
ABSTRACT

Development and Implementation of a Multi-Agent System
for Intelligent Optimized Power Plant Control

Jason D. Head, M.S.E.C.E.

Mentor: Kwang Y. Lee, Ph.D.

 As the demand for electric power grows and regulations on power plant operation

become stricter, the size, and therefore complexity, of new power plant units is increasing while

the intricacies of the multiple simultaneous processes that take place to generate electricity

require tighter control. In order to provide a solution to some of the associated operational

challenges arising from this situation, control techniques have been developed to allow optimized

power plant control while considering non-fixed operating goals. Each of these techniques is

computationally intensive, requiring a distributed, parallel control framework to implement each

technique simultaneously in distributed subsystem environments. For these reasons, previous

research has studied multi-agent systems as a means to implement such a control system.

Therefore, the goal of this thesis is to fully develop a multi-agent system to coordinate and

implement these techniques to control a third order fossil fuel power plant model.

Page bearing signatures is kept on file in the Graduate School.

Development and Implementation of a Multi-Agent System
for Intelligent Optimized Power Plant Control

by

Jason D. Head, B.S.E.C.E.

A Thesis

Approved by the Department of Electrical and Computer Engineering

Kwang Y. Lee, Ph.D., Chairperson

Submitted to the Graduate Faculty of

Baylor University in Partial Fulfillment of the
Requirements for the Degree

of
Master of Science in Electrical and Computer Engineering

Approved by the Thesis Committee

Kwang Y. Lee, Ph.D., Chairperson

Ian Gravagne, Ph. D.

Paul Grabow, Ph. D.

Accepted by the Graduate School
May 2012

J. Larry Lyon, Ph.D., Dean

Copyright © 2012 by Jason D. Head

All rights reserved

iv

TABLE OF CONTENTS

List of Figures ... vii

List of Tables ... ix

List of Abbreviations .. x

Acknowledgements ... xii

CHAPTER ONE Introduction .. 1

1.1 Motivation ... 1

1.2 Background ... 5

1.2.1 Current FFPU Situation ... 5

1.2.2 Control Schemes .. 6

1.2.3 Reference Governor ... 7

1.2.4 Adaptive Feedback Gain Tuning ... 9

1.2.5 Model Identification for MPC ... 9

1.2.6 Need for a Multi-Agent System Approach 10

1.3 Problem Statement .. 11

1.4 Objective and Scope ... 11

CHAPTER TWO The Optimized Multiobjective Control System 13

2.1 Optimized Multiobjective Control System Architecture 13

2.2 Power Plant Model .. 15

2.3 Reference Governor .. 17

2.3.1 Power-Input Operating Windows .. 18

2.3.2 Multiobjective Optimization .. 22

v

2.3.3 Setpoint Scheduler and Feedforward Controller 25

2.4 Feedback Controller .. 26

2.5 Gain Optimizer ..27

2.6 Artificial Neural Network Models and the Neural Network Trainer 30

2.6.1 Feedforward Neural Network ... 30

2.6.2 Dynamic Neural Network .. 33

2.6.3 Neural Network Trainer ……... 35

CHAPTER THREE Multi-Agent System ... 37

3.1 Overview of Multi-Agent Systems ... 37

3.2 Single Agent Architecture .. 38

3.3 Multi-Agent System Architecture and Proposed Agents 40

3.3.1 Interface Agent ... 41

3.3.2 Free Agent ... 42

3.3.3 Delegation Agent ... 44

3.3.4 Feedforward and Feedback Agents .. 48

3.3.5 Neural Network Agent ... 54

3.3.6 Gain Optimizer Agent .. 56

3.3.7 Database and Monitoring Agents ...57

3.4 Agent Communication .. 59

3.5 Agent Failure ………...64

3.5.1 Agent Operating State .. 64

3.5.2 Prioritized Agent Assignment List ...65

CHAPTER FOUR Simulation and Results .. 68

vi

4.1 Simulation of the Multi-Agent Control System .. 68

4.1.1 MAS Simulation …….. 68

4.1.2 The Power Plant Simulator .. 71

4.1.3 Interface Agent GUI …...74

4.2 Simulation and Testing Results ...74

4.2.1 Feedforward Agent .. 75

4.2.1.1 Testing the setpoint optimization 75

4.2.1.2 Testing the accuracy of the FFNN model78

4.2.2 Feedback Agent ... 82

4.2.3 Gain Optimizer Agent .. 92

4.2.4 Neural Network Agent ... 96

4.2.4.1 LRNN Training ………………………......................... 96

4.2.4.2 LRNN and Neural Network Performance 99

4.2.5 Overall Multi-Agent Control System ... 99

4.2.5.1 MACS Simulation Using a Wide-Range ULDC 99

4.2.5.2 MACS Simulation Using a Realistic ULDC103

CHAPTER FIVE Conclusions .. 106

5.1 Conclusions ... 106

5.2 Future Research ...110

APPENDIX A Operating Window Data ...113

APPENDIX B Calculation of the RGA Matrix for the 160 MW FFPU Model 114

APPENDIX C Artificial Neural Networks …... 120

BIBLIOGRAPHY ... 123

vii

LIST OF FIGURES

Figure 2.1: Block Diagram of the overall control system ... 14

Figure 2.2: Diagram of the process flow in the reference governor 18

Figure 2.3: Graph of the power-pressure window over the range of possible unit load

demands .. 19

Figure 2.4: Plots of the power-input windows over the range of operation 20

Figure 2.5: Block diagrams of the PI control loops for the decoupled feedback control
 approach .. 27

Figure 2.6: General configuration of artificial neurons and weight interconnections for
 a multilayer feedforward neural network .. 32

Figure 2.7: General configuration of artificial neurons and weight interconnections for
 a single hidden layer in a layer recurrent neural network 34

Figure 3.1: Diagram of the common agent architecture ... 39

Figure 3.2: Proposed agents divided into the MAS hierarchy .. 41

Figure 3.3: Flow diagram of the basic operation of the Interface agent 43

Figure 3.4: Flow diagram of the basic operation of the Free agent 45

Figure 3.5: Flow diagram of the basic operation of the Free agent in stand-by mode 46

Figure 3.6: Flow diagram of the basic operation of the Delegation agent 49

Figure 3.7: Block diagram of the minimal control structure formed by the
 Feedforward and Feedback agents .. 50

Figure 3.8: Flow diagram of the basic operation of the Feedforward agent 52

Figure 3.9: Flow diagram of the basic operation of the Feedback agent …...................... 53

Figure 3.10: Flow diagram of the basic operation of the Neural network agent 55

Figure 3.11: Flow diagram of the basic operation of the Gain Optimizer agent 57

viii

Figure 3.12: Flow diagram of the basic operation of the Database agent 60

Figure 3.13: Flow diagram of the basic operation of the Monitoring agent 61

Figure 3.14: Message Structure of the MAS-ACL ……………....……........................... 62

Figure 4.1: Flow diagram of the basic operation of the Power Plant Simulator 73

Figure 4.2: The result of setpoint optimization performed comparing the equation
 model with the FFNN model .. 81

Figure 4.3: The PPS response to a ramp in power level without feedback control 84

Figure 4.4: The change in control valve positions corresponding to the ramp in power

level in Fig 4.3 without feedback control .. 85

Figure 4.5: The PPS response to a ramp in power level with feedback control from
 the Feedback agent .. 86

Figure 4.6: The change in control valve positions corresponding to the ramp in power

level in Fig 4.5 with feedback control .. 87

Figure 4.7: The PPS response to a ramp in power level with feedback control

implemented by the Feedback Agent ... 90

Figure 4.8: The change in control valve positions corresponding to the ramp in power
level in Fig 4.7 with feedback control implemented by the Feedback agent 91

Figure 4.9: The PPS response to a ramp in power level with feedback control

implemented by the Feedback agent before and after replacing the PI gains
 with optimized ones .. 94

Figure 4.10: The change in control valve positions corresponding to the ramp in
 power level in Fig 4.9 with feedback control implemented by the Feedback
 agent before and after replacing the PI gains with optimized ones 95

Figure 4.11: Divisions of the power-pressure window into 9 training data regions 97

Figure 4.12: The PPS response to a wide-range load cycle under the control of the
 MACS ... 101

Figure 4.13: The change in control valve positions corresponding to the wide-range load

cycle in Fig 4.9 under the control of the MACS ... 102

Figure 4.14: The PPS response to a load cycle representing a typical summer weekday

under the control of the MACS .. 104

ix

Figure 4.15: The change in control valve positions corresponding to the wide-range load
cycle in Fig 4.9 under the control of the MACS .. 105

Figure B.1: Result of RGA Matrix Calculation .. 118

Figure C.1: Process model of artificial neuron ... 121

Figure C.2: Log-Sigmoid and Hard-Limit transfer functions used in artificial neurons

with a bias value, b, of zero .. 122

ix

LIST OF TABLES

Table 4.1: Optimal values for u1, u2, and u3 according to J2(u), J3(u), and J4(u) for the
power demand levels tested ...79

Table 4.2: Results of control optimization verification tests .. 79

Table 4.3: Mean-squared and max error in the results from comparing setpoint
optimization using the equation and FFNN models ..82

Table 4.4: The difference in power and pressure setpoints caused by changing each
 control variable by the maximum error shown in Table 4.3 82

Table 4.5: Optimized feedback gain values used in the Feedback agent simulation 88

Table 4.6: Initial feedback gain values .. 96

Table 4.7: Optimized feedback gain values ... 96

Table 4.8: Constraints on search space for finding optimal feedback gains 96

Table A.1: Upper pressure limit data …………………………………….…................. 113

Table A.2: Lower pressure limit data …………………………………….…................. 113

x

LIST OF ABBREVIATIONS

ACL Agent Communication Language

ANN Artificial Neural Network

CC Coordinated Control

DRNN Diagonal Recurrent Neural Network

FFPU Fossil Fuel Power Unit

FFNN Feedforward Neural Network

FIPA Foundation for Intelligent Physical Agents

GA Genetic Algorithm

GUI Graphical User Interface

HNN Human Neural Network

HPSO Hybrid Particle Swarm Optimization

IEEE The Institute of Electrical and Electronics Engineers

IP Internet Protocol

LRNN Layer Recurrent Neural Network

MAS Multi-Agent System

MACS Multi-Agent Control System

MPC Model Predictive Control

PI Proportional-Integral

PSO Particle Swarm Optimization

RGA Relative Gain Array

RTS Reliability Test System

xi

UDP User Datagram Protocol

ULDC Unit Load Demand Curve

xii

ACKNOWLEDGMENTS

 I would like to thank Dr. Kwang Y. Lee, as my advisor, for his guidance and

encouragement during my graduate studies at Baylor University, and for allowing me the

opportunity to work under him. I would also like to thank Dr. Ian Gravagne for his

contribution of expertise in control systems to the project and for serving as a graduate

committee member, and Dr. Paul Grabow for serving as a graduate committee member

and providing invaluable insite. In addition, I would like to thank the National Science

Foundation, the Department of Electrical and Computer Engineering at Baylor University,

my parents Ronald and Dovie Head, and my grandparents James Nelson and Laura Fae

Head for providing financial support during my graduate studies. I would also like to

express my deepest appreciation to my parents, Ronald and Dovie Head, my grandparents,

James Nelson and Laura Fae Head, and my wonderful wife Nicole whose prayers,

encouragement, and support helped me to endure and succeed during my studies at

Baylor University. Lastly, I would like to thank my friends and colleagues John Miller,

Jason Gomes, and Craig Williams for their contributions to this project.

1

CHAPTER ONE

Introduction

This chapter describes the problem statement for this thesis by introducing

previous work that has led to this extension. The motivation for the methods proposed in

previous work is described. This thesis implements, tests, and adds to the methods

previously proposed.

1.1 Motivation

 In today’s electric utility markets, there are many worldwide challenges regarding

the generation of electricity. The main challenge facing electric utility companies is to

remain competitive in cost to end users while balancing many other financial, regulatory,

and operational demands. Financial concerns stem from the complexity of planning for

future costs in the production of energy that is driven by many diverse factors [1,2].

 Constantly evolving government regulations that potentially increase the cost of

producing electricity and change the way power plants are operated create other

challenges. The operational challenges faced by utilities are due to the need to increase

efficiency in existing plants and to effectively control large, complex plants that are being

built in response to the rapidly increasing demand for electric power [3]. To describe

these challenges and give motivation for this thesis, the following topics are briefly

discussed:

 the financial impact of the varying cost of fuels based on world markets

2

 the decision to either replace aging plant equipment or to build new plants to

maximize on capital investment

 the potential for increasingly stringent regulations to be passed concerning

environmental impact and resource management, causing many existing plants to

retrofit equipment with costly upgrades

 accommodating cyclic load operation without causing unnecessary stress to plant

equipment to make efficient use of resources in power plants, many of which

were designed for maximum load operation

 extending equipment life in aging plants to maximize capital investment

 improving energy efficiency, or heat rate, of power plants

 improving the efficiency of fuel combustion to avoid the emission of pollutants

 planning for increased generation capacity to meet the rapidly growing demand

while considering the above mentioned issues.

 Constantly evolving regulations on the electric power generation industry force

electric utility companies to continually adapt the way they operate in order to comply.

These considerations also cause increases in operational costs, such as those incurred

because of higher taxes on emissions, expensive retrofits meant to reduce pollution, and

requirements that mandate the use of more expensive, cleaner burning versions of fuel.

Increases in operating costs bring challenges to utilities and have the potential to raise

electricity prices to end users, making it more difficult for utility companies to compete

in today’s market.

 Furthermore, the future cost of fuel needed to operate existing power plants is

affected by many global factors, making it hard to predict future prices. The instability in

3

price makes it difficult for utilities to plan electricity generation in existing plants and

makes deciding what types of new power plants to build risky. Consequently, this

instability complicates financial planning for utilities.

 Further complicating financial planning for electric utility companies is the issue

of whether to retire and replace existing plants or to make costly upgrades in order to

continue using them. This decision is affected by several factors, including the ones

mentioned above. Possible regulatory legislation, if passed, could cause existing plants to

become too expensive to operate, and other plants may not be able to meet the new

requirements even if upgrades were made. Either of these cases would cause plants to be

shut down.

Older plants, in particular, are vulnerable, because they were designed before

more efficient equipment was available. Modifications required by regulations would be

expensive initially, but would cause the plant’s operating costs to decrease by reducing

the taxes on emissions. The challenge is to decide what initial cost is worth investing to

keep an existing plant in operation, while considering how quickly the modifications will

pay for themselves.

 To complicate matters further, power consumption is growing very rapidly, and is

projected to continue growing at such a pace for the foreseeable future. Currently, the

worldwide consumption of electric power is expected to increase at an average rate of 2.3

percent per year until the year 2035, making it the fastest growing end-use of energy

consumption in the world [4]. To keep up, utilities will have to build new, larger power

plants in addition to deciding what to do with the existing ones.

4

 Besides financial concerns, there are many operational challenges that have arisen

from a control perspective. Though these issues may be relevant to other plant types,

fossil fuel power units (FFPUs) are the most widely used type of plant in the generation

of electricity worldwide and are projected to remain as such for at least the next 25 years

[4]. For this reason, they have been the focus of research leading to this thesis, and

remain the focus herein.

 Today, many FFPU’s are operated cyclically in a wide-range, load-following

manner, where load demands are sent from dispatch centers. This is done to make better

use of resources and to reduce operating costs by not generating more power than is

needed. Although newer equipment is better suited for this type of operation, many older

plants were designed to be efficient while operating at the rated load capacity [5]. In both

cases, careful considerations must be taken to avoid putting increased strain on plant

equipment, shortening its overall life.

 Maximizing the life of an FFPU is important, because the longer an FFPU lasts,

the better the return will be on the initial capital investment that was made to build the

plant. High stress operation is the main cause of shortened plant life, and is often a result

of thermal stress caused by fluctuating steam temperature and pressure. The most severe

strain occurs during startup and shutdown, as well as when sudden load variations occur.

 These challenges call for the development of more robust control schemes than

are currently employed today. Such control schemes should make use of advances in

computer-based instrumentation, computational abilities, computer networking, and

computational intelligence to allow more flexibility, robustness, and efficiency. Such a

control scheme is the focus of this thesis.

5

1.2 Background

As previously mentioned, FFPUs generate the majority of electric power

consumed around the world today and are projected to remain the predominant source for

years to come. Therefore, this thesis focuses on solving control problems faced by FFPUs.

This section discusses common control practices with respect to these units to provide

context to give background for the control methods proposed here.

1.2.1 Current FFPU Situation

 With the rising demand for electricity, in conjunction with the issues discussed in

the previous section, more is being required of existing plants and new power plants are

growing in size. Existing FFPUs must generate more electricity while increasing overall

efficiency and reducing pollution. To make matters more difficult, the total combined

generation capacity of FFPUs has increased very little compared to the increased demand,

meaning that more power is required from FFPUs [1]. This scenario makes control

optimization, discussed further in later sections, important for the continued operation of

these units.

Furthermore, as new power plants get bigger, they become more complex in terms

of the number of interconnected subsystems [6]. More interconnected subsystems make it

more difficult to achieve efficient control because of the increased complexity of the

interactions among processes. Also, conventional, centralized control approaches are no

longer adequate, since the larger power plants have physically distributed subsystems.

Furthermore, a failure in any part of a centralized control system can cause the entire

control system to fail. For these reasons, a distributed control system is desirable.

6

1.2.2 Control Schemes

In general, there are three control strategies that have been used by FFPUs to

match the unit load demand, or desired power output. These methods are boiler-following

control, turbine-following control, and coordinated control. Each of these methods has its

own advantages and disadvantages. The details of these methods are discussed to give

background for the control techniques used in this thesis.

The boiler-following, or turbine-leading, control strategy matches the power

output demand of an FFPU by varying steam flow to cause the turbine to generate more

or less power by constraining or releasing the energy stored in the form of steam in the

boiler. Releasing steam causes the steam pressure in the boiler to drop. To compensate,

fuel burn is increased to vaporize more water in the boiler to maintain the steam pressure

setpoint. The advantage of this method is that the plant can be made to change power

output quickly, since the turbine responds quickly to changes in steam flow. The

disadvantage is that this method causes the steam pressure to be less stable, because the

boiler cannot produce steam as fast as the turbine can be made to change power output.

The turbine-following, or boiler-leading, control strategy matches the power

output demand by varying fuel combustion, which generates more or less steam based on

an increase or decrease in output demand. In response, steam flow to the turbine is varied

to regulate the steam pressure in the boiler to match the setpoint value. The advantage of

this method is that it produces a more stable steam pressure and temperature response to

load changes. The disadvantage is that this method is slower in varying the output power

in response to a load change because of the time it takes to generate steam.

7

Coordinated control (CC) methods attempt to make use of the advantages in the

previous two methods, while minimizing their shortcomings. This type of approach uses

control logic to simultaneously adjust the steam flow and fuel burn rates to quickly match

the load demand while keeping up with the pressure demand in the boiler. To maintain

the boiler pressure setpoint, the control logic must anticipate the pressure loss due to a

load change so that it can preemptively adjust the fuel burn rate.

Historically, CC methods have made use of fixed, nonlinear functions to

determine the setpoints that govern the boiler and turbine control. However, this method

is inflexible, because it does not allow process optimization if the operating objectives

must be changed. Therefore, to add more flexibility, a reference governor is needed to

optimize the control setpoints during operation. The following section discusses a

reference governor that has been designed to do this [3].

1.2.3 Reference Governor

The reference governor in [3] was designed to optimize control setpoints in real-

time to implement a customizable CC strategy. To perform real-time setpoint

optimization using such a reference governor, a model of the processes, for which

setpoints are being optimized, is needed to evaluate candidate solutions. Many

mathematical models of FFPUs are too computationally complex to be implemented in a

real-time control scheme where the unit load demand is constantly changing. Therefore, a

more advanced model must be used to speed up the simulation process for this strategy to

be successful.

Artificial neural networks (ANNs) are a good choice as a replacement for

computationally complex mathematical models because they can emulate these models of

8

complex systems relatively quickly and are effective at modeling the nonlinear dynamics

that are characteristic of FFPUs. Once trained, an ANN model can be used to predict the

response of the modeled processes to control inputs to test whether the control result is a

sufficient one. Using an ANN model in this way is considered model predictive control

(MPC).

A number of search algorithms were explored in [3] to discover the best algorithm

for producing optimized control setpoints in a reference governor designed for a 160 MW

oil-fired drum-type boiler-turbine-generator FFPU. Reference [3] found that particle

swarm optimization (PSO) algorithms give faster convergence with fewer iterations

compared to a genetic algorithm (GA), and are sufficiently fast for online setpoint

optimization. As will be explained in a later section, this FFPU is the model used in this

research, and this reference governor design is used here for optimized multi-objective

coordinated control of this model.

The setpoint optimization performed by the reference governor generates

setpoints in a way that allows a FFPU to satisfy conflicting operating objectives, such as

the need to meet the unit load demand while conserving fuel, reducing pollution,

maximize equipment life, et cetera, to achieve greater overall efficiency. Priority values

are used to give more weight to more important objectives to ensure they are met. For

example, the need to meet the unit load demand would be given a higher priority than

other objectives to ensure the setpoint optimization produces a result that generates the

power output demanded of the plant.

9

1.2.4 Adaptive Feedback Gain Tuning

 Adaptive feedback gain tuning is another control technique that can be used to

increase efficiency in FFPUs. Adaptive gain tuning is used in this thesis to adjust the

feedback gain values when the performance resulting from feedback control is

determined to need improvement. One reason feedback gains need improvement is that

the nonlinear dynamics of the FFPU cause the system to behave differently as the power

level changes. As the behavior changes, feedback gains may become less effective for

performing feedback control. However, adaptive gain tuning, in general, is used to

preserve stability regarding feedback control during operation of a power unit.

Performing adaptive gain tuning online requires the ability to monitor the

performance of the FFPU systems to determine when the response to feedback control is

no longer adequate. When feedback gains need adjustment, the adaptive gain tuner will

optimize new gains using the predicted response of the plant. Similar to the optimization

method used in the reference governor, the feedback gain optimization will use an ANN

model of the power plant processes to predict their response to candidate feedback gain

values. Based on the performance shown in the predicted responses, gain values can be

evaluated to find an optimized set using PSO.

1.2.5 Model Identification for MPC

 To use MPC in a real-time control system, a model of the controlled system must

be obtained. In this thesis, the processes of the FFPU are modeled using ANNs. Since the

equations for these processes are available for the model used here, data can be obtained

without collecting sensor data from an actual power plant unit. Instead, the equations are

used to generate the data needed to train the ANNs to learn the process behavior.

10

 There are two types of ANNs used in this thesis, feedforward-type and dynamic.

The feedforward-type ANN can be sufficiently trained, offline, using the data generated

from the FFPU model equations. The dynamic ANN requires online training in addition

to offline training. The reason for this is that as the plant behavior changes with the

change in power level, due to nonlinear system dynamics, the dynamic ANN needs to be

updated to be able to model the change.

 To update the dynamic ANN model online, the ability to collect data real-time

system data is needed. With this data, the model can be incrementally trained to be

accurate in simulating the dynamics at the current level of operation. This is what is

needed with the dynamic ANN, because it is used to model the FFPU response to

feedback control using candidate gains from the adaptive gain optimization process to

improve feedback control at the current level of operation. This requires the ability to

train ANNs online.

1.2.6 Need for a Multi-Agent System Approach

 Each of the control techniques mentioned previous to this section are

computationally intense. If they are to be implemented simultaneously for real-time

control of the distributed subsystems of a large-scale FFPU, a control system framework

that provides the means for decentralized control, parallel computation of control tasks,

system monitoring, and large-scale coordination is needed. Furthermore, it is desirable

that the framework be robust, flexible, and extensible. For these reasons, a multi-agent

system (MAS) approach to implementing such a control scheme is attractive.

 Though there are many ideas as to what constitutes an MAS among the computer

science community, there are common features among the differing ideas [7]. All MASs

11

consist of intelligent agents that perform separate tasks to perform a larger, coordinated

goal. To solve the problems addressed in this thesis, agents would perform system

monitoring and control tasks to achieve the coordinated goal of efficient, optimized,

distributed control of an FFPU, with the ability to customize the operating goals that

define efficiency and optimality. Furthermore, there is the potential to add robustness,

flexibility, and extensibility because of the distributed, modular nature of MASs.

1.3 Problem Statement

There has been a considerable amount of research done to explore the use of a

MAS framework to coordinate control and monitoring tasks which perform distributed

multiobjective optimized intelligent control of FFPUs [6,8,9,10,11]. Numerous control

techniques, including the ones mentioned here, have been developed to control FFPUs in

this previous research. Also included in this research is the preliminary development of

an MAS framework that organizes control and monitoring processes into agents for

realizing control of a 600 MW FFPU and the 160 MW FFPU used here. However, a fully

operational MAS has not been developed to test the online performance of control tasks

executed by agents or the overall performance of a fully functional multi-agent control

system (MACS).

1.4 Objective and Scope

It is the goal of this thesis to continue previous work done to develop an MAS

method for implementing control and monitoring tasks of a FFPU by developing,

implementing, and testing a fully functional MAS designed for the control of a 160 MW

FFPU. Though the MAS control method is meant to address complex problems faced by

12

large-scale FFPUs, a smaller, less complex 160 MW FFPU is the target of control in this

thesis to simplify the development of the needed infrastructure. Since the MAS method is

extensible and non-rigid, the infrastructure developed here can be used to design an MAS

to control larger, more complex systems.

This thesis consists of five chapters. The first chapter gives motivation and

background for this thesis, as well as a description of the problems addressed. The

problems facing the electric utility industry and shortcomings of other control methods

are discussed to motivate the development of a more advanced control system. This

chapter also discusses the previous work that has led to the extension this thesis provides.

The second chapter describes the overall control architecture that is to be

implemented by the MAS, the mathematical model of the FFPU used as the target of

control to develop the MAS, and the control techniques to be implemented by the MAS.

The third chapter gives a detailed description of MASs, the structure of an individual

agent, and the structure of the proposed MACS. The proposed agents that perform the

control techniques and the messaging system that allows the agents to communicate are

also explained.

 Chapter four details the software implementation and simulation of the

MAS, the methods used to test the control system, as well as the methods used to confirm

the successful operation of the individual agents. The fifth chapter gives a summary of

this thesis, draws conclusions from chapter four, and suggests possible future research

opportunities that could add to this research.

13

CHAPTER TWO

The Optimized Multiobjective Control System

 This chapter discusses the individual control techniques of the optimized

multiobjective control system and how they work together to perform control of a power

plant system. To do so, an overview of the architecture of the optimized multiobjective

control system is given. Then, the power plant model used to evaluate the operation of

the control system is discussed and the reference governor that is used to calculate

optimized control valve setpoints and output level references for control of the power

plant model is described. Next, the feedback control system used to control the power

plant model at the setpoints generated by the reference governor, and the gain optimizer

used to optimize feedback gains for use in the feedback controller are discussed. Lastly,

the function, type choice, structure and training of the artificial neural networks (ANNs)

used to model the power plant system for model predictive control (MPC) in the

reference governor and gain optimizer are described.

2.1 Optimized Multiobjective Control System Architecture

 The goal of the optimized multiobjective control system, pictured in Fig. 2.1, is to

allow optimized control of a power plant system in a customizable manner, such that an

operator can choose operating goals for a specific plant system and implement them in

real-time. Each goal is given a priority value based on ascribed importance to be used by

the control system to produce optimized control. This method was proposed in [3] to help

power plants respond to the constantly changing requirements on operation due to

14

government regulations as well as changes made to increase efficiency in order to

become more competitive in today’s utility market.

The inputs to the control system are the unit load demand, operating objectives,

and preferences. The unit load demand is the power output demanded of the power plant

unit, and is determined by economic dispatch, which dictates the operation of multiple

power units to produce enough energy to reliably meet the demand from end users at the

lowest cost to the provider. The operating objectives are strategic goals, with respect to

operation of the power unit, that are meant to increase the efficiency of the unit, such as

minimizing pollution, fuel consumption, stress on equipment, etc. Preferences are values

that rank the operating objectives in order of importance, and, as will be discussed later in

this chapter, these values determine how the operating objectives affect the outcome of

the control setpoint optimization.

Based on these inputs, the control system uses a reference governor, feedforward

control, feedback control, gain optimization, and real-time neural network training to

Fig 2.1. Block diagram of the overall control system.

15

produce optimized control of the target power plant unit. The reference governor uses the

control system inputs, electric power demand level and the operating objectives and

preferences, to optimize operating setpoints and output level references to be used in the

feedback controller. The functionality of the feedforward controller is performed in the

reference governor as a result of the optimization process.

The feedback controller uses the references from the reference governor and

feedback gains produced by the gain optimizer to maintain tight control of the plant

system with respect to the references. The gain optimizer optimizes the feedback gains

whenever the control system detects that the error between the setpoints and plant output

are above the predetermined threshold. The real-time neural network trainer continually

collects data to train and adapt the artificial neural networks that are used in the control

system to model plant processes in the optimization procedures performed in the

reference governor and the gain optimizer.

2.2 Power Plant Model

The power plant model used to develop and test the optimized multiobjective

control system discussed in this thesis is a mathematical model of a 160 MW oil-fired

drum-type boiler-turbine-generator unit, a detailed formulation of which can be found in

[12]. It is modeled as a third-order three-input three-output nonlinear model. The inputs

to the system are positions of valve actuators that control the mass flow of fuel

(represented as u1 in per unit), steam to the turbine (u2 in per unit), and feedwater to the

drum (u3 in per unit). The outputs are electric power generated by the plant (E in MW),

drum steam pressure (P in kg/cm2), and drum water-level deviation (L in meters). The

resulting state variables are electric power (E), drum steam pressure (P), and steam-water

16

density (ρf). The dynamic equations for the third-order model were developed by Bell and

Ǻström in [12] and are as follows:

  9/8

20.73 0.16 /10
dE

u P E
dt

   (2.1a)

9/8
1 2 30.9 0.0018 0.15

dP
u u P u

dt
   (2.1b)

  3 2141 1.1 0.19 / 85fd

u u P
dt


   (2.1c)

The drum water level deviation from a fixed, drum-specific setpoint is calculated from

the solution for ρf in equation (2.1c) in conjunction with the algebraic equations below:

  1 2 345.59166 0.8537 0.14746 2.51431 2.0958eq u u P u     (2.2a)

 
  

1/ 0.00154

1/ 0.8 25.6 0.00154
f

s P







 
 (2.2b)

 16.3565 3000 5.5556 3275s eL u q    (2.2c)

where qe is the evaporation rate (kg/s) of water in the boiler and αs is the steam quality.

Values for the control valve positions are represented by values on [0,1], 0

representing a completely closed valve and 1 representing a completely open valve, and

have rates of change limited as shown below, as determined in [11]:

 10.007 / 0.007du dt   (2.3a)

 22.0 / 0.02du dt   (2.3b)

 30.05 / 0.05du dt   (2.3c)

 Steady-state equations for this power plant model are obtained by setting the

dynamic equations in (2.1) to zero and solving for u1, u2, and u3. This result gives an

17

inverse steady-state model of the dynamic equations, shown below, consisting of only

algebraic equations:

9/8
2 3

1

0.0018 0.15

0.9

u P u
u


 (2.4a)

9/8

2 9/8

0.16

0.73

P E
u

P


 (2.4b)

 2
3

1.1 0.19

141

u P
u


 (2.4c)

Similarly, the steady-state electric power and drum steam pressure can be calculated from

the control valve positions by solving (2.4) for E and P, whose result is shown below:

 2

1 3
2

0.73 0.16
0.9 0.15

0.0018

u
E u u

u


  (2.5a)

3

2

141

1.1 0.19

u
P

u



 (2.5b)

The above equations are used to model the power plant in software by calculating

initial conditions for E, P, L and ρf, and continually solving the equations in (2.1) and (2.2)

for a specified time-step. The equations in (2.1) are solved using an ordinary differential

equation solver, followed by the straightforward calculation of the equations in (2.2).

Control of the power plant is simulated by calculating the input values, u1, u2, and u3

using the described control system implemented in software.

2.3 Reference Governor

 The reference governor was designed to allow optimized control of a power plant

unit with custom operating goals that can be adjusted real-time. The ability to customize

operating goals would help operators conform to changing regulations and market

18

Fig 2.2. Diagram of the process flow in the reference governor.

situations without redesigning the control system. Therefore, with this reference governor

design, the objective functions and preferences can be changed during the operation of

the control system.

 In operation, the reference governor generates optimized setpoints based on the

unit load demand, Euld, operating objective functions, J, and preference values, β, which

are the inputs to the reference governor. It does this in three subprocesses, shown in Fig.

2.2. The first subprocess uses preformed tables of feasible operating bounds, listed in

Appendix A, for each of the control valves to determine bounds on control operation for

the current unit load demand. The second subprocess uses an optimization algorithm to

find optimized control setpoint values for the current unit load demand, with respect to

the operating objectives and preferences, within the control bounds specified by the first

subprocess. The third subprocess translates the optimized control setpoints into output

reference levels to be used in the feedback controller.

2.3.1 Power-Input Operating Windows

The power-input operating windows in the first subprocess define the feasible

range of operation for each control input with respect to a specific unit load demand. The

power-input operating windows for the power plant used in this thesis are calculated from

19

Fig 2.3. Graph of the power-pressure window over the range of possible unit load demands.

0 20 40 60 80 100 120 140 160 180
0

25

50

75

100

125

150

175

200

225

250

Power (MW)

St
ea

m
 P

re
ss

ur
e

(k
g/

cm
2)

Upper Limit

Lower Limit

the power-pressure operating window, shown in Fig. 2.3. The power-pressure operating

window gives a range of feasible operating drum steam pressures that can achieve a given

unit load demand power in a power plant. Using the equations in (2.4), the minimum and

maximum drum steam pressures for a specific unit load demand power are used to

calculate a minimum and maximum value for each control input. Doing this for all

possible unit load demand values results in the graphs in Fig. 2.4. A table of the pressure

and control boundary values can be found in Appendix A.

The power-pressure operating window was determined by first calculating control

values using the equations in (2.4) for power and drum steam pressure levels representing

the full range of operation. Then, the power plant response to those inputs was simulated

using the power plant model. The control values that are accepted as feasible are those

that result in a steady-state convergence while meeting all constraints, such as the

requirement for the steady-state drum water level deviation to be zero meters. The

20

(a)

(b)

(c)

Fig 2.4. Plots of the power-input windows over the range of operation.

0 20 40 60 80 100 120 140 160 180
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Power (MW)

u 1 (
pu

)

Upper Limit

Lower Limit

0 20 40 60 80 100 120 140 160 180
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Power (MW)

u 2 (
pu

)

Upper Limit

Lower Limit

0 20 40 60 80 100 120 140 160 180
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Power (MW)

u 3 (
pu

)

Upper Limit

Lower Limit

21

 kssu1 = 0.7966 (2.6a)

 kssu2 = 1.1814 (2.6b)

 kssu3 = 1.1420 (2.6c)

corresponding drum steam pressure resulting from the simulation to steady-state is also

noted. The power-pressure window is made up of all the drum steam pressures resulting

from this process matched with their corresponding power levels. The power-pressure

window used here was determined in [11].

The optimized control values will, in some cases, be greater than the physical

limits of the control valves in the power plant model. As discussed in [11], this is

attributed to the fact that the positions of the valve actuators were collected manually

while studying the power plant, introducing some involuntary error. This does not affect

the formulation of the power plant model, as it is equivalent to replacing the control

valves with a resizing procedure. Therefore, for the calculation of the power-input

windows, the control values are scaled by the constants shown below to be between zero

and one. The values are not scaled in the simulation of the power plant model:

The scaling factor values were chosen such that the power plant model could be

used to simulate control action for up to 110% of the rated maximum power of the plant,

as is required in practice for power plant operation. This designates the operational range

of the power plant model to be between 10 and 180 MW, with 180 MW being a peak

maximum load. The maximum sustained load rating is 160 MW.

22

 1() uldJ u E E  (2.7a)

 2 1()J u u (2.7b)

 3 2()J u u  (2.7c)

 4 3()J u u  (2.7d)

2.3.2 Multiobjective Optimization

The purpose of the multiobjective setpoint optimization is to solve the problem of

finding an optimized combination of control inputs that meet operating objectives with

respect to their assigned preferences. The defined operating goals could possibly conflict

with each other, which is why preference values are needed. Using the preferences, the

optimization algorithm will make sure that higher priority objectives are considered as

such.

 The operating objectives chosen for the power plant model used in this thesis are

to minimize the following objective functions:

where objective function J1(u) represents the minimization of the power generation error,

J2(u) represents the minimization of fuel consumption through u1, J3(u) represents the

minimization of the pressure drop across the steam valve u2, and J4(u) represents the

minimization of energy loss due to the pressure drop in the feedwater valve u3. Each

objective is given a preference value, ranging from 0 to 1. The preference values allow an

operator to give priority to the different operating objectives, giving more important

objectives higher values. If an objective function has a preference value of 1, it is

considered to be most important in the optimization, whereas if it is given a value of 0,

the objective is removed from consideration in the optimization process.

23

The algorithm used in this thesis to find optimized steady-state control values for

the multiobjective optimization is hybrid particle swarm optimization (HPSO), as this

method was found to outperform other methods used to obtain optimized solutions to this

problem in [3]. The other methods tested in [3] include other variations of particle swarm

and genetic algorithms, such as the constriction factor approach and evolutionary particle

swarm optimization. The difference between particle swarm, which was proposed in [13],

and the hybrid method is that the particles, or candidate solutions, with the worst

performance are moved to the positions of those with the best performance, represented

by step 6, below. An inertial weight, w, is also used. The HPSO is performed as follows:

1. Randomly initialize n particles within the search space, where n is a design

parameter in the search algorithm.

2. Evaluate each particle with respect to the objective functions and preferences

used to evaluate the fitness of candidate solutions.

3. Check to see if each particle’s current fitness is better than its personal best,

pbest. If so, store the new fitness as the personal best.

4. If there is a personal best that is better than the current global best, gbest, then

replace the previous global best with that personal best.

5. Calculate a velocity for each particle to determine its next position in the

search space and move them accordingly using the equations below, where

is the current velocity for particle i at iteration k, c1 and c2 are chosen weights,

rand1 and rand2 are uniform random numbers on [0, 1], and is the current

position of particle i at iteration k:

    1
1 1 2 2* *k k k k

i i i i iv wv c rand pbest s c rand gbest s      (2.8a)

24

1,2,...,
max , 0m i i

i k
  


   (2.9a)

 *() () , 1, 2... ,i i i iJ u J u i k u       (2.9b)

  * min (); , 1,2...i iJ J u u i k    (2.9c)

 max min
max

max

*
w w

w w iter
iter

 
   

 
 (2.8b)

 1 1k k k
i i is s v   (2.8c)

6. Move the half of the particles with the worst current performance to the

position of the half with the best performance, keeping the calculated

velocities.

7. Re-evaluate each particle’s performance as in step 2 and repeat steps 3-6 until

either a sufficient solution is found, or the iteration limit is reached.

 For the power plant model used in this thesis, the equations shown below are

used to evaluate the fitness of the particles:

This approach uses the largest value of the four objective functions as the overall fitness

for a specific particle. The particle with the smallest calculated is considered to have

the best performance with respect to the operating objectives and preferences. The

objective function J1(u) is calculated using a steady-state model of the plant that takes

control values as input and outputs the corresponding steady-state electric power and

drum steam pressure, where the steady-state model is a feedforward-type ANN trained to

model the equations in (2.5). The training and real-time adaptation of this model is

discussed in Section 2.6.

25

 The optimization method used in the reference governor has been designed to be

general so that it can be used in other power plant units. All that is necessary to make the

change is to design objective functions specific to the needs of the power plant to be

controlled, and obtain a process model to evaluate the fitness using those objective

functions as described here. It is expected that this method be used on power plant units

that are much more complex in terms of number of inputs and operating goals. The

simple model used here serves to simplify the development process of this control

method as a starting point to controlling much larger, more complex systems.

2.3.3 Setpoint Scheduler and Feedforward Controller

The purpose of the setpoint scheduler is to calculate the generation setpoints from

the feedforward control values produced by the optimization process. In the method used

in this thesis, this action is carried out in the optimization process. As described in

Section 2.3.2, electric power and drum steam pressure are calculated for each set of

candidate control values. Once an optimized set of control values is found, the

corresponding steady state electric power and drum steam pressure have already been

determined and can be used as generation setpoints, using zero as the water level

deviation demand.

The functionality of the feedforward controller is also performed in the

optimization process. The function of the feedforward controller is to produce

feedforward control values from the generation setpoints. Since the control optimization

process produces a set of optimized control values and corresponding generation

setpoints, there is no need for a separate feedforward controller apart from the reference

governor.

26

2.4 Feedback Controller

The feedback control system uses proportional-integral (PI) control to track the setpoints

generated by the reference governor, a general equation for which is shown below:

Since the input and output variables are coupled, the resulting feedback gains, Kp and Ki,

are three-by-three matrices, in this case, to allow for the interdependence of the variables.

To simplify the control system, and therefore the calculation of feedback gains, the

relative gain array (RGA) matrix was calculated to analytically determine which inputs

have the most effect on the outputs. This calculation, shown in Appendix B, shows that

the fuel flow, u1, has the most effect on output power, the flow of steam to the turbine, u2,

has the most effect on drum steam pressure, and the flow of feedwater into the drum, u3,

has the most effect on the water level.

By this finding, the feedback controller was simplified into three feedback loops,

with a PI controller in each loop. In this arrangement, each control loop controls one

input variable based on one of the three output errors. Specifically, the feedback control

loops for the mass flow of fuel, u1, the mass flow of steam to the turbine, u2, and the mass

flow of feedwater to the drum, u3, are controlled by the error between the electric power

setpoint and the actual electric power output, the error between the drum steam pressure

setpoint and the actual drum steam pressure, and the error between the water level

deviation setpoint and the actual water level deviation, respectively. Diagrams for the

control loops are shown in Fig. 2.5, where Ed is the desired unit load demand power, Pd is

the desired drum steam pressure, Ld is the desired drum water level, KPi are the

0

() () ()
t

fb p iu t K e t K e d    (2.10)

27

proportional gains, KIi are the integral gains, and ufbi are the respective feedback

compensation values to be added to the steady-state feedforward control values, with i =

1, 2, 3. The gain values for the PI controllers are determined by the gain optimizer

discussed in the next section.

2.5 Gain Optimizer

In this control system, gain optimization is used to optimize the PI feedback

control gains used in the feedback controller. The gains are optimized once offline to

obtain an initial set, and then in real-time whenever the performance of the feedback

controller is found to need improvement. This way, it is possible to maintain good-as-

possible control for all operating levels with respect to feedback control, increasing the

overall efficiency of the power plant unit.

The need for gain improvement is determined using error thresholds. These

thresholds are error levels set as a design parameter for a specific power plant unit and

Fig 2.5. Block diagrams of the PI control loops for the decoupled feedback control approach.

28

     2

1
1

N

d
n

J E n E n


  (2.11a)

     2

2
1

N

d
n

J P n P n


  (2.11b)

     2

3
1

N

d
n

J L n L n


  (2.11c)

are compared against the output errors calculated by the feedback controller, Ed-E, Pd-P,

and Ld-L. Once an error exceeds one of these thresholds, the gain optimizer will perform

the optimization to improve control.

 The algorithm chosen for the optimization is hybrid particle swarm optimization

(HPSO), described in Section 2.3.2. It was chosen because of its success in optimizing

the steady-state controls in the reference governor over other methods explored in [3].

However, though the author recognizes that this does not necessarily imply that it works

better than all other algorithms for this optimization problem, finding the best

optimization method was not a focus of this thesis.

 The candidate gain sets are tested against a step in unit load demand, generated by

the reference governor, over a sufficient amount of simulation time to analyze

performance costs. To do this, a dynamic ANN, called a recurrent neural network, is used

to simulate the power plant unit’s response to feedback control using the candidate

feedback gains to track the step input. The details of the training and real-time adaptation

of the recurrent neural network are discussed in Section 2.6.

The objective functions used to optimize the feedback gains are the sum-squared

errors for electric power, drum steam pressure, and water level deviation, shown below:

The costs for this optimization are evaluated similarly to those in Section 2.3.2, with the

equations shown below:

29

These equations find the objective function with the highest normalized error for each

particle, or candidate solution, and use that value, , to evaluate fitness compared to the

rest of the particles. During the optimization, if in any iteration a particle has a better

performance than its current personal best, it will replace its personal best with the

current gain set. If there is a particle that outperforms the current global best in a given

iteration, it will replace it with its current gain values.

 Another design consideration that must be made here is the maximum length of

time to allow the gain optimization to run. Since gain optimization is only used when

there is a perceived deficiency in the effectiveness of the current feedback gains, the

faster an optimized solution can be found the better. As a general rule, the optimization

must be run as long as it takes to consistently get an acceptable result over the entire

range of the problem for which the optimization is to provide a solution. Factors affecting

the time it takes to optimize are the number of particles used in the optimization, the

length of simulation time used in the evaluation of candidate gain sets, and the maximum

number of iterations. These parameters are design considerations that must be made

based on the specific power plant unit to be controlled.

One way to shorten the time it takes to produce an optimized result, and also to

make sure that the resulting gain set is not worse than the previous one, is to use the

previous gain set as a starting point for the optimization. To do this, the previous gain set

1,2,...,
max , 0m i i

i k
  


   (2.12a)

 * , 1, 2...i i i iJ J i k     (2.12b)

  * min , 1,2...i iJ J i k   (2.12c)

30

is used as one of the initial particle values, with the rest initialized randomly. This way,

any improved gain sets that are found will be at least as good as the previous one. If for

some reason the optimization does not find a better result, the current gain set will

continue to be used, and the optimization can be run again until a better gain set is found.

2.6 Artificial Neural Network Models and the Neural Network Trainer

Artificial neural networks (ANNs) are used in this control system because the

more complicated power plant systems for which this control method is intended either

don’t have equation models available or the available model is too computationally

complex to be implemented due to constraints on calculation time. This necessitates a

less computationally intense model suited for modeling nonlinear systems, such as an

ANN. Therefore, though there is a simple set of equations for the power plant modeled in

this thesis, ANNs are still used in the control system for the purpose of developing a

method for implementing neural networks and a neural network trainer for use in larger,

more complicated systems. Henceforth, the reader is assumed to have a minimal

understanding of ANNs and is referred to Appendix C for a brief introduction.

There are two types of ANNs used to model the physical processes that take place

in the power plant unit used in this thesis, a feedforward neural network (FFNN) and a

dynamic ANN called a layer-recurrent neural network (LRNN). These ANNs are

described in detail in the next two subsections.

2.6.1 Feedforward Neural Network

The FFNN is used to predict the steady state power plant output produced by a

particular combination of control inputs. This prediction is meant to be equivalent to

31

introducing a set of control inputs to the power plant unit and keeping them constant until

steady state operation is achieved, noting the output at steady state. The FFNN is used in

the reference governor to evaluate the electric power output and drum steam pressure

corresponding to candidate control value sets as a cost in the control optimization process.

An FFNN is used in the control optimization process, because it is much faster,

from a simulation standpoint, compared to running a dynamic simulation to steady state

for each candidate control set to be evaluated. With multiple candidate sets of control

values that are evaluated for each iteration, where there are many iterations, there is the

potential for this evaluation to take place several hundreds or thousands of times for each

optimization. Because of this, it is crucial that the evaluation be as quick as possible

while giving an accurate result.

The FFNN is made up of multiple artificial neurons in three or more layers

consisting of an input layer, a hidden layer or layers, and an output layer. The neurons in

each layer are connected to all of the neurons in the preceding and proceeding layers with

no recurring connections. The exceptions are the input layer, which has no preceding

layer, and the output layer, which has no proceeding layer. A generalized diagram of this

configuration is shown below in Fig. 2.7.

Each of these connections between artificial neurons contains a weight value that

models the strength of a synaptic connection between neurons in the brain. These values

can initially be set randomly and can then be trained using an appropriate training

algorithm.

There are two types of training: parameter learning and structure learning.

Parameter learning trains the weights between artificial neurons using a predetermined

32

connection structure and number of neurons, where structure learning rearranges the

structure of the ANN in order to learn a desired behavior. For the ANNs in this thesis,

only parameter learning is used.

In parameter learning, there are three methods of training: supervised learning,

reinforcement learning, and unsupervised learning. Supervised learning is the only

method of training used in this thesis. With supervised learning, a set of normalized data

is made available to the training algorithm consisting of inputs and outputs from the

system to be modeled. The training algorithm uses the given inputs with the FFNN to

simulate the corresponding output and calculate an error between the simulated output

and the outputs provided in the training data. The error between these outputs is used to

adjust the weights and biases between neurons using the method defined by the chosen

training algorithm.

Fig. 2.6. General configuration of artificial neurons and weight interconnections for a multilayer

feedforward neural network.

33

During the training process, the changing of weights and biases based on output

error continues until the error has been decreased to a level deemed sufficient to

accommodate the required accuracy of the application. Once the training process is

finished, another set of data collected from the target system that wasn’t used in training

can be used to test the newly trained FFNN for accuracy. This gives a measure of the

ANNs ability to accurately simulate the modeled system, where if only data used in the

training process is used to test the ANNs accuracy, the tests may give a false sense of

accuracy. This is because the training could resulted in the memorization of the training

data rather than learning the overall behavior of the system.

2.6.2 Dynamic Neural Network

 In this thesis, an LRNN is used to simulate the power plant dynamics resulting

from inputs given by the addition of feedforward and feedback control values. Using the

network in this way makes it possible to evaluate the cost, or fitness, of candidate

proportional and integral gain combinations to be used in the feedback controller, which

are determined in the gain optimization process performed in the Gain Optimizer. Using

the LRNN allows the gains to be optimized while the control system is online and

without using the physical system to test candidate gains, which makes optimized real-

time, online gain-tuning possible.

 The specific ANN used for this purpose is a LRNN. The LRNN is a generalized

form of the Elman network. The LRNN generalizes the Elman network by allowing the

use of multiple hidden layers and an arbitrary number of transfer functions in the artificial

neurons, whereas the Elman network only uses one hidden layer and set transfer

functions. However, the LRNN used in this thesis is constructed to have the original

34

Fig. 2.7. General configuration of artificial neurons and weight interconnections for a single hidden layer in

a layer recurrent neural network.

configuration used by the Elman network with the possibility of making needed

configuration changes.

The structure of an LRNN is similar to that of an FFNN. The difference is that the

LRNN contains internal time-delayed recurrent connections that store the time-delayed

output of each artificial neuron in a hidden layer to be input into each neuron in that layer,

as shown in Fig. 2.8. This configuration applies for all hidden layers in an LRNN. These

time-delayed recurrent connections serve as a temporal memory through which the

network can simulate system dynamics.

The training process for the LRNN is similar to that of the FFNN, only sequences

35

of data are used to train this ANN instead of multiple independent input-output pairs.

Sequences of data are needed in this case, because in order to accurately train the network

weights, especially the recurrent connection weights, the training algorithm must be have

access to time-delayed output values for each input-output pair to be trained. Just as with

the FFNN, the LRNN is trained in this thesis using supervised parameter learning.

Supervised parameter learning uses the error between simulated outputs and provided

outputs to change the network weights according to the rules of the training algorithm.

The recurrent neural network structure can be further simplified by the Diagonal

Recurrent Neural Network (DRNN). The DRNN is a simplified LRNN where the time-

delayed output of each artificial neuron in the hidden layer is input only into the same

neuron and not to any other neurons in the hidden layer [15]. This greatly simplifies the

network structure and reduces computation time since only one recurrent weight will be

needed for each neuron in the hidden layer, avoiding cross talk between neurons.

2.6.3 Neural Network Trainer

The ANNs mentioned in the last two section are initially trained offline to be able

to model power plant operation at operating points throughout the power-pressure

window shown in Fig. 2.3 equally well. This training is referred to as global training. The

global training for the FFNN results in a model that is very accurate at modeling the

power plant in all regions of the power-pressure operating window.

The global training for the LRNN, however, produces a model that is equally

accurate at representing all operating points, but is not accurate enough in any one region

to be useful. This means that after global training, the LRNN is not accurate enough to be

used to evaluate the performance of gain values in the gain optimization procedure.

36

Therefore, the LRNN must be fine-tuned with data specific to the current level of

operation to give a useful result.

To correct this problem, a neural network trainer has been designed to fine-tune

the LRNN online, as real-time power plant data is collected, to be more accurate in

modeling the current level of operation. The neural network trainer incrementally trains

the LRNN with the new data as it is collected. This allows the gain optimizer to have

access to a LRNN that is most accurate at simulating the current operating level, which is

what is needed.

Though fine-tuning the LRNN improves simulation accuracy for the operating

level, it decreases the simulation accuracy in the other operating levels. Therefore, special

consideration must be made so as not to degrade the simulation accuracy of the LRNN in

other regions to the point where they cannot be retrained online to give an accurate result.

37

CHAPTER THREE

Multi-Agent System

 This chapter gives definitions for multi-agent systems (MAS) and discusses the

details of the multi-agent control system (MACS), which is a multi-agent implementation

of the control method described in Chapter Two. The sections herein describe the

common architecture shared by agents, the architecture of the MACS, the agents

proposed to implement the control system and their functionality, and the agent

communication protocol. Considerations for handling agent failures are also discussed.

3.1 Overview of Multi-Agent Systems

 Within the computer science community, there are many different ideas regarding

what constitutes a multi-agent system [16-20]. However, all of these descriptions seem to

agree on a few central ideas which include the concept of an agent, an agent’s

environment, and an agent’s autonomous nature [7]. In [20], an agent is described simply

to be, “a software (or hardware) entity that is situated in some environment and is able to

automatically react to changes in that environment.”

Furthermore, an intelligent agent is defined to be an agent that is autonomous,

proactive, reactive, social, and flexible within its defined environment [7]. An agent is

defined as autonomous if it is able to operate on its own to perform its designed

functionality once it is activated. An agent is proactive if it has been designed with a goal,

or goals, and is actively pursuing those goals autonomously. Reactivity in an agent

indicates that it has the ability to respond to perceived changes in its environment in a

38

way that serves to meet its programmed goal. Furthermore, an agent is considered to be

flexible if it has the ability to react appropriately to unexpected situations in its

environment. An agent is described as social if it has the ability to communicate with

other agents, and possibly resources, available to it. A multi-agent system (MAS) is

defined to be two or more agents working together to achieve a coordinated goal.

Within the context of this thesis, agents are defined to be software running on

computers connected through intranet, for the purpose of communicating via UDP, that

align with the above mentioned characteristics. More than one agent can run on a single

computer. The environments in which they are situated are specific systems, physical and

cyber, within a power plant unit. Perception of an environment is carried out through the

use of sensors and communication received from other agents, system resources, or an

operator. For the purposes of this thesis, the coordinated goal of the MAS is to implement

and maintain intelligent control of a power plant unit to allow optimized operation as

defined by the optimized multiobjective control scheme discussed in Chapter Two. The

specifics of how this MAS achieves this goal are discussed in the sections to follow.

3.2 Single Agent Architecture

 In this thesis, each agent has a common architecture independent of its task,

depicted in Fig. 3.1. Within this architecture, each agent consists of a task thread and a

messenger thread [21], where a thread is a computational task being performed in parallel

with other threads to perform one process [x5]. The task thread performs an agent’s task

functionality by executing the necessary algorithms. The messenger thread receives and

processes all incoming communications from other agents and resources in the MAS. The

agents were structured in this way so that the task thread is not forced to regularly halt, or

39

Fig. 3.1. Diagram of the common agent architecture.

block, its operation to listen for and manage incoming communication. However, the task

thread sends its own messages, because it is more efficient than having to synchronize the

message data with the message thread.

 For the MAS proposed in this thesis, the task thread for each agent contains all of

the code necessary to perform the duties of any agent. This allows the MAS to reassign

tasks to maintain control of the power plant unit in the case of an agent failure. The

ability of the MAS to restructure itself gives flexibility and robustness to the control

system, as it is able to automatically adapt to potentially devastating situations, such as

when agents that are critical to the operation of the control system fail.

 The messenger thread contains an interpreter to decipher incoming MAS

messages, the format of which will be described in a later section. After interpreting an

incoming message, the messenger thread is used to preprocess the data contained in

messages as much as possible to save computation time in the task thread. Once the data

has been processed and is ready to be relayed to the task thread, it is sent during a

synchronization period that is invoked in the task thread only when a message has been

40

received and processed. The synchronization period is designed to make sure that data is

not updated in the task thread until the appropriate time. Otherwise, data being used in

calculations in the task thread may be overwritten and the results made inaccurate due to

the mixing of current and past data in the same calculation.

3.3 Multi-Agent System Architecture and Proposed Agents

 The agents in the MAS have been divided into a three-tier hierarchy based on

their functionality type. This hierarchy comprises the MAS architecture. The three tiers

are designated as high, middle, and low level. High level agents, or interface agents,

allow human operators to interact with the multi-agent system to specify control

parameters, and monitor operation and performance in the system. Middle level agents,

or managing agents, delegate tasks, monitor agent and system performance, and provide

means to acquire, store, and distribute data throughout the system. Low level agents, or

control agents, execute the functionality of the control system. Low level agents include

those that interface with the physical systems of the power plant.

 The agents proposed to control the power plant unit described in Section 2.2 are

the Interface agent, Free agent, Delegation agent, Monitoring agent, Database agent,

Feedforward agent, Feedback agent, Gain Optimizer agent, and Neural Network agent,

categorized in the three-tier hierarchy as shown in Fig. 3.2. Since the power plant model

used in this thesis is relatively simple in terms of complexity, at least compared to much

larger plants that exist today, there is only need for one of each of the agents mentioned.

For larger power plant systems, such as the 600 MW plant used in [8], there would likely

be multiples of some of the agent types. Also, once the managing infrastructure of the

MAS is in place, any number of additional agents can be added to increase the

41

functionality of the control system through the addition of more agent types. Regardless

of how many agents the MAS control system may be designed to have, there should be

enough additional agents in operation as Free agents to serve as backups for any of the

agents in the case of an agent failure.

3.3.1 Interface Agent

The Interface agent is meant to allow an operator the ability to interface with the

MAS. Using this interface, an operator will be able to monitor the MAS, the agents, and

the power plant unit for performance, as well as configure control parameters in the

control system, such as preferences and objective functions (see Section 2.3). Though this

agent is mostly controlled by an operator, it is intelligent in that it has to decide how to

carry out the commands given by the operator. For example, when requesting data, the

Interface agent must determine the location of the appropriate agent, request the data, and

make sure that it receives and processes the requested data to be sent to the operator.

When relaying commands to the system, the Interface agent must again determine the

Fig. 3.2. Proposed agents divided into the MAS hierarchy.

42

location of the specific agent needed, relay the data, and make sure the command is

carried out. If something goes wrong with an operation, it must retry the action, try to

resolve the issue itself, alert the Delegation agent of a possible agent failure, or alert the

operator that the action failed.

To interface with the MAS, the operator would use the specially designed

graphical user interface (GUI) to communicate with the Interface agent which would

intelligently carry out requested actions. The GUI translates the user’s requests into MAS

messages and sends them to the Interface agent. The Interface agent receives these

messages the same way it would receive any other messages from the MAS. A flowchart

showing the basic operation of the Interface agent is shown in Fig. 3.3.

3.3.2 Free Agent

 When an agent other than the Interface agent is initiated, it will begin as a Free

agent. When a Free agent starts, it begins a discovery process that explores the MAS

network to determine what other agents and resources exist. It does this by polling the

communication network and, upon finding an agent or resource, will determine what task

it is performing or a description of its function as a resource. In doing this, the Free agent

creates a local address table of the MAS, called an agent directory. If no Delegation

agent is discovered during the exploration process, which is the agent that manages and

assigns agent tasks, then the Free agent with the lowest Internet Protocol (IP) address will

become the Delegation agent. This action is taken since the Delegation agent is essential

for the organization and operation of the MAS. Upon becoming the Delegation agent, the

agent will use its agent directory to manage and assign agents.

43

Fig. 3.3. Flow diagram of the basic operation of the Interface agent.

44

 In the case that the Free agent detects that a Delegation agent already exists, it

will switch into stand-by mode, waiting to be assigned a task to perform. In stand-by

mode, a Free agent will regularly poll the Delegation agent to ensure that it is still

functioning properly. This way, if the Delegation agent fails, the first Free agent to detect

this will assume the Delegation agent role, minimizing its downtime and the possibility

that something will go wrong because of the failure.

After all needed agents are assigned, the remaining Free agents act not only as a

backup for the Delegation agent, but as a form of redundancy for any of the other tasks

should there be an agent failure. This helps to minimize downtime should an agent fail

for any reason. However, instead of assuming the role of a failed agent as with the

Delegation agent, a Free agent will wait to be assigned the missing task by the Delegation

agent. Flowcharts of the Free agent’s operation can be found in Figs. 3.4 and 3.5.

3.3.3 Delegation Agent

 When a Free agent becomes the Delegation agent, it is responsible for assigning

the tasks needed for the control system, as well as monitoring the MAS to ensure that all

needed tasks are being performed. When the Delegation agent emerges, it will contain an

up-to-date agent directory from which it will begin assigning tasks to the other Free

agents. To do this, it will use a prioritized agent assignment list to make sure that the

most critical tasks are assigned first, and work its way down to the least critical.

For the agents proposed in this thesis, the prioritized agent assignment list begins

with the Feedback and Feedforward agents, and proceeds with the Neural Network agent,

Gain Optimizer agent, Monitoring agent, and Database agent. This list is set such that if

agent failures occur, the agents that are most important to the continued, stable function

45

Fig. 3.4. Flow diagram of the basic operation of the Free agent.

46

Fig. 3.5. Flow diagram of the basic operation of the Free agent in stand-by mode.

47

of the power plant are reassigned first. The reasoning for this order is discussed in the

section on agent failures.

Once all of the agents have been assigned, the Delegation agent’s task is to

monitor the agents to ensure they are operating as expected. To do this, the Delegation

agent will regularly send a confirm operation message to each of the agents, requesting a

response that guarantees the agent is functioning. The Delegation agent will try a

predetermined number of times to ascertain an agent’s operational state without a

response before it will assume the agent has failed and proceed with finding its

replacement. Once it has been determined that an agent may have failed, the Delegation

agent will quickly reassign the failed agent’s task to a Free agent to prevent unintended

operation of the control system due to the failure.

The Delegation agent also serves as a directory which can be used as a reference

by other agents, because it already contains up-to-date information about the agents. This

information includes IP address, task, as well as other agent specific information. A

condensed form of the directory information will be stored in the other agents, referred to

as the agent directory. The agent directory contains only agent address and

communication information intended to be used for sending messages between agents.

This information includes the task, network address, and incoming message port. In order

to maintain a current version of the agent directory in each of the agents, the Delegation

agent will send an updated version of this table as a part of the confirm operation

message.

In the case that the Delegation agent fails, the Free agents will detect the failure,

because they are polling the Delegation agent to make sure it is still functioning. When

48

the Free agents realize that the Delegation agent has failed, they will use their agent

directories to determine which Free agent has the lowest IP address and that Free agent

will assume the Delegation agent role. The general operation of the Delegation agent is

shown in flowchart form in Fig. 3.6.

3.3.4 Feedforward and Feedback Agents

The first two agents that are assigned by the Delegation agent are the Feedforward

and Feedback agents. These two agents comprise the smallest subset of the proposed

agents with which it would be possible to establish optimized control of the power plant.

This minimal control system is depicted in Fig. 3.7.

The Feedforward agent performs the functionality of the reference governor and

the feedforward controller as they are described in Section 2.3. In doing so, the

Feedforward agent generates optimized control setpoints and output level references,

according to the current operating objectives and preferences set by the operator using the

Interface agent, corresponding to the demand power given by the unit load demand from

economic dispatch. As previously described in Section 2.3, the reference governor uses a

HPSO algorithm to find the optimized control setpoints. In the process of finding the

optimized control setpoints, the corresponding drum steam pressure setpoint is also found

using the FFNN and used as an output level reference. Therefore, both the setpoint

optimization and feedforward control are performed by the Feedforward agent.

At any time in the operation of the MAS control system, an operator can change

the operating objectives and preferences that govern the optimization process. The

preference values are easily changed by using the Interface agent to send the Feedforward

agent a message requesting the change. Upon receiving this request, the Feedforward

49

A Free agent (FA) becomes
the Delegation agent (DA)

Check prioritized task list
and assign next unassigned

task to a Free agent

Send message to each agent
to make sure they are
operating as expected

Any other
incoming messages?

Process and respond to
incoming messages (i.e.,

agent information request)

Yes

Did all agents respond?

Yes
Take action to replace

missing agent(s), based on
priority, assuming failure

No

No

Are all tasks being
performed?

No

Yes

Fig. 3.6. Flow diagram of the basic operation of the Delegation agent.

50

Feedback Agent

Feedforward Agent

Reference
Governor

Unit Load
Demand

Objectives and
Preferences

Feedforward
Controllers

+ Power Plant

Feedback
Controllers

+

+
+

+-

Fig. 3.7. Block diagram of the minimal control structure formed by the Feedforward and Feedback

agents.

agent will update its memory with the new values and use them the next time it performs

the control optimization.

Operating objectives can also be changed real-time using the Interface agent. By

changing the preference values the operating objectives can be activated by assigning a

nonzero value as its preference and deactivated by assigning it a preference value of zero.

However, to add new operating objectives, the agents’ code must be reprogrammed with

the new objectives and the agents restarted so that the code is updated. This is necessary,

because the operating objectives are lines of code that define the cost functions in the

control optimization.

The Feedback agent performs the functionality of the feedback controllers, which

are described in Section 2.4. The input to the Feedback agent from the MAS is the output

level references and control setpoints calculated by the Feedforward agent, the output

recorded from the sensors connected to the power plant, and the PI gains optimized by

the Gain Optimizer agent. The output level references and the actual output recorded

51

from the power plant are used to calculate the errors that drive the feedback controllers.

Using these error calculations and the gains from the Gain Optimizer agent, the feedback

compensation values are calculated, added to the control setpoint values, and applied to

the power plant by sending the resulting values to the valve actuators.

To provide consistency in the timing of the application of feedback compensation,

the Feedback agent was designed to send control values to the power plant valve

actuators every ts seconds. The value of ts is a design parameter and also depends on the

performance capabilities of the hardware implementing the Feedback agent, in that the

hardware must be able to receive incoming messages, process them, and perform the

feedback calculations in less than ts seconds. Another design consideration in determining

the length of ts is how quickly the outputs of the power plant can be sampled. For

example, there is no benefit from ts being shorter than the possible sampling time of the

sensors that are sampled for power plant output values, since the feedback compensation

results will not change until new power plant output data is received.

Another function of the Feedback agent is to monitor the error in plant output for

the Gain Optimizer agent, since the gain optimization process in the Gain Optimizer

agent is triggered when the error between the output level references produced by the

Feedforward agent and the actual output recorded from the power plant exceeds the

preset thresholds. The Feedback agent is used for this purpose, because it already

calculates the errors, and it is only a simple step to send these values to the Gain

Optimizer agent when a violation occurs. Therefore, the Gain Optimizer agent doesn’t

have to continuously request data from the Feedforward agent and the power plant

52

A Free agent (FA) is
assigned to be the

Feedforward agent (FFA)

Power demand change?

Generate optimal control setpoints
and output level references using

optimization algorithm

Yes

Send optimized results to
Feedback agent (FBA)

Are there incoming
messages?

No

Yes

Process and respond to messages
(i.e. preference change message,

setpoint request from Gain
Optimizer agent)

No

Fig. 3.8. Flow diagram of the basic operation of the Feedforward agent.

53

Fig. 3.9. Flow diagram of the basic operation of the Feedback agent.

54

sensors unnecessarily to calculate the errors itself. Flowcharts describing the operation of

these agents can be found in Figs. 3.8 and 3.9.

3.3.5 Neural Network Agent

The Neural Network agent is assigned next, as it is needed by the Gain Optimizer

agent to maintain the LRNN model. The task of the Neural Network agent is to fine-tune

the dynamic ANN models, in this case one LRNN, used in the control system to simulate

the current operating region more accurately. As mentioned in Section 2.6, this is needed

because the global training of the LRNN produces a network that is equally good at

simulating power plant operation in the entire stable operating region, but is not accurate

enough in a specific region of operation to give an acceptable result.

Therefore, the Neural Network agent continually collects power plant input-

output data from the power plant to fine-tune the LRNN. Since the Neural Network agent

is constantly updating the LRNN, it will always be most accurate at simulating the

current level of operation. This is important, because, as mentioned in the last section, the

Gain Optimizer agent will request the current version of the LRNN as it starts the

optimization process in order to have the most accurate model to simulate the power plant

response. This gives the Gain Optimizer agent an LRNN that has been tuned to simulate

the level of operation for which gain values will be tested. The Neural Network agent will

continue to update the LRNN in preparation for future gain optimizations, sending the

current version of the LRNN, when requested, as long as the Neural Network agent task

is assigned. A flowchart describing the Neural Network agent’s operation is shown in Fig.

3.10.

55

Fig. 3.10. Flow diagram of the basic operation of the Neural Network agent.

56

3.3.6 Gain Optimizer Agent

The Gain Optimizer agent is the last of the proposed low level agents to be

assigned. The Gain Optimizer agent performs the functionality of the gain optimizer,

which is described in Section 2.5. This agent waits until the error between the output

level references produced by the Feedforward agent and the actual output levels produced

by the power plant are reported to be above the predetermined threshold values by the

Feedback agent, signifying that better feedback gains are needed to achieve tighter

control of the power plant.

Once one or more of the error level thresholds are reached, the Gain Optimizer

agent will begin the process of optimizing new feedback gain values. The first step in this

process is to request control setpoints and output level references for the current power

level and a power level that is a predetermined step-size higher from the Feedforward

agent. These setpoints and references are then used by the Gain Optimizer agent to form a

test vector that can be used by the HPSO to evaluate candidate gain sets by simulating the

power plant response to feedback control using the candidate gain sets. The next step in

the optimization process is to request the current LRNN from the Neural Network agent.

The LRNN is the model used to determine the cost of a gain set by comparing the

simulation data to the desired output response defined by the output level references in

the test vector. As described in Section 2.5, the optimization will choose the gain set with

best performance, or lowest cost, as optimized.

Once an optimized gain set is found, it is sent to the Feedback agent for

immediate implementation. Once the gains are sent, the optimization process is complete

and the Gain Optimizer agent will stand-by until an error threshold is violated to perform

57

the optimization process again. The Gain Optimizer agent will optimize feedback gains,

as needed, as long as the task is assigned. A flowchart describing the operation of this

agent can be found in Fig. 3.11.

3.3.7 Database and Monitoring Agents

The Database and Monitoring agents are the last agents to be assigned. Assigning

these agents completes the establishment of the middle level in the hierarchy of the MAS.

These agents are lower in priority than the low level agents, because the low level agents

perform the tasks that control the power plant, whereas these two agents provide ancillary

services.

The Database agent handles data files needing to be archived or distributed for

use by other agents. In essence, the Database agent is an intelligent fileserver that keeps

track of where data is stored on the network, and can deliver old or archive new data

upon request. Whenever an agent needs to archive data, it sends it to the Database agent,

and whenever an agent needs data that has been archived, it will request it from the

Database agent. Data handled by the Database agent includes power plant input-output

data, artificial neural networks (ANNs), and control system performance data used for

analysis of control system performance.

The Monitoring agent is intended to monitor different parts of the physical plant

system in order to detect situations demanding immediate attention and action from the

MAS. This functionality was not developed in this thesis, but possible scenarios in which

the Monitoring agent would be desirable are those such as detecting and reacting to

electrical faults in the grid system and shutting down or switching equipment in the case

of an imminent failure in part of the physical plant system.

58

Fig. 3.11. Flow diagram of the basic operation of the Gain Optimizer agent.

59

Since this aspect of control has not been focused on here, the Monitoring agent monitors

and records data from the power plant system for the purpose of analyzing the

performance of the control system and overall power plant operation. This is done by

collecting power plant data and storing the data in memory until the data reaches the

predetermined file size limit. Once the limit is reached, the data in memory is sent as a

file to the Database agent for storage. After sending the data file, the Monitoring agent

will start a new file and repeat this process for as long as it is functioning. Flowcharts

describing the operation of these agents in diagram form can be found in Figs. 3.12 and

3.13.

3.4 Agent Communication

The agents defined in this thesis use an Agent Communication Language (ACL)

to communicate using the User Datagram Protocol (UDP) over a computer network. This

ACL is a subset of the one developed by the Foundation for Intelligent Physical Agents

(FIPA), where only the needed functionality was included [22,23]. The custom version of

the FIPA-ACL will be referred to as the MAS-ACL in this thesis. The MAS-ACL defines

the structure of the language used in messages sent between agents. The MAS-ACL has

four required fields with an optional fifth field. As shown in Fig. 3.14 the message fields

are the performative, sender, receiver, content, and replyby fields.

The performative field contains a keyword that informs the receiving agent of the

purpose for which the message was sent. The performative keywords are request, inform,

subscribe, agree, refuse, and not-understood. The request performative informs a

receiving agent that the message it is receiving is to be processed as a request to do

something, such as send information or change task. The inform performative informs the

60

Fig. 3.12. Flow diagram of the basic operation of the Database agent.

61

Fig. 3.13. Flow diagram of the basic operation of the Monitoring agent.

62

Fig. 3.14. Message structure of the MAS ACL.

receiving agent that the received message contains information that should be extracted

for processing, such as power plant data. The subscribe performative informs the

receiving agent that the sending agent wants to be informed any time a certain piece of

data changes, such as when the Monitoring agent has new input-output data for the

Neural Network agent. The agree performative informs the receiving agent that the

sending agent is agreeing to a request message, such as when an agent is requested to

change task. The refuse performative is used by a sending agent to inform the receiving

agent that it is refusing a requested action, because it is either unable to perform the

specified function, or it is involved with something which takes precedent over the

requested task. The not-understood performative is used by a sending agent to notify the

receiving agent that a previous message sent by the receiving agent was not understood,

possibly because the message was corrupted in transmission.

The sender field contains information about the agent sending a message. This

information is used by the receiving agent to send a reply message if a response is needed

for the type of message received. The information consists of an IP address on the

computer network, the port number it is listening on for communication, and the sending

agent’s current task.

The receiver field contains information about the agent the message is intended

for. This information is used by the receiving agent to make sure the message was sent to

the right agent. This helps in the case where an agent task has changed location on the

63

computer network unbeknownst to the sending agent. The identification information is of

the same type and format as in the sender field, including IP address, port number, and

current task.

The content field, depending on the type of message, will contain things like data,

the location of data, an instruction, or possibly nothing at all. Data is sent when the

sending agent is informing the receiving agent of data, and it is concise enough to send in

the actual message. Location information for data is sent when the data is too large in size

to efficiently send in the message. This information is used to request data from the

Database agent. An instruction may be sent when the sending agent is requesting

something of the receiving agent, such as to change its task. The content field is left blank

when the performative is sufficient for communicating what needs to be done, such as

when an agent uses the agree performative when agreeing to a request. However, when

an agent uses the refuse performative to refuse a request, a reason for refusal may be sent

in the content field.

The replyby field is an optional field used by a sending agent to signify that the

sent message is of high importance, and should be responded to in the time specified.

This field is used when the sent request is of a time-sensitive nature. For example, if the

Delegation agent needs to verify that an agent is still functioning properly, it can request

that the agent respond by a certain time. If the agent does not respond in the given

amount of time after a specified number of tries, the Delegation agent will assume the

agent is in a failed state and assign its current duties to another agent.

To add messaging capability to the MAS-ACL, more of the FIPA-ACL can be

added to the message processor. The message processor is the code that is common to

64

each agent that processes and interprets incoming messages. As the messages are

interpreted, a receiving agent can then respond appropriately.

3.5 Agent Failure

 One of the appealing characteristics of a MAS framework is the potential to

recover quickly when agents fail so that stable power plant operation is maintained.

Though agent failures were not tested in this thesis, a discussion of some considerations

for handling them is given to provide some suggestions for future work and for

completeness.

3.5.1 Agent Operating State

In order to successfully recover from agent failures, data defining the operating

state of the agents would need to be saved regularly, in a central location, so that when an

agent fails, its last operating state can be restored in the new agent assigned to perform its

task. For example, the Feedback agent would save data such as the current feedback gains

so that they would not be lost in the event that this agent failed. The Feedforward agent

would save data such as the current unit load demand and the preference values being

used. In general, the operating data saved by the agents would include data that either

could not otherwise be recovered in the event of a failure, or would be difficult to infer.

 This concept is implemented, to some degree, in the MAS developed in this thesis.

The Delegation agent sends the agent table to the agents as a part of the confirm

operation message, so that all agents have a copy of this data in case the Delegation agent

were to fail. Therefore, the Free agent that assumed the role of the Delegation agent after

65

the failure would already have this information and could begin performing its new task

immediately.

Similar to this procedure, one possible way to save operating state data with the

MAS architecture developed in this thesis would be for the agents to respond to the

Delegation agent’s confirm operation message with operating state data so it can stored

locally by the Delegation agent and sent to the Database agent for backup storage. This

way, if an agent failed, the Delegation agent can reassign the task and initialize the new

agent to begin where the previous agent left off. Also, by sending a copy of the data to

the Database agent to be archived, it can be recalled if the Delegation agent where to fail

and lose its local copy.

3.5.2 Prioritized Agent Assignment List

Another important aspect of dealing with agent failures is deciding the order in

which agents are reassigned if multiple agent failures occur simultaneously. This section

briefly discusses some considerations for choosing the order for agent reassignment with

respect to the agents proposed in this thesis. As part of this discussion, possible behaviors

of the MACS due to failures of each agent type are described.

One way to implement the reassignment of agents in case of agent failures is to

provide the Delegation agent with a prioritized agent assignment list to allow it to

reassign the most critical agents first. The order of the agents on this list should be such

that if all agents with assigned tasks other than the Delegation agent failed, restoring the

agent tasks in this order would have the least potential to allow the controlled system to

become unstable. Furthermore, it is desirable to assign the agents in such a way that

normal operation of the power plant unit is restored quickly. For example, in this thesis,

66

this list starts with the Feedback and Feedforward agents and continues with the Neural

Network agent, Gain Optimization agent, Monitoring agent, and Database agent.

The list starts with the Feedback agent, because if this agent fails, it would need to

be replaced quickly, as it would leave the power plant unit uncontrolled and operating at

the last control values sent before failure. If the power level was being changed at the

time of failure, it is uncertain what steady-state output would result from the last

feedback compensated control values sent to the power plant. Therefore, this agent is

given the highest priority for reassignment.

 The Feedforward agent is listed next as it is used frequently to generate control

setpoints, but does not have the same potential to cause instability in the operation of the

power plant unit as the Feedback agent if it failed. If the Feedforward agent failed, the

Feedback agent would continue to control the power plant at the last setpoint sent by the

Feedforward agent. The most trouble that would seem to be caused by the failure of this

agent is a possible delay in changing the power level until a new Feedforward agent

could be assigned.

 The Neural Network agent follows the Feedforward agent on the list, preceeding

the Gain Optimizer agent, because the Gain Optimizer agent depends on the Neural

Network agent to tune the ANN model it uses to optimize gains. If the Neural Network

agent failed, the worst case scenario would include the Gain Optimization using a less

accurate ANN to optimize feedback gains, possibly producing an unstable result.

However, it seems unlikely that the ANN model would become inaccurate enough to

produce such a result unless the power level changed significantly while the Neural

Network agent was down.

67

 Next on the list is the Gain Optimizer agent, which is the last control task of the

agents proposed in this thesis. If this agent failed, the worst case would include the

MACS calling for gain optimization while the agent was down. As long as the feedback

gains are stable, this would not cause a stability problem. The gains produced by the Gain

Optimizer should be stable, since a model of the controlled system is used to evaluate the

gains for effectiveness and stability before they are used. However, this assumes the

model is accurate. Another reason this agent is the last control agent to be assigned is that

the Gain Optimizer agent is used less frequently, making the probability of this agent

failing during a time where its function is needed less than the others.

 Last on the list are the Monitoring and Database agents. These agents are last,

because they are not likely to cause unstable behavior if they were to fail. The

consequences caused by a failure of the Monitoring agent would depend on its intended

function. In the case where the Monitoring agent would perform fault diagnosis, it would

not have an effect on the control system unless the monitored equipment was to fail with

little warning while the agent was down. This is unlikely because plant equipment does

not generally fail frequently or without warning.

If the Database agent were to fail, the consequences could include delays in the

retrieval and storage of control system data. The effect this would have depends on the

types of data that are archived, what the data are used for, and how often the data are

retrieved. For the MAS described in this thesis, the data stored by the Database agent are

not vital to the operation of the control system. Therefore, this agent is the last to be

assigned.

68

CHAPTER FOUR

Simulation and Results

 This chapter discusses the simulation and testing of the multi-agent control

system (MACS). In explaining the simulation of the MACS, the software implementation

of the agents and power plant model are discussed. To explain how the MACS was tested,

the methods for testing the individual agents, as well as the entire control system, are

discussed. Finally, the results of the MACS tests are discussed to explain how the agents

and the control system as a whole was shown to perform as intended.

4.1 Simulation of the Multi-Agent Control System

This section explains how the MACS is simulated. This explanation includes a

description of how the MAS and the power plant model are implemented in software.

Also, development tools used to create these software are mentioned.

4.1.1 MAS Simulation

 The agents comprising the MAS developed in this thesis were programmed in

Matlab version 2010a and implemented on computers connected by a computer network.

To enable multiple agents to run on one computer, the Matlab Parallel Computing

Toolbox (PCT) was used. One component of the PCT is the Interactive Parallel

Command Window (IPCW), which allows the user to instantiate a specified number of

separate Matlab instances, called labs. Regardless of how many labs are started, the

IPCW uses one command line to interface with the labs.

69

To enable each of the labs to run separate code, a single script is run from the

IPCW command line that uses a switch statement to run code based on each lab’s lab

index. A lab index is a unique, integer identifier assigned by Matlab. For example, if four

labs are used, each lab is assigned an integer, 1 through 4, as its lab index. By default, the

maximum number of labs that Matlab allows to run at once is equal to the number of

processor cores available.

Since Matlab is not capable of multi-threading, each agent requires two labs, one

for its task thread and one for its messenger thread. As previously described, the task

thread runs the code that performs the agent’s task, and the messenger thread runs the

code that receives and preprocesses messages sent to the agent. Since the labs do not

share memory, memory synchronization is initiated by the messenger thread after every

message received to update the task thread memory with the data processed from the

message. The synchronization uses commands available in the PCT that allows the labs

to be programmed to check for and send data between themselves.

The computers used to run the MAS have eight processors, meaning they can run

eight labs each, which is enough for four agents. To start the agents needed for a

simulation of the MACS, the IPCW is started on each computer with eight labs. Then, a

script is manually run in the IPCW command line that starts the Free agent code running

on odd numbered labs and corresponding messenger threads on the even numbered labs.

The Free agent code will search the computer network for other agents and

system resources by polling a predefined range of IP addresses and port numbers. When

the Free agents finish exploring the network and discover there is no Delegation agent,

the Free agent with the lowest IP will assume the role of that agent. Once the Delegation

70

agent is established, it will begin assigning the needed tasks to the other Free agents

according to the prioritized list mentioned in Section 3.3.3.

Once all other agents have been assigned by the Delegation agent, they wait for

an initialization signal that propagates through the MAS when the Interface agent GUI,

discussed in a later section, is used to send the unit load demand curve (ULDC) to the

Feedforward agent through the Interface agent. The ULDC describes how the unit load

demand should vary with time for the current simulation. After receiving this information

from the Interface agent, the Feedforward agent begins generating setpoints at a

predetermined frequency, in real-time, according the ULDC. As the setpoints are

generated, they are sent to the Feedback agent to calculate feedback control. The first

setpoint sent starts the Feedback agent.

Once the Feedforward and Feedback agents are functioning, the power plant

simulator (PPS) is started choosing an initial power level equal to the first unit load

demand in the ULDC. Choosing the initial power level this way ensures the simulation

will not become unstable because of a large initial error between the output level of the

plant and the unit load demand. If this error gets too large, the feedback controller may

overcompensate, potentially driving the system unstable.

The PPS, described in more detail in the next section, models the behavior of the

160 MW power plant in real-time. The PPS is connected to the computer network used

by the MAS and can send and receive MAS messages. This allows the MAS to change

the input values of the power plant model and allows the PPS to send calculated model

output values to the MAS.

71

When the PPS is started, it will begin broadcasting the output values to a specific

port number using the user datagram protocol (UDP), so that any agent that needs this

information can use it. This behavior simulates the real world situation where the MAS

would have access to sensors connected to an actual power plant unit. The Feedback,

Monitoring and Neural Network agents are listening for messages sent on the PPS output

port, and when the Monitoring and Neural Network agents receive their first message,

they will begin performing their task. This behavior also allows the Feedback agent to

collect the power plant output to calculate feedback values.

The Database and Gain Optimizer agents will continue to standby until they are

needed to store or retrieve data or optimize gains, respectively. When the MAS is done

with a simulation, the data stored by the Monitoring agent can be used to analyze the

performance of individual agents, as well as the MACS as a whole. It is in this manner

that the agents will be tested and shown to behave as intended in the following sections.

4.1.2 The Power Plant Simulator

 The Power Plant Simulator (PPS) is a real-time software model of the 160 MW

oil-fired drum-type boiler-turbine-generator unit, described in Section 2.2. The PPS is the

dynamic system controlled by the MACS. The simulator was programmed in Matlab and

communicates with the MACS over a computer network using UDP to send and receive

MAS messages.

Running the PPS software will cause a GUI to appear that allows a user to start

the simulator after specifying an initial power level. The power level is used to generate

initial conditions, consisting of drum steam pressure, steam quality, and initial control

values, for the ordinary differential equations (ODEs) that describe the power plant

72

model. The initial conditions are generated using the HPSO algorithm used in the

reference governor to find stable control values and drum steam pressure. Using the

specified power level and the drum steam pressure level found in the previous step,

another search is performed to find an initial steam quality that corresponds to an initial

water level deviation of zero.

 Once the initial conditions are found, the PPS will begin an endless loop, solving

the ODEs using a time-step set by the user every for iteration of the loop. At the

beginning of every iteration, the PPS checks for incoming communication from the

MACS that would contain new control variables to be used in calculating the solution to

the ODEs. This is how the PPS simulates changes in the control valve positions.

 After checking for new control values, the PPS calculates the power, drum steam

pressure, and water level deviation that would result from the specified time-step of

power plant operation at the current input and state variable values. The third step in the

loop is to record the final conditions of the ODE solution as initial conditions for use in

the next iteration and send the calculated output values to the MACS by sending an MAS

message. This message is broadcast to all computers connected to the MAS network that

are listening on a specific port. The agents needing this information, such as the Feedback

and Monitoring agents, would simply listen on this port to receive the data whenever it is

sent. A flowchart of the PPS behavior is shown in Fig. 4.1.

 The PPS simulates the power plant behavior in real-time by keeping track of the

time the current loop took to execute and pauses execution for the difference of that

amount of time and the specified time-step. By doing this, the simulation of one time-step

of power plant dynamics will take that amount real time to execute. For the PPS to work

73

Fig. 4.1. Flow diagram of the basic operation of the Power Plant Simulator.

74

properly, the computer used to run the software must be able to execute one loop in an

amount of time shorter than the time-step. As the PPS is running, the current power plant

input and output values are displayed on the GUI. The GUI was created using the Matlab

Graphical User Interface Development Environment (GUIDE).

4.1.3 Interface Agent GUI

 The Interface agent GUI allows a user to communicate with the MACS through

the Interface agent. The Interface agent GUI is mainly used to load ULDC data, stored in

Matlab data files, and send that data to the Feedforward agent as the first step in

initializing a MACS simulation. Other functionality that has been added for

experimentation with the MACS is the ability to manually change agents’ tasks, feedback

gains in the Feedback agent, and optimization preference values in the Feedforward agent.

The Interface agent and GUI are initialized by the same script in this thesis. When

the script is executed, the Interface agent is started and waits for instruction from the GUI.

Once an operation is requested, the Interface agent decides how it should be executed, as

explained in Section 3.3.1. The Interface agent can also be used to retrieve MAS or

power plant data to display for the user in the GUI. Like the PPS GUI, the Interface agent

GUI was created using GUIDE.

4.2 Simulation and Testing Results

This section explains how the MACS was tested and discusses the results. The

explanation includes a discussion of the methods for testing the individual agents, as well

as the entire control system. The results of the MACS tests are discussed to explain how

the agents and the control system as a whole were shown to perform as designed.

75

4.2.1 Feedforward Agent

Since the Feedforward agent functions as the reference governor in the MACS,

the operation of the setpoint optimization algorithm and the accuracy of the FFNN model

used by the optimization are tested to show that the Feedforward agent can perform as

described in Section 2.3. The setpoint optimization is tested in four stages. The first stage

considers only one objective function and the subsequent stages add an objective function

to show the effect each of them has on the optimization. Each stage was performed at

power levels across the full range of operation and, from the results, is shown to perform

as designed.

The accuracy of the FFNN is tested by comparing the result of performing

setpoint optimizations for power levels across the full range of operation using the

equation model and the FFNN model to evaluate the cost of candidate solutions. If the

FFNN has successfully been trained to model the equations, there will be little or no error

between the setpoints generated using each model for a given power level. Furthermore,

the Feedforward agent is shown to perform as designed in later sections by the successful

overall performance of the MACS.

 4.2.1.1 Testing the setpoint optimization. As previously mentioned, the setpoint

optimization procedure uses a hybrid particle swarm optimization (HPSO) algorithm. The

number of particles and the maximum number of iterations were chosen such that the

variation in the resulting control setpoints and boiler pressure reference level produced by

the setpoint optimization was consistently less than 10-4 for 100 trials at power levels

starting at 10 MW and increasing by 10 MW to 160 MW. The number of particles chosen

was 120, where each particle represents a candidate solution evaluated each iteration. The

76

lowest maximum iteration number that met the mentioned criteria using 120 particles was

170. Since the number of iterations directly effects the time it takes to perform an

optimization, it is desirable to choose the maximum iteration number as small as possible.

The number of particles has very little effect on the time it takes to perform the

optimization compared to the maximum iteration number, but it is still desirable to use

only as many as needed.

 The remaining optimization parameters, listed in Section 2.3.2, were chosen to be

as those in [3], where 1 2 2c c  , min 0.3w  and max 0.8w  , and preference values are

1 1  , 2 0.5  , 3 1  , and 4 0  . The operating objectives are, as previously stated,

the minimization of the objective functions Ji(u), for 1, 2,3, 4i  , which represent the

minimization of load-tracking error, fuel consumption through the fuel valve, u1, pressure

drop across the steam valve, u2, and pressure drop across the feedwater valve, u3,

respectively. The setpoint optimization method is tested by performing multiple setpoint

optimizations and changing which objectives are used in order to observe the effect on

the setpoints generated. This is intended to show that using each objective function has

the desired effect on the results. The results of this test are shown in four cases for power

levels of 10 MW, 60 MW, 110 MW, and 160 MW to provide results representing the full

range of operation.

In order to compare the results of setpoint optimization, the optimal values of

each of the control inputs, with respect to the operating objectives, are listed in Table 4.1

for the power output levels of interest. These values are taken from the tables in

Appendix A, which contain the minimum and maximum stable valve positions for

77

various power output levels over the possible range or operation. According to the

objective functions, it is desired that u1 be minimized and u2 and u3 be maximized.

The first case performs the setpoint optimizations using only the load-tracking

error, J1(u), as an objective function. To use only this objective function, the preference

values are set to 1 1  , 2 0  , 3 0  , 4 0  , or  1 0 0 0  . As shown in Table

4.2 under Case 1, the load-tracking errors resulting from the setpoint optimizations

performed in this manner are smaller than double precision floating-point format can

represent and is shown as zero. Comparing the resulting control setpoints, u1, u2, and u3,

to the optimal ones in Table 4.1, it can be seen that these values are not optimized. This is

the expected result, since the control values were not used as cost criterion for the

setpoint optimizations.

 The second case performs setpoint optimizations using the load-tracking error and

the minimization of fuel consumption, J1(u) and J2(u), as objective functions. To do this,

the preference values are set to  1 0.5 0 0  . As shown in Table 4.2 under Case 2,

the load-tracking errors resulting from the setpoint optimizations are again zero. However,

this time the fuel valve positions, u1, match the optimal ones in Table 4.1. This represents

the successful minimization of fuel consumption, because minimizing the fuel valve

position will result in the least amount of fuel consumption for particular power level.

Comparing the resulting control setpoints for u2 and u3 will show that, as expected, these

values are not optimized. Therefore, these setpoint optimizations were successful

according to the operating objectives used.

The third case performs setpoint optimizations using the load-tracking error, the

minimization of fuel consumption, and the minimization of energy loss across the steam

78

valve, J1(u), J2(u), and J3(u), as objective functions, setting the preference values to

 1 0.5 1 0  . As shown in Table 4.2 under Case 3, the load-tracking errors

resulting from the setpoint optimizations are again zero and the fuel valve positions have

been minimized. This time the steam valve positions, u2, were maximized, matching the

optimal values shown in Table 4.1. This represents the successful minimization of energy

loss across the steam valve, because more energy is lost the more the steam valve is

closed due to the increased pressure from the restriction in flow. Therefore, the setpoint

optimizations in this case were also successful according to the operating objections used.

The forth case shows there is no significant difference in the setpoint optimization

result when the pressure drop across the feedwater valve, J4(u), is included as a cost

function in the setpoint optimization. This objective was included in the Case 4 by setting

the preference values to  1 0.5 1 1  , where setting 4 1  causes J4(u) to have the

most effect on the result of the optimization. Case 4 in Table 4.2 shows that including the

minimization of the pressure drop across the feedwater valve as an operating objective

only causes a change in results from Case 3 at low power levels. This is caused by the

small variability in feedwater valve position, u3, for a given power level, where the

feasible range for the feedwater valve is the largest at very low power levels (see Fig.

2.4c). Since the power plant does not operate at a power level low enough for operating

objective J4(u) to have an effect during normal operation, this operating objective is not

used in simulation in this thesis.

 4.2.1.2 Testing the accuracy of the FFNN model. The FFNN used to evaluate the

performance of the control setpoint optimization predicts the steady-state output levels

corresponding to a combination of control input values. The data used to train this ANN

79

Table 4.1: Optimal values for u1, u2, and u3 according to J2(u), J3(u), and J4(u) for the
power demand levels tested.

Euld J2(u) = Min(u1) J3(u) = Max(u2) J4(u) = Max(u3)

10 MW 0.0625 0.4968 0.1400
60 MW 0.2702 1.1816 0.4101
110 MW 0.4871 1.1816 0.7028
160 MW 0.7016 1.1815 0.9806

Table 4.2: Results of control optimization verification tests.

Case 1 Resulting control values and generation error with β = [1 0 0 0].
Euld |E-Euld| u1 u2 u3

10 MW 0 0.1226 0.2940 .0897
60 MW 0 0.2857 0.8926 0.4072
110 MW 0 0.5165 0.8851 0.6955
160 MW 0 0.7154 1.0559 0.9731

Case 2 Resulting control values and generation error with β = [1 0.5 0 0].
Euld |E-Euld| u1 u2 u3

10 MW 0 0.0625 0.4968 0.0809
60 MW 0 0.2702 1.620 0.4054
110 MW 0 0.4871 1.1477 0.6878
160 MW 0 0.7016 1.1642 0.9696

Case 3 Resulting control values and generation error with β = [1 0.5 1 0].
Euld |E-Euld| u1 u2 u3

10 MW 0 0.0625 0.4968 0.0809
60 MW 0 0.2702 1.1816 0.4101
110 MW 0 0.4871 1.1816 0.7028
160 MW 0 0.7016 1.1815 0.9806

Case 4 Resulting control values and generation error with β = [1 0.5 1 1].
Euld |E-Euld| u1 u2 u3

10 MW 4.5342E-03 0.0716 0.4968 0.1354
60 MW 0 0.2702 1.1815 0.4101
110 MW 0 0.4871 1.1816 0.7028
160 MW 0 0.7016 1.1815 0.9806

80

was generated by calculating the control values, u1, u2, and u3, using the equations in (2.4)

for combinations of electric power, E, and drum steam pressure, P, where E varies from

10 MW to 180 MW in steps of 1 MW and P varies from the minimum stable pressure for

each E to the maximum, shown in Fig. 2.3, in steps of 5 kg/cm2.

A test was done to determine the number of hidden neurons that would allow a

trained FFNN to most accurately model the training data. The test involved using the

training data generated from the steady-state equations to train FFNNs initialized with

different numbers of hidden neurons. The number of hidden neurons ranged from 7 to 30.

The number seven is chosen as the minimum based on the Hecht-Nielson

Theorem, which states that any continuous function f : In → Rm can be approximated by a

feedforward network with 2n + 1 hidden nodes, where n is the number of inputs and m is

the number of outputs [24,25]. The maximum number of nodes was chosen as 30 as a

higher number of hidden neurons means longer training and simulation times. For each

trial, a FFNN was initialized and trained with the same data for a maximum 50,000

iterations using the Levenberg-Marquardt backpropagation training algorithm. The

number of hidden neurons producing the lowest mean-squared error was chosen as the

best. Therefore, the number of hidden nodes used is 30.

To test whether or not the FFNN is capable of accurately modeling the equations

in (2.4), and therefore able to produce an accurate optimization result when using a

FFNN in place of the equations, both the equation model and the FFNN model were

implemented in setpoint optimizations performed for power demand levels from 10 MW

to 160 MW in increments of 5 MW. Each test performed used the optimization

parameters noted in the previous section. In Fig. 4.2, which shows the results of the test

81

Fig. 4.2. The result of setpoint optimization performed comparing the equation model with the FFNN

model.

20 40 60 80 100 120 140 160 180
0

0.5

1

Power (MW)

u 1

Equations Result
FFNN Result

20 40 60 80 100 120 140 160 180
0.4

0.6

0.8

1

Power (MW)

u 2

Equations Result
FFNN Result

20 40 60 80 100 120 140 160 180
0

0.5

1

Power (MW)

u 3

Equations Result
FFNN Result

optimizations performed, it can be seen that using the FFNN is equivalent to using the

equation model, because the control setpoints, u1, u2, and u3, resulting from the use of

both models for optimization are approximately equal. This implies that the FFNN was

successfully trained to model the equations in (2.4).

 To give a quantifiable result, the mean-squared and maximum error of the

difference in setpoints generated by the two methods, shown in Fig. 4.2, are given for

each control variable in Table 4.3, where ueq is the result of optimization using the

equations and unn is the result of optimization using the neural network. Using the steady-

state model equations in (2.5), the difference in steady-state power and pressure caused

by changing each control variable by the maximum error is shown in Table 4.4. For

82

example, in Table 4.4, the u1 column shows the difference in steady-state power and

pressure caused by changing only the fuel valve position by the maximum difference in

the setpoints produced for u1 using the two methods, shown in Table 4.3. The u2 and u3

columns in Table 4.4 show the results for the same changes in u2 and u3, respectively.

Large values in Table 4.4 would indicate that the FFNN was not trained well and that the

Feedforward agent will likely produce setpoints that are not optimized with respect to the

objective functions.

4.2.2 Feedback Agent

To test the performance of the Feedback agent, which was designed to perform

the feedback control function in the MACS, the PPS simulator was used to simulate the

result of MAS control with and without the Feedback agent. The unit load demand for

these simulations is a ramp in power level from 130 MW to 140 MW at a rate of 5%/min,

which is the maximum acceptable rate in practice. The Feedforward agent was used in

both cases to provide the control setpoints and output reference levels.

Table 4.3: The mean-squared and maximum error of the difference in setpoints generated
by the setpoint optimization using the equation and FFNN models.

 u1 u2 u3

MSE(ueq-unn) 2.6013e-16 1.0594e-12 2.3694e-14
max(|ueq-unn |) 1.1315e-11 4.3260e-6 1.1159e-7

Table 4.4: The difference in power and pressure setpoints caused by changing each
control variable by the maximum error shown in Table 4.3.

 u1 u2 u3
E(max|ueq-unn |) (MW) 0 1.6727e-5 9.1931e-6

P(max|ueq-unn |) (kg/cm2) 0 7.0581e-5 5.1246e-5

83

The result of the described simulation without the Feedback agent is shown in

Figs. 4.3 and 4.4. In Fig. 4.3a, the power output response to the increase in power level

without feedback is very slow, taking approximately 1300 seconds to meet the final

setpoint. Fig. 4.3b shows the pressure response to be similarly slow, taking approximately

the same time to reach the final setpoint. The water level response, shown in Fig. 4.3c,

shows the water level deviation rising to a level of approximately 170 mm above the

level setpoint, which would not be acceptable in a real-world scenario. These results

show a base case for evaluating the Feedback agent performance, and also that feedback

control is necessary for acceptable operation of this plant.

The result of the simulation with the Feedback agent active is shown in Figs. 4.5

and 4.6. The gains used in the Feedback agent for this simulation were the result of an

offline gain optimization performed a step input in power level from 130 MW to 131

MW. These gains are shown in Table 4.5, where the columns contain the proportional

and integral gain values corresponding to the control loops that control u1, u2, and u3,

respectively.

In Fig. 4.5a, the power output response to Feedback agent control matches the

demand much more closely than in the case without feedback control, taking less than

200 seconds to make the 10 MW change in power level. The pressure response to

Feedback agent control, shown in Fig. 4.5b, is also much better than in the case without

feedback control, closely matching the demand and meeting the final setpoint in

approximately 200 seconds. The water level response, shown in Fig. 4.5c, is much better

as well, never deviating more than 10mm from the setpoint level. These results show that

84

(a)

(b)

(c)

Fig. 4.3. The PPS response to a ramp in power level without feedback control.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

130

132

134

136

138

140

Time (s)

Po
w

er
 (

M
W

)

Power Demand
Plant Output

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

104

106

108

110

Time (s)

Pr
es

su
re

 (
kg

/m
3)

Drum Pressure Demand
Plant Output

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

0

50

100

150

Time (s)

W
at

er
 L

vl
. D

ev
. (

m
m

)

Level Demand
Plant Output

85

(a)

(b)

(c)

Fig. 4.4. The change in control valve positions corresponding to the ramp in power level in Fig 4.3 without
feedback control.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

0.58

0.59

0.6

0.61

Time (s)

u 1

u1 Setpoint

u1

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

1.1811

1.1812

1.1813

1.1814

1.1815

Time (s)

u 2

u2 Setpoint

u2

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

0.82

0.83

0.84

0.85

0.86

0.87

Time (s)

u 3

u3 Stpt

u3

86

(a)

(b)

(c)

Fig.4.5. The PPS response to a ramp in power level with feedback control from the Feedback agent.

0 50 100 150 200

130

132

134

136

138

140

Time (s)

Po
w

er
 (

M
W

)

Power Demand

Plant Output

0 50 100 150 200

104

106

108

110

Time (s)

Pr
es

su
re

 (
kg

/m
3)

Drum Pressure Demand

Plant Output

0 50 100 150 200
-5

0

5

10

Time (s)

W
at

er
 L

vl
. D

ev
. (

m
m

)

Level Demand

Plant Output

87

(a)

(b)

(c)

Fig.4.6. The change in control valve positions corresponding to the ramp in power level in Fig 4.5 with
feedback control.

0 50 100 150 200

0.58

0.6

0.62

0.64

0.66

Time (s)

u 1

u1 Setpoint

u1

0 50 100 150 200

1.178

1.179

1.18

1.181

Time (s)

u 2

u2 Setpoint

u2

0 50 100 150 200
0.7

0.75

0.8

0.85

0.9

Time (s)

u 3

u3 Stpt

u3

88

the Feedback agent can successfully perform feedback control of the power plant model

as part of the MAS designed in this thesis.

One thing to notice in the results in Fig. 4.5 is the consistent difference in the

power demand and the power response during the ramp, appearing to be a time-delay in

the response compared to the demand. This is caused by the fact that the demand is

changing frequently during the ramp, and control actions are changing to meet the new

demands as they are given. This does not give the power plant enough time to catch up to

the demand before a new one is given, and the only way it could catch up during a ramp

is to generate control actions in anticipation of future demand changes.

However, the pressure level in Fig. 4.5b does catch up to the demand initially, but

lags behind toward the end of the ramp. It does so because the feedback controller causes

it to overshoot the current demand at the beginning, but settles to lag behind the demand

toward the end. The water level in Fig. 4.5c increases in response to the increase in power

demand and, similar to the power output response, does not catch up until the demand

stops changing.

Looking at Fig. 4.5c, there appears to be some oscillation in the water level

response. This is caused by the fact that the setpoints are changed once every second and

the feedback changes the control variables ten times per second. When the setpoints are

changed to represent an increase in power level, the control valves are changed in

Table 4.5: Optimized feedback gain values used in the Feedback agent simulation.

 ufb1 ufb2 ufb3
Kp 0.0550 -0.0055 0.0114
Ki 9.7480e-06 -3.1380e-06 8.2410e-06

89

response to the new setpoints, causing the water level to rise. During the remaining time

before a new setpoint is given, the Feedback agent is trying to decrease the water level

back to the setpoint. This happens every time the demand is changed until the ramp in

power level is complete. This process causes an oscillation in the water level that has a

frequency of 1 Hz.

To solve this problem, another simulation was performed for the same ramp in

power, but the Feedforward agent was made to generate setpoints ten times faster. The

result of this simulation is shown in Fig2. 4.7 and 4.8. The power output and pressure

responses, shown in Fig.4.7a and Fig. 4.7b, respectively, very much resemble the

corresponding responses in Fig. 4.5, having slightly improved by decreasing the error

between the demands and the output levels. The water level response has also improved,

showing a slight decrease in the error between the response and the demand. However,

the main difference is that there is much less oscillation due to the changes in setpoints.

Therefore, a higher frequency in setpoint generation is better in terms of minimizing the

water level oscillation, and increases the effectiveness of feedback control in terms of

following the changes in setpoints.

Although the increase in setpoint generation frequency decreased the oscillatory

response in the water level to a more acceptable level, the Feedforward agent was not

able to generate the setpoints at the new frequency in real time. Instead, the setpoints

were generated before starting the simulation and were applied by the Feedforward agent

at the appropriate time. The Feedforward agent was designed to generate new setpoints

once a second to allow the optimization sufficient time to execute. However, this problem

is due to a lack of performance capability of the computers used to perform the

90

(a)

(b)

(c)

Fig.4.7. The PPS response to a ramp in power level with feedback control implemented by the Feedback
agent.

0 50 100 150 200 250

130

132

134

136

138

140

Time (s)

Po
w

er
 (

M
W

)

Power Demand

Plant Output

0 50 100 150 200 250

104

106

108

110

Time (s)

Pr
es

su
re

 (
kg

/m
3)

Drum Pressure Demand

Plant Output

0 50 100 150 200 250
-5

0

5

10

Time (s)

W
at

er
 L

vl
. D

ev
. (

m
m

)

Level Demand

Plant Output

91

(a)

(b)

(c)

Fig.4.8. The change in control valve positions corresponding to the ramp in power level in Fig 4.7 with
feedback control implemented by the Feedback agent.

0 50 100 150 200 250

0.58

0.6

0.62

0.64

0.66

Time (s)

u 1

u1 Setpoint

u1

0 50 100 150 200 250

1.178

1.179

1.18

1.181

Time (s)

u 2

u2 Setpoint

u2

0 50 100 150 200 250

0.75

0.8

0.85

0.9

Time (s)

u 3

u3 Stpt

u3

92

simulation and may be solved by implementing this control system on higher

performance equipment.

4.2.3 Gain Optimizer Agent

 To test the performance of the Gain Optimizer agent, a MAS simulation was

performed using gains in the Feedback agent that would allow the error between the

power plant output and the demand to be greater than the error thresholds that are used to

trigger the gain optimization in the Gain Optimizer agent. Once the Gain Optimizer agent

is triggered, it has been programmed to provide new feedback gains in 45 seconds or less

so that they are implemented in 50 seconds or less.

The simulation is performed for a ramp in power level from 130 MW to 140 MW,

changing at a rate of 5%/min. The HPSO algorithm uses 5 particles, which is

significantly less than the control optimization, because of the time it takes to simulate

each particle, or candidate gain set. The increased time in evaluating candidate solutions

is caused by the need to simulate the dynamic response of every particle to obtain a 25-

second simulation of the control response caused by each candidate gain set. Since one of

the candidate solutions is initialized to the PI gains used in the Feedback agent when the

optimization begins, the resulting gains cannot be worse than the gains currently used.

This is due to the fact that if a better solution is not found, the currently used gains will

perform the best and will be reused.

The other optimization parameters, outlined in Section 2.3.2, are c1 = c2 = 2,

wmin = 0.5 and wmax = 1.0, and preference values are β1 = 1, β2 = 0.25, and β3 = 0.5. The

preference values, βi, correspond to the cost functions, Ji for i = 1,2,3, as mentioned in

(2.11), and represent the sum-squared error of the difference between the power, pressure,

93

and water level deviation demand and the simulation output, respectively. The error level

thresholds which activate the gain optimization procedure are ±1 MW, ±2 kg/cm2, and

±10 mm for power, drum pressure, and water level deviation, respectively. The results of

the simulation are shown in Figs. 4.9 and 4.10.

Fig. 4.9 shows that an error threshold was exceeded at 21.4 seconds when the

water level output rose to above 10 mm in deviation from the setpoint. This violation

caused the Gain Optimizer to begin optimizing new feedback gains. The new gains were

sent to the Feedback agent and implemented at 68.7 seconds in the simulation, which was

47.3 seconds from the time the violation occurred. This means that the Gain Optimizer

agent used the 45 seconds allotted for the gain optimization, and it took less than the

remaining 5 seconds for necessary communication and data transfer to take place.

The power output and pressure responses, shown in Figs. 4.9a and 4.9b, do not

show much change from the implementation of the new feedback gains, showing only a

brief fluctuation in output at the time the change occurred. The water level output, shown

in Fig. 4.9c, climbs to almost 30 mm above setpoint before the optimized gains are

implemented, at which point the water level spikes quickly to approximately 35 mm and

falls sharply to below 5 mm above setpoint. Once the new gains are implemented, the

water level remains at a more acceptable level between 5 mm. This simulation shows

that the Gain Optimizer agent can be used to optimize gains, when needed, and

implement them in a timely manner. Therefore, the Gain Optimizer agent is shown to

perform as designed. The initial PI gains, optimized PI gains, and the bounds set for the

gains in the optimization procedure are shown in Tables 4.6-4.8. The position of the

control valves during the simulation are shown in Fig. 4.10.

94

(a)

(b)

(c)

Fig.4.9. The PPS response to a ramp in power level with feedback control implemented by the Feedback
agent before and after replacing the PI gains with optimized ones.

0 50 100 150 200

130

132

134

136

138

140

Time (s)

Po
w

er
 (

M
W

)

 Error level violation at 21.4 sec.

 New Gains Implemented at 68.7 sec.

Power Demand
Plant Output

0 50 100 150 200

104

106

108

110

Time (s)

Pr
es

su
re

 (
kg

/m
3)

Drum Pressure Demand
Plant Output

0 50 100 150 200

0

10

20

30

Time (s)

W
at

er
 L

vl
. D

ev
. (

m
m

)

Level Demand
Plant Output

95

(a)

(b)

(c)
Fig.4.10. The change in control valve positions corresponding to the ramp in power level in Fig 4.9 with

feedback control implemented by the Feedback agent before and after replacing the PI gains with
optimized ones.

0 50 100 150 200

0.58

0.6

0.62

0.64

0.66

Time (s)

u 1

u1 Setpoint

u1

0 50 100 150 200

1.1785

1.179

1.1795

1.18

1.1805

1.181

1.1815

Time (s)

u 2

u2 Setpoint

u2

0 50 100 150 200

0

0.2

0.4

0.6

0.8

Time (s)

u 3

u3 Stpt

u3

96

4.2.4 Neural Network Agent

This section explains how the layer-recurrent neural network (LRNN) used in the

Gain Optimizer agent was trained, how it was shown to perform successfully in modeling

the 160 MW power plant unit, and how the Neural Network agent was shown to perform

its intended function.

4.2.4.1 LRNN Training. The training of the LRNN used in the Gain Optimizer

agent to evaluate the performance of candidate gain sets it trained in three stages. These

stages are global training, local training, and online training. Global training is performed

offline using continuous time data generated from the dynamic power plant model

equations, (2.1) and (2.2), that represents the full range of stable power plant operation,

defined by the power-pressure window in Fig. 2.3.

Table 4.6: Initial feedback gain values.

 ufb1 ufb2 ufb3

Kp 0.0500 -0.0010 0.0010
Ki 0.0000 0.0000 0.0000

Table 4.7: Optimized feedback gain values.

 ufb1 ufb2 ufb3

Kp 0.0539 -0.0044 0.0240
Ki 4.0997e-07 -4.4096e-07 4.6715e-08

Table 4.8: Constraints on search space for finding optimal feedback gains.

 ufb1 ufb2 ufb3

Kpmin 0.0000 -0.0100 0.0000
Kpmax 0.1000 0.0000 0.0750
Kimin 0.0000 -1.0000e-06 0.0000
Kimax 1.0000e-06 0.0000 1.0000e-06

97

Figure 4.11. Divisions of the power-pressure window into 9 training data regions.

0 20 40 60 80 100 120 140 160 180
0

25

50

75

100

125

150

175

200

225

250

Power (MW)

St
ea

m
 P

re
ss

ur
e

(k
g/

cm
2)

Region 7

Region 6

Region 1

Region 8

Region 5

Region 2

Region 9

Region 4

Region 3

This data was obtained by dividing the power-pressure window into 9 regions, as

shown in Fig. 4.11, and randomly choosing a number of power-pressure points in each

region using a uniform distribution. The power-pressure points are then used to calculate

corresponding control values using the steady-state equations in (2.4) and (2.5). The

control values are then used to form an input vector for simulating dynamic power plant

output to be used for training, where the simulation of the control points allows a certain

amount of time at each point.

The control points generated from Region 1 are simulated first, progressing

through the Regions in order to Region 9. This keeps the pressure from varying too much

and causing the simulation to go unstable, which would ruin the collected data for

training. The data is generated without feedback control, except for a feedback control

98

loop used to keep the water level from becoming unstable. Once the data is generated, it

can be used to train the LRNN using the Levenberg-Marquardt training algorithm. The

process of generating data and training the LRNN is done twice for global training.

Next, local training is performed offline. The method used to generate data for

global training is also to generate data for local training, except data is generated in only

one region. The region in which data is generated for local training depends on what

power level the MACS will begin controlling the FFPU. For example, if for a given

simulation the starting power level is 80 MW and the pressure setpoint from the

Feedforward agent is 67.3 kg/cm2, data from Region 2 would be used for local training.

The process of generating local training data and training the LRNN is done four times,

being careful not to train the local region so much that the general accuracy is lost.

The LRNN is now ready for online implementation in the Neural Network agent.

Once the MACS is online, the Neural Network agent will begin collecting power plant

input-output data in real-time, incrementally training the LRNN with that data. The

online training will keep the LRNN accurate at simulating the power plant dynamics at

the operating level of the power plant, which is what is needed for gain optimization

A test was done to determine the number of hidden neurons that would allow a

trained LRNN to most accurately model the training data. The test involved generating

one set of global data and using it to train LRNNs initialized with different numbers of

hidden neurons. The number of hidden neurons ranged from 7 to 30.

The number 7 was chosen as the minimum since it is the minimum necessary to

model any continuous function using a FFNN for a system with 3 inputs [24,25], where

the LRNN is a modified FFNN. The number 30 was chosen as a maximum since a higher

99

number of hidden neurons means longer training and simulation times. Three trials were

performed for each number of hidden neurons. For each trial, a LRNN was initialized and

trained with the same data for 1000 iterations using the Levenberg-Marquardt training

algorithm. Then, the resulting mean-squared errors were averaged, and the number of

hidden neurons producing the lowest average mean-squared error was chosen as the best.

Therefore, the number of hidden neurons chosen for the LRNN is 25.

4.2.4.2 LRNN and Neural Network Performance. The ability of the LRNN to

model the power plant dynamics was tested in Section 4.2.3 when it was used in the Gain

Optimizer to evaluate the performance of feedback gain sets when the Gain Optimizer

was called on to optimize new feedback gains. Since the gain optimization was successful,

the LRNN was shown to accurately model the behavior of the 160 MW power plant.

Furthermore, the Neural Network agent was shown in that simulation to perform

successfully, as the LRNN used in the optimization had been trained online by the Neural

Network agent when it was used by the Gain Optimizer agent.

4.2.5 Overall Multi-Agent Control System

 To demonstrate the successful overall function of the MACS, two simulations

were performed using all of the MACS functionality described in this thesis. The first

simulation tests the MACS’s ability to effectively control the power plant model during

wide-range operation. The second simulation tests the MACS’s ability to successfully

control the power plant during a real-world type operation.

 4.2.5.1 MACS Simulation Using a Wide-Range ULDC. To test the ability of the

MACS to control the PPS for wide-range operation, a simulation was run using a ULDC

100

that changes between 50 MW and 160 MW by ramping the power level at the maximum

allowable of 5%/min, shown in Fig. 4.12a. The initial gain values used for feedback

control were those in Table 4.5. Setpoints were dispatched from the Feedforward agent at

a rate of 10 Hz to minimize oscillation in the water level, as was discussed in Section

4.2.2. Since the computers used for this simulation could not generate setpoints that

quickly in real-time, the setpoints were generated beforehand. The thresholds values for

initiating a gain optimization were ±1 MW, ±2 kg/cm2, and ±10 mm for power, pressure

and water level deviation, respectively. The results of the simulation are shown in Figs.

4.12 and 4.13.

The power output and pressure responses, shown in Figs. 4.12a and 4.12b, follow

the demand power and pressure very closely, but lag slightly behind the demand levels

during ramp changes in power level for the same reason explained in Section 4.2.2. The

water level deviation, shown in Fig. 4.12c, stays within ±10 mm except for the times

when the ULDC begins or ends a ramp. During these times, the water level briefly spikes

and quickly returns to within ±10 mm. This simulation shows that the MACS can be used

successfully to control the PPS during wide-range operation. Therefore, the MACS is

shown to perform as designed under these conditions.

Since the spikes in the water level would have unnecessarily caused the Gain

Optimizer agent to trigger, the Feedback agent was programmed not to initiate a gain

optimization unless the output levels for power, pressure or water level deviation

remained above their respective threshold value for more than 3 seconds. This way, the

gain optimization would not trigger due to a false alarm. The delay time for when to

trigger a gain optimization once an output level threshold is exceeded is a design

101

(a)

(b)

(c)

Fig.4.12. The PPS response to a wide-range load cycle under the control of the MACS.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

60

80

100

120

140

160

Time (s)

Po
w

er
 (

M
W

)

Power Demand
Plant Output

0 200 400 600 800 1000 1200 1400 1600 1800 2000

60

80

100

120

Time (s)

Pr
es

su
re

 (
kg

/m
3)

Drum Pressure Demand
Plant Output

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-20

-10

0

10

Time (s)

W
at

er
 L

vl
. D

ev
. (

m
m

)

Level Demand
Plant Output

102

(a)

(b)

(c)

Fig.4.13. The change in control valve positions corresponding to the wide-range load cycle in Fig 4.9
under the control of the MACS.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (s)

u 1

u1 Setpoint

u1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

1.178

1.179

1.18

1.181

1.182

1.183

1.184

Time (s)

u 2

u2 Setpoint

u2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.2

0.4

0.6

0.8

1

Time (s)

u 3

u3 Stpt

u3

103

parameter dependant on the system to be controlled. The delay of 3 seconds used here

was chosen arbitrarily to avoid unnecessary gain optimization. Optimizing the delay

value was not a focus in this thesis.

4.2.5.2 MACS Simulation Using a Realistic ULDC. To test the ability of the

MACS to control the PPS under a more realistic scenario, the load cycle for a typical

summer weekday is used as the ULDC, where the load data is defined by the IEEE RTS-

96 data given in [x6]. The IEEE RTS-96 data defines typical load cycles for weekdays

and weekend days for each of the four seasons in terms of a percentage of the maximum

generation capacity. In this case, the maximum generation capacity is 160 MW. Similar

to the simulation in the previous section, the initial gain values used for feedback control

were those in Table 4.5, pregenerated setpoints were dispatched from the Feedforward

agent at a rate of 10 Hz and the thresholds values for initiating a gain optimization were

±1 MW, ±2 kg/cm2, and ±10 mm for power, pressure and water level deviation,

respectively. The results of the simulation are shown in Figs. 4.14 and 4.15.

Similar to the simulation in the previous section, the power output and pressure

responses, shown in Figs. 4.14a and 4.14b, closely follow the power and pressure

demands, only slightly lagging behind, and the water level deviation, shown in Fig. 4.14c,

stays within ±10 mm except for sharp spikes that represent overshoot due to a change in

the rate at which the power demand level is changing. A 3-second delay is also used here

to avoid unnecessary gain optimization. This simulation shows that the MACS can be

used successfully to control the PPS for a realistic load cycle. Therefore, the MACS is

shown to perform as designed under these conditions.

104

(a)

(b)

(c)

Fig.4.14. The PPS response to a load cycle representing a typical summer weekday under the control of the
MACS.

0 500 1000 1500 2000 2500 3000 3500 4000

100

120

140

160

Time (s)

Po
w

er
 (

M
W

)

Power Demand
Plant Output

0 500 1000 1500 2000 2500 3000 3500 4000

80

90

100

110

120

Time (s)

Pr
es

su
re

 (
kg

/m
3)

Drum Pressure Demand
Plant Output

0 500 1000 1500 2000 2500 3000 3500 4000

-15

-10

-5

0

5

10

Time (s)

W
at

er
 L

vl
. D

ev
. (

m
m

)

Level Demand
Plant Output

105

(a)

(b)

(c)

Fig.4.15. The change in control valve positions corresponding to the wide-range load cycle in Fig 4.9 under
the control of the MACS.

0 500 1000 1500 2000 2500 3000 3500 4000

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Time (s)

u 1

u1 Setpoint

u1

0 500 1000 1500 2000 2500 3000 3500 4000

1.178

1.179

1.18

1.181

Time (s)

u 2

u2 Setpoint

u2

0 500 1000 1500 2000 2500 3000 3500 4000

0.6

0.7

0.8

0.9

1

Time (s)

u 3

u3 Stpt

u3

106

CHAPTER FIVE

Conclusions

 This chapter summarizes the research presented in this thesis and draws

conclusions regarding the results from the tests performed in the previous chapter. Also,

potential research that can be done to extend the research presented here is discussed.

5.1 Conclusions

The goal of this thesis was to design, implement, and test a multi-agent system

(MAS) intended for decentralized optimized multi-objective control of a fossil fuel power

unit (FFPU). This control methodology is intended to provide optimized control of an

FFPU while allowing the customization of operating goals as needed to conform to

changing market situations, such as changing regulations, the cost of fuel, and load

demands on the unit. To do this, a MAS was developed consisting of agents that have

been designed to perform specific tasks, which in coordination, achieve the desired

control. This MAS was designed for a smaller, simpler FFPU model in order to focus on

developing the MAS without the added difficulty of accounting for the complexity of a

larger power plant model.

The agents developed to implement the control system are the Feedforward agent,

Feedback agent, Gain Optimizer agent, Neural Network agent, Interface agent,

Delegation agent, Database agent, Monitoring agent and Free agent. These agents were

developed and individually tested by performing various experiments, the results of

which were analyzed for agent performance. The agents were also implemented in

107

coordination as an MAS and were tested by using the MAS to control a 160 MW FFPU

model and analyzing the results.

The Feedforward agent was developed to implement an optimal reference

governor that provides customizable coordinated control (CC) by optimizing control

setpoints according to prioritized operating objectives that can be changed online. This

agent uses a feedforward artificial neural network (ANN) model to evaluate the

performance of the optimal setpoints in the hybrid particle swarm (HPSO) optimization

method used to determine the optimal references. Each of the operating objective

functions was tested to confirm that they had the desired effect on the setpoint

optimization results. Because these tests were successful, it was shown that the setpoint

optimization can be successfully used to optimize control setpoints according to

programmed operating objectives, thereby enabling customizable CC of the power plant

unit. Also, the ANN model is shown to accurately represent the steady-state equations by

producing the same result when used in the optimization.

The Feedback agent was developed to implement feedback control, which is a

necessary part of any control system. This agent implements feedback control of the

FFPU while monitoring the effectiveness of that control. If for any reason the gains used

in the feedback controller are not performing well, the Feedback agent has been designed

to automatically request new, optimized ones. To show that the Feedback agent could be

effectively used to implement feedback control in the multi-agent control system

(MACS), the Power Plant Simulator (PPS) was used to simulate the response of the

power plant model to control by the MACS with and without the Feedback agent. The

vast improvement of the power plant response when using the Feedback agent, as

108

opposed to no feedback control, indicates that the Feedback agent can effectively provide

feedback control of an FFPU.

The Gain Optimizer agent was developed to optimally tune the feedback gains in

the case where the ones being used in the Feedback agent are no longer sufficient for

stable efficient control of the FFPU. Similar to the Feedforward agent, this agent uses a

dynamic ANN to evaluate the performance of the HPSO algorithm used to produce

optimized gains for feedback control. To show that the Gain Optimizer agent can produce

improved gains when needed, a simulation was run in which the MAS was used to

control the PPS, but the Feedback agent was intentionally initialized with gains that

would cause the power plant model output to exceed one or more of the thresholds that

trigger a gain optimization. When the first threshold was exceeded, the Feedback agent

successfully detected the violation and notified the Gain Optimizer agent. At that point,

the Gain Optimizer performed the gain optimization within the specified time and the

new gains were sent to the Feedback agent and implemented. Once the new gains were

applied, the Feedback agent was able to return all output levels below the threshold

values. This success showed that the Gain Optimizer agent can perform as intended.

The Neural Network agent was developed to maintain the accuracy of the ANN

model used in the Gain Optimizer agent. It does so by continuously collecting real-time

power plant data and using it to adapt the layer-recurrent neural network (LRNN) to be

accurate at simulating the current operating level, which is needed for the gain

optimization procedure. The ability of the Gain Optimizer to produce improved gains

shows that the Neural Network agent performs as intended, since the Gain Optimizer uses

109

the LRNN trained by the Neural Network agent to evaluate the performance of the gains

that are implemented.

The Interface agent, Delegation agent, Database agent, and Monitoring agent

were developed to provide the ability for an operator to interact with the control system,

agent management, a data storage and retrieval service, and a system monitor,

respectively. There was not a good way to show the individual performance of these

agents, since they provide services that do not directly affect the physical processes of the

plant. However, the overall success of the MACS in controlling the PPS shows that they

can perform as they were intended.

The Free agent was designed to provide flexibility in the MAS by enabling the

assignment and reassignment of agents as needed. This agent was also designed to serve

as a redundant backup should any of the other agents fail, as a number of extra Free

agents can be initialized for the sole purpose of standing by to assume a failed agent’s

task in the event of an agent failure. Similar to some of the other agents in the MAS, this

agent’s operation was hard to demonstrate. However, all agents start as Free agents, and

the MAS would not function if the Free agents did not perform as designed. Therefore,

the overall success of the MACS in controlling the PPS shows that the Free agent

functions as intended. Agent failures were not tested in this thesis as this issue was not a

focus.

In addition to testing the functionality of individual agents, the MACS as a whole

was tested. In the two tests that were performed, the MACS was shown to be able to

implement successful control of the PPS for a wide-range ULDC and for a ULDC

representing the load cycle for a typical summer weekday. These results show that the

110

agents are able to work in harmony with each other to perform the intended function of

the control system.

In conclusion, this thesis shows that a MAS can be used to implement a control

system intended for a FFPU. This thesis also shows that agents can be used to implement

each of the control techniques discussed here. Furthermore, this thesis shows that these

agents can be successfully implemented simultaneously in a MAS to achieve the

coordinated goal of customizable optimized multiobjective power plant control of an

FFPU.

5.2 Future Research

Though the MAS discussed in this thesis was successfully developed and tested

entirely using Matlab, it is desirable to use a computing platform that is better suited for

multi-threaded programming. One such platform is the Java Agent Development

Environment, or JADE. Like the name implies, JADE is built on Java, which is well-

suited for multi-threaded computing. Another advantage to JADE is that the

communication standard put forth by the Foundation for Intelligent Programmable

Agents (FIPA) used in this project is already built in. Therefore, it is a recommendation

of the thesis that future work pertaining to MASs meant for power plant control

applications make use of JADE, while possibly making use of Matlab to perform the

more complex computations.

Although this thesis discusses an MACS designed to control a small-scale FFPU,

the MAS control methodology is intended for use in larger, more complicated FFPUs. A

simple FFPU is used here so that the MACS could be designed and developed without

the added difficulty of accounting for the complexity of the FFPU model. There has been

111

work done to develop a MACS to control a 600 MW FFPU as an extension to this

research, which was also done in Matlab. An opportunity for further research includes the

development and testing of a MACS designed for a large-scale FFPU using JADE as the

MAS platform.

Another opportunity for further research would be to develop more agents to

perform additional tasks not addressed in this thesis, such as fault diagnosis. One appeal

of the MACS method is extensibility. Because of this characteristic, there is much room

for control functionality that can be added by developing more agent types.

The MACS, as well as modern conventional control systems, is heavily dependent

on computer technology, and is therefore vulnerable to cyber attack. Cyber attacks can

severely damage a power plant unit, causing power outages and potentially harming

personnel operating the facility, among other things. Because of this threat, there are

opportunities for research in the area of cyber security to develop methods for protecting

power plant control systems from malicious manipulation.

112

APPENDICES

113

APPENDIX A

Operating Window Data

The two tables below contain the data needed to construct the power-pressure and power-

input operating windows for the 160 MW power plant used in this thesis.

Table A.1 Upper pressure limit data.

E P ρf u1 u2 u3 L

(MW) (kg/cm2) (kg/m3) (p.u.) (p.u.) (p.u.) (m)

10.0 237.4 318.1 0.3225 0.2102 0.1226 0.0000
20.0 231.8 312.0 0.3610 0.2362 0.1683 0.0000
40.0 220.9 300.8 0.4385 0.2965 0.2607 0.0000
60.0 210.2 290.1 0.5167 0.3551 0.3544 0.0000
80.0 199.7 278.9 0.5956 0.4251 0.4495 0.0000
100.0 189.5 268.1 0.6752 0.5032 0.5459 0.0000
120.0 179.5 257.8 0.7555 0.5907 0.6439 0.0000
140.0 169.7 247.1 0.8366 0.6890 0.7434 0.0000
160.0 160.2 236.8 0.9183 0.7996 0.7996 0.0000
180.0 150.9 226.3 1.000 0.9245 0.9245 0.0000

Table A.2 Lower pressure limit data.

E P ρf u1 u2 u3 L

(MW) (kg/cm2) (kg/m3) (p.u.) (p.u.) (p.u.) (m)

10.0 32.0 493.0 0.0785 0.4205 0.0708 0.0000
20.0 32.0 485.2 0.1274 0.6554 0.1315 0.0000
40.0 36.3 468.8 0.2287 1.0000 0.2504 0.0000
60.0 52.1 449.9 0.3392 1.0000 0.3591 0.0000
80.0 67.3 430.2 0.4486 1.0000 0.4637 0.0000
100.0 82.1 409.2 0.5574 1.0000 0.5654 0.0000
120.0 96.5 386.2 0.6656 1.0000 0.6649 0.0000
140.0 110.7 360.2 0.7734 1.0000 0.7626 0.0000
160.0 124.6 328.8 0.8808 1.0000 0.8587 0.0000
180.0 138.4 284.6 0.9879 1.0000 0.9534 0.0000

114

APPENDIX B

Calculation of the RGA Matrix for the 160 MW FFPU Model

 The relative gain array (RGA) matrix is calculated for the 160 MW FFPU Model

used in this thesis. This is done to show the strength of interaction between the input and

output variables defined by the third order three-input three-output power plant model to

determine the configuration of feedback control loops. The result of this calculation is

used in Section 2.4 to justify the configuration of the feedback controller. Reference [26]

was used as a resource for the following calculations.

The first step in calculating the RGA matrix is to obtain a linear state-space model

of the dynamic equations in (2.1) and (2.2). The linearization of the model was performed

in [26], resulting in a model of the form:

x Ax Bu  (B.1a)

y Cx Du  (B.1b)

 

 

1/8
2

1/8
2

2

9
0.1 0.073 0.016 0

8
9

0 0.0018 0
8
1

0 1.1 0.19 0
85

u P

A u P

u

   
 
   
 
  
  

 (B.2a)

9/8

9/8

0 0.073 0

0.9 0.0018 0.15

1.1 141
0

85 85

P

B P

P

 
    
 

 
 

 (B.2b)

115

32 33

1 0 0

0 1 0

0

C

C C

 
   
  

 (B.2c)

0 0 0

0 0 0

253.287 4.7428 13.9684

D

P

 
   
  

 (B.2d)

and

 
  

 32 22

60 1/ 0.001538 0.8
50 0.0862 1.1 0.19

1 0.001538 0.8 25.6

f
C u

P

 
   
   

 (B.3a)

 
  33 2

60 0.8 25.6
50 0.1307

1 0.001538 0.8 25.6 f

P
C

P 

 
  

   
. (B.3b)

Next, the process gain matrix, K, and the transpose inverse of the gain matrix,  T1R K  ,

need to be calculated, assuming K is invertible. The process gain matrix is obtained by

calculating the transfer matrix, T(s), for the state-space model defined in (B.2) and (B.3),

and calculating the elements of K using the equation:

 
0

limij ijs
K T s


 , 1, 2,3i  and 1,2,3.j  (B.4)

This produces the elements of K as follows:

12 21
11

11 22

A B
K

A A
 (B.5a)

12 22 22 12
12

11 22

A B A B
K

A A


 (B.5b)

12 23
13

11 22

A B
K

A A
 (B.5c)

116

21
21

22

B
K

A
  (B.5d)

22
22

22

B
K

A
  (B.5e)

23
23

22

B
K

A
  (B.5f)

32 21 33 32 22 33
31

0
22

lim
s

A B C A B C
K

sA


  (B.5g)

22 32 33 32 22 33
32

0
22

lim
s

A B C A B C
K

sA


 (B.5h)

22 33 33 32 23 33
33

0
22

lim .
s

A B C A B C
K

sA


 (B.5i)

Because of the s in the denominator of equations (B.5g) through (B.5h), it is

advantageous to rewrite the process gain matrix and its inverse as follows:

11 12 13 11 12 13

21 22 23 21 22 230 0

31 32 33 31 32 33

1 0 0

lim lim 0 1 0

1
0 0

s s

K K K K K K

K K K K K K K

ss s s

     
 

   
     
           
         

  

 (B.6)

1

11 12 13
1

21 22 23
0

31 32 33

1 0 0

lim 0 1 0

0 0
s

K K K

K K K K

s  







   
       
      

. (B.7)

Defining L appropriately, the following substitution can be made:

117

11 12 13 11 12 13
1

21 22 23 21 22 23
0 0

31 32 33 31 32 33

1 0 0

lim 0 1 0 lim

0 0
s s

L L L L L L s

K L L L L L L s

L L L s L L L s



 

     
           
          

. (B.8)

From (B.8), R, is defined as follows:

 
11 21 31

T1
12 22 32

0

13 23 33

lim
s

L L L

R K L L L

L s L s L s





 
    
   (B.9)

Now, the RGA matrix is calculated in terms of (B.6) and (B.9) using a Hadamard product,

or element-by-element product, to obtain the following:

 
11 11 21 12 31 13

T1
12 21 22 22 32 23

13 31 23 32 33 33

L K L K L K

K K L K L K L K

L L L  



 
      
   (B.10)

From the result in (B.10), the RGA matrix can be calculated for specific combinations of

P, ρf, u1, u2, and u3 to determine the strength of interaction between inputs and outputs at

different operating points.

 To design the feedback controller in Section 2.4 the RGA matrix was calculated

for specific values of E, P, ρf, u1, u2, and u3 encompassing the full range of operation,

shown in plot form in Fig. B.1. From these calculations, the feedback controller was

simplified to consist of control loops that modify the output variables using the input

variable that most strongly affects it. The values of E vary from 10 MW to 180 MW in

steps of 10 MW. For each of the values of E, variables P, u1, u2, and u3 were generated by

the reference governor described in Section 2.3. The values for ρf were chosen such that

the steady-state value of L is zero for the corresponding values of E, P, u1, u2, and u3. The

variables are chosen this way, because the control references used to govern the operation

118

of the power plant unit are also chosen in this manner, and the feedback control system is

meant to regulate the power plant system to match these references.

The rows of the RGA matrix, i=1, 2, 3, represent the output variables, E, P, and L

and the columns of the RGA matrix, j=1, 2, 3, represent the input variables, u1, u2, and u3,

respectively. The elements of the RGA matrix, λij, are normalized values representing the

strength of interaction between the input and output variable corresponding to the row

and column number. The strongest interaction between inputs and outputs is denoted by

the value in each column closest to 1.

From Fig. B.1, it can be seen that λ11, λ22, and λ33 represent the strongest

interaction for their column, for all power levels, where λ11 represents the interaction

between the fuel valve, u1, and the power output, E, λ22 represents the interaction between

the steam valve, u2, and the boiler pressure, P, and λ33 represents the interaction between

the feedwater valve, u3, and the water level deviation, L . Therefore, the feedback control

Fig. B.1. Result of RGA matrix calculations.

0 20 40 60 80 100 120 140 160 180
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Power (MW)

 i
j

11

12

13

21

22

23

31

32

33

119

loops shown in Section 2.4 were designed such that the error between the power output

and the power setpoint, Ed-E, drives the feedback control for the fuel valve, the error

between the boiler pressure output and the boiler pressure setpoint, Pd-P, drives the

feedback control for the steam valve, and the error between the water level deviation and

the water level deviation setpoint, Ld-L, drives the feedback control for the feedwater

valve.

120

APPENDIX C

Artificial Neural Networks

ANNs were originally inspired by the structure, function, and processing power of

the extensive networks of neurons in the human brain that coordinate sensory perception

into muscular and glandular responses in the body. Comprising these networks are three

types of neurons: sensory neurons, motor neurons, and interneurons. The sensory neurons

are the neurons that receive input to the human neural network (HNN) from the nerve

endings that make up the five senses: hearing, sight, touch, taste and smell. Based on the

strength of the impulses received from the nerve endings, the sensory neurons will either

fire their own impulses or do nothing. The interneurons serve to process information from

the sensory layer, and relay the processed result to the motor neurons. The motor neurons

are connected to different muscles and glands in the body, and have the ability to

stimulate them based on the impulses received from the interneurons, forming the output

layer of the human brain.

 The neurons that make up the HNN are connected via axons and dendrites, which

are used to send and receive electrical impulses, respectively. When a neuron receives an

impulse, inhibitory or excitatory, through its dendrites, the sum of these impulses is

evaluated against the neuron’s excitation threshold, where the impulse strength is

determined by the strength of the synaptic connection through which it is received. If the

result exceeds a neuron’s excitation threshold, then it will send an impulse through its

axon to the other neurons or cells it is connected to.

121

 ܽ ൌ ݂ሺݏሻ (C.1a)

ݏ ൌ ܾ ൅ ∑ ሺ݌௜ݓ௜ሻ
௡
௜ୀଵ (C.1b)

Fig. C.1. Process model of artificial neuron.

 Similar to the HNN, ANNs are comprised of artificial neurons that form an input

layer, one or more processing hidden layers, and an output layer. The artificial neuron, as

originally proposed by [14], models the neurons in the brain by summing its received

inputs and evaluates them against a threshold to decide the output. This process is shown

in Fig. B.1, where pi are the inputs representing electrical impulses received by neurons

in the brain, wi are weights representing the strength of the synaptic connections between

neurons, b is an adjustable bias value that adjusts the threshold level to assist with

modeling learning in the brain, s is the sum of products of the inputs and weights plus the

bias value, f is the activation function of the neuron, or excitation threshold function,

which evaluates s to determine a neuron’s output, and a is the resulting output, shown in

equation form below where n is the number of inputs:

 There are many functions that can be used as the activation function, f, in artificial

neurons that make up ANNs. The log-sigmoid transfer function, or adaptations thereof, is

a commonly used transfer function in artificial neurons, pictured below. This transfer

function behaves differently from the way the McCullough-Pitts neuron treats incoming

signals. The McCullough-Pitts neuron uses the hard-limit transfer function which outputs

122

a zero when the input is below the threshold and outputs a one when the input is at or

above the threshold. Instead, the log-sigmoid transfer function is an approximation of the

hard-limit transfer function that allows a more dynamic response as opposed to the binary

response of the hard-limit transfer function. Therefore, the log-sigmoid transfer function,

shown in Fig. B.2, allows ANNs the ability to model the behavior of nonlinear systems

more accurately than when using only the hard-limit function.

 There are many types of ANNs that can be used to model dynamic systems,

forecast system behavior, and recognize patterns, among other applications. Three main

differences between types of ANNs that enable the different functionalities are the way

neurons are interconnected, the number of hidden layers and artificial neurons used in

each layer, and the excitation threshold functions used in the artificial neurons. Only two

types of ANNs are used in this thesis: FFNNs and LRNNs.

Fig. C.2. Log-Sigmoid and Hard-Limit transfer functions used in artificial neurons with a bias value, b,
of zero.

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

x

f (
x +

b)

logsig(0.5x+b)
logsig(x+b)
logsig(2x+b)

logsig(x+b)
= hardlim(x+b)

123

BIBLIOGRAPHY

[1] Annual Energy Outlook, United States (U.S.) Energy Information Administration
(EIA), 2011. Available: http://www.eia.gov/forecasts/aeo/

[2] Coal-Fired Plant Upgrades, United States Agency for International Development

(USAID), 2011. Available: http://pdf.usaid.gov/pdf_docs/PNABK358.pdf

[3] Heo, J. S., K. Y. Lee , and R. Garduno-Ramirez, "Multiobjective Control of

Power Plants using Particle Swarm Optimization Techniques",IEEE Transactions
on Energy Conversion, Vol. 21, No. 2, pp. 552-561, June 2006.

[4] International Energy Outlook, United States (U.S.) Energy Information

Amdministration (EIA), 2011. Available: http://www.eia.gov/oiaf/ieo/world.html

[5] Armor, A.F. (1985). Cycling of fossil plants: the key issue for the next 10 years.

Proceedings 1985 Fossil Plant Cycling Conference. EPRI CS-4723.

[6] Heo, J. S. and K. Y. Lee, "A Multi-Agent System-Based Reference Governor For

Multiobjective Power Plant Operation", IEEE Transactions on Energy Conversion,
Vol. 23, No. 4, pp. 1082-1092, December 2008.

[7] S. D. J. McArthur, E. M. Davidson, V. M. Catterson, A. L. Dimeas, N. D.

Hatziargyriou, F. Ponci and T. Funabashi, “Multi-Agent Systems for Power
Engineering Applications – Part I: Concepts, Approaches, and Technical
Challenges,” IEEE Transactions on Power Systems, vol. 22, no. 4, Nov. 2007.

[8] J. S. Heo and K. Y. Lee, “A Multi-Agent System-Based Intelligent Heuristic Optimal

Control System for a Large-scale Power Plant,” IEEE Congress on Evolutionary
Computation, Vancouver, BC, Canada, pp. 5693-5699, Jul. 2006.

[9] J. S. Heo and K. Y. Lee, “A Multi-Agent System-Based Intelligent Control System

for a Power Plant,” IEEE Power Engineering Society General Meeting, San
Francisco, CA, paper code: CD PESGM2005-000858.pdf, 2005.

[10] J. S. Heo and K. Y. Lee, “A Multi-Agent System Based Intelligent Reference

Governor for Multi-objective Optimal Power Plant Operation,” IEEE Transactions
on Energy Conversion, vol. 23, no. 4, 2008.

[11] R. Garduno-Ramirez and K. Y. Lee, “Multiobjective Optimal Power Plant Operation

through Coordinate Control with Pressure Set-point Scheduling,” IEEE Trans.
Energy Conversion, vol. 16, no. 2, pp. 115-122, Jun. 2001.

124

[12] R. D. Bell and K. J. Astrom, “Dynamic models for boiler-turbine-alternator units:
Data logs and parameter estimation for 160 MW unit,” Lund Institute of
Technology, TFRT-3192, 1987.

[13] L. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. IEEE

International Conf. Neural Networks, Perth, Australia, vol. IV, pp. 1942-1948, 1995.

[14] W. Pitts and W. McCoulloch, “How We Know Universals: The Perception of

Auditory and Visual Forms,” Bulletin of Mathematical Biophysics, vol. 9, pp. 127-
147, 1947.

[15] C. Ku and K. Y. Lee, “Diagonal Recurrent Neural Networks for Dynamic Systems

Control,” in IEEE Transactions on Neural Networks, vol. 6, no.1, pp. 144-156, Jan.
1995.

[16] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Englewood
 Cliffs, NJ: Prentice-Hall, 1995.

[17] P. Maes, “Artificial life meets entertainment: Life-like autonomous agents,”

Commun. ACM, vol. 38, no. 11, pp. 108–114, 1995.

[18] L. N. Foner, “Entertaining agents: A sociological case study,” in Proc. 1st Int.

Conf. Autonomous Agents, 1997.

[19] B. Hayes-Roth, “An architecture for adaptive intelligent systems,” Artif. Intell.

(Special Issue on Agents and Interactivity), vol. 72, pp. 329–365, 1995.

[20] M. Wooldridge, G. Weiss, Ed., “Intelligent Agents,” in Multi-agent Systems.

Cambridge, MA: MIT Press, Apr. 1999, pp. 3–51.

[21] J. D. Head, J. R. Gomes, C. S. Williams, and K. Y. Lee, “Implementation of a Multi-

Agent System for Optimized Multiobjective Power Plant Cnotrol,” in Proc. of the
2010 North American Power Symposium, Arlington, Texas, Sept. 2010.

[22] Foundation for Intelligent Physical Agents (FIPA), FIPA Content Language

Specifications. 2003. [Online]. Available: http://www.fipa.org/repository/cls.php3.

[23] Foundation for Intelligent Physical Agents (FIPA), FIPA ACL Message Structure

Specification, 2002. [Online].
 Available: http://www.fipa.org/specs/fipa00061/SC00061G.html.

[24] R. Hecht-Nielsen, “Kolmogorovo's Mapping Neural Networks Existence

Theorem,” Proceedings of the First IEEE International Conference on Neural
Networks, Vol. 3. Pages 112-114. San Diego 1987.

125

[25] R. Hecht-Nielsen, “Theory of Backpropagation Neural Networks,” Proceedings
of the International Joint Conference on Neural Networks, Vol. 1. Pages 593-605.
Washington 1989.

[26] R. Garduno-Ramirez, “Overall Intelligent Hybrid Control System for a Fossil-

Fuel Power Unit,” Ph.D. dissertation, The Pennsylvania State University, 2000.

	01 Abstract-v1.pdf
	02 Signiture Page
	03 Copyright Page
	04 Table of Contents
	05 List of Figures
	06 List of Tables
	07 List of Abbreviations
	08 Acknowledgments-v1
	09 Chapter One-v4
	10 Chapter Two-v5
	11 Chapter Three-v3
	12 Chapter Four-v3
	13 Chapter Five-v1
	14 Appendicies-v1
	15 Bibliography

