ABSTRACT

Individual and Interactive Influences of Low Dissolved Oxygen and Calcium Channel
Blockers in Inland Aquatic Systems

Gavin N. Saari, B.S.

Mentor: Bryan W. Brooks, Ph.D.

Understanding and managing influences of multiple stressors represents a major
water quality challenge, particularly in urbanizing regions. Because aquatic hazard
assessments with chemical and nonchemical stressors can identify the global trends in
occurrence and hazards of stressors for the protection of aquatic life, probabilistic aquatic
hazard assessments were performed to examine whether water quality guidelines for
dissolved oxygen (DO) are protective of aquatic life in inland waters. My analyses
indicate that adverse effects of low DO to freshwater invertebrates and fish have been
underestimated in inland waters. Additional low DO threshold information, including
sublethal toxicity, for additional species such as warm water fish and mollusks across
multiple life history stages is necessary to support environmental assessment and
management of ecosystem protection goals. Similar techniques were used to examine the
occurrence of calcium channel blockers (CCBs), a common class of vasodilators and
cardio suppressants, in environmental matrices, and to predict hazards to non-target

aquatic organisms in multiple environmental matrices and geographic regions. Whereas



environmental occurrence of CCBs in freshwater and effluent have predominantly been
reported from North America and Europe, data is lacking from many developing regions
around the world and hazards and risks of CCBs to non-target biota remains poorly
understood. Therapeutic hazard values (THVs), a comparative pharmacology and
toxicology approach, employed during probabilistic hazard assessments with
environmental exposure distributions revealed that amlodipine and verapamil in effluent
and freshwater exceeded THVs 28% of the time. Diltiazem exceeded minimum human
therapeutic thresholds based on observations in fish plasma from the field ~18% of the
time in surface waters. This approach demonstrated the utility of global assessments to
identify specific CCBs and geographic regions where environmental assessments appear
necessary. Subsequently, to understand adverse effects of individual and multiple
stressors influencing cardiac function (DO, diltiazem, or DO x diltiazem), toxicity studies
were performed using a comparative toxicology and pharmacology approach in fathead
minnows (Pimephales promelas) across larval and adult life stages. DO x diltiazem
toxicity studies with larval fish revealed acute lethality increased with decreasing DO
levels and altered burst swimming behavior at DO water quality criteria levels deemed
protective of aquatic life. In adult fathead minnows, low DO (3.0 mg DO/L) increased
uptake of diltiazem and altered physiological responses (e.g., hematocrit, plasma lactate)
at and above human therapeutic plasma levels. Failing to consider low DO influences
with chemical exposure during toxicological studies of cardioactive medications and

potentially other cardiotoxicants underestimates adverse outcomes in fish.
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CHAPTER ONE

Introduction

Background and Significance

Continued global growth of the human population and its concentration to cities
has created a new urban water cycle (Brooks, 2014; Postel, 2010). Effective water
management is essential to maintain sufficient quality and quantities of water for its
designated uses, especially as our access to consumer goods and medicines are increasing
faster than our waste infrastructure. Consumption of water and consumer products
including pharmaceuticals varies worldwide, while the number of persons above age 60
is expected to double by 2050 (Gaw and Brooks, 2016; Kookana et al., 2014).
Coincidentally, 70% of the human population reside in coastal cities where local water
resources are stressed from climate change, nutrient enrichment, and contaminant
loadings (Brooks et al., 2006; Heathwaite, 2010; Hooper et al, 2013). Therefore, potential
risks to aquatic organisms from urban water stressors such as contaminants of emerging
concern and nutrients, leading to the increased occurrence of hypoxia (< 2 mg/L DO)
worldwide, are of concern (Diaz, 2001; Kookana et al., 2014).

Occurrence, frequency, and duration of hypoxia in freshwater and marine systems
throughout the world has been well documented (Cooper and Brush, 1991; Delorme,
1982; Diaz, 2001; Diaz and Rosenberg, 2008; Thornton et al., 1990). As such, with a
majority of the human population residing in coastal cities, local water resources are
stressed from climate change and nonpoint and point sources of contaminants (Brooks et
al., 2006; Heathwaite, 2010; Hooper, 2013). Deleterious effects of hypoxia to aquatic
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organisms has been observed in multiple species and even at moderate dissolved oxygen
(DO) levels (McKim and Erickson, 1991; Thomas et al., 2006; Vaquer-Sunyer and
Duarte, 2008; Wu, 2002). An empirical hypoxia assessment by Vaquer-Sunyer and
Duarte (2008) demonstrated approximately 4.60 mg DO/L is necessary to prevent acute
adverse effects to marine species (Vaquer-Sunyer and Duarte, 2008). Unfortunately, such
an understanding of low DO hazards to freshwater species have received less study in
recent years. Therefore, understanding the effects of hypoxia to aquatic organisms and
the geographic regions where multiple stressors may be exacerbating chemical toxicity in
non-target organisms is necessary to identify whether monitoring, assessment, and
management efforts are adequate.

Occurrence of stressors other than hypoxia in aquatic systems have also been
reported, especially in urban water cycles experiencing population growth and climate
change (Brooks et al., 2006; Postel, 2010; Scott et al., 2016). Pharmaceuticals are
continuously released from wastewater treatment plants (WWTP) resulting in life cycle
exposures to aquatic organisms, particularly in effluent-dominated or dependent systems
(Brooks et al., 2006). Around 98% of published literature on pharmaceuticals in the
environment (PiE) has been published after 1995, and has increased by 5- and 10-fold in
the past two decades (Daughton, 2016). This research growth has been spurred by an
increasing ability to detect human and veterinary medicines in the environment, which
has provided substantial evidence to determine exposure scenarios and consider their
potential toxicological effects to non-target organisms (Halling-Sorensen et al., 1998;
Monteiro and Boxall, 2010; Ternes, 1998). Unfortunately as attention to PiE continues to

grow, our understanding of the environmental effects remains less defined (Brooks et al.,



2012). Most of these compounds are not acutely toxic at environmentally relevant
concentrations and therefore significant challenges exist to characterize the sublethal
effects of pharmaceuticals to non-target organisms (Brooks et al., 2009). Considering
mechanism of action (MOA) of a chemical a priori and leveraging pharmacological
safety data in a read-across approach has been purposed to anticipate or predict effects in
ecotoxicological models (Ankley et al., 2007; Brooks et al. 2009; Rand-Weaver et al.,
2013; Winter et al., 2010). Despite this concept of “intelligent testing” for human and
ecological risk assessment of pharmaceuticals, data to support this approach is still
limited (Winter et al., 2010, Brooks 2014, 2018).

In addition to a need for sufficient toxicity data for chemical stressors like
pharmaceuticals, ecological risks of these compounds relative to and in combination with
nonchemical stressors (e.g., pH, temperature, DO) has been emphasized (Boxall et al.,
2012). Pharmaceuticals are released to surface waters with other contaminants (e.g.,
nutrients, pesticides) common to effluent dominated or dependent systems (Boxall et al.,
2012; Brooks et al., 2006). Effects of pharmaceuticals to aquatic organisms relative to
nonchemical stressors is far more complex (Boxall et al., 2012). The relative impact of
pharmaceuticals compared to other stressors in the natural environment are unknown but
necessary to make knowledgeable management decisions (Boxall et al., 2012).

Toxicological and biochemical responses to contaminants, such as ammonia (Lyu
et al., 2013), crude oil (Dasgupta et al., 2016; Dasgupta et al., 2015), heavy metals
(Fitzgerald et al., 2016; Hattlink et al., 2005; Malekpouri et al., 2016), and contaminants
of emerging concern (Cypher et al., 2015; Hu et al., 2015; Prokkola et al., 2015) by fish

have been shown to be DO-dependent. Recently, human therapeutic levels of the calcium



channel blocker diltiazem has been reported in fish plasma from estuaries along the
Texas Gulf of Mexico (Scott et al., 2016). These urbanized watersheds, which are
additionally impaired waterbodies on the Texas 303(d) list due to nonattainment of DO
water quality standards (WQS), represent pronounced estuarine exposure scenarios for
multiple stressors (Brooks et al., 2008; Du et al., 2016; Scott et al., 2016). Similar plasma
diltiazem observations have occurred in fish exposed to WWTP effluent in Sweden and
Japan, which lead to concerns regarding the worldwide occurrence of diltiazem and other
calcium channel blockers in environmental matrices. Unfortunately, the ecological effects
of diltiazem in fish are poorly understood and deserve future research to understand their
potential pharmacological activity in fish.

Fish uptake modeling of pharmaceuticals has been described previously (Brooks,
2014; Du et al, 2014) and is based on physiological pharmacokinetic modeling
accompanied with the conservation of drug targets in vertebrates, particularly in
mammals and fish (Fitzsimmons et al., 2001; Gunnarsson et al., 2008; Huggett et al.,
2003; Verbruggen et al., 2017). Our research group recently explored the utility of using
therapeutic hazard values (THV) to identify pharmaceutical water concentrations
predicted to bioconcentrate in fish plasma at human therapeutic levels (Cmin- Cmax). Read-
across represents an approach using mammalian pharmacological data to predict and
empirically measure the toxicological effects of drugs in non-target organism.
Unfortunately, a minimal number of reports using fish plasma modeling and read-across
exist (Rand-Weaver et al., 2013). The above approaches are necessary to effectively
inform the applicability of mammalian to fish read-across and further broaden our

understanding of pharmaceutical mixtures and multiple stressor (e.g., hypoxia,



temperature) impacts to aquatic organisms in urbanized ecosystems (Brooks, 2018;

Brooks et al., 2006; Scott et al., 2016).

Scope of dissertation

In this dissertation, I aimed to better understand the environmental hazards of
multiple stressors by examining a model weak base pharmaceutical (e.g., diltiazem) and a
common nonchemical stressor (e.g., DO) in fish. Both of these stressors co-occur in
aquatic systems and have the potential to adversely affect cardiac function. In the second
chapter, an examination of the national guidelines and regional water quality criteria for
the nonchemical stressor DO was performed and identified inadequate environmental
assessment and management strategies for DO in inland waters. In chapter three, a novel
probabilistic hazard analysis was performed with individual and mixtures of CCBs by
leveraging existing chemical environmental occurrence data and mammalian
pharmacological information to identify global hazards to non-target organisms. Based
on my observations in chapters two and three, these predictive tools can identify regions
where environmental assessment and management efforts appear inadequate. In chapters
four and five, I advanced toxicokinetic and comparative pharmacology efforts using a
model calcium channel blocker (diltiazem) and model fish species across an
environmentally relevant DO gradient. Such basic and applied studies have the capacity,
when paired with fish plasma modeling and read-across approaches, to predict the effects
of human therapeutic plasma levels in non-target aquatic vertebrates. Such approaches
are necessary and essential for robust ecological risk assessment and management of

cardiotoxicants.



CHAPTER TWO

Revisiting Inland Hypoxia: Diverse Exceedances of Dissolved Oxygen Thresholds for
Freshwater Aquatic Life

This chapter published as: Saari GN, Wang Z, Brooks BW. 2018. Revisiting inland
hypoxia: diverse exceedances of dissolved oxygen thresholds for freshwater aquatic life.
Environmental Science and Pollution Research 25:3139-3150.

Abstract

Water resources in many regions are stressed by impairments resulting from
climate change, population growth and urbanization. In the United States (US), water
quality criteria (WQC) and standards (WQS) were established to protect surface waters
and associated designated uses, including aquatic life. In inland waters of the south
central US, for example, depressed dissolved oxygen (DO) consistently results in
impaired aquatic systems due to noncompliance with DO WQC and WQS. In the present
study, we systematically examined currently available DO threshold data for freshwater
fish and invertebrates and performed probabilistic aquatic hazard assessments with low
DO toxicity data that were used to derive the US Environmental Protection Agency’s
(EPA) Ambient Water Quality Criteria (AWQC) for DO and newly published
information. Aquatic hazard assessments predicted acute invertebrate DO thresholds for
Ephemeroptera, Plecoptera, or Trichoptera (EPT) taxa and species inhabiting lotic
systems to be more sensitive than fish. For example, these organisms were predicted to
have acute low DO toxicity thresholds exceeding the US EPA guidelines 17, 26, 31 and
38% and 13, 24, 30 and 39% of the time at 8.0, 5.0, 4.0 and 3.0 mg DO/L, respectively.

Based on our analysis, it appears possible that low DO effects to freshwater organisms



have been underestimated. We also identified influences of temperature on low DO
thresholds and pronounced differences in implementation and assessment of the US EPA
AWQC among habitats, seasons, and geographic regions. These results suggest some
implemented DO guidelines may adversely affect the survival, growth, and reproduction
of freshwater aquatic organisms in a region susceptible to climate change and rapid
population growth. Given the global decline of species, particularly invertebrates, low
DO threshold information, including sublethal (e.g., reproduction, behavior) responses,
for additional species (e.g., mollusks, other invertebrates, warm water fish) across
seasons, habitats, and life history stages using consistent experimental designs is needed
to support more sustainable environmental assessment efforts and management of

biodiversity protection goals in inland waters.

Introduction

Freshwater systems can experience significant modification in response to climate
change, population growth, and other anthropogenic stressors such as nutrient
enrichment, contaminants of emerging concern, pH, and dissolved oxygen (DO). These
alterations are particularly observed in arid to semi-arid regions (Brooks et al. 2006;
Delorme 1982; Heathwaite 2010). Nutrient enrichment of freshwater systems due to
anthropogenic point and nonpoint sources can indirectly result in depressed DO and, in
extreme scenarios, hypoxic or anoxic conditions leading to poor water quality (Brooks et
al. 2006; Delorme 1982; Heathwaite 2010; Valenti et al. 2011). In aquatic systems, an
increase in temperature co-occurring with carbon dioxide accumulation can also

exaggerate hypoxia due to elevated oxygen demand and lower oxygen solubility at high



temperature (Brewer and Peltzer 2009; Portner 2010). Hypoxia in aquatic ecosystems is
typically defined as low levels of DO from near maximum solubility to below 2 mg
DO/L (Committee on Environment and Natural Resources 2003). Hypoxic conditions
have occasionally occurred naturally in some systems, such as Lake Erie (Delorme 1982;
Zhou et al. 2013) and the Chesapeake Bay (Cooper and Brush 1991; Committee on
Environment and Natural Resources 2003). However, nutrient enrichment and increased
organic matter due to anthropogenic activities has resulted in intensified magnitude,
frequency, and duration of hypoxia and anoxia in freshwater and marine systems (Diaz
and Breitburg 2009; Committee on Environment and Natural Resources 2003). Low DO
concentrations typically occur in hypolimnetic waters with high organic matter, poor
circulation, defined stratification, or seasonal ice cover (Chambers et al. 1997; Diaz and
Breitburg 2009). Depressed DO levels produce adverse effects on metabolic and
behavioral processes in aquatic organisms. For example, moderate hypoxia (2 to 5 mg
DO/L) can cause physiological or biochemical stress (e.g., hormonal responses, oxidative
stress) in fish and invertebrates, while severe hypoxia can impact survival (mortality),
growth, reproduction, and population trajectories of aquatic life (Brett and Blackburn
1981; Doudoroff and Shumway 1970). Unfortunately, though hypoxia has received much
study in marine and coastal systems, depressed DO has received relatively limited
attention in freshwater ecosystems over the past few decades (Pollock et al. 2007). In the
US, the 303(d) list (Section 303(d)) of the Clean Water Act (CWA) includes impaired
surface waters that do not attain water quality standards (WQS). In states experiencing

dramatic population growth and climate change, such as Texas, freshwater

impoundments and tidally influenced rivers have been consistently listed on 303(d) lists



due to noncompliance with DO water quality criteria (WQC) and standards (Brooks et al.
2008; Brooks et al. 2011). Reservoirs located in these arid to semi-arid regions are
particularly prone to hypolimnetic and even metalimnetic hypoxia due to high loads of
organic matter, droughts, withdrawal rates, and spatial variability (Brooks et al. 2011;
Diaz and Breitburg 2009; Thornton et al. 1990). Though reservoir zones (e.g., riverine,
transition, lacustrine) represent different aquatic habitats that should be considered during
surface water quality assessment and management (Lind et al. 1993), various reservoir
habitats are not routinely considered during surface water quality assessments of DO and
other contaminants (Brooks et al. 2008; Brooks et al. 2011). Whether habitat-specific
implementation and assessment of AWQC, including DO, differs among states and other
geographic regions remains poorly described, but differing implementation practices can
introduce uncertainty during surface water quality assessments and management
activities. The US CWA mandates states and authorized tribes to develop, implement,
enforce, and periodically update WQC to protect designated uses of aquatic ecosystems.
Based on the 1986 US EPA AWQC for DO, these WQC were intended to protect aquatic
life uses and were predominantly dependent on available low DO toxicity data for growth
impairment in cold and warm water fish (U.S. Environmental Protection Agency 1986;
U.S. Environmental Protection Agency 2012). In 1986, the recommended freshwater DO
AWQC were derived for the protection of no to slight (10%) growth/production
impairment to fish populations because these DO concentrations were also expected to
provide adequate protection for other aquatic organisms (i.e., invertebrates; U.S.
Environmental Protection Agency 1986). Canada and UK published DO water quality

guidelines after the US EPA in 1987 and 1992, respectively, with the UK specifically



referencing both fresh and marine waters (Canadian Council of Ministers of the
Environment 2001; Stiff et al. 1992). Similar to the US AWQC (U.S. Environmental
Protection Agency 1986). Canada recommended DO criteria across different
developmental stages, while the UK aquatic life criteria were categorized based on the
fishery (e.g., salmonid, cyprinid, less sensitive cyprinid). No revisions have occurred to
the EPA AWQC since its initial publication 30 years ago; whether such criteria are
protective of threatened and endangered species is largely understudied (Woods et al.
2010). However, DO is of particular importance because of the increased frequency of
hypoxic events worldwide over the past few decades (Diaz 2001; Committee on
Environment and Natural Resources 2003) and future projections of population growth,
landscape modification, and climate change. Whether more recently published low DO
toxicity data could improve our understanding of the adverse effects of hypoxia in inland
waters, and thus reduce uncertainty during surface water quality assessment and
management efforts, is not understood. Thus, in the present study, we (1) examined the
current status of historical (pre-1986) and more recent low DO toxicity data (post-1986)
for freshwater fish and invertebrates, hypothesizing more recent data would differ from
historical information; (2) employed probabilistic aquatic hazard assessments to
determine the percent of species affected by low DO relative to WQC; and (3) identified
whether implementation and assessment of DO WQC differs among freshwater habitats,
seasons, and the south central geographic area of the US, a region susceptible to climate
change and population growth. We further examined the relationship between
temperature and low DO thresholds because increasing temperature decreases oxygen

water solubility under conditions when metabolic demands increase with less oxygen
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availability and the US AWQC are based on water temperature (cold water vs. warm

water) and fish (salmonid vs. nonsalmonid species).

Methods

Data collection

Acute and chronic toxicity data (lethal or effect concentrations, LC50s or EC50s) for low
DO and corresponding experimental conditions (e.g., DO, pH, temperature) of freshwater
fishes and invertebrates were collected from the peer-reviewed literatures and the US
EPA AQWQC document (U.S. Environmental Protection Agency 1986). Acute toxicity
endpoints included individual species’ LC50 (<96 h, >96 h) values, while chronic
endpoints included EC10 and EC50s for the effects of DO on growth (>96 h). For data
quality consistency, toxicity data were selected using the following approach. Only
published DO experiments that documented experimental designs and study procedures
were used for further analyses. These study procedures included sufficient water
renewals, clearly identified DO control methods (constant or declining DO), organismal
conditions (species, size, weight, life stage, source, diet, acclimation period), daily water
chemistry observations (DO, pH, temperature), adequate controls, at least initial and final
mortality observations (with sufficient control survival), and statistically calculated
standard toxicity values (LC50 or ECx) (Sprague 1973). DO treatment levels reported
simply as values greater or less than a concentration were excluded from probabilistic
analyses. In the present study, low DO toxicity refers to a calculated lower DO threshold

for either decreased survival or growth of an organism. Toxicity data used for species
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sensitivity distributions (SSDs) are listed in supplementary information (Supplementary:
Table: 16). Fish growth data calculated from both laboratory and mesocosm studies were
used in our analyses because they were explicitly included in the derivation of the 1986

AWQC for DO.

Aquatic hazard assessments

Geometric means were calculated for species LC50 or ECx values when study conditions
within 1 °C, the same life stage, and multiple toxicity values were reported. When
multiple LC50 or ECx values were available for the same species from studies at
temperatures varying by greater than 1 °C or by life stage, these data values were
separately included in taxa SSD development. Low DO toxicity values were selected to
be inclusive of all available temperature conditions, life stages, and study designs.
Toxicity data were first ranked in ascending order and assigned percentiles using the
Weibull equation:
Jj=({x100)/(n+1)

where j is the percent rank, i is the rank assigned to an acute (LC50) or chronic
concentration (EC10 or EC50), n is the number of species examined, and » + / accounts
for the assumption that there is always one less than all species tested (Posthuma et al.
2002). SSDs were then constructed following the procedures described in Wheeler et al.
(2002), having log concentrations of toxicity values (LC or EC) as x-axis and the
proportion of species being affected as y-axis (SigmaPlot Version 11.0 Systat Software,
Inc., San Jose, CA, USA). Analyses of covariance (ANCOVA, SPSS, Chicago, IL, USA)

were conducted to compare the slopes and intercepts of Weibull ranked probit normalized
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regression models of specific classified datasets (e.g., Ephemeroptera, Plecoptera, or
Trichoptera (EPT) taxa vs. non-EPT taxa). Due to a variety of low DO toxicity data,
which spanned five decades across multiple species (e.g., Hyalella azteca, Hexagenia
limbata, Onchorynchus mykiss), different SSDs were generated (i.e., EPT, lotic habitat,
pre-1986) for fish and invertebrates. Probabilistic aquatic hazard assessments using
developed SSDs were then performed to determine the percentage of toxicity thresholds
(e.g., LC50, EC50) likely to be exceeded at the existing US EPA AWQC. Slopes and y-
intercepts were extracted from SSD regression models and centile values were calculated
(Microsoft Excel 2016 Microsoft Corp, Richmond, WA, USA) using the equation:
Centile value = NORMDIST ((b x log 10(x)) + a))

where the NORMSDIST returns the standard normal cumulative distribution function of a
selected value, and b and « represent the slope and intercept, respectively, from the linear
regression.

To quantify differences in SSDs, hazard concentrations (HC) at the 80th
percentile (i.e., HC20 or 20% protection level) were calculated from each SSD. More
common HC95 or HCI90 (i.e., 95 or 90% protection level for DO, respectively) values
were not compared in this study because over half of the SSDs contained less than 20
data values (minimum was 5) and would introduce higher uncertainty in such predictions
(Grist et al. 2002; Wheeler et al. 2002). HC values derived from each dataset were
calculated and compared to compute an HC ratio. When a ratio was greater than one, the
dataset/ species were considered sensitive to DO. HCs and their corresponding 95%
confidence interval were computed by Monte Carlo simulation, following the log-normal

procedure available in the SAS package (SAS 9.4, Cary, NC, USA), and were determined
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at 10th, 50th, 80th, 90th, 95th, and 99'" centiles.

Temperature-dependent DO thresholds

To investigate potential temperature effects on DO thresholds of freshwater species, a
comprehensive meta-analysis of various acute toxicity endpoints (LC50s andEC50s) for
DO across multiple temperatures (n > 3) was conducted for the data generated from an
individual study. Linear regression was applied to fit relationships between temperature
and acute toxicity endpoints (SigmaPlot 13.0, San Jose, CA, USA). To define the
inherent effect of temperature on freshwater communities and populations, temperature-
dependent SSDs (i.e., 15, 20, and 25 °C) were constructed for examining the effects of
temperature on SSDs. To further quantitatively compare the differences among
temperature-dependent SSDs for DO, the HC value and 95% CIs were computed for each
SSD by Monte Carlo simulation, following the log-normal procedure available in SAS
(SAS 9.4, Cary, NC, USA). To minimize the uncertainty caused by data quantity (n = 5),
relative species sensitivities among temperatures for DO were compared on the basis of
HC20 values. A linear regression function (y = a + b x) was also applied to fit these data

(SigmaPlot 13.0, San Jose, CA, USA).

Geographic- and habitat-specific DO water quality criteria and standards

The south central region of the US is characterized by diverse watersheds, urbanization,
population growth, and appreciable annual rainfall gradients. For example, annual rainfall

in Texas spans over 114 cm per year from west to east, and contains three of the top ten
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largest and fastest growing metropolitan areas in the US (Dallas/Ft. Worth, Houston, San
Antonio) and are thus potentially representative of other regions experiencing climate
change and population growth. Subsequently, WQC for DO in the south central US,
which corresponded to states in US EPA Region 6 (Arkansas, Louisiana, New Mexico,
Oklahoma, Texas), were examined to determine whether habitat and geographic
differences in implementation and assessment of WQC and WQS exist (Texas
Commission on Environmental Quality 2010; Arkansas Pollution Control and Ecology
Commission 2011; Louisiana Department of Environmental Quality 2012; New Mexico

Environment Department 2000; Oklahoma Water Resources Board 2007).

Results

Freshwater invertebrate and fish thresholds to low DO

The majority of studies reporting standard lethality thresholds were conducted
with invertebrates prior to the US EPA AWQC (pre-1986). Additionally, a large amount
of low DO toxicity data published pre-1986 included chronic data for growth studies of
multiple cold water (e.g., chinook salmon: Oncorhynchus kisutch) and warm water (e.g.,
largemouth bass: Micropterus salmoides) fish. Acute and chronic DO toxicity data for
fishes and invertebrates published over the last five plus decades with over 70 different
fish and invertebrate species are provided in supplementary information (Supplementary:
Table: 16). Prior to publication of the AWQC in 1986, no standard calculated fish
toxicity values (e.g., LC50) were found (Supplementary: Table: 16) because the majority

of these historical studies reported the percent mortality at some DO treatment level(s).
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However, recent publications have derived DO LC50 values for a variety of fish species
including rainbow trout (Oncorhynchus mykiss), suckers (Deltistes Iluxatus and
Chasmistes brevirostris), common smelt (Retropinna retropinna), inanga (Galaxias
maculatus), common bully (Gobiomorphus cotidianus), short-finned eel (Anguilla
australis), shiner (Notropis topeka), and catfish (Rhamdia quelen) (Supplementary:
Table: 16). Acute and chronic invertebrate LC50 values published pre- 1986 ranged from
0.03 (Jacob et al. 1984; Sprague et al., 1963) to 8.75 (Jacob et al. 1984) mg DO/L and
4.50 (Nebeker et al. 1992) to 5.00 (Nebeker et al. 1992) mg DO/ L, respectively, while
more recent (post-1986) acute and chronic invertebrate LC50 values ranged from 0.51
(Nebeker et al. 1992) to 1.95 (Nebeker et al. 1996) mg DO/L and 0.49 (Nebeker et al.
1992) to 2.00 (Nebeker et al. 1996) mg DO/L, respectively (Supplementary: Table: 16).
Only 8 and 13 acute DO toxicity values were published since 1986 for freshwater
invertebrates and fish, respectively, and one chronic invertebrate DO toxicity value has
been published since 1986. Such studies of invertebrate species largely focused on
organisms from lentic and lotic habitats. Specifically, those species in both lotic and
lentic habitats comprised ~58% of the available low DO toxicity data for invertebrates
and represented the most robust invertebrate data set we examined. Similarly, fish DO
toxicity data, which included mainly growth studies, were mainly comprised by species

inhabiting cold waters (optimal temperature ~11 °C).

Aquatic hazard assessments

Nine invertebrate and five fish SSDs were generated using acute and chronic DO

toxicity data. The dataset with the largest and smallest range of LC50 values were 8.72
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and 1.44 mg DO/L (Table 1). Because pre-1986 data on acute DO toxicity only was
identified for invertebrates, this dataset was compared to all available acute invertebrate
and fish DO toxicity data published pre- and post-1986 and was significantly different
from each other with the pre-1986 dataset more sensitive (Fig. 1a; ANCOVA, slope p >
0.217; y-int p < 0.001). These distributions differed at in the middle of the SSD and
converged at the lower and upper end. Both datasets were dominated by invertebrates,
with the latter dataset encompassing acute fish DO toxicity data and invertebrate data.
This acute dataset including both invertebrate and fish DO toxicity data is comprised of
86.5 and 13.5% invertebrate and fish values, respectively. The datasets containing acute
invertebrate DO toxicity data include some taxonomic diversity (Table 1) but those SSDs
including all available invertebrate data were dominated by EPT taxa compared to non-
EPT taxa (~3-fold difference in n and no. of species).

When invertebrates were classified based on lentic or lotic habitats (Merritt and
Cummins 1996), our results indicated all three SSDs were significantly different from
each other (ANCOVA; lentic and lotic vs lentic p < 0.014; lotic vs lentic p < 0.008; both
vs lotic, p < 0.001). Lentic and lotic datasets contained 71.4 and 92.6% EPT taxa. When
we then classified acute invertebrate datasets by EPT and non-EPT taxa, our results
indicated that the EPT and non-EPT taxa SSDs were also significantly different.
Additionally, acute and chronic lethality (LC50) SSDs were significantly different
(ANCOVA, p < 0.001), though the slopes were not (p > 0.762). As mentioned above, the
pre-1986 dataset, which included only acute invertebrate DO toxicity data, was
significantly different from both invertebrate and fish DO toxicity data; our results

revealed acute invertebrate and acute fish SSDs were also significantly different
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(ANCOVA, p < 0.001). Acute fish DO toxicity data were dominated by warm water
species with one acute cold water LC50 value identified for rainbow trout.

When HCs were computed from each dataset and HC80s compared based on the
minimum data values in several SSDs, the HC80 ratios for acute DO toxicity involving
invertebrate from pre-1986 were consistently greater than one, suggesting that
invertebrate mortality thresholds were more sensitive than fish. Specifically, the acute
invertebrate pre-1986 DO toxicity SSD was more sensitive than the SSD including the
most recent acute invertebrate data and the predicted HC80 was 10.6% lower following
the addition of newly published data because these toxicity values fell within the bottom
half of the distribution (Supplementary: Figure 20). This is reflected by the acute
invertebrate to fish HC ratio of 2.3, again suggesting that invertebrates are twice as
sensitive to decreases in DO as fish. Increasing the exposure duration to low DO
increased sensitivity, which was reflected in the chronic to acute invertebrate lethality HC
ratio of 1.9. Further, EPT taxa were ~2.5x more sensitive than non-EPT taxa. However,
ratios comparing fish growth (EC10) to acute invertebrate (LC50) were consistently
greater than one regardless of habitat (cold or warm water, lotic or lentic), suggesting fish
growth responses are more sensitive to DO than invertebrate mortality.

Aquatic hazard assessments predicted 14, 23, 28, and 35% of acute low DO
toxicity values pre-1986 exceed the existing US EPA AWQC at 8.0, 5.0, 4.0, and 3.0 mg
DO/L. When this dataset included the newly published invertebrate and fish DO toxicity
values, the results predicted 7, 15, 20, and 28% of species to be adversely affected at
same DO concentrations, respectively. In comparison, including acute fish DO toxicity

data with the acute invertebrate data decreased the percent exceeded by 4-5% and again
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indicated, based on the data available, that freshwater invertebrates are more susceptible
to DO than fish. When the acute invertebrate datasets were then classified based on
habitat types, those species inhabiting lotic environments were predicted to be more
adversely affected at 8.0, 5.0, 4.0, and 3.0 mg DO/L (13, 24, 30, and 39%) than those
species inhabiting lentic or both lentic and lotic habitats (1-29 to 13-30%, respectively;
Fig. 1b; Table 1). Interestingly, a similar percentages of species affected were predicted
for those invertebrates divided to EPT (17, 26, 31, and 38%) and non-EPT taxa (5, 10, 14,
and 19%) at the same DO concentrations (Fig. 1c; Table 1).

Though there were only five chronic invertebrate DO toxicity values,
encompassing 7-30-day exposure durations, 22, 33, 39, and 45% of species were
predicted to be affected at 8.0, 5.0, 4.0, and 3.0 mg DO/L (Fig. 1d, Table 1). Compared to
predicted acute DO thresholds for aquatic invertebrates, there was an increase of ~10% in
the number of affected invertebrates when exposure duration was greater than 7 days.
The percent of acute fish DO toxicity values exceeding the US EPA AWQC at 8.0, 5.0,
4.0, and 3.0mg/L (~0, 2, 5, and 11%, respectively; Fig. le, Table 1) were low compared
to invertebrates. Again, such predictions were based on post-1986 acute fish toxicity
values (LC50s) and could not be compared to DO toxicity values available pre-1986
because standard toxicity values were not identified. Using the cold water fish growth
EC10 values, results indicated 23, 48, 61, and 76%of fish to be adversely affected at 8.0,
5.0, 4.0, and 3.0 mg DO/L, respectively (Fig. le, Table 1). Similarly, 2, 48, 83, and 99%
of fishes are predicted to be adversely affected at the same DO levels, using the warm
water fish growth ECio values, although only five values were available from four

different species.
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Figure 1: Aquatic hazard assessments of invertebrate and fish dissolved oxygen thresholds from both acute
and chronic lethality (LC50) and chronic fish growth (EC) toxicity studies. (A) All acute (2-96 h)
invertebrate toxicity data (LC50s) relative to those classified as published pre and post the United States
Environmental Protection Agency’s Ambient Water Quality Criteria (1986); (B) Acute Lotic, Lentic, and
Lotic and Lentic invertebrate (LC50s); (C) Acute invertebrate data (LC50s) divided into the orders (taxa)
Ephemeroptera, Plecoptera, and Trichoptera (EPT) or non-EPT taxa; (D) acute and chronic invertebrate
toxicity data (LC50s); (E) Chronic warm and cold water fish growth effect concentrations (EC50) relative
to acute fish acute toxicity data (LC50); (F) Acute fish and invertebrate toxicity data (LC50) relative to
acute invertebrate or acute fish toxicity data (LC50). Vertical lines (left to right) represent water quality
criteria for DO subcategory high aquatic life use, commonly assigned to water bodies in Texas, where 24-
hour DO minimum are not to extend beyond 8 hours (3 mg/L, dotted) and the 24-hour mean minimum (5
mg/L, long dash) that cannot be exceeded over 24 hours (TCEQ, 2010).
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Temperature-dependent DO thresholds

Temperature is an important factor in chemical-induced toxicity, which typically
increases with increasing temperature. To examine potential errors and variability
associated with different experimental conditions, we systematically examined low DO
toxicity data from individual studies at multiple temperatures. There were 3 of 9
invertebrate (LC50) and 1 of 2 fish (EC90, EC50 growth) cases following a positive
linear relationship, indicating low DO toxicity increased with elevating temperatures
(Supplementary: Figure: 21 and Supplementary: Figure: 22). Three acute temperature-
dependent SSDs (15, 20, 25 °C) were also constructed using five similarly available low
DO toxicity values for species within the order Ephemeroptera (Supplementary: Figure:
21). When temperature-dependent HC80 values were considered, an insignificant yet
positive relationship between temperature and HC80 values was observed, which
suggests low DO toxicity may be expected to increase with increasing surface water

temperatures (Supplementary: Figure: 21).

Geographic- and habitat-specific DO water quality criteria and standards

States in the south central US were found to have diverging surface water quality
assessment approaches that varied by habitat, time of the year, and aquatic life use
designations relative to AWQC (Table 2). In the state of Texas, for example, historical
high and limited aquatic life use WQC consisted of a 24-h mean and absolute minimum
DO WQC at 5 and 3 mg DO/L, respectively, for reservoir systems, and were dependent

on the type of waterbody (stream, tidally influenced river; Texas Commission on
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Environmental Quality 2003). These WQS were revised in 2010 to implement DO
concentrations based on aquatic life use (Texas Commission on Environmental Quality
2010). To compare different implementation practices within the south central US, we
found the number of different WQC and standards per state ranged between 1 and 41, not
including site-specific criteria within states of Arkansas, Louisiana, New Mexico,
Oklahoma, and Texas. Subsequently, we compared the number of early life stage (ELS)
and other life stage (OLS) WQC or WQS recommended for cold and warm water fish
species within this region and found the number of states with these distinct criteria
ranged from 0 to 4 and 0 to 36, respectively (Table 3). All six states have derived DO
criteria for warm water species but only three of the six states (Arkansas, New Mexico,
Oklahoma) appear to have derived criteria for cold water fishes due to inherent habitat
differences. Arkansas has the most distinctly different DO WQC (41) accounting for ELS

and OLS, while Louisiana has apparently derived the fewest criterion values (Table 3).
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Discussion

Because the occurrence of worldwide hypoxia may increase in both freshwater
(Watson et al. 2016) and marine environments (Brewer and Peltzer 2009; Portner 2010),
the present study examined variability in acute and chronic DO thresholds among
freshwater species. We found experimental designs and study protocols (e.g.,
experimental exposure temperatures, species life stages) for low DO toxicity studies to
vary considerably among fish and invertebrates. For a number of studies, potential
confounding factors could not be resolved in large part due to data paucity and
experimental conditions. For example, Elshout et al. (2013) previously identified juvenile
fish to have higher DO tolerances compared to adults based on LOEC values yet we
could not identify adequate data to further explore such relationships in the present study.
In addition, we were unable to conclude whether the DO toxicity data that formed the
basis for derivation of the 1986 AWQC (U.S. Environmental Protection Agency 1986)
were confounded by differences among wild and hatchery fish, seasonal conditions,
acclimation to laboratory conditions, or by an exceptionally wide range of experimental
conditions including varied feeding regimes and age of organisms. For example, time of
the year is known to play an important role controlling food consumption and growth rate
of both chinook and coho salmon were higher in June than July (and October for coho
salmon) at temperatures near 18 °C (Warren et al. 1973).

As noted above, when additional acute toxicity data for invertebrates were
incorporated in our analyses, the likelihood of encountering species threshold to DO
above the recommended US EPA AWQC increased. Such observations are likely

explained by the selection of species and experimental endpoints studied since 1986. As
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indicated by our DO sensitivity metrics (i.e., SSDs, HC ratios), invertebrates, particularly
EPT and lotic taxa compared to non-EPT and lentic species, were more sensitive to acute
DO than fish. EPT taxa are commonly used as sensitive bioindicators of environmental
quality in aquatic ecosystems (Cairns and Pratt 1993) because these organisms are quite
sensitive to reduced DO and other types of pollution, which tends to be correlated with
specific habitat types (Jacobsen et al. 2003). Elevated DO sensitivity of invertebrates was
also observed in a study of marine benthic organisms, especially crustaceans and
mollusks (Vaquer-Sunyer and Duarte 2008). Based on the data availability examined in
the present study, we observed lotic taxa to be more sensitive than lentic species, largely
because EPT taxa primarily contributed to lotic distributions. Robust DO thresholds were
not available for numerous benthic invertebrates and fish species, including threatened
and endangered organisms. Thus, whether existing DO WQC and WQS are protective of
most of these imperiled species has not been examined (Woods et al. 2010). Additional
high-quality low DO toxicity data is needed for freshwater fish and invertebrates from
lotic and lentic habitats to more effectively understand differences in DO sensitivity
among freshwater organisms and support more sustainable environmental quality
assessment and management.

When chronic data is not available for contaminants, acute-to-chronic (ACR)
ratios have been used to predict sublethal responses from acute toxicity data. For hypoxia
in freshwater systems, the DO concentration where >50% growth impairments occur has
historically been reported to accompany the onset of fish mortality (Doudoroff and
Shumway 1970; U.S. Environmental Protection Agency 1986). In the present study, we

derived a novel ACR of 2.63 from the 80th percentile of warm water fish LC50 and
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warm water fish growth EC10 distributions (Supplementary: Figure: 23). This ratio
supports the hypothesis that the sensitivity of fish growth and potentially other chronic
responses occur at DO concentrations almost three times the LC50 value (Vaquer-Sunyer
and Duarte 2008). An SSD derived ACR from cold water fish or freshwater invertebrates
could not be calculated due to a lack of available data. However, we derived an ACR of
3.8 for rainbow trout using a geometric LC50 and available EC10 data for growth. Prior
to 1986, DO chronic toxicity data were mostly available for fish, especially those in the
family Salmonidae based on economical and sociological reasons (U.S. Environmental
Protection Agency 1986). Most of the studies used to derive the AWQC predominantly
investigated growth along with some studies of embryonic development and swimming
behavior. Most chronic DO toxicity studies prior to 1986 failed to include a full life
cycle, examine both embryo and larval stages, or encompass an adequate period of post-
larval feeding and growth (U.S. Environmental Protection Agency 1986). Further, studies
of the effects of DO to cold water fish reproduction, fecundity, or fertility, which are
important endpoints relevant to ecological risk assessment and management (Ankley et
al. 2010; U.S. Environmental Protection Agency 1986), were also lacking. Prior to 1986,
two studies were conducted with warm water fish that investigated the effects of DO on
reproduction with fathead minnows and black crappie, but the quality of a life cycle
experiment with fathead minnows is uncertain due to 50% mean larval survival in some
experimental controls (U.S. Environmental Protection Agency 1986; Brungs 1971).
Clearly, future studies are necessary to understand reproductive thresholds of DO to

freshwater fish, amphibians, and invertebrates.
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To assess the likelihood of acute DO hazards to freshwater communities, we
performed aquatic hazard assessments, which indicated 7, 15, 20, and 28% of
invertebrates, and fish are expected to be adversely affected at 8.0, 5.0, 4.0, and 3.0 mg
DO/L, respectively (Fig. 1f). A similar assessment was conducted by Vaquer-Sunyer and
Duarte (2008) with marine benthic organisms in which cumulative distributions were
created utilizing median lethal concentrations, sublethal thresholds, and median lethal
times that were classified by organism types ranging from echinoderms to fish. Vaquer-
Sunyer and Duarte (2008) identified that the most sensitive groups of organisms
exhibiting the highest LC50 and lowest LT50 90th percentiles were the crustaceans and
mollusks, respectively. In the present study, including the acute warm and cold water fish
LC50 values with the acute invertebrate LC50 values decreased the predicted affects by
4-5% and illustrated the invertebrate community was more sensitive to DO than fish.
Conversely, fish exhibited the highest sublethal response to DO of the compiled marine
benthic organisms, which included endpoints such as avoidance of hypoxic waters,
behavior, and increased ventilation, which differs from the type of fish chronic toxicity
data used in the current study. However, in both assessments, fish chronic responses were
the most sensitive to DO. In the present study, the 50th and 90th percentile warm and
cold water fish LC50 values were 1.26 and 4.01 mg DO/L, respectively, which are
similar concentrations from two different water types. Freshwater to saltwater and vice
versa toxicity extrapolations were previously investigated by Wheeler et al. (2002) who
indicated differences in toxicity sensitivity depending on the chemical (e.g., ammonia,
metals, pesticides, narcotics) that could be accounted for with an appropriate adjustment

factor. Regardless, DO sensitivities across saltwater and freshwater organisms require
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further research to develop a comparative understanding of DO thresholds among fish
and invertebrates, and support ecosystem protection goals related to biodiversity.

It appears possible that DO effects to marine and freshwater organisms have been
underestimated. For example, Vaquer-Sunyer and Duarte (2008) illustrated the effects of
DO to marine benthic organisms were above the conventional 2 mg DO/L definition of
hypoxia; such predictions for marine invertebrates are consistent with fish and
invertebrate SSDs and corresponding 80th percentile values in the present study (Table
1). Further, Vaquer-Sunyer and Duarte (2008) predicted a 90th percentile median LC50
value for marine organisms of 4.59 mg DO/L, which is similar to the 80th percentile
concentration of 4.64 mg DO/L predicted to adversely affect 20% of freshwater species
from a community SSD for acute DO toxicity data to invertebrates and fish (Fig. 1).
Therefore, DO concentrations approximately twice the 2 mg DO/L hypoxia threshold are
expected to cause significant mortality in marine and freshwater organisms. These DO
thresholds are in direct contrast to the 2.3 mg DO/L ASWQC derived limit to avoid
juvenile and adult mortality. Such a difference may be due to the small range of DO
LC50 values available (~1.29) for both juvenile and adults used in the EPA saltwater
criteria recommendations, while the LC50 range in our present study was 8.72. The
conventional 2 mg DO/L threshold is commonly used to indicate the potential risk to
fisheries, but again, to conserve diversity and avoid mortality events, higher DO levels
are predicted necessary to maintain most aquatic life populations (Vaquer-Sunyer and
Duarte 2008). In fact, the ASWQC recommends a general 4.8 mg DO/L level to prevent
no more than a 25% chronic growth reduction in species (U.S. Environmental Protection

Agency 2000). In comparison, this value is twice as high as our predicted 75th percentile
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values of 2.41 and 3.21 mg DO/L from warm and cold water fish growth (25% growth
reduction) EC50 SSDs, respectively. Given the global decline of species, particularly
invertebrates, during the Anthropocene (Dirzoet al. 2014), future studies are necessary to
experimentally examine such predictions of DO thresholds for inland waters.

We further examined temperature influences on DO thresholds to freshwater
organisms. Oxygen plays a critical role influencing acute temperature limits of organisms
and relationships among temperature limits of physiological and biochemical pathways
associated with the oxygen supply cascade. For example, the oxygen-limited thermal
tolerance (OLTT) model describes physiological activities of ectotherms when exposed
to various temperatures (Frederich and Portner 2000; Portner 2001). This model suggests
that aquatic ectotherms, like fishes, generally live within a confined range of
temperatures where they function aerobically without displaying any sign of stress (e.g.,
behavioral disorders). Beyond the optimum temperature range, however, ectotherms
encounter a mismatch of energy demand and supply and eventually shift to anaerobic
respiration at extreme high or low temperatures to increase energy supply for sustaining
essential cellular and physiological functions (Portner 2010). When such changes in
temperature and oxygen concentration are introduced, total metabolism, basal
metabolism, and scope of activity of aquatic organisms’ decreases, while the frequency of
locomotory acts and mechanical power decline (Svetlichny et al. 2000). Therefore,
oxygen deficiency (e.g., hypoxia) within body tissues results in changes in growth,
survival, reproduction and even population distribution and abundance under thermal

stress (Perry et al. 2005; Portner 2010).
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Previous studies have compared temperature-dependent chemical toxicity alone
(Zhou et al. 2014) and between geological regions (e.g., temperate, tropical) to the same
chemicals (Wang et al. 2014), but fewer studies have compared stressor-dependent
toxicity to other abiotic factors such as pH (Wang et al. 2016). For the majority of
ectotherms, their physiological performances (e.g., metabolism, appetite, behavior)
follow a thermal curve and experience increased mortality when temperature deviates
from optimum (Bao et al. 2008; Portner 2002; Schulte et al. 2011). While the derived US
EPA AWQC were designed to be protective of high seasonal surface water temperatures,
most organisms used to derive the criteria were studied at optimal thermal conditions
during acute and chronic exposures. To examine temperature-dependent DO thresholds
of freshwater organisms, a total of nine invertebrate and two fish species were found to
be studied across at least three different temperatures within the same study
(Supplementary: Figure: 21 and Supplementary: Figure: 22). For invertebrates, only five
species emphemeropterans were studied across the same three temperatures (15, 20, and
25 °C). HCS80 values for this temperature-dependent SSD were 3.94, 6.36, and 12.5 mg
DO/L at 15, 20, and 25 °C, respectively. Clearly, the HC80 values increased with
increasing temperature but, again, are only representative of five species within the order.
Coho and Chinook salmon were two additional species studied across more than three
different temperatures (Supplementary: Figure: 22). A temperature-dependent DO
toxicity relationship with growth was clearly observed in Chinook salmon while the
relationship was less clear for cohos. However, these studies were conducted with
juveniles at different developmental stages, weights, diets, and months of the year that

could confound the results. In fact, as mentioned above, time of year was observed to
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play an important role in controlling the food consumption and growth rate of both
chinook and coho salmon (Warren et al. 1973). Additional research is clearly needed to
understand the influences of temperature on DO thresholds of freshwater organisms,
particularly when considering predictions of climate change.

Divergent implementation practice efforts in surface water quality assessment and
management of DO was observed in a region characterized by diverse watersheds,
experiencing population growth, and susceptible to climate change. We specifically
observed surface water quality practices to differ across habitats, seasons, and aquatic life
relative to the US EPA AWQC in the south central US (Table 2). For example, New
Mexico and Oklahoma have derived criteria based on cold and warm water aquatic
life/communities and both states even derive specific aquatic life/community values for
cool water organisms (New Mexico Environment Department 2000; Oklahoma Water
Resources Board 2007). Similarly, Arkansas derives DO WQS based on the presence of
trout and by habitat categories specific to different stream watershed sizes throughout the
state, and has specific DO standards derived for lakes and reservoirs (Arkansas Pollution
Control and Ecology Commission 2011). Some states (Texas, Oklahoma, Arkansas) have
specific seasonal DO criteria for at least the spring season (March to June depending on
the state), yet routine monitoring for surface water quality parameters, including DO,
largely occurs in summer months. Further, Louisiana does not have specific DO criteria
for habitats or seasons (Louisiana Department of Environmental Quality 2012). Though
the US EPA AWQC recommended instantaneous minimum DO concentrations to be
achieved at all times (U.S. Environmental Protection Agency 1986), our analysis reveals

some DO criteria within the south central US appear inadequate to prevent species from
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adverse mortality (Table 3). These observations are salient given challenges to develop,
implement and enforce criteria and standards elsewhere in developed and developing
countries. For example, as of 2014, 27 states within the US did not have numeric criteria
for total nitrogen or phosphorus (Manuel 2014), despite influences of nutrient enrichment
on surface water quality and the development of harmful algal blooms (Watson et al.
2015; Brooks et al. 2016). Given such nutrient enrichment, population growth, rising
surface water temperatures, and potential climate-induced sensitivity of organisms
(Heathwaite 2010; Hooper et al. 2013; Solomon et al. 2007), additional studies
examining whether current DO criteria and standards are adequate to protect freshwater

organisms across seasons, habitats, and life history stages are warranted.
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CHAPTER THREE

Global Scanning Assessment of Calcium Channel Blockers in the Environment: Review
and Analysis of Occurrence, Ecotoxicology and Hazards in Aquatic Systems

This chapter published as: Saari GN, Scott WC, Brooks BW. 2017. Global scanning
assessment of calcium channel blockers in the environment: Review and analysis of
occurrence, ecotoxicology and hazards in aquatic systems. Chemosphere 189:466-478.
Abstract

As an urban water cycle is increasingly realized, aquatic systems are influenced
by sewage and wastewater effluent discharges of variable quality. Such urbanization
results in exposures of non-target aquatic organisms to medicines and other contaminants.
In the present study, we performed a unique global hazard assessment of calcium channel
blockers (CCB) in multiple environmental matrices. Effluent and freshwater observations
were primarily from North America (62% and 76%, respectively) and Europe (21% and
10%, respectively) with limited-to-no information from rapidly urbanizing regions of
developing countries in Asia-Pacific, South America, and Africa. Only 9% and 18% of
occurrence data were from influent sewage and marine systems, though developing
countries routinely discharge poorly treated wastewater to heavily populated coastal
regions. Probabilistic environmental exposure distribution (EED) 5th and 95th percentiles
for all CCBs were 1.5 and 309.1 ng/L in influent, 5.0 and 448.7 ng/L for effluent, 1.3 and
202.3 ng/L in freshwater, and 0.17 and 12.9 ng/L in saltwater, respectively.
Unfortunately, global hazards and risks of CCBs to non-target organisms remain poorly
understood, particularly for sublethal exposures. Thus, therapeutic hazard values (THV)

were calculated and employed during probabilistic hazard assessments with EEDs when
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sufficient data was available. Amlodipine and verapamil in effluents and freshwater
systems exceeded THVs 28% of the time, highlighting the need to understand ecological
consequences of these CCBs. This global scanning approach demonstrated the utility of
global assessments to identify specific CCBs, chemical mixtures with common
mechanisms of action, and geographic locations for which environmental assessment

efforts appear warranted.

1. Introduction

Whereas unprecedented growth and concentration of human populations is
occurring in urban areas, resource consumption, including chemical use, is also
concentrating (Brooks, 2014; Postel, 2010). Advancing sustainable water management is
increasingly important as global access to chemical products is increasing faster than
wastewater management systems and infrastructure are being implemented. For example,
80% of global sewage production remains untreated. Consumption of consumer goods,
including human pharmaceuticals, varies worldwide, while the number of persons above
age 60 is expected to double by 2050 (Gaw and Brooks, 2016; Kookana et al., 2014).
Coincidentally, 70% of the human population reside in coastal cities where local water
resources are stressed from insufficient waste management, climate change, and
contaminant loadings (Hooper, 2013; Vorosmarty et al., 2010; Water, 2009). Herein,
potential risks of pharmaceuticals in the aquatic environment are of increasing concern to
water resources, wildlife, and public health (Arnold et al., 2014; Ashbolt et al., 2013),
particularly in developing countries (Kookana et al., 2014). Pharmaceuticals are often

continuously released from wastewater treatment plants (WWTP) resulting in potential
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life cycle exposures to non-target aquatic organisms, especially in arid to semi-arid
geographic regions where effluent-dominated or dependent systems are common (Ankley
et al., 2007; Brooks et al., 2006). Around 98% of published literature on pharmaceuticals
in the environment (PiE) has been published since 1995 and has increased by 5- and 10-
fold in the past two decades (Daughton, 2016). This research growth has been spurred by
an increasing ability to detect human and veterinary medicines in the environment, which
has provided information to support exposure assessments and to consider their potential
toxicological effects to non-target organisms (Halling-Soensen et al., 1998; Monteiro and
Boxall, 2010; Ternes, 1998). However, various classes of pharmaceuticals have received
differential attention. For example, initial studies emphasized endocrine disrupting
compounds while more recent assessments have focused on antibiotics, antidepressants,
antihistamines, and others (Brooks, 2014; Gaw and Brooks, 2016; Kookana et al., 2014;
Kristofco and Brooks, 2017). Unfortunately, environmental hazards and risks of calcium
channel blockers (CCB) to non-target aquatic organisms remain poorly examined. CCBs
represent a class of compounds previously identified to pose potential risks to ecosystems
(Berninger and Brooks, 2010). These commonly prescribed substances are reported to
accumulate in tissues of freshwater and terrestrial wildlife (Fick et al., 2010b; Lazarus et
al., 2015; Scott et al., 2016). Calcium antagonists were discovered in the 1960s (Spedding
and Paoletti, 1992) and then introduced to the market as medicines in the 1980s. These
antagonists are intended to elicit therapeutic benefits through voltage dependent calcium
channel inhibition for treatment of hypertension and angina (Law et al., 2013). Similar to
other pharmaceuticals and down the drain compounds, CCBs are primarily introduced to

the environment through reclaimed wastewater discharges following excretion as parent
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compounds or metabolites from patients. For example, approximately 30% of verapamil
is excreted as the parent compound without metabolism while other CCBs can be almost
entirely excreted as inactive metabolites (Law et al., 2013). As urbanizing aquatic
systems are increasingly influenced by WWTP effluent discharges and untreated sewage,
understanding environmental hazards and risks of chronic low dose CCB exposures to
non-target organisms is necessary for effective water management (Ankley et al., 2007;
Brooks et al., 2006). For example, understanding differential hazards and risks of specific
pharmaceuticals across geographic regions has recently been reported and emphasized as
a critical research need (Boxall et al., 2012; Rudd et al., 2014). In the present study, we
performed a novel global scanning assessment for CCBs in the environment. The
objectives of this study were to critically review the current knowledge of CCB
occurrence and to initially assess associated hazards in various environmental water
matrices. We specifically examined the refereed literature for CCB occurrence and
ecotoxicology data. When data availability was sufficient, environmental exposure
distributions for specific CCBs were developed. These distributions were then used to
predict the probability of exceeding individual CCB therapeutic hazard values (THV) in

surface waters and eftfluents among geographic regions.

2. Materials and methods
2.1 Literature review of calcium channel blockers
A list of CCBs was compiled from the Mammalian Pharmacokinetic Prioritization
for Aquatic Species Targeting (MaPPFAST) database (Berninger et al., 2016). Literature

searches through March 12, 2017 returned approximately 143 relevant publications from
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almost 2800 hits. A similar search was conducted for CCB ecotoxicity data. In these
publications, quantitative data on CCBs was collated based on standard study parameters,
analytical instrumentation, and geographic region (e.g., Africa, Asia-Pacific, Europe,
North America, and South America) as previously described (Corrales et al., 2015;

Kristofco and Brooks, 2017).

2.2 Probabilistic environmental hazard assessments
2.2.1 Environmental exposure distributions

After CCB occurrence data was compiled and collated, probabilistic
environmental exposure distributions (EEDs) were created using maximum measured
environmental concentrations (MEC) for each water matrix when greater than occurrence
observations were available (Wheeler et al., 2002) for a matrix. MECs were used due to
differential data reporting to represent conservative exposure conditions. All graphs were
created in Sigmaplot 11.0 (Systat Software, Inc.). Distributions were then used to perform
probabilistic environmental hazard assessments (PEHAs) to estimate probabilities of
encountering environmental occurrence of each CCB at or above a threshold
concentration. This approach generally followed those methods previously described
(Corrales et al., 2015; Kristofco and Brooks, 2017; Solomon and Takacs, 2001). MECs
were ranked in ascending order and assigned percentiles using the Weibull formula (Eq.
(D):

J=(@{x100)/(n+ 1) (1)

where j is the percent rank, i is the rank assigned to a MEC, # is the number of chemicals

examined, and n+/ accounts for the assumption that there is always one less than all
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occurrences measured (Posthuma et al., 2010). EEDs were then constructed with CCB
concentrations as the x-axis and percent rank as the y-axis (log common and probability
transformed, respectively). Linear regression analyzes were performed and the slope and
y-intercept were extracted to calculate centile values (Microsoft Excel 2016 Microsoft
Corp, Richmond, WA, USA) using the equation:
Centile value = NORMDIST((b x log 10(x)) + a) (2)

where the NORMSDIST returns a standard normal cumulative distribution function of a
selected value, and b and a represent the slope and intercept, respectively, from a linear
regression. These exceedance values were derived from each EED for various water

matrices and geographic regions.

2.2.2  Therapeutic hazard values

To identify whether CCB concentrations in water matrices may adversely affect
fish, THVs were calculated for each compound to estimate therapeutic hazards relative to
various EEDs. A THV is a predicted pharmaceutical water concentration expected to
bioaccumulate in fish plasma to a human therapeutic level (Cmax or Cmin; Eq. (3);
(Brooks, 2014)).

THYV = Cnin/PBlood:Water (3)

Despite some previously noted limitations (Brooks, 2014), plasma modeling approaches
have been employed by our research group (Berninger et al., 2011; Valenti et al., 2012;
Du et et al., 2014; Scott et al., 2016) and others (Fick et al., 2010a; Margiotta-Casaluci et

al., 2014, 2016) to predict fish internal doses of pharmaceuticals. These concepts were
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initially derived from fish uptake modeling performed by Fitzsimmons et al. (2001) (Eq.
(4)) and incorporated by Huggett et al. (2003) to prioritize pharmaceuticals of

LogPpiood:water = log ((10°7* Ko x 0.16) + 0.84) 4)
environmental concern by estimating fish plasma steady state drug concentrations (Eq.
(5))-

Fish plasma concentration = [Aqueous] x logPpiood-water ~ (5)

2.3 Concentration addition modeling

To determine whether occurrence of individual components in CCB mixtures with
a common mode of action may exceed a combined therapeutic hazard concentration,
studies that quantitated multiple CCBs within the same study and location were collated.
Concentration addition (CA) is generally considered an appropriate approach to
approximate ecological effects when compounds exert toxicity through a common mode
of action. Additionally, CA has been suggested as a ‘worst case’ assumption to
conservatively overestimate mixture responses and has successfully been applied for
prediction of mixture effects for estrogenic agents, pesticides, herbicides, and other
pollutants (Kortenkamp et al., 2009). Herein, MECs were combined within the same
dataset, ranked, and plotted as described above. Distributions and associated MECs were
calculated for each compound at the 5th, 20th, 50th, 80th, and 95th centiles, which were
then divided by THVs to create an additive Therapeutic Hazard Ratio (D THR; Gaw and
Brooks, 2016) similar to previous CA methods ((Faust et al., 2001; Kortenkamp et al.,
2009); Eq. (6)).

Additive THR = Y (MEC,/THV;) + (MEC,/THV;) + ... (6)
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where )’ is the sum of each ratio at MEC,, n is the percentile from each distribution (e.g.,
diltiazem, verapamil), and 7 is the compound specific THV for each CCB. Ratios per
compound and MEC were summed. For example, if values exceeding 1 were observed,
then CA modeling predicted an additive CCB THR exceedance from environmental

occurrence studies examining multiple CCB in a specific matrix.

3. Results and discussion

3.1 Global occurrence of calcium channel blockers

Published articles detecting CCBs in environmental water matrices have steadily
increased over the past 15 years (Figure 2). Ground water, influent sewage, effluent
discharge, freshwater, and saltwater/estuarine surface waters represented the primary
media studied though others investigations have included invertebrates, fish, birds,
sludge, and sediments (Supplementary: Table 17). Similar CCBs were detected in
influent, effluent, freshwater, and saltwater (Tables 4-7), which allowed for comparative
study of these water matrices. When data availability was sufficient (e.g., >5 data values),
distributions of CCBs across all global (Figure 3) and specific geographic regions by
matrix identified diverse geographic hazard profiles (Figs. 3A-E & 4A-F). Unfortunately,
the occurrence of CCBs were not available for multiple regions. In fact, the majority of
occurrence data have been studied in North America, Europe and parts of Asia-Pacific.
Limited data was available from South America. Further, the occurrence of CCBs in
large geographic regions such as Africa and Antarctica, and specific regions (e.g., the

Middle East), were not available, and thus remain poorly understood.
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Figure 2: Peer-reviewed studies measuring the occurrence of calcium channel blockers in environmental
matrices through time (until March 2017).
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Figure 3: Global calcium channel blocker (CCB) environmental exposure distributions of maximum
measured environmental concentrations in influent sewage, effluent, freshwater, and saltwater. Numbers
within parenthesis indicate the number of detections in each matrix. Four different CCBs, which were
detected throughout different geographic regions, are included in each matrix EED.
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represent the therapeutic hazard value (THV) for a calcium channel blocker.
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Figure 5: Environmental exposure distributions of maximum measured freshwater and saltwater
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geographic region. Vertical short dashed lines (red) represent the therapeutic hazard value (THV) for a

calcium channel blocker.
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3.2 Calcium channel blockers in influent

Four CCBs and several metabolites were studied in influent sewage, and only
three were detected several times throughout all geographic regions (Table 4;
Supplementary: Table 17). The most frequently studied compounds in influent were
diltiazem (15), verapamil (9), and nifedipine (7). Most of the publications studying
occurrence of CCBs in influent were from Europe (17) and North America (15). No
refereed studies were found detailing the investigation of these compounds in Africa or
Antarctica; only one publication was observed from South America. Diltiazem and
verapamil were the most frequently studied CCBs in North America and Europe,
respectively (Table 4). Additionally, over half of the studies evaluating amlodipine were
from Europe. Concentrations of all CCBs in influent ranged from no detects to 1800 ng/L
(diltiazem; Du et al., 2014). Whereas exposure to pharmaceuticals from untreated
wastewater influent (e.g., sewage) is less commonly observed in developed countries, as
noted above the majority (80%) of global sewage is released untreated to the environment

(http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/).

3.3 Calcium channel blockers in effluent

Seven CCBs, including metabolites, have been reported in reclaimed wastewater
effluents (Supplementary: Table 17). All seven of these compounds were detected in at
least one study. Similar to influent, the most studied CCBs were diltiazem (30),
verapamil (14), nifedipine (9), and amlodipine (7; Table 5). Interestingly, the primary
metabolite of all four of these compounds except amlodipine have been examined (e.g.,

5-2) and detected (e.g., 4-2; Table 5). Though several CCBs were studied globally,
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regional occurrence differences were evident. In North America, the number of studies
examining diltiazem exceeded other CCBs by a magnitude of three while other
compounds were similarly studied in wastewater effluent. Diltiazem and verapamil were
equally the two most studied compounds in Europe, while nifedipine was slightly more
extensively examined in Asia-Pacific. Similar to influent sewage, only one study
examined a CCB, nifedipine, in South America. Though amlodipine was less frequently
studied among geographic regions, it had the highest occurrence concentration in effluent
(448 ng/L; Huber et al., 2016) followed by diltiazem (425 ng/L; Meador et al., 2016).
Subsequently, both of the highest CCB concentrations discharged in effluent were to
marine systems in which elevated amlodipine was reported from a Faroe Island hospital

with limited treatment before discharging to the ocean (Huber et al., 2016).

3.4 Calcium channel blockers in surface water

Similar to effluent, a total of seven CCBs and metabolites have been analyzed in
global freshwater ecosystems; all were detected in at least two studies (Table 6;
Supplementary: Table 17). Here again, the number of studies (37) and detections of
diltiazem (30) were more than twice any other compound, followed by verapamil when
compared to amlodipine and nifedipine. CCBs in freshwater were examined more often
in North America (55) followed by Europe (25) (Supplementary: Table 17). However,
CCBs sans diltiazem were studied more frequently in Europe (e.g., amlodipine,
nifedipine, verapamil) and in Asia-Pacific (e.g., amlodipine, nifedipine) than in North
America. Interestingly, in North America, more papers analyzed dehydronifedipine, the

nifedipine metabolite, than the parent compound. Whereas diltiazem received the
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majority of attention in total across all geographic regions, verapamil was detected at the
highest concentration in freshwater (319 ng/L; Choy et al., 2016).

Though most of the global surface water occurrences of CCBs resulted from
freshwater studies, seven compounds and metabolites were also reported in coastal and
marine systems (Table 7). A total of 21 different studies analyzed CCBs, including
diltiazem (6), amlodipine (5), and verapamil (4) (Supplementary: Table 17). All seven
compounds were examined in North America followed by four substances reported from
Europe. Diltiazem was the most commonly studied compound in North American coastal
and marine systems, while amlodipine (4) was more commonly examined in Europe.
Diltiazem was detected in six studies with the highest occurrence (23.5 ng/L; Cantwell et

al., 2016) among CCBs in coastal and marine waters.

3.5 Aquatic toxicology of calcium channel blockers

Toxicity of three CCBs have been studied in non-target aquatic organisms,
including amlodipine, diltiazem, and verapamil (Supplementary: Table 18). The majority
of these studies have been conducted with verapamil followed by diltiazem and
amlodipine. A number of standardized and non-standard experimental methods and
endpoints have been employed to characterize the effects of CCBs to bacteria,
invertebrates, and fish. However, the majority of these studies evaluated standard
ecotoxicity endpoints (e.g., survival, growth, or reproduction), while others aimed to
determine biochemical and subcellular responses to CCBs. Thus, most studies reported
standard calculated toxicity threshold values (e.g., NOEC, LOEC, or EC/LC50) because

the majority of these papers examined multiple CCB concentrations; conversely, several
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studies evaluated less than three CCB concentrations or reported inconsistent dose-
response relationships.

In the present study, sufficient data allowed for development of a species
sensitivity distribution (SSD) for verapamil, but this SSD included only acute toxicity
data (e.g., 96 h) (Supplementary: Table 17, Supplementary: Table 18). The 5th and 20th
centiles of the verapamil SSD predicted 95% and 80% of the species would be protected
from acute lethality at 0.134 mg/L and 0.895 mg/L, respectively (Supplementary: Figure:
24). Interestingly, invertebrates were more sensitive than vertebrates following acute
exposures to amlodipine, verapamil and diltiazem (Supplementary: Table 18). For
example, Brachionus calyciflorus was the most sensitive species of the reported acute
verapamil toxicity studies (Supplementary: Table 18). Verapamil was the most acutely
toxic CCB to vertebrates (Oncorhynchus mykiss 96 h LCso = 2.72 mg/L) and
invertebrates (Streptocephalus proboscideus 24 h LCso = 0.5 mg/L). However, such an
exercise may have limited utility because environmental concentrations of human
pharmaceuticals, as confirmed here with CCBs, are well below acutely lethal levels
(Berninger and Brooks, 2010).

Various sublethal endpoints were evaluated, ranging from standard growth and
reproduction bioassays to feeding/ingestion rate, luminescence inhibition, and
morphological changes (Supplementary: Table 18). Additionally, a number of studies
reported antioxidant enzyme activity (Li et al., 2010; Steinbach et al., 2016), and
haematological and blood biochemical (Keller, 2017; Steinbach et al., 2016), behavior
(Kania et al.,, 2015) and histology (Keller, 2017; Steinbach et al., 2016) responses

following acute and chronic exposures to verapamil and diltiazem. Across all endpoints
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studied, verapamil, a first generation CCB, was observed to cause responses in aquatic
organisms at concentrations ranging from 0.3 mg/L to 1704.8 mg/L (Supplementary:
Table 18) (Lilius et al., 1994; Overturf et al., 2012). Chronic studies examining verapamil
induced effects on Pimephales promelas growth were as sensitive as acute lethality
studies (e.g., 0.6 mg/L 28 d growth LOEC; Overturf et al., 2012). Chronic exposures to
verapamil elicited the most sensitive responses by vertebrates (Pimephales promelas 28 d
growth LOEC % 0.6 mg/L), while amlodipine caused the most sensitive responses by
invertebrates (Hydra vulgaris 17 d regeneration LOEC % 0.01 mg/L; Supplementary:
Table 18). Unfortunately, insufficient sublethal and chronic toxicity data was available to
develop chronic SSDs for CCBs. Further, CCB studies robustly examining sublethal
responses linked mechanistically to therapeutic modes and mechanisms of action
(Berninger and Brooks, 2010) within an adverse outcome framework (Ankley et al.,
2010), which has been recommended for ecotoxicology studies of pharmaceuticals

(Brausch et al., 2012), are lacking.

3.6 Probabilistic environmental hazard assessments

Sufficient CCB occurrence data for several environmental matrices among
multiple geographic regions allowed for PEHAs to be conducted. EEDs were created for
diltiazem and verapamil occurrences in influent sewage (Figure 4A and B) and
amlodipine, diltiazem, and verapamil in effluent (Figure 4C-E). Diltiazem (109) and
verapamil (22) had the highest number of occurrences followed by amlodipine (15).
When comparing each CCB distribution across all geographic regions, the 20th centile

value for diltiazem (22.43 ng/L) was approximately four times higher than either
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amlodipine (6.10 ng/L) or verapamil (4.73 ng/L). Based on the available reported MECs,
amlodipine, diltiazem, and verapamil were subsequently examined among various
geographic regions. Herein, the 20th centile (29.95 ng/L) of amlodipine from Europe was
three times higher than the 20th percentile (5.26 ng/L) for Asia-Pacific (Table 8).
Similarly, ~5 x and ~18 x differences were observed for diltiazem and verapamil 20th
values in North America compared to Europe, respectively. Subsequently, there was a
greater likelihood of observing diltiazem compared to amlodipine or verapamil across all
geographic regions examined (Table 8). Interestingly, sufficient data were reported for
three CCB metabolites including desmethyldiltiazem (19), norverapamil (7), and
dehydronifedipine (6) in WWTP effluent, but these detections were only published from
North America (Table 8).

Environmental exposure distributions were created for CCBs in surface waters
separately for freshwater and saltwater PEHAs (Table 8). Diltiazem had the greatest
number of detections in freshwater (85) followed by verapamil (17) across all geographic
regions; however, these two distributions in freshwater were very similar (20th centile
values of 4.54 ng/LL and 4.08 ng/L, respectively). 20th centile values were slightly higher
in Europe (6.46 ng/L) compared to North America (4.17 ng/L). Sufficient verapamil
occurrences were only available to create an additional distribution for North America; its
20th centile value was slightly higher than that from across all geographic regions. Here
again, occurrence of desmethyldiltiazem (51) was only reported in North American
freshwaters (Table 8). In saltwater systems, diltiazem (53) had the greatest number of
detections followed by verapamil (10) and nifedipine (6). The 20th centile value from

each CCB saltwater distribution was the lowest predicted concentration of all the
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environmental matrices. Across all geographic regions, the 20" value for nifedipine (2.75
ng/L) was approximately 6 x and 9 x higher than diltiazem (0.48 ng/L) and verapamil
(0.31 ng/L), respectively. Only one diltiazem detection each was reported in Europe and
Asia-Pacific (Table 8).

To consider the aquatic hazards of sublethal CCB exposure to fish, PEHAs were
performed to identify the probability of exceeding THVs, because mechanistic sublethal
studies associated with evolutionarily conserved pharmacological targets and molecular
initiation events are lacking for CCBs (Supplementary: Table 18). As noted above, THVs
are predicted pharmaceutical water concentrations expected to bioaccumulate in fish
plasma at a human therapeutic level (Brooks, 2014). THVs appear to present a useful
diagnostic approach to identify pharmaceuticals for future research (Caldwell et al., 2014;
Brooks, 2014), to examine water quality hazards of effluents from different technologies
(Du et al., 2014), to monitor spatiotemporal surface water quality changes (Scott et al.,
2016), and to perform global chemical scanning of environmental matrices among
geographic regions (Kristofco and Brooks, 2017). Future studies are needed to examine
the usefulness of this THV approach for other classes of pharmaceuticals and aquatic
organisms. PEHAs using THV values for CCBs were thus initially performed across all
geographic regions in all environmental water matrices (e.g., influent, effluent,
freshwater, and saltwater; Table 9). While approximately 85% of all medicines are
ionizable and the pH specific influence on bioaccumulation and toxicity of ionizable
pharmaceuticals have been demonstrated (Valenti et al., 2009; Berninger et al., 2011;
Nichols et al., 2015), we could not account for site specific pH conditions based on

inconsistent information provided in the literature; thus, log Kow were used for fish
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plasma modeling. Recent studies have demonstrated that measured pharmaceutical
uptake was better predicted by using log Kow than log D (Patel et al., 2016; Nichols et
al., 2015). However, multiple factors have been demonstrated to influence comparative
pharmacokinetics (e.g., metabolic enzymes; Connors et al., 2013) and pharmacodynamics
in fish, which presents uncertainty during environmental assessments of pharmaceuticals
(Brooks, 2014; Facciolo et al., 2012; Huerta et al., 2016; Margiotta-Casaluci et al., 2014).
Thus, an assessment factor of 1000 has been suggested by Huggett et al. (2003) to
account for such uncertainties within and among species. Though we did not employ this
recommended assessment factor in the current study, doing so would have appreciably
increased the percent exceedance of CCB THVs in effluent discharges and surface
waters. Future research is clearly necessary to understand ionizable chemical
bioaccumulation and associated hazards to non-target aquatic organisms.

In the present study, THVs were calculated based on both minimum (Cmin) and
maximum (Cmax) human therapeutic concentrations; these values ranged from 3 to 30
ng/mL and 15-250 ng/mL, respectively, for four CCBs (Table 9). Based on sufficient
MEC data availability, predicted percent exceedances were estimated in all four water
matrices for diltiazem and verapamil, but only for amlodipine and nifedipine in effluent
and saltwater, respectively. CCB THVs (Cmin, Cmax) With the greatest likelithood of
exceedance in influent was verapamil (14.4, 1.3) followed by amlodipine in effluent
(28.1, 6.5) and verapamil in freshwater (27.5, 9.2). However, almost no exceedances
were observed in saltwater for diltiazem, nifedipine and verapamil. Of the four CCBs
examined, a THV (based on Cuin) for amlodipine had the highest predicted percent

exceedance in effluent of all the water matrices assessed. Though effluent was the only
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matrix with sufficient data availability for amlodipine, detections were reported in
freshwater ranging from 0.26 to 25 ng/L (de Solla et al., 2016; Huerta-Fontela et al.,
2011; Varga et al., 2012). Future research should examine the aquatic hazards of this
second generation CCB to non-target species based on such PEHA observations, which
are influenced by its relatively high log Kow, l1ow Cuin and Cmax values, and the lowest
THYV of the four CCBs examined (Table 9).

Percent exceedances of diltiazem and verapamil THVs were observed; however, a
relatively larger number of reported occurrences of diltiazem was available within all
four water matrices. Though diltiazem THV exceedance was only minimally predicted in
influent (1.9, 0.2), effluent (0.3, ~0), and freshwater and marine systems, its detection in
fish plasma near or exceeding the Cmin and Cmax has been reported (Fick et al., 2010a;
Scott et al., 2016; Tanoue et al, 2015; Lazarus et al., 2015; Du et al., 2014). Specifically,
diltiazem and verapamil represent the only CCBs that have been examined in plasma
from multiple fish species in effluents and surface waters (Table 10). Only one study was
found examining the occurrence of verapamil and diltiazem in fish plasma from
wastewater effluent in Europe (verapamil 0.7 ng/mL; diltiazem 0.9 ng/mL (Fick et al.,
2010b)). Though the occurrence of diltiazem in fish plasma sampled from both
freshwater and marine systems were predominantly reported from North America, the
exceedance probability of a human Cnin (30 ng/mL) in fish plasma from all available
surface water data was 18% (Figure 6); however, such observations were strongly
influenced by data from saltwater studies (Table 10; Figure 6). Thus, future research is
warranted to understand the comparative pharmacokinetics and dynamics of diltiazem

and other CCBs in aquatic organisms, particularly in coastal and marine systems.
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Similar research appears necessary for verapamil. In the present study, predicted
verapamil THV percent exceedances in influent, effluent, and freshwater were between
14.4-27.5% and 1.2-9.2% for Cmin and Cmax, respectively, compared to a nearly zero
percent exceedance likelihood in saltwater (Table 9). The highest percent exceedance for
verapamil was predicted in freshwater systems (Cmin = 27.5%, Cmax = 9.2%). However,
only Fick et al. (2010b) has studied the occurrence of verapamil in fish plasma following
exposure to WWTP effluent. In this previous effort, detections ranged from below the
limit of quantification to 0.7 ng/mL (Fick et al., 2010b). Previous laboratory studies have
examined bioconcentration of verapamil in freshwater fish species, in which measures in
plasma and relevant pharmacological tissues were reported (Nallani et al., 2016;
Steinbach et al., 2013). Here again, CCB THV exceedances of verapamil were only
identified in the present study when occurrence data was sufficiently available. Future
studies are necessary to address the aforementioned data gaps to enhance CCB and other
pharmaceutical bioaccumulation hazards, especially in rapidly developing regions of
developing countries where access to medicines are occurring faster than sustainable
water resource management systems, including WWTP treatment infrastructure and

resource recovery, are being implemented.
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Figure 6: Probabilistic hazard assessment of mean measured fish plasma diltiazem concentrations from
several freshwater and saltwater species across all geographic regions. Numbers within parenthesis indicate
the number of detected diltiazem concentrations across all geographic regions within each water matrix.
The vertical small dashed line (red) represents the diltiazem minimum human therapeutic plasma level
(Crnin = 30 ng/mL).

3.7  Probabilistic hazard assessments of CCB mixtures

Though seventy-nine studies have examined the occurrence of CCBs in global
water matrices, only six studies examined the same CCBs within a common matrix.
Diltiazem and verapamil were specifically examined 39 and 24 times in studies analyzing
their occurrence in effluent in which the number of detections were 27 and 20,
respectively. Geographically, the majority of studies examining and detecting both

diltiazem and verapamil of effluent were from North America (3) followed by Europe (2)

70



and Asia (1). Across all percentiles, diltiazem effluent hazard concentrations were almost
3 times higher than verapamil (Table 11). However, the calculated THV for verapamil
(157 ng/L) was approximately 10 times lower than diltiazem (1618 ng/L) and thus
contributed a greater percentage to the additive THR (Table 11; Figure 7). At the 80™
percentile of diltiazem and verapamil distributions, the additive THR exceeded 1.0
corresponding to 321.2 and 127.1 ng/L, respectively. At these two concentrations,
diltiazem and verapamil contributed 19.9 and 81.0%, respectively, to the THR of 1.0,
corresponding to 425 and 190 ng/L, respectively. Conversely, at the 20" centile of
diltiazem and verapamil distributions, the additive THRs were 0.06 or 6%, respectively
(Table 11). CA predictions have been reported for pharmaceutical mixtures with
compounds of the same mechanism of action (Backhaus, 2014; Christensen et al., 2007,

Cleuvers, 2004, 2005; Fent et al., 2006). These studies used standard model organisms
and endpoints with crustaceans, algae, and in vitro assays to support CA modeling, while
few studies have characterized the alternative sub-lethal effects (e.g., therapeutic) of these
pharmaceutical mixtures. Clearly future research should assess pharmacological sub-
lethal endpoints corresponding to therapeutic and side effect mechanisms and modes of

action (Boxall et al., 2012; Rudd et al., 2014).
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Figure 7: Probabilistic hazard assessment of maximum measured environmental concentrations for
diltiazem and verapamil in effluent reported from the same study across all geographic regions. Numbers
within parenthesis indicate the number of each detected CCB across all geographic regions. Vertical dotted
lines (black) represents the therapeutic hazard value (THV) for verapamil (157 ng/L) and the vertical short
dashed line (black) represents the THV for diltiazem (1618 ng/L). Horizontal short-short-long dashed lines
(gray) represent percentile value when an additive therapeutic hazard ratio (THR) equaled 1.

4. Conclusions

Here we examined refereed literature on the occurrence and ecotoxicology of
CCBs in wastewater and surface water matrices. One hundred and sixty one primary
literature articles reported the examination, occurrence, and effects of four CCBs in
effluent, sediment, sludge, and aquatic systems. Approximately half of the matrices
studied for the occurrence of CCBs were for water from North America, Europe, and
Asia-Pacific. Environmental occurrence of these compounds were scarce and nonexistent
in South America and Africa, respectively. In addition, studies examining CCBs in
influent and coastal and marine systems were relatively limited. Whereas occurrence of

diltiazem and verapamil have been routinely examined in water matrices, studies of other
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first and second generation CCBs (e.g., nifedipine, amlodipine) are lacking.
Concentrations of CCBs in non-target organism were minimally examined, except for
diltiazem (e.g., tissue and plasma), which has been reported to accumulate in fish plasma
above human therapeutic plasma levels. Thus, further studies are necessary to understand
comparative bioaccumulation and toxicity of CCBs in nontarget aquatic organisms.
Unfortunately, very few studies have examined the pharmacological
cardiovascular effects of CCBs in non-target aquatic organisms, but recent efforts have
investigated tissue specific oxidative, metabolic, antioxidant, or histological induce
effects in several teleosts. Calcium and calcium channels play a role in multiple
biological processes within all organisms (Reuter, 1983). As medications for treatment of
high blood pressure and cardiac arrhythmias CCBs have been specifically designed to
target smooth muscle tissue calcium channels and elicit therapeutic benefits in humans
(Goodman, 1996). However, a common drug target for CCBs (e.g., diltiazem) is
predicted to be 70-76% conserved in teleost species (Gunnarsson et al., 2008). Such
functional conservation of drug targets in non-target organisms remains an understudied
topic, yet the application of mammalian to fish biological read across (Brooks et al.,
2009) has been demonstrated with select pharmaceuticals (Brodin et al., 2013; Huerta et
al., 2016; Huggett et al., 2003; Margiotta-Casaluci et al., 2014, 2016; Rand-Weaver et al.,
2013; Valenti et al., 2012). It is important to note, however, that each CCB has multiple
targets, varying with known and relatively unstudied pharmacological actions (Wishart et
al., 2006). Therefore, while CCBs are specifically designed to elicit cardiac therapeutic

effects in humans, these diverse molecular initiation events require future comparative
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ecotoxicological study, particularly focusing on linkages (or lack thereof) to ecologically
important adverse outcomes.

When data availability was sufficient, assessments estimating aquatic hazards of
CCBs were performed. EED 5th and 95th percentiles for all CCBs were 1.5 and 309.1
ng/L in influent, 5.0 and 448.7 ng/L for effluent, 1.3 and 202.3 ng/L in freshwater, and
0.17 and 12.9 ng/L in saltwater, respectively. Because sublethal chronic toxicity
information for CCBs were limited, we employed THVs during PEHAs. We observed
both amlodipine in effluents and verapamil in freshwaters to exceed THVs without a
safety factor 28% of the time, highlighting the need to understand ecological
consequences of exposure to these CCBs. We then employed an additive THR approach
to examine CCB mixtures. Based on currently available data, an additive THR exceeded
1 approximately 20% of the time, which suggests these CCBs and other pharmaceutical
mixtures with common molecular initiation events deserve future investigation.
Ecological implications of such occurrence and toxicity gaps for CCBs are unknown but
deserve further study, particularly in rapidly urbanizing regions that are vulnerable to
climate change. This global scanning approach identified the utility of global assessments
to identify specific CCBs, mixtures with common mechanisms of action, and geographic

locations for which environmental monitoring and assessment efforts appear warranted.
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CHAPTER FOUR
Influence of Diltiazem on Fathead Minnows Across Dissolved Oxygen Gradients
This chapter is published (In Press) as: Saari GN, Corrales J, Haddad S, Chambliss CK,
Brooks BW. Influence of diltiazem on fathead minnows across dissolved oxygen
gradients. Environmental Toxicology and Chemistry https://doi.org/10.1002/etc.4242

ABSTRACT

Water resources in many arid to semi-arid regions are stressed by population
growth and drought. Growing populations and climatic changes are influencing
contaminant and water chemistry dynamics in urban inland waters where flows can be
dominated by, or even dependent on, wastewater effluent discharge. In these watersheds,
interacting stressors such as dissolved oxygen (DO) and environmental contaminants
(e.g., pharmaceuticals) have the potential to affect fish physiology and populations.
Recent field observations from our group identified the calcium channel blocker
diltiazem in fish plasma exceeding human therapeutic doses (e.g., Cmin) in aquatic
systems impaired due to nonattainment of DO water quality standards (WQS) and
criteria. Thus, our study objectives examined: 1) standard acute and chronic effects of
DO and diltiazem to fish, 2) influences of DO, at criteria levels deemed protective of
aquatic life, on diltiazem toxicity to fish, and 3) whether sublethal effects occur at
diltiazem water concentrations predicted to cause a human therapeutic level in fish
plasma (therapeutic hazard value, THV). DO x diltiazem co-exposures significantly
decreased survival at typical stream, lake, and reservoir WQS of 5.0 and 3.0 mg DO/L.

DO and diltiazem growth effects were observed at 2x and 10x their LC50 values (1.7 and

82



28.2 mg/L, respectively). Larval fathead minnow swimming behavior following all DO
and diltiazem exposures generally decreased and significantly reduced light:dark bursting
distance traveled, number of movements, and duration at concentrations as low as the
THV. Individual and population level consequences of such responses are not yet
understood; however, these observations suggest that assessments with pharmaceuticals
and other contaminants may underestimate the effects in fish across DO levels considered

protective of aquatic life.

INTRODUCTION

Surface water quality assessment and management in urban areas is challenging,
particularly in watersheds receiving wastewater treatment plant (WWTP) discharges and
nutrient enrichment (Brooks et al., 2006; Berninger et al., 2011; Haggard et al., 2005;
Nakamura et al., 2008; Taylor, 2002; Valenti et al., 2009; Waiser et al., 2011). Excessive
nutrients in conjunction with climate change exacerbates select harmful algal blooms and
causes eutrophication that depletes dissolved oxygen (DO) levels in freshwater and
marine ecosystems (Breitburg, 2002; Waiser et al., 2011). In these urban systems, diverse
organic contaminants, including pharmaceuticals, are continuously released from
WWTP, which results in life cycle exposures to aquatic organisms especially in effluent-
dominated and dependent ecosystems (Brooks et al., 2006). Such watersheds often
experience hypoxic events, which has received increasing attention in marine and coastal
systems. Unfortunately, hypoxia events have received relatively little attention in
freshwater ecosystems (Pollock et al., 2007). Our recent research (Saari et al., 2018)

identified exceedances of low DO thresholds and differential implementation of DO
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criteria in a geographic region experiencing rapid population growth and severe droughts
over the past decade. Unfortunately, interactive effects of low DO and pharmaceuticals
have received even less study.

Understanding aquatic responses to chemical and nonchemical stressors was recently
highlighted as a priority research question to understand risks of pharmaceuticals in the
environment (Boxall et al., 2012). Fish responses to chemical stressors (e.g., ammonia,
metals, polycyclic aromatic hydrocarbons) have been shown to be influenced by low DO
(Fleming and Di Giulio, 2011; Hattlink et al., 2005; Lyu et al., 2013; Matson et al., 2008;
Prokkola et al., 2015). Recently, our group and others have observed concentrations of
the calcium channel blocker diltiazem in fish plasma approaching and even exceeding
human therapeutic plasma levels (Du et al., 2014; Fick et al., 2010a; Scott et al., 2016;
Tanoue et al., 2015). Consequences of such observations are unknown, but indicate
therapeutic risks to fish. For example, approaches have been developed to predict steady
state fish plasma uptake and internal doses of pharmaceuticals. These approaches were
developed from physiological-based pharmacokinetic modeling and the functional
conservation of pharmaceutical targets across vertebrates (Brooks, 2014; Du et al., 2014;
Fitzsimmons et al., 2001; Gunnarsson et al., 2008; Huggett et al., 2003). Using these
models, therapeutic hazard values (THV) can be derived to identify water concentrations
predicted to result in fish plasma levels of medicines equaling human therapeutic doses
(Berninger et al., 2011; Brooks, 2014; Fick et al., 2010b). Recently, Saari et al (2017)
examined global occurrence and associated hazards of calcium channel blockers in
multiple environmental matrices. Interestingly, environmental exposure distributions of

untreated sewage was the only matrix predicted to exceed the diltiazem THV (Cumin =
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1.9%; Cmax = 0.2%), yet diltiazem in fish plasma levels from the field exceeded Cumin
doses 17% of the time (Saari et al., 2017). Whether such human therapeutic plasma
concentrations in fish result in adverse outcomes are unknown, particularly in urbanized
watersheds already impaired due to nonattainment of DO water quality standards (Brooks
et al., 2006; Scott et al., 2016).

The objectives of the present study were to examine whether DO influences
toxicity of diltiazem in fish. We initially investigated individual responses of the larval
fathead minnow (Pimephales promelas), a common fish model, to DO and diltiazem. We
then examined whether DO, at current water quality criterion values for inland waters,

influenced acute and chronic toxicity of diltiazem.

MATERIAL AND METHODS

To address our study objectives, the following subsections describe how
experimental conditions were maintained and traditional morphometric (e.g., mortality,
growth) and nontraditional sublethal (e.g., heart rate, feeding rate, photo-locomotor
behavior) responses of Pimephales promelas to DO, diltiazem or DO x diltiazem
mixtures were designed and measured. Standard DO experimental systems and protocols
are lacking and thus typical acute and chronic toxicity methods were used with minor
modifications. Herein, appropriately manipulating DO represented a critically important
experimental consideration. DO water concentrations were regulated by mixing both
nitrogen gas and air that were then infused in each experimental chamber, conceptually
similar to approaches described by Ho and Burggren (2012) and Zhou et al (2000). Gas

was regulated using RiteFlow meters (Scienceware Bel-Art Products, Wayne, NJ, USA).
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Two to five different DO concentrations were maintained consistently and continually
with individual nitrogen and air Riteflow meters per treatment level. Each N2-air
regulator pair delivered gas that was mixed in sealed PVC chambers (10.2 x 61.0 x 0.3
cm; 4”7 x 24” x 1/8”) filled with bioballs. A single outflow line ran mixed gas to a climate
controlled walk-in incubator to a 6-port manifold where gas infusion levels were
manually adjusted to achieve desired DO treatment levels. Gas was then bubbled in semi-

sealed experimental chambers (e.g., 750 mL Mason jars, 20 L glass tanks).

Larval Pimephales promelas Experiments

In the present study, all acute and chronic experiments were performed with
reconstituted hard water (RHW) made according to U.S. Environmental Protection
Agency (EPA) methods (U.S., 2002a; b). All experiments were carried out in a climate
controlled environmental chamber at a constant temperature of 25 + 1 °C with a 16:8 h
light-dark cycle on a backup power supply. Water chemistry analyses were performed at
initiation of each study and on renewal days of chronic studies according to standard
methods (Association, 1989). For experiments with DO, measurements were taken
multiple times daily with a YSI ProODO optical DO sensor (YSI Inc., Yellow Springs,
Ohio, USA). Experimental treatment levels of DO and diltiazem were informed from the
literature and preliminary acute range finding studies with larval Pimephales promelas
reared at Baylor University in accordance with Institutional Animal Care and Use

Committee guidelines.
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Acute studies

Triplicate 48 h toxicity studies were conducted individually with DO and
diltiazem (U.S. EPA, 2002a). Briefly, each experiment was carried out using 750 mL
glass chambers (semi-sealed Mason jars) with 10 organisms per unit and four replicates
per treatment level. Nominal DO (mg/L) treatment levels included 8.2 (control), 5.0, 3.0,
2.0, 1.0, and 0.5. Nominal diltiazem treatment levels were 0, 0.00015 (diltiazem THV),
15, 30, 45, 60 mg/L. Primary endpoints for these acute studies with either DO or
diltiazem included mortality and heart rate. Photo-locomotor behavioral responses (PLR)
to these DO treatment levels were also examined.

After completing these triplicate experiments with either DO or diltiazem,
individual acute 48 h studies examining DO x diltiazem interactions were then separately
completed with identical diltiazem treatment levels (0, 0.00015, 15, 30, 45 mg/L), under
normoxic DO levels (8.2 mg DO/L) and DO manipulated at either 5.0 or 3.0 mg DO/L.
Hereafter, 8.2 mg DO/L, 5.0 mg DO/L, and 3.0 mg DO/L treatment levels will be
described as normal, moderate, and low DO when referring to interactive studies. The
0.00015 mg/L diltiazem treatment level was equal to the THV, which is a water
concentration predicted to bioconcentrate in fish plasma to a human therapeutic level
(Berninger et al., 2011; Brooks, 2014). This conceptual approach was first proposed by
Huggett et al (2003) to estimate fish plasma steady state pharmaceutical levels resulting
from aqueous exposures. Initial plasma modeling by Fitzsimmons et al. (2001) predicted
fish blood:water partition coefficeints of hydrophobic compounds. Diltiazem is a weak
base; therefore, the initial fish uptake model in the present study was modified to account

for the experimental pH (8.3) by using log D instead of log P (Berninger et al., 2011).
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The human diltiazem minimum (Cmin = 30 ng/mL) therapeutic level was obtained from
Schulz et al (2012). Thus, for diltiazem THV calculations, a water concentration
predicted to bioconcentrate to the human Cnin was employed (Brooks, 2014; Du et al.,
2014).

Experimental units for acute studies were each filled with 500 mL of treatment
water. Less than 24 h post hatch (hph) P. promelas were used in each study. Fish were
fed newly hatched brine shrimp (Artemia sp.) nauplii 2 hours before each study and were
not fed throughout each experiment. After 48 h exposure, 5 fish from each replicate were
randomly selected for heart rate measurements. Fish were anesthetized with 50 mg/L
MS-222 and 100 mg/L sodium bicarbonate for 3 minutes. When unresponsive, fish heart
rates were counted visually via dissection microscope by recording ventricular beats for
10 seconds during three separate measurements (Finn et al., 2012). Preliminary studies
indicated no significant differences in fish heart rates between 3 minute anesthetized and
non-anesthetized fish. Replicate units were examined individually within approximately
five minutes. The remaining 5 fish in each replicate were used for PLR behavior
evaluations under a 2-cycle light-dark assay.

Similar to previously published methods from our laboratory by Kristofco et al
(2016) and Steele et al. (2018), behavioral observations were recorded in quantization
mode using Zebrabox and accompanying Zebralab tracking software (ViewPoint, Lyon,
France). Calibration parameters for the plate and pixel detection thresholds were: plate
width = 125 mm; pixel detection thresholds = black; movement thresholds: resting = < 5
mm/s; cruising = 5-20 mm/s; bursting = > 20 mm/s; data bin = one minute. To reduce

background noise from reflections on well walls, tracking was set to refresh after each
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one minute bin and movement thresholds were set at > 2 pixels. Treatment water from
each replicate was added (2 mL) to respective plate wells and one fish per well was added
randomly from each treatment replicate to a 24-well plate. All treatment levels were
included on each plate. Fish behavior was recorded for 50 minutes and included a 10
minute dark acclimation period followed by 2 light-dark cycles, 10 minutes per light or
dark period. Data recorded during the 10 minute acclimation period were not included in

analyses. All observations were collected in afternoon to evening hours.

Chronic studies

Short-term 7 day chronic P. promelas studies were then conducted using 24 hph
fish according to U.S. EPA methods with minor modifications (U.S. EPA, 2002b).
Individual experiments were conducted separately for DO, diltiazem, and DO x
diltiazem. Initial P. promelas chronic studies were conducted with DO in 20 L tanks
with 3 L water volumes. These observations informed diltiazem and DO x diltiazem
interactive studies, which were performed in 750 mL experimental units. Chronic studies
consisted of daily static renewals with either DO adjusted water or diltiazem stock
solutions (prepared at time zero, stored in the dark at 4 °C). For the chronic DO study,
nominal DO treatment levels (mg/L) were 8.2 (control), 5.0, 4.0, 3.0, and 2.0. Chronic
diltiazem treatments were derived from a mean 48 h LC50 value, based on the triplicate
studies described above, and subsequent nominal concentrations were determined
following 10-fold dilution, including 0, 0.03394, 0.3394, 3.394, 33.94, 339.4, 3394,

33940 pg/L.
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Two interactive nominal DO x diltiazem studies were conducted at normal control
(8.2 mg DO/L) and either moderate (5.0 mg DO/L) or low (3.0 mg DO/L) treatment
levels across five diltiazem treatment levels including 0, 0.3394, 33.94, 339.4, and 3394
png/L. Fish were fed newly hatched brine shrimp (Artemia sp.) nauplii twice daily. Study
endpoints included survival, growth, heart rate, and feeding and PLR behavior. Briefly,
heart rates were observed as described above with four fish from each replicate and
anesthetized with 67 mg/L MS-222 and 133 mg/L sodium bicarbonate for 3 minutes.
Again, each beaker was processed within approximately five minutes. Four fish from
each replicate were then used for PLR observations under a 2-cycle light-dark assay
following the methods introduced above or feeding rates. Fish from heart rate and PLR
observations were then employed for traditional growth (dry weight) measurements
following previously reported methods (Stanley et al., 2007; U.S. EPA, 2002b).

Feeding rates were assessed following 7 days of exposure according to previous
methods (Stanley et al., 2007). Food was withheld from fish 24 h prior to study initiation.
Feeding rates were determined by enumerating brine shrimp nauplii consumed over 15
minutes. Two fish per treatment were randomly selected from each of four replicates.
Individual fish from each treatment were placed in 100 mL beakers of clean RHW for an
hour before adding 25 brine shrimp nauplii. After 15 minutes, fish were removed and the
remaining brine shrimp were recorded. Feeding rates were calculated as the number of
consumed brine shrimp nauplii per minute. The number of artemia consumed by two
randomly selected fish per replicate was used to calculate mean feeding rate. Fish used in

feeding rate studies were not included in growth measurements.

90



Chemical and Analytical Quantification of Treatment Levels

Diltiazem hydrochloride was obtained from Sigma-Aldrich (St. Louis, MO, USA;
CAS # 33286-22-5; purity: > 99%). Experimental treatment levels in each acute and
chronic diltiazem experiment were analytically verified by liquid chromatography
tandem mass spectrometry (LC-MS/MS) on an Agilent Infinity 1260
autosampler/quaternary pumping system, Agilent jet stream thermal gradient electrospray
ionization source, and model 6420 triple quadrupole mass analyzer. Briefly, a 500 uL
aliquot of undiluted or diluted stock solution were combined with 450 uL of 0.1% formic
acid (w/w) and spiked with 50 pL of an internal standard (diltiazem-d3) in a standard 2
mL analytical vial (Agilent Technologies, Santa Clara, CA, USA) before analyses. A
gradient mobile phase condition that resulted in the elution of diltiazem at 4.2 minutes
was identified. Salts and other highly polar sample constituents were diverted to waste
and away from the MS/MS during the first minute of each sample run. Chromatography
was performed using a 10 cm x 2.1 mm Poroshell 120 SB-AQ column (1204, 2.7 pm,
Agilent Technologies, Santa Clara, CA, USA) preceded by a 5 mm x 2.1 mm Poroshell
120 SB-C18 attachable guard column (120A, 2.7 pm, Agilent Technologies, Santa Clara,
CA, USA). The ionization mode, monitored transitions, and instrumental parameters for
diltiazem/diltiazem-d3 were as follows: ESI+ diltiazem 415.2 > 150, fragmentor = 140,
collision energy = 50, and diltiazem-d3 418 > 177.9, fragmentor = 135, collision energy
=28.

Limit of detection (LOD) and limit of quantification (LOQ) were determined by
running several method blanks and calculating the standard deviation. LOD and LOQ for

diltiazem were determined to be 0.009 pg/L and 0.026 pg/L respectively. Ten standards,
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ranging in concentration from below LOQ to 500 pg/L, were used to construct a linear
calibration curve (r2 > 0.998). Instrument calibration was monitored over time via
analysis of continuing calibration verification (CCV) samples, which were run every five
samples, with an acceptability criterion of £20%. Calibration standards were prepared in
RHW and calibration verification samples were prepared in 0.1% formic acid (v/v).
Ultrapure water, Thermo Barnstead Nanopure Diamond UV (Dubuque, IA, USA) water
purification system with 18 MQ, RHW, and 0.1% formic acid were run to validate the

purity of solutions and as method blanks.

Statistical analyses

Diltiazem and DO lethal concentration (LC50) values, based on analytically
verified observations, were calculated using the Toxicity Relationship Analysis Program
(TRAP; version 1.30). Sigma Plot 11.0 software (Systat Software 323 Inc., San Jose, CA,
USA) was used for all other statistical analyses. Prior to analysis, data normality and
equal variance tests were performed. If normality and equal variance assumptions were
not met, data values were transformed (e.g., log, square root). Experimental responses
were evaluated using o = 0.05. Lowest-observable-effect concentrations (LOEC) were
identified using one-way analysis of variance (ANOVA) with Dunnett’s post hoc test to
identify treatment level effects. Mean behavioral responses such as distance traveled,
number of movements (counts), and duration were calculated across 1 minute intervals
(bins). Total (e.g., distance traveled and count) and individual behavioral responses of
separate and interactive DO and diltiazem studies were determined across light and dark

photoperiods and compared. For data not meeting ANOVA assumptions following
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transformation, ANOVA on ranks were performed. Interactive effects of DO x diltiazem
exposure were determined by Two-Way ANOVA with Holm-Sidak post-hoc tests

relative to treatment control.

RESULTS

Acute studies

Treatment levels of DO and diltiazem were verified within 95-140% and 17-92%
(Supplementary: Table 19), respectively, of nominal concentrations. Therefore, all
toxicity point estimates were calculated using measured concentrations of diltiazem and
DO. Water quality parameters from each study were within acceptable ranges
(Supplementary: Table 20). Control survival was 100% for all 48 h acute studies. Acute
toxicity studies showed dose-dependent responses to DO, diltiazem, and DO x diltiazem
treatment levels. For individual studies with DO or diltiazem, mean (=SD; n=3 studies)
48 h LC50 values were 1.7 (+0.1) and 35.1 (£0.9) mg/L, respectively (Figure 8 A-B). For
interactive DO x diltiazem studies, LC50 values at normal and moderate DO levels were
30.5 mg/L and 16.0 mg/L, whereas diltiazem LC50 values were 28.2 mg/L and 8.3 mg/L
at normal and low DO levels, respectively (Figure 8C). No significant differences in heart
rate were observed in DO treatments down to 2.3 mg/L (< 90% survival at 1.1 mg/L; SI
Figure 25A) but 12 mg/L diltiazem significantly (p<0.05) decreased fish heart rates
(LOEC; Table 12; SI Figure 25B). Decreases in heart rate were similarly reproduced at
13 mg/L diltiazem (LOEC) at both normal and moderate DO concentrations, and at 12.5
mg/L at normal and low DO levels. Interactive effects of DO on heart rate across

diltiazem treatments were insignificant (SI Figure 26 A-B; p > 0.05; Two-way ANOVA).
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Mean PLR behavioral responses of unexposed or naive P. promelas were
visualized from five acute studies across multiple speed categories and endpoints/metrics
(e.g., total distance and count, resting duration) over 2-cycle light:dark periods. Mean
(+SE) naive fish distance traveled across 2-light cycles was slightly greater (13.4+£1.1
mm/s) than dark (11.24+1.2; Figure 9A). Similar light and dark trends were observed in
distance traveled, total number of movements (counts), and duration of activity across
stimulatory, cruising and refractory speed categories. Fish behavioral responses across all
DO conditions were generally significant different from controls (p > 0.05), although
decreasing trends were observed for fish activity in the light and dark (e.g., total number
of movements, duration, bursting distance traveled; Figure 10A-C, SI Figure 27A-C and
28A-C). Interactive DO x diltiazem significantly (p< 0.05) decreased activity (e.g.,
distance traveled, counts, duration) across both light and dark, although responses in the
light and dark were not always monotonic (e.g., normal and moderate DO; Figure 12A-F
and 13A-F, SI Figure 31-34A-F). Significant differences in activity were generally more
sensitive in the dark (e.g., LOEC) than the light with significant responses observed at the

THYV and 26297 pg/L, respectively (Table 13).
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Figure: 8. Mean (+SD, N=3 studies) percent survival by Pimephales promeals larvae following 48 h A)
dissolved oxygen (DO), B) diltiazem or C) DO x diltiazem studies. Moderate and low DO x diltiazem
studies were conducted in separate experiments (C) with a normal DO treatment (black circles = normal
and moderate DO x diltiazem study; gray circles = normal and low DO x diltiazem study). *: p < 0.05.
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Figure: 9. Baseline behavior activity of unexposed Pimephales promelas larvae. Mean (+SE) total distance
traveled per minute by P. promelas larvae following A) 48 h or B) 7 d studies. Two dark and two light
photoperiod responses were measured. A total of 72 (18 replicates each of 4 larvae) and 64 (16 replicates of
4 fish) P. promelas from 48 h and 7 d studies, respectively, were used for each baseline behavioral
observation. Data presented as total distance traveled by unexposed larval fish across three speed categories
in the light (white background) or dark (gray background).
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Figure 10. Mean (£SE) distance traveled per minute by Pimephales promelas larvae following 48 h (panels
A, B, C; N=3 studies) or 7 d (panels D, E, F; N=4, n=4-5) studies across dissolved oxygen (DO) gradients.
Data presented as distance traveled in speed (mm/s) categories for resting (< 5 mm/s; panels A, D), cruising
(5-20 mm/s; B,E), and bursting (>20 mm/s; C, F) behaviors. Distance traveled was observed over two
alternating 10 minute periods of light (white bars) and dark (black bars) conditions. No behavioral
observations were recorded (N.M.: Not Measured) at DO concentrations causing significant mortality. *: p
<0.05.

A <5mmis S=iiriem B 520 mm/s c TS
J]jj_m_u w1 [l fa 1 .. . | -

D <5mmis mmceiiior E 5-20 mm/s F > 20 mmis
W -n .
’ -z |Y 5 . H ) . . s
. Nu Nom = N o ; . o o
= =

=TroTm

J <5mmis mmmciiioon K 5-20 mm/s T > 20 mmi/s

e M

Diltiazem (| pgfL)

Pimephales promelas Distance Traveled (mm/min.)

Figure: 12. Mean (£SE) distance traveled per minute by Pimephales promelas larvae following 48 h
(panels A, B, C, D, E, F; N=4, n=4-5) or 7 d (panels G, H, I, J, K, L; N=4, n=4-5) studies across normal and
moderate dissolved oxygen (DO) x diltiazem interaction treatments. Data presented as distance traveled in
speed (mm/s) categories for resting (< 5 mm/s; panels A, D, G, J), cruising (5-20 mm/s; B, E, H, K), and
bursting (>20 mm/s; C, F, I, L) behaviors. Distance traveled was observed over two alternating 10 minute
periods of light (white bars) and dark (black bars) conditions. No behavioral observations were recorded
(N.M.: Not Measured) at DO concentrations causing significant mortality. *: p < 0.05. Normal DO: 8.2 mg
DO/L; Moderate DO: 5.0 mg DO/L.
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Figure: 13. Mean (£SE) distance traveled per minute by Pimephales promelas larvae following 48 h
(panels A, B, C, D, E, F; N=4, n=4-5) or 7 d (panels G, H, I, J, K, L; N=4, n=4-5) studies across normal and
low dissolved oxygen (DO) x diltiazem interaction treatments. Data presented as distance traveled in speed
(mm/s) categories for resting (< 5 mm/s; panels A, D, G, J), cruising (5-20 mm/s; B, E, H, K), and bursting
(>20 mm/s; C, F, I, L) behaviors. Distance traveled was observed over two alternating 10 minute periods of
light (white bars) and dark (black bars) conditions. No behavioral observations were recorded (N.M.: Not
Measured) at DO concentrations causing significant mortality. *: p < 0.05. Normal DO: 8.2 mg DO/L; Low
DO: 3.0 mg DO/L.

Chronic studies

Similar to acute studies, treatment levels of DO and diltiazem were measured or
analytically verified within 100-113% and 17-82% of nominal concentrations,
respectively (Supplementary: Table 19). Therefore, all toxicity point estimates were
calculated using measured concentrations of diltiazem and DO. Similar to acute
experiments, water quality parameters from each study were within acceptable ranges
(Supplementary: Table 20) and control survival was 100% in each chronic experiment.
Interactive DO x diltiazem experiments resulted in significant decreases in mean (£SD;
55.0+33.2) survival at low DO and 2348 pg/L diltiazem. Additionally, chronic endpoints
such as growth demonstrated dose-dependent reduction across all individual and

interactive studies. Individual DO and diltiazem fish growth LOEC values were 4.3 mg
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DO/L and 2356 pg/L diltiazem, respectively (Figure 14A-B). DO x diltiazem treatments
across normoxic, moderate (5.4 mg DO/L) DO levels significantly (p < 0.05) decreased
growth only in the highest diltiazem treatments at 2215 and 2348 pg/L, respectively;
however, no interactive effects of DO were observed (p = 0.254; Table 12; Figure 15A-
B). Similar to individual DO influences on growth, heart rates were significantly (p <
0.05) reduced by low DO (SI Figure 35A-B). Interactive DO x diltiazem studies also
significantly (p < 0.05) altered heart rates across diltiazem concentrations at low DO and
2348 pg/L (SI Figure 36A-B), and no significant differences in feeding rates were
observed in either chronic studies (SI Figure 37A-B and 38 A-B).

Similar to acute studies, mean PLR behavioral responses of unexposed or naive P.
promelas were visualized from four chronic studies across multiple speed categories and
endpoints/metrics (e.g., total distance and count, resting duration) across 2-cycle
light:dark periods. In each chronic study, distances traveled across light:dark cycles were
inverted, relative to 48 hph light:dark fish behavior (Figure 9B), with greater activity in
the dark than the light. Mean (+SE) total distances traveled of unexposed fish across 2-
light cycles were lower (15.9+1.1 mm/s) than distances traveled in the dark (25.0+2.3;
Figure 9B). This preferential dark activity was consistent across all behavioral speed
categories and endpoints/metrics. In individual DO studies, low oxygen levels
significantly increased (p< 0.05) total distance traveled in the light, while nonmonotonic
responses were observed in the dark and across other endpoints (Figure 10D-F, SI Figure
27D-F and 28D-F). Individual diltiazem behavior responses were also nonmonotonic yet
light and dark activity was significantly reduced across several endpoints (p< 0.05;

Figure 11A-C, SI Figure 29A-C and 30A-C) Likewise, interactive DO x diltiazem
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treatments significantly (p< 0.05) decreased activity (e.g., distance traveled, counts,
duration) across both light and dark, although responses in the light and dark were not
always monotonic (e.g., normal and moderate DO; Figure 12G-L and 13G-L; SI Figure
31-34G-L). LOEC values indicated activity in the dark (e.g., LOEC) was generally more
sensitive than the light. Light and dark differences in sensitivity were demonstrated by
significant ng/L (THV) level effects observed in the dark versus higher (ng/L) diltiazem
concentrations in the light (Table 13). Dissolved oxygen did not significantly affect

behavioral responses to diltiazem.
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Figure: 11. Mean (£SE) distance traveled per minute by Pimephales promelas larvae following 7 d (panels
A, B, C; N=4, n=4-5) diltiazem studies. Data presented as distance traveled in speed (mm/s) categories for
resting (< 5 mm/s; panels A), cruising (5-20 mm/s; B), and bursting (>20 mm/s; C) behaviors. Distance
traveled was observed over two alternating 10 minute periods of light (white bars) and dark (black bars)
conditions. No behavioral observations were recorded (N.M.: Not Measured) at DO concentrations causing
significant mortality. *: p < 0.05.
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Figure: 14. Mean (£SE, N=4, n=6-8) dry weights (growth) by Pimephales promeals larvae following 7 d A)

dissolved oxygen (DO) and B) diltiazem studies. No growth measurements were observed (N.M.: Not

Measured) at DO or diltiazem concentrations causing significant mortality. *: p < 0.05.
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Figure: 15. Mean (£SE, N=4, n=6-8) dry weight (growth) by Pimephales promeals larvae following 7 d
experiments across A) normal and moderate dissolved oxygen x diltiazem and B) normal and low DO x
diltiazem studies. No growth measurements were observed (N.M.: Not Measured) at DO or diltiazem
concentrations causing significant mortality. *: p < 0.05. Normal DO: 8.2 mg DO/L; Moderate DO: 5.0 mg
DO/L; Low DO: 3.0 mg DO/L.

DISCUSSION

In the present study we employed standard acute and chronic toxicity studies to
examine individual and interactive toxicological effects of DO and diltiazem to larval P.
promelas. Few studies have characterized the effects of diltiazem in fish. Although the
effects of DO have been reported over the last six decades, previous DO studies failed to
calculate standard toxicity endpoints following standardized procedures. The present
study reports individual DO and diltiazem LC50 values and demonstrates DO x diltiazem
markedly decreases P. promelas survival across both acute and chronic studies at typical
DO water quality criteria (WQC) levels. Neither 48 h acute nor 7 day chronic traditional
or nontraditional endpoints consistently showed significant interactive effects across
normal, moderate, or low DO levels at diltiazem concentrations below levels decreasing
survival (< 90%). 48 h DO x diltiazem LC50 values decreased at moderate (5.0 mg/L)
and low (3.0 mg/L) DO concentrations relative to normoxic levels by a factor of 2.1 and

3.5, respectively. Both moderate and low DO concentrations are common freshwater high
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aquatic life use WQC values for streams and reservoirs in Texas, USA, often dominated
or dependent on WWTP effluent containing pharmaceuticals such as diltiazem (Brooks et
al., 2006; Du et al., 2015; Scott et al., 2016). Inland waters of Texas and other U.S. states
are notorious for being listed on the U.S. Clean Water Act 303(d) list due to non-
attainment of DO WQC (Brooks et al., 2008; CRASR, 2006). Therefore, the present
study demonstrates the toxicological influence of DO to a model contaminant and
pharmaceutical in fish, which deserves further attention at a time of increasing global
hypoxia (Breitburg et al., 2018; Watson et al., 2016).

The necessity of DO to aquatic life, such as teleosts, has been reviewed
previously (Wu, 2002) and has been suggested to be the major factor, coinciding with
temperature, impacting fish populations under global climate change (Portner, 2010;
Portner, 2002; Portner and Knust, 2007). Literature reviews and studies have outlined the
physiological and biochemical strategies fish employ to cope with less than optimal DO
concentrations (Richards, 2009; Wu, 2002). Too little oxygen initiates a well-coordinated
response to increase DO uptake and a subsequent defense against the metabolic
consequences of limited ATP production leading to a finite substrate-dependent duration
of survival (Richards, 2009). Initially, the ventilator response accompanies detected
decreased DO levels in fish to enhance respiratory water flow across the gills. Previous
studies have shown increased oxygen uptake positively correlating with higher chemical
accumulation (e.g., endrin, tetrachlorobenzene, EE2; Blewett et al., 2013; McKim and
Goeden, 1982; Yang et al., 2000). Increasing chemical uptake at less than optimal DO
levels can thus add to the physiological and biochemical perturbations already occurring

in fish trying to maintain and/or cope with a lack of oxygen. Multiple aquatic organism
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(e.g., daphnia, fish) have been shown to have greater chemical sensitivity at less than
optimal DO concentrations across multiple levels of biological organization. For
example, similar DO x chemical experiments with ammonia, 1, 2, 4-trichlorobenzene,
sweet crude oil, cadmium, and copper in daphnia and several fish species (Carlson, 1987;
Dasgupta et al., 2015; Fitzgerald et al., 2016; Hattlink et al., 2005; Lyu et al., 2013) have
been shown to decrease survival consistent with our observations. At the subcellular
level, hypoxia and the pharmaceutical diclofenac were shown to induce CYP1A activity
(EROD) above diclofenac activity alone in the three-spined stickleback, which is
opposite to other studies predominantly reporting an inhibitory effect on CYP1A activity
(Matson et al., 2008; Prokkola et al., 2015; Rahman and Thomas, 2012). Conversely,
LDH activity increased in response to hypoxia but was suppressed to control levels
following co-exposures. To date, enzymatic specific responses to DO x chemical
exposures are commonly studied with PAHs but remain understudied with contaminants
of emerging concern like pharmaceuticals. A few studies, for example, with hypoxia x
bisphenol A (BPA) and cardiovascular responses were altered and caused significant
decreases in survival, red blood cell density, tissue vascularization, and development in
Danio rerio embryos (Cypher et al., 2015). Clearly these studies demonstrate empirical
evidence indicating DO can significantly increase fish sensitivity to chemical
perturbations under co-exposure conditions.

To our knowledge, this is the first P. promelas 48 h acute study to assess the
effect of DO to this common model aquatic organism. An LC50 of 2.00 (£ 0.23) mg/L
for P. promelas is greater than that of Daphnia magna (0.6-0.7 mg/L) (Nebeker et al.,

1992) but similar to that reported for adult common smelt (1.83 mg/ L), and rainbow
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trout parr (1.62 mg/L) (Landman et al., 2005). Few standard calculated DO LC50 values
in freshwater fish have been reported because most lethal studies only report DO
concentrations causing mortality. Similarly, few diltiazem and other CCB standard
toxicity values have previously been reported. Acute diltiazem 48 h LC50 values of 25.6
and 28.0 mg/L for Oryzias latipes and Daphnia. magna, respectively, are similar to mean
(£SD) 48 h LC50 of 30.5+1.2 mg/L estimated in the present study (Kim, 2007). The
acute toxicity of other CCBs such as verapamil have been similarly reported in embryo
and larval common carp (Cyprinus carpio) and juvenile rainbow trout (Oncorhynchus
mykiss), in which 96 h LC50 values reported by Steinbach et al (2013) and Li et al (2010)
were 16.3-4.8 mg/L and 2.7 mg/L, respectively. Short-term survival and growth of early
life stage fish (e.g., fathead minnow) have been predictive endpoints to determine
contaminant concentrations causing adverse effects relevant to ecological risk assessment
(Norberg and Mount, 1985; U.S. EPA, 2002b). Further, the present study reports the first
individual DO and diltiazem standard lethal toxicity value for larval Pimephales
promelas, a common regulatory model organism. While extreme DO and diltiazem
levels can cause impacts to fish survival, 7 d chronic growth effects were far more
sensitive than mortality.

Long term low dose effects of DO have been broadly reported in the literature and
particularly used to derive national ambient WQC guidelines. Short and long-term growth
studies have been extensively conducted in cold water (salmonid) teleosts with fewer
conducted in warm water (non-salmonid) species (Saari et al., 2018). The P. promelas
chronic growth LOEC (4.3 mg DO/L) in the present study is comparable to the reduced

growth EC10 for juvenile largemouth bass (4.4 mg DO/L) (JRB, 1984; Saari et al., 2018).
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Non-salmonid or warm freshwater fish laboratory and field studies reviewed in the
development of the U.S. Ambient WQC for Dissolved Oxygen concluded fish production
to be moderately impaired at 4.0 mg DO/L (U.S., 1986). DO dependent decreases in
growth have been observed in many species such as plaice (Pleuronectes platessa), dab
(Limanada limanada) (Petersen and Pihl, 1995), Atlantic cod (Gadus morhua) (Chabot
and DUTIL, 1999), sockeye salmon (Oncorhynchus nerka) (Brett and Blackburn, 1981),
northern pike (Esox lucius) (Adelman and Smith, 1970), largemouth bass (Micropterus
salmoides) (Brake, 1972; Stewart et al., 1967), coho salmon (Oncorhynchus kisutch)
(Brett and Blackburn, 1981; Herrmann et al., 1962), channel catfish (/ctalurus punctatus)
and yellow perch (Perca flavescens) (Carlson et al., 1980); however, the interactive
effects of DO x chemical on growth and across other levels of biological organization are
poorly understood .

Interactive DO x diltiazem chronic studies indicated significant DO influences on
fish growth and heart rate. Chronic growth decreases measured in DO studies were
replicated in interactive experiments and similar significant reductions in growth at
moderate and low DO treatments were measured only in diltiazem controls. The effects
of diltiazem on larval fish growth were not dependent on the DO level. Again, survival
was the most sensitive endpoint measured across acute DO x diltiazem studies, and
similarly significant interactive effects on survival were observed at low DO and the
highest diltiazem treatment level. Percent survival under normal DO levels throughout
chronic interactive exposures were 100% even up to 2215-2348 pg/L diltiazem. Very few
chronic fish studies with early life stages have focused on the growth effects of CCBs. A

study by Steinbach et al (2013) observed no significant effects of verapamil in common
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carp following 31 day exposure at 0.463-463 pg/L. Conversely, Overturf et al. (2012)
reported 28 day chronic exposure to 600 pg/L verapamil significantly decreased larval
fathead minnow growth rate (Overturf et al., 2012).

Diltiazem, a benzothiazepine, and verapamil, a phenylalkylamine, belong to the
group of CCBs highly prescribed to treat angina, hypertension, and arrhythmia (Romero
et al., 2003). Both diltiazem and verapamil have small bioconcentration potentials but of
the two the physiochemical properties of verapamil relative to diltiazem would predict
higher bioaccumulation potentials with a higher log P (4.2 and 2.8, respectively). Thus,
diltiazem and verapamil bioconcentration factors (BCF) from laboratory studies range
between 0.5-194 (Steinbach et al., 2016b) and 0.7-75 (Nallani et al., 2016; Steinbach et
al., 2013), respectively in various fish tissues. Whether hypoxia increased CCB
bioconcentration is not known. Internal fish plasma modeling predicts the hazard of
biologically active pharmaceuticals in fish based on the conservation of drug targets
between mammalian and teleost species (Brooks, 2014; Fick et al., 2010b; Gunnarsson et
al., 2008; Huggett et al., 2003). Internal fish plasma levels of diltiazem have been
reported approaching and even exceeding human therapeutic levels (Fick et al., 2010a;
Scott et al., 2016; Tanoue et al., 2015). Several compounds have linked internal fish
tissue concentrations to specific pharmacological effects (e.g. antidepressants, steroids,
anxiolytics, and nonsteroidal anti-inflammatory) (Cuklev et al., 2011; Huerta et al., 2016;
Margiotta-Casaluci et al., 2014; Patel et al., 2016; Runnalls et al., 2015; Valenti et al.,
2012), while others lack sufficient data necessary to validate fish plasma modeling and

read-across approaches (Rand-Weaver et al., 2013).
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Other non-traditional sublethal endpoints (e.g. heart rate, locomotor activity,
enzyme activity) predictive of adverse effects to toxicants have also been reported (U.S.
EPA, 2002b). In the present study, heart rates displayed a dose-dependent trend in acute
DO x diltiazem studies at normal and moderate DO levels similar to previous CCB
studies with verapamil (Steinbach et al., 2013). Conversely, nonmonotonic trends in 7
day DO x diltiazem exposures were observed with significant decreases in heart rate at
2215-2348 pg/L diltiazem across all three interactive DO treatment levels and significant
increases observed at 259-277 pg/L at normal and moderate DO. Decreasing heart rates
are consistent with the pharmacological action of diltiazem. Studies with other CCBs in
larval zebrafish have shown reduced heart rate following exposure to mg/L verapamil
concentrations and thus demonstrate a pharmacological effect in fish. Similar effects
were seen in 4 dpf zebrafish following exposure to verapamil resulting in decreased heart
rate, surrogate stroke volumes and even cessation of blood flow at higher concentrations
(Parker et al., 2014). Steinbach et al (2016a) demonstrated histological changes in the
heart and blood vessels of rainbow trout livers suggesting vasodilation following long-
term pg/L diltiazem concentrations (Steinbach et al., 2016a). Vasodilation can lead to
reflex tachycardia triggered by the sympathetic nervous system in mammals to re-
establish normal blood pressure (Scholz, 1997). Whether increased heart rates observed
in separate chronic DO x diltiazem exposures at 259-277 nug/L at normal and moderate
DO levels represent tachycardia is unknown. Diltiazem represents an intermediate
vasodilator and cardio depressant in humans and while the drug target is relatively
conserved its complete function in fish is understudied (Gunnarsson et al., 2008;

Rottbauer et al., 2001). Using the ECOdrug (http://www.ecodrug.org/) database, the
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diltiazem drug target (voltage-dependent calcium channel L-type a-1C, a-1D, a-1F, a-1s
subunits) is predicted to be 70.4-78.3% and 64.1-81.1% conserved in zebrafish (Danio
rerio) and Japanese medaka (Oryzias latipes), respectively (Gunnarsson et al., 2008;
Verbruggen et al., 2017). Thus, pharmacological responses in fish referenced above can
be expected. Additional research with non-traditional regulatory endpoints relevant to the
biological activity of pharmaceuticals is necessary to advance ecotoxicological read-
across models with highly conserved fish drug targets.

Fish behavior relative to other standardized toxicity metrics can be a sensitive
indicator of chemical exposure in which effects often occur at lower concentrations
(Little and Finger, 1990; Melvin and Wilson, 2013). Therefore, PLR behavior following
acute and chronic exposures were measured to detect potential alterations in behavior.
The use of zebrafish as a model system for developmental, biomedical, and toxicological
research has spurred the need to understand their behavior and have been the typical
model organism studied (MacPhail et al., 2009). P. promelas, on the other hand, have
been typically used by U.S. regulatory agencies focused on survival and growth
endpoints but recent studies have begun to investigate their behavioral sensitivity
following contaminant exposures) (Colon-Cruz et al., 2018; Steele et al., 2018). Colon-
Ruiz et al. (2018) demonstrated naive 6 dpf fathead minnows, similarly used in our study,
displayed high activity in the light compared to the dark following observations of their
photo-dependent swimming activity. This general light:dark behavior was identical to
that observed in our acute studies and similarly identified for fathead minnows by Steele
et al. (2018) following acute 96 h behavior toxicity studies. In contrast, larval zebrafish,

display high activity in the dark than light and with less variability (Kristofco et al., 2016;
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MacPhail et al., 2009). Remarkably, the present study demonstrates naive 7 dph (11 dpf)
fathead minnow behavior changes and mimics the light:dark photo-dependent behavior in
zebrafish. The cause of this behavioral change in fathead minnow with development is
unclear but may be related to an early life stage lack of innervation leading to minimal
light:dark sensory perception and/or circadian rhythm (Farrell, 2011). The light:dark
activity preference of 7 dph fish is consistent with adult fathead minnow behavior
reported by Valenti et al (2012). In the Valenti et al (2012) study, adult male fathead
minnow shelter-seeking behavior similarly demonstrated movement preferences in the
dark versus the light in which sertraline increased light cruising activity consistent with
its human therapeutic effect (Valenti et al., 2012).

Behavioral observations in both acute and chronic experiments displayed a
general decrease in activity. Acute behavior following DO exposure tended to decrease
larval activity in both the light and dark, although few observations were statistically
significant. Fish activity under minimal DO conditions varies depending on
developmental stage, species-specific strategies to increase oxygen uptake, and metabolic
tolerance (Chapman and McKenzie, 2009; Pelster, 2002; Wu, 2002). If mechanisms to
increase oxygen uptake and/or avoid hypoxia fail, reductions in activity are typically used
to conserve energy (Chapman and McKenzie, 2009; Richards, 2009). In the present
study, acute DO exposure behavior is generally consistent with the aforementioned trend
and were reproducible as observed in DO x diltiazem studies. Consistent patterns from
chronic behavior measurements following DO and diltiazem exposures were difficult to
determine. Regardless, both DO and diltiazem chronic observations demonstrated

decreasing trends and/or significant decreases in bursting distance traveled, number of
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movements (counts), and duration per minute. Bursting activity, on average, comprises <
1.0 second/minute of their activity in which fish travel 1-3 mm/minute, which is divided
into 2-10 individual movements (greater activity in dark than light). Whether decreases in
the above mentioned activity demonstrates physiological or ecological adverse outcomes
deserves additional attention, but decreases in spontaneous swimming activity at minimal
DO concentrations is consistent with previously published literature (Chapman and
McKenzie, 2009; Domenici et al., 2013). Again, this type of decreased activity merits
additional study, especially when Robb and Abrahams (Robb and Abrahams, 2002)
reported fathead minnow feeding response in the presence of a predator (yellow perch)
were reduced under non-lethal hypoxic versus normoxic conditions.

The present study also investigated whether THV concentrations of diltiazem
exhibited toxicological or pharmacological effects in larval fish following acute and
chronic exposures. The THV describes the water concentration predicted to
bioconcentrate in fish plasma to an equivalent human therapeutic level (Berninger et al.,
2011; Brooks, 2014). In acute and chronic studies containing the diltiazem THV, no
significant effects were observed across acute or chronic exposure endpoints except
behavior. Both 48 h and 7 day studies, significant decreases and decreasing trends in
number of movements (counts), distance traveled, and duration across both light and dark
conditions were observed. Kristofco et al [43] observed the antihistamine
diphenhydramine (DPH) significantly decreased distance traveled below THV
concentrations (18.6 ug/L at pH 7) across specific larval zebrafish development stages. It
is not clear why larval fish behavioral responses below THVs are markedly more

sensitive than other toxicological endpoints. Feeding behavior has also been shown to
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decrease following chronic DPH exposure below its THV (Berninger et al., 2011), and as
introduced above Valenti et al (2012) observed significant increases in adult fathead
minnow light activity well below other standard ecotoxicological endpoints and above
human therapeutic plasma levels (Valenti et al., 2012). Although internal diltiazem
plasma concentrations of fish larvae could not be measured in the current study, literature
associating pharmaceutical tissue concentrations to relevant human therapeutic effects is
growing. As previously mentioned, the effects of low dose pharmaceutical exposure have
been linked to sublethal non-standard pharmacological endpoints with numerous
compounds (e.g. antidepressants, steroids) (Cuklev et al., 2011; Huerta et al., 2016;
Margiotta-Casaluci et al., 2014; Patel et al., 2016; Runnalls et al., 2015; Valenti et al.,
2012). These effects have been shown to be pH-dependent, another abiotic factor, in
which uptake and toxicity has been shown to increase with increasing pH related to the
non-ionized chemical species (Berninger et al., 2011; Nichols et al., 2015; Valenti et al.,
2009).

Diltiazem uptake into the gulf killifish (Fundulus grandis) has similarly been
demonstrated to be pH-dependent (Scott et al. unpublished data) with rapid gill uptake
occurring within hours. Bioconcentration and metabolism of diltiazem in juvenile
rainbow trout indicated the highest and lowest accumulated doses were in the kidney and
plasma, respectively (Steinbach et al., 2016b). The calculated half-life for diltiazem
across whole body tissues analyzed ranged from 1.5 h (liver) to 49 h (muscle) [33]. In the
same and follow up studies, 17 phase I diltiazem metabolites were detected in rainbow
trout (Koba et al., 2016; Steinbach et al., 2016b). In humans, diltiazem has three main

metabolites that are produced by phase I cytochrome p450 enzymes (CYP) 3A4 and 2D6
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among others (Law et al., 2013; Wishart et al., 2006). Hypoxia has been shown to inhibit
CYP activity (e.g. CYP1A) in multiple fish (Fleming and Di Giulio, 2011; Rahman and
Thomas, 2012) and mammalian model species (Fradette et al., 2007; Fradette and Souich,
2004). The toxicokinetic effects of hypoxia were not investigated in this study but
deserve future research to understand potential influences on internal pharmaceutical
bioavailability, clearance, and ensuing potential affects in fish.

Though acute and chronic survival were the most sensitive endpoints in the
present study, the long term low dose effects of diltiazem are yet to be understood.
Similar pharmacological effects in fish have been observed following diltiazem or other
CCB exposures illustrating conservation of CCB drug targets exists between mammals
and telesosts (Berghmans et al., 2008; Li et al., 2011; Steinbach et al., 2016a; Steinbach
et al., 2013; Verbruggen et al., 2017). Saari et al (2017) recently performed a global
hazard assessment of CCB in multiple environmental matrices to predict their
concentration across geographic regions. Environmental exposure distribution 5th and
95th centiles for all CCBs were 5.0 and 448.7 ng/L in effluent and 1.3 and 202.3 ng/L in
freshwater, respectively (Saari et al., 2017). Furthermore, based on the publicly reported
diltiazem fish plasma concentrations from freshwater and marine systems, the human
minimum therapeutic plasma level (Cmin = 30 ng/mL) was shown to be exceeded 17% of
the time. The full pharmacological and toxicological effects of diltiazem to aquatic
organisms, particularly in adult fish, in environmental matrices is unknown. While
several studies have reported the effects of CCBs and other heart medications (e.g. -
blockers), additional research is necessary especially with co-exposures involving other

pharmaceuticals and stressors.
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Human population growth and climate-induced physical habitat changes are
altering the physical, chemical, and biological characteristics of aquatic ecosystems
(Hartmann et al., 2013; Staudt et al., 2013). Global hypoxic occurrences in marine and
freshwater ecosystems introduce physiological constrains on fish populations (Breitburg
et al., 2018; Portner and Farrell, 2008; Portner and Knust, 2007; Whitney et al., 2016). In
the United States WQC are established to protect surface waters and their designated
uses, which include aquatic life. Recently published articles have demonstrated surface
water DO thresholds affecting organism growth and survival above the typical hypoxic
threshold (e.g. 2.0 mg DO/L) (Elshout et al., 2013; Saari et al., 2018; Vaquer-Sunyer and
Duarte, 2008). The DO concentrations used in the present study demonstrate typical high
aquatic life use WQC in the State of Texas, USA for streams and reservoirs which are
consistently impaired due to noncompliance of DO regulatory standards (Saari et al.,
2018). Multiple nonchemical and chemical stressors interacting in these aquatic systems
represent uncertainties to water quality assessments and thus ecosystem protection goals.
The present study evaluated the impacts of two common stressors in fish which represent
natural field conditions in urbanized surface waters throughout the world (Saari et al.,

2017).
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CHAPTER FIVE
Low Dissolved Oxygen Increases Uptake of a Model Calcium Channel Blocker By its
Effects on Adult Pimephales promelas
Abstract

Human population growth accompanied with urbanization has created an urban
water cycle where surface waters in some regions are dominated or dependent on
wastewater treatment plant discharges. These watersheds represent worst case scenarios
for exposure to multiple stressors such as down the drain chemicals (e.g.,
pharmaceuticals) and other environmental stressors (e.g., temperature, dissolved oxygen
(DO)). Multiple stressors have the potential to affect chemical exposure dynamics and
fish cardiac physiology leading to undesirable population trajectories. Recent field
observations from my laboratory group identified the calcium channel blocker diltiazem
in fish plasma exceeding human therapeutic doses (e.g., Cmin) In coastal estuaries
impaired due to nonattainment of DO water quality standards (WQS). Thus, objectives of
the present study were two-fold: 1) to examine whether DO influences diltiazem uptake
by fish; and 2) to determine whether changes in DO-dependent toxicokinetics influence
fish physiological and biochemical responses. My results identified that internal steady
state diltiazem concentrations in adult fathead minnows were reached at ~6 h versus ~24
h under low (3.0 mg DO/L) and normal (8.2 mg DO/L) DO conditions, respectively. Low
DO levels approximately doubled diltiazem uptake in fish relative to normoxic
conditions. Increased internal diltiazem concentrations were associated with significant

(p<0.05) increases in fish ventilation rate to enhance oxygen uptake at these low DO
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levels. During a subsequent study, decreased burst swim performance (Upust) of adult
fathead minnows was significantly (p<0.05) altered by low versus normal DO. DO x
diltiazem studies resulted in Upust reductions between 13-31% from controls, though
diltiazem effects were not dependent on DO (p = 0.06). Significant (p<0.05) increases in
plasma lactate levels between DO treatments was indicative of alterations in aerobic
metabolic energy demand-supply dynamics and supports the observed reductions in fish
swim performance. Physiological responses in fish exposed to diltiazem alone were
minimal; however, in co-exposure with low DO, decreasing trends in Upus were
measured and were inversely related to plasma lactate levels. The physiological
consequences of such trends in adult fathead minnows remain unknown but may indicate
potential interactive cardiac effects under low DO conditions at human therapeutic
diltiazem plasma concentrations. Such physiological responses to these multiple
stressors, when paired with internal tissue concentrations, identify the utility of
employing biological read across approaches to identify adverse outcomes of heart
medications and potentially other cardiotoxicants impacting fish cardiovascular function

across DO gradients.

Introduction
The continued global growth of the human population has created an urban water
cycle characterized by high chemical use, which enters the environment through
wastewater treatment plant (WWTP) effluent discharge to surface waters (Brooks, 2014;
Brooks et al., 2006; Postel, 2010). Coincidentally, 70% of the human population reside in

cities, typically located in close proximity to waterbodies, where local water resources are
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stressed from climate change, nutrient enrichment and contaminant loading (Brooks et
al., 2006, Heathwaite, 2010; Hooper, 2013). These stressors have been demonstrated to
influence chemical exposure scenarios and toxicological effects in aquatic organisms
(McKim and Erickson, 1991). Effluent-dominated or dependent aquatic systems
represent worst case scenarios for exposure to pharmaceuticals and other environmental
stressors (e.g., low dissolved oxygen; DO). Unfortunately, pharmaceutical occurrence in
surface waters (Halling-Sorensen et al., 1998; Kolpin et al., 2002; Ternes, 1998) and
biota (Brooks et al., 2005; Lazarus et al., 2015; Ramirez et al., 2009) are increasingly
reported in the literature causing concern to environmental managers due to their
physiochemical attributes and high biological activity (Ankley et al., 2007). Effective
water management is essential as our access to medicine is increasing faster than WWTP
infrastructure is implemented, particularly in developing regions. Further, excessive
nutrients accompanied with climate change exacerbates eutrophication and harmful algal
blooms that deplete DO in freshwater and marine ecosystems (Breitburg, 2002; Waiser et
al., 2011). Therefore, surface water integrity is often challenged by multiple stressors.
Unfortunately, influence of multiple stressors on chemical exposure dynamics and effects
in fish remain understudied (Armitage et al., 2017; Boxall et al., 2012; McKim and
Erickson, 1991).

Understanding how environmental factors influence partitioning of chemicals to
fish and how these organisms respond to multiple stressors has been previously examined
with persistent organic pollutants (POPs; McKim and Erickson, 1991) and then more
recently with pharmaceuticals (Nichols et al., 2015). My laboratory research group and

others also recently identified concentrations of the calcium channel blocker (CCB)
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diltiazem in fish tissue approaching and exceeding human therapeutic levels in fish
plasma sampled from urbanized watersheds (Du et al., 2014a; Fick et al., 2010a; Scott et
al., 2016; Tanoue et al., 2015). The extent of such conditions were examined in a global
probabilistic hazard assessment of CCBs, in which diltiazem was reported to exceed
minimum human therapeutic plasma levels (Cmin) in fish 17% of the time in fish from the
field (Saari et al., 2017). Consequences of such observations remain unknown but
predictive pharmaceutical assessment approaches (Huggett et al., 2003; Brooks, 2014)
indicate therapeutic risks to fish are likely due to drug target conservation of CCBs across
vertebrates.

Fish plasma modeling approaches, which were developed from physiological
based toxicokinetic modeling from empirically derived blood:water partition coefficients
(PB.w) in rainbow trout (Oncorhynchus mykiss) (Fitzsimmons et al., 2001; Huggett et al.,
2003) have been used to predict steady state internal pharmaceutical concentrations.
Using these models, therapeutic hazard values (THV) can identify water concentrations
predicted to bioconcentrate in fish plasma to a human therapeutic dose (Berninger et al.,
2011; Brooks, 2014; Fick et al., 2010b), and then can be employed to examine hazards of
surface waters, sewage and effluent discharges (Du et al., 2014; Kristofco et al., 2017;
Saari et al., 2017). In fact, I recently reported the global occurrence and hazards of CCBs
in various aquatic matrices (Saari et al.,, 2017). Diltiazem environmental exposure
distributions (EEDs) indicated WWTP effluent concentrations were the only water matrix
(e.g., freshwater, saltwater, influent) predicted to exceed a THV but only in
approximately 2.0% of the scenarios. However, diltiazem fish plasma concentrations

sampled in the field exceeded the minimum human therapeutic dose 17% of the time,
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suggesting that a more advanced understanding of diltiazem uptake and sublethal effects
to fish is necessary. The significance of such therapeutic plasma concentrations in fish are
unknown, particularly when such exposures co-occur with other environmental stressors
typically found in urbanized watersheds historically impaired due to nonattainment of
DO water quality standards (Scott et al., 2016).

The development of medicines altering ion entry to cells has enhanced our basic
understanding of calcium’s role in important biological processes and has been
instrumental for various disease treatments (Braunwald, 1982; Reuter, 1983). Diltiazem
is a CCB regularly prescribed to treat hypertension and angina, which acts as a
vasodilator and cardiodepressant (Spedding and Paoletti, 1992; Wishart et al., 2006).
Similar to verapamil, diltiazem shows greater sensitivity and activity in cardiac cells than
the peripheral vasculature thereby making it applicable for use to treat arrhythmias in
addition to hypertension (Spedding and Paoletti, 1992; Wishart et al., 2006). This
therapeutic agent primarily targets one of five-calcium channels in humans by blocking
the L-type channel, the major channel in muscle cells mediating contraction, and
preventing an influx of calcium into cardiomyocytes (Braunwald, 1982; Wishart et al.,
2006). Calcium influx inhibition decreases the contractile activity of cardiomyocytes
resulting in decreased force of contraction by the heart. Additionally, calcium channel
antagonism affects cardiac action potentials by decreasing conduction and increasing the
refractory period between contractions, which thus results in its use for treatment of atrial
fibrillations (Wishart et al., 2006). Thus, CCBs have the ability to treat a broad array of
cardiovascular disorders in humans. Based on comparative physiology and the

conservation of CCB drug targets in vertebrates, the plausibility of diltiazem to interact
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with fish calcium channels exists, particularly when levels approach and exceed human
Cmin plasma levels in fish plasma (Scott et al., 2016).

Several comprehensive reviews are available for the molecular and biochemical,
metabolic, physiological, and adaptive strategies in fish to oxygen limitations (Farrell and
Richards, 2009; Perry et al., 2009; Richards, 2009; Wells, 2009). Fish cardiovascular
responses to reduced oxygen are specific to individual fish regulation strategies that are
ultimately coordinated to balance cardiac metabolic energy supply and demand (e.g.,
adenosine triphosphate; ATP), including mechanisms to cope with metabolic waste
products (Richards, 2009; Stecyk, 2017). Mismatch ATP production and demand leads to
ATP-dependent ion pump failure (e.g., Nat/K+-ATPase) resulting in a disruption of
cellular membrane resting potentials and ionic integrity (Boutilier, 2001). Uncontrolled
calcium influx through voltage-gated channels initiates calcium-dependent breakdown of
proteins and phospholipids, ultimately leading to cell death (Boutilier, 2001). Thus,
disruption of calcium ion channels and homeostasis can lead to cardiac failure, reduced
swimming performance, and adverse outcomes in fish (Claireaux et al., 1995; Claireaux
et al., 2000; Herbert and Steffensen, 2005; van Raaij et al., 1996a; van Raaij et al.,
1996Db).

Recent studies examining the acute and chronic effects of DO x diltiazem
exposure to larval fathead minnows showed significant decreases in survival and growth
at typical water quality standard levels, including 3.0 mg DO/L (Saari et al, Accepted
with revision). Swim behavior studies with larval fish indicated general decreases in
swim behavior and significantly reduced bursting distance traveled, number of

movements, and duration in response to low DO or mg/L diltiazem concentrations. Other
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studies have reported pharmacological action following acute and chronic diltiazem and
verapamil exposures in larval zebrafish (Danio rerio) and fathead minnows (Pimephales
promelas) and juvenile rainbow trout (Oncorhynchus mykiss) at pg/L to mg/L
concentrations. Such effects observed were in CCB target tissues and were plausibly
similar to the mode of actions of these CCBs, resulting in reduced fish heart rate (Saari et
al, Accepted with revision; Parker et al., 2014) and stroke volume (Parker et al., 2014)
and histological changes in heart and liver blood vessels that were suggestive of
vasodilation (Steinbach et al., 2016). The cardiovascular and organism level
consequences of such responses in fish are poorly understood, particularly in conjunction
with environmental factors such as DO, which share molecular and biochemical
perturbation pathways in fish. Therefore, the objective of the present study was two-fold:
1) to examine whether DO influences diltiazem uptake by fish; and 2) to determine
whether changes in DO-dependent toxicokinetics result in changes in adult fathead

minnow burst swim performance and biochemical endpoints.

Materials and Methods

Experimental Animals

Fathead minnows (P. promelas) used in all studies were obtained from cultures at
Baylor University originating from the U.S. Environmental Protection Agency (EPA)
laboratories in Duluth, MN and Cincinatti, OH and Environmental Consulting & Testing
in Superior, WI. Adult male fathead minnows were cultured in dechlorinated tap water
according to US EPA recommendations. Fish were cultured at 25 £ 1 <C on a 16:8-h

light:dark cycle and were daily fed flake food (~ 1.5% body weight) in the morning
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followed by artemia and flake food in the evening. A summary of the ages and mean

weight of fish used from each treatment is provided in Table 14.

Dissolved Oxygen Regulation and Diltiazem Treatment Levels

Waterborne DO x diltiazem exposures were conducted with multiple semi-flow
through exposure systems previously employed in our laboratory (Nichols et al., 2015)
under identical light and temperature conditions used during culture. Dechlorinated tap
water, as noted above, was used for all experiments due to large volumes requirements.
Routine water chemistry parameters were measured throughout each study including DO,
temperature, pH, conductivity, chlorine, ammonia, nitrite, alkalinity, and hardness
according to established methods (American Public Health Association et al., 1998).
Diltiazem hydrochloride was obtained from Sigma-Aldrich (St. Louis, MO, USA; CAS #
33286-22-5; 99% purity).

DO water concentrations were regulated by mixing both nitrogen gas and air that
were then infused in each experimental chamber as detailed previously (Saari et al.,
Accepted with revision). Briefly, gas was regulated using RiteFlow meters (Scienceware
Bel-Art Products, Wayne, NJ, USA). DO treatment levels were maintained consistently
and continually with individual nitrogen and air Riteflow meters per treatment level.
Each N2-air regulator pair delivered gas that was mixed in sealed PVC chambers (4” x
24” x 1/8”) filled with bioballs. A single effluent line ran gas to a climate controlled
walk-in incubator where gas infusion levels were manually adjusted from a 6-port
manifold to achieve desired DO treatment levels. Gas was then bubbled into experimental
exposure headboxes. DO x diltiazem control and chemical exposures were conducted in

semiflow-through recirculating exposure systems. Headboxes were infused with gas, as
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described above, to maintain desired DO levels. Each exposure system headbox provided
a single diltiazem concentration to 3 (bioconcentration study) or 4 (swim performance
study) replicate aquariums. To maintain stable pH and aqueous concentrations of
diltiazem, study solutions were partially renewed every 12 h by approximately 50%.
Daily water replacement was approximately 100%. Samples for traditional water
chemistry parameters and for analytical verification of diltiazem treatment levels were
taken at the start and end of each study and before and after each water renewal. DO and
diltiazem water concentrations were selected from preliminary uptake experiments and
previous acute and chronic studies with juvenile fathead minnows (Saari et al., Accepted
with revision). Diltiazem water treatments were based on empirical data, fish plasma
modeling, and therapeutic hazard values (THV) employed previously in our laboratory
(Brooks, 2014; Du et al., 2014a). The THV is the pharmaceutical water concentration
expected to bioconcentrate in fish plasma within the human therapeutic range (e.g., Cmin -
Cinax; Brooks, 2014).

Fathead minnows were acclimated to DO conditions prior to introduction to
experimental systems. Fish from culture tanks were transported to experimental systems
in 10 gallon aquaria. Thus, acclimations were done in 10 gallon tanks with 30 L
dechlorinated tap water. An airstone bubbling a mixture of N»-air gas (described below)
was placed in each tank and DO levels were decreased by 0.8 mg/L per 15 minutes to
approximately 3.25 mg DO/L. Based on preliminary study observations of fathead
minnows to decreasing DO, DO conditions for fish were lowered to 3.25 mg DO/L over
1.5 h, similar to previous fathead minnow hypoxia studies (Robb et al, 2003). Fathead

minnows have been reported to initiate aquatic surface respiration at 9% DO saturation
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(Gee et al, 1978). Further, we previously identified 48 h DO LCso values at 1.7 mg DO/L
in larval P. promelas; therefore, experimental DO levels were selected above such values

to prevent fish mortality.

Dissolved Oxygen x Diltiazem 96 h Bioconcentration Study

Two experiments were performed to determine whether DO influences diltiazem
uptake by adult fathead minnows. These conditions included either 8.2 or 3.0 mg DO/L
during separate experiments. Since water pH has been demonstrated to influence the
uptake of weak base pharmaceuticals by fish, pH was monitored during this study. As
mentioned above, DO levels were maintained by infusing air or mixed gas in headboxes
of the experimental system. Headboxes circulated normal (8.2 mg DO/L) or low (3.0 mg
DO/L) oxygenated water via submersible pumps in 3 replicate 20 liter glass aquaria
according to previously described methods in our laboratory (Nichols et al., 2015).
Experiments were initiated at identical times with the same batch of water and conducted
for 96 h. Fish from 3 replicate aquaria were sampled at 0, 1, 6, 24 and 96 h, then
anesthetized with tricaine methanesulfonate (MS-222), weighed, measured for total
length, and blood collected from the caudal artery using heparinized microhematocrit
capillary tubes. Plasma was separated via centrifugation at 8,000 x g for 10 minutes at
4°C and was stored at -80 °C until processed. Fish plasma and tissue were pooled from
two fish per experimental unit giving 3 replicate samples for each exposure system and
duration.

To compare the differences in diltiazem accumulation across DO treatments,

bioconcentration factors (BCFs) were calculated from whole body homogenates as
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previously described (Arnot and Gobas, 2006). BCFs are defined as the ratio of target
analyte (diltiazem) detected in biota and the associated water concentration. Furthermore,
blood-water partition coefficients (Pg.w) were predicted and calculated for each exposure
duration from analytically verified plasma levels and mean exposure water
concentrations, similar to previous studies (Margiotta et al, 2014). Using the whole body
tissue BCF and Pg.w values (Vp) was calculated in 96 h studies similar to previous
methods (Nichols et al., 2015) examining the utility of pharmacokinetics.

Measured fish plasma concentrations were compared to predicted internal
concentrations by the fish plasma model. This model predicts fish steady state plasma
concentrations (FssPC) starting from a given water concentration, which is based on
equations previously described (Huggett et al, 2003), to calculate the Log PBiood:water
partition coefficient using the Log Kow. However, pH has been previously reported to
significantly affect ionization, bioavailability, and toxicity of model weak base
pharmaceuticals (Valenti et al, 2009; Berninger et al, 2011). For this reason, Log D, (n =
mean experimental pH) was used to run the model instead of Log Kow. FssPC were
determined by multiplying the water concentrations and Pgiood:water. Then, the analytically
verified diltiazem water concentration was used to compare measured versus predicted

plasma concentrations.

Dissolved Oxygen x Diltiazem Swim Tunnel Studies
DO and diltiazem exposures were conducted in identical experimental systems
mentioned above, and all studies were performed separately due to the intensive time

requirement of swim performance observations. DO and diltiazem concentrations were
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similarly sampled as mentioned above. Experiments were conducted over 24 h and were
performed on separated days due to the intensive time requirements of swim performance
observations. Two fish from 4 separate aquaria were sampled and measured for
ventilation rate, burst swimming performance, hematocrit, L-lactate, and diltiazem tissue
accumulation. Each specific endpoint and measurement protocol are described in detail
below. Plasma was sampled and separated as previously described above. Individual fish
plasma samples were split into two aliquots for biochemical analysis and analytical
determination. Analytical fish plasma samples were then pooled from each replicate and
stored at -80 “C until processed.

Ventilation rates were examined after 24 h exposure to DO and diltiazem by
GoPro (Hero black 5; GoPro Inc. 2017) video recording each fish from all replicate
aquaria prior to swim performance trials for 15 minutes. Fish videos were individually
observed using VLC Media Player (3.0.3 Vetinari; VideoLAN Organization) to slow
down (e.g., 40-50%) normal video speed to accurately quantify opercular movement.
Videos were observed and after a five-minute camera acclimation time, individual fish
opercular movements were recorded 3 times approximately 1 minute apart at 10-15
second intervals (depending on fish orientation in tanks) to calculate ventilation rates
(beats/second). After video recording ventilation rates, fish were individually exercised to
determine burst swimming performance.

After recording fish ventilation rates, one fish was randomly selected per replicate
to measure burst swimming performance (Upurst) in a Brett-type swim tunnel (Brett, 1964)
previously described in our laboratory (Brooks, 2002; Stanley, 2006). Briefly, a single

swim tunnel was immersed in a 40-gallon aquarium of water corresponding to the studied
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exposure conditions. The swim tunnel consisted of a 450 mm x 75 diameter acrylic tube
with 1 mm mesh at each end. Water was pumped through the tunnel using a 0.5
horsepower centrifugal pump at a maximum speed of ~70 cm/s. Fish were anesthetized
with 60 mg/L MS-222 buffered with 120 mg/L sodium bicarbonate for 1 minute and
transferred into a black tarp enclosed swim tunnel to acclimate undisturbed for 30
minutes (Tierney et al, 2011). Flow rates were determined using a March-McBirney
(Frederick, MD, USA) flow meter. The acclimation flow rate was set at 2.3 cm/s (e.g.,
0.08 ft./s) or ~0.3 BL/s (e.g., 7.0 cm total length) in order to remove waste while allowing
fish to rest on the bottom (Tierney et al, 2011).

To examine fathead minnow burst swimming performance, a constant
acceleration test was used at a 10 cm/s and 1 minute step height and length, respectively.
The initial flow rate was 10 cm/s and fish were exercised until fatigued. Fatigue was
determined by the fish ceasing to swim and being caught against the mesh after several
gentle prods (Brett, 1964). Critical burst swimming speed was calculated as

Uburst = w1 + (1 /12 x uz) €))
where u; = last step height completed by fish (cm/s), uz = the step height (cm/s), t| = the
time fish swum at fatigue speed, and t = the step length (seconds; Brett, 1964, Tierney et
al, 2011). Critical burst swimming speed of each fish was normalized to body length (cm;
Brett, 1964; Tierney et al, 2011). After swim performance trials, fish were anesthetized in
200 mg/L MS-222 and 400 mg/L sodium bicarbonate and measured for total length and
weight. Fish blood was collected, as mentioned above, and separated into red blood cells
and plasma which was aliquoted into two microcentrifuge tubes prior to storage at -80 °C

for analytical and biochemical (e.g., lactate) analysis. Immediately after centrifugation,
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red blood cells were used to determine hematocrit according to previously methods

(Hesser, 1960).

L-Lactate Plasma Concentration

Individual fish plasma samples collected after swim performance trials were
analyzed for L-lactate using an assay kit from Cayman Chemical Company (Ann Arbor,
MI, USA). Fish plasma from three tank replicates were examined for L-lactate. In this
assay, lactate was measured by NADH production and reaction with a fluorescent
substrate yielding a highly fluorescent product. Lactate dehydrogenase catalyzes the
oxidation of lactate to pyruvate and reduces NAD+ to NADH. Fathead minnow plasma
samples were removed from storage at -80 °C and prepared for assaying according to kit
manufacturer instructions. Based on preliminary plasma lactate examinations, samples
were diluted 1:7 using Ultrapure water (Cayman Chemical Company). Fluorescence was
analyzed using an excitation and emission wavelengths at 530 and 590 nm, respectively.

Plasma lactate (units) was then calculated and compared across treatment levels.

Analytical Methods for Water and Tissue

Experimental water treatments and tissue samples from each uptake and swim
performance study were analytically verified following previously reported methods
(Saari et al, In Press; Haddad et al., In press). Water and tissue (e.g., plasma and whole
body-homogenates) samples were analyzed following extraction by isotope-dilution
liquid chromatography tandem mass spectrometry (LC-MS/MS) using previously

reported instrumental parameters (Bean et al., 2018; Haddad et al., In press).
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Statistical Analyses

Data is presented as mean + standard deviation (SD; x studies) or standard error
(SEM; x studies). Differences in uptake across time, treatments, and DO conditions were
examined using general linear models in SPSS (IBM SPSS Statistics 25, Chicago, IL,
USA). Significant differences within each DO or diltiazem treatment were determined
using one-way analysis of variance (ANOVA) in Sigma Plot 11.0 software (Systat
Software 323 Inc., San Jose, CA, USA). Similarly, differences in physiological endpoints
across DO x diltiazem studies were determined using Two-way ANOVA with multi-
comparison Holm-Sidak Test to examine whether DO significantly influenced fish

responses across diltiazem treatment levels.

Results

DO x Diltiazem 96 h Bioconcentration Studies

Water quality parameters among all exposure systems were within acceptable
levels (Supplementary: Table 21). Fish survival in normal DO x diltiazem studies was
100% but mortalities were observed under low DO x diltiazem conditions in three
separate studies (Table 14). Mean (£SE) normal and low DO concentrations across all
four experimental durations were 7.23 + 0.2 mg DO/L and 3.07 + 0.1 mg DO/L (Table
15). For normal and low DO treatments, measured diltiazem concentrations were 0.84 +
0.03 pg/L and 0.83 + 0.04 pg/L, respectively (Table 15). Fig 16A and 16B describe the
bioconcentration of diltiazem in plasma and whole-body tissues of fathead minnow
following the uptake experiments. Fish exposed to both DO treatments significantly (p <

0.05) accumulated diltiazem across nearly all experimental durations, even after 1 h
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exposure (Fig. 16A and Fig. 16B). Internal steady state levels of diltiazem were rapidly
established at 24 h and 6h at normal and low DO conditions, respectively (Table 15).
Diltiazem accumulation in fish plasma and whole-body tissues were significantly (p <
0.05) different across DO conditions. Time specific diltiazem accumulation data was
used to calculate whole-body bioconcentration factors (BCFs), blood:water partition
coefficients (Pg.w), and volume of distribution (Vp) values. Measured BCF values
increased with increasing exposure duration and low DO treatment ranging from 2.0-6.2
and 3.7-16.8 for normal and low DO levels, respectively (Table 15). At steady state, fish
at low DO levels had ~2X higher BCF values than fish at normal DO concentrations.
Pg.w values also increased with increasing exposure duration at low DO levels compared
to normoxic conditions. Conversely to BCF and Pg.w value trends at normal and low DO
concentrations, apparent Vp were similar across in fish under normal DO levels (1.8-3.4)

and low DO conditions (1.0-2.7; Table 15)
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Table 14. Mean (+SE) values for fathead minnow (Pimephales promelas) weight, total body length (BL),
and age of fish used in DO x diltiazem bioconcentration (N=3, n=2) and burst swim performance (N=4,
n=2) studies. Fish in DO x diltiazem studies were measured immediately after each bioconcentration study
or swim tunnel trial. Normal: 8.2 mg DO/L. Low: 3.0 mg DO/L.

Time Point Age

(h) Weight (g) BL (cm) (months) N/n

Bioconcentration study
Normal DO x 0 83.77+0.3 6.51+0.1 18 3/9
DZM 1 12.8 £0.8 9.62+0.3 18 3/6
6 10.8£0.9 9.38+04 18 3/6
24 10.0+1.3 8.83+0.2 18 3/6
96 11.7+0.8 9.28+0.3 18 3/6
Low DO x 0 ®11.5+£0.8 8.90 + NA 18 11
DZM 1 125+1.8 9.64+0.5 18 °3/5
6 8.20+0.5 8.52+0.2 18 43/5
24 144 +£2.0 9.78 +£0.3 18 °3/3
96 11.2+0.3 9.79+0.2 18 3/6

DO x diltiazem burst swim performance study

Normal DO x 24 5414+0.2 7.65+0.2 8 4/8
DZM control

Normal DO x 24 5.61+0.4 7.61+0.2 8 4/8
DZM 3.0

png/L

Normal DO x 24 6.19+0.1 7.81+0.0 8 4/8
DZM 30 pg/L

Low DO x 24 5.74+0.3 7.74 £ 0.1 8 f4/7
DZM control

Low DO x 24 6.34+0.5 8.06+0.2 8 e4/7
DZM 3.0

ng/L

Normal DO x 24 6.20+ 0.3 7.76 £0.1 8 4/8
DZM 30 pg/L

(a) Indicates female fish were used as controls for tissue analyses. (b) Indicates one male fish was used
control for tissue analyses due to a limited supply of male fathead minnows. (¢) One fish euthanized after
handling error (flopped out of net onto floor) during 0 h introduction to exposure tank. (d) One fish died
approximately 3 hours into exposure. (e¢) One fish from each replicate died approximately 6 h into 24 h DO
x diltiazem exposure. The remaining fish in replicate tanks displayed normal fish behavior; therefore, the
remaining fish were included in the study. (f) One fish was euthanized while loading into replicate tank #3
due to 0 h loading error (fish flopped out of net onto floor). (g) One fish died overnight after ~12 h
exposure to low DO x diltiazem 3.0 pg/L.
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Figure 16: Mean (£SD, N=4, n=1-2) measured concentration of diltiazem in A) plasma and B) whole-body
tissue of male adult fathead minnows (Pimephales promelas) following 96 h normal and low dissolved
oxygen (DO) x diltiazem (1 pg/L) studies. Normal and low DO x diltiazem studies were conducted
separately. Tissue samples were collected across five time points throughout each 96 h DO x diltiazem
uptake experiment (0, 1, 6, 24, 96 h). Black and white circles represent normal (8.2 mg DO/L) and low (3.0
mg DOJ/L) levels, respectively. Different letters in the same group (capitalized or not capitalized)
correspond to significant (p < 0.05) differences. #: significant (p < 0.05) influence of DO.

Dissolved Oxygen x Diltiazem Swim Tunnel Studies

Water quality for all experimental units were within acceptable ranges
(Supplementary: Table 21). Fish survival in normal DO x diltiazem studies were 100%
and one mortality occurred under low DO x diltiazem 3.0 pg/L conditions (Table 14).
Mean (£SE) normal and low DO concentrations across all three diltiazem studies were
7.83 £ 0.2 mg DO/L and 3.19 + 0.1 mg DO/L, respectively (Table 15). For normal and
low DO treatments, mean (+SD) measured diltiazem concentrations were 0 (control), 3.2
+ 0.6 pg/L, and 36.5 + 3.4 pg/L and 0 (control), 3.1 = 0.5 pg/L, and 33.5 £ 2.9 pg/L,
respectively (Table 15). The highest diltiazem treatment is ~70% lower than the 100 pg/L
nominal diltiazem concentration, yet still in the human therapeutic range described
above. Concentrations of diltiazem in fathead minnow plasma and whole-body tissue are
represented in Fig. 17A and 17B, respectively. Similar to the bioconcentration study, fish

exposed to both DO conditions accumulated diltiazem at all treatments levels, except
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control. Internal diltiazem levels of fish exposed at low DO concentrations were higher
than those in normal DO treatments (Table 15). Like the bioconcentration study, data
from each diltiazem treatment were used to calculate mean fish tissue BCFs, and Pg.w
and Vp values. Measured BCF values were higher in low DO treatments ranging from
4.4-5.2 and 9.2-11.6 at normal and low DO levels, respectively. In 24 h exposures, fish at
low DO levels had approximately 2X higher BCF values than fish at normal DO
conditions. Similarly, Pg.w values were higher at low DO concentrations compared to
normal DO levels (Table 15). Diltiazem apparent Vp was not different in fish exposed at
normal DO levels (0.7-1.7) relative to low DO treatments (0.6-1.3) across all treatments
(Table 15).

Fish exposed to 3.1-3.2 pg/L diltiazem at normal and low DO conditions resulted
in plasma concentrations below and above the minimum human therapeutic plasma level,
respectively. However, both DO treatments levels at 33.5-36.5 pg/L diltiazem resulted in
fish plasma levels near and above the maximum human therapeutic level in normal and
low DO treatments, respectively. Interestingly, when measured and predicted fish plasma
diltiazem levels were compared, models overestimated internal plasma concentrations by
15x and 30x and 6x and 11x at both low and high diltiazem treatment levels under normal
and low DO conditions, respectively. Therefore, low DO exposure conditions resulted in
fish plasma concentrations above human therapeutic levels and decreased the difference
between predicted versus measured fish plasma concentrations.

Ventilation rates measured prior to swim tunnel trials revealed a significant (p <
0.001) increase in fish operculum frequency exposed to low DO (Fig. 18A). Low DO

increased fish ventilation rates by 143% relative to normal DO conditions when
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comparing diltiazem controls. Diltiazem slightly increased ventilation rates across
treatment levels at normal DO levels by 5.0% and 32% relative to control (3.2 and 36.5
ng/L, respectively), but such potential increases were not statistically significant (p =
0.112; Fig. 18). A significant interactive effect of diltiazem and DO on ventilation rate
was not observed (p = 0.074); however, rates were lower with increasing diltiazem
concentration under low DO conditions by 15% and 61% at 3.1 and 3.5 pg/L diltiazem,
respectively.

Burst swimming performance (Ubust) Was evaluated using an acceleration test to
determine whether 24 h exposure to DO x diltiazem impaired fathead minnow bursting
ability. DO significantly (p < 0.001) decreased Upust relative to normal DO conditions
(Fig. 18B). Low DO decreased fish bursting performance by 12.8% relative to normal
DO conditions when comparing diltiazem controls. Diltiazem did not significantly (p =
0.687) increase Upurst across treatment levels at normal DO levels (Fig. 19). Here again, a
significant interactive effect of diltiazem and DO on swim performance was not observed
(p = 0.085), although Upurst was lower by 16.4% and 14.5% at 3.1 and 33.5 pg/L at low
DO levels relative to diltiazem controls.

Hematocrit was evaluated to determine whether 24 h exposure to DO x diltiazem
altered adult fathead minnow red blood cell volume. The effect of diltiazem on
hematocrit was dependent on DO conditions (p = 0.041; Fig. 19A). In 3.2 and 3.1 pg/L
diltiazem treatments, hematocrit significantly (p = 0.022) increased by 23% at normal and
low DO concentrations. Additionally, under low DO conditions, 3.1 pg/L diltiazem was
significantly higher than O (control) and 33.5 pg/L by 30.3% and 27.1%, respectively.

Fish hematocrit was unchanged (p = 0.752) under normal DO conditions (Fig. 19A).
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Figure 17: Mean (£SD, N=4, n=1-2) measured concentration of diltiazem in plasma of male adult fathead
minnows (Pimephales promelas) following 24 h normal and low dissolved oxygen (DO) x diltiazem (0, 3,
30 pg/L) studies. Normal and low DO x diltiazem studies were conducted separately. Black and white
circles represent normal (8.2 mg DO/L) and low (3.0 mg DO/L) levels, respectively. Different letters in the
same group (capitalized or not capitalized) correspond to significant (p<0.05) differences between
diltiazem water concentrations. #: significant difference between DO conditions (p<0.05).

146



) ~

2 (4]

= A # M 6.2 mg DO/L % slB # M &2 mg DO/L

E | [ 3.0mg DOL o I 30mgDOL

B § o |

T 300 1 [ 1 = [ I !

2 , ! g :

1 - T L g

© 0 6

& £

=

S 200 @ T

= B

H 3 4 s ol

o m

> “

K] &

°

£ 100 4 é

g S 2]

P 8

° 2

o

§ :

E 0 & 0

o 0 3 30 0 3 30
Diltiazem (ug/L) Diltiazem (ug/L)

Figure 18: Mean (+SE, N=4, n=1-2) ventilation rate (beats/minute; A) and burst swimming performance
(BL/sec.; B) by male adult fathead minnows (Pimephales promelas) following 24 h normal and low
dissolved oxygen (DO) x diltiazem (0, 3, 30 pg/L) experiments. Normal and low DO x diltiazem studies
were conducted separately. DO and diltiazem concentrations are nominal to increase clarity but measured
concentrations are in Table 15. Black and gray bars represent normal (8.2 mg DO/L) and low (3.0 mg
DO/L) levels, respectively. *: p < 0.05 (diltiazem). #: p < 0.05 (DO). BL/sec.: body length per second.
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Figure 19: Mean (+SE, N=4, n=1-2) hematocrit (%; A) and plasma lactate (uM; B) of male adult fathead
minnows (Pimephales promelas) following 24 h normal and low dissolved oxygen (DO) x diltiazem
experiments. Normal and low DO x diltiazem studies were conducted separately. DO and diltiazem
concentrations are nominal to increase clarity but measured concentrations are in Table 15. Black and gray
bars represent normal (8.2 mg DO/L) and low (3.0 mg DO/L) levels, respectively. *: p < 0.05 (diltiazem).
#:p <0.05 (DO).

L-Lactate Plasma Concentrations
L-lactate (lactate) was measured in plasma to determine whether DO x diltiazem

altered energy supply-demand dynamics in fathead minnows. Low DO conditions
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significantly (p = 0.002) increased lactate concentrations relative to normal DO levels
(Fig. 19B) by 92.4% when comparing diltiazem controls. A slight though insignificant (p
= 0.165) increase in plasma lactate was observed across diltiazem treatments under
normal DO conditions relative to control. No significant (p = 0.131) interaction effects
were observed between diltiazem and DO; however, lactate was lower by 10.7% and
40.3% at 3.1 and 33.5 pg/L diltiazem at low DO levels relative to the low DO diltiazem

control (Fig. 19B).

Discussion

Urbanized watersheds represent worst case scenarios for fish exposure to multiple
stressors including pharmaceuticals (e.g., diltiazem) and low DO (Breitburg, 2002;
Brooks et al., 2006; Waiser et al., 2011). While our understanding of ionizable chemical
toxicokinetics and toxicodynamics is growing, empirical evidence demonstrating how
environmental factors (e.g., DO, temperature) influence their uptake and toxicity remains
poorly understood. In the present study, we examined whether low DO influences the
bioconcentration of diltiazem, a model weak base cardioactive medicine, and the
physiological effects in adult fathead minnows. Numerous field sampling studies have
reported diltiazem accumulation in fish and birds inhabiting urbanized watersheds (Du et
al., 2014b; Fick et al., 2010a; Lazarus et al., 2015; Ramirez et al., 2009; Tanoue et al.,
2015). Furthermore, this CCB has approached and exceeded minimum human therapeutic
levels in fish plasma sampled from urban estuaries along the Texas Gulf of Mexico (Scott
et al., 2016). These same watersheds have a history of fish kills attributed to hypoxic

conditions and have been registered on the Texas 303(d) list for nonattainment of DO
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water quality criteria (Brooks et al., 2008; Thronson, 2008). Unfortunately, the influence
of low DO on chemical exposure dynamics and effects in fish remain understudied. The
present study demonstrated that DO influences diltiazem uptake and altered some
physiological responses in fish.

Bioconcentration of diltiazem in fathead minnows was highly dependent on DO
conditions in the present study. Steady state plasma and tissue concentrations were
achieved by approximately 24 h in normal conditions, but were observed in just 6 h in
low DO treatments. Measured internal diltiazem concentrations were significantly
(p<0.05) higher in fish under low DO conditions, but similar to diltiazem muscle
concentrations in 21 d and 42 d normoxic bioconcentration studies with rainbow trout
(Steinbach et al, 2016). Whole body BCFs were ~2X higher at low DO levels relative to
normal DO conditions. Thus, low DO conditions influenced the bioconcentration of
diltiazem, a model weak base, similar to previous studies with POPs (Blewett et al, 2013;
Brauner et al., 1994; McKim and Erickson, 1991; McKim and Goeden, 1982; Yang et al.,
2000). Metabolic oxygen consumption (MO2) has been positively correlated with
increased chemical uptake of ethinylestradiol (EE2), 1,2,4,5-tetrachlorobenzene, and
endrin (Blewett et al, 2013; Brauner et al., 1994; McKim and Goeden, 1982; Yang et al.,
2000). Killifish (Fundulus heteroclitus) MOz was positively associated with increased
EE2 uptake during exercise trials but only slight increases were measured following 2 h
hypoxia exposure studies (Blewett et al, 2013). Killifish are tolerant to hypoxia and the
results reported by Blewett et al. (2013) support this classification; however, EE2 tissue
accumulation slightly increased under hypoxic conditions and decreased MO>. McKim

and Goeden (1982) demonstrated brook trout oxygen utilization and endrin uptake
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efficiency decreased with increasing ventilation volume under various short term hypoxic
studies. Interestingly, endrin uptake increased with decreasing DO and uptake efficiency
but plateaued between 50 and 30% oxygen saturation at 11-12 °C.

Fish use various physiological and biochemical strategies to cope with less than
optimal DO concentrations. Initially, when decreased oxygen levels are detected, fish
increase ventilation frequency or amplitude to boost water flow across the gills and
perfuse additional gill lamellae to increase oxygen uptake (Randall, 1982). Thus, low DO
levels can result in increased ventilation, which increases water flow to gill lamellae, and
has been suggested to be one factor influencing chemical uptake for compounds with log
P values < 6.0 under normoxic conditions (McKim and Erickson, 1991). As DO levels
decrease, fish oxygen consumption and chemical uptake increases but eventually plateaus
despite high respiratory volumes due to shorter water residence time in gill lamellar
channels (McKim and Erickson, 1991). Under maximum respiratory volumes, chemical
uptake shifts and is dictated by chemical diffusivity parameters instead of water flow
across gill epithelium (McKim and Erickson, 1991; McKim and Goeden, 1982). It is
unknown whether oxygen and diltiazem uptake plateaued in the present study (~36%
saturations at 25 °C). Fathead minnows are relatively tolerable to hypoxia in comparison
to salmonids; for example, aquatic surface respiration by fathead minnows was reported
to occur at 9% DO saturation at 24 °C (Gee et al., 1978). Therefore, lower DO conditions
than those examined in the present study may further influence diltiazem uptake in
fathead minnows. Additional studies are necessary to determine modes of increased

chemical uptake across fish species (e.g., warm and cold water species) to examine
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whether enhanced uptake is attributed to one or both strategies to increase oxygen
consumption (e.g., increased water flow or gill lamellae surface area).

Previous studies with environmental factors have also reported differential
chemical uptake due to bulk water pH level and pH at the gill microenvironment. In the
present study, mean (£SE) bulk exposure water pH was 8.1+0.02 and 8.4+0.01 under
normal and low DO levels, respectively. Our laboratory previously demonstrated that
uptake of the ionizable weak base diphenhydramine was elevated with increasing pH in
96 h adult male fathead minnow studies (Nichols et al., 2015). Furthermore, pH
conditions at the gill microenvironment were reported to influence chemical uptake of
weak acids due to the elimination of metabolic acids at gill lamellae, which altered
chemical ionization (Erickson et al, 2006). Fish ventilation rates were not measured in 96
h bioconcentration studies of the present manuscript, although visual observations
indicated increased ventilation at low DO. Enhanced respiratory volumes increase water
flow across gill lamellar channels, which has been suggested to be one of the limiting
factors for chemical uptake (McKim and Erickson, 1991). Elevated ventilation rates will
result in increased water flow across gill lamellae and minimize the metabolic acid
induced decrease in pH at the gill microenvironment. In the present study, bulk water pH
conditions in exposure aquaria resulted in 52% and 66% of diltiazem to be non-ionized
(pKa = 8.06) at normal and low DO levels, respectively. However, the fish plasma model
with log D calculated Pg.w values predicted nearly identical internal fish plasma
concentrations (53.9 and 53.2 pg/L at normal and low DO levels, respectively) when
empirical study conditions were incorporated (e.g., mean pH, mean 96 h water

concentration). Therefore, differences in uptake across DO conditions are potentially due
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to other factors besides bulk water pH, such as increased water flow, metabolic acid
elimination, and lamellae perfusion at the gills. Additional studies using identical bulk
water pH conditions across multiple DO levels is necessary to determine which key
factor predominantly influences ionizable weak base uptake. This research appears
particularly important since diltiazem has been reported to approach and even exceed
Cnmin levels in saltwater more frequently than freshwater systems (Saari et al, 2017; Scott
etal, 2016).

When oxygen uptake fails to sufficiently match aerobic metabolic demand,
reductions in fish activity commonly occur to minimize the metabolic consequences
resulting from a lack of oxygen and limited ATP production (Dutil et al., 2007; Jones,
1971; Richards, 2009). Results from the present study revealed impaired fish Upurst at low
DO levels (~13%; 3.19 = 0.1 mg DO/L) following 24 h acute studies. Conversely, fish
Upburst in acute diltiazem studies remained unchanged; however, decreased fish swim
performance was observed in DO x diltiazem co-exposures, though insignificantly (p =
0.085), and thus requires additional study to determine if higher diltiazem exposure levels
would adversely affect this important physiological endpoint. Reductions in swim
performance is commonly associated with decreased metabolic scope (Dutil et al., 2007).
Such responses have been attributed to increased metabolic stress by either adding costs
to routine maintenance (e.g., basal metabolism) or limiting the maximum oxygen
consumption (Brett, 1958). Atlantic cod exposed to low DO conditions similarly
experienced decreased swim performance which corresponded to measurable metabolic
constraints (Chabot and Claireaux, 2008; Claireaux et al., 1995; Dutil et al., 2007;

Herbert and Steffensen, 2005). Changes in fish blood constituents and metabolites (e.g.,
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lactate, glucose) during hypoxic exposures reflect metabolic constraints to aerobic
respiration and are indicative of shifts in energy supply and demand dynamics (Burton
and Heath, 1980; Ishibashi et al., 2002; Muusze et al., 1998; van Raaij et al., 1996a; van
Raaij et al., 1996b). In support of the above mentioned blood metabolite changes, fathead
minnow plasma lactate levels were significantly higher at low versus normal DO levels
(Fig. 19), while diltiazem had no significant (p = 0.165) effect on plasma lactate. Fathead
minnows are moderately tolerant to low DO conditions. Gee et al (1978) reported 50% of
fathead minnows exposed to declining DO at 16.5 °C initiated surface respiration and
decreased activity declined at 13.7 Torr. Saari et al (2018, In press) reported a 48 h LCso
value of 1.7 mg DO/L for larval fish. In the present study, plasma lactate levels in fish
exposed to DO x diltiazem were not significantly (p = 0.131) decreased with increasing
diltiazem concentration, contrary to previous results demonstrating DO-dependent lactate
tissue accumulation (Burton and Heath, 1980; van Raaij et al, 1996b; Muusze et al,
1998). Interestingly, metabolic alterations were similarly observed in rats under
hemorrhagic shock following diltiazem intravenous injection (Maitra et al, 1991).
Diltiazem treated rats experienced beneficial reductions in plasma glucose levels and
heart rates but were accompanied with increased plasma lactate levels. Whether diltiazem
provides similar beneficial effects in fish are unknown. Additional studies examining
temporal metabolic metabolite fluctuations is necessary to pinpoint the physiological
responses in fish, particularly under the above described conditions. Furthermore,
additional research is needed to understand the pharmacodynamic mechanism of these
potential physiological responses (e.g., adverse or beneficial). The present study results

suggest decreases in swim performance may be due to pharmacological effects in fish,
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similarly observed in other fish models following diltiazem exposure (Steinbach et al,
2016). In the present study, such physiological responses were observed at fish plasma
concentrations within and above human therapeutic level. The consequences of such
responses in fish remain unknown but deserve further research, particularly when
pharmacological activity of diverse medicines has been previously reported in fish
(Brodin et al, 2013; Cuklev et al, 2011; Huerta et al, 2016; Margiotta-Casaluci et al,
2014; Runnalls et al, 2015; Valenti et al, 2012).

Diltiazem displays cardioselectivity in humans when prescribed to treat
hypertension and angina acting both as a vasodilator and cardiodepressant (Law et al.,
2013; Wishart et al., 2006). Diltiazem antagonizes smooth epithelium L-type calcium
channels to increase blood flow and deliver sufficient oxygen and nutrients to the heart.
Additionally, diltiazem decreases the heart workload by inhibiting an influx of calcium
into cardiomyocytes thereby reducing cardiac contractility and contractive force (Law et
al., 2013). Whether diltiazem is decreasing the fathead minnow contractive force of
cardiomyocytes is unknown. However, decreases in fish heart rate have been reported
following acute mg/L CCB exposures (e.g., diltiazem, verapamil) in larval zebrafish
(Parker et al., 2014) and fathead minnows (Saari et al, 2018, In Press). Steinbach et al.
(2016) reported histological changes of heart and liver blood vessels in rainbow trout
suggesting vasodilation following long-term studies at pg/L diltiazem levels. Thus,
research examining the cardiovascular effects in fish following long term low dose
diltiazem exposure is warranted. The present study measured significant increases in
hematocrit at low DO x 3.1 pg/L diltiazem, which may indicate hypotensive conditions in

fish, although changes in hematocrit were not observed in other DO x diltiazem
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treatments. Thus, diltiazem pharmacological effects have been reported in fish at various
doses, exposure durations, and species. Further research is needed to determine whether
similar mammalian pharmacodynamic mechanisms are occurring in fish, and, if so, how
such responses relate to internal plasma doses.

In humans and mammals, CCBs like diltiazem and verapamil have distinct
calcium channel binding sites while other CCBs are less specific (Spedding and Paoletti,
1992). The diltiazem target, the voltage-dependent calcium channel L-type a-1C, a-1D,
a-1F, a-1s subunits, is approximately 70-78% and 64-81% conserved in zebrafish (Danio
rerio) and Japanese medaka (Oryzias latipes; Gunnarsson et al., 2008; Verbruggen et al.,
2017), respectively. Whether genetic conservation of diltiazem and other CCB drug
targets correspond to similar pharmacological activity in fish remains unknown. As noted
above, pharmacological read-across studies have demonstrated comparative physiological
responses in fish for several pharmaceuticals (Brodin et al., 2013; Cuklev et al., 2011;
Huerta et al., 2016; Margiotta-Casaluci et al., 2014; Margiotta-Casaluci et al., 2016;
Runnalls et al., 2015; Valenti et al., 2012). The present study demonstrated a lack in
organism level responses to diltiazem alone; however, in DO x diltiazem co-exposures,
multiple physiological responses were observed. Similar studies examining the effects of
interacting stressors is necessary to determine the interacting effects of other heart
medication in fish. As the present study demonstrates, a failure to consider low DO in
toxicological assessments of cardioactive pharmaceuticals and potentially other
cardiotoxicants may underestimate their impact to non-target organisms. Here again, the
present study results demonstrate the predictive ability of the fish plasma model to

prioritize compounds for additional study by linking human therapeutic fish plasma
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levels to physiological and pharmacological responses in fish (Brooks, 2014; Fick et al.,
2010b; Huggett et al., 2003). Additional studies with other pharmaceutical classes are
necessary to support and validate the fish plasma model, particularly under
environmentally relevant exposure scenarios. Including the influence of DO during
pharmaceutical ecological hazard and risk assessment appears necessary due to their
influence on bioconcentration and biological effects in fish. Particular research attention
should be given to urban eutrophic systems experiencing diel fluctuations in DO, pH, and
temperature (Scott et al, 2016; Valenti et al, 2011; Van Wezel, 1998). Under such
scenarios, oxygen levels plummet in parallel with decreases in pH, creating less than
optimal DO conditions for fish and increasing the percent neutral weak acid in solution.
Therefore, ecological hazard assessment of ionizable chemicals failing to consider
environmental factors will likely underestimate the fate and biological effects of these

contaminants in fish.

Conclusion

Our experimental results suggest low DO influences the uptake and physiological
effects of diltiazem in adult fathead minnows. These observed effects may be dictated by
physiological responses in fish to enhance oxygen uptake, which increases diltiazem
inhalation by increasing respiratory volume and altering pH conditions at the gill
microenvironment. Once diffusion across the gills has occurred, diltiazem distribution in
fish tissue (Vp) is minimal, similar to humans, as indicated by the steady state BCFs (9
and 16) under normal and low DO conditions, respectively. Exposure water and internal

diltiazem plasma concentrations were linked to physiological responses in adult fathead
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minnows but only at low DO conditions. Low DO minimized the time to steady state
conditions in 96 h bioconcentration studies, which corresponded to increased ventilation
rates and water flow across the gills under low DO conditions. Fish swim performance
trials indicated alterations in aerobic respiration energy supply-demand dynamics in 24 h
DO x diltiazem studies, which corresponded to nonsignificant decreases in fathead
minnow Upust and decreasing plasma lactate levels with increasing diltiazem
concentration. While the effects of environmental factors on fish toxicity (Lloyd, 1961)
and physiological mechanisms of chemical uptake across the gill (McKim and Goeden,
1982) were first studied ~six decades ago, empirical data examining these key factors and
associated mechanisms of uptake are limited and largely dependent on previous work
with persistent organic pollutants (e.g., endrin, DDT, halogenated benzenes, etc.).
Predicting chemical uptake across the gill is complex and is dependent on environmental
factors, experimental conditions, and fish species (Blewett et al., 2013b; McKim and
Goeden, 1982; Opperhuizen and Schrap, 1987); therefore, additional research is
necessary to predict ionizable chemical uptake and physiological responses in fish across
multiple environmental exposure scenarios. Studies and assessments failing to consider

low DO influences on cardiotoxicants may underestimate ecological risks to fish.
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Supplemental: Figure: 20. Aquatic hazard assessment for dissolved oxygen with acute invertebrate data.
The distribution represents all of the available acute invertebrate data compared to those newly published
acute invertebrate data values within the dataset (red circles).
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Supplemental: Figure: 21. Acute (2-96h) temperature-dependent dissolved oxygen (DO) toxicity
relationships for A) invertebrates within the orders Ephemeroptera, Trichoptera, Megaloptera, and Odonata.
Solid lines represent linear regression lines fitted for each species (C. simile, H. betteri, S. fusca; p < 0.05).
B) The acute (2-96h) temperature-dependent dissolved oxygen (DO) toxicity SSD for five ephemeroptera
species studied across the same three temperatures and C) the HC80 values of the five ephemeroptera
species across three temperatures. Dose-response curves were plotted based on data availability when a
species were studied across at least three different temperatures by the same researcher. All species inhabit
either lotic (Ephemerella mucronata, Hydropsyche betteni, Leptpohlebia marginata), lentic (Cloeon
simile), or both lotic and lentic (Epeorus sylvicola, Ephemera vulgate, Sialis lutaria, Siphlonurus lacustris,
Sympecma fusca) habitats.
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Supplemental: Figure: 22. Temperature-dependent chronic fish growth effect concentration (EC) data to
illicit 10% (EC90) and 50% (EC50) decreased growth for Oncorhynchus kisutch and Oncorhynchus
tshawytscha. Effect concentrations were calculated from log-linear normalized growth rates for each
species across multiple temperatures (JRB Associates, 1984; Warren et al, 1973). Solid and long dashed
lines represent Oncorhynchus tshawytscha fitted linear regressions for EC90 and EC50 values, respectively
(p < 0.05). Short and long-dot-dot-long dashed lines represent Oncorhynchus kisutch fitted polynomial
regressions describing the relationship between temperature and EC values.
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Supplemental: Figure: 23. Aquatic hazard assessment for dissolved oxygen with acute invertebrate data.

The distribution represents all of the available acute invertebrate data compared to those newly published
acute invertebrate data values within the dataset (red circles).
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APPENDIX B

Supplementary Information for Chapter Three

Supplementary: Table 17. Download additional supplemental data related to Chapter Three (214 KB
spreadsheet) at https://doi.org/10.1016/j.chemosphere.2017.09.058
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Supplementary: Figure: 24. Species sensitivity distribution of acute (< 96 h) LC50 toxicity values following
exposure to verapamil. Nine different LC50 values were reported for verapamil from six different aquatic
species (e.g., Artemia salina, Brachionus calyciflorus, Daphnia magna, Oncorhynchus mykiss,

Oreochromis niloticus, Thamnocephalus platyurus).
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Supplementary: Figure: 25. Mean (+SE, N=3 studies) heart rate (beats/minute) by Pimephales promeals
larvae following 48 h A) dissolved oxygen (DO) and B) diltiazem studies. Mean larval survival at 2.3 mg
DO/L and 24451 pg/L diltiazem were 80 and 88%, respectively, while other experimental treatments with
significant decreases in survival were not measured (N.M.: Not Measured). *: p < 0.05.
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Supplementary: Figure: 26. Mean (+SE, N=4, n=4) heart rate (beats/minute) by Pimephales promelas
larvae following 48 h A) normal and moderate dissolved oxygen (DO) x diltiazem and B) normal and low
DO x diltiazem studies. In experimental treatments with significant decreases in survival, heart rates were
not measured (N.M.: Not Measured). Normal DO: 8.2 mg DO/L; Moderate DO: 5.0 mg DO/L; Low DO:
3.0 mg DO/L. *: p <0.05.
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Supplementary: Figure: 27. Mean (£SE) total number of movements (counts) per minute by Pimephales
promelas larvae following 48 h (A, B, C; N=3 studies) and 7 d (D, E, F; N=4, n=4-5) dissolved oxygen
(DO) studies. Data presented as number of movements in speed (mm/s) categories for resting (< 5 mm/s;
A,D), cruising (5-20 mm/s; B, E), and bursting (>20 mm/s; C, F). Number of movements were observed
over two alternating 10 minute periods of light (white bars) and dark (black bars) conditions. No behavioral
observations were recorded (N.M.: Not Measured) at DO concentrations causing significant mortality. *: p
<0.05.
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Supplementary: Figure: 28. Mean (£SE) duration per minute (60 sec.) by Pimephales promelas larvae
following 48 h (A, B, C; N=3 studies) and 7 d (D, E, F; N=4, n=4-5) dissolved oxygen (DO) studies. Data
presented as duration in speed (mm/s) categories for resting (< 5 mm/s; A, D), cruising (5-20 mm/s; B, E),
and bursting (>20 mm/s; C, F). Duration was observed over two alternating 10 minute periods of light
(white bars) and dark (black bars) conditions. No behavioral observations were recorded (N.M.: Not
Measured) at DO concentrations causing significant mortality. *: p < 0.05.
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Supplementary: Figure: 29. Mean (£SE) total number of movements (counts) per minute by Pimephales
promelas larvae following and 7 d (A, B, C; N=4, n=4-5) diltiazem studies. Data presented as number of
movements in speed (mm/s) categories for resting (< 5 mm/s; A), cruising (5-20 mm/s; B), and bursting
(>20 mm/s; C). Number of movements were observed over two alternating 10 minute periods of light
(white bars) and dark (black bars) conditions. No behavioral observations were recorded (N.M.: Not
Measured) at DO concentrations causing significant mortality. *: p < 0.05.
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Supplementary: Figure: 30. Mean (£SE) duration per minute (60 sec.) by Pimephales promelas larvae
following 7 d (A, B, C; N=4, n=4-5) diltiazem studies. Data presented as duration in speed (mm/s)
categories for resting (< 5 mm/s; A, D), cruising (5-20 mm/s; B, E), and bursting (>20 mm/s; C, F).
Duration was observed over two alternating 10 minute periods of light (white bars) and dark (black bars)
conditions. No behavioral observations were recorded (N.M.: Not Measured) at DO concentrations causing
significant mortality. *: p < 0.05.
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Supplementary: Figure: 31. Mean (+SE; N=4, n=4-5) total number of movements (counts) per minute by
Pimephales promelas larvae following 48 h (panels A, B, C, D, E, F) or 7 d (panels G, H, I, J, K, L) studies
across normal and moderate dissolved oxygen (DO) x diltiazem interaction treatments. Data presented as
number of movements in speed (mm/s) categories for resting (< 5 mm/s; panels A, D, G, J), cruising (5-20
mm/s; B, E, H, K), and bursting (>20 mm/s; C, F, I, L) behaviors. Number of movements were observed
over two alternating 10 minute periods of light (white bars) and dark (black bars) conditions. No behavioral
observations were recorded (N.M.: Not Measured) at concentrations causing significant mortality. *: p <
0.05. Normal DO: 8.2 mg DO/L; Moderate DO: 5.0 mg DO/L.
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Supplementary: Figure: 32. Mean (£SE; N=4, n=4-5) duration per minute by Pimephales promelas larvae
following 48 h (panels A, B, C, D, E, F) or 7 d (panels G, H, I, J, K, L) studies across normal and moderate
dissolved oxygen (DO) x diltiazem interaction treatments. Data presented as duration in speed (mm/s)
categories for resting (< 5 mm/s; panels A, D, G, J), cruising (5-20 mm/s; B, E, H, K), and bursting (>20
mm/s; C, F, I, L) behaviors. Duration was observed over two alternating 10 minute periods of light (white
bars) and dark (black bars) conditions. No behavioral observations were recorded (N.M.: Not Measured) at
DO concentrations causing significant mortality. *: p < 0.05. Normal DO: 8.2 mg DO/L; Moderate DO: 5.0
mg DO/L.
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Supplementary: Figure: 33. Mean (+SE; N=4, n=4-5) total number of movements (counts) per minute by
Pimephales promelas larvae following 48 h (panels A, B, C, D, E, F) or 7 d (panels G, H, I, J, K, L) studies
across normal and low dissolved oxygen (DO) x diltiazem interaction treatments. Data presented as number
of movements in speed (mm/s) categories for resting (< 5 mm/s; panels A, D, G, J), cruising (5-20 mm/s;
B, E, H, K), and bursting (>20 mm/s; C, F, I, L) behaviors. Number of movements were observed over two
alternating 10 minute periods of light (white bars) and dark (black bars) conditions. No behavioral
observations were recorded (N.M.: Not Measured) at concentrations causing significant mortality. *: p <
0.05. Normal DO: 8.2 mg DO/L; Low DO: 3.0 mg DO/L.
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Supplementary: Figure: 34. Mean (+SE; N=4, n=4-5) duration per minute by Pimephales promelas larvae
following 48 h (panels A, B, C, D, E, F) or 7 d (panels G, H, I, J, K, L) studies across normal and low
dissolved oxygen (DO) x diltiazem interaction treatments. Data presented as duration in speed (mm/s)
categories for resting (< 5 mm/s; panels A, D, G, J), cruising (5-20 mm/s; B, E, H, K), and bursting (>20
mm/s; C, F, I, L) behaviors. Duration was observed over two alternating 10 minute periods of light (white
bars) and dark (black bars) conditions. No behavioral observations were recorded (N.M.: Not Measured) at
DO concentrations causing significant mortality. *: p < 0.05. N.M.: Not Measured. Normal DO: 8.2 mg
DO/L; Low DO: 3.0 mg DO/L.
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Supplementary: Figure: 35. Mean heart rate (beats/minute) by Pimephales promelas larvae following 7 d
A) dissolved oxygen (DO; £SE N=4, n=4) and B) diltiazem (N=2, n=4) studies. In experimental treatments
with significant decreases in survival, heart rates were not measured (N.M.: Not Measured). *: p < 0.05.
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Supplementary: Figure: 36. Mean (£SE, N=4, n=4) heart rate (beats/minute) by Pimephales promelas
larvae following 7 d A) normal and moderate dissolved oxygen (DO) x diltiazem and B) normal and low
DO x diltiazem studies. Low DO x 2348 pg/L diltiazem decreased survival but were measured to
demonstrate concomitant DO x diltiazem reduced heart rates. Normal DO: 8.2 mg DO/L; Moderate DO:
5.0 mg DO/L; Low DO: 3.0 mg DO/L. *: p < 0.05. #: p <0.05, significant influence of DO across diltiazem
concentrations.
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Supplementary: Figure: 37. Mean (£SE, N=4, n=2) feeding rate (artemia/minute) by Pimephales promelas
larvae following 7 d A) dissolved oxygen (DO) and B) diltiazem studies. In experimental treatments with
significant decreases in survival, feeding rates were not measured (N.M.: Not Measured). *: p < 0.05.
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Supplementary: Figure: 38. Mean (+=SE, N=4, n=6-8) dry weight (growth) by Pimephales promelas larvae
following 7 d experiments across A) normal and moderate dissolved oxygen x diltiazem and B) normal and
low DO x diltiazem studies. No growth measurements were observed (N.M.: Not Measured) at DO or
diltiazem concentrations causing significant mortality. *: p < 0.05. Normal DO: 8.2 mg DO/L; Moderate
DO: 5.0 mg DO/L; Low DO: 3.0 mg DO/L.
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