Diagram of Fused-Filament Fabrication Process [6] 

The polymer is deposited in a molten state and allowed to cool to form a solid 

structure. In some cases, a support structure is needed underneath the printed part as it 

cools so that it does not collapse. Support can be made by extruding support patterns that 

are designed to support the main structure as it cools and then be removed once extrusion 

is complete. Some systems contain multiple extruders that deposit different material and 

can use a secondary material exclusively for the support, as pictured above. This can be a 

water-soluble polymer, allowing for easy removal of the supports without risking damage 

to the rest of the part. 

2.1.2.1 Performance of additively manufactured structures. The polymer in fused-

filament fabrication is deposited in a series of beads that make up the part. The beads are 

placed side-by-side, and both air gaps between the beads and reduced polymer bonding 

between the beads can weaken the part. The direction the beads are extruded can thus 
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affect the structural response of the part. Figure 2.4 shows different bead extrusion 

patterns. 

The closeness of the beads also affects inter-bead bonding. A part can be made 

less dense by spacing the beads further apart and allowing air gaps at the expense of part 

strength. The tradeoff between density and strength and the ability to vary the bead 

spacing arbitrarily allows for much greater design freedom than in traditional 

manufacturing methods like injection molding, but parts with no bead spacing are still 

weaker than parts produced via injection molding and other means. Figure 2.5 shows how 

the strength of an extruded part varies with toolpath orientation. 

Figure 2.4: Possible Bead Deposition Patterns [7] 

The bead direction can be changed with each layer to generate infill patterns that 

create parts with toolpath-dependent mechanical and thermal properties. The data 
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obtained from [7] in Figure 2.5 shows the tensile strength for various bead orientation 

patterns and compares these values to the tensile strength of an injection molded part. 

There is high variance in the strength of the AM part based on the orientation of the 

beads, but all AM parts perform worse than the injection molded part. Tensile strength 

ranged between 65-72% of the injection molded part, and compressive strength was 80-

90% of the injection molded part. 

Figure 2.5: Tensile Strength of Various Print Patterns for ABS Plastic Compared to 

Injection Molded Parts [7] 

2.1.2.2 Manufacturing challenges: anisotropy. The anisotropy noted above is 

problematic beyond the AM parts’ failure to perform as well as an injection molded part. 

Polymer chains tend to align in the direction of the bead [3], which increases the bead’s 

stiffness and tensile strength in that direction. In addition, air gaps between adjacent 

beads weaken the part’s strength in the directions perpendicular to the bead, and if beads 

cool below the polymer’s glass transition temperature, they form weaker bonds to 
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adjacent beads. Layers are usually dispensed sequentially, so the weaker bonding occurs 

most between successive layers. Thus, parts produced by fused-filament fabrication are 

often strongest and stiffest in the direction of the beads, weaker and more compliant in 

the direction parallel to the build plate and perpendicular to the beads, and weakest and 

least stiff in the direction perpendicular to build plane. Figure 2.6 shows the air gaps 

between beads in a printed part that exaggerates the gaps for visibility. 

Figure 2.6: Image of Beads of FFF-Produced Part in a 0-90 Orientation with Air Gaps 

Exaggerated [8] 

2.1.2.3 Manufacturing challenges: thermal stresses. Additionally, as the 

deposited polymer cools from melt to the environment temperature, it contracts based 

on its coefficient of thermal expansion. The cooling process can generate thermal 

stresses 

within the part that cause deformation or premature failure of the part. In small-scale 

fused-filament fabrication, the thermal deformation commonly causes the corners of a 

print to peel upward, as depicted in Figure 2.7. 
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Figure 2.7: Diagram of Common Warping Due to Thermal Stresses [9] 

Thermal stress is present in other AM methods as well. Most metal AM methods 

involve the melting of the metal involved, and as metals have higher melting 

temperatures than polymers, parts produced with methods like powder-bed fusion can 

experience extremely high thermal stresses. Such stress is sufficient to crack the part in 

some cases, as seen in Figure 2.8. Methods that involve a polymer curing or a material 

drying have analogous stresses as the material contracts due to curing or drying stresses. 

Figure 2.8: Image of Cracking Due to Thermal stress in a Titanium Power-Bed Fusion 

Part [4] 
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The thermal stresses present in parts produced using smaller FDM systems can be 

lessened by using a heated build plate and insulating the print volume to provide for 

slower cooling. However, researchers have recently developed large FDM printers, and 

the thermal effects in those systems are more challenging to mitigate. 

2.1.2.4 Big area additive manufacturing. Oak Ridge National Laboratory 

partnered with Cincinnati, Inc. (Cincinnati, OH, USA) to create a large-scale polymer 

deposition system with a build volume of 20’ x 8’ x 6’. The large-scale extruder and 

print setup is shown in Figure 2.9. The large scale printer shown in Figure 2.9 has been 

used to produce polymer composite parts such as an excavator cab, molds for fiberglass 

boat hulls, molds for wind turbine blades, a submarine hull, and the chassis and shell of a 

Shelby Cobra [10]. The capability to rapidly produce large structures has opened an 

entirely new set of applications for FDM. 

Figure 2.9: Big-Area Additive Manufacturing Printer at Oak Ridge National Laboratory 

[11]
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The large-scale polymer deposition printer uses carbon fiber-filled plastic pellets, 

which are melted and deposited with a single-screw extruder instead of the filament 

system used by small scale FFF devices. The screw extrusion method allows for a much 

higher print rate. The deposited material is also stiff enough that it can be used to build 

tooling in hours that traditionally can take weeks to manufacture [11]. There is 

opportunity to produce large, high-strength parts with large-scale polymer deposition 

much more quickly and more cost-effectively than traditional methods. Figure 2.10 

compares the energy necessary for big-area additive manufacturing to other forms of 

manufacturing. 

Figure 2.10: Comparison of Energy Intensity of Various Manufacturing Methods [12] 
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In the comparison above, Oak Ridge National Laboratory [12] compared the 

energy necessary to produce parts with different manufacturing methods and found big-

area additive manufacturing to be the second most energy efficient. 

The thermal stresses experienced during printing can have more severe effects as 

the size of the print increases. For example, the first print of the Shelby Cobra failed due 

to cracks that resulted from the thermal stresses [11], and research at Oak Ridge National 

Laboratory has been done to model the thermal behavior during manufacturing in an 

attempt to minimize the thermal stress [13], [14]. A cooling model has been proposed by 

Compton et. al. [14] for one-dimensional cooling of large-scale polymer deposition but 

modeling two- or three-dimensional cooling has not yet been done. 

2.1.2.5 Fiber reinforcement. One method to decrease the effect of thermal stresses 

while improving mechanical performance is to add other materials to the polymer. 

Several types of materials have been considered to form a polymer composite for AM, 

including elastomers like titanium dioxide, plant fibers, and carbon and glass fibers [15]. 

The carbon fibers show the highest increase in material strength and stiffness [15], where 

the length of the fiber and the fiber volume fraction affect the performance of the part. 

Figure 2.11 from [16] shows how material properties change as the amount of fiber added 

increases. 
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Figure 2.11: Tensile Strength and Modulus of Parts with Varying Carbon Fiber Content 

and Manufacturing Method [16] 

Results of a parametric study of print parameters in [16] determined that increased 

carbon fiber weight percentage can significantly increase tensile strength and modulus. 

The strength of AM-produced carbon fiber-reinforced acrylonitrile butadiene styrene 

(ABS) can approach that of aerospace-grade aluminum [17]. Another study found an 

increase of 115% in tensile strength and a 700% increase in modulus in the direction of 

print [16] for carbon fiber-reinforced ABS parts compared to pure ABS parts. Longer 

fibers tend to increase the strength and stiffness parameters more than short fibers [18], 

but the fibers are broken and shortened by the extrusion process, limiting the effect that 

fiber inclusions can have on the final part properties. Continuous carbon fibers typically 

perform better than short chopped fibers, with one study finding an increase in the elastic 

modulus by a factor of 40 for continuous carbon fiber-reinforced nylon [19]. 

Short chopped carbon fibers tend to align in the direction of extrusion, increasing 

material strength, stiffness, and thermal conductivity and decreasing the coefficient of 

thermal expansion primarily in that direction [16]. Modeling of the extrusion process 

indicates that 60-66% of short chopped fibers are aligned in the extrusion direction [20], 
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and continuous fibers are completely aligned. The alignment increases the material 

anisotropy present in FDM parts. Some research in ABS with short glass fibers indicates 

that printed parts, while still stronger in the extrusion direction than pure ABS parts, are 

weaker perpendicular to the beads than pure ABS [21]. It is worth noting that the reduced 

die swell that results from using short carbon fiber-filled polymer can decrease the void 

between beads, which in general can increase bonding between beads.  

 In summary, high-strength high-volume parts can be created for a variety of new 

application using fiber-reinforced thermoplastics in big-area polymer composite 

deposition printers. Parts produced with such printers experience significant thermal 

stresses and anisotropy due to the manufacturing process, which need to be considered in 

part design. We next examine the steps that have been made to consider those factors in 

topology optimization algorithms. 

 

2.2 Topology Optimization 

 

2.2.1 Overview and History 

 

 Topology optimization is a form of structural optimization that determines the 

geometric layout of a part having a maximum or minimum performance measure such as 

stiffness. Several performance measures have been optimized, topology optimization has 

been performed using various general methods such as sequential linear programming 

and methods specifically designed for topology optimization, such as the homogenization 

method and the optimality criterion-based update scheme. 

 The first topology optimization method is often credited to Bendsoe and Kikuchi 

for their 1988 paper. The homogenization method maximized the stiffness of a two-
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dimensional part under a fixed volume constraint. Other techniques were developed to 

solve the structural compliance minimization problem, such as the optimality criterion 

method [22] and the method of moving asymptotes [23]. Each of these methods have 

been applied to the basic structural compliance problem and have also been used in 

structures with multiple loading conditions, to optimize the performance of heat sinks, 

optimize the fundamental frequency of vibration, and create compliant mechanisms. 

Topology optimization has been used to develop parts with multiphase materials, 

anisotropic material properties, and piezoelectric properties. Bendsoe and Sigmund give 

numerous examples of these applications of topology optimization and more [24]. 

2.2.2 Compliance Optimization Methods 

Minimizing the compliance of a structure was the first problem solved by 

topology optimization [25], and as compliance is analogous to the inverse of stiffness, it 

is extremely useful in maximizing the stiffness of a part. Each of the aforementioned 

methods used for topology optimization of other parameters were used to optimize 

compliance first, and compliance optimization is the most well-developed application 

[24]. 

Compliance minimization generates structures that are extremely stiff and 

lightweight, which is particularly useful in the aerospace and automotive industries as 

reductions in weight can affect the fuel efficiency of vehicles. Many commercial finite 

element programs include a topology optimization routine to minimize compliance, such 

as Ansys, Solidworks, and Abaqus [26]. The final topologies are typically geometrically 

complex, and while this presents manufacturing challenges, the designs are being used in 

production. 
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The algorithms used for topology optimization differ in formulation. Some 

include heuristic steps that are tailored specifically to compliance optimization, and other 

methods are more rigorously defined and easily applicable to other objective functions. 

2.2.2.1 Homogenization approach. The homogenization method was the first

method used for topology optimization, and while simpler methods have since been 

created, the groundwork of topology optimization was laid with this method. In the two-

dimensional homogenization method, a design space is defined and discretized into finite 

elements where it is common to use identically sized square elements. Each square 

element is modeled with a rectangular void, with the side lengths defined by design 

variables. The topology optimization consists of resizing these voids to minimize the 

compliance of the structure. Successive work considered triangular voids, and allowed 

the rectangles to be rotated as a function of design [27], which made it possible to 

consider anisotropic materials. The method was expanded to shell structures [28], and 

three-dimensional structures [29]. 

The approach of considering the void shape within each element defines the 

microstructure of the part, and the final topologies are mesh-like structures. It was 

assumed that the void in an element represents an entire region of microscale voids 

instead of a single large void, which leads to difficulties in manufacturing the parts. 

Producing the actual parts has been done by creating large-scale cells with the same 

shape as the microscopic voids derived from the model [30], but this only approximates 

the model’s design. New methods were considered to generate structures that could be 

manufactured without requiring such an approximation step.  
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2.2.2.2 Density penalization and the optimality criterion approach. Instead of 

treating each element as having a single void that could be individually designed, the 

density penalization method considers a design domain discretized into elements, which 

are also used for the finite element analysis [31]. Each element is assigned a density that 

varies between 0 and 1, where a density of 0 implies that the element is void and a 

density of 1 implies that the element is full of material. Fractional values for densities are 

permitted but are penalized in a way that encourages the densities to trend toward the 

upper or lower bounds. This method of design parametrization is used with the optimality 

criterion approach and the method of moving asymptotes [23]. In addition, element 

densities have been parameterized by higher level functions such as that found in the 

level-set approach [32]. The density method of topology optimization is further developed 

in Chapter three below. 

The optimality criterion method is often used as a basis for topology optimization 

that solves a compliance minimization problem with a constraint on the amount of 

material used [22]. A constraint on volume provides an upper bound on the amount of 

material used, and the update scheme uses the Lagrange multiplier in a heuristic gradient-

based approach that preserves the volume fraction constraint as an equality at every step. 

While the optimality criteria method used in topology optimization involves a heuristic 

parameter, it typically exhibits monotonic convergence to a final design where the 

densities approach either solid or void. 

The optimality criterion approach has been applied in a concise Matlab code by 

Sigmund that is freely available and solves the two-dimensional topology optimization 

problem for planar structures [22]. The code used herein originated with that code. Other 
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versions of the code exist and have been applied to three-dimensional structures [33]. 

Similar formulations can be used to optimize thermal problems such as the effectiveness 

of a heat fin, indicating that the method, while heuristic, can be applied to more than just 

mechanical compliance minimization. 

2.2.2.3 The method of moving asymptotes. While the optimality criterion method

works well for compliance minimization, its common application to compliance 

minimization topology optimization must be extended when other objective functions are 

considered. The OC method must itself be modified to allow it to apply to more general 

models. The method of moving asymptotes is a general optimization scheme which has 

been applied to topology optimization [23]. When applied to topology optimization, the 

method of moving asymptotes utilizes the same density penalization method to 

parametrize the design of the structure but updates the densities in a gradient-based 

approach similar to sequential linear programming. One version of the method of moving 

asymptotes, the globally convergent method of moving asymptotes (GCMMA) was 

developed by Dr. Krister Svanberg [23], available as a Matlab code on request for 

research purposes. It has been shown to apply to many different optimization functions 

[34]. Unfortunately, the GCMMA algorithm can be more computationally expensive as it 

may require several function evaluations for each optimization iteration. In recent years it 

has replaced the optimality criterion approach in many topology optimization 

applications due to its versatility [23]. The GCMMA method is considered in Section 3 

and its performance is compared to the optimality criterion method. 
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2.2.2.4 Bidirectional evolutionary structural optimization. The evolutionary

structural optimization approaches take a simpler approach by basing the update method 

only on local objective function values, instead of computing the gradient. In standard 

applications of evolutionary structural optimization approaches, element densities are 

defined as above but are only permitted to hold discrete values of 0 or 1[35]. In 

Evolutionary Structural Optimization (ESO), the structure starts with all densities equal 

to 1 and successively removes the material from elements based on each element’s 

contribution to the objective function [35]. The first use of ESO showed that it generates 

structures similar to the ones that the homogenization method produces, but it does not 

require a gradient, which drastically decreases the computational burden [35]. Adding a 

bidirectional aspect allows material to be added as well as subtracted, improving the 

ability to avoid local minima [36]. Applications are mostly in structural stiffness 

optimization, but BESO has been used to minimize the maximum Von Mises stress [36] 

and optimize the performance of compliant mechanisms [37]. BESO has been applied to 

commercial finite element codes as well [26]. 

2.2.2.5 Level set approach. The level-set approach defines the structure by

creating a scalar function over the design domain where the structure is defined as 

regions where the function is negative [32]. The level-set function is continuous, such 

that the boundary of a two-dimensional structure is defined along the curve where the 

level-set function is equal to zero. As optimization iterations continue, the level-set 

function is modified based on objective function and constraint gradient values so that 

the volume of the structure defined is fixed. It is permissible for holes to nucleate within 

the structure region but adding solid regions to a section not in the structure is not 

permitted 
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if the region would be unsupported [32]. Level-set methods have been used with the 

density penalization method used above, as a mapping can be defined between the finite 

elements and their densities and the scalar level-set function. 

2.2.2.6 Other topology optimization methods. Topology optimization is typically 

formulated as a constrained optimization with many design variables. Several new 

methods have recently been introduced that perform well but have not yet received the 

level of attention of the above widely used methods. For example, sequential linear or 

quadratic programming can be used to solve the topology optimization problem [38], 

which is a similar implementation to the MMA approach described above. In addition, 

the free material optimization approach can achieve an arbitrary level of geometric 

resolution [39] [40] with mesh refinement and perimeter constraints. 

2.2.3 Applications 

Although topology optimization of mechanical performance measures such as 

compliance served as the original motivation for topology optimization, topology 

optimization has been applied to a diverse group of problems. The following are several 

of the primary applications outside of mechanical performance, but this list is not 

exhaustive. 

2.2.3.1 Heat transfer. Optimizing the thermal performance of a part can 

encompass many types of problems. The conduction properties of a heat fin can be 

optimized [24], by considering the thermal compliance which is analogous to mechanical 

compliance [41]. Minimizing thermal compliance corresponds to maximizing the fin 

temperature effectiveness. Convection has been included in heat transfer topology 
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optimization problems where convection has been coupled with fluid flow around the 

part [42]. Figure 2.12 shows an example of a topology-optimized heat fin. 

Figure 2.12: Heat Fin Optimized for Thermal Compliance [43] 

Other thermal heat transfer applications of topology optimization investigate the 

mechanical structural performance of parts under thermal loading. As the temperature of 

a structure changes, thermal stresses result from temperature gradients within the part 

which can deform the part mechanically. The thermal loading can be dependent on the 

parts’ shape [44], as in the structure of an aircraft exhaust, or the thermal loading can 

derive from a fixed temperature change when the thermal expansion is constrained [44]. 

Under such weakly coupled thermomechanical loading where the optimization function is 

mechanical, but the loading is thermal or mixed thermal and mechanical, recent work 

suggests that optimizing compliance does not actually generate parts with maximum 

stiffness [45], [46]. For a given temperature increase, minimizing the strain energy of a 

structure generates a lower final maximum Von Mises stress than minimizing 
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compliance. Other objective functions have been considered for the weakly coupled 

thermomechanical problem [47]. In cases where thermal and mechanical properties are 

each desired, such as in a wall that must support a load while insulating an interior space, 

the analyses need not be coupled. In applications such as designing a heat fin with a 

desired efficiency that can also support a load, multi-objective optimization can be 

applied [44]. Thermal actuators have also been addressed as a weakly coupled 

thermomechanical problem, where the purpose is to maximize the displacement at a 

specific point [48]. Another complexity has been introduced to this system by applying a 

current to the structure and allowing resistance heating to generate the thermal behavior 

[49]. 

In weakly coupled thermomechanical systems where mechanical loading is 

included as well as stresses resulting from temperature changes, prior work in topology 

optimization has been limited to known temperature fields that are assumed given [50], 

[45], [46]. When the temperature field is design-dependent, significant additional 

complexity is introduced in the optimization problem as well as in the gradient 

calculations. To the best of our knowledge, the only work with design-dependent 

temperature field did not couple the thermal and mechanical analyses [44]. The work here 

seeks to advance the progress toward modeling the additive manufacturing process by 

considering a steady state weakly coupled thermomechanical system with design-

dependent thermal and mechanical behavior. 

2.2.3.2 Frequency of vibration. In large structures such as bridges or buildings 

[51], or structures subjected to repeated loading like engine components, cyclic loading at 

the fundamental frequency of vibration can cause premature failure of the part. 
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Maximizing the first natural frequency of the part is desirable and has been done with 

topology optimization using the homogenization method and with linear programming 

[24]. In these applications there is often another constraint or optimization function 

related to the deformation of the structure, as the part must meet other performance 

specifications. Compliance and the first natural frequency can be optimized 

simultaneously [31] in multiobjective optimization, where many mechanical parameters 

can be considered simultaneously [52]. In other applications the natural frequency has 

been optimized alone [53] [54]. 

2.2.3.3 Multiple material design. Early topology optimization applications

assume that only one type of material is used in the part. Introducing a second material 

with a different set of material properties can improve the performance of structures 

under complex loading. Multiobjective problems with competing objective functions can 

benefit from including a second material, as in [44] where both the structural and heat 

transfer properties of residential building siding are simultaneously optimized. A 

mechanically stiff and thermally conductive material was considered with a mechanically 

weak but thermally insulating material to design the parts. Applications of structural 

optimization have included multiple materials, as in optimizing a dam where air, water, 

and concrete must each be considered individually. Additive manufacturing methods 

have been developed that use multiple thermoplastics in a single printed structure [6], so 

multimaterial design methods are now applicable to a large range of applications. In one 

formulation, topology optimization is performed with a second material that provides 

structural support for the material used for the main structure during the printing process. 

Other techniques use a strong, heavy material and a weaker but lighter material, or 
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materials with different heat conduction coefficients and densities for heat transfer 

problems [49]. 

2.2.3.4 Geometrically nonlinear problems. It is common to assume that the stress-

strain relationship of the material used in mechanical topology optimization is linear, 

along with all structural responses. However, linearity cannot be assumed under large 

displacements or contact or sliding boundary conditions. If multiple distinct parts are 

considered in one analysis, then a contact boundary condition models the parts touching 

without being fixed together [55]. Compliant mechanisms often experience displacements 

large enough to exhibit nonlinear behavior, and may also include stresses beyond the 

proportional stress-strain limit [56]. Obtaining reliable convergence of the topology 

optimization for nonlinear systems can be difficult [57] and maximizing stiffness may not 

be accomplished by minimizing compliance. Also, when compliance optimization is 

performed on a linear elastic system, increasing the applied loads yields an identical final 

topology. However, when nonlinear systems are optimized, changing the applied loading 

can generate different structures. This nonlinearity makes it challenging to design a part 

that can be used in more than a single specific loading scenario. 

2.2.3.5 Anisotropic materials.Topology optimization is widely used to design stiff 

lightweight parts [58], and due to recent developments in material performance various 

polymers are well-suited to be used in those parts. The high strength to weight ratio of 

plastics can be improved further by adding glass or carbon fibers to form a polymer 

matrix composite. Polymer composites such as carbon fiber-reinforced ABS plastic can 

approach the strength of aircraft-grade aluminum [17] at much lower weights. However, 
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polymer composites are often anisotropic with respect to elasticity and strength, which 

depends on the method used for manufacture. Additive manufacturing, while providing 

immense design freedom, is known to produce highly anisotropic parts [17]. Introducing 

reinforcing fibers in the form of short chopped fibers or continuous fibers increases the 

strength of the part primarily in the direction that the fibers align in. 

Several material models have been proposed in order to accurately model polymer 

composites. The homogenization method allowed for anisotropic materials by allowing 

the shape and orientation of the microscopic voids to be changed, though this has not 

been directly applied to fiber-reinforced composites. Several methods exist to optimize 

the orientation of fibers within a part directly, where the topology of the part is given and 

various fibers throughout the part have discontinuous orientations to achieve maximum 

stiffness [59], [60]. Optimizing a set of fiber orientations is not as common in topology 

optimization as it does not determine the shape of a structure, so more general 

optimization methods are often considered as approaches like the OC and BESO methods 

were designed for use with isotropic material. General optimization methods can be 

combined with existing topology optimization methods like the OC and BESO 

approaches to simultaneously optimize the shape and fiber orientation of a structure [61]. 

Several methods for computing the optimal fiber orientation exist, including stress-based 

and strain-based formulations. Examples include fiber angles with discrete values [3] and 

also those with continuous values, depending on the manufacturing method under 

consideration. The stacking sequence of three-dimensional laminates has also been 

considered with the same method [62]. 
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The original homogenization approach allowed for anisotropic voids in the 

microstructure of the material [24] in the form of rotated rectangles or triangles. While 

this can adequately represent the complexity of fiber orientation, the formulation involves 

more design variables than is necessary to represent the system, and it often leads to 

designs that cannot be manufactured using current technology, even with additive 

manufacturing techniques. 

Another common topology optimization formulation adds a second design 

variable to each finite element to represent fiber angle orientation [59]. For example, 

Jiang et al. [63] assumed the material to be orthotropic, with the orientation defining the 

direction of maximum stiffness, as in [59] as well. The simplest approach considers a part 

with defined shape where all the orientations are assumed to be equal [64], which models 

an additively manufactured part where the material is extruded in all the same direction, 

as seen in Figure 2.13. The global part orientation can be optimized to determine which 

direction the part should be printed.  

 

 

Figure 2.13: Optimized Print Direction [64] 
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Additive manufacturing can print in arbitrary directions within a print plane, so 

allowing the finite elements’ orientation to vary independently in the plane reflects this 

freedom. A two-dimensional problem was solved by Soto and Yang [59] for compliance 

minimization, where the shape of the part remained fixed. The optimal material 

orientation may need to be determined with a different method than that used in the 

topology optimization of density, particularly if the common topology optimization OC 

method is used (see e.g. Sigmund [22]) as it only incudes density as a design variable. 

Strain or stress-based orientation optimization methods have been considered [61], 

though many approaches simply orient the elements in the direction of principal stress 

[65], [66].  

In the Solid Orthotropic Method with Penalization (SOMP) [67] method, the 

density and material orientation optimization are performed simultaneously, whether the 

same method is used for both or not. When topologies are optimized under mechanical 

loading alone, Bendsoe et al. showed that a principal strain-based formulation may 

minimize compliance [68].  

Under the SOMP formulation, the material orientations can range continuously or 

be confined to a set of allowable values. Restricting the allowable values of the angles to 

a finite set is applicable to the process of creating a composite laminate from several 

layers of woven fiber sheets, as in discrete material optimization [69], [70]. One example 

lamina is seen in Figure 2.14. 
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Figure 2.14: Discrete Material Optimization for Composite Lamina [70] 

 

 Figure 2.15, taken from Jiang et al. [63],shows the optimization process when the 

shape of a structure is optimized simultaneously with the material orientations. The 

structure considered is a beam in three-point bending. 

 

 

Figure 2.15: Continuous Fiber Angle Optimization [63] 
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Finally, [71] included a general anisotropic material model in a topology 

optimization where every component of the elasticity tensor can vary independently 

within the established rules of elasticity in each element. This allows complete freedom 

of material design, but it is not possible to manufacture a type of material that has 

arbitrary material properties, even with current AM techniques. The approach used in the 

research in this thesis is similar to the continuous fiber angle optimization (CFAO) 

method in Jiang, Hoglund, and Smith [63], as it uses continuous orientation variables that 

reflect additive manufacturing without adding unnecessary complexity. 

2.3 Topology Optimization for Additively Manufactured Structures 

Topology optimization has been used to design lightweight and stiff parts, but the 

geometry of the results are often complex and may display fractal-like behavior. As a 

result, the parts cannot often be produced by traditional manufacturing methods. The only 

viable method for production of many topology-optimized parts is additive 

manufacturing. In the past, the majority of research in topology optimization includes no 

actual production of test parts which could be due in part to additive manufacturing 

technologies lagging the development of topology optimization. Now, with additive 

manufacturing used in research and prototyping and beginning to be used to produce end-

use parts [72], topology optimization is seeing increasing application in real-world 

applications. Some pre-processing and post-processing steps must still be taken when 

preparing to produce a part obtained through topology optimization [73], but the ease of 

constructing topology-optimized parts with additive manufacturing improves 

significantly on the large amount of post-processing necessary to produce a topology-

optimized part with non-AM methods. 
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 The anisotropic material behavior and thermal stresses present in additive 

manufacturing are the topic of the current research. Several related approaches have 

included anisotropic material properties, dating back to the original homogenization 

method as mentioned above. The recent development of the CFAO method [63] shows 

the success of simultaneous material orientation and density optimization. Including the 

thermal stresses is more complex. Much of the research cited above that considers 

thermal stresses are based on fixed, design-independent temperature fields, whether 

uniform or varying. To the best of our knowledge, research has yet to be done which 

captures the transient cooling process as the deposited material cools in a design or 

process optimization. 

 Also, while steady-state thermal stress and material anisotropy have both been 

considered separately, they have not been considered simultaneously. The method 

presented in Chapter 3 includes both factors and expands the thermal behavior to a 

steady-state design dependent temperature field. While this work does not fully 

encompass the complexity of an AM cooling process, it advances the ability to model and 

optimize additively manufactured structures. 

 The research here extends the work of two previous graduate students at Baylor 

University. The first work considered compliance minimization of two-dimensional 

structures with anisotropic material properties [74]. The anisotropy was considered as a 

fixed material property, and then as a set of design variables. This work was extended to 

three-dimensional systems by Jiang [75], who used a general Matlab optimizer. The code 

used in both prior theses began from Sigmund’s 99-line Matlab code [22] for isotropic 
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compliance minimization. The thermomechanical topology optimization presented here 

also starts with Sigmund’s work and builds on the earlier work by Hoglund and Jiang. 
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CHAPTER THREE 

Methods 

 

3.1 Design Space and Optimization Function 

 The density method [22] is adopted in the design approach presented here, as it is 

extended to solve the thermomechanical problem considered here with the fewest design 

variables. The homogenization method [25] is not used in the current works because it 

requires design variables for the length, width, and orientation of rectangular holes to 

define the microstructure [25] which leads to unwanted designs. The homogenization 

method requires more design variables than the density method, which would add 

computational expense while not providing a structure suitable for additive 

manufacturing.  

The density method is a topology optimization approach that defines the design 

space and related design variables while being compatible with a variety of update 

schemes. The optimality criterion method and globally convergent method of moving 

asymptotes have both been widely adopted for structural optimization, such that both are 

considered in this work. The topology optimization design domain is presented first for a 

problem with mechanical loading only as in Sigmund [22], and then the approach is 

extended to a steady state weakly coupled thermomechanical problem that more closely 

simulate additive manufacturing processes. Material anisotropy is introduced through 

additional design variables which are included in both the material model and 

optimization methods. Special attention is given to the design sensitivities which are 
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needed for efficient implementation of the topology optimization method used in this 

work. Convergence issues encountered in the optimization implementation are discussed, 

along with other modifications done to the optimization methods. 

3.1.1 Finite Element Formulation 

The finite elements method commonly used to compute the numerical solution of 

partial differential equations for elastic deformation of a structural system form the basis 

of our topology optimization method. The strong form of the associated elasticity 

problem can be written in two dimensions as the steady-state equations of motion 

𝜕𝜎𝑥𝑥
𝜕𝑥

+
𝜕𝜎𝑥𝑦

𝜕𝑦
+ 𝑓𝑥 = 0

(3.1) 

𝜕𝜎𝑥𝑦

𝜕𝑥
+
𝜕𝜎𝑦𝑦

𝜕𝑦
+ 𝑓𝑦 = 0

(3.2) 

The equilibrium is written in terms of strains 𝜎𝑥𝑥, 𝜎𝑥𝑦, and 𝜎𝑦𝑦, which are a 

function of the displacement fields. The body force vector 𝑓 can be expressed in terms of 

components as 𝑓 =  {
𝑓𝑥
𝑓𝑦
}. The stress – strain relationship utilizes the material properties 

to relate the stresses to the strains as 

{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

} = [
𝑐11 𝑐12 0
𝑐12 𝑐22 0
0 0 𝑐66

] {

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦

} 
(3.3) 

The strains can then be expressed in terms of the displacements by the definition 

of strains written as 
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(3.4) 

 

Where 𝑢𝑥 and 𝑢𝑦 are the displacements in the 𝑥 − and 𝑦 − coordinate directions. The 𝑐𝑖𝑗 

terms are elastic stiffness terms that can be expressed in terms of the material properties 

as follows. This research assumes a plane strain condition with an orthotropic material 

which yields 

𝑐11 =
𝐸𝑥(1 − 𝜈𝑥𝑦)

(1 + 𝜈𝑥𝑦)(1 − 𝜈𝑥𝑦 − 𝜈𝑦𝑥)
 

 

(3.5) 

𝑐22 =
𝐸𝑦(1 − 𝜈𝑦𝑥)

(1 + 𝜈𝑦𝑥)(1 − 𝜈𝑥𝑦 − 𝜈𝑦𝑥)
 

 

(3.6) 

𝑐66 = 𝐺𝑥𝑦 (3.7) 

 

 The Young’s moduli in the global 𝑥 and 𝑦 directions at an arbitrary location are 

𝐸𝑥 and 𝐸𝑦 respectively, and the related Poisson’s ratios are 𝜈𝑥𝑦 and 𝜈𝑦𝑥. Note that the 

material properties can be spatially varying and that 𝜈𝑥𝑦𝐸𝑦 = 𝜈𝑦𝑥𝐸𝑥, as is usual for 

orthotropic materials. For the first model described below, the material is assumed to be 

isotropic, i.e. 𝐸𝑥 = 𝐸𝑦 and they are constant across the entire domain. The 𝐺𝑥𝑦 term in 

Equation 3.7 is the shear modulus. Equations 3.3 – 3.7 can be substituted into Equations 

3.1 and 3.2 to express the strong form of the governing equations in terms of the 

displacements as 

𝜕

𝜕𝑥
(𝑐11

𝜕𝑢𝑥
𝜕𝑥

+ 𝑐12
𝜕𝑢𝑦

𝜕𝑦
) +

𝜕

𝜕𝑦
(𝑐66

𝜕𝑢𝑥
𝜕𝑦

+ 𝑐66
𝜕𝑢𝑦

𝜕𝑥
) =  −𝑓𝑥 

 

(3.8) 

𝜕
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𝜕𝑢𝑥
𝜕𝑦

+ 𝑐66
𝜕𝑢𝑦
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) +

𝜕

𝜕𝑦
(𝑐12

𝜕𝑢𝑥
𝜕𝑥

+ 𝑐22
𝜕𝑢𝑦

𝜕𝑦
) =  −𝑓𝑦 

(3.9) 
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The strong form can be converted to the weak form over an arbitrary domain Ω𝑒

with boundary Γ𝑒 in the standard manner with two arbitrary weight functions 𝑤1and 𝑤2 to 

obtain 

0 = ∫
𝜕𝑤1
𝜕𝑥

(𝑐11
𝜕𝑢𝑥
𝜕𝑥

+ 𝑐12
𝜕𝑢𝑦

𝜕𝑦
) + 𝑐66

𝜕𝑤1
𝜕𝑦

(
𝜕𝑢𝑥
𝜕𝑦

+
𝜕𝑢𝑦

𝜕𝑥
)𝑑𝑥 𝑑𝑦

Ω𝑒

− ∫ 𝑤1𝑓𝑥𝑑𝑥 𝑑𝑦 − ∮ 𝑤1𝑡𝑥𝑑𝑠
Γ𝑒Ω𝑒

(3.10) 
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𝜕𝑢𝑥
𝜕𝑥

+ 𝑐22
𝜕𝑢𝑦

𝜕𝑦
)𝑑𝑥 𝑑𝑦

Ω𝑒

− ∫ 𝑤2𝑓𝑦𝑑𝑥 𝑑𝑦
Ω𝑒

− ∮ 𝑤2𝑡𝑦𝑑𝑠
Γ𝑒

(3.11) 

The boundary traction forces in the 𝑥 − and 𝑦 − directions are 𝑡𝑥 and 𝑡𝑦 

respectively. Once weight functions and element domains are selected, Equations 3.10 

and 3.11 can be applied to any two-dimensional domain. In practice, all of the integrals 

involved are evaluated using two-point Gauss quadrature. The domains are chosen to be 

elements, which consist of a region of space with specific nodes.  

To evaluate the integrals in Equations 3.10 and 3.11 over an arbitrary 𝑛-noded 

finite element, the primary variables 𝑢𝑥 and 𝑢𝑦 are approximated throughout the element 

with interpolation functions 𝜓𝑗(𝑥, 𝑦) and the nodal values 𝑢𝑥
𝑗

and 𝑢𝑦
𝑗
 as 

𝑢𝑥 ≈∑𝑢𝑥
𝑗
𝜓𝑗(𝑥, 𝑦)

𝑛

𝑗=1

  𝑢𝑦 ≈∑𝑢𝑦
𝑗
𝜓𝑗(𝑥, 𝑦)

𝑛

𝑗=1

(3.12) 

The interpolation functions must be at least bilinear. Equation 3.12 can be written 

in matrix form as 

𝒖 =  {
𝑢𝑥
𝑢𝑦
} = 𝚿𝚫 (3.13) 
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where 𝒖 = {
𝑢𝑥
𝑢𝑦
} and the nodal displacement vector 𝚫 is defined as 

𝚫 =  {𝑢𝑥
1 𝑢𝑦

1 𝑢𝑥
2 𝑢𝑦

2 … 𝑢𝑥
𝑛 𝑢𝑦

𝑛}
𝑻
 (3.14) 

where the superscript 𝑇 indicates the transpose operation. In Equation 3.15, the 

interpolation functions are assembled into the matrix 

𝚿 = [
𝜓1 0 𝜓2 0 … 𝜓𝑛 0
0 𝜓1 0 𝜓2 … 0 𝜓𝑛

] 

 

(3.15) 

The interpolation functions used for displacements 𝒖 are also chosen for the weight 

functions 𝑤1 and 𝑤2, as is typical in the Galerkin finite element method [76]. The 

displacements in Equation 3.13 can be substituted into the weak form (Equations 3.10 

and 3.11) and written in vector form. Defining the following gathering matrix simplifies 

the expression 

𝑫 = 

[
 
 
 
 
𝜕

𝜕𝑥
0

𝜕

𝜕𝑦

0
𝜕

𝜕𝑦

𝜕

𝜕𝑥]
 
 
 
 

 

 

 

(3.16)  

which makes it convenient to define the displacement gradient matrix 𝑩 as 

𝑩 = 𝑫 𝚿 = 

[
 
 
 
 
 
 
𝜕𝜓1
𝜕𝑥

0
𝜕𝜓2
𝜕𝑥

0
𝜕𝜓1
𝜕𝑦

0

𝜕𝜓1
𝜕𝑦

𝜕𝜓1
𝜕𝑥

𝜕𝜓2
𝜕𝑦

0 …
𝜕𝜓𝑛
𝜕𝑥

𝜕𝜓2
𝜕𝑦

… 0

𝜕𝜓2
𝜕𝑥

…
𝜕𝜓𝑛
𝜕𝑦

0
𝜕𝜓𝑛
𝜕𝑦
𝜕𝜓𝑛
𝜕𝑥

 

]
 
 
 
 
 
 

 

 

 

(3.17) 

  

Combining Equations 3.12 and 3.13 with the weak form in Equations 3.10 and 3.11 

yields the usual element level steady-state finite element equilibrium 

𝑲𝒆 𝑼𝒆 = 𝑭𝒆 + 𝑸𝒆 
 

(3.18) 

where each term is defined as 
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𝑲𝒆 = ∫ 𝑩𝑻𝑪𝑩𝑑Ω𝑒
Ω𝑒

,  𝑭𝑒 = ∫ 𝚿𝑇𝒇
Ω𝑒

𝑑Ω𝑒 ,      𝑸
𝑒 = ∮ 𝚿𝑇𝒕 𝑑𝑠

Γ𝑒
(3.19) 

In the above, the element stiffness matrix 𝑲𝒆 is a square matrix of size 2𝑛, and both the

elemental load vector 𝑭𝑒 and internal force vector 𝑸𝑒 are 2𝑛 𝑥 1. Elemental equilibrium

can be summed at the corresponding nodal displacements and forces to yield the global 

finite element equilibrium in terms of the global stiffness matrix 𝑲, global nodal 

displacement vector 𝑼, and global load vectors 𝑭 and 𝑸, where equilibrium may be 

written as 

𝑲 𝑼 = 𝑭 + 𝑸 (3.20) 

Note that the local elemental stiffness matrices 𝑲𝒆 are assembled to form the global

stiffness matrix 𝑲, and likewise the global displacements 𝑼 and the global force vectors 

𝑭 and 𝑄 are assembled from the elemental displacements 𝑼𝒆 and forces 𝑭𝒆 and 𝑸𝒆.  

The equilibrium in Equation 3.20 can be solved for unknown displacements and 

forces by partitioning the matrices and vectors with respect to fixed and free degrees of 

freedom, as is standard in finite element problems. The resulting reduced system does not 

have the singularity issue in Equation 3.20 once a sufficient set of fixed degrees of 

freedom are defined, and therefore may be solved using an appropriate linear system 

equation solver. 

The finite element system in Equation 3.20 is defined for the mechanical elasticity 

equilibrium. Later in this work, the conduction heat transfer problem is also considered. 

Coupling between the two models will occur through the force vector where thermal 

stresses are generated. 

While the above equations may employ finite elements of arbitrary shape, 

identically sized square bi-linear finite elements are used in this work. The identical size 
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and shape cause certain parts of the elemental stiffness matrix evaluation to be 

equivalent, which decreases the computational burden in the finite element solution. For 

an isotropic material, the elemental stiffness matrix for the bi-linear square finite element 

can be expressed as a function of the isotropic Young’s modulus 𝐸 and Poisson’s ratio 𝜈, 

as shown in [22] 

𝑲𝒆 =
𝐸

1 − 𝜈2
 

[
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(3.21) 

 

 

3.1.2 Design Domain 

 

 This research considers structures defined over a two-dimensional region in space 

which may be discretized into multiple finite elements. The same finite element mesh is 

used here for both the elasticity analysis described above and the thermal analysis in the 

sections to follow. Initially, only the mechanical analysis is considered, and the thermal 

and thermomechanical analyses will be included subsequently in Section 3.7. Figure 3.1 

shows an example of a two-dimensional design domain. 
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Figure 3.1: Example Two-Dimensional Design Domain 

Boundary conditions for the elasticity problem are fixed displacements and 

applied nodal forces. The linear finite element equilibrium in Equation 3.20 is enforced 

across the design domain, and it is assumed that no element edge traction forces are 

applied in our example problems, i.e. (𝑸 = 𝟎). Thus, Equation 3.20 reduces to 

𝑲𝑼 = 𝑭 (3.22) 

3.1.3 Optimization Function 

In systems where only mechanical loading of a linearly elastic material is 

considered, minimizing the compliance of the structure maximizes its stiffness. 

Compliance was the objective function used in Bendsoe and Kikuchis’ original 

homogenization approach [25] which continues to be common in topology optimization 

of mechanical systems. The structural compliance 𝑪 can be expressed in terms of the 

global finite element variables as 

𝐶 = 𝑼𝑇𝑭 = 𝑼𝑇𝑲 𝑼 (3.23) 
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Note that some authors define compliance as 𝐶 =
1

2
𝑼𝑻𝑭, however, the definition 

in Equation 3.23 was chosen here to allow for more straightforward comparison to strain 

energy, which will be considered as a design metric in the discussion in Section 4.4. 

Depending on the design requirements, other objective functions may be considered. For 

example, minimizing the maximum displacement or maximum Von Mises stress, or the 

displacement at a specific point may be most useful for a specific scenario. When thermal 

factors are considered, minimizing compliance is not guaranteed to maximize the 

stiffness of the part [77] and other objective functions should be considered. 

 

3.1.4 Finite Element Discretization and Design Variables 

 

The creation of a structure within the design domain is modeled by defining the 

amount of material in each finite element with an associated density design variable 𝜌𝑖 

that ranges from 0 to 1. The element density 𝜌𝑖 represents whether the element contains 

material or is void, where a density of 𝜌𝑖 =  1 designates an element that is completely 

full of material and a density of 𝜌𝑖 =  0 indicates that an element is void of material. 

There is no physical interpretation for a fractional density, however, densities are 

permitted to take on values between 0 and 1 in the optimization process. Several 

interpolation methods exist that model fractional densities. The method used here is a 

modification of the Solid Isotropic Material with Penalization (SIMP) approach [24], 

where the elemental stiffness of element 𝑖 is expressed as a function of the density as 

𝑲𝑖 = 𝜌𝑖
𝑝𝑲0 (3.24) 

 

where 𝑲0 is given in Equation 3.21 for a square element having an isotropic material. 

The penalty parameter 𝑝 is used to penalize the stiffness of elements with intermediate 

densities so that as the optimization algorithm progresses element density values tend 
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toward solid or void since intermediate density states are structurally less efficient. This 

is desirable, as only density values of 0 or 1 have physical interpretation and fractional 

density values cannot be produced. The penalty is often set to 3 [22]. The set of all 

densities in the design space can be represented in graphical form by shading each 

element according to their density. Figure 3.2 shows densities in a portion of a design 

domain where a value of 1 is black, a density of 0 is white, and fractional densities are 

grayscale interpolations. 

Other penalty methods exist that offer unique advantages [24] compared to that in 

Equation 3.24. The SIMP method uses only one heuristic parameter 𝑝 which may require 

tuning and the stresses become unbounded as the element density approaches 0. The 

RAMP penalization approach [24] (Rational Approximations of Material Properties) has 

two heuristic parameters but eliminates the unbounded stress behavior found in the SIMP 

approach. Our research currently does not optimize the stress or use any stress-based 

constraints, so the SIMP method is used for its simplicity. 

The compliance objective function 𝑪 in Equation 3.22 can be written in terms of 

the design variables 𝜌𝑖, individual element stiffness matrices, and the local elemental 

displacements 𝑼𝒊 as 

min
𝜌̅
𝐶 =∑𝜌𝑖

𝑝𝑼𝑖
𝑇𝑲0𝑼𝑖

𝑁𝑒𝑙

𝑖=1

(3.25) 

where 𝑲𝟎 is described in Equation 3.21 above, and there are 𝑁𝑒𝑙 finite elements in 

the discretization. 
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Figure 3.2: Density Visualization 

 

Representing the objective function as a sum over the element matrices in terms 

of the design variables 𝜌𝑖 provide a highly efficient computation of the objective function 

and its design gradient, which will be needed in the iterative update scheme used to solve 

the topology optimization described below. Note that nodal displacements 𝑼𝑖 = 𝑼𝑖(𝜌̂) 

are functions of the element densities 𝜌̂ through the finite element solution 𝑲(𝜌̂)𝑼(𝜌̂) =

𝑭(𝜌̂), and this coupled dependency must be considered in design sensitivity derivations. 

 

3.1.5 Constraint: Volume Fraction 

 

In the compliance optimization problem, the minimum compliance could be 

achieved by setting all of the design variables equal to 1, as this fills the design space 

completely with material, which also maximizes the stiffness. However, it is often not 

desirable for the structure to consist of a single block of material. In many applications a 
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lightweight part is desired to minimize the cost of material or energy necessary. A 

predefined amount of material can be given for the construction of the structure, which 

limits the sum of the densities in the design domain. A volume constraint that limits the 

amount of material in the optimum design can be defined through the equality constraint 

1

𝐴𝑛𝑒𝑡
∑𝜌𝑖𝐴𝑖

𝑁𝑒𝑙

𝑖=1

= 𝑉𝑓 

(3.26) 

where the total area of the part is 𝐴𝑛𝑒𝑡 and the area of element 𝑖 is 𝐴𝑖. The volume

fraction 𝑉𝑓 is a predefined constant taking values between 0 and 1 that represents what 

fraction of the design space that is occupied by material. In the case where every element 

is the same size, as is considered in this research, Equation 3.25 becomes 

1

𝑁𝑒
∑𝜌𝑖 = 𝑉𝑓 

(3.27) 

where 𝑁𝑒 is the number of elements, which in our study equates to the number of design 

variables 𝑛. Note that when only mechanical compliance optimization is included, adding 

more material will always make the part stiffer so the equality sign in Equations 3.26 and 

3.27 can be replaced with an inequality and the optimization will naturally find a solution 

along the constraint. This is not always the case in thermomechanical systems for design-

dependent thermal loading. 

3.1.6 Optimization Problem 

The topology optimization problem for minimum compliance of an elastic 

structure under static loads considered above can be stated as 
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min
𝑥̅
𝐶 =∑𝜌𝑖

𝑝𝑼𝑖
𝑇𝑲0𝑼𝑖

𝑁𝑒𝑙

𝑖=1

 

(3.28) 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 
1

𝑁𝑖
∑𝜌𝑖

𝑁𝑒𝑙

𝑖=1

= 𝑉𝑓 

 

 

0 < 𝜌𝑚𝑖𝑛 < 𝜌𝑖 ≤ 1  

 

where the objective function, compliance 𝐶, is expressed in terms of the mechanical finite 

element stiffness matrix and displacement vector and the design variables 𝑥𝑖. The single 

equality volume constraint fixes the amount of material in the structure. Note that the 

element densities 𝜌𝑖 are bounded between a constant 𝜌𝑚𝑖𝑛 that satisfies 0 < 𝜌𝑚𝑖𝑛 < 𝜌𝑖 ≪

1 and 1. This is because an element density of 𝜌𝑖 = 0 causes a singularity in the global 

stiffness matrix 𝑲 and must be avoided. It is common to set 𝜌𝑚𝑖𝑛 = 0.001 [22], which is 

the value used in this work. 

 

3.1.7 Classes of Optimization Techniques 

 

 A significant attribute an optimization approach is the need for the design gradient 

of the objective function and constraints. Traditional optimization approaches such as 

sequential linear or quadratic programming, Newton’s method, and the method of 

steepest descent, rely on the gradient to find a local minimum. Optimality criterion-based 

method, the method of moving asymptotes, and the level-set method are all frequently 

used for topology optimization, and these methods also incorporate the gradients. These 

methods can be computationally intensive when the design gradient involves time 

consuming calculations, and there is no guarantee that the local minimum found is the 

global minimum. This research uses an optimality criteria method [22] and also a method 
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of moving asymptotes [23] to solve the topology optimization problem, both of which 

require design gradients. 

Optimization methods that do not require the gradient are often based on heuristic 

algorithms [35]. The evolutionary structural optimization methods remove and add 

material based on local objective function values without requiring the gradient. Genetic 

algorithms can be applied to solve topology optimization problems [24], although the 

required computation become excessive for a large number of design variables as in a 

typical topology optimization problem. The genetic algorithm generates many different 

potential solutions, then selects and recombines them in a way that mimics natural 

selection to determine the fittest solution. The randomness inherent in the genetic 

algorithm formulation means that the same starting set of solutions can reach different 

optima in different runs, but the random nature of the iteration can allow the algorithm to 

escape local minima. It constrains the element densities to discrete values of 𝜌𝑚𝑖𝑛 or 1 

and would not need to consider density penalization. 

A gradient-based approach was chosen as a means to solve the topology 

optimization problem in this research. The design space of a topology optimization 

problem typically has an extremely high number of variables, making a genetic algorithm 

computationally prohibitive as each iteration holds a population of several dozen to 

several hundred design points. The evolutionary approaches, while simple, neglect the 

coupled effects of densities on each other. While assuming element density independence 

is a feasible approximation for small element density changes in purely mechanical 

compliance optimization, it was found in the course of this work that in the systems 

modeled here the objective function and design sensitivities are sensitive to small 
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changes in density, indicating that the independence of element density assumption is a 

less-accurate approximation in this system. 

Of the numerous gradient-based optimization approaches available in the 

literature, we choose the optimality criterion-based approach (OC approach [22]) and the 

globally convergent method of moving asymptotes (GCMMA approach [23]) for this 

research. Matlab codes for both methods are freely available for compliance 

minimization of mechanical systems. Design gradients in our work are evaluated via the 

adjoint method. 

 

3.2 Design Sensitivity via the Adjoint Method 

 

 As described above, topology optimization solutions are typically obtained with 

gradient-based algorithms. Given the large number of design variables in a topology 

optimization, special attention must be given to the calculation of the design derivatives, 

often referred to as design sensitivities. Design sensitivities for problems that include the 

solution of a system of equations such as that given in Equation 3.20, a significant 

reduction in computational cost and improved accuracy may be obtained using the Direct 

Differentiation Method or the Adjoint Variable Method [56]. Here we employ the 

Adjoint Variable Method as it is well understood that it is highly efficient for design 

problems having more design variables than implicit performance measures such as that 

considered in our topology optimization in Equation 3.28. 

In the topology optimization problem described above, the compliance is given in 

terms of the global finite element variables [22] as 

𝐶 = 𝑼𝑇𝑭 (3.29) 
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The finite element equilibrium in Equation 3.20, 𝑲𝑼 = 𝑭, may be rearranged as 

𝑲𝑼− 𝑭 = 𝟎 to define the augmented compliance 𝐶̂ as 

𝐶̂ = 𝐶 − 𝝀(𝑲𝑼 − 𝑭) (3.30) 

where we note that 𝐶 = 𝐶̂ for the displacement solution 𝑼 that satisfies equilibrium. The 

augmented compliance 𝐶̂ in Equation 3.29 is written in terms of the Lagrange Multiplier 

𝝀, which is an arbitrary vector of the same size as the global displacement vector 𝑼. The 

total derivative of 𝐶̂, denoted 
𝐷𝐶̂

𝐷𝜌𝑖
, can then be taken using the chain rule to obtain 

𝐷𝐶̂

𝐷𝜌𝑖
=

𝐷

𝐷𝜌𝑖
(𝐶) − 𝝀

𝐷

𝐷𝜌𝑖
(𝑲𝑼 − 𝑭) −

𝐷𝝀

𝐷𝜌𝑖
(𝑲𝑼 − 𝑭) 

(3.31) 

where we note that 
𝐷𝐶̂

𝐷𝜌𝑖
=

𝐷

𝐷𝜌𝑖
(𝐶) at the finite element solution 𝑲𝑼 = 𝑭. Recognizing that 

the compliance is a function of both 𝑼 and 𝑭, and with 𝑲𝑼− 𝑭 = 𝟎, Equation 3.30 can 

then be written as 

𝐷𝐶̂

𝐷𝜌𝑖
=
𝑑𝐶

𝑑𝑼

𝐷𝑼

𝐷𝜌𝑖
+
𝑑𝐶

𝑑𝑭

𝐷𝑭

𝐷𝜌𝑖
− 𝝀(

𝐷𝑲

𝐷𝜌𝑖
𝑼+𝑲

𝐷𝑼

𝐷𝜌𝑖
−
𝐷𝑭

𝐷𝜌𝑖
) 

(3.32) 

It is computationally expensive to determine the change in the global 

displacement vector with respect to all element densities, and this would be needed to be 

evaluated for each term in the gradient vector if Equation 3.31 is used directly (see e.g. 

the Direct Differentiation Method [48]). Therefore, it is desirable to eliminate the 
𝐷𝑼

𝐷𝜌𝑖

term by first collecting these terms as 

𝐷𝐶̂

𝐷𝜌𝑖
= (

𝑑𝐶

𝑑𝑼
− 𝜆𝑲)

𝐷𝑼

𝐷𝜌𝑖
+ (

𝑑𝐶

𝑑𝑭
+ 𝝀)

𝐷𝑭

𝐷𝜌𝑖
− 𝝀

𝐷𝐾

𝐷𝜌𝑖
𝑈 

(3.33) 

The derivative of compliance (cf. Equation 3.28) with respect to 𝑼 and also with respect 

to 𝑭 may be substituted into Equation 3.32 to obtain 
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𝐷𝐶̂

𝐷𝜌𝑖
= (𝑭 − 𝝀𝑲)

𝐷𝑼

𝐷𝜌𝑖
+ (𝑼𝑇 + 𝝀)

𝐷𝑭

𝐷𝜌𝑖
− 𝝀 

𝐷𝐾

𝐷𝜌𝑖
𝑼 

(3.34) 

 

It is desirable to eliminate the first term on the right side of Equation 3.34, so we choose 

𝝀 = 𝑼𝑇 such that (𝑭 − 𝝀𝑲)
𝐷𝑼

𝐷𝜌𝑖
= (𝑭 − 𝑲𝑼)

𝐷𝑼

𝐷𝜌𝑖
= 𝟎 for symmetric 𝑲. As a result, the 

derivative simplifies to 

𝐷𝐶̂

𝐷𝜌𝑖
= 2𝑼𝑇

𝐷𝑭

𝐷𝜌𝑖
− 𝑼𝑇

𝐷𝑲

𝐷𝜌𝑖
𝑼 

(3.35) 

 

Note that when the global force vector is constant, related components of 
𝐷𝑭

𝐷𝜌𝑖
 are zero. In 

addition, when tall fixed displacements considered are set to zero, the related fixed 

degrees of freedom of 𝑈𝑇 are zero. Under these conditions, the term 2𝑼𝑇
𝐷𝑭

𝐷𝜌𝑖
 in Equation 

3.35 equates to zero. Therefore, the design sensitivity for constant applied force and zero 

prescribed displacements consists of only one term 

𝐷𝐶̂

𝐷𝜌𝑖
= −𝑼𝑇

𝐷𝑲

𝐷𝜌𝑖
𝑼 

(3.36) 

 

Evaluation of Equation 3.36 can be simplified for our topology optimization 

problem by noting that any one of the element stiffness matrices 𝑲𝒊  is only a function of 

the corresponding elemental density 𝜌𝑖. For the identically sized linear finite elements 

used in this work, Equation 3.36 becomes 

𝐷𝐶

𝐷𝜌𝑖
= −𝑼𝑖

𝑇
𝐷𝑲𝑖
𝐷𝜌𝑖

𝑼𝑖 = −𝑼𝑖
𝑇
𝐷

𝐷𝜌𝑖
(𝜌𝑖

𝑝
𝑲𝑖)𝑼𝑖 = −𝑝𝜌𝑖

𝑝−1
𝑼𝑖
𝑇 𝑲0 𝑼𝑖 

(3.37) 

which is easily implemented once the 𝑼𝑖 are computed, as it is only in terms of the local 

finite element variables and the densities. 
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3.3 Optimality Criteria Method 

The first topology optimization method considered in this work, the Optimality 

Criterion (OC) based method, is a heuristic gradient-based update scheme developed 

specifically for topology optimization. It was used by Bendsoe [22] for compliance 

optimization of two-dimensional mechanical parts subject to a volume fraction constraint. 

The gradient is used in a heuristic update step that inherently preserves the volume 

fraction constraint as an equality constraint at each iteration. 

3.3.1 Update Scheme 

The densities are assumed to all be equal to the prescribed volume fraction 𝑉𝑓 at 

the beginning of the optimization solution process. Each density 𝜌𝑖, 𝑖 = 1,… ,𝑁𝑒 is 

updated according to the design sensitivities 

𝜌𝑖
𝑛𝑒𝑤 =  {

max (𝜌𝑚𝑖𝑛, 𝜌𝑖 −𝑚),   𝑖𝑓 𝜌𝑖𝐵𝑖
𝜂
≤ max (𝜌𝑚𝑖𝑛, 𝜌𝑖 −𝑚)

𝑚𝑖𝑛(1, 𝜌𝑖 +𝑚),   𝑖𝑓 𝜌𝑖𝐵𝑖
𝜂
≥ 𝑚𝑖𝑛(1, 𝜌𝑖 +𝑚)

𝜌𝑖𝐵𝑖
𝜂
,                          𝑒𝑙𝑠𝑒

(3.38) 

The densities are bounded to remain within the range of 𝜌𝑚𝑖𝑛 to 1, and a move 

limit of 𝑚 is implemented to prevent large changes to density that could lead to 

oscillating convergence behavior. The coefficient 𝜂 serves as a numerical damping 

coefficient and is often set to 0.5. It is used to accelerate convergence [22] but may be set 

as 𝜂 =  1 if no numerical damping is desired. The term 𝐵𝑖 in Equation 3.37is defined in 

terms of the design sensitivities as 

𝐵𝑖 =

−𝑑𝐶
𝑑𝜌𝑖
𝛾

(3.39) 
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Here, the design sensitivity of compliance with respect to the 𝑖th element is 

denoted 
𝑑𝐶

𝑑𝜌𝑖
. The constant 𝛾 is chosen at each iteration so that the sum of the updated 

densities still respects the volume fraction constraint in Equation 3.27. The value of 𝛾 is 

the same for all 𝑥𝑖 within a given iteration, so a separate one-dimensional optimization is 

performed at each iteration to find 𝜆. We use a bisection method for this purpose, as in 

Sigmund [22], as 𝜆 can be bounded between 0 and a sufficiently large number, but other 

methods like a golden-section search may be employed. 

Convergence of the topology optimization criteria algorithm can be defined with 

several different methods. A fixed number of iterations can be performed, or a condition 

can be imposed on the gradient magnitude or density change. In Sigmund’s 

implementation of the optimality criterion method [22], a design is considered converged 

when the maximum change in the set of element densities 𝜌𝑖 in a single iteration drops 

below 0.01, which can be formulated as 

max(|𝜌𝑖𝑛𝑒𝑤 − 𝜌𝑖|) < 0.01 (3.40) 

 This convergence criteria proves to be a conservative estimate in the tests 

conducted by the authors [22], as once Equation 3.39 is satisfied the design is usually 

found to have converged. However, it is often possible to determine the final design well 

before the threshold in Equation 3.39 has been reached. As this work seeks to compare 

the optimality criteria method and the GCMMA approach, a given number of iterations 

will be conducted to ensure that the comparison between the methods is consistent. 

 

3.4 The Globally Convergent Method of Moving Asymptotes 

 

 The method of moving asymptotes (MMA [23]) algorithm and its family of 

related methods are modified linear programming methods that are designed for general 
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optimization. They are designed to solve an optimization problem of the following form 

[23] 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓0(𝒙) + 𝑎0𝑧 + ∑(𝑐𝑖𝑦𝑖 +
1

2
𝑑𝑖𝑦𝑖

2)

𝑚

𝑖=1

Subject to: 𝑓𝑖(𝒙) − 𝑎𝑖𝑧 − 𝑦𝑖 ≤ 0,   𝑖 = 1,… ,𝑚
𝒙 ∈ 𝑿,    𝒚 ≥ 𝟎,   𝑧 ≥ 0 

(3.41) 

where the objective function is 𝑓0(𝒙) and the 𝑓𝑖(𝒙) are constraint functions that are 

desired to be less than zero. The design variables are 𝒙 = (𝑥1, 𝑥2, … 𝑥𝑛) and are contained 

within the set 𝑋 = {𝒙 ∈ ℝ𝑛|𝑥𝑗
𝑚𝑖𝑛 ≤ 𝑥𝑗 ≤ 𝑥𝑗

𝑚𝑎𝑥 , 𝑗 ∈ {1, … , 𝑛}}, where the individual

design variables are bounded between a predefined lower and upper bound. The set of 𝑦𝑖, 

𝑖 = 1, … ,𝑚, and the single value 𝑧 are artificial variables added penalize violation of the 

constraints. The remaining variables are constants defined the beginning of the 

optimization. The 𝑐𝑖, 𝑖 = 1, … ,𝑚, define linear constraint penalties and the 𝑑𝑖, 𝑖 =

1, … ,𝑚, form quadratic constraint penalties. The 𝑎𝑖, 𝑖 = 1, … ,𝑚, and 𝑧 weight the 

relative importance of the constraints. Note that all constants must be non-negative and 

that for each 𝑖, at least one of the 𝑐𝑖 and 𝑑𝑖 must be positive to ensure that each constraint 

is considered. 

Depending on the problem under consideration, many of the constants in Equation 

3.40 may be set to zero as certain penalizations and constraints may not be needed. To 

adapt it to topology optimization with one equality constraint, we set 𝑑𝑖 = 0, 𝑎0 = 0, and 

𝑎𝑖 = 0 [23].  

The globally convergent method of moving asymptotes (GCMMA) used here and 

provided by Dr. Svanberg [23] is modified from the original Method of Moving 

Asymptotes (MMA). The MMA approach is an iterative method that uses a linear 
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approximation of the objective function and constraint functions which are both written 

in terms of their respective gradients. The presentation below describes the GCMMA 

algorithm and follows the procedure described by Svanberg. 

 In each optimization iteration 𝑘, the moving asymptotes 𝑢𝑗
(𝑘)

 and 𝑙𝑗
(𝑘)

 must be 

determined and the constraint functions are approximated by 

𝑓𝑖(𝒙) ≈ 𝑓𝑖
(𝑘)(𝒙) =∑(

𝑝𝑖𝑗
(𝑘)

𝑢𝑗
(𝑘)
− 𝑥𝑗

+
𝑞𝑖𝑗
(𝑘)

𝑥𝑗 − 𝑙𝑗
(𝑘)
) + 𝑟𝑖

(𝑘)

𝑛

𝑗=1

,      𝑖 = 0,1, … ,𝑚 

 

(3.42) 

where values 𝑝𝑖𝑗
(𝑘)

 and 𝑞𝑖𝑗
(𝑘)

 are determined by 

𝑝𝑖𝑗
(𝑘) = (𝑢𝑗

(𝑘) − 𝑥𝑗
(𝑘))

2

∗ 

(1.001 (
𝜕𝑓𝑖
𝜕𝑥𝑗

(𝒙(𝑘)))

+

+ 0.001(
𝜕𝑓𝑖
𝜕𝑥𝑗

(𝒙(𝑘)))

−

+
10−5

𝑥𝑗
𝑚𝑎𝑥 − 𝑥𝑗

𝑚𝑖𝑛
) 

 

(3.43) 

𝑞𝑖𝑗
(𝑘) = (𝑥𝑗

(𝑘) − 𝑙𝑗
(𝑘))

2

∗ 

(0.001 (
𝜕𝑓𝑖
𝜕𝑥𝑗

(𝒙(𝑘)))

+

+ 1.001(
𝜕𝑓𝑖
𝜕𝑥𝑗

(𝒙(𝑘)))

−

+
10−5

𝑥𝑗
𝑚𝑎𝑥 − 𝑥𝑗

𝑚𝑖𝑛
) 

 

(3.44) 

𝑟𝑖
(𝑘)
= 𝑓𝑖(𝒙

(𝑘)) − ∑(
𝑝𝑖𝑗
(𝑘)

𝑢𝑗
(𝑘) − 𝑥𝑗

(𝑘)
+

𝑞𝑖𝑗
(𝑘)

𝑥𝑗
(𝑘)
− 𝑙𝑗

(𝑘)
)

𝑛

𝑗=1

 

 

(3.45) 

 In the above, the expression (
𝜕𝑓𝑖

𝜕𝑥𝑗
(𝒙(𝑘)))

+

= max(0,
𝜕𝑓𝑖

𝜕𝑥𝑗
(𝒙(𝑘))) and 

(
𝜕𝑓𝑖

𝜕𝑥𝑗
(𝒙(𝑘)))

−

= max(0, −
𝜕𝑓𝑖

𝜕𝑥𝑗
(𝒙(𝑘))). In each iteration, move limits are placed on the 

design variables which restrict them within 𝛼𝑗
(𝑘)
≤ 𝑥𝑗 ≤ 𝛽𝑗

(𝑘)
 where: 

𝛼𝑗
(𝑘) = max {𝑥𝑗

𝑚𝑖𝑛 , 𝑙𝑗
(𝑘) + 0.1(𝑥𝑗

(𝑘) − 𝑙𝑗
(𝑘)), 𝑥𝑗

(𝑘)
− 0.5 ∗ (𝑥𝑗

𝑚𝑎𝑥 − 𝑥𝑗
𝑚𝑖𝑛)} 

 

(3.46) 

𝛽𝑗
(𝑘)
= 𝑚𝑖𝑛 {𝑥𝑗

𝑚𝑎𝑥 , 𝑢𝑗
(𝑘) − 0.1(𝑢𝑗

(𝑘) − 𝑥𝑗
(𝑘)), 𝑥𝑗

(𝑘) + 0.5 ∗ (𝑥𝑗
𝑚𝑎𝑥 − 𝑥𝑗

𝑚𝑖𝑛)} 

 

(3.47) 
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which is equivalent to restricting 𝑥𝑗 to lie within its global bounds, allowing it to move up

to 0.9 of the distance to 𝑢𝑗
(𝑘)

 or 𝑙𝑗
(𝑘)

, and allowing it to move up to half of the range

𝑥𝑗
𝑚𝑎𝑥 − 𝑥𝑗

𝑚𝑖𝑛.

The asymptotes are determined in each iteration to define the new value of the 

design variables 𝑥𝑗 as well as the artificial variables 𝑦𝑗 and 𝑧. The first two iterations are 

used to initialize the asymptote parameters, with 

𝑙𝑗
(𝑘)
= 𝑥𝑗

(𝑘)
− 0.5(𝑥𝑗

𝑚𝑎𝑥 − 𝑥𝑗
𝑚𝑖𝑛) (3.48)

𝑢𝑗
(𝑘)
= 𝑥𝑗

(𝑘)
+ 0.5(𝑥𝑗

𝑚𝑎𝑥 − 𝑥𝑗
𝑚𝑖𝑛) (3.49)

On the third iteration and higher, the asymptotes are defined based on the 

previous iterations as 

𝑙𝑗
(𝑘) = 𝑥𝑗

(𝑘) − 𝛾𝑗
(𝑘)(𝑥𝑗

(𝑘−1) − 𝑙𝑗
(𝑘−1)) (3.50) 

𝑢𝑗
(𝑘)
= 𝑥𝑗

(𝑘)
+ 𝛾𝑗

(𝑘)
(𝑢𝑗

(𝑘−1)
− 𝑥𝑗

(𝑘−1)
) (3.51) 

where the 𝛾𝑗
(𝑘)

 is a constant that changes based on whether the design variable 𝑥𝑗 has

oscillated or remained monotonic in the past two iterations which is implemented through 

𝛾𝑗
(𝑘)
=

{

0.7 𝑖𝑓 (𝑥𝑗
(𝑘) − 𝑥𝑗

(𝑘−1))(𝑥𝑗
(𝑘−1) − 𝑥𝑗

(𝑘−2)) < 0,

1.2 𝑖𝑓 (𝑥𝑗
(𝑘) − 𝑥𝑗

(𝑘−1))(𝑥𝑗
(𝑘−1) − 𝑥𝑗

(𝑘−2)) > 0,

1  𝑖𝑓 (𝑥𝑗
(𝑘) − 𝑥𝑗

(𝑘−1))(𝑥𝑗
(𝑘−1) − 𝑥𝑗

(𝑘−2)) = 0,

(3.52) 

The purpose of the varying values of the 𝛾𝑗
(𝑘)

 parameter is to minimize oscillating

behavior. Note that the 0.7 and 1.2 values in Equation 3.51 could be adjusted, but these 

values have been found to work well in our optimization. Finally, the asymptotes are 

bounded to be between 0.01 ∗ (𝑥𝑗
𝑚𝑎𝑥 − 𝑥𝑗

𝑚𝑖𝑛) and 10 ∗ (𝑥𝑗
𝑚𝑎𝑥 − 𝑥𝑗

𝑚𝑖𝑛) away from 𝑥𝑗
(𝑘)

.
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 The GCMMA algorithm adds a separate iteration sub-loop for each step in the 

optimization. At each outer iteration, the objective and constraint functions are 

approximated by convex functions. The approximating functions are checked to 

determine if they are sufficiently accurate. If not, a more conservative set of 

approximating functions is generated iteratively in the inner loop until a sufficiently 

accurate set of approximating functions are found. They are then used to solve the 

subproblem in the current outer iteration. 

 It is worth observing that the method, while based on a linear approximation, is 

composed of several heuristic user defined parameters. This necessitates some tuning 

while modifying it to solve topology optimization problems. The objective function is 

scaled to allow it to be considered effectively relative to the magnitudes of the built-in 

constants by 𝑓0(𝒙) = 500 ∗ 𝑓(𝒙). There are 𝑛 = 𝑁 design variables, where 𝑁 is the 

number of finite elements, in the model presented above, and when both density and 

element orientation are considered as in Section 3.6 there are 𝑛 = 2𝑁 design variables. 

Two constraints (𝑚 = 2) are used to force the volume constraint to be an equality; it may 

be possible to tune the 𝑐𝑖 parameters to require only one constraint to reflect the volume 

constraint, but for the tuning of the 𝑐𝑖 parameters used by the authors two constraints are 

required. The design sensitivities are scaled by a factor of 100 for use with the user-

defined parameters in the main algorithm. 

 

3.5 Issues with the Density Method 

 The density method described in Section 3.1, while widely used in many popular 

topology optimization approaches, experiences some well-documented issues. Methods 

to accommodate or otherwise correct these issues for the problem are discussed below. 
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3.5.1 Checkerboarding 

In many designs, regions of alternating solid and void elements can arise 

regardless of the update algorithm chosen [78]. These regions are physically meaningless, 

as it is impossible to manufacture this solid-void spacing. Figure 3.3 gives a structure that 

exhibits a large region of checkerboarding. 

Figure 3.3: Checkerboarding in Cantilever Beam [79] 

The checkerboarding behavior is due to the four-node square linear finite 

elements used in many finite element implementations [79]. It has been found that the 

alternating densities generates a material with an artificially high strength-to-weight ratio 

because of the finite element formulation [80]. Sigmund showed that using eight-node or 

nine-node square elements instead of four-node elements resolves this, at the cost of 

additional computational burden when solving the associated finite element problem. 

Using a mesh with different sized elements can also prevent checkerboarding [81], 

however the computational burden is increased as the efficiency of using the same local 

stiffness matrix for all elements is lost. 
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 The checkerboarding problem has only been observed for linear identically sized 

finite element meshes, however it has been shown that a filter can be applied to the 

design sensitivities to avoid checkerboarding independent of the mesh [81]. Several 

different anti-checkerboarding filters have been proposed [82], with some PDE-based 

filters and some simpler weighted-average filters. Each of these filters have been shown 

to resolve checkerboarding, and the approach used in this work implements a minimum 

member size filter that replaces each sensitivity with the weighted average of all design 

sensitivities within a given radius, as shown in Section 4.6.3. The effects of this filter 

radius are investigated in Chapter 4. Note that this is identical to the filter that Sigmund 

uses in the 99-lime Matlab code [22]. A constraint on the gradient can also prevent 

checkerboarding [83]. 

 Another method of preventing checkerboarding is to add a constraint to the 

perimeter of the structure. This can avoid checkerboarding, and it can also resolve the 

mesh dependence problem [84], [85]. However, for simplicity no perimeter constraints re 

used in this research as satisfactory results were obtained with gradient filtering. 

 

3.5.2 Mesh Dependence 

 

 In general, the topology optimization problem is not well-posed, meaning that no 

global minimum exists due to the generation of infinitely complex fractal-like structures 

that manifest under arbitrary levels of geometric resolution [81]. When the design space 

is discretized into a specific number of finite elements a minimum can be found, but there 

is not a guarantee that the design will resemble the final structure under a different 

discretization, or that the structure will eventually converge to a single result as the mesh 

is refined. This is a more theoretical problem, as each manufacturing method has a 
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maximum level of geometric resolution and there is no value in creating a mesh that is 

significantly finer than the level of detail that can feasibly be manufactured. The 

perimeter constraint methods prevent fractal behavior from manifesting at the expense of 

adding another constraint [84], and a Helmholtz-based differential equation filter can also 

generate mesh-independent results [78]. This work here does not use any filter or 

constraint methods to prevent mesh-dependence, as the additive manufacturing methods 

considered have a limited geometric resolution based on the bead size. Mesh-

independence is investigated in Chapter 4, and it is shown that manipulating the 

minimum member size filter can prevent mesh dependence. 

3.5.3 Local Minima 

Both optimization algorithms considered in Sections 3.3 and 3.4 are gradient-

based and thus do not guarantee convergence to the global minimum, thus allowing for 

the solution to be mesh dependent. This can easily be demonstrated by considering 

different starting points for the density values. For example, the final topologies can 

appear different if most of the material starts in the top half or bottom half of the structure 

(cf. Figure 3.10). Figure 3.4 shows two different initial density distributions for a design 

space that consists of half of a cantilever beam (see Figure 4.1) and the final structures 

obtained using the OC method. Although the final structures are similar, some differences 

can be noted. 



63 

 

(a)

 

 (b)

 

(c)

 

 (d)

 
 

Figure 3.4: Different Initial Density Distributions and Resulting Final Structures 

 

 In Figure 3.4, image (a) shows an initial density distribution where every element 

density was set to 
1

2
, and image (b) shows the final topology of the structure. Likewise, 

image (c) shows a different initial density distribution, where the densities on the left half 

were set to 1 and the densities on the right half of the design domain were set to 𝜌𝑚𝑖𝑛, 

and image (d) shows the final structure. The design domain considered was half of a 

beam in three-point bending. 

 The lack of a guarantee that the result obtained is the global minimum is a 

limitation inherent in all gradient-based methods, and while approaches like the genetic 

algorithm offer some probability of escaping local minima, those methods cannot be 

easily incorporated with the OC or GCMMA approaches. It can be observed that in the 

examples in Figure 3.4, although the final structures are different the final compliance 

values are extremely similar. The similar performance of local minima derived from 

topology optimization indicates that, although the structures are different, many of the 
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local minima have similar objective function values. It cannot be proven that the obtained 

structure is near the global minimum but running several simulations with different initial 

conditions can indicate that the results are “good enough” and converge to near-identical 

structures. Thus, the current approaches are utilized with the knowledge that the results 

are not likely the global optimum but are likely to be reasonably close. 

3.6 Anisotropic Material Model 

3.6.1 Methods for Anisotropic Topology Optimization 

This work models the performance of fiber-reinforced polymer composite parts 

produced by additive manufacturing polymer deposition where material microstructure is 

highly aligned in the print direction. To account for the direction of material orientation, 

we consider a second design variable associated with each finite element to represent a 

preferred orientation of the bead material. The material is assumed to be orthotropic, with 

an orientation parameter treated as a design variable defining the direction of maximum 

stiffness. Various topology optimization update methods have been considered in the 

literature, some of which offer insights into the development of a robust approach for the 

research presented here. This includes material orientation in a SIMP-based topology 

optimization approach has been done in two-dimensional systems [59] for compliance 

optimization, where the topology of the part defined by element densities considered to 

be held constant. We consider an orientation optimization approach that includes 

computations performed independent of the density update at each optimization iteration 

for the OC method. Modifications to the OC method described above are presented as the 

standard OC approach is tailored specifically for optimization of isotropic systems. The 
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density and orientation optimization can be performed simultaneously, however, optimal 

orientation can also be performed through local optimization on the element level, 

allowing for a natural separation from the OC topology optimization solution. The 

modeling approach employed here follows the Solid Orthotropic Method with 

Penalization [67] which formed the basis for prior works by Jiang, Hoglund, and Smith 

[63]. 

 

3.6.2 Formulation of Material Model 

 

 Anisotropy is introduced to the elasticity problem in Equation 3.21 and the 

topology optimization problem in Equation 3.27 by assigning each finite element an 

orientation design variable 𝜃𝑖 that defines the material orientation of the element. This 

orientation is an angle between 0 and 𝜋 radians that represents which direction maximum 

stiffness occurs within the element. Note that it is not necessary to consider a full 0 to 2𝜋 

range of values for 𝜃𝑖 because the element is orthotropic and is thus symmetric under a 

rotation of 𝜋. Also, the material orientations are considered via modular arithmetic to be 

cyclic modulo 𝜋, which means that not only does an element rotated 
𝜋

4
 behave identically 

to an element rotated 
5𝜋

4
 or 

9𝜋

4
, all of the orientations of the form 𝜃𝑖 = 𝑎 ∗ 𝜋 + 𝑏, where 

𝑏 ∈ [0, 𝜋) and 𝑎 ∈ 𝕫 are considered to be the same value. This resolves the uniqueness 

issue in that explicit bounds are not applied to the element orientations, but each 

orientation generates a unique elemental stiffness matrix.  

It is assumed that each element has a local 𝐸𝑦 ≠ 𝐸𝑥, and that the Young’s Moduli 

are identical for all elements but can be rotated according to the element’s orientation 𝜃𝑖. 

To accommodate material orientation, the elemental stiffness matrices are defined in 
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terms of the material matrix 𝐷𝑀 that reflects the anisotropic material in two dimensions,

written as 

𝑫𝑀 =

[

𝐸𝑥
1 − 𝜈𝑥𝑦𝜈𝑦𝑥

𝜈𝑥𝑦𝐸𝑦

1 − 𝜈𝑥𝑦𝜈𝑦𝑥
0

𝜈𝑥𝑦𝐸𝑦

1 − 𝜈𝑥𝑦𝜈𝑦𝑥

𝐸𝑦

1 − 𝜈𝑥𝑦𝜈𝑦𝑥
0

0 0 𝐺𝑥𝑦]

(3.53) 

where 𝜈𝑥𝑦 and 𝜈𝑦𝑥 are the Poisson’s ratios in the corresponding local rotated element 𝑥 −

𝑦 coordinate system. Note that when the material within a finite element is not rotated 

(i.e. 𝜃𝑖 = 0), the element has a Young’s Modulus of 𝐸𝑥 = 𝐸𝑥′ and 𝐸𝑦 = 𝐸𝑦′, where the 

𝑥′ − 𝑦′ coordinate system denotes the global coordinate system. The orientation of the

𝑥 − 𝑦 local material axes are defined through the element orientation 𝜃𝑖 which requires 

that the finite element stiffness matrix in Equation 3.19 be modified as 

𝑲𝑀
𝒆
𝑖
= 𝜌𝑖

𝑝
∫ 𝑩𝑀

𝑇 𝑹𝑇(𝜃𝑖)𝑫𝑀𝑹(𝜃𝑖)𝑩𝑀𝑑𝑉𝑖
𝑉𝑖

(3.54) 

where the subscript 𝑀 is included to denote that this is the stiffness matrix for the 

mechanical system, as opposed to the thermal system discussed below. Here, 𝑩𝑀 is the 

mechanical displacement gradient matrix (which is the same 𝑩 in Equation 3.17. 

The two-dimensional rotation tensor 𝑹 is employed to rotate the material matrix 

in Equation 5.54 from the local rotated material coordinate system into the global 

material coordinate system. The rotation tensor 𝑹 is a function of the elemental 

orientation angle 𝜃𝑖 alone, and is written as 

𝑹(𝜃𝑖) =  [

𝑐𝑜𝑠2(𝜃𝑖) 𝑠𝑖𝑛2(𝜃𝑖) −2 ∗ 𝑠𝑖𝑛(𝜃𝑖) ∗ 𝑐𝑜𝑠 (𝜃𝑖)

𝑠𝑖𝑛2(𝜃𝑖) 𝑐𝑜𝑠2(𝜃𝑖) 2 ∗ 𝑠𝑖𝑛(𝜃𝑖) ∗ 𝑐𝑜𝑠 (𝜃𝑖)

𝑠𝑖𝑛(𝜃𝑖) ∗ 𝑐𝑜𝑠 (𝜃𝑖) − 𝑠𝑖𝑛(𝜃𝑖) ∗ 𝑐𝑜𝑠 (𝜃𝑖) 𝑐𝑜𝑠2(𝜃𝑖) − 𝑠𝑖𝑛
2(𝜃𝑖)

] 

(3.55) 
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For an orthotropic material model with orientation given by 𝜃𝑖 in each element 𝑖, 

the compliance of the overall structure becomes a function of the elemental densities and 

element orientations. Both densities and orientations are treated as design variables, 

which can be reflected in the objective function written as 

𝐶(𝝆, 𝜽) = 𝑼(𝝆, 𝜽)𝑇𝑭(𝝆, 𝜽) (3.56) 

 

where 𝝆 and 𝜽 are the global matrices of the element densities and orientation design 

variables, respectively. 

 

3.6.3 Optimization of Anisotropic Material Orientation 

 

 Many orientation optimization approaches use stress or strain-based formulations 

to determine the optimal set of orientations, as minimizing stress or strain tends to 

minimize compliance in the case when only mechanical loading is applied. However, 

more objective functions will be considered than mechanical compliance in this research, 

so a more general gradient-based approach is utilized. The design sensitivities of 

compliance with respect to element orientations can be determined by the adjoint variable 

method as used above to yield the following formulation, written for element 𝑖 as 

𝑑𝐶

𝑑𝜃𝑖
= 𝜌𝑖

𝑝 ∗ 𝑼𝑖
𝑇 ∗

d𝑲𝑀𝑖
d𝜃𝑖

∗ 𝑼𝑖 

 

(3.57) 

 The sensitivity of the local stiffness matrices with respect to the corresponding 

orientation angle design variable 𝜃𝑖 can be determined with the chain rule 

𝑑𝑲𝑀𝑖
𝑑𝜃𝑖

=  𝑥𝑖
𝑝
∫ 2 ∗ 𝑩𝑀

𝑇
𝑑𝑹

𝑑𝜃𝑖

𝑇

(𝜃𝑖)𝑫𝑀𝑹(𝜃𝑖)𝑩𝑀𝑑𝑉𝑖
𝑉𝑖

 
(3.58) 

for symmetric 𝑫𝑀. The derivative of the rotation matrix is readily obtained from 

Equation 3.55 as 
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𝑑𝑹(𝜃𝑖)

𝑑𝜃𝑖
= [

−2 ∗ cos(𝜃𝑖) ∗ sin (𝜃𝑖) 2 ∗ 𝑠𝑖𝑛(𝜃𝑖) ∗ cos (𝜃𝑖) −2 ∗ cos2(𝜃𝑖) + 2 ∗ sin
2(𝜃𝑖)

2 ∗ 𝑠𝑖𝑛(𝜃𝑖) ∗ cos (𝜃𝑖) −2 ∗ 𝑠𝑖𝑛(𝜃𝑖) ∗ cos (𝜃𝑖) 2 ∗ cos2(𝜃𝑖) − 2 ∗ sin
2(𝜃𝑖)

cos2(𝜃𝑖) − sin
2(𝜃𝑖) −cos2(𝜃𝑖) + sin

2(𝜃𝑖) −4 ∗ 𝑠𝑖𝑛(𝜃𝑖) ∗ cos (𝜃𝑖)

] 
(3.59) 

The GCMMA method is capable of optimizing both the element densities and 

orientations using the gradient, but the OC method was designed to optimize over 

element densities alone. Therefore, when the optimality criterion method is used, a 

separate method must be used to optimize the element orientations. This method, 

described below, is conducted in parallel with the OC update step. 

Each element orientation is considered individually. The associated local 

displacements 𝑈𝑖 can be determined from the finite element equilibrium, and the element-

level compliance can be computed as 

𝑐𝑖 = 𝜌𝑖
𝑝𝑼𝑖

𝑇𝑲𝑀𝑖(𝜃𝑖)𝑼𝑖 (3.60)

The elemental compliance can be treated as the objective function in a one-

dimensional optimization with the elemental orientation 𝜃𝑖 as the only design variable. 

We employ Newton’s method to optimize Equation 3.60. Note that, although global 

compliance is minimized in Equation 3.28, the element-level compliance in Equation 

3.60, written as a function of known fixed displacements 𝑼𝑖, is maximized. In the 

formulation used for the entire structure, no nonzero displacements are applied in any of 

the loading scenarios considered. Our approach is similar to that documented in [86] 

which shows that when fixed nonzero displacements are applied, those displacements 

should be considered separately as a maximization problem. 

Newton’s method yields the optimal elemental orientation 𝜃𝑜𝑝𝑡𝑖 for each element

independently under a known fixed displacement field. Considering the elements 

individually neglects the coupled effects of the element orientation on the displacement 



69 

 

field, so the orientations determined by the independent optimizations are not necessarily 

the globally optimal orientations for the given loading. However, a sufficiently small 

changes to an element’s orientation is assumed to have negligible effects on the 

displacements of the structure obtained by the finite element analysis. Thus, the 

orientations are not set to the locally optimal values determined but are moved toward 

those values 

𝜃𝑖𝑛𝑒𝑤 = {

𝜃𝑖 −𝑚     ,  𝜃𝑜𝑝𝑡𝑖 < 𝜃𝑖 −𝑚

𝜃𝑜𝑝𝑡𝑖      ,  |𝜃𝑜𝑝𝑡𝑖 − 𝜃𝑖| ≤ 𝑚

𝜃𝑖 +𝑚     ,  𝜃𝑜𝑝𝑡𝑖 > 𝜃𝑖 +𝑚

 

(3.61) 

  

where the move limit of 𝑚 is implemented to ensure that the change in orientation values 

is sufficiently small. In our work, this limit is set to be 𝑚 = 0.1 ∗ |𝜃𝑖𝑛𝑒𝑤 − 𝜃𝑖|. Recall 

that the element orientations are considered modulo 𝜋 so that no bounds are needed. 

 In plotting, the elemental orientations can be represented as a vector showing the 

orientation at each element. Figure 3.5 demonstrates how the element orientations can be 

displayed with the densities. 

 

 

Figure 3.5: Example Element Orientations [63] 
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3.7 Weakly Coupled Thermomechanical Systems 

Optimizing structures under thermal loading has been considered for many 

applications, such as heat fins to exhaust-washed structures. The additive manufacturing 

process often involves significant transient thermal loading during the material deposition 

process, particularly in polymer extrusion deposition as polymer is extruded in a melted 

state and experiences thermal stresses as it cools to the ambient temperature. To the best 

of our knowledge, no research has considered coupling a transient thermal history with 

mechanical loading, and this work does not seek to fill that gap. A simpler system is 

considered within a topology optimization process instead, with steady state thermal 

loading that advances the state-of-the-art toward modeling the full transient system. 

Steady-state thermal loading has been modeled before, but the design-dependent 

temperature field and weakly coupled thermal loading used here have not yet been 

considered. 

3.7.1 Weakly Coupled Model 

The conduction heat transfer is modeled by the Poisson equation in two 

dimensions, modified to allow for anisotropic heat conduction properties, to describe the 

temperature field 𝑇 

𝜕

𝜕𝑥
(𝑘𝑥

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘𝑦

𝜕𝑇

𝜕𝑦
) + 𝑔(𝑥, 𝑦) = 0 

(3.62) 

Where the heat flux 𝑔 and the conductivities 𝑘𝑥 and 𝑘𝑦 in the global 𝑥 − and 𝑦 − 

directions, respectively, can be spatially varying. The strong form in Equation 3.62 can 

be converted into a weak form by integrating over an arbitrary domain Ω𝑒 with boundary 

Γ𝑒 and arbitrary weighting function 𝑤 which may be written as 
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∫
𝜕𝑤

𝜕𝑥
𝑘𝑥
𝜕𝑇

𝜕𝑥Ω𝑒

+
𝜕𝑤

𝜕𝑦
𝑘𝑦
𝜕𝑇

𝜕𝑦
− 𝑤𝑔 𝑑𝑥 𝑑𝑦 − ∮ 𝑤 (𝑛𝑥𝑘𝑥

𝜕𝑇

𝜕𝑥
+ 𝑛𝑦𝑘𝑦

𝜕𝑇

𝜕𝑦
)𝑑𝑠

Γ𝑒

 
(3.63) 

 

 In the boundary integral over boundary edges Γ𝑒, 𝑛𝑥 and 𝑛𝑦 are the direction 

cosines of the unit normal vector. The weak form can then be discretized across a set of 

finite elements to generate the finite element equilibrium. Note that the expression 𝑞𝑛 =

 𝑛𝑥𝑘𝑥
𝜕𝑇

𝜕𝑥
+ 𝑛𝑦𝑘𝑦

𝜕𝑇

𝜕𝑦
 is a prescribed boundary heat flux. 

 The discretization process can be done for a general element in a similar manner 

to the discretization of the mechanical elasticity weak form above. The temperature can 

be approximated over the element by using the nodal temperatures 𝑇𝑗
𝑒 and a series of 

interpolation functions 𝜓𝑗
𝑒(𝑥, 𝑦), which must be at least bilinear. For an 𝑛-noded finite 

element, the temperature 𝑇 is approximated as 

𝑇(𝑥, 𝑦) ≈∑𝑇𝑗
𝑒

𝑛

𝑗=1

𝜓𝑗
𝑒(𝑥, 𝑦) 

(3.64) 

Equation 3.64 can be substituted into the weak form (Equation 3.63), which yields the 

discretized equilibrium equation 

𝑲𝑇ℎ
𝒆 𝑻𝒆 = 𝑭𝑻𝒉

𝒆  

 

(3.65) 

with 

𝑲𝑇ℎ
𝑒 = ∫ 𝑩𝑇ℎ

𝑇 𝑫𝑇ℎ𝑩𝑇ℎ𝑑Ω𝑒
Ω𝑒

    𝐹𝑇ℎ
𝑒 = ∫ 𝑓 𝚿𝑒𝑑Ω𝑒

Ω𝑒

+ ∮ 𝑞𝑛
𝑒𝚿e  dΓe

Γ𝑒

 

 

(3.66) 

  

The thermal gradient matrix 𝑩𝑇ℎ can be expressed in terms of the interpolation 

functions as 

𝐵𝑇ℎ = 

[
 
 
 
 
𝜕𝜓1
𝜕𝑥

𝜕𝜓2
𝜕𝑥

𝜕𝜓1
𝜕𝑦

𝜕𝜓2
𝜕𝑦

0 0

…
𝜕𝜓𝑛
𝜕𝑥

…
𝜕𝜓𝑛
𝜕𝑦

… 0 ]
 
 
 
 

 

 

 

(3.67) 
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and the elemental thermal elasticity matrix 𝑫𝑇ℎ can be written in terms of the material 

properties of the system in 𝑫𝑇ℎ0
 as

𝑫𝑇ℎ = 𝜌𝑖
𝑝
𝑻𝑇(𝜃𝑖)𝐷𝑇ℎ0𝑇(𝜃𝑖) (3.68) 

where 

𝑫𝑇ℎ0
= [

𝐾𝑥 0 0
0 𝐾𝑦 0

0 0 0

] 
(3.69) 

The rotation tensor 𝑻 is the standard rotation tensor in two dimensions. 

𝑻 = [
cos (𝜃𝑖) −sin (𝜃𝑖) 0
sin (𝜃𝑖) cos (𝜃𝑖) 0
0 0 1

] 
(3.70) 

The default anisotropic thermal conductivity matrix is written in terms of the 

anisotropic coefficients of conduction 𝐾𝑥 and 𝐾𝑦, and the penalty parameter 𝑝 is the same 

as that used in the mechanical analysis above. The conduction coefficient of each element 

is initially assumed to be 𝐾𝑥 and 𝐾𝑦 in the global 𝑥 and 𝑦 directions. The element 

orientation 𝜃𝑖 represents a rotation of these properties to the 𝑥′ − 𝑦′ elemental coordinate

system.  

The elemental thermal conductivity matrices are functions of the elemental 

density and orientation in a similar manner to the mechanical stiffness matrices, which 

can be shown by substituting Equations 3.67  and 3.68into Equations 3.65 and 3.66 as 

[87] 

𝑲𝑇ℎ𝑖 = 𝜌𝑖
𝑝
∫ 𝑩𝑇ℎ

𝑇 𝑻𝑇(𝜃𝑖)𝑫𝑇ℎ0𝑻(𝜃𝑖)𝑩𝑇ℎ𝑑𝑉𝑖
𝑉𝑖

(3.71) 

The global thermal conductance matrix is evaluated from the integral in Equation 

3.70 using two-point Gauss quadrature. Note that the anisotropic material properties in 
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the thermal model generated an elemental conductance matrix with comparable structure 

to the anisotropic mechanical stiffness matrix discussed in Section 3.6. 

Here, the thermal finite element equilibrium is defined across the design domain 

using the same finite elements as the mechanical equilibrium. It could be discretized 

using any finite element mesh, but if the same discretization is used, it is not necessary to 

map the temperature field from one mesh to another. The thermal discretization also uses 

square linear finite elements, but each node has only one degree of freedom. The global 

thermal equilibrium is linear. 

Boundary temperatures and heat fluxes are defined, and the thermal equilibrium is 

solved for the global temperature vector. The temperature vector is used to determine 

thermal stresses within each element [88] 

𝑭𝑇𝐸𝑖 =  𝜌𝑖
𝑝∫ 𝑩𝑀

𝑇 𝑹𝑇(𝜃𝑖)𝑫𝑀𝑹(𝜃𝑖) {

𝛼𝑥
𝛼𝑦
𝛼𝑥𝑦

}𝚿e(𝚫𝑻)𝑖𝑑𝑉𝑖
𝑉𝑖

 
(3.72) 

 The thermal expansion behavior is orthotropic, so coefficients of thermal 

expansion 𝛼𝑥′ and 𝛼𝑦′ are the coefficients of thermal expansion parallel and 

perpendicular to the element orientation respectively. Note that the coefficients of 

thermal expansion must be rotated from the local elemental coordinate system to the 

global coordinate system using the rotation 

[

𝛼𝑥 𝛼𝑥𝑦 0

𝛼𝑥𝑦 𝛼𝑦 0

0 0 0

] =  𝑻𝑇(𝜃𝑖) [

𝛼𝑥′ 0 0
0 𝛼𝑦′ 0

0 0 0

] 𝑻(𝜃𝑖) 
(3.73) 

 

The elemental thermal forces are summed in the mechanical force vector along 

with the applied mechanical forces. The mechanical equilibrium is then solved for 

displacements. 
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3.7.2 Design Sensitivity Derivation 

The design sensitivities must be computed for the coupled system, as the force 

vector is dependent on the temperatures and densities when the structure is under the 

influence of the thermal loading. The adjoint variable method can be used once again in a 

similar manner to the above derivation, with the only difference coming from the coupled 

nature of the thermomechanical problem. Compliance is defined as earlier 

𝐶 = 𝑼𝑇𝑭

The augmented compliance can be written in terms of an arbitrary Lagrange 

multiplier 𝝀 

𝐶̂ = 𝐶 − 𝝀(𝑲𝑼 − 𝑭) (3.74) 

Then, the design sensitivity can be computed with the chain rule 

𝐷𝐶̂

𝐷𝜌𝑖
=

𝐷

𝐷𝜌𝑖
(𝐶) − 𝝀

𝐷

𝐷𝜌𝑖
(𝑲𝑼 − 𝑭) = 

𝑑𝐶

𝑑𝑼

𝐷𝑼

𝐷𝜌𝑖
+
𝑑𝐶

𝑑𝑭

𝐷𝑭

𝐷𝜌𝑖
− 𝝀(

𝐷𝑲

𝐷𝜌𝑖
𝑼 +𝑲

𝐷𝑼

𝐷𝜌𝑖
−
𝐷𝑭

𝐷𝜌𝑖
) 

(3.75) 

It is desired that the 
𝐷𝑼

𝐷𝑥𝑖
 term be eliminated, so all terms involving it are collected. 

Equation 3.75 can be rewritten as 

𝐷𝐶̂

𝐷𝜌𝑖
= (

𝑑𝐶

𝑑𝑼
− 𝝀𝑲)

𝐷𝑼

𝐷𝜌𝑖
+ (

𝑑𝐶

𝑑𝑭
+ 𝝀)

𝐷𝑭

𝐷𝜌𝑖
− 𝝀

𝐷𝑲

𝐷𝜌𝑖
𝑼 

(3.76) 

By definition of compliance, Equation 3.76 can be written in terms of the finite 

element variables 

𝐷𝐶̂

𝐷𝜌𝑖
= (𝑭 − 𝝀𝑲)

𝐷𝑼

𝐷𝜌𝑖
+ (𝑼𝑇 + 𝝀)

𝐷𝑭

𝐷𝜌𝑖
− 𝝀

𝐷𝑲

𝐷𝜌𝑖
𝑼 

(3.77) 
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Let 𝜆 = 𝑼𝑇. Then, the 
𝐷𝑼

𝐷𝜌𝑖
 term can be eliminated, as 𝑭 − 𝝀𝑲 = 𝟎. The force 

derivative term is more complex now, as the force vector is a function of the densities 

and the temperature field. Equation 3.77 can be written as 

𝐷𝐶̂

𝐷𝜌𝑖
= 2𝑼𝑇

𝐷𝑭

𝐷𝜌𝑖
− 𝑼𝑇

𝐷𝑲

𝐷𝜌𝑖
𝑼 = 2𝑼𝑇 (

𝜕𝑭

𝜕𝜌𝑖
+
𝜕𝑭

𝜕𝑻

𝐷𝑻

𝐷𝜌𝑖
) − 𝑼𝑇

𝐷𝑲

𝐷𝜌𝑖
𝑼 

 

(3.78) 

Now, 𝑲𝑇ℎ𝑻 = 𝑭𝑇ℎ by the thermal finite element equilibrium, and differentiating 

yields 
𝐷𝑲𝑇ℎ

𝐷𝜌𝑖
𝑻 + 𝑲𝑇ℎ

𝐷𝑻

𝐷𝜌𝑖
=

𝐷𝑭𝑇ℎ

𝐷𝜌𝑖
, which can be reordered as 

𝐷𝑻

𝐷𝜌𝑖
= 𝑲𝑇ℎ

−1(
𝐷𝑭𝑇ℎ

𝐷𝜌𝑖
−
𝐷𝑲𝑇ℎ

𝐷𝜌𝑖
𝑻). 

Then,  

𝐷𝐶̂

𝐷𝜌𝑖
= 2𝑼𝑇 (

𝜕𝑭

𝜕𝜌𝑖
−
𝜕𝑭

𝜕𝑻
 𝑲𝑇ℎ

−1  
𝐷𝑲𝑡
𝐷𝜌𝑖

𝑻) − 𝑼𝑇
𝐷𝑲

𝐷𝜌𝑖
𝑼  

 

 

(3.79) 

Equation 3.79 can be discretized across the elements in Equation 3.80. Other 

finite element choices will generate different discretizations, and while the derivation 

ending in Equation 3.79 is general, the discretized equation is only valid for the square 

linear elements used here. Note that the global 𝑲𝑇ℎ matrix is singular, but the inverse of 

the sub-matrix composed of the free degrees of freedom of 𝑲𝑻𝒉 can be found, and this is 

substituted where 𝑲𝑻𝒉
−1 is required.  

𝐷𝐶

𝐷𝜌𝑖
= −𝑝𝜌𝑖

𝑝−1𝑼𝑖
𝑇𝑲𝑀𝑖𝑼𝑖 + 2𝑼𝑖

𝑇
𝜕𝑭𝑇𝐸
𝜕𝜌𝑖

− 

2𝑝𝜌𝑖
𝑝−1𝑼𝑖

𝑇 (
𝜕𝑭𝑇𝐸𝑖
𝜕𝑻

𝑲𝑇ℎ
−1)

𝑖

𝑲𝑇ℎ𝑖
𝑻𝑖 

(3.80) 

 Equation 3.80 is the expression used for the design sensitivity. The two partial 

derivative terms can be evaluated in terms of the integration expression of the thermal 

force vector by using the finite element discretization considered above. 

𝜕𝑭𝑇𝐸
𝜕𝜌𝑖

= 𝑝 𝜌𝑖
𝑝−1∫ 𝑩𝑀

𝑇 𝑹𝑇(𝜃𝑖)𝑫𝑇ℎ𝑹(𝜃𝑖) {

𝛼𝑥
𝛼𝑦
𝛼𝑥𝑦

}𝚿e(𝚫𝑻)𝑖𝑑𝑉𝑖
𝑉𝑖

  
(3.81) 
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𝜕𝑭𝑇𝐸𝑖
𝜕𝑻𝑖

=  𝜌𝑖
𝑝∫ 𝑩𝑀

𝑇 𝑹𝑇(𝜃𝑖)𝑫𝑇ℎ𝑹(𝜃𝑖) {

𝛼𝑥
𝛼𝑦
𝛼𝑥𝑦

}𝑁𝑖𝑑𝑉𝑖
𝑉𝑖

 
(3.82) 

Equations 3.81 and 3.82 are evaluated with two-point Gauss quadrature. 

Similarly, the design sensitivity of compliance with respect to the orientations can 

be computed. A similar manner is used, and the derivation proceeds in a nearly identical 

manner. 

𝑑𝐶

𝑑𝜃𝑖
= −𝜌𝑖

𝑝𝑼𝑖
𝑇
𝜕𝑲𝑀𝑖
𝜕𝜃𝑖

𝑼𝑖 + 2𝑼𝑖
𝑇
𝜕𝑭𝑇𝐻
𝜕𝜃𝑖

− 2𝜌𝑖
𝑝𝑼𝑖

𝑇
𝜕𝑭𝑇𝐸𝑖
𝜕𝑻𝑖

(𝑲𝑇ℎ
−1)𝑖

𝜕𝑲𝑇ℎ𝑖

𝜕𝜃𝑖
𝑻𝑖 

(3.83) 

The individual partial derivatives can be computed in terms of their integral 

expressions, which are all evaluated with two-point Gauss quadrature. Note that Equation 

3.83 is a general expression of the design sensitivity, and that Equations 3.84 – 3.86 are 

all discretizations based on the finite element formulation used. 

𝜕𝑭𝑇𝐸
𝜕𝜃𝑖

=  𝜌𝑖
𝑝∫ 2𝑩𝑇ℎ

𝑇
𝜕𝑹𝑇(𝜃𝑖)

𝜕𝜃𝑖
𝑫𝑇ℎ {

𝛼𝑥
𝛼𝑦
𝛼𝑥𝑦

} (Δ𝑇)𝑖𝑑𝑉𝑖
𝑉𝑖

 
(3.84) 

𝜕𝑲𝑇ℎ𝑖

𝜕𝜃𝑖
= 𝜌𝑖

𝑝
∫ 2𝑩𝑇ℎ

𝑇
𝜕𝑹𝑇(𝜃𝑖)

𝜕𝜃𝑖
 𝑫𝑇ℎ𝑹(𝜃𝑖)𝑩𝑇ℎ𝑑𝑉𝑖

𝑉𝑖

(3.85) 

𝜕𝑲𝑀𝑖
𝜕𝜃𝑖

= 𝜌𝑖
𝑝
∫ 2𝑩𝑀

𝑇
𝜕𝑹𝑇(𝜃𝑖)

𝜕𝜃𝑖
 𝑫𝑀𝑹(𝜃𝑖)𝑩𝑀𝑑𝑉𝑖

𝑉𝑖

 
(3.86) 

3.7.3 Sensitivity Filters for Compliance Optimization 

The design sensitivity of compliance with respect to density takes exclusively 

negative values in purely mechanical systems. However, under weakly coupled 

thermomechanical loading the design sensitivities can be positive. When thermal loading 

is zero, increasing an element’s density will always increase the part’s overall stiffness. 
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However, when thermal loading is included, an increase in density can increase the 

thermal loading that an element experiences, which in elements with high temperature 

changes and low mechanical loads can decrease the stiffness of the part. 

 This presents no problem for the GCMMA algorithm, as it is a general 

optimization algorithm, but the OC method assumes that all design sensitivities are 

negative. The heuristic update scheme was not designed with positive-sign sensitivities in 

mind and cannot effectively operate on them. Any element with a positive design 

sensitivity will cause its density to be reduced by the maximum allowable amount, 

subject to move limits and boundary conditions. This can cause difficulties with 

convergence as elements may alternate between positive and negative sensitivities in 

subsequent operations. If a significant number of the elements have positive sensitivities, 

the OC method may fail to operate as all elements with positive sensitivities are treated 

identically and enough material may be removed to prevent a 𝜆 value from being found.  

 The solution implemented in this work operates on the design derivatives to map 

any positive derivatives into negative ones while preserving the relative ordering of the 

design sensitivities. There are several ways that this mapping could occur, and this work 

considers a family of mappings of the following form 

𝑑𝐶

𝑑𝑥𝑖
|𝑛𝑒𝑤 = 

{
 

 
𝑑𝐶

𝑑𝑥𝑖
  ,        

𝑑𝐶

𝑑𝑥𝑖
< 0

f (
𝑑𝐶

𝑑𝑥𝑖
)       ,

𝑑𝐶

𝑑𝑥𝑖
≥ 0 

 

 

(3.87) 

 

The mapping function f (
𝑑𝐶

𝑑𝑥𝑖
) can take many forms, and several different ones 

were considered. The relative performance of mapping functions will be evaluated in 

Section 4. The function used by default is displayed in Equation 3.87, and unless stated 

otherwise it is used 



78 

f (
𝑑𝐶

𝑑𝑥𝑖
) =  0 

(3.88) 

This mapping function alters the design sensitivities minimally, hence its choice 

as the default mapping. 

3.8 Strain Energy Optimization 

3.8.1 Motivation 

In weakly coupled thermomechanical systems minimizing compliance may not 

necessarily maximize the stiffness of a part. The strain energy of the part has been 

considered as a different objective function [77], [47]. The strain energy is equal to the 

compliance in pure mechanical loading, and the two diverge as thermal loading increases. 

Some work [47] indicates that optimizing strain energy yields a lower maximum von 

Mises stress than optimizing compliance, but this was only compared for isothermal 

systems. The relative performance of compliance and strain energy as objective functions 

will be evaluated in Chapter 4. 

3.8.2 Definition and Sensitivity Derivation 

The strain energy can be written in terms of the global finite element variables as 

follows 

𝑆 =
1

2
𝑼𝑇𝑭 − 𝑼𝑇𝑭𝑇𝐸 +

1

2
𝑼𝑇𝐸
𝑇 𝑭𝑇𝐸

(3.89) 

Note that the thermal effects can be considered by examining the global thermal 

force vector 𝑭𝑇𝐸 as a separate loading case, yielding 𝑲𝑼𝑇𝐸 = 𝑭𝑇𝐸, where 𝑼𝑇𝐸 is the 

global displacement vector due to thermal loading. Previous works have used a different 

definition of strain energy, where the third term is written in terms of thermal strains 
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𝑆 =
1

2
𝑼𝑇𝑭 − 𝑼𝑇𝑭𝑇𝐸 +

1

2
∫(𝜺𝑡ℎ)

𝑇𝐵𝜀𝑡ℎ𝑑𝑉
Ω

 

 

(3.90) 

 All previous works involving strain energy have only investigated isothermal 

systems. In that case, a structure under a uniform temperature change experiences thermal 

expansion that can be computed elementwise, as the structure expands or contracts 

uniformly. This is free expansion, as the thermal expansion of the structure as a whole 

can be considered as the sum of elementwise expansions. 

 However, under non-isothermal temperature fields, whether design dependent as 

used here or not, free expansion does not occur. The elementwise thermal strains do not 

necessarily cause a uniform expansion, as uneven elemental expansion generates 

additional stresses within the structure. This set of additional strains ensures that, even 

separate from the mechanical constraints, the elementwise thermal expansion does not 

fully represent the unconstrained expansion. Put another way, the sum of the elementwise 

thermal expansions is not equal to the total mechanically unconstrained expansion of the 

structure. 

 In all loading cases considered in Section 4, the mechanical fixed degrees of 

freedom do not constrain the expansion of the structure, so the formulations in Equations 

3.89 and 3.90 are equivalent if the thermal strain is computed from the mechanically 

unconstrained expansion of the entire structure. In cases where more mechanical 

constraints are applied, the two would not be equal as mechanically fixing different 

points in the structure may require additional loading from the unconstrained expansion. 

This additional loading has been considered [77], and those stresses classified as 

mechanical stresses when they are nonzero. 
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It is worth noting that here the stresses generated by thermal unconstrained 

expansion in addition to the elementwise stresses are considered part of the overall 

thermal stresses and are used when computing thermal displacements. Assigning these 

stresses to the thermal analysis instead of the mechanical stresses was a choice of the 

authors, as no precedent for this was found and these stresses arise before any mechanical 

displacements and forces are applied. It would be possible to define the thermal stresses 

as only accounting for the elementwise expansion and classifying all other stresses as 

mechanical. This would change the definition and sensitivity of strain energy and 

generate different structures. Only the thermal classification is used here, but future 

researchers could investigate this alternate formulation. 

The design sensitivity derivation for strain energy takes the same form as previous 

design sensitivity derivations, but two Lagrange multipliers must be used. An augmented 

definition of the strain energy can be expressed with the two Lagrange multipliers 𝜼 and 

𝜸 

𝑆̂ = 𝑆 − 𝝀(𝑲𝑼− 𝑭) − 𝜸(𝑲𝑼𝑇𝐸 − 𝑭𝑇𝐸) (3.91) 

The total derivative can be taken with respect to an arbitrary element density 𝜌𝑖 

𝐷𝑆̂

𝐷𝜌𝑖
=
𝐷𝑆

𝐷𝜌𝑖
− 𝝀

𝐷

𝐷𝜌𝑖
(𝑲𝑼 − 𝑭) − 𝜸(𝑲𝑼𝑇𝐸 − 𝑭𝑇𝐸)

(3.92) 

Using the definition of strain energy, Equation 3.92 can be expressed in terms of 

the global displacements and forces 

𝐷𝑆̂

𝐷𝜌𝑖
=
𝑑𝑆

𝑑𝑼

𝐷𝑼

𝐷𝜌𝑖
+
𝑑𝑆

𝑑𝑭

𝐷𝑭

𝐷𝜌𝑖
+

𝑑𝑆

𝑑𝑼𝑇𝐸

𝐷𝑼𝑇𝐸
𝐷𝜌𝑖

+
𝑑𝑆

𝑑𝑭𝑇𝐸

𝐷𝑭𝑇𝐸
𝐷𝜌𝑖

− 𝝀(
𝐷𝑲

𝐷𝜌𝑖
𝑼 +𝑲

𝐷𝑼

𝐷𝜌𝑖
−
𝑑𝑭

𝐷𝜌𝑖
) − 

𝛾(
𝐷𝑲

𝐷𝜌𝑖
𝑼𝑇𝐸 +𝑲

𝐷𝑼𝑇𝐸
𝐷𝜌𝑖

−
𝐷𝑭𝑇𝐸
𝐷𝜌𝑖

) 

(3.93) 
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Equation 3.93 can be reordered, as once again it is desired that the 
𝐷𝑼

𝐷𝜌𝑖
 term be 

eliminated. The 
𝐷𝑼𝑻𝑬

𝐷𝜌𝑖
 term is also grouped, as it will be eliminated because it is also 

computationally intensive to evaluate. 

𝐷𝑆̂

𝐷𝜌𝑖
= (

𝑑𝑆

𝑑𝑼
− 𝝀𝑲)

𝐷𝑼

𝐷𝜌𝑖
+ (

𝑑𝑆

𝑑𝑼𝑇𝐸
− 𝜸𝑲)

𝐷𝑼𝑇𝐸
𝐷𝜌𝑖

+ (
𝑑𝑆

𝑑𝑭
+ 𝝀)

𝐷𝑭

𝐷𝜌𝑖

+ (
𝑑𝑆

𝑑𝑭𝑇𝐸
+ 𝜸)

𝐷𝑭𝑇𝐸
𝐷𝜌𝑖

− 𝝀 
𝐷𝑲

𝐷𝜌𝑖
𝑼 − 𝜸

𝐷𝑲

𝐷𝜌𝑖
𝑼𝑇𝐸 

 

 

 

(3.94) 

 The definition of strain energy yields 

𝐷𝑆̂

𝐷𝜌𝑖
= (

1

2
𝑭 − 𝑭𝑇𝐸 − 𝝀𝑲)

𝐷𝑼

𝐷𝜌𝑖
+ (

1

2
𝑭𝑇𝐸 − 𝜸𝑲)

𝐷𝑼𝑇𝐸
𝐷𝜌𝑖

+ (
1

2
𝑼𝑇 + 𝝀)

𝐷𝑭

𝐷𝜌𝑖

+ (−𝑼𝑇 +
1

2
𝑼𝑇𝐸 + 𝜸)

𝐷𝑭𝑇𝐸
𝐷𝜌𝑖

− 𝝀 
𝐷𝑲

𝐷𝜌𝑖
𝑼 − 𝜸 

𝐷𝑲

𝐷𝜌𝑖
𝑼𝑇𝐸 

 

(3.95) 

Choose 𝝀 =
1

2
𝑼𝑇 − 𝑼𝑇𝐸

𝑇  and 𝜸 =
1

2
𝑼𝑇𝐸
𝑇 . Then, the first two terms simplify to 

zero, eliminating the 
𝐷𝑼

𝐷𝜌𝑖
 and 

𝐷𝑼𝑻𝑬

𝐷𝜌𝑖
 terms as needed. 

𝐷𝑆̂

𝐷𝜌𝑖
= (

1

2
𝑼𝑇 +

1

2
𝑼𝑇 − 𝑼𝑇𝐸

𝑇 )
𝐷𝑭

𝐷𝜌𝑖
+ (−𝑼𝑇 +

1

2
𝑼𝑇𝐸
𝑇 +

1

2
𝑼𝑇𝐸
𝑇 )

𝐷𝑭𝑇𝐸
𝐷𝜌𝑖

− (
1

2
𝑼𝑇

− 𝑼𝑇𝐸
𝑇 ) 

𝐷𝑲

𝐷𝜌𝑖
𝑼 −

1

2
𝑼𝑇𝐸
𝑇  

𝐷𝑲

𝐷𝜌𝑖
𝑼𝑇𝐸 

 

 

 

(3.96) 

Note that 
𝐷𝑭

𝐷𝜌𝑖
=

𝐷𝑭𝑇𝐸

𝐷𝜌
 because the only forces that the density can alter are the 

thermal forces, and the first two terms cancel: 

𝐷𝑆̂

𝐷𝜌𝑖
= −

1

2
𝑼𝑇

𝐷𝑲

𝐷𝜌𝑖
𝑼 + 𝑼𝑇𝐸

𝑇
𝐷𝑲

𝐷𝜌𝑖
𝑼 −

1

2
𝑼𝑇𝐸
𝑇
𝐷𝑲

𝐷𝜌𝑖
𝑼𝑇𝐸 

 

(3.97) 

 Equation 3.97 can be computed easily but note that the displacements due to the 

thermal forces 𝑼𝑻𝑬 must be computed in an additional finite element step in order to 

evaluate both strain energy and the design sensitivity. Note once again that, although the 
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design sensitivity in Equation 3.97 is valid in general, the discretization in Equation 3.98 

is only valid for the specific discretization used in this work 

𝐷𝑆̂

𝐷𝜌𝑖
=  𝑝𝜌𝑖

𝑝−1(−
1

2
𝑼𝑖
𝑇𝑲𝑖𝑼𝑖 + 𝑼𝑇𝐸𝑖

𝑇𝑲𝑖𝑼 −
1

2
𝑼𝑇𝐸
𝑇

𝑖
𝑲𝑖𝑼𝑇𝐸𝑖)

(3.98) 

Similarly, the design sensitivity of strain energy in terms of the element 

orientations can be computed. The manner of derivation is similar, and it can be 

expressed in terms of the terms that have already been computed in a fully discretized 

form. 

𝐷𝑆̂

𝐷𝜃𝑖
= 𝜌𝑖

𝑝 ∗ (−
1

2
𝑼𝑖
𝑇
𝜕𝑲𝑖
𝜕𝜃𝑖

𝑼𝑖 + 𝑼𝑇𝐸𝑖
𝑇 𝜕𝑲𝑖
𝜕𝜃𝑖

𝑼 −
1

2
𝑼𝑇𝐸
𝑇

𝑖

𝜕𝑲𝑖
𝜕𝜃𝑖

𝑼𝑇𝐸𝑖)
(3.99) 

With these design sensitivities evaluated, either compliance or strain energy could 

be considered as the objective function in a topology optimization performed using either 

the OC or GCMMA method.   
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CHAPTER FOUR 

Results 

 

 

4.1 Overview 

 

 The purpose of this work is to compute optimal topologies for and determine 

which objective function and update method can optimize the performance of weakly 

coupled thermomechanical systems. The two objective functions compared here, 

compliance and strain energy, are identical under purely mechanical loading, so any test 

cases used for comparison must incorporate significant thermal loading. Compliance is 

considered as it is the classical stiffness inverse and has been extensively studied as such. 

Strain energy has recently been explored as an alternate stiffness inverse and is a measure 

of the amount of energy needed to deform the structure from unconstrained expansion to 

a loading scenario. The effects of increasing the contribution of thermal loading as a 

fraction of overall loading are considered in a case study. Both the optimality criterion 

method and the GCMMA method described in Sections 3.3 and 3.4 respectively are used 

to optimize the design, and the relative effectiveness of each optimization algorithm is 

compared. As the thermal loading is a significant fraction of the total loading, a 

sensitivity mapping is provided for compliance optimization in the optimality criterion 

method. Several different gradient mappings are presented and compared to determine if 

the choice of gradient mapping impacts the structure. 

 A simple design domain is chosen for this study as shown in Figure 4.1. The 

anisotropic weakly coupled system is defined over this design domain as described in 
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Chapter three. The topology optimization problem in Equation 3.28 is first solved for 

minimum compliance assuming purely mechanical loading of an isotropic structure, and 

then anisotropy and thermal loading are included in successive optimization examples. 

The successive introduction of anisotropy and thermal loading demonstrate their effects 

on the optimized structure, and the difference in performance between compliance 

optimization and strain energy optimization is determined.  

4.2 Problem Setup 

The MBB beam [22], a two-dimensional aircraft structural beam in three-point 

bending, has been used extensively in the literature as a benchmark topology 

optimization problem, and it is considered here with the design domain in Figure 4.1. 

This design domain includes a two-dimensional rectangle, with the length four times the 

width. Half symmetry is assumed for the structure, so only half of the beam appears in 

Figure 4.1, which also shows the shape of the design domain and the location of applied 

loads and displacements are shown in Figure 4.1. 

Figure 4.1: Design Domain of MBB Beam 
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 The left edge has a symmetric boundary condition in the x-direction, and the 

bottom right corner is fixed in the y-direction. A force is applied at the top left node in 

the negative y-direction. When only mechanical loading is considered, the magnitude of 

the applied force is irrelevant as the small-displacement assumption results in compliance 

being directly proportional to the applied force by linearity. However, once thermal 

loading is included the relative magnitude of the applied heat fluxes to the mechanical 

force directly influence the optimal topology, so the force is arbitrarily chosen to be 𝐹 =

500 𝑁. 

 Thermal boundary conditions are also defined. It is assumed that the structure is 

initially set at an arbitrary temperature, and all thermal behavior is driven by temperature 

changes relative to this initial temperature. The bottom edge is prescribed a temperature 

increase of zero, and a heat flux is applied at the same location as the mechanical force. 

The intensity of this heat flux is changed in different optimizations to investigate the 

effects of increasing thermal loading. 

 In the first example, an isotropic material is considered, with the applied heat flux 

set to zero (i.e. 𝐹𝑇ℎ = 0 in Equation 3.65). This set of loading conditions is identical to 

the system considered in the 99-line code in Sigmund’s 2001 paper [22] and serves to 

validate the basic performance of our topology optimization method. Under this loading 

compliance and strain energy are equal, so compliance is considered as the objective 

function. The volume fraction is set to 𝑉𝑓 = 0.5 and the material properties of carbon 

fiber-reinforced ABS polymer are used. Note that the value of the Young’s modulus is 

arbitrary as the displacement field is proportional to the Young’s modulus, but the 

computed optimal structure does not vary with Young’s modulus. The design space in 
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Figure 4.1 is discretized into 200 𝑥 100 identically sized bi-square linear finite elements. 

The OC method in Section 3.5 is applied until convergence is achieved, and the final 

structure is presented in Figure 4.2. 

Figure 4.2: Final Topology of Isotropic MBB Beam Under Pure Mechanical Loading by 

OC Method 

Under the OC method, convergence is monotonic, and the algorithm is run for 

200 iterations. The final compliance value is 5.604 𝑚𝐽, and the convergence history is 

displayed in Figure 4.3. 

The GCMMA method in Section 3.6 can also be used to optimize the structure, 

but it requires the volume fraction constraint to be expressed as two separate inequality 

constraints in order to imitate the equality constraint in the OC algorithm. The tuning 

parameters for the GCMMA method are presented in Table 4.1. 
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Figure 4.3: Convergence History of Compliance Optimization of Isotropic Mechanical 

MBB Beam Using OC Method 

 

 

 

Table 4.1: Constants for GCMMA Algorithm 

Variable Value 

𝑓0 500 

𝑐1 100 

𝑐2 100 

 

 

 The final topology was reached in 500 iterations of the GCMMA algorithm and 

yields the design in Figure 4.4. Note that the structure different from the final topology of 

the OC method in Figure 4.2, as each method has found different local minima. The 

design space has a vast number of local minima, and each method treats the gradient 

differently, so it is expected that each method would generate different structures. 
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Figure 4.4: Final Topology of Isotropic MBB Beam Under Pure Mechanical Loading by 

GCMMA Method 

The convergence of the compliance is also monotonic under the GCMMA 

algorithm. Note that the convergence rate is much slower than the OC method, as seen in 

Figure 4.5. The final compliance value is 5.494 𝑚𝐽, which is higher than the compliance 

obtained by the OC method, but only by 1.3%. This near-identical performance suggests 

that both algorithms can optimize compliance effectively over an isotropic system with 

only mechanical loading. 
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Figure 4.5: Convergence History of Compliance Optimization of Isotropic Mechanical 

MBB Beam Using GCMMA Method 

 

 

 As a second example, the material in the design domain in Figure 4.1 is assumed 

to be orthotropic, with a Young’s modulus 𝐸𝑥 in the principal direction greater than that 

in the perpendicular direction (i.e. 𝐸𝑦) according to 
𝐸𝑥

𝐸𝑦
=  10. Note that this modulus ratio 

is higher than what is usually found in short-fiber reinforced composite structures and is 

instead closer to the increase in Young’s modulus for continuous fiber-reinforced 

structures. Our work primarily considers short-fiber reinforced polymers but exaggerating 

the degree of anisotropy allows for its effects to be clearly demonstrated. The same 

design domain (Figure 4.1) is optimized with this new material, allowing both elemental 

densities 𝜌𝑖 and orientations 𝜃𝑖 to be altered as design variables, using both the OC and 

GCMMA algorithm. Recall that allowing anisotropic material properties to vary spatially 

is one of the two factors we seek to include to model the additive manufacturing process. 

Thermal behavior will be incorporated subsequently, but the applied heat flux is kept at 
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zero. The converged structure obtained with the OC method is presented in Figure 4.6 

where element material orientation appears as a short line segment in corresponding 

elements. Only the orientations in alternating elements are displayed to ensure that the 

orientations are visible. 

Figure 4.6: Final Topology of Anisotropic MBB Beam Under Pure Mechanical Loading 

by OC Method 

Only half of the structure is displayed so that element orientations can be more 

easily observed. Note that Figure 4.6 is a different structure than the isotropic 

optimization in Figure 4.2, indicating that the same result cannot be obtained by first 

assuming isotropy and optimizing the material density, and then optimizing the element 

orientations separately. The design space is thus not convex and optimizing all design 

variables simultaneously is necessary. The convergence is still smooth and monotonic, 

and the final compliance value is 0.5861 𝑚𝐽 after 500 iterations as shown in Figure 4.7. 

Note that the element orientations, represented by vectors at each element, are 

oriented roughly in the axial direction of each of the truss-like sections. Axial alignment 
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of fibers is intuitive, as the elements in those regions are loaded approximately axially. In 

the regions where the truss-like segments meet, the orientations are more complex. 

 The compliance decreases rapidly in the initial 20 iterations as the orientations 

adjust from the initial random state to a more ordered alignment. After about 20 iterations 

through the final iteration the compliance experiences small decreases, as seen in Figure 

4.7. 

 

 

Figure 4.7: Convergence History of Compliance Optimization of Anisotropic Mechanical 

MBB Beam Using OC Method 

  

 

 The GCMMA algorithm converges slower for the same design domain and is run 

for 500 iterations. Convergence is no longer uniform in the early iterations but decreases 

monotonically after the first thirty iterations. Once again, the structure obtained is 

different than the structure obtained in the OC method due to the difference in how each 

algorithm treats the gradient, as seen in Figure 4.8. 



92 

Figure 4.8: Final Topology of Anisotropic MBB Beam Under Pure Mechanical Loading 

by GCMMA Method 

It is clear from Figure 4.8 that the element orientations have more variation and 

are not as uniformly aligned, which may explain why the compliance in this test is 

slightly higher than the compliance obtained in the OC optimization. The convergence is 

no longer monotonic, as seen in Figure 4.9. 

Figure 4.9: Convergence History of Compliance Optimization of Anisotropic Mechanical 

MBB Beam Using GCMMA Method 
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 The non-monotonic convergence behavior is likely due to the extremely high 

sensitivity of compliance to the orientation of the elements near the point of load 

application. The GCMMA approach is based on a liner approximation of the objective 

function and constraints, and the behavior of compliance with respect to these 

orientations is highly nonlinear, so as those element orientations change by a large 

amount in the first few iterations the assumption that each element orientation can be 

optimized independently is not particularly accurate, and the compliance value can 

increase. Once those element orientations have stabilized, the compliance convergence is 

monotone. Note that the tests in Figure 4.6 and 4.8 show that the OC and GCMMA 

algorithms can converge to final structures, and that under no thermal loading compliance 

and strain energy are equal. 

 

4.3 Weakly Coupled Orthotropic Thermomechanical System 

 

 It has now been shown that the anisotropic topology optimization can be 

performed, and that the optimization converges to a local minimum efficiently. The local 

minimum differs based on the technique used, but both methods converge effectively to 

structures with near-identical performance. To more closely model additive 

manufacturing, thermal behavior is included as described in Section 3.7. Recall that the 

structure is assumed to begin at an arbitrary temperature, and the bottom edge of the 

structure is fixed at that temperature and subjected to no temperature change. At the top 

corner, the same location where the force is applied, a heat flux of 30 𝑊 is applied to the 

node at the top left corner. The temperature field, thermal stresses, and their effects on 

compliance and strain energy are computed as described in Chapter 3. 
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As described above, compliance and strain energy are equivalent under pure 

mechanical loading. However, when the thermal loading is nonzero, these objective 

functions yield different values and optimizing each will lead to different structures. It is 

not immediately clear which optimization function yields superior results, or even how 

“superior results” should be defined. Thus, the optimization will be performed once for 

compliance and then once for strain energy as the objective function using both the OC 

and GCMMA optimization methods, making four separate optimization solutions being 

performed below. The results are displayed below. 

The optimality criterion method’s performance is examined first, and both 

objective functions are optimized in successive tests. Only half of the final topology is 

presented, as the design is symmetric. The first system considered is compliance 

optimization with the OC method, as seen in Figure 4.10. 

Figure 4.10: Final Topology of Orthotropic Weakly Coupled Model, Compliance 

Optimized with the Optimality Criteria Method 

Note that the colored contours represent temperature. The optimal topology of the 

compliance-based model retains some small areas of fractional density where the material 
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has not completely converged to solid or void. This is highlighted in Figure 4.10b, where 

the region of intermediate density is shown. 

 

  

Figure 4.10b: Region of Fractional Density Present in Figure 4.10 

 

Further iterations do not resolve these small regions. These regions have no physical 

interpretation and cannot be produced, although these regions are small enough that a 

simple rounding step in post-processing would remedy this while only trivially altering 

the structure’s performance. Under higher density move limits, material was found to 

oscillate within these regions without converging, so a density move limit of 𝑚 = 0.05 

was imposed to prevent this behavior. The convergence history of the compliance 

objective function appears in Figure 4.11. 

 

 

Figure 4.11: Compliance Convergence History of Orthotropic Weakly Coupled Model, 

Optimality Criterion Method 
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As seen in Figure 4.11, the compliance decreases rapidly initially, and then 

experiences little change for the next 900 iterations, although the convergence is not 

monotonic. This may be due to the heuristic modifications to the gradient given in 

Equation 3.38 for the optimality criterion method. The strain energy optimization 

generates a structure with a much different form than that produced with the OC method, 

as seen in Figure 4.12. 

Figure 4.12: Final Topology of Orthotropic Weakly Coupled Model, Strain Energy 

Optimized via the Optimality Criteria Method 

The optimum structure in Figure 4.12 converges to a design that resolves entirely 

to solid or void when strain energy is optimized. Unlike the compliance optimization, the 

design resembles the structure generated by optimization of purely mechanical 

compliance in Figure 4.6. The convergence is also not monotonic, but the strain energy is 

the lowest strain energy value for the optimization after 1000 iterations. The convergence 

history is displayed in Figure 4.13. 
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Figure 4.13: Strain Energy Convergence History of Orthotropic Weakly Coupled Model, 

Optimality Criterion Method 

 

 

 It is worth noting that the strain energy increases between iterations 42 and 185 

in Figure 4.13. This increase despite the use of the gradient is similar to the behavior of 

the compliance optimization, although the algorithm does indeed converge to a 

minimum. The design has no fractional density regions, and thus can be produced 

without density rounding in post-processing. The need for less post-processing is a minor 

improvement over the compliance optimization, though the relative performance of each 

has not yet been compared. 

 While these optimizations converge to generate structures, the non-monotonic 

convergence and fractional density in the compliance optimization are not ideal. We thus 

turn to the GCMMA algorithm to perform the same optimizations. The compliance is 

optimized once again, though the GCMMA method is now used. The resultant structure 

is presented in Figure 4.14. 



98 

Figure 4.14: Final Topology of Orthotropic Weakly Coupled Model, Compliance 

Optimized via the GCMMA Method 

After 1000 iterations, the design has approached a structure with some 

similarities to the OC optimization. A region of intermediate density still exists at the top-

left corner, and does not resolve to solid or void under further iterations. The arch 

structure supporting a pyramid-like structure resembles Figure 4.10. The convergence 

history in Figure 4.15 shows near-monotonic convergence. 

Figure 4.15: Compliance Convergence History of Orthotropic Weakly Coupled Model, 

GCMMA Method 
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 The convergence appearing in figure 4.15 is near-monotonic as in the OC method, 

and a similar structure with regions of fractional density is generated. The differences in 

the structure are likely because the GCMMA algorithm does not alter the gradient as 

much as the OC method, but the similarity of the convergence histories and final 

structures indicate that both operate comparatively. The strain energy is optimized next, 

and the final structure is shown in Figure 4.16. 

 

Figure 4.16: Final Topology of Orthotropic Weakly Coupled Model, Strain Energy 

Optimized via the GCMMA Method 

 

 

 The design retains several large regions of intermediate density, unlike the strain 

energy optimization by the OC method. The design looks significantly different from the 

one appearing in Figure 4.12, as the methods have different move limits and ways of 

handling the gradient. The relative performance of these optimizations can be compared 

to indicate the effectiveness of the optimization methods and objective functions. The 

convergence history is near-monotonic and the final strain energy is higher than the strain 

energy of the OC strain energy optimization, as seen in Figure 4.17. Note that the spike at 

iteration 316 is due to a matrix singularity issue due to numerical instabilities. 
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Figure 4.17: Strain Energy Convergence History of Orthotropic Weakly Coupled Model, 

GCMMA Method 

4.4 Comparison of Performance 

The performance of each of the optimizations of the full model is summarized in 

Table 4.2. Note that both objective function values are given even though only one 

response is optimized in each simulation. 

Table 4.2: Optimization Performance 

Test Type Compliance [mJ] Strain Energy [mJ] 

OC Strain Energy - 0.5927 

GCMMA Strain Energy - 0.7310 

OC Compliance 1.243 - 

GCMMA Compliance 1.221 - 

The OC method obtains a significantly lower value of the objective function for 

strain energy optimization, but slightly worse performance in the compliance 

optimization. Specifically, it appears that the GCMMA strain energy optimization 
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converged to a local minimum that is much further from the global minimum than the 

local minimum found by OC method. However, the compliance optimization shows that 

the relative performance of the algorithms is problem dependent. Both algorithms handle 

the gradient differently, and the OC method has been modified with a separate orientation 

optimization method devised in this work. This is more specialized than the general 

GCMMA algorithm which considers the densities and orientations simultaneously. The 

effects of the thermal loading on the relative performance of the algorithms can be further 

investigated by optimizing the weakly coupled thermomechanical system for an isotropic 

material. Figure 4.18 shows the final structure of compliance optimization by the OC 

method for the same design space used above, except that 
𝐸𝑥

𝐸𝑦
= 1. 

 

 

Figure 4.18: Final Topology of Isotropic Compliance Optimization via the OC Method 

 

 The same design domain can be optimized with the GCMMA method, which is 

presented in Figure 4.19. Note that the temperature distribution, as shown by the colored 

temperature contours, is very similar. 
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Figure 4.19: Final Topology of Isotropic Compliance Optimization via the GCMMA 

Method 

The strain energy can also be optimized with the OC and GCMMA methods, and 

the final structures are presented in Figure 4.20 and 4.21 respectively. When the material 

is isotropic, the OC and GCMMA methods generate nearly identical structures. 

Figure 4.20: Final Topology of Isotropic Strain Energy Optimization via the OC Method 
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Figure 4.21: Final Topology of Isotropic Strain Energy Optimization via the GCMMA 

Method 

 

 

 The relative performance of the isotropic optimizations can be compared by 

presenting the objective functions for each structure. This is shown in Table 4.3. 

 

Table 4.3: Optimization Performance for Isotropic Material 

Test Type Compliance [mJ] Strain Energy [mJ] 

OC Strain Energy - 5.601 

GCMMA Strain Energy - 5.521 

OC Compliance 6.331 - 

GCMMA Compliance 6.052 - 

 

 

In the isotropic case, the OC and GCMMA methods perform very similarly in 

both topology and objective function. The nearly identical performance indicates that the 

interaction between the anisotropy and thermal effects are causing the convergence 

difficulty observed in the earlier GCMMA strain energy optimization case. Based on 

these tests, the authors recommend using the OC method as it converges overall to lower 

local minimums in the full anisotropic weakly coupled thermomechanical case. 

 

 



104 

4.5 Effects of Increased Thermal Loading 

Under only mechanical loading, compliance and strain energy are equal. As the 

thermal loading increases the two objective functions diverge and optimizing over each 

generates radically different structures. Since the pure mechanical problem is well-

documented even for anisotropic materials, it is interesting to observe the effects as the 

thermal loading increasingly dominates the structure. The mechanical force is fixed at 

500 𝑁 and the thermal heat flux is allowed to vary from 0 𝑊 to 50 𝑊 in successive 

optimizations. Both compliance and strain energy are optimized with the OC method, and 

the results are presented below in Figure 4.22. 

For each design space, two optimizations are performed with the OC method and 

half of each structure is displayed. When the thermal loading is zero, the structures are 

identical and as the thermal load increases the structures adopt radically different forms. 

The strain energy-optimized structure maintains the same rough arch shape throughout, 

although the support members shift. The compliance-optimized structure increasingly 

adopts a pyramid-like shape, which is optimal to distribute the thermal flux. 
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Figure 4.22a: Final Strain Energy – Optimized Topologies as Thermal Loading Increases. 

Thermal Load Values are 0 𝑊, 10 𝑊, 30 𝑊, and 50 𝑊 
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Figure 4.22b: Final Compliance – Minimized Topologies as Thermal Loading Increases. 

Thermal Load Values are 0 𝑊, 10 𝑊, 30 𝑊, and 50 𝑊 
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Their relative performance can be compared in Table 4.4. 

Table 4.4: Performance of Compliance and Strain Energy-Optimized Structures 

Tests Compliance (mJ) Strain Energy (mJ) Max Disp (𝜇m) 

Test 1 C 0.5861 0.5861 2.302 

Test 1 SE 0.5856 0.5856 2.302 

Test 2 C 0.8069 0.6380 2.771 

Test 2 SE 0.9750 0.5862 2.847 

Test 3 C 1.243 0.7361 3.496 

Test 3 SE 2.376 0.5927 3.895 

Test 4 C 1.796 0.8683 4.349 

Test 4 SE 4.971 0.5993 5.075 

. 

The compliance optimization and strain energy optimization each optimize their 

respective objective functions, so the maximum displacement value is given as a basis for 

comparison. The slight difference in test 1 compliance and strain energy optimizations is 

likely due to different randomly generated initial values for the orientation field. While 

the maximum displacement is higher for strain energy, depending on the application and 

desired performance of the structure, one objective function may be better suited than the 

other. 

To quantify the amount of thermal loading in the above tests, the fraction of each 

compliance value due to the thermal loading is computed. This is done for compliance by 

setting the thermal displacements to zero and computing the compliance for the 

determined topology using only the mechanical displacements to determine the 
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mechanical contribution. This is then subtracted from the total compliance to determine 

the thermal contribution, which is presented in Table 4.5. 

Table 4.5: Thermal Contribution to Compliance in Various Tests 

Tests Thermal Contribution to 

Compliance (%) 

Test 1 C 0 

Test 1 SE 0 

Test 2 C 20.9 

Test 2 SE 39.9 

Test 3 C 40.8 

Test 3 SE 75.1 

Test 4 C 51.7 

Test 4 SE 87.9 

It is apparent that the thermal loading contributes differently in the various 

optimally computed structures existing in the same design domain. Some designs are 

more effective at distributing the thermal loading relative to how they distribute the 

mechanical loading. It is clear that the compliance-optimized parts are more effective at 

distributing the heat transfer, as the effect of the thermal loading is lower. This is 

consistent with the lower maximum displacement values for compliance optimization 

noted in Table 4.4, as compliance-minimized structures distribute the heat more 

effectively which causes lower thermal stresses. This can be seen in the placement of 

significant amounts of material on the left of the design domain in the compliance-

optimized structures, which distributes the heat flux to the cold plate at bottom. The strain 

energy-optimized structures do not share this behavior. 



109 

 

4.6 Convergence Issues 

 

 

4.6.1 Compliance Sensitivity Shifting 

 

 Several convergence issues were encountered in the above optimizations, 

particularly for compliance optimization using the OC method. The OC method was 

designed for mechanical compliance optimization, and in such systems the design 

sensitivities always have negative values. Under high thermal loading it is possible for 

the design sensitivities of compliance with respect to density to be positive, which in the 

optimality criterion method will force those elements to remove material up to the move 

limit. The procedure used here is to map the positive sensitivities to the negative numbers 

with some mapping function. Several different functions are considered. All mapping 

functions share the following form, as shown in Equation 3. 

𝑑𝐶

𝑑𝜌𝑖
|𝑛𝑒𝑤 = 

{
 

 
𝑑𝐶

𝑑𝜌𝑖
  ,        

𝑑𝐶

𝑑𝜌𝑖
< 0

f (
𝑑𝐶

𝑑𝜌𝑖
)  ,

𝑑𝐶

𝑑𝜌𝑖
≥ 0 

 

 

 

 

(4.1) 

The function used in all the above optimization examples was 𝑓(𝑑) = 0, as this 

mapping function alters the sensitivities as little as possible. Several prospective 

functions can be considered however, and their performance compared. Note that 𝑚𝑝 =

max (
𝑑𝐶

𝑑𝜌𝑖
|
𝑑𝐶

𝑑𝜌𝑖
< 0), the negative design sensitivity with the smallest magnitude. The four 

mapping functions that are considered are given in Equations 4.2 – 4.5. 

𝑓(𝑑) = 0 

 

(4.2) 

𝑓(𝑑) = (−
𝜋

2
− atan(𝑑)) ∗

𝑚𝑝

10
 

 

(4.3) 

𝑓(𝑑) = (−
𝜋

2
− atan(𝑑)) ∗ 𝑚𝑝 

 

(4.4) 
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𝑓(𝑑) =  −𝑚𝑝 ∗ 𝑒−𝑑 (4.5)

Each of these sensitivity mappings is tested in an optimization simulation where 

the compliance is optimized by the OC method. It is identical to the test done for Figure 

4.10, except that the move limit is set to an extremely conservative 0.02 and the thermal 

loading is set to 1 𝜇𝑊. The resultant topologies are presented below in Figure 4.23. 

Based on the near-identical topologies shown in Figure 4.23, it appears that the 

mapping function used does not actually affect the convergence of the structure for the 

design domain considered. Slightly different topologies are generated, but such minor 

differences are expected due to the random initialization of the orientation design 

variables, and all topologies exhibit similar small regions of fractional density. The 

simplest mapping function, setting the positive compliances to zero, is then the preferred 

method as it causes the smallest changes to the design sensitivities. 

4.6.2 Relative Penalty Values 

Another convergence issue is that the compliance-optimized structures, regardless 

of the method used, can retain regions of intermediate density. Fractional density, as 

stated before, has no physical interpretation and it is desired that a method exists to force 

these regions to resolve. These regions are generally present in loading cases with higher 

thermal loads. This is likely due to the behavior of elements with fractional density under 

the SOMP penalization method. A material with half density is mechanically weak but 

behaves as a thermal insulator which can be beneficial in the thermal analysis. While 

such behavior may be effective from the perspective of the algorithm, it is necessary to 

prevent this behavior to make the designs useable. 
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a) 

b) 

c) 

d) 

Figure 4.23: Final Topologies for Various Sensitivity-Shifting Functions. The Graphs in 

a-d Correspond with Shifting Functions in Equations 4.2 – 4.5, Respectively
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Adjusting the penalty in the SOMP method affects the behavior of these regions, 

as well as the final converged structure. The penalty value can be adjusted from the 

default value of 3 to cause different behavior. In addition, the thermal and mechanical 

analyses can have different penalties. In that case, the equations for the thermal and 

mechanical elasticity matrices and the thermal loading equation are rewritten as: 

𝑀𝑲𝑀𝑖 = 𝑥𝑖
𝑝𝑚 ∫ 𝑩𝑇 𝑹𝑇(𝜃𝑖)𝑫𝑀𝑹(𝜃𝑖)𝑩𝑀𝑑𝑉𝑖
𝑉𝑖

(4.6) 

𝑲𝑇ℎ𝑖 = 𝑥𝑖
𝑝𝑡ℎ ∫ 𝑩𝑇𝑇ℎ𝑇𝑇(𝜃𝑖)𝑫𝑇ℎ𝑇(𝜃𝑖)𝑩𝑇ℎ𝑑𝑉𝑖
𝑉𝑖

(4.7) 

𝑭𝑇𝐸 = 𝑥𝑖
𝑝𝑚 ∫ 𝑩𝑇𝑇ℎ𝑹𝑇(𝜃𝑖)𝑫𝑀 {

𝛼𝑥
𝛼𝑦
𝛼𝑥𝑦

} (Δ𝑇)𝑖𝑑𝑉𝑖
𝑉𝑖

(4.8) 

Redefining the elemental stiffness matrices and thermal force vector as in 

Equations 4.6-4.8 affects the design sensitivity expressions, although the derivation 

proceeds identically and will not be shown. 

To test the behavior of the optimization under varying penalty parameters, the 

same design space is used as was used above for the mapping function tests. The 

mechanical penalty is fixed at 𝑝𝑚 = 3 and the thermal penalty is allowed to vary 

between 1 and 5 in successive optimizations. The optimality criterion method is run for 

500 iterations, and the results are displayed below. 
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a) 

b) 

c)
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d) 

e) 

Figure 4.24: Final Topologies for Various Thermal Penalty Values, 𝑝𝑚 = 3. The Graphs 

in a-e Correspond with 𝑝𝑡ℎ = 1 to 𝑝𝑡ℎ = 5 Respectively 

For low thermal penalties (𝑝𝑡ℎ ≤ 2), the design retains regions of fractional 

density. Similar behavior is observed in pure mechanical optimization if the mechanical 

penalty is set low as documented in [22], so the behavior in Figure 4.24 a-b is analogous. 

The structure does change as the thermal penalty increases beyond 3, but the changes are 

extremely minor and potentially due to the random variation in initial element 

orientation. It is thus theorized that a thermal penalty of at least 3 is needed to ensure 

convergence but there is no observed value in increasing the value of 𝑝𝑡ℎ beyond 3. The 

recommended parameters are then 𝑝𝑚 = 𝑝𝑡ℎ = 3, and although it was worth 
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investigating the behavior of different mechanical and thermal penalty values, these are 

the values used in all prior optimizations. 

 

4.6.3 Mesh Independence and Minimum Member Size 

 

 The discretization of the design space into the finite element mesh can introduce 

two main problems. As the mesh size increases, the finer mesh allows for more complex 

structures to be produced that take advantage of the greater design freedom. However, 

with such systems, as increasingly complex structures are generated there is no guarantee 

that these structures will converge to a consistent design, as is desirable. The mesh and 

associated density variables are a spatially discrete approximation of the continuously 

variable design space, and as the approximation better represents the full freedom of the 

design space the structure should converge to a final design. 

 Such convergence can be ensured by adding a constraint that prevents the design 

of features below a certain size. This minimum member size constraint is implemented by 

applying a filter on the density gradient that replaces each density sensitivity with a 

weighted average of sensitivities within a given radius. 

𝜕𝐹

𝜕𝜌𝑖

̂
=

1

𝜌𝑖 ∑ 𝐻𝑓̂
𝑁
𝑓=1

∑𝐻𝑓̂𝜌𝑓
𝜕𝐹

𝜕𝜌𝑓

𝑁

𝑓=1

 

(4.9) 

 Here, 𝐹 is the objective function (whether compliance or strain energy) and the 

parameter 𝐻𝑓̂ is defined by the following. 

𝐻𝑓̂ = 𝑟𝑚𝑖𝑛 − 𝑑𝑖𝑠𝑡(𝑒, 𝑓) (4.10) 

  

The indices 𝑒 and 𝑓 represent arbitrary elements, and 𝐻𝑓̂ is only defined if the 

distance between elements 𝑒 and 𝑓 is less than 𝑟𝑚𝑖𝑛. The parameter 𝑟𝑚𝑖𝑛 is a tuneable 

radius that defines the range of the averaging.  
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The 𝑟𝑚𝑖𝑛 parameter prevents the creation of any structures smaller than twice its

value. Increasing this radius forces the algorithm to generate coarser structures, which 

ensures that the design approaches a constant shape as the mesh is refined. In practical 

consideration it also ensures that no structure will be generated that is too fine to 

manufacture, so long as 𝑟𝑚𝑖𝑛 is set equal to or above the minimum resolution of the 

manufacturing method under consideration. For polymer additive manufacturing methods 

like fused-filament fabrication, this maximum resolution would be the width of the 

extruded bead. The behavior of this minimum member size filter is demonstrated in 

Figure 4.25. The original full design space of the beam in three-point bending is 

considered, with the thermal and mechanical loads given above in the full 

thermomechanical system. Strain energy is considered as the objective function as it 

generates structures that easily illustrate the behavior of the filter. A mesh of 100 𝑥 200 

elements is used with a volume fraction of 0.5. 

The member size is set at lengths of 1, 2, 5, 10, and 20 elements, and the 

topologies can be observed in Figure 4.25. The increasing size of the member thicknesses 

can be clearly observed. Under a high minimum member size, the structure cannot 

converge to a structure with only solid or void elements as averaging a large enough 

region of density sensitivities causes the associated densities to retain fractional values. 

It is also worth noting that the minimum member size constraint prevents 

checkerboarding. In the first design of Figure 4.25 the structure has a radius small enough 

that no change to the density sensitivities occurs due to rounding the distance between 

elements. Large areas of checkerboarding are observed. However, once the radius allows 

for any averaging of adjacent sensitivities, the designs converge without 
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checkerboarding. Thus, it is recommended that this filter be used to prevent 

checkerboarding even if no minimum member size need be considered. The minimum 

member size filter can be used to prevent checkerboarding without otherwise applying a 

minimum member size by choosing 1 < 𝑟𝑚𝑖𝑛 < 2. 

It can also be shown that when the mesh size increases the designs converge to a 

constant value under a fixed 𝑟𝑚𝑖𝑛. Note that a fixed 𝑟𝑚𝑖𝑛 needs to be expressed in terms 

of the length of the part, and not in terms of elements as the number of elements within a 

specific geographic region increases as the mesh is refined. The same system used for 

Figure 4.25 is considered as the mesh is increased from 100 𝑥 50 to 150 𝑥 75, 

200 𝑥 100, 300 𝑥 150, and 400 𝑥 200, with a filter radius of 𝑟𝑚𝑖𝑛 = 0.012 𝑚. The final 

topologies are presented in Figure 4.26. 

 As the mesh increases the designs approach the same structure, which supports 

the convergence of the design under mesh refinement. It is worth considering that, 

although the minimum member size filter affects the densities, no similar filter is applied 

to the orientations. As mesh refinement increases, the density field cannot generate 

structures below the specified radius, but the orientation field can produce more complex 

structures. A similar filter could be applied to the orientations to bound their complexity 

as well, although the tests performed here show convergence regardless, indicating that 

mesh independence is achieved without a filter on the element orientations. 
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Figure 4.25: Converged Topologies for Filter Radius of 𝑟𝑚𝑖𝑛 ∈ {1,2,5,10,20} Pixels, 

Respectively, from Top to Bottom 
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Figure 4.26: Final Topologies for Increasing Mesh Refinement, as Indicated on Each Plot 
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CHAPTER FIVE 

Conclusions 

5.1 Summary of Progress 

The research presented here implements a topology optimization approach for 

weakly coupled thermomechanical systems. A two-dimensional design domain with 

thermal and mechanical equilibrium is defined, and the design of a structure is optimized 

in this design space. The optimality criterion-based approach and globally convergent 

method of moving asymptotes are both considered as methods to compute the optimal 

design. The structure is anisotropic in both the thermal and mechanical models, and the 

element density and orientation are both considered as design variables. 

In the weakly coupled thermomechanical system, both compliance and strain 

energy can be used as stiffness inverses for the objective function. Both were considered, 

and while no single metric exists to judge their relative performance, both optimizations 

converge to feasible structures that can be produced. The compliance-optimized parts do 

have a lower maximum displacement, which in some cases may make those results 

superior to strain energy-optimized parts. A parameter study with increasing thermal 

loading shows that the compliance and strain energy-optimized parts are identical when 

thermal loading is absent, and that the structures diverge as the thermal load dominates 

the structure. The strain energy optimization resembles the pure mechanical structure in 

all cases considered here, while the compliance-optimized parts change more drastically 

to distribute the thermal loading. It was shown by computing the load contribution of the 
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thermal loading that the compliance-optimized parts are more effective at distributing the 

thermal load. 

 Two separate methods were used for the optimization here. Both are widely used 

in topology optimization research, and each has different advantages. The optimality 

criterion method converges quickly, but the heuristic nature of the update method is 

designed to accommodate only density as the design variable, and it only allows for a 

single constraint. It was necessary to create a separate step to optimize the element 

orientations for OC optimizations in this work, which demonstrate smooth and rapid 

convergence, but the additional orientation optimization step is a significant modification 

to the method. The GCMMA method needed no such modifications, as it was designed to 

optimize over a general design space with an arbitrary number of constraints. However, 

the final topologies showed poorer orientation alignment and in at least one case the 

GCMMA method converged to a local minimum with poor performance. For the specific 

anisotropic weakly coupled thermomechanical model used, the set of design variables, 

constraint, and objective function, the OC method is preferred by the authors. It is worth 

noting that the GCMMA method uses many tunable parameters and it is possible that the 

issues encountered were due to the author’s lack of familiarity with those. For more 

complex systems, as must be adopted to fully capture the complete additive 

manufacturing process as described below, the GCMMA algorithm may be better suited 

to optimizing the structure as additional constraints and design variables are required for 

more complete models. In summary, each algorithm has significant strengths and 

weaknesses, but the OC method suits the specific system considered here while the 

GCMMA method may be more useful in subsequent works. 
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5.2 Production of Structures 

The final topologies can be produced in proof-of-concept parts to demonstrate 

that the structure generated in this work can be feasibly produced. A Matlab code 

obtained from Dr. Keith Ma generates a series of streamlines with defined spacing that 

fill the converged topology while traveling along the orientation field (Figure 5.1b). A 

custom Matlab code created in-house then generates a gcode file that prints the 

streamlines in identical layers, which is converted to x3g code and printed in a Makerbot 

+ with PLA filament (Figure 5.1c). The process is illustrated below in Figure 5.1.

Figure 5.1: Proof-of-Concept Part Production Process 
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 Note that the minor inaccuracies in the final part may be resolved by applying a 

higher minimum member size in the sensitivity filter. Observe that structures produced in 

this way are proof-of-concept parts that show a viable way of manufacturing topology 

optimization results, but the thermal loading experienced in the printing process does not 

match the steady-state thermal analysis in the model, as discussed below in Section 5.3.2. 

Thus, while the parts produced have the same structure as the topology optimized results, 

they may perform differently under loading. 

 

5.3 Future Work 

 

 This work has advanced the state of the art in modeling the full complexity of the 

additive manufacturing process, but significant work remains before a fully accurate 

model can be completed. Below are the next steps that the authors think is most relevant, 

although the list is far from exhaustive. 

 

5.3.1 Three-Dimensional Code 

 

 The models used in this work were all two-dimensional. This allowed for easy 

presentation of results and reasonably computationally efficient models. To design 

structures for actual usage, however, three-dimensional structures are much more useful. 

Many previous works have used three dimensional models, including prior research at 

Baylor [75], and the methods developed here can be extended to optimize over such 

structures with minor changes in the methods. The primary necessary alteration is 

replacing the two-dimensional meshes with three-dimensional meshes. The algorithm 

itself need not be changed, although note that element orientations can take on more 

complex distributions in three-space, and depending on the additive manufacturing 
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method considered, may have different restrictions. In particular, standard three-axis 

fused-filament fabrication devices can only extrude beads in the x-y plane but printing 

systems using more axes of movement can allow for print orientation in the direction of 

an arbitrary vector in three-space. 

5.3.2 Transient Thermal Loads 

The steady-state thermal loading here allows for a design-dependent temperature 

field that generates thermal stresses for the mechanical analysis. Such weakly coupled 

design-dependent loading is a step beyond previous research, but it does not fully capture 

the complexity of the additive manufacturing process. To fully represent the cooling 

process, transient thermal loading must be used. This transient thermal loading is 

significantly more computationally intensive, and the design sensitivity derivations will 

need to be derived in this new system to model the time-dependent loading. Additional 

factors, such as stress relation, must be included as well. 

The model used here, while simplified from the full complexity of the fused-

filament fabrication cooling process, can still be applied directly in real-world 

applications. The weakly coupled model represents structures undergoing steady-state 

thermal and mechanical loading, such as an automotive engine mount or aircraft exhaust 

panel under constant operating conditions. Any component experiencing mechanical 

loading and a temperature change can be optimized using the method described above, 

regardless of whether it is additively manufactured. 
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5.3.3 Toolpath Optimization 

 

 The transient thermal loading required to fully consider the additive 

manufacturing process is dependent not only on the location of the material and the 

orientation of its properties. The order that the material is deposited determines how it 

heats nearby material, and what boundary conditions each element experiences, and 

modeling this can be extremely complex.  

As discussed above, the structural results can be produced by generating a series 

of toolpaths that follow the element orientations. The order that the toolpaths are printed 

in each layer will determine the thermal loading, so the ordering of the set of toolpaths 

must be considered as design variables. Optimizing this ordering may be challenging, as 

the toolpaths are defined in terms of other design variables, and it may be beneficial to 

sacrifice some mechanical strength by deviating toolpaths from the orientation field to 

improve the cooling process. Modeling this full system will take significant modification 

from the method presented here. 

 

5.3.4 Physical Testing of Components 

 

 The results presented here are purely computational, and physical testing has yet 

to be done to verify them. As the thermal loading considered does not fully capture the 

additive manufacturing production process, no accurate testing can yet be done. While 

the authors are confident in presenting the work here as an optimization method, 

conducting physical testing will ensure that the model is accurate and captures the 

complexity of the system. Several simplifying assumptions were used in this model, such 

as geometric and material linearity, that toolpath breaks do not affect the performance, 
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and that material orientation has no constraints on derivative magnitude. Physical testing 

will indicate whether any additional factors need to be included. 
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APPENDIX 
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APPENDIX 

Code Used 

The following code was used to perform the tests present in the work. Separate 

codes were used for the OC and GCMMA optimizations, and they are presented 

sequentially. Below is the OC code. It began from Sigmund’s 99-line compliance 

minimization code [22], but nearly every component has been significantly modified. 

%% Optimlaity Criterion Topology Optimization Code

format compact

%% Initialization

clear

clc

close all

video = 0;

% Open Video

if video == 1

v = VideoWriter('conj_grad_test3');

open(v)

end

% Changeable variables

%Opt_Var = 'Strain_Energy';

Opt_Var = 'Compliance';

nelx = 200; % Number of cells in the x-direction

nely = 100; % Number of cells in the y-direction

%fixed_densities = 1:nely:10*(nely+1);

fixed_densities = [];

volfrac = .5; % volume fraction

penal_m = 3; % Mechanical density penalty 

penal_h = 3; % Thermal density penalty

% Constants

Erat = 10; % Ratio of in-line modulus to perpendicular modulus

xl = .10; % length of x-side in m

length = xl/nelx; %length of one unit cell edge in meters

E = 1.79E9; %Young's Modulus in weakest direction

alpha = 7E-5; %1/C  Coefficent of thermal expansion

alpharat = 1.2; % Ratio of coefficients of thermal expansion

ksmall= 0.13; % Conduction coefficient, for ABS plastic, min value

krat = 2; % Ratio of in-line conduction coefficient to perpendicular conduction 

coefficient

rmin = nelx/82;

% Element Properties

x(1:nely,1:nelx) = volfrac; %All units have same base density

x(fixed_densities) = 1; % All elements that ae fixed are set to solid

angle(1:nely,1:nelx) = 0; % all orientations are set to zero

%angle = rand(nely,nelx)*pi; % all orientations are randomly assigned

temp(1:nely,1:nelx) = 0;

vmstress(1:nely,1:nelx) = 0;

loop = 0; 

change = 1;

xold = zeros(nely,nelx);

c_record = [];
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SE_record = []; 
change_rec = []; 

  
%% START ITERATION 
while change > 0.001 && loop < 2000 
    tic; 
    % Increment counters 
    loop = loop + 1; 
    xrealold = xold; 
    xold = x; 
    % FEA 
    [T,K_ff,freedofs]=thermal_FEA(nelx,nely,x,angle,penal_h,ksmall,krat,length,1); 
    [thermal_forces, DF_DT] = 

thermal_stresses(T,x,angle,nely,nelx,alpha,alpharat,length,E,Erat,penal_m); 
    [U,U_th,U_m]=mechanical_FEA(nelx,nely,x,angle,penal_m,E,Erat,thermal_forces,length); 
    lambda = zeros(1,(nelx+1)*(nely+1)); 
    lambda(:,freedofs) = (U'*DF_DT(:,freedofs))/K_ff; 
    % OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS 
    c = 0; 
    SE = 0; 
    dc= zeros(nely,nelx); 
    d_SE = zeros(nely,nelx); 
    for ely = 1:nely 
        for elx = 1:nelx 
            n1 = (nely+1)*(elx-1)+ely; % 
            n2 = (nely+1)* elx   +ely; % 
            % DOF selected for mechanical analysis 
            edof = [2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2]; 
            edof_T = [n1;n2;n2+1;n1+1]; 
            Ue = U(edof,1); % nodes are ccw from bottom left 
            Ue_m = U_m(edof,1); 
            Ue_t = U_th(edof,1); 
            % DOF selected for thermal analysis 
            T_i = T([n1;n2;n2+1;n1+1],1); % ccw from bottom left 
            % Mechanical element created 
            KE = lk(angle(ely,elx),E,Erat,length); 
            KE2 = lk(angle(ely,elx) + 0.001,E,Erat,length); 
            dKE_da = (KE2 - KE)./0.001; 
            % Thermal element created 
            KE_th = lk_th(angle(ely,elx),ksmall,krat,length); 
            KE_th2 = lk_th(angle(ely,elx) + 0.001,ksmall,krat,length); 
            dKE_th_da = (KE_th2 - KE_th)/.001; 
            % Compliance summed 
            c = c + 1/2*x(ely,elx)^penal_m*Ue'*KE*Ue; 
            % Strain Energy  
            SE = SE + 1/2*x(ely,elx)^penal_m*(Ue'*KE*Ue - 2*Ue'*KE*Ue_t + Ue_t'*KE*Ue_t); 
            % Derivative of compliance with respect to density computed 
            TL = 

thermoload(x(ely,elx),angle(ely,elx),E,Erat,alpha,alpharat,T_i,length,penal_m); 
            dTL_dxi = TL*penal_m/x(ely,elx); % 
            dTL_dai = (thermoload(x(ely,elx),angle(ely,elx) + 

.001,E,Erat,alpha,alpharat,T_i,length,penal_m) - TL)/.001; 
            DF_Dxi = ksmall/ksmall*lambda(edof_T)*KE_th*T_i; 
            dc(ely,elx) = penal_m*x(ely,elx)^(penal_m-1)*Ue'*KE*Ue - 2*Ue'*dTL_dxi + 

2*penal_h*x(ely,elx)^(penal_h-1)*DF_Dxi; 
            % Derivative of strain energy with respect to density computed 
            d_SE(ely,elx) = -0.5*penal_m*x(ely,elx)^(penal_m-1)*(-Ue'*KE*Ue + 

2*Ue_t'*KE*Ue - Ue_t'*KE*Ue_t); 
            % Angle optimization: 
            nangle = mod(a_opt(angle(ely,elx),E,Erat,Ue,Ue_t,Opt_Var,length),pi); 
            ml = abs(angle(ely,elx) - nangle)*0.1; 
            if abs(angle(ely,elx) - nangle) < pi/2 
                %disp('Case Normal') 
                angle(ely,elx) = min(angle(ely,elx) + ml,max(angle(ely,elx)-ml,nangle)); 

% Nothing funky happens with mod, move toward nangle 
            elseif angle(ely,elx) < nangle 
                %disp('Case Go Below Zero') 
                angle(ely,elx) = mod(min(angle(ely,elx) + ml,max(angle(ely,elx)-

ml,nangle-pi)),pi); % Fastest way is to move down to get to nangle 
            else 
                %disp('Case Go Above Pi') 
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angle(ely,elx) = mod(min(angle(ely,elx) + ml,max(angle(ely,elx)-

ml,nangle+pi)),pi); % Fastest way is to move up to get to nangle

end

% Stress Determination

[strain,stress,vm]=stress1(angle(ely,elx),E,Erat,Ue,length);

vmstress(ely,elx) = vm;

end

end

% Plot Goals

figure(2)

c_record(end+1) = c;

SE_record(end+1) = SE;

if size(c_record,2) > 10

subplot(5,3,13)

plot(c_record(10:end))

title('Compliance')

subplot(5,3,14)

plot(SE_record(10:end))

title('Strain Energy')

subplot(5,3,15)

plot(change_rec(10:end))

title('Total Change')

end

% FILTERING OF SENSITIVITIES   

switch Opt_Var

case 'Compliance'

  dc = check(nelx,nely,rmin,x,dc); %mesh-independence check

case 'Strain_Energy'

d_SE = check(nelx,nely,rmin,x,d_SE); %mesh-independence check

end

% DESIGN UPDATE BY THE OPTIMALITY CRITERIA METHOD

% OC Method

maxneg = max(max(abs(dc.*(dc <= 0))));

if maxneg > 0

dc = dc.*(dc > 0);

end

switch Opt_Var

case 'Compliance'

x = OC_new(nelx,nely,x,volfrac,dc,fixed_densities); % Updates density using 

current density and derivative

case 'Strain_Energy'

x = OC_new(nelx,nely,x,volfrac,d_SE,fixed_densities); % Updates density using 

current density and derivative

end

time  = toc;

% PRINT RESULTS

change = max(max(abs(x-xold))); % There must be a better parameter than this

change_rec(end+1) = sum(sum(abs(x-xold)));

skipchange = max(max(abs(x-xrealold)));

disp([' It.: ' sprintf('%4i',loop) ' Compliance: ' sprintf('%10.5f',c) ...

' Strain Energy: ' sprintf('%10.5f',SE) ...

' Vol.: ' sprintf('%6.5f',sum(sum(x))/(nelx*nely)) ...

' ch.: ' sprintf('%6.3f',change ) sprintf('%6.3f',skipchange) '  Time: ' 

sprintf('%2.0f',floor(time/60)) 'm ' sprintf('%2.2f',mod(time,60)) 's' ...

' Total Change: ' sprintf('%6.3f',sum(sum(abs(x-xold))))])

% Plot densities

temp = reshape(T,nely+1,nelx+1);

el_temp = .25*(temp(1:end-1,1:end-1)+temp(2:end,1:end-1)+temp(1:end-

1,2:end)+temp(2:end,2:end));

if video == 1

figure(7)

else

subplot(5,3,[1,2,3,4,5,6])

end

I = imagesc([flip(el_temp')' el_temp]);
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colormap parula 
colorbar 
set(I, 'AlphaData', [flip(x')' x]); 
  hold on 
  Xlen = 1:2*nelx; 
  Ylen = 1:nely; 
  [Xset,Yset] = meshgrid(Xlen,Ylen); 
      xvec = sin(pi/2 - angle).*x; % switched from usual because angle is measured from 

y-axis  
      yvec = cos(pi/2 - angle).*x; % This is because y comes first in the ordered pairs 

for density 
      xvec = [flip(-xvec')' xvec]; 
      yvec = [flip(yvec')' yvec]; 
  spacing = ceil(max(nelx,nely)/100); 
  quiver(Xset(1:spacing:end,1:spacing:end)',Yset(1:spacing:end,1:spacing:end)', ... 
         

.5*spacing*xvec(1:spacing:end,1:spacing:end)',.5*spacing*yvec(1:spacing:end,1:spacing:end

)','MaxheadSize',0,'Color',[0 0 0],'AutoScale','off') 
  quiver(Xset(1:spacing:end,1:spacing:end)',Yset(1:spacing:end,1:spacing:end)', ... 
         -.5*spacing*xvec(1:spacing:end,1:spacing:end)',-

.5*spacing*yvec(1:spacing:end,1:spacing:end)','MaxheadSize',0,'Color',[0 0 

0],'AutoScale','off') 

   
  axis equal 
  axis tight 
  axis([1 2*nelx 1 nely]) 
  title('Part Design') 
  hold off 
  pause(.2) 

  
disps = (U(1:2:end).^2 + U(2:2:end).^2).^.5; 
disps = reshape(disps,nely+1,nelx+1); 
if video == 1 
    figure(4) 
else 
    subplot(5,3,[7,8,9,10,11,12]) 
end 
disps = 1/4*(disps(1:end-1,1:end-1) + disps(1:end-1,2:end) + disps(2:end,1:end-1) + 

disps(2:end,2:end)); 
colormap parula 
J = imagesc([flip(vmstress')',vmstress]); 
set(J, 'AlphaData', [flip(x')' x]); 
colorbar 
axis equal  
axis tight 
title('Von Mises Stress') 
colormap winter 
pause(0.2) 
hold off 
%keyboard 
  if video == 1 
      figure(7) 
  pause(.2) 
  if loop == 1 
      pause(2) 
  end 
  frame = getframe; 
  writeVideo(v,frame); 
  writeVideo(v,frame); 
  writeVideo(v,frame); 
  writeVideo(v,frame); 
  writeVideo(v,frame); 
  pause(.2) 
  end 
end  
if video == 1 
close(v) 
end 
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function [U_th, K_ff, 

freedofs]=thermal_FEA(nelx,nely,x,angle,penal,ksmall,krat,length,inv_need) 

% Material Properties

F = sparse((nely+1)*(nelx+1),1); % F has units of W/m^2

U_th = sparse((nely+1)*(nelx+1),1); % Temperature has units of K

kval = zeros(1,16*nelx*nely);

kx = zeros(1,16*nelx*nely);

ky = zeros(1,16*nelx*nely);

int = 1;

for elx = 1:nelx %makes stiffness matrix

  for ely = 1:nely

n1 = (nely+1)*(elx-1)+ely; 

n2 = (nely+1)* elx   +ely;

edof = [n1;n2;n2+1;n1+1];

[KE_th] = lk_th(angle(ely,elx),ksmall,krat,length); 

kval(16*(int-1)+1:16*int) = (0.001+0.999*x(ely,elx)^penal)*KE_th;

kx(16*(int-1)+1:16*int) = [edof edof edof edof];

ky(16*(int-1)+1:16*int) = repelem(edof,4);

int = int+1;

  end

end

K = sparse(kx,ky,kval);

% DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM) this is where 

% F represents the heat flux in 

%F(1:nely) = 1e-8; % Center line, flux set to zero for symmetry

F(end-nely:end) = 0; % Outside vertical edge heat flux in

%F(nelx+1:nely+1:(nely+1)*(nelx+1)) = 100; % Bottom Edge

%F((nelx+1):nely+1:(nely+1)*(nelx+1)) = 10; % Bottom Edge, right half

%F(1:nely+1:(nely+1)*(nelx+1)) = 1; % top edge

%%%

F(1) = 3e-6;

%%%

%F((nely+1)*(nelx+1)) = 3e-6;

fixeddofs = [];

fixeddofs   = union(fixeddofs,[nely+1:nely+1:(nelx+1)*(nely+1)]); % bottom edge

U_th([nely+1:nely+1:(nelx+1)*(nely+1)],:)= 0;

%fixeddofs = union(fixeddofs,[1:nely+1]); % Center edge (symmetry line)

%U_th([1:nely+1],:)= 0;

%fixeddofs = union(fixeddofs,1:floor(nely/2)+1); % Top half of center edge

%U_th(fixeddofs,:)= 0;

%fixeddofs = union(fixeddofs,[(nely+1)*nelx+1:(nelx+1)*(nely+1)]); % Right edge

%U_th([(nely+1)*nelx+1:(nelx+1)*(nely+1)],:)= 0;

%fixeddofs = union(fixeddofs,[(nely+1)*nelx+1+floor(nelx/2):(nelx+1)*(nely+1)]); % Bottom 

half of right edge

%U_th([(nely+1)*nelx+1+floor(nelx/2):(nelx+1)*(nely+1)],:)= 0;

%fixeddofs = union(fixeddofs,[1:nely+1:(nely+1)*(nelx+1)]); % Top edge

%U_th([1:nely+1:(nely+1)*(nelx+1)],:)= 10000;

%fixeddofs = union(fixeddofs,(nelx+1)*(nely+1));

%U_th((nelx+1)*(nely+1)) = 0;

%fixeddofs = (nelx+1)*(nely+1);

%RU_th(fixeddofs) = 0;

% U_th(1) = 0;

% U_th((nelx+1)*(nely+1)) = 0;

alldofs     = 1:(nely+1)*(nelx+1);

freedofs    = setdiff(alldofs,fixeddofs);

%F(1,1) = 5E-5;

% fixeddofs   = union(1:2:2*(nely+1),2*(nelx+1)*(nely+1));

% SOLVING

if inv_need == 1

 U_th(freedofs,:) =  K(freedofs,freedofs)\ (F(freedofs,:) - 

K(freedofs,fixeddofs)*U_th(fixeddofs,:));

else
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    U_th(freedofs,:) =  K(freedofs,freedofs)\ (F(freedofs,:) - 

K(freedofs,fixeddofs)*U_th(fixeddofs,:));  
end 
K_ff = K(freedofs,freedofs); 

 

function [KE]=lk_th(angle,ksmall,krat,length) 
% Based on the two-point Gauss Quadrature for thermal systems. 
Ky =ksmall; 
Kx = ksmall*krat; 
varset = 1/sqrt(3)*[1 1;1 -1;-1 1;-1 -1]; 
KE = zeros(4,4); 
c = cos(angle)^2; 
s = sin(angle)^2; 
cs = cos(angle)*sin(angle); 
rDr = [Kx*c+Ky*s,cs*(Ky-Kx),0;cs*(Ky-Kx),Kx*s+Ky*c,0;0,0,0]; 
for j = 1:4 
    nu = varset(j,1); 
    eta = varset(j,2); 
    B = 1/4*[-1+nu 1-nu 1+nu -1-nu; -1+eta -1-eta 1+eta 1-eta; 0 0 0 0]; 
    KE = KE + B'*rDr*B; 
end 
end 

 

function [ TL, DF_DT ] = 

thermal_stresses(t,density,angle,nely,nelx,alpha,alpharat,length,E,Erat,penal) 
%Given a two-dimensional temperature distribution, this function computes 
%the thermal forces. 
%   Inputs 
%   -t is the y-by-x temperature matrix 
%   -scale is the length of one unit cell in meters 
TL = zeros(2*(nely+1)*(nelx+1),1); 
DF_DT_x = zeros(1,32*nelx*nely); 
DF_DT_y = zeros(1,32*nelx*nely); 
DF_DT_val = zeros(1,32*nelx*nely); 
int = 1; 
for i = 1:nelx 
    for j = 1:nely 
        n1 = (nely+1)*(i-1)+j;  
        n2 = (nely+1)* i   +j; 
        edof = [2*n1-1 2*n1 2*n2-1 2*n2 2*n2+1 2*n2+2 2*n1+1 2*n1+2]; % For reference 
        edof_T = [n1;n2;n2+1;n1+1]; % For reference 
        TL(edof) = TL(edof) + 

thermoload(density(j,i),angle(j,i),E,Erat,alpha,alpharat,t(edof_T),length,penal); 
        DF_DT_val(32*(int-1)+1:32*int) = 

dTL_dT(density(j,i),angle(j,i),E,Erat,alpha,alpharat,length,penal); 
        DF_DT_x(32*(int-1)+1:32*int) = [edof edof edof edof]; 
        DF_DT_y(32*(int-1)+1:32*int) = repelem(edof_T,8); 
        int = int+1; 
    end 
end 
DF_DT = sparse(DF_DT_x,DF_DT_y,DF_DT_val); 
end 

  
function TL = thermoload(density,angle,E,Erat,alpha,alpharat,temps,length,penal) 
% Based on the two-point Gauss Quadrature 
Ey = E; 
Ex = Erat*E; 
nuxy = .36; 
nuyx = nuxy*Ey/Ex; 

  
varset = 1/sqrt(3)*[1 1;1 -1;-1 1;-1 -1]; 
TL = zeros(8,1); 
D = [Ex/(1-nuxy*nuyx) nuxy*Ey/(1-nuxy*nuyx) 0; nuxy*Ey/(1-nuxy*nuyx) Ey/(1-nuxy*nuyx) 0; 

0 0 Ex/(2*(1+nuxy))]; 
rotation = [cos(angle)^2 sin(angle)^2 -2*sin(angle)*cos(angle); ... 
            sin(angle)^2 cos(angle)^2  2*sin(angle)*cos(angle); 
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cos(angle)*sin(angle) -cos(angle)*sin(angle) cos(angle)^2 - sin(angle)^2];

rDr = rotation*D*rotation';

% Anisotropic coefficient of thermal expansion

ax = alpha*alpharat;

ay = alpha;

c = cos(angle);

s = sin(angle);

alphaset = [ax*c^2+ay*s^2;ax*s^2+ay*s^2;c*s*(ax-ay)];

for j = 1:4

% Get Temperature

nu = varset(j,1);

eta = varset(j,2);

T = 1/4*[(1-nu)*(1-eta) (1-eta)*(1+nu) (1+eta)*(1+nu) (1+eta)*(1-nu)]*temps;

B = 1/4*[-1+nu 0 1-nu 0 1+nu 0 -1-nu 0; 0 -1+eta 0 -1-eta 0 1+eta 0 1-eta; ...

-1+eta -1+nu -1-eta 1-nu 1+eta 1+nu 1-eta -1-nu];

TL = TL + length^2/4*density^penal*B'*rDr*[alphaset]*T; %

end

end

function der = dTL_dT(density,angle,E,Erat,alpha,alpharat,length,penal)

% Based on the two-point Gauss Quadrature

Ey = E;

Ex = Erat*E;

nuxy = .36;

nuyx = nuxy*Ey/Ex;

varset = 1/sqrt(3)*[1 1;1 -1;-1 1;-1 -1];

der = zeros(8,4);

D = [Ex/(1-nuxy*nuyx) nuxy*Ey/(1-nuxy*nuyx) 0; nuxy*Ey/(1-nuxy*nuyx) Ey/(1-nuxy*nuyx) 0; 

0 0 Ex/(2*(1+nuxy))];

rotation = [cos(angle)^2 sin(angle)^2 -2*sin(angle)*cos(angle); ...

sin(angle)^2 cos(angle)^2  2*sin(angle)*cos(angle); ...

cos(angle)*sin(angle) -cos(angle)*sin(angle) cos(angle)^2 - sin(angle)^2];

rDr = rotation*D*rotation';

ax = alpha*alpharat;

ay = alpha;

c = cos(angle);

s = sin(angle);

alphaset = [ax*c^2+ay*s^2;ax*s^2+ay*s^2;c*s*(ax-ay)];

for j = 1:4

% Get Temperature

x = varset(j,1);

y = varset(j,2);

%NT = 1/4*[(1-x)*(1-y) (1+y)*(1-x) (1+y)*(1+x) (1-y)*(1+x)];

NT = 1/4*[(1-x)*(1-y) (1-y)*(1+x) (1+y)*(1+x) (1+y)*(1-x)];

%

nu = varset(j,1);

eta = varset(j,2);

B = 1/4*[-1+nu 0 1-nu 0 1+nu 0 -1-nu 0; 0 -1+eta 0 -1-eta 0 1+eta 0 1-eta; ...

-1+eta -1+nu -1-eta 1-nu 1+eta 1+nu 1-eta -1-nu];

der = der + (length/2)^2*density^penal*B'*rDr*[alphaset]*NT;

end

end

function [U, U_th, 

U_m]=mechanical_FEA(nelx,nely,x,angle,penal,E,Erat,thermal_forces,length) 

F = sparse(2*(nely+1)*(nelx+1),1); 

U = zeros(2*(nely+1)*(nelx+1),1);

U_th = zeros(2*(nely+1)*(nelx+1),1);

U_m = zeros(2*(nely+1)*(nelx+1),1);
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kval = zeros(1,64*nelx*nely); 
kx = zeros(1,64*nelx*nely); 
ky = zeros(1,64*nelx*nely); 
int = 1; 
for elx = 1:nelx %makes stiffness matrix 
  for ely = 1:nely 
    n1 = (nely+1)*(elx-1)+ely;  
    n2 = (nely+1)* elx   +ely; 
    edof = [2*n1-1 2*n1 2*n2-1 2*n2 2*n2+1 2*n2+2 2*n1+1 2*n1+2]; 
    KE = lk(angle(ely,elx),E,Erat,length);  
    kval(64*(int-1)+1:64*int) = x(ely,elx)^penal*KE; 
    kx(64*(int-1)+1:64*int) = [edof edof edof edof edof edof edof edof]; 
    ky(64*(int-1)+1:64*int) = repelem(edof,8); 
    int = int+1; 
  end 
end 
K = sparse(kx,ky,kval); 
% DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM) 
F(2,1) = F(2,1) -500; % 
%F(2:2*nely+2:10*nely+12) = F(2:2*nely+2:10*nely+12) - 100/5; 
%fixeddofs   = union(1:2:2*(nely+1),[2*(nelx+1)*(nely+1),2*(nelx+1)*(nely+1)-1]); 
fixeddofs   = union(1:2:2*(nely+1),[2*(nelx+1)*(nely+1)]); 
alldofs     = 1:2*(nely+1)*(nelx+1); 
freedofs    = setdiff(alldofs,fixeddofs); 
freedofs2 = setdiff(alldofs,[1,2]); 
% SOLVING 

  
U(freedofs,:) = K(freedofs,freedofs)\(F(freedofs,:) + thermal_forces(freedofs,:)); 
U_m(freedofs,:) = K(freedofs,freedofs)\F(freedofs,:); 
U_th(freedofs2,:) = K(freedofs2,freedofs2)\thermal_forces(freedofs2,:); 

  
U(fixeddofs,:)= 0; 

 

function [KE]=lk(angle,E,Erat,length) 
% Based on the two-point Gauss Quadrature 
Ey = E; 
Ex = Erat*E; 
nuxy = .36; 
nuyx = nuxy*Ey/Ex; 

  
varset = 1/sqrt(3)*[1 1;1 -1;-1 1;-1 -1]; 
KE = zeros(8,8); 
D = [Ex/(1-nuxy*nuyx) nuxy*Ey/(1-nuxy*nuyx) 0; nuxy*Ey/(1-nuxy*nuyx) Ey/(1-nuxy*nuyx) 0; 

0 0 Ex/(2*(1+nuxy))]; 
rotation = [cos(angle)^2 sin(angle)^2 -2*sin(angle)*cos(angle); ... 
            sin(angle)^2 cos(angle)^2  2*sin(angle)*cos(angle); 
            cos(angle)*sin(angle) -cos(angle)*sin(angle) cos(angle)^2 - sin(angle)^2]; 
rDr = rotation*D*rotation'; 
for j = 1:4 
    nu = varset(j,1); 
    eta = varset(j,2); 
B = 1/4*[-1+nu 0 1-nu 0 1+nu 0 -1-nu 0; 0 -1+eta 0 -1-eta 0 1+eta 0 1-eta; ... 
    -1+eta -1+nu -1-eta 1-nu 1+eta 1+nu 1-eta -1-nu]; 
KE = KE + B'*rDr*B; 
end 
end 

 

function [angle]=a_opt(angle,E,Erat,Ue,Ue_th,Opt_Var,length) 
% We use the newton-raphson method to solve: 
diff = 1; 
arec = [angle]; 
while diff > 1E-2 
    switch Opt_Var  
        case 'Compliance' 
        backward = -Ue'*lk2(angle-0.001,E,Erat,length)*Ue; 
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center = -Ue'*lk2(angle,E,Erat,length)*Ue;

forward = -Ue'*lk2(angle+0.001,E,Erat,length)*Ue;

case 'Strain_Energy'

k_b = lk2(angle-0.001,E,Erat,length);

k_c = lk2(angle,E,Erat,length);

k_f = lk2(angle+0.001,E,Erat,length);

backward = -Ue'*k_b*Ue+2*Ue'*k_b*Ue_th - Ue_th'*k_b*Ue_th;

center = -Ue'*k_c*Ue+2*Ue'*k_c*Ue_th - Ue_th'*k_c*Ue_th;

forward = -Ue'*k_f*Ue+2*Ue'*k_f*Ue_th - Ue_th'*k_f*Ue_th;

end

der = (forward-backward)/0.002;

dder = (forward-2*center+backward)/.001^2;

anew = angle - der/dder;

diff = (anew - angle)/anew;

angle = anew;

arec(end+1) = anew;

if size(arec,2) > 20

L = linspace(0,2*pi);

for n = 1:100

switch Opt_Var

case 'Compliance'

m(n) = Ue'*lk2(L(n),E,Erat,length)*Ue;

case 'Strain_Energy'

K1 = lk2(L(n),E,Erat,length);

m(n) = Ue'*K1*Ue - 2*Ue'*K1*Ue_th + Ue_th'*K1*Ue_th;

end

end

m_abs = abs(m);

[~, index] = max(m_abs);

angle = L(index);

break

end

end

a1 = angle;

a2 = angle + pi/2;

a3 = angle + pi/4;

a4 = angle + 3*pi/4;

switch Opt_Var

case 'Compliance'

SE1 = Ue'*lk2(a1,E,Erat,length)*Ue;

SE2 = Ue'*lk2(a2,E,Erat,length)*Ue;

SE3 = Ue'*lk2(a3,E,Erat,length)*Ue;

SE4 = Ue'*lk2(a4,E,Erat,length)*Ue;

case 'Strain_Energy'

K1 = lk2(a1,E,Erat,length);

K2 = lk2(a2,E,Erat,length);

K3 = lk2(a3,E,Erat,length);

K4 = lk2(a4,E,Erat,length);

SE1 = Ue'*K1*Ue - 2*Ue'*K1*Ue_th + Ue_th'*K1*Ue_th;

SE2 = Ue'*K2*Ue - 2*Ue'*K2*Ue_th + Ue_th'*K2*Ue_th;

SE3 = Ue'*K3*Ue - 2*Ue'*K3*Ue_th + Ue_th'*K3*Ue_th;

SE4 = Ue'*K4*Ue - 2*Ue'*K4*Ue_th + Ue_th'*K4*Ue_th;

end

[~,ind] = max([SE1,SE2,SE3,SE4]);

avec = [a1,a2,a3,a4];

angle = avec(ind);

end

function [strain,stress,vm]=stress1(angle,E,Erat,U,length)

% Based on the two-point Gauss Quadrature

Ey = E;

Ex = Erat*E;

nuxy = .36;

nuyx = nuxy*Ey/Ex;

varset = 1/sqrt(3)*[1 1;1 -1;-1 1;-1 -1];

KE = zeros(8,8);

strain = [0;0;0];
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D = [Ex/(1-nuxy*nuyx) nuxy*Ey/(1-nuxy*nuyx) 0; nuxy*Ey/(1-nuxy*nuyx) Ey/(1-nuxy*nuyx) 0; 

0 0 Ex/(2*(1+nuxy))]; 
rotation = [cos(angle)^2 sin(angle)^2 -2*sin(angle)*cos(angle); ... 
            sin(angle)^2 cos(angle)^2  2*sin(angle)*cos(angle); 
            cos(angle)*sin(angle) -cos(angle)*sin(angle) cos(angle)^2 - sin(angle)^2]; 
rDr = rotation*D*rotation'; 
for j = 1:4 
    nu = varset(j,1); 
    eta = varset(j,2); 
B = 1/4*[-1+nu 0 1-nu 0 1+nu 0 -1-nu 0; 0 -1+eta 0 -1-eta 0 1+eta 0 1-eta; ... 
    -1+eta -1+nu -1-eta 1-nu 1+eta 1+nu 1-eta -1-nu]; 
KE = KE + B'*rDr*B*length^2/4; 
strain = strain + B*U; 
end 
stress = D*strain; 
vm = sqrt(stress(1)^2+stress(1)*stress(2)+stress(2)^2); 
end 

 

function [dcn]=check(nelx,nely,rmin,x,dc) 
dcn=zeros(nely,nelx); 
for i = 1:nelx 
  for j = 1:nely 
    sum=0.0;  
    for k = max(i-floor(rmin),1):min(i+floor(rmin),nelx) 
      for l = max(j-floor(rmin),1):min(j+floor(rmin),nely) 
        fac = rmin-sqrt((i-k)^2+(j-l)^2); 
        sum = sum+max(0,fac); 
        dcn(j,i) = dcn(j,i) + max(0,fac)*x(l,k)*dc(l,k); 
      end 
    end 
    dcn(j,i) = dcn(j,i)/(x(j,i)*sum); 
  end 
end 

 

function [xnew,angle]=OC_new(nelx,nely,x,volfrac,dc,fixed_density)   
move = 0.02; 
max_dc = max(max(sqrt(abs(dc)))); 
%l1 = max_dc/1.2; 
%l2 = -max_dc/1.2;  

  
l1 = -1E11; 
l2 = 1E11; 
  xnew = x; 
  damp = 0.5; 
  loop = 0; 
while loop < 1000 
  lmid = 0.5*(l2+l1); 
  loop = loop + 1; 
  xnew = max(0.001,max(x-move,min(1.,min(x+move,x.*sign(dc).*(abs(dc)).^damp./lmid))));  
  xnew(fixed_density) = 1; 
  if (sum(sum(xnew)) - volfrac*nelx*nely) > 0 %direction originally > and no *lmid 
    l1 = lmid; 
  else 
    l2 = lmid; 
  end 
  if abs(sum(sum(xnew))/(nelx*nely) - volfrac) < 0.000001 
      break 
  end 
end 

 

 The GCMMA code was based on Dr. Svanberg’s code, and while a new objective 

function and gradient were generated, the overall structure of the code remains 
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unchanged. The new objective function is presented, along with the m-file of constants 

and the main loop, as some minor changes were made there. None of the subfunctions 

were altered from Dr. Svanberg’s original files, so those are not included here. Note that 

the objective function uses finite element subfunctions, which are identical to the ones 

used above in the OC optimization. 

penal = 3; 

Erat = 10; % Ratio of in-line modulus to perpendicular modulus

xl = .10; % length of x-side in m

E = 1.79E9; %Young's Modulus in weakest direction

al = 7E-5; %1/C  Coefficent of thermal expansion

alpharat = 1.2;

ksmall= 0.13; %W/m*K, for ABS plastic, min value

krat = 2; % Ratio of in-line conduction coefficient to perpendicular conduction 

coefficient

rmin = 1.2;

clear

clc

format compact

% Initialization for topology optimization

nely = 100;

nelx = 200;

volfrac = 0.5;

flag = 0; % 0 for compliance, 1 for strain energy

record = [];

% Initiialization for MMA

m = 2; % number of constraints?

n = 2*nely*nelx; % number of independent variables (densities and angles)

epsimin = 0.0000001; % maybe unused?

eeen = ones(n/2,1);

eeem = ones(m,1);

zeron   = zeros(n,1);

zerom   = zeros(m,1);

% Initialize independent variables

%xval = [volfrac*eeen; 2*pi*rand(n/2,1)]; % densities set to volfrac, angles randomly 

chosen

%xval = [rand(n/2,1); 2*pi*rand(n/2,1)]; % densities set to volfrac, angles randomly 

chosen

xval    = [volfrac*eeen; pi*rand(n/2,1)]; % densities set to volfrac, angles randomly 

chosen

xold1   = xval;

xold2   = xval;

xmin = [0.001*eeen; -10*pi*eeen]; % density has a lower bound of 0.001

xmax = [eeen; 10*pi*eeen]; % density has an upper bound of 1

low = xmin;

upp = xmax;

c = eeem*1e4; % 12 works, but not monotonic

d = eeem; % usually set to eeem

a0 = 1;

a = zerom;

outeriter = 0;

maxoutit  = 500;

kkttol  = 0;

%

%% MMA Loop

%%%% If outeriter=0, the user should now calculate function values

%%%% and gradients of the objective- and constraint functions at xval.
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%%%% The results should be put in f0val, df0dx, fval and dfdx: 
if outeriter < 0.5 
  [f0val,df0dx,unf,fval,dfdx] = topfunct_final(xval,nely,nelx,volfrac,flag); 
  innerit=0; 
  outvector1 = [outeriter innerit f0val fval']; 
  outvector2 = xval'; 
end 
% 
%%%% The iterations start: 
kktnorm = kkttol+10; 
outit = 0; 
while kktnorm > kkttol && outit < maxoutit 
  outit   = outit+1; 
  outeriter = outeriter+1; 
%%%% The MMA subproblem is solved at the point xval: 
  [xmma,ymma,zmma,lam,xsi,eta,mu,zet,s,low,upp] = ... 
  mmasub(m,n,outeriter,xval,xmin,xmax,xold1,xold2, ... 
  f0val,df0dx,fval,dfdx,low,upp,a0,a,c,d); 
%keyboard 
%%%% Some vectors are updated: 
  xold2 = xold1; 
  xold1 = xval; 
  xval  = xmma; 
  % round angles to within bounds 
  xval(nelx*nely+1:end) = mod(xval(nelx*nely+1:end),2*pi); 
%%%% The user should now calculate function values and gradients 
%%%% of the objective- and constraint functions at xval. 
%%%% The results should be put in f0val, df0dx, fval and dfdx. 
  [f0val,df0dx,unf,fval,dfdx] = topfunct2(xval,nely,nelx,volfrac,flag); 
%%%% The residual vector of the KKT conditions is calculated: 
  [residu,kktnorm,residumax] = ... 
  kktcheck(m,n,xmma,ymma,zmma,lam,xsi,eta,mu,zet,s, ... 
           xmin,xmax,df0dx,fval,dfdx,a0,a,c,d); 
  outvector1 = [outeriter innerit f0val fval']; 
  outvector2 = xval'; 
% Plotting 
x = reshape(xval(1:nely*nelx),nely,nelx); 
angle = reshape(xval(1+nely*nelx:end),nely,nelx); 
figure(1) 
I = imagesc([flip(x')' x]); 
colormap parula 
colorbar 
  hold on 
  Xlen = 1:2*nelx; 
  Ylen = 1:nely; 
  [Xset,Yset] = meshgrid(Xlen,Ylen); 
      xvec = sin(pi/2 - angle).*x; % switched from usual because angle is measured from 

y-axis  
      yvec = cos(pi/2 - angle).*x; % This is because y comes first in the ordered pairs 

for density 
      xvec = [flip(-xvec')' xvec]; 
      yvec = [flip(yvec')' yvec]; 
  spacing = ceil(max(nelx,nely)/100); 
  quiver(Xset(1:spacing:end,1:spacing:end)',Yset(1:spacing:end,1:spacing:end)', ... 
         

.5*spacing*xvec(1:spacing:end,1:spacing:end)',.5*spacing*yvec(1:spacing:end,1:spacing:end

)','MaxheadSize',0,'Color',[0 0 0],'AutoScale','off') 
  quiver(Xset(1:spacing:end,1:spacing:end)',Yset(1:spacing:end,1:spacing:end)', ... 
         -.5*spacing*xvec(1:spacing:end,1:spacing:end)',-

.5*spacing*yvec(1:spacing:end,1:spacing:end)','MaxheadSize',0,'Color',[0 0 

0],'AutoScale','off') 

   
  axis equal 
  axis tight 
  axis([1 2*nelx 1 nely]) 
  title('Part Design') 
  hold off 
  pause(.2) 

  
pause(0.2) 
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hold off

record = [record f0val];

fprintf('Outerit: %i ',outit)

fprintf('Volfrac: %f ',sum(sum(x))/(nelx*nely))

fprintf('Function Value %f\n',f0val)

figure(2)

plot(record)

pause(0.2)

end

%---------------------------------------------------------------------

function [f0val,df0dx,unfil,fval,dfdx] = topfunct_final(xval,nely,nelx,volfrac,flag)

% f0val is optimization function value

% df0dx is optimization function gradient

% fval is constraint function

% dfdx is constraint gradient

nx = length(xval);

eeen = ones(nx/2,1);

% Import constants

constants

le = xl/nelx; %length of one unit cell edge in meters

% Reshape the xval vector into a standard 

x = reshape(xval(1:nely*nelx),nely,nelx);

angle = reshape(xval(nely*nelx+1:end),nely,nelx);

% copy/paste the finite element bit:

[T,K_ff,freedofs]=thermal_FEA(nelx,nely,x,angle,penal,ksmall,krat,le,1);

[thermal_forces, DF_DT] = 

thermal_stresses(T,x,angle,nely,nelx,al,alpharat,le,E,Erat,penal);

[U,U_th,~]=mechanical_FEA(nelx,nely,x,angle,penal,E,Erat,thermal_forces,le);

if flag == 0

lambda = zeros(1,(nelx+1)*(nely+1));

lambda(:,freedofs) = (U'*DF_DT(:,freedofs))/K_ff;

end

% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS

c = 0;

SE = 0;

dc = zeros(nely,nelx);

dc_a = zeros(nely,nelx);

d_SE = zeros(nely,nelx);

dSE_a = zeros(nely,nelx);

for ely = 1:nely

for elx = 1:nelx

n1 = (nely+1)*(elx-1)+ely;

n2 = (nely+1)* elx   +ely;

% DOF selected for mechanical analysis

edof = [2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2];

edof_T = [n1;n2;n2+1;n1+1];

Ue = U(edof,1); % ccw from bottom left

Ue_t = U_th(edof,1);

%Ue_t = zeros(8,1);

% DOF selected for thermal analysis

T_i = T([n1;n2;n2+1;n1+1],1); % ccw from bottom left

% Mechanical element created

KE = lk(angle(ely,elx),E,Erat,le);

KE2 = lk(angle(ely,elx) + 0.001,E,Erat,le);

dKE_da = (KE2 - KE)./0.001;

% Thermal element created

KE_th = lk_th(angle(ely,elx),ksmall,krat,le);

KE_th2 = lk_th(angle(ely,elx) + 0.001,ksmall,krat,le);

dKE_th_da = (KE_th2 - KE_th)/.001;

if flag == 0 % compliance

c = c + 1/2*x(ely,elx)^penal*Ue'*KE*Ue;

TL = thermoload(x(ely,elx),angle(ely,elx),E,Erat,al,alpharat,T_i,le,penal);

dTL_dxi = TL*penal/x(ely,elx); % seems more accurate

dTL_dai = (thermoload(x(ely,elx),angle(ely,elx) + 

.001,E,Erat,al,alpharat,T_i,le,penal) - TL)/.001;

DF_Dxi = lambda(edof_T)*KE_th*T_i;

dc(ely,elx) = -1*(penal*x(ely,elx)^(penal-1)*Ue'*KE*Ue - 2*Ue'*dTL_dxi + 

2*penal*x(ely,elx)^(penal-1)*DF_Dxi);
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dc_a(ely,elx) = -1*(x(ely,elx)^penal*Ue'*dKE_da*Ue - 2*Ue'*dTL_dai + 

2*ksmall*x(ely,elx)^penal*lambda(edof_T)*dKE_th_da*T_i);

elseif flag == 1 % strain energy

SE = SE + 1/2*x(ely,elx)^penal*(Ue'*KE*Ue - 2*Ue'*KE*Ue_t + Ue_t'*KE*Ue_t);

d_SE(ely,elx) = -1*(-0.5*penal*x(ely,elx)^(penal-1)*(-Ue'*KE*Ue + 

2*Ue_t'*KE*Ue - Ue_t'*KE*Ue_t));

dSE_a(ely,elx) = -1*(0.5*x(ely,elx)^penal*(Ue'*dKE_da*Ue - 2*Ue'*dKE_da*Ue_t 

+ Ue_t'*dKE_da*Ue_t)); % MAYBE WRONG - CHECK

end

  end

end

if flag == 0

f0val = 5*c/1e4;

dc_f = check(nelx,nely,rmin,x,dc);    %mesh-independence check

df0dx = [reshape(dc_f,nely*nelx,1);reshape(dc_a,nely*nelx,1)]*1e-4;

unfil = [reshape(dc,nely*nelx,1);reshape(dc_a,nely*nelx,1)]*1e-4;

elseif flag == 1

f0val = 5*SE/1e4;

d_SE_f = check(nelx,nely,rmin,x,d_SE);    %mesh-independence check

df0dx = [reshape(d_SE_f,nely*nelx,1);reshape(dSE_a,nely*nelx,1)]*1e-4;

unfil = [reshape(d_SE,nely*nelx,1);reshape(dSE_a,nely*nelx,1)]*1e-4;

end

% Constraint: volume fraction

fval1 = sum(xval(1:nely*nelx))/(0.5*nx*volfrac) - 1;

fval2 = 1-.2 - sum(xval(1:nely*nelx))/(0.5*nx*volfrac);

%keyboard

dfdx1 = [eeen' 0*eeen']/(0.5*nx*volfrac);

%keyboard

%---------------------------------------------------------------------

fval = 100*[fval1; fval2];

dfdx = 100*[dfdx1; -1*dfdx1];
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