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 As the demand for electric power grows and regulations on power plant operation 

become stricter, the size, and therefore complexity, of new power plant units is increasing while 

the intricacies of the multiple simultaneous processes that take place to generate electricity 

require tighter control. In order to provide a solution to some of the associated operational 

challenges arising from this situation, control techniques have been developed to allow optimized 

power plant control while considering non-fixed operating goals. Each of these techniques is 

computationally intensive, requiring a distributed, parallel control framework to implement each 

technique simultaneously in distributed subsystem environments. For these reasons, previous 

research has studied multi-agent systems as a means to implement such a control system. 

Therefore, the goal of this thesis is to fully develop a multi-agent system to coordinate and 

implement these techniques to control a third order fossil fuel power plant model.  



Page bearing signatures is kept on file in the Graduate School. 

Development and Implementation of a Multi-Agent System  
for Intelligent Optimized Power Plant Control 

 
by 
 

Jason D. Head, B.S.E.C.E. 
 

A Thesis 
 

Approved by the Department of Electrical and Computer Engineering 
 

___________________________________ 
Kwang Y. Lee, Ph.D., Chairperson 

 
Submitted to the Graduate Faculty of  

Baylor University in Partial Fulfillment of the  
Requirements for the Degree 

of 
Master of Science in Electrical and Computer Engineering 

 
 

 
 
 

Approved by the Thesis Committee 
 

___________________________________ 
Kwang Y. Lee, Ph.D., Chairperson 

 
___________________________________ 

Ian Gravagne, Ph. D.  
 

___________________________________ 
Paul Grabow, Ph. D.  

 
 
 

 
 
 

Accepted by the Graduate School 
May 2012 

 
___________________________________ 

J. Larry Lyon, Ph.D., Dean                      



Copyright © 2012 by Jason D. Head 

All rights reserved 



iv 

TABLE OF CONTENTS 

List of Figures ................................................................................................................... vii 

List of Tables ..................................................................................................................... ix 

List of Abbreviations .......................................................................................................... x 

Acknowledgements ........................................................................................................... xii 

CHAPTER ONE     Introduction ........................................................................................ 1 

1.1     Motivation ..................................................................................................... 1 

1.2     Background ................................................................................................... 5 

1.2.1     Current FFPU Situation ................................................................. 5 

1.2.2     Control Schemes ............................................................................ 6 

1.2.3     Reference Governor ....................................................................... 7 

1.2.4     Adaptive Feedback Gain Tuning ................................................... 9 

1.2.5     Model Identification for MPC ....................................................... 9 

1.2.6     Need for a Multi-Agent System Approach .................................. 10 

1.3     Problem Statement ...................................................................................... 11 

1.4     Objective and Scope ................................................................................... 11 

CHAPTER TWO     The Optimized Multiobjective Control System ............................... 13 

2.1     Optimized Multiobjective Control System Architecture ............................ 13 

2.2     Power Plant Model ...................................................................................... 15 

2.3     Reference Governor .................................................................................... 17 

2.3.1     Power-Input Operating Windows ................................................ 18 

2.3.2     Multiobjective Optimization ........................................................ 22 



v 

2.3.3     Setpoint Scheduler and Feedforward Controller .......................... 25 

2.4     Feedback Controller .................................................................................... 26 

2.5     Gain Optimizer ............................................................................................27 

2.6     Artificial Neural Network Models and the Neural Network Trainer .......... 30 

2.6.1     Feedforward Neural Network ..................................................... 30 

2.6.2     Dynamic Neural Network ...................................................... 33 

2.6.3     Neural Network Trainer ……....................................................... 35 

CHAPTER THREE     Multi-Agent System ..................................................................... 37 

3.1     Overview of Multi-Agent Systems ............................................................. 37 

3.2     Single Agent Architecture .......................................................................... 38 

3.3     Multi-Agent System Architecture and Proposed Agents ............................ 40 

3.3.1     Interface Agent ............................................................................. 41 

3.3.2     Free Agent ................................................................................... 42 

3.3.3     Delegation Agent ......................................................................... 44 

3.3.4     Feedforward and Feedback Agents .............................................. 48 

3.3.5     Neural Network Agent ................................................................. 54 

3.3.6     Gain Optimizer Agent .................................................................. 56 

3.3.7     Database and Monitoring Agents .................................................57 

3.4 Agent Communication .................................................................................... 59 

3.5 Agent Failure ……….......................................................................................64 

3.5.1     Agent Operating State .................................................................. 64 

3.5.2     Prioritized Agent Assignment List ...............................................65 

CHAPTER FOUR     Simulation and Results .................................................................. 68 



vi 

4.1     Simulation of the Multi-Agent Control System .......................................... 68 

4.1.1     MAS Simulation …….................................................................. 68 

4.1.2     The Power Plant Simulator .......................................................... 71 

4.1.3     Interface Agent GUI ….................................................................74 

4.2     Simulation and Testing Results ...................................................................74 

4.2.1     Feedforward Agent ...................................................................... 75 

4.2.1.1     Testing the setpoint optimization .................................. 75 

4.2.1.2     Testing the accuracy of the FFNN model ......................78 

4.2.2     Feedback Agent ........................................................................... 82 

4.2.3     Gain Optimizer Agent .................................................................. 92 

4.2.4     Neural Network Agent ................................................................. 96 

4.2.4.1     LRNN Training ………………………......................... 96 

4.2.4.2     LRNN and Neural Network Performance ..................... 99 

4.2.5     Overall Multi-Agent Control System ........................................... 99 

4.2.5.1     MACS Simulation Using a Wide-Range ULDC .......... 99 

4.2.5.2     MACS Simulation Using a Realistic ULDC ...............103 

CHAPTER FIVE     Conclusions .................................................................................... 106 

5.1     Conclusions ............................................................................................... 106 

5.2     Future Research .........................................................................................110 

APPENDIX A     Operating Window Data .....................................................................113 

APPENDIX B     Calculation of the RGA Matrix for the 160 MW FFPU Model ......... 114 

APPENDIX C     Artificial Neural Networks …............................................................. 120 

BIBLIOGRAPHY ........................................................................................................... 123 



vii 

LIST OF FIGURES 
 
 
Figure 2.1: Block Diagram of the overall control system ................................................. 14 
 
Figure 2.2: Diagram of the process flow in the reference governor ................................. 18 
 
Figure 2.3: Graph of the power-pressure window over the range of possible unit load  

demands ................................................................................................................ 19 
 
Figure 2.4: Plots of the power-input windows over the range of operation ..................... 20 
 
Figure 2.5: Block diagrams of the PI control loops for the decoupled feedback control  
 approach ................................................................................................................ 27 
 
Figure 2.6: General configuration of artificial neurons and weight interconnections for  
 a multilayer feedforward neural network .............................................................. 32 
 
Figure 2.7: General configuration of artificial neurons and weight interconnections for  
 a single hidden layer in a layer recurrent neural network ..................................... 34 
 
Figure 3.1: Diagram of the common agent architecture ................................................... 39 
 
Figure 3.2: Proposed agents divided into the MAS hierarchy .......................................... 41 
 
Figure 3.3: Flow diagram of the basic operation of the Interface agent ........................... 43 
 
Figure 3.4: Flow diagram of the basic operation of the Free agent .................................. 45 
 
Figure 3.5: Flow diagram of the basic operation of the Free agent in stand-by mode ..... 46 
 
Figure 3.6: Flow diagram of the basic operation of the Delegation agent ........................ 49 
 
Figure 3.7: Block diagram of the minimal control structure formed by the  
 Feedforward and Feedback agents ........................................................................ 50 
 
Figure 3.8: Flow diagram of the basic operation of the Feedforward agent ..................... 52 
 
Figure 3.9: Flow diagram of the basic operation of the Feedback agent …...................... 53 
 
Figure 3.10: Flow diagram of the basic operation of the Neural network agent .............. 55 
 
Figure 3.11: Flow diagram of the basic operation of the Gain Optimizer agent .............. 57 
 



viii 

Figure 3.12: Flow diagram of the basic operation of the Database agent ........................ 60 
 
Figure 3.13: Flow diagram of the basic operation of the Monitoring agent ..................... 61 
 
Figure 3.14: Message Structure of the MAS-ACL ……………....……........................... 62 
 
Figure 4.1: Flow diagram of the basic operation of the Power Plant Simulator ............... 73 
 
Figure 4.2: The result of setpoint optimization performed comparing the equation  
 model with the FFNN model ................................................................................ 81 
 
Figure 4.3: The PPS response to a ramp in power level without feedback control .......... 84 
 
Figure 4.4: The change in control valve positions corresponding to the ramp in power 

level in Fig 4.3 without feedback control .............................................................. 85 
 
Figure 4.5: The PPS response to a ramp in power level with feedback control from  
 the Feedback agent ................................................................................................ 86 
 
Figure 4.6: The change in control valve positions corresponding to the ramp in power 

level in Fig 4.5 with feedback control .................................................................. 87 
 
Figure 4.7: The PPS response to a ramp in power level with feedback control 

implemented by the Feedback Agent ................................................................... 90 
 
Figure 4.8: The change in control valve positions corresponding to the ramp in power 
level in Fig 4.7 with feedback control implemented by the Feedback agent .................... 91 
 
Figure 4.9: The PPS response to a ramp in power level with feedback control 

implemented by the Feedback agent before and after replacing the PI gains  
 with optimized ones .............................................................................................. 94 
 
Figure 4.10: The change in control valve positions corresponding to the ramp in  
 power level in Fig 4.9 with feedback control implemented by the Feedback  
 agent before and after replacing the PI gains with optimized ones ...................... 95 
 
Figure 4.11: Divisions of the power-pressure window into 9 training data regions ......... 97 
 
Figure 4.12: The PPS response to a wide-range load cycle under the control of the  
 MACS ................................................................................................................. 101 
 
Figure 4.13: The change in control valve positions corresponding to the wide-range load 

cycle in Fig 4.9  under the control of the MACS ............................................... 102 
 
Figure 4.14: The PPS response to a load cycle representing a typical summer weekday 

under the control of the MACS .......................................................................... 104 



ix 

Figure 4.15: The change in control valve positions corresponding to the wide-range load 
cycle in Fig 4.9 under the control of the MACS ................................................ 105 

 
Figure B.1: Result of RGA Matrix Calculation .............................................................. 118 
 
Figure C.1: Process model of artificial neuron ............................................................... 121 
 
Figure C.2: Log-Sigmoid and Hard-Limit transfer functions used in artificial neurons 

with a bias value, b, of zero ................................................................................ 122 
 



ix 

LIST OF TABLES 

Table 4.1: Optimal values for u1, u2, and u3 according to J2(u), J3(u), and J4(u) for the 
power demand levels tested ...................................................................................79 

 
Table 4.2: Results of control optimization verification tests ............................................ 79 

 
Table 4.3: Mean-squared and max error in the results from comparing setpoint 
optimization using the equation and FFNN models ..........................................................82 
 
Table 4.4: The difference in power and pressure setpoints caused by changing each 
 control variable by the maximum error shown in Table 4.3 ................................. 82 
 
Table 4.5: Optimized feedback gain values used in the Feedback agent simulation ........ 88 

 
Table 4.6: Initial feedback gain values ............................................................................ 96 
 
Table 4.7: Optimized feedback gain values ..................................................................... 96 
 
Table 4.8: Constraints on search space for finding optimal feedback gains .................... 96 
 
Table A.1: Upper pressure limit data …………………………………….…................. 113 
 
Table A.2: Lower pressure limit data …………………………………….…................. 113 
 
 
 
 

 



 

x 

LIST OF ABBREVIATIONS 

ACL  Agent Communication Language 

ANN  Artificial Neural Network 

CC  Coordinated Control 

DRNN  Diagonal Recurrent Neural Network 

FFPU  Fossil Fuel Power Unit 

FFNN  Feedforward Neural Network 

FIPA  Foundation for Intelligent Physical Agents 

GA  Genetic Algorithm 

GUI  Graphical User Interface 

HNN  Human Neural Network 

HPSO  Hybrid Particle Swarm Optimization 

IEEE  The Institute of Electrical and Electronics Engineers 

IP  Internet Protocol 

LRNN  Layer Recurrent Neural Network 

MAS  Multi-Agent System 

MACS  Multi-Agent Control System 

MPC  Model Predictive Control 

PI  Proportional-Integral 

PSO  Particle Swarm Optimization 

RGA  Relative Gain Array 

RTS  Reliability Test System 



 

xi 

UDP  User Datagram Protocol 

ULDC  Unit Load Demand Curve 

 
 



 

xii 

ACKNOWLEDGMENTS 
 

 
 I would like to thank Dr. Kwang Y. Lee, as my advisor, for his guidance and 

encouragement during my graduate studies at Baylor University, and for allowing me the 

opportunity to work under him. I would also like to thank Dr. Ian Gravagne for his 

contribution of expertise in control systems to the project and for serving as a graduate 

committee member, and Dr. Paul Grabow for serving as a graduate committee member 

and providing invaluable insite. In addition, I would like to thank the National Science 

Foundation, the Department of Electrical and Computer Engineering at Baylor University, 

my parents Ronald and Dovie Head, and my grandparents James Nelson and Laura Fae 

Head for providing financial support during my graduate studies. I would also like to 

express my deepest appreciation to my parents, Ronald and Dovie Head, my grandparents, 

James Nelson and Laura Fae Head, and my wonderful wife Nicole whose prayers, 

encouragement, and support helped me to endure and succeed during my studies at 

Baylor University. Lastly, I would like to thank my friends and colleagues John Miller, 

Jason Gomes, and Craig Williams for their contributions to this project. 



1 

CHAPTER ONE 

 
Introduction 

 
 

This chapter describes the problem statement for this thesis by introducing 

previous work that has led to this extension. The motivation for the methods proposed in 

previous work is described. This thesis implements, tests, and adds to the methods 

previously proposed.  

1.1 Motivation 

 In today’s electric utility markets, there are many worldwide challenges regarding 

the generation of electricity. The main challenge facing electric utility companies is to 

remain competitive in cost to end users while balancing many other financial, regulatory, 

and operational demands. Financial concerns stem from the complexity of planning for 

future costs in the production of energy that is driven by many diverse factors [1,2].  

 Constantly evolving government regulations that potentially increase the cost of 

producing electricity and change the way power plants are operated create other 

challenges. The operational challenges faced by utilities are due to the need to increase 

efficiency in existing plants and to effectively control large, complex plants that are being 

built in response to the rapidly increasing demand for electric power [3]. To describe 

these challenges and give motivation for this thesis, the following topics are briefly 

discussed: 

 the financial impact of the varying cost of fuels based on world markets 
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 the decision to either replace aging plant equipment or to build new plants to 

maximize on capital investment  

 the potential for increasingly stringent regulations to be passed concerning 

environmental impact and resource management, causing many existing plants to 

retrofit equipment with costly upgrades  

 accommodating cyclic load operation without causing unnecessary stress to plant 

equipment to make efficient use of resources in power plants, many of which 

were designed for maximum load operation 

 extending equipment life in aging plants to maximize capital investment 

 improving energy efficiency, or heat rate, of power plants 

 improving the efficiency of fuel combustion to avoid the emission of pollutants  

 planning for increased generation capacity to meet the rapidly growing demand 

while considering the above mentioned issues.  

 Constantly evolving regulations on the electric power generation industry force 

electric utility companies to continually adapt the way they operate in order to comply. 

These considerations also cause increases in operational costs, such as those incurred 

because of higher taxes on emissions, expensive retrofits meant to reduce pollution, and 

requirements that mandate the use of more expensive, cleaner burning versions of fuel. 

Increases in operating costs bring challenges to utilities and have the potential to raise 

electricity prices to end users, making it more difficult for utility companies to compete 

in today’s market. 

 Furthermore, the future cost of fuel needed to operate existing power plants is 

affected by many global factors, making it hard to predict future prices. The instability in 
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price makes it difficult for utilities to plan electricity generation in existing plants and 

makes deciding what types of new power plants to build risky. Consequently, this 

instability complicates financial planning for utilities. 

 Further complicating financial planning for electric utility companies is the issue 

of whether to retire and replace existing plants or to make costly upgrades in order to 

continue using them. This decision is affected by several factors, including the ones 

mentioned above. Possible regulatory legislation, if passed, could cause existing plants to 

become too expensive to operate, and other plants may not be able to meet the new 

requirements even if upgrades were made. Either of these cases would cause plants to be 

shut down.  

Older plants, in particular, are vulnerable, because they were designed before 

more efficient equipment was available. Modifications required by regulations would be 

expensive initially, but would cause the plant’s operating costs to decrease by reducing 

the taxes on emissions. The challenge is to decide what initial cost is worth investing to 

keep an existing plant in operation, while considering how quickly the modifications will 

pay for themselves. 

 To complicate matters further, power consumption is growing very rapidly, and is 

projected to continue growing at such a pace for the foreseeable future. Currently, the 

worldwide consumption of electric power is expected to increase at an average rate of 2.3 

percent per year until the year 2035, making it the fastest growing end-use of energy 

consumption in the world [4]. To keep up, utilities will have to build new, larger power 

plants in addition to deciding what to do with the existing ones. 
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 Besides financial concerns, there are many operational challenges that have arisen 

from a control perspective. Though these issues may be relevant to other plant types, 

fossil fuel power units (FFPUs) are the most widely used type of plant in the generation 

of electricity worldwide and are projected to remain as such for at least the next 25 years 

[4]. For this reason, they have been the focus of research leading to this thesis, and 

remain the focus herein.  

 Today, many FFPU’s are operated cyclically in a wide-range, load-following 

manner, where load demands are sent from dispatch centers. This is done to make better 

use of resources and to reduce operating costs by not generating more power than is 

needed. Although newer equipment is better suited for this type of operation, many older 

plants were designed to be efficient while operating at the rated load capacity [5]. In both 

cases, careful considerations must be taken to avoid putting increased strain on plant 

equipment, shortening its overall life.  

 Maximizing the life of an FFPU is important, because the longer an FFPU lasts, 

the better the return will be on the initial capital investment that was made to build the 

plant. High stress operation is the main cause of shortened plant life, and is often a result 

of thermal stress caused by fluctuating steam temperature and pressure. The most severe 

strain occurs during startup and shutdown, as well as when sudden load variations occur.  

 These challenges call for the development of more robust control schemes than 

are currently employed today. Such control schemes should make use of advances in 

computer-based instrumentation, computational abilities, computer networking, and 

computational intelligence to allow more flexibility, robustness, and efficiency. Such a 

control scheme is the focus of this thesis. 



5 

1.2 Background 

As previously mentioned, FFPUs generate the majority of electric power 

consumed around the world today and are projected to remain the predominant source for 

years to come. Therefore, this thesis focuses on solving control problems faced by FFPUs. 

This section discusses common control practices with respect to these units to provide 

context to give background for the control methods proposed here.  

 
1.2.1 Current FFPU Situation 

 With the rising demand for electricity, in conjunction with the issues discussed in 

the previous section, more is being required of existing plants and new power plants are 

growing in size. Existing FFPUs must generate more electricity while increasing overall 

efficiency and reducing pollution. To make matters more difficult, the total combined 

generation capacity of FFPUs has increased very little compared to the increased demand, 

meaning that more power is required from FFPUs [1]. This scenario makes control 

optimization, discussed further in later sections, important for the continued operation of 

these units.  

Furthermore, as new power plants get bigger, they become more complex in terms 

of the number of interconnected subsystems [6]. More interconnected subsystems make it 

more difficult to achieve efficient control because of the increased complexity of the 

interactions among processes. Also, conventional, centralized control approaches are no 

longer adequate, since the larger power plants have physically distributed subsystems. 

Furthermore, a failure in any part of a centralized control system can cause the entire 

control system to fail. For these reasons, a distributed control system is desirable. 
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1.2.2 Control Schemes 

In general, there are three control strategies that have been used by FFPUs to 

match the unit load demand, or desired power output. These methods are boiler-following 

control, turbine-following control, and coordinated control. Each of these methods has its 

own advantages and disadvantages. The details of these methods are discussed to give 

background for the control techniques used in this thesis. 

The boiler-following, or turbine-leading, control strategy matches the power 

output demand of an FFPU by varying steam flow to cause the turbine to generate more 

or less power by constraining or releasing the energy stored in the form of steam in the 

boiler. Releasing steam causes the steam pressure in the boiler to drop. To compensate, 

fuel burn is increased to vaporize more water in the boiler to maintain the steam pressure 

setpoint. The advantage of this method is that the plant can be made to change power 

output quickly, since the turbine responds quickly to changes in steam flow. The 

disadvantage is that this method causes the steam pressure to be less stable, because the 

boiler cannot produce steam as fast as the turbine can be made to change power output. 

The turbine-following, or boiler-leading, control strategy matches the power 

output demand by varying fuel combustion, which generates more or less steam based on 

an increase or decrease in output demand. In response, steam flow to the turbine is varied 

to regulate the steam pressure in the boiler to match the setpoint value. The advantage of 

this method is that it produces a more stable steam pressure and temperature response to 

load changes. The disadvantage is that this method is slower in varying the output power 

in response to a load change because of the time it takes to generate steam. 
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Coordinated control (CC) methods attempt to make use of the advantages in the 

previous two methods, while minimizing their shortcomings. This type of approach uses 

control logic to simultaneously adjust the steam flow and fuel burn rates to quickly match 

the load demand while keeping up with the pressure demand in the boiler. To maintain 

the boiler pressure setpoint, the control logic must anticipate the pressure loss due to a 

load change so that it can preemptively adjust the fuel burn rate.  

Historically, CC methods have made use of fixed, nonlinear functions to 

determine the setpoints that govern the boiler and turbine control. However, this method 

is inflexible, because it does not allow process optimization if the operating objectives 

must be changed. Therefore, to add more flexibility, a reference governor is needed to 

optimize the control setpoints during operation. The following section discusses a 

reference governor that has been designed to do this [3].  

 
1.2.3 Reference Governor 

The reference governor in [3] was designed to optimize control setpoints in real-

time to implement a customizable CC strategy. To perform real-time setpoint 

optimization using such a reference governor, a model of the processes, for which 

setpoints are being optimized, is needed to evaluate candidate solutions. Many 

mathematical models of FFPUs are too computationally complex to be implemented in a 

real-time control scheme where the unit load demand is constantly changing. Therefore, a 

more advanced model must be used to speed up the simulation process for this strategy to 

be successful.  

Artificial neural networks (ANNs) are a good choice as a replacement for 

computationally complex mathematical models because they can emulate these models of 
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complex systems relatively quickly and are effective at modeling the nonlinear dynamics 

that are characteristic of FFPUs. Once trained, an ANN model can be used to predict the 

response of the modeled processes to control inputs to test whether the control result is a 

sufficient one. Using an ANN model in this way is considered model predictive control 

(MPC). 

A number of search algorithms were explored in [3] to discover the best algorithm 

for producing optimized control setpoints in a reference governor designed for a 160 MW 

oil-fired drum-type boiler-turbine-generator FFPU. Reference [3] found that particle 

swarm optimization (PSO) algorithms give faster convergence with fewer iterations 

compared to a genetic algorithm (GA), and are sufficiently fast for online setpoint 

optimization. As will be explained in a later section, this FFPU is the model used in this 

research, and this reference governor design is used here for optimized multi-objective 

coordinated control of this model. 

The setpoint optimization performed by the reference governor generates 

setpoints in a way that allows a FFPU to satisfy conflicting operating objectives, such as 

the need to meet the unit load demand while conserving fuel, reducing pollution, 

maximize equipment life, et cetera, to achieve greater overall efficiency. Priority values 

are used to give more weight to more important objectives to ensure they are met. For 

example, the need to meet the unit load demand would be given a higher priority than 

other objectives to ensure the setpoint optimization produces a result that generates the 

power output demanded of the plant.  
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1.2.4 Adaptive Feedback Gain Tuning 

 Adaptive feedback gain tuning is another control technique that can be used to 

increase efficiency in FFPUs. Adaptive gain tuning is used in this thesis to adjust the 

feedback gain values when the performance resulting from feedback control is 

determined to need improvement. One reason feedback gains need improvement is that 

the nonlinear dynamics of the FFPU cause the system to behave differently as the power 

level changes. As the behavior changes, feedback gains may become less effective for 

performing feedback control. However, adaptive gain tuning, in general, is used to 

preserve stability regarding feedback control during operation of a power unit. 

Performing adaptive gain tuning online requires the ability to monitor the 

performance of the FFPU systems to determine when the response to feedback control is 

no longer adequate. When feedback gains need adjustment, the adaptive gain tuner will 

optimize new gains using the predicted response of the plant. Similar to the optimization 

method used in the reference governor, the feedback gain optimization will use an ANN 

model of the power plant processes to predict their response to candidate feedback gain 

values. Based on the performance shown in the predicted responses, gain values can be 

evaluated to find an optimized set using PSO. 

 
1.2.5 Model Identification for MPC 

 To use MPC in a real-time control system, a model of the controlled system must 

be obtained. In this thesis, the processes of the FFPU are modeled using ANNs. Since the 

equations for these processes are available for the model used here, data can be obtained 

without collecting sensor data from an actual power plant unit. Instead, the equations are 

used to generate the data needed to train the ANNs to learn the process behavior. 
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 There are two types of ANNs used in this thesis, feedforward-type and dynamic. 

The feedforward-type ANN can be sufficiently trained, offline, using the data generated 

from the FFPU model equations. The dynamic ANN requires online training in addition 

to offline training. The reason for this is that as the plant behavior changes with the 

change in power level, due to nonlinear system dynamics, the dynamic ANN needs to be 

updated to be able to model the change. 

 To update the dynamic ANN model online, the ability to collect data real-time 

system data is needed. With this data, the model can be incrementally trained to be 

accurate in simulating the dynamics at the current level of operation. This is what is 

needed with the dynamic ANN, because it is used to model the FFPU response to 

feedback control using candidate gains from the adaptive gain optimization process to 

improve feedback control at the current level of operation. This requires the ability to 

train ANNs online. 

 
1.2.6 Need for a Multi-Agent System Approach 

 Each of the control techniques mentioned previous to this section are 

computationally intense. If they are to be implemented simultaneously for real-time 

control of the distributed subsystems of a large-scale FFPU, a control system framework 

that provides the means for decentralized control, parallel computation of control tasks, 

system monitoring, and large-scale coordination is needed. Furthermore, it is desirable 

that the framework be robust, flexible, and extensible. For these reasons, a multi-agent 

system (MAS) approach to implementing such a control scheme is attractive. 

 Though there are many ideas as to what constitutes an MAS among the computer 

science community, there are common features among the differing ideas [7]. All MASs 
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consist of intelligent agents that perform separate tasks to perform a larger, coordinated 

goal. To solve the problems addressed in this thesis, agents would perform system 

monitoring and control tasks to achieve the coordinated goal of efficient, optimized, 

distributed control of an FFPU, with the ability to customize the operating goals that 

define efficiency and optimality. Furthermore, there is the potential to add robustness, 

flexibility, and extensibility because of the distributed, modular nature of MASs. 

 
1.3 Problem Statement 

There has been a considerable amount of research done to explore the use of a 

MAS framework to coordinate control and monitoring tasks which perform distributed 

multiobjective optimized intelligent control of FFPUs [6,8,9,10,11]. Numerous control 

techniques, including the ones mentioned here, have been developed to control FFPUs in 

this previous research. Also included in this research is the preliminary development of 

an MAS framework that organizes control and monitoring processes into agents for 

realizing control of a 600 MW FFPU and the 160 MW FFPU used here. However, a fully 

operational MAS has not been developed to test the online performance of control tasks 

executed by agents or the overall performance of a fully functional multi-agent control 

system (MACS). 

 
1.4 Objective and Scope 

It is the goal of this thesis to continue previous work done to develop an MAS 

method for implementing control and monitoring tasks of a FFPU by developing, 

implementing, and testing a fully functional MAS designed for the control of a 160 MW 

FFPU. Though the MAS control method is meant to address complex problems faced by 
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large-scale FFPUs, a smaller, less complex 160 MW FFPU is the target of control in this 

thesis to simplify the development of the needed infrastructure. Since the MAS method is 

extensible and non-rigid, the infrastructure developed here can be used to design an MAS 

to control larger, more complex systems. 

This thesis consists of five chapters. The first chapter gives motivation and 

background for this thesis, as well as a description of the problems addressed. The 

problems facing the electric utility industry and shortcomings of other control methods 

are discussed to motivate the development of a more advanced control system. This 

chapter also discusses the previous work that has led to the extension this thesis provides. 

The second chapter describes the overall control architecture that is to be 

implemented by the MAS, the mathematical model of the FFPU used as the target of 

control to develop the MAS, and the control techniques to be implemented by the MAS. 

The third chapter gives a detailed description of MASs, the structure of an individual 

agent, and the structure of the proposed MACS. The proposed agents that perform the 

control techniques and the messaging system that allows the agents to communicate are 

also explained.  

 Chapter four details the software implementation and simulation of the 

MAS, the methods used to test the control system, as well as the methods used to confirm 

the successful operation of the individual agents. The fifth chapter gives a summary of 

this thesis, draws conclusions from chapter four, and suggests possible future research 

opportunities that could add to this research. 
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CHAPTER TWO 

 
The Optimized Multiobjective Control System 

 This chapter discusses the individual control techniques of the optimized 

multiobjective control system and how they work together to perform control of a power 

plant system. To do so, an overview of the architecture of the optimized multiobjective 

control system is given. Then, the power plant model used to evaluate the operation of 

the control system is discussed and the reference governor that is used to calculate 

optimized control valve setpoints and output level references for control of the power 

plant model is described. Next, the feedback control system used to control the power 

plant model at the setpoints generated by the reference governor, and the gain optimizer 

used to optimize feedback gains for use in the feedback controller are discussed. Lastly, 

the function, type choice, structure and training of the artificial neural networks (ANNs) 

used to model the power plant system for model predictive control (MPC) in the 

reference governor and gain optimizer are described. 

2.1 Optimized Multiobjective Control System Architecture 

 The goal of the optimized multiobjective control system, pictured in Fig. 2.1, is to 

allow optimized control of a power plant system in a customizable manner, such that an 

operator can choose operating goals for a specific plant system and implement them in 

real-time. Each goal is given a priority value based on ascribed importance to be used by 

the control system to produce optimized control. This method was proposed in [3] to help 

power plants respond to the constantly changing requirements on operation due to 
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government regulations as well as changes made to increase efficiency in order to 

become more competitive in today’s utility market. 

The inputs to the control system are the unit load demand, operating objectives, 

and preferences. The unit load demand is the power output demanded of the power plant 

unit, and is determined by economic dispatch, which dictates the operation of multiple 

power units to produce enough energy to reliably meet the demand from end users at the 

lowest cost to the provider. The operating objectives are strategic goals, with respect to 

operation of the power unit, that are meant to increase the efficiency of the unit, such as 

minimizing pollution, fuel consumption, stress on equipment, etc. Preferences are values 

that rank the operating objectives in order of importance, and, as will be discussed later in 

this chapter, these values determine how the operating objectives affect the outcome of 

the control setpoint optimization.  

Based on these inputs, the control system uses a reference governor, feedforward 

control, feedback control, gain optimization, and real-time neural network training to 

 
 

Fig 2.1. Block diagram of the overall control system. 
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produce optimized control of the target power plant unit. The reference governor uses the 

control system inputs, electric power demand level and the operating objectives and 

preferences, to optimize operating setpoints and output level references to be used in the 

feedback controller. The functionality of the feedforward controller is performed in the 

reference governor as a result of the optimization process.  

The feedback controller uses the references from the reference governor and 

feedback gains produced by the gain optimizer to maintain tight control of the plant 

system with respect to the references. The gain optimizer optimizes the feedback gains 

whenever the control system detects that the error between the setpoints and plant output 

are above the predetermined threshold. The real-time neural network trainer continually 

collects data to train and adapt the artificial neural networks that are used in the control 

system to model plant processes in the optimization procedures performed in the 

reference governor and the gain optimizer. 

2.2 Power Plant Model 

The power plant model used to develop and test the optimized multiobjective 

control system discussed in this thesis is a mathematical model of a 160 MW oil-fired 

drum-type boiler-turbine-generator unit, a detailed formulation of which can be found in 

[12]. It is modeled as a third-order three-input three-output nonlinear model. The inputs 

to the system are positions of valve actuators that control the mass flow of fuel 

(represented as u1 in per unit), steam to the turbine (u2 in per unit), and feedwater to the 

drum (u3 in per unit). The outputs are electric power generated by the plant (E in MW), 

drum steam pressure (P in kg/cm2), and drum water-level deviation (L in meters). The 

resulting state variables are electric power (E), drum steam pressure (P), and steam-water 
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density (ρf). The dynamic equations for the third-order model were developed by Bell and 

Ǻström in [12] and are as follows:   
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The drum water level deviation from a fixed, drum-specific setpoint is calculated from 

the solution for ρf in equation (2.1c) in conjunction with the algebraic equations below: 
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 16.3565 3000 5.5556 3275s eL u q     (2.2c) 

where qe is the evaporation rate (kg/s) of water in the boiler and αs is the steam quality. 

Values for the control valve positions are represented by values on [0,1], 0 

representing a completely closed valve and 1 representing a completely open valve, and 

have rates of change limited as shown below, as determined in [11]:  

 10.007 / 0.007du dt    (2.3a) 

 22.0 / 0.02du dt    (2.3b) 

 30.05 / 0.05du dt    (2.3c) 

 Steady-state equations for this power plant model are obtained by setting the 

dynamic equations in (2.1) to zero and solving for u1, u2, and u3. This result gives an 
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inverse steady-state model of the dynamic equations, shown below, consisting of only 

algebraic equations: 
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Similarly, the steady-state electric power and drum steam pressure can be calculated from 

the control valve positions by solving (2.4) for E and P, whose result is shown below:  
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The above equations are used to model the power plant in software by calculating 

initial conditions for E, P, L and ρf, and continually solving the equations in (2.1) and (2.2) 

for a specified time-step. The equations in (2.1) are solved using an ordinary differential 

equation solver, followed by the straightforward calculation of the equations in (2.2). 

Control of the power plant is simulated by calculating the input values, u1, u2, and u3 

using the described control system implemented in software. 

 
2.3 Reference Governor 

 The reference governor was designed to allow optimized control of a power plant 

unit with custom operating goals that can be adjusted real-time. The ability to customize 

operating goals would help operators conform to changing regulations and market 
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Fig 2.2. Diagram of the process flow in the reference governor.  

situations without redesigning the control system. Therefore, with this reference governor 

design, the objective functions and preferences can be changed during the operation of 

the control system. 

 In operation, the reference governor generates optimized setpoints based on the 

unit load demand, Euld, operating objective functions, J, and preference values, β, which 

are the inputs to the reference governor. It does this in three subprocesses, shown in Fig. 

2.2. The first subprocess uses preformed tables of feasible operating bounds, listed in 

Appendix A, for each of the control valves to determine bounds on control operation for 

the current unit load demand. The second subprocess uses an optimization algorithm to 

find optimized control setpoint values for the current unit load demand, with respect to 

the operating objectives and preferences, within the control bounds specified by the first 

subprocess. The third subprocess translates the optimized control setpoints into output 

reference levels to be used in the feedback controller.  

 
2.3.1 Power-Input Operating Windows 

The power-input operating windows in the first subprocess define the feasible 

range of operation for each control input with respect to a specific unit load demand. The 

power-input operating windows for the power plant used in this thesis are calculated from 
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Fig 2.3. Graph of the power-pressure window over the range of possible unit load demands. 
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the power-pressure operating window, shown in Fig. 2.3. The power-pressure operating 

window gives a range of feasible operating drum steam pressures that can achieve a given 

unit load demand power in a power plant. Using the equations in (2.4), the minimum and 

maximum drum steam pressures for a specific unit load demand power are used to 

calculate a minimum and maximum value for each control input. Doing this for all 

possible unit load demand values results in the graphs in Fig. 2.4. A table of the pressure 

and control boundary values can be found in Appendix A. 

The power-pressure operating window was determined by first calculating control 

values using the equations in (2.4) for power and drum steam pressure levels representing 

the full range of operation. Then, the power plant response to those inputs was simulated 

using the power plant model. The control values that are accepted as feasible are those 

that result in a steady-state convergence while meeting all constraints, such as the 

requirement for the steady-state drum water level deviation to be zero meters. The 
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(a) 

 
(b) 

 

 
(c) 

 
Fig 2.4. Plots of the power-input windows over the range of operation. 
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 kssu1 = 0.7966  (2.6a)

 kssu2 = 1.1814 (2.6b)

 kssu3 = 1.1420 (2.6c)

corresponding drum steam pressure resulting from the simulation to steady-state is also 

noted. The power-pressure window is made up of all the drum steam pressures resulting 

from this process matched with their corresponding power levels. The power-pressure 

window used here was determined in [11].  

The optimized control values will, in some cases, be greater than the physical 

limits of the control valves in the power plant model. As discussed in [11], this is 

attributed to the fact that the positions of the valve actuators were collected manually 

while studying the power plant, introducing some involuntary error. This does not affect 

the formulation of the power plant model, as it is equivalent to replacing the control 

valves with a resizing procedure. Therefore, for the calculation of the power-input 

windows, the control values are scaled by the constants shown below to be between zero 

and one. The values are not scaled in the simulation of the power plant model: 

The scaling factor values were chosen such that the power plant model could be 

used to simulate control action for up to 110% of the rated maximum power of the plant, 

as is required in practice for power plant operation. This designates the operational range 

of the power plant model to be between 10 and 180 MW, with 180 MW being a peak 

maximum load. The maximum sustained load rating is 160 MW. 
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 1( ) uldJ u E E   (2.7a)

 2 1( )J u u  (2.7b)

 3 2( )J u u   (2.7c)

 4 3( )J u u    (2.7d)

2.3.2 Multiobjective Optimization 

The purpose of the multiobjective setpoint optimization is to solve the problem of 

finding an optimized combination of control inputs that meet operating objectives with 

respect to their assigned preferences. The defined operating goals could possibly conflict 

with each other, which is why preference values are needed.  Using the preferences, the 

optimization algorithm will make sure that higher priority objectives are considered as 

such. 

 The operating objectives chosen for the power plant model used in this thesis are 

to minimize the following objective functions: 

where objective function J1(u) represents the minimization of the power generation error, 

J2(u) represents the minimization of fuel consumption through u1, J3(u) represents the  

minimization of the pressure drop across the steam valve u2, and J4(u) represents the 

minimization of energy loss due to the pressure drop in the feedwater valve u3. Each 

objective is given a preference value, ranging from 0 to 1. The preference values allow an 

operator to give priority to the different operating objectives, giving more important 

objectives higher values. If an objective function has a preference value of 1, it is 

considered to be most important in the optimization, whereas if it is given a value of 0, 

the objective is removed from consideration in the optimization process.  
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The algorithm used in this thesis to find optimized steady-state control values for 

the multiobjective optimization is hybrid particle swarm optimization (HPSO), as this 

method was found to outperform other methods used to obtain optimized solutions to this 

problem in [3]. The other methods tested in [3] include other variations of particle swarm 

and genetic algorithms, such as the constriction factor approach and evolutionary particle 

swarm optimization. The difference between particle swarm, which was proposed in [13], 

and the hybrid method is that the particles, or candidate solutions, with the worst 

performance are moved to the positions of those with the best performance, represented 

by step 6, below. An inertial weight, w, is also used. The HPSO is performed as follows: 

1. Randomly initialize n particles within the search space, where n is a design 

parameter in the search algorithm. 

2. Evaluate each particle with respect to the objective functions and preferences 

used to evaluate the fitness of candidate solutions. 

3. Check to see if each particle’s current fitness is better than its personal best, 

pbest. If so, store the new fitness as the personal best. 

4. If there is a personal best that is better than the current global best, gbest, then 

replace the previous global best with that personal best. 

5. Calculate a velocity for each particle to determine its next position in the 

search space and move them accordingly using the equations below, where  

is the current velocity for particle i at iteration k, c1 and c2 are chosen weights, 

rand1 and rand2 are uniform random numbers on [0, 1], and  is the current 

position of particle i at iteration k: 

    1
1 1 2 2* *k k k k

i i i i iv wv c rand pbest s c rand gbest s           (2.8a) 
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6. Move the half of the particles with the worst current performance to the 

position of the half with the best performance, keeping the calculated 

velocities. 

7. Re-evaluate each particle’s performance as in step 2 and repeat steps 3-6 until 

either a sufficient solution is found, or the iteration limit is reached. 

 For the power plant model used in this thesis, the equations shown below are 

used to evaluate the fitness of the particles:  

This approach uses the largest value of the four objective functions as the overall fitness 

for a specific particle. The particle with the smallest calculated  is considered to have 

the best performance with respect to the operating objectives and preferences. The 

objective function J1(u) is calculated using a steady-state model of the plant that takes 

control values as input and outputs the corresponding steady-state electric power and 

drum steam pressure, where the steady-state model is a feedforward-type ANN trained to 

model the equations in (2.5). The training and real-time adaptation of this model is 

discussed in Section 2.6. 
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 The optimization method used in the reference governor has been designed to be 

general so that it can be used in other power plant units. All that is necessary to make the 

change is to design objective functions specific to the needs of the power plant to be 

controlled, and obtain a process model to evaluate the fitness using those objective 

functions as described here. It is expected that this method be used on power plant units 

that are much more complex in terms of number of inputs and operating goals. The 

simple model used here serves to simplify the development process of this control 

method as a starting point to controlling much larger, more complex systems. 

 
2.3.3 Setpoint Scheduler and Feedforward Controller 

The purpose of the setpoint scheduler is to calculate the generation setpoints from 

the feedforward control values produced by the optimization process. In the method used 

in this thesis, this action is carried out in the optimization process. As described in 

Section 2.3.2, electric power and drum steam pressure are calculated for each set of 

candidate control values. Once an optimized set of control values is found, the 

corresponding steady state electric power and drum steam pressure have already been 

determined and can be used as generation setpoints, using zero as the water level 

deviation demand.  

The functionality of the feedforward controller is also performed in the 

optimization process. The function of the feedforward controller is to produce 

feedforward control values from the generation setpoints. Since the control optimization 

process produces a set of optimized control values and corresponding generation 

setpoints, there is no need for a separate feedforward controller apart from the reference 

governor. 
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2.4 Feedback Controller 

The feedback control system uses proportional-integral (PI) control to track the setpoints 

generated by the reference governor, a general equation for which is shown below:  

 

Since the input and output variables are coupled, the resulting feedback gains, Kp and Ki, 

are three-by-three matrices, in this case, to allow for the interdependence of the variables. 

To simplify the control system, and therefore the calculation of feedback gains, the 

relative gain array (RGA) matrix was calculated to analytically determine which inputs 

have the most effect on the outputs. This calculation, shown in Appendix B, shows that 

the fuel flow, u1, has the most effect on output power, the flow of steam to the turbine, u2, 

has the most effect on drum steam pressure, and the flow of feedwater into the drum, u3, 

has the most effect on the water level.  

By this finding, the feedback controller was simplified into three feedback loops, 

with a PI controller in each loop. In this arrangement, each control loop controls one 

input variable based on one of the three output errors. Specifically, the feedback control 

loops for the mass flow of fuel, u1, the mass flow of steam to the turbine, u2, and the mass 

flow of feedwater to the drum, u3, are controlled by the error between the electric power 

setpoint and the actual electric power output, the error between the drum steam pressure 

setpoint and the actual drum steam pressure, and the error between the water level 

deviation setpoint and the actual water level deviation, respectively. Diagrams for the 

control loops are shown in Fig. 2.5, where Ed is the desired unit load demand power, Pd is 

the desired drum steam pressure, Ld is the desired drum water level, KPi are the 
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proportional gains, KIi are the integral gains, and ufbi are the respective feedback 

compensation values to be added to the steady-state feedforward control values, with i = 

1, 2, 3. The gain values for the PI controllers are determined by the gain optimizer 

discussed in the next section.  

 
2.5 Gain Optimizer 

In this control system, gain optimization is used to optimize the PI feedback 

control gains used in the feedback controller. The gains are optimized once offline to 

obtain an initial set, and then in real-time whenever the performance of the feedback 

controller is found to need improvement. This way, it is possible to maintain good-as-

possible control for all operating levels with respect to feedback control, increasing the 

overall efficiency of the power plant unit. 

The need for gain improvement is determined using error thresholds. These 

thresholds are error levels set as a design parameter for a specific power plant unit and 

 

Fig 2.5. Block diagrams of the PI control loops for the decoupled feedback control approach. 
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are compared against the output errors calculated by the feedback controller, Ed-E, Pd-P, 

and Ld-L. Once an error exceeds one of these thresholds, the gain optimizer will perform 

the optimization to improve control.  

 The algorithm chosen for the optimization is hybrid particle swarm optimization 

(HPSO), described in Section 2.3.2. It was chosen because of its success in optimizing 

the steady-state controls in the reference governor over other methods explored in [3]. 

However, though the author recognizes that this does not necessarily imply that it works 

better than all other algorithms for this optimization problem, finding the best 

optimization method was not a focus of this thesis. 

 The candidate gain sets are tested against a step in unit load demand, generated by 

the reference governor, over a sufficient amount of simulation time to analyze 

performance costs. To do this, a dynamic ANN, called a recurrent neural network, is used 

to simulate the power plant unit’s response to feedback control using the candidate 

feedback gains to track the step input. The details of the training and real-time adaptation 

of the recurrent neural network are discussed in Section 2.6.  

The objective functions used to optimize the feedback gains are the sum-squared 

errors for electric power, drum steam pressure, and water level deviation, shown below:  

The costs for this optimization are evaluated similarly to those in Section 2.3.2, with the 

equations shown below: 
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These equations find the objective function with the highest normalized error for each 

particle, or candidate solution, and use that value, , to evaluate fitness compared to the 

rest of the particles. During the optimization, if in any iteration a particle has a better 

performance than its current personal best, it will replace its personal best with the 

current gain set. If there is a particle that outperforms the current global best in a given 

iteration, it will replace it with its current gain values. 

 Another design consideration that must be made here is the maximum length of 

time to allow the gain optimization to run. Since gain optimization is only used when 

there is a perceived deficiency in the effectiveness of the current feedback gains, the 

faster an optimized solution can be found the better. As a general rule, the optimization 

must be run as long as it takes to consistently get an acceptable result over the entire 

range of the problem for which the optimization is to provide a solution. Factors affecting 

the time it takes to optimize are the number of particles used in the optimization, the 

length of simulation time used in the evaluation of candidate gain sets, and the maximum 

number of iterations. These parameters are design considerations that must be made 

based on the specific power plant unit to be controlled.  

One way to shorten the time it takes to produce an optimized result, and also to 

make sure that the resulting gain set is not worse than the previous one, is to use the 

previous gain set as a starting point for the optimization. To do this, the previous gain set 
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is used as one of the initial particle values, with the rest initialized randomly. This way, 

any improved gain sets that are found will be at least as good as the previous one. If for 

some reason the optimization does not find a better result, the current gain set will 

continue to be used, and the optimization can be run again until a better gain set is found. 

 
2.6 Artificial Neural Network Models and the Neural Network Trainer 

Artificial neural networks (ANNs) are used in this control system because the 

more complicated power plant systems for which this control method is intended either 

don’t have equation models available or the available model is too computationally 

complex to be implemented due to constraints on calculation time. This necessitates a 

less computationally intense model suited for modeling nonlinear systems, such as an 

ANN. Therefore, though there is a simple set of equations for the power plant modeled in 

this thesis, ANNs are still used in the control system for the purpose of developing a 

method for implementing neural networks and a neural network trainer for use in larger, 

more complicated systems. Henceforth, the reader is assumed to have a minimal 

understanding of ANNs and is referred to Appendix C for a brief introduction. 

There are two types of ANNs used to model the physical processes that take place 

in the power plant unit used in this thesis, a feedforward neural network (FFNN) and a 

dynamic ANN called a layer-recurrent neural network (LRNN). These ANNs are 

described in detail in the next two subsections. 

 
2.6.1 Feedforward Neural Network 

The FFNN is used to predict the steady state power plant output produced by a 

particular combination of control inputs. This prediction is meant to be equivalent to 
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introducing a set of control inputs to the power plant unit and keeping them constant until 

steady state operation is achieved, noting the output at steady state. The FFNN is used in 

the reference governor to evaluate the electric power output and drum steam pressure 

corresponding to candidate control value sets as a cost in the control optimization process.  

An FFNN is used in the control optimization process, because it is much faster, 

from a simulation standpoint, compared to running a dynamic simulation to steady state 

for each candidate control set to be evaluated. With multiple candidate sets of control 

values that are evaluated for each iteration, where there are many iterations, there is the 

potential for this evaluation to take place several hundreds or thousands of times for each 

optimization. Because of this, it is crucial that the evaluation be as quick as possible 

while giving an accurate result. 

The FFNN is made up of multiple artificial neurons in three or more layers 

consisting of an input layer, a hidden layer or layers, and an output layer. The neurons in 

each layer are connected to all of the neurons in the preceding and proceeding layers with 

no recurring connections. The exceptions are the input layer, which has no preceding 

layer, and the output layer, which has no proceeding layer. A generalized diagram of this 

configuration is shown below in Fig. 2.7. 

Each of these connections between artificial neurons contains a weight value that 

models the strength of a synaptic connection between neurons in the brain. These values 

can initially be set randomly and can then be trained using an appropriate training 

algorithm.  

There are two types of training: parameter learning and structure learning. 

Parameter learning trains the weights between artificial neurons using a predetermined 
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connection structure and number of neurons, where structure learning rearranges the 

structure of the ANN in order to learn a desired behavior. For the ANNs in this thesis, 

only parameter learning is used.  

In parameter learning, there are three methods of training: supervised learning, 

reinforcement learning, and unsupervised learning. Supervised learning is the only 

method of training used in this thesis. With supervised learning, a set of normalized data 

is made available to the training algorithm consisting of inputs and outputs from the 

system to be modeled. The training algorithm uses the given inputs with the FFNN to 

simulate the corresponding output and calculate an error between the simulated output 

and the outputs provided in the training data. The error between these outputs is used to 

adjust the weights and biases between neurons using the method defined by the chosen 

training algorithm.  

 
 
Fig. 2.6. General configuration of artificial neurons and weight interconnections for a multilayer 

feedforward neural network. 
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During the training process, the changing of weights and biases based on output 

error continues until the error has been decreased to a level deemed sufficient to 

accommodate the required accuracy of the application. Once the training process is 

finished, another set of data collected from the target system that wasn’t used in training 

can be used to test the newly trained FFNN for accuracy. This gives a measure of the 

ANNs ability to accurately simulate the modeled system, where if only data used in the 

training process is used to test the ANNs accuracy, the tests may give a false sense of 

accuracy. This is because the training could resulted in the memorization of the training 

data rather than learning the overall behavior of the system. 

 
2.6.2 Dynamic Neural Network 

 In this thesis, an LRNN is used to simulate the power plant dynamics resulting 

from inputs given by the addition of feedforward and feedback control values. Using the 

network in this way makes it possible to evaluate the cost, or fitness, of candidate 

proportional and integral gain combinations to be used in the feedback controller, which 

are determined in the gain optimization process performed in the Gain Optimizer. Using 

the LRNN allows the gains to be optimized while the control system is online and 

without using the physical system to test candidate gains, which makes optimized real-

time, online gain-tuning possible.  

 The specific ANN used for this purpose is a LRNN. The LRNN is a generalized 

form of the Elman network. The LRNN generalizes the Elman network by allowing the 

use of multiple hidden layers and an arbitrary number of transfer functions in the artificial 

neurons, whereas the Elman network only uses one hidden layer and set transfer 

functions. However, the LRNN used in this thesis is constructed to have the original 
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Fig. 2.7. General configuration of artificial neurons and weight interconnections for a single hidden layer in 

a layer recurrent neural network. 

configuration used by the Elman network with the possibility of making needed 

configuration changes.  

The structure of an LRNN is similar to that of an FFNN. The difference is that the 

LRNN contains internal time-delayed recurrent connections that store the time-delayed 

output of each artificial neuron in a hidden layer to be input into each neuron in that layer, 

as shown in Fig. 2.8. This configuration applies for all hidden layers in an LRNN. These 

time-delayed recurrent connections serve as a temporal memory through which the 

network can simulate system dynamics. 

The training process for the LRNN is similar to that of the FFNN, only sequences 
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of data are used to train this ANN instead of multiple independent input-output pairs. 

Sequences of data are needed in this case, because in order to accurately train the network 

weights, especially the recurrent connection weights, the training algorithm must be have 

access to time-delayed output values for each input-output pair to be trained. Just as with 

the FFNN, the LRNN is trained in this thesis using supervised parameter learning. 

Supervised parameter learning uses the error between simulated outputs and provided 

outputs to change the network weights according to the rules of the training algorithm. 

The recurrent neural network structure can be further simplified by the Diagonal 

Recurrent Neural Network (DRNN).  The DRNN is a simplified LRNN where the time-

delayed output of each artificial neuron in the hidden layer is input only into the same 

neuron and not to any other neurons in the hidden layer [15]. This greatly simplifies the 

network structure and reduces computation time since only one recurrent weight will be 

needed for each neuron in the hidden layer, avoiding cross talk between neurons. 

 
2.6.3 Neural Network Trainer 

The ANNs mentioned in the last two section are initially trained offline to be able 

to model power plant operation at operating points throughout the power-pressure 

window shown in Fig. 2.3 equally well. This training is referred to as global training. The 

global training for the FFNN results in a model that is very accurate at modeling the 

power plant in all regions of the power-pressure operating window.  

The global training for the LRNN, however, produces a model that is equally 

accurate at representing all operating points, but is not accurate enough in any one region 

to be useful. This means that after global training, the LRNN is not accurate enough to be 

used to evaluate the performance of gain values in the gain optimization procedure. 
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Therefore, the LRNN must be fine-tuned with data specific to the current level of 

operation to give a useful result. 

To correct this problem, a neural network trainer has been designed to fine-tune 

the LRNN online, as real-time power plant data is collected, to be more accurate in 

modeling the current level of operation.  The neural network trainer incrementally trains 

the LRNN with the new data as it is collected. This allows the gain optimizer to have 

access to a LRNN that is most accurate at simulating the current operating level, which is 

what is needed. 

Though fine-tuning the LRNN improves simulation accuracy for the operating 

level, it decreases the simulation accuracy in the other operating levels. Therefore, special 

consideration must be made so as not to degrade the simulation accuracy of the LRNN in 

other regions to the point where they cannot be retrained online to give an accurate result. 
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CHAPTER THREE 

 
Multi-Agent System 

 
 

 This chapter gives definitions for multi-agent systems (MAS) and discusses the 

details of the multi-agent control system (MACS), which is a multi-agent implementation 

of the control method described in Chapter Two. The sections herein describe the 

common architecture shared by agents, the architecture of the MACS, the agents 

proposed to implement the control system and their functionality, and the agent 

communication protocol. Considerations for handling agent failures are also discussed. 

 
3.1 Overview of Multi-Agent Systems  

 Within the computer science community, there are many different ideas regarding 

what constitutes a multi-agent system [16-20]. However, all of these descriptions seem to 

agree on a few central ideas which include the concept of an agent, an agent’s 

environment, and an agent’s autonomous nature [7]. In [20], an agent is described simply 

to be, “a software (or hardware) entity that is situated in some environment and is able to 

automatically react to changes in that environment.” 

Furthermore, an intelligent agent is defined to be an agent that is autonomous, 

proactive, reactive, social, and flexible within its defined environment [7]. An agent is 

defined as autonomous if it is able to operate on its own to perform its designed 

functionality once it is activated. An agent is proactive if it has been designed with a goal, 

or goals, and is actively pursuing those goals autonomously. Reactivity in an agent 

indicates that it has the ability to respond to perceived changes in its environment in a 
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way that serves to meet its programmed goal. Furthermore, an agent is considered to be 

flexible if it has the ability to react appropriately to unexpected situations in its 

environment. An agent is described as social if it has the ability to communicate with 

other agents, and possibly resources, available to it. A multi-agent system (MAS) is 

defined to be two or more agents working together to achieve a coordinated goal. 

Within the context of this thesis, agents are defined to be software running on 

computers connected through intranet, for the purpose of communicating via UDP, that 

align with the above mentioned characteristics. More than one agent can run on a single 

computer. The environments in which they are situated are specific systems, physical and 

cyber, within a power plant unit. Perception of an environment is carried out through the 

use of sensors and communication received from other agents, system resources, or an 

operator. For the purposes of this thesis, the coordinated goal of the MAS is to implement 

and maintain intelligent control of a power plant unit to allow optimized operation as 

defined by the optimized multiobjective control scheme discussed in Chapter Two. The 

specifics of how this MAS achieves this goal are discussed in the sections to follow.  

 
3.2 Single Agent Architecture 

 In this thesis, each agent has a common architecture independent of its task, 

depicted in Fig. 3.1. Within this architecture, each agent consists of a task thread and a 

messenger thread [21], where a thread is a computational task being performed in parallel 

with other threads to perform one process [x5]. The task thread performs an agent’s task 

functionality by executing the necessary algorithms. The messenger thread receives and 

processes all incoming communications from other agents and resources in the MAS. The 

agents were structured in this way so that the task thread is not forced to regularly halt, or 
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Fig. 3.1. Diagram of the common agent architecture. 

block, its operation to listen for and manage incoming communication. However, the task 

thread sends its own messages, because it is more efficient than having to synchronize the 

message data with the message thread.  

 For the MAS proposed in this thesis, the task thread for each agent contains all of 

the code necessary to perform the duties of any agent. This allows the MAS to reassign 

tasks to maintain control of the power plant unit in the case of an agent failure. The 

ability of the MAS to restructure itself gives flexibility and robustness to the control 

system, as it is able to automatically adapt to potentially devastating situations, such as 

when agents that are critical to the operation of the control system fail.  

 The messenger thread contains an interpreter to decipher incoming MAS 

messages, the format of which will be described in a later section. After interpreting an 

incoming message, the messenger thread is used to preprocess the data contained in 

messages as much as possible to save computation time in the task thread. Once the data 

has been processed and is ready to be relayed to the task thread, it is sent during a 

synchronization period that is invoked in the task thread only when a message has been 
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received and processed. The synchronization period is designed to make sure that data is 

not updated in the task thread until the appropriate time. Otherwise, data being used in 

calculations in the task thread may be overwritten and the results made inaccurate due to 

the mixing of current and past data in the same calculation.  

 
3.3 Multi-Agent System Architecture and Proposed Agents 

 The agents in the MAS have been divided into a three-tier hierarchy based on 

their functionality type. This hierarchy comprises the MAS architecture. The three tiers 

are designated as high, middle, and low level. High level agents, or interface agents, 

allow human operators to interact with the multi-agent system to specify control 

parameters, and monitor operation and performance in the system. Middle level agents, 

or managing agents, delegate tasks, monitor agent and system performance, and provide 

means to acquire, store, and distribute data throughout the system. Low level agents, or 

control agents, execute the functionality of the control system. Low level agents include 

those that interface with the physical systems of the power plant. 

 The agents proposed to control the power plant unit described in Section 2.2 are 

the Interface agent, Free agent, Delegation agent, Monitoring agent, Database agent, 

Feedforward agent, Feedback agent, Gain Optimizer agent, and Neural Network agent, 

categorized in the three-tier hierarchy as shown in Fig. 3.2. Since the power plant model 

used in this thesis is relatively simple in terms of complexity, at least compared to much 

larger plants that exist today, there is only need for one of each of the agents mentioned. 

For larger power plant systems, such as the 600 MW plant used in [8], there would likely 

be multiples of some of the agent types. Also, once the managing infrastructure of the 

MAS is in place, any number of additional agents can be added to increase the 
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functionality of the control system through the addition of more agent types. Regardless 

of how many agents the MAS control system may be designed to have, there should be 

enough additional agents in operation as Free agents to serve as backups for any of the 

agents in the case of an agent failure. 

 
3.3.1 Interface Agent 

The Interface agent is meant to allow an operator the ability to interface with the 

MAS. Using this interface, an operator will be able to monitor the MAS, the agents, and 

the power plant unit for performance, as well as configure control parameters in the 

control system, such as preferences and objective functions (see Section 2.3). Though this 

agent is mostly controlled by an operator, it is intelligent in that it has to decide how to 

carry out the commands given by the operator. For example, when requesting data, the 

Interface agent must determine the location of the appropriate agent, request the data, and 

make sure that it receives and processes the requested data to be sent to the operator. 

When relaying commands to the system, the Interface agent must again determine the 

 
 

Fig. 3.2. Proposed agents divided into the MAS hierarchy. 
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location of the specific agent needed, relay the data, and make sure the command is 

carried out. If something goes wrong with an operation, it must retry the action, try to 

resolve the issue itself, alert the Delegation agent of a possible agent failure, or alert the 

operator that the action failed. 

To interface with the MAS, the operator would use the specially designed 

graphical user interface (GUI) to communicate with the Interface agent which would 

intelligently carry out requested actions. The GUI translates the user’s requests into MAS 

messages and sends them to the Interface agent. The Interface agent receives these 

messages the same way it would receive any other messages from the MAS. A flowchart 

showing the basic operation of the Interface agent is shown in Fig. 3.3. 

 
3.3.2 Free Agent 

 When an agent other than the Interface agent is initiated, it will begin as a Free 

agent. When a Free agent starts, it begins a discovery process that explores the MAS 

network to determine what other agents and resources exist. It does this by polling the 

communication network and, upon finding an agent or resource, will determine what task 

it is performing or a description of its function as a resource. In doing this, the Free agent 

creates a local address table of the MAS, called an agent directory. If no Delegation 

agent is discovered during the exploration process, which is the agent that manages and 

assigns agent tasks, then the Free agent with the lowest Internet Protocol (IP) address will 

become the Delegation agent. This action is taken since the Delegation agent is essential 

for the organization and operation of the MAS. Upon becoming the Delegation agent, the 

agent will use its agent directory to manage and assign agents. 
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Fig. 3.3. Flow diagram of the basic operation of the Interface agent. 
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 In the case that the Free agent detects that a Delegation agent already exists, it 

will switch into stand-by mode, waiting to be assigned a task to perform. In stand-by 

mode, a Free agent will regularly poll the Delegation agent to ensure that it is still 

functioning properly. This way, if the Delegation agent fails, the first Free agent to detect 

this will assume the Delegation agent role, minimizing its downtime and the possibility 

that something will go wrong because of the failure. 

After all needed agents are assigned, the remaining Free agents act not only as a 

backup for the Delegation agent, but as a form of redundancy for any of the other tasks 

should there be an agent failure. This helps to minimize downtime should an agent fail 

for any reason. However, instead of assuming the role of a failed agent as with the 

Delegation agent, a Free agent will wait to be assigned the missing task by the Delegation 

agent. Flowcharts of the Free agent’s operation can be found in Figs. 3.4 and 3.5. 

 
3.3.3 Delegation Agent 

 When a Free agent becomes the Delegation agent, it is responsible for assigning 

the tasks needed for the control system, as well as monitoring the MAS to ensure that all 

needed tasks are being performed. When the Delegation agent emerges, it will contain an 

up-to-date agent directory from which it will begin assigning tasks to the other Free 

agents. To do this, it will use a prioritized agent assignment list to make sure that the 

most critical tasks are assigned first, and work its way down to the least critical.  

For the agents proposed in this thesis, the prioritized agent assignment list begins 

with the Feedback and Feedforward agents, and proceeds with the Neural Network agent, 

Gain Optimizer agent, Monitoring agent, and Database agent. This list is set such that if 

agent failures occur, the agents that are most important to the continued, stable function 
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Fig. 3.4. Flow diagram of the basic operation of the Free agent. 
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Fig. 3.5. Flow diagram of the basic operation of the Free agent in stand-by mode. 
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of the power plant are reassigned first. The reasoning for this order is discussed in the 

section on agent failures.  

Once all of the agents have been assigned, the Delegation agent’s task is to 

monitor the agents to ensure they are operating as expected. To do this, the Delegation 

agent will regularly send a confirm operation message to each of the agents, requesting a 

response that guarantees the agent is functioning. The Delegation agent will try a 

predetermined number of times to ascertain an agent’s operational state without a 

response before it will assume the agent has failed and proceed with finding its 

replacement. Once it has been determined that an agent may have failed, the Delegation 

agent will quickly reassign the failed agent’s task to a Free agent to prevent unintended 

operation of the control system due to the failure. 

The Delegation agent also serves as a directory which can be used as a reference 

by other agents, because it already contains up-to-date information about the agents. This 

information includes IP address, task, as well as other agent specific information. A 

condensed form of the directory information will be stored in the other agents, referred to 

as the agent directory. The agent directory contains only agent address and 

communication information intended to be used for sending messages between agents. 

This information includes the task, network address, and incoming message port. In order 

to maintain a current version of the agent directory in each of the agents, the Delegation 

agent will send an updated version of this table as a part of the confirm operation 

message.  

In the case that the Delegation agent fails, the Free agents will detect the failure, 

because they are polling the Delegation agent to make sure it is still functioning. When 
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the Free agents realize that the Delegation agent has failed, they will use their agent 

directories to determine which Free agent has the lowest IP address and that Free agent 

will assume the Delegation agent role. The general operation of the Delegation agent is 

shown in flowchart form in Fig. 3.6. 

 
3.3.4 Feedforward and Feedback Agents 

The first two agents that are assigned by the Delegation agent are the Feedforward 

and Feedback agents. These two agents comprise the smallest subset of the proposed 

agents with which it would be possible to establish optimized control of the power plant. 

This minimal control system is depicted in Fig. 3.7.  

The Feedforward agent performs the functionality of the reference governor and 

the feedforward controller as they are described in Section 2.3. In doing so, the 

Feedforward agent generates optimized control setpoints and output level references, 

according to the current operating objectives and preferences set by the operator using the 

Interface agent, corresponding to the demand power given by the unit load demand from 

economic dispatch. As previously described in Section 2.3, the reference governor uses a 

HPSO algorithm to find the optimized control setpoints. In the process of finding the 

optimized control setpoints, the corresponding drum steam pressure setpoint is also found 

using the FFNN and used as an output level reference. Therefore, both the setpoint 

optimization and feedforward control are performed by the Feedforward agent.   

At any time in the operation of the MAS control system, an operator can change 

the operating objectives and preferences that govern the optimization process. The 

preference values are easily changed by using the Interface agent to send the Feedforward 

agent a message requesting the change. Upon receiving this request, the Feedforward 
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Fig. 3.6. Flow diagram of the basic operation of the Delegation agent. 
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Fig. 3.7. Block diagram of the minimal control structure formed by the Feedforward and Feedback 

agents.  

agent will update its memory with the new values and use them the next time it performs 

the control optimization.  

Operating objectives can also be changed real-time using the Interface agent. By 

changing the preference values the operating objectives can be activated by assigning a 

nonzero value as its preference and deactivated by assigning it a preference value of zero. 

However, to add new operating objectives, the agents’ code must be reprogrammed with 

the new objectives and the agents restarted so that the code is updated. This is necessary, 

because the operating objectives are lines of code that define the cost functions in the 

control optimization. 

The Feedback agent performs the functionality of the feedback controllers, which 

are described in Section 2.4. The input to the Feedback agent from the MAS is the output 

level references and control setpoints calculated by the Feedforward agent, the output 

recorded from the sensors connected to the power plant, and the PI gains optimized by 

the Gain Optimizer agent. The output level references and the actual output recorded 
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from the power plant are used to calculate the errors that drive the feedback controllers. 

Using these error calculations and the gains from the Gain Optimizer agent, the feedback 

compensation values are calculated, added to the control setpoint values, and applied to 

the power plant by sending the resulting values to the valve actuators.  

To provide consistency in the timing of the application of feedback compensation, 

the Feedback agent was designed to send control values to the power plant valve 

actuators every ts seconds. The value of ts is a design parameter and also depends on the 

performance capabilities of the hardware implementing the Feedback agent, in that the 

hardware must be able to receive incoming messages, process them, and perform the 

feedback calculations in less than ts seconds. Another design consideration in determining 

the length of ts is how quickly the outputs of the power plant can be sampled. For 

example, there is no benefit from ts being shorter than the possible sampling time of the 

sensors that are sampled for power plant output values, since the feedback compensation 

results will not change until new power plant output data is received. 

Another function of the Feedback agent is to monitor the error in plant output for 

the Gain Optimizer agent, since the gain optimization process in the Gain Optimizer 

agent is triggered when the error between the output level references produced by the 

Feedforward agent and the actual output recorded from the power plant exceeds the 

preset thresholds. The Feedback agent is used for this purpose, because it already 

calculates the errors, and it is only a simple step to send these values to the Gain 

Optimizer agent when a violation occurs. Therefore, the Gain Optimizer agent doesn’t 

have to continuously request data from the Feedforward agent and the power plant 
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Fig. 3.8. Flow diagram of the basic operation of the Feedforward agent. 
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Fig. 3.9. Flow diagram of the basic operation of the Feedback agent. 
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sensors unnecessarily to calculate the errors itself. Flowcharts describing the operation of 

these agents can be found in Figs. 3.8 and 3.9.  

 
3.3.5 Neural Network Agent  

The Neural Network agent is assigned next, as it is needed by the Gain Optimizer 

agent to maintain the LRNN model. The task of the Neural Network agent is to fine-tune 

the dynamic ANN models, in this case one LRNN, used in the control system to simulate 

the current operating region more accurately. As mentioned in Section 2.6, this is needed 

because the global training of the LRNN produces a network that is equally good at 

simulating power plant operation in the entire stable operating region, but is not accurate 

enough in a specific region of operation to give an acceptable result.  

Therefore, the Neural Network agent continually collects power plant input-

output data from the power plant to fine-tune the LRNN. Since the Neural Network agent 

is constantly updating the LRNN, it will always be most accurate at simulating the 

current level of operation. This is important, because, as mentioned in the last section, the 

Gain Optimizer agent will request the current version of the LRNN as it starts the 

optimization process in order to have the most accurate model to simulate the power plant 

response. This gives the Gain Optimizer agent an LRNN that has been tuned to simulate 

the level of operation for which gain values will be tested. The Neural Network agent will 

continue to update the LRNN in preparation for future gain optimizations, sending the 

current version of the LRNN, when requested, as long as the Neural Network agent task 

is assigned. A flowchart describing the Neural Network agent’s operation is shown in Fig. 

3.10. 
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Fig. 3.10. Flow diagram of the basic operation of the Neural Network agent. 
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3.3.6 Gain Optimizer Agent 

The Gain Optimizer agent is the last of the proposed low level agents to be 

assigned. The Gain Optimizer agent performs the functionality of the gain optimizer, 

which is described in Section 2.5. This agent waits until the error between the output 

level references produced by the Feedforward agent and the actual output levels produced 

by the power plant are reported to be above the predetermined threshold values by the 

Feedback agent, signifying that better feedback gains are needed to achieve tighter 

control of the power plant.  

Once one or more of the error level thresholds are reached, the Gain Optimizer 

agent will begin the process of optimizing new feedback gain values. The first step in this 

process is to request control setpoints and output level references for the current power 

level and a power level that is a predetermined step-size higher from the Feedforward 

agent. These setpoints and references are then used by the Gain Optimizer agent to form a 

test vector that can be used by the HPSO to evaluate candidate gain sets by simulating the 

power plant response to feedback control using the candidate gain sets. The next step in 

the optimization process is to request the current LRNN from the Neural Network agent. 

The LRNN is the model used to determine the cost of a gain set by comparing the 

simulation data to the desired output response defined by the output level references in 

the test vector. As described in Section 2.5, the optimization will choose the gain set with 

best performance, or lowest cost, as optimized. 

Once an optimized gain set is found, it is sent to the Feedback agent for 

immediate implementation. Once the gains are sent, the optimization process is complete 

and the Gain Optimizer agent will stand-by until an error threshold is violated to perform 
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the optimization process again. The Gain Optimizer agent will optimize feedback gains, 

as needed, as long as the task is assigned. A flowchart describing the operation of this 

agent can be found in Fig. 3.11. 

 
3.3.7 Database and Monitoring Agents 

The Database and Monitoring agents are the last agents to be assigned. Assigning 

these agents completes the establishment of the middle level in the hierarchy of the MAS.  

These agents are lower in priority than the low level agents, because the low level agents 

perform the tasks that control the power plant, whereas these two agents provide ancillary 

services. 

The Database agent handles data files needing to be archived or distributed for 

use by other agents. In essence, the Database agent is an intelligent fileserver that keeps 

track of where data is stored on the network, and can deliver old or archive new data 

upon request. Whenever an agent needs to archive data, it sends it to the Database agent, 

and whenever an agent needs data that has been archived, it will request it from the 

Database agent. Data handled by the Database agent includes power plant input-output 

data, artificial neural networks (ANNs), and control system performance data used for 

analysis of control system performance. 

The Monitoring agent is intended to monitor different parts of the physical plant 

system in order to detect situations demanding immediate attention and action from the 

MAS. This functionality was not developed in this thesis, but possible scenarios in which 

the Monitoring agent would be desirable are those such as detecting and reacting to 

electrical faults in the grid system and shutting down or switching equipment in the case 

of an imminent failure in part of the physical plant system.  
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Fig. 3.11. Flow diagram of the basic operation of the Gain Optimizer agent. 
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Since this aspect of control has not been focused on here, the Monitoring agent monitors 

and records data from the power plant system for the purpose of analyzing the 

performance of the control system and overall power plant operation. This is done by 

collecting power plant data and storing the data in memory until the data reaches the 

predetermined file size limit. Once the limit is reached, the data in memory is sent as a 

file to the Database agent for storage. After sending the data file, the Monitoring agent 

will start a new file and repeat this process for as long as it is functioning. Flowcharts 

describing the operation of these agents in diagram form can be found in Figs. 3.12 and 

3.13. 

 
3.4 Agent Communication 

The agents defined in this thesis use an Agent Communication Language (ACL) 

to communicate using the User Datagram Protocol (UDP) over a computer network. This 

ACL is a subset of the one developed by the Foundation for Intelligent Physical Agents   

(FIPA), where only the needed functionality was included [22,23]. The custom version of 

the FIPA-ACL will be referred to as the MAS-ACL in this thesis. The MAS-ACL defines 

the structure of the language used in messages sent between agents. The MAS-ACL has 

four required fields with an optional fifth field. As shown in Fig. 3.14 the message fields 

are the performative, sender, receiver, content, and replyby fields.  

The performative field contains a keyword that informs the receiving agent of the 

purpose for which the message was sent. The performative keywords are request, inform, 

subscribe, agree, refuse, and not-understood. The request performative informs a 

receiving agent that the message it is receiving is to be processed as a request to do 

something, such as send information or change task. The inform performative informs the 



60 

  
 
 

Fig. 3.12. Flow diagram of the basic operation of the Database agent. 
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Fig. 3.13. Flow diagram of the basic operation of the Monitoring agent. 
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Fig. 3.14. Message structure of the MAS ACL. 

receiving agent that the received message contains information that should be extracted 

for processing, such as power plant data. The subscribe performative informs the 

receiving agent that the sending agent wants to be informed any time a certain piece of 

data changes, such as when the Monitoring agent has new input-output data for the 

Neural Network agent. The agree performative informs the receiving agent that the 

sending agent is agreeing to a request message, such as when an agent is requested to 

change task. The refuse performative is used by a sending agent to inform the receiving 

agent that it is refusing a requested action, because it is either unable to perform the 

specified function, or it is involved with something which takes precedent over the 

requested task. The not-understood performative is used by a sending agent to notify the 

receiving agent that a previous message sent by the receiving agent was not understood, 

possibly because the message was corrupted in transmission. 

The sender field contains information about the agent sending a message. This 

information is used by the receiving agent to send a reply message if a response is needed 

for the type of message received. The information consists of an IP address on the 

computer network, the port number it is listening on for communication, and the sending 

agent’s current task. 

The receiver field contains information about the agent the message is intended 

for. This information is used by the receiving agent to make sure the message was sent to 

the right agent. This helps in the case where an agent task has changed location on the 
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computer network unbeknownst to the sending agent. The identification information is of 

the same type and format as in the sender field, including IP address, port number, and 

current task. 

The content field, depending on the type of message, will contain things like data, 

the location of data, an instruction, or possibly nothing at all. Data is sent when the 

sending agent is informing the receiving agent of data, and it is concise enough to send in 

the actual message. Location information for data is sent when the data is too large in size 

to efficiently send in the message. This information is used to request data from the 

Database agent. An instruction may be sent when the sending agent is requesting 

something of the receiving agent, such as to change its task. The content field is left blank 

when the performative is sufficient for communicating what needs to be done, such as 

when an agent uses the agree performative when agreeing to a request. However, when 

an agent uses the refuse performative to refuse a request, a reason for refusal may be sent 

in the content field. 

The replyby field is an optional field used by a sending agent to signify that the 

sent message is of high importance, and should be responded to in the time specified. 

This field is used when the sent request is of a time-sensitive nature. For example, if the 

Delegation agent needs to verify that an agent is still functioning properly, it can request 

that the agent respond by a certain time. If the agent does not respond in the given 

amount of time after a specified number of tries, the Delegation agent will assume the 

agent is in a failed state and assign its current duties to another agent. 

To add messaging capability to the MAS-ACL, more of the FIPA-ACL can be 

added to the message processor. The message processor is the code that is common to 
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each agent that processes and interprets incoming messages. As the messages are 

interpreted, a receiving agent can then respond appropriately. 

 
3.5 Agent Failure 

 One of the appealing characteristics of a MAS framework is the potential to 

recover quickly when agents fail so that stable power plant operation is maintained. 

Though agent failures were not tested in this thesis, a discussion of some considerations 

for handling them is given to provide some suggestions for future work and for 

completeness.  

 
3.5.1 Agent Operating State 

In order to successfully recover from agent failures, data defining the operating 

state of the agents would need to be saved regularly, in a central location, so that when an 

agent fails, its last operating state can be restored in the new agent assigned to perform its 

task. For example, the Feedback agent would save data such as the current feedback gains 

so that they would not be lost in the event that this agent failed. The Feedforward agent 

would save data such as the current unit load demand and the preference values being 

used. In general, the operating data saved by the agents would include data that either 

could not otherwise be recovered in the event of a failure, or would be difficult to infer. 

 This concept is implemented, to some degree, in the MAS developed in this thesis. 

The Delegation agent sends the agent table to the agents as a part of the confirm 

operation message, so that all agents have a copy of this data in case the Delegation agent 

were to fail. Therefore, the Free agent that assumed the role of the Delegation agent after 
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the failure would already have this information and could begin performing its new task 

immediately. 

Similar to this procedure, one possible way to save operating state data with the 

MAS architecture developed in this thesis would be for the agents to respond to the 

Delegation agent’s confirm operation message with operating state data so it can stored 

locally by the Delegation agent and sent to the Database agent for backup storage. This 

way, if an agent failed, the Delegation agent can reassign the task and initialize the new 

agent to begin where the previous agent left off. Also, by sending a copy of the data to 

the Database agent to be archived, it can be recalled if the Delegation agent where to fail 

and lose its local copy.  

 
3.5.2 Prioritized Agent Assignment List 

Another important aspect of dealing with agent failures is deciding the order in 

which agents are reassigned if multiple agent failures occur simultaneously. This section 

briefly discusses some considerations for choosing the order for agent reassignment with 

respect to the agents proposed in this thesis. As part of this discussion, possible behaviors 

of the MACS due to failures of each agent type are described. 

One way to implement the reassignment of agents in case of agent failures is to 

provide the Delegation agent with a prioritized agent assignment list to allow it to 

reassign the most critical agents first. The order of the agents on this list should be such 

that if all agents with assigned tasks other than the Delegation agent failed, restoring the 

agent tasks in this order would have the least potential to allow the controlled system to 

become unstable. Furthermore, it is desirable to assign the agents in such a way that 

normal operation of the power plant unit is restored quickly. For example, in this thesis, 
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this list starts with the Feedback and Feedforward agents and continues with the Neural 

Network agent, Gain Optimization agent, Monitoring agent, and Database agent.  

The list starts with the Feedback agent, because if this agent fails, it would need to 

be replaced quickly, as it would leave the power plant unit uncontrolled and operating at 

the last control values sent before failure. If the power level was being changed at the 

time of failure, it is uncertain what steady-state output would result from the last 

feedback compensated control values sent to the power plant. Therefore, this agent is 

given the highest priority for reassignment. 

 The Feedforward agent is listed next as it is used frequently to generate control 

setpoints, but does not have the same potential to cause instability in the operation of the 

power plant unit as the Feedback agent if it failed. If the Feedforward agent failed, the 

Feedback agent would continue to control the power plant at the last setpoint sent by the 

Feedforward agent. The most trouble that would seem to be caused by the failure of this 

agent is a possible delay in changing the power level until a new Feedforward agent 

could be assigned. 

 The Neural Network agent follows the Feedforward agent on the list, preceeding 

the Gain Optimizer agent, because the Gain Optimizer agent depends on the Neural 

Network agent to tune the ANN model it uses to optimize gains. If the Neural Network 

agent failed, the worst case scenario would include the Gain Optimization using a less 

accurate ANN to optimize feedback gains, possibly producing an unstable result. 

However, it seems unlikely that the ANN model would become inaccurate enough to 

produce such a result unless the power level changed significantly while the Neural 

Network agent was down. 
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 Next on the list is the Gain Optimizer agent, which is the last control task of the 

agents proposed in this thesis. If this agent failed, the worst case would include the 

MACS calling for gain optimization while the agent was down. As long as the feedback 

gains are stable, this would not cause a stability problem. The gains produced by the Gain 

Optimizer should be stable, since a model of the controlled system is used to evaluate the 

gains for effectiveness and stability before they are used. However, this assumes the 

model is accurate. Another reason this agent is the last control agent to be assigned is that 

the Gain Optimizer agent is used less frequently, making the probability of this agent 

failing during a time where its function is needed less than the others. 

 Last on the list are the Monitoring and Database agents. These agents are last, 

because they are not likely to cause unstable behavior if they were to fail. The 

consequences caused by a failure of the Monitoring agent would depend on its intended 

function. In the case where the Monitoring agent would perform fault diagnosis, it would 

not have an effect on the control system unless the monitored equipment was to fail with 

little warning while the agent was down. This is unlikely because plant equipment does 

not generally fail frequently or without warning.  

If the Database agent were to fail, the consequences could include delays in the 

retrieval and storage of control system data. The effect this would have depends on the 

types of data that are archived, what the data are used for, and how often the data are 

retrieved. For the MAS described in this thesis, the data stored by the Database agent are 

not vital to the operation of the control system. Therefore, this agent is the last to be 

assigned. 
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CHAPTER FOUR 
 

Simulation and Results 

 This chapter discusses the simulation and testing of the multi-agent control 

system (MACS). In explaining the simulation of the MACS, the software implementation 

of the agents and power plant model are discussed. To explain how the MACS was tested, 

the methods for testing the individual agents, as well as the entire control system, are 

discussed. Finally, the results of the MACS tests are discussed to explain how the agents 

and the control system as a whole was shown to perform as intended.  

 
4.1 Simulation of the Multi-Agent Control System 

This section explains how the MACS is simulated. This explanation includes a 

description of how the MAS and the power plant model are implemented in software. 

Also, development tools used to create these software are mentioned. 

 
4.1.1 MAS Simulation 

 The agents comprising the MAS developed in this thesis were programmed in 

Matlab version 2010a and implemented on computers connected by a computer network. 

To enable multiple agents to run on one computer, the Matlab Parallel Computing 

Toolbox (PCT) was used. One component of the PCT is the Interactive Parallel 

Command Window (IPCW), which allows the user to instantiate a specified number of 

separate Matlab instances, called labs. Regardless of how many labs are started, the 

IPCW uses one command line to interface with the labs. 
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To enable each of the labs to run separate code, a single script is run from the 

IPCW command line that uses a switch statement to run code based on each lab’s lab 

index. A lab index is a unique, integer identifier assigned by Matlab. For example, if four 

labs are used, each lab is assigned an integer, 1 through 4, as its lab index. By default, the 

maximum number of labs that Matlab allows to run at once is equal to the number of 

processor cores available.  

Since Matlab is not capable of multi-threading, each agent requires two labs, one 

for its task thread and one for its messenger thread. As previously described, the task 

thread runs the code that performs the agent’s task, and the messenger thread runs the 

code that receives and preprocesses messages sent to the agent. Since the labs do not 

share memory, memory synchronization is initiated by the messenger thread after every 

message received to update the task thread memory with the data processed from the 

message. The synchronization uses commands available in the PCT that allows the labs 

to be programmed to check for and send data between themselves. 

The computers used to run the MAS have eight processors, meaning they can run 

eight labs each, which is enough for four agents. To start the agents needed for a 

simulation of the MACS, the IPCW is started on each computer with eight labs. Then, a 

script is manually run in the IPCW command line that starts the Free agent code running 

on odd numbered labs and corresponding messenger threads on the even numbered labs. 

The Free agent code will search the computer network for other agents and 

system resources by polling a predefined range of IP addresses and port numbers. When 

the Free agents finish exploring the network and discover there is no Delegation agent, 

the Free agent with the lowest IP will assume the role of that agent. Once the Delegation 
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agent is established, it will begin assigning the needed tasks to the other Free agents 

according to the prioritized list mentioned in Section 3.3.3. 

Once all other agents have been assigned by the Delegation agent, they wait for 

an initialization signal that propagates through the MAS when the Interface agent GUI, 

discussed in a later section, is used to send the unit load demand curve (ULDC) to the 

Feedforward agent through the Interface agent. The ULDC describes how the unit load 

demand should vary with time for the current simulation. After receiving this information 

from the Interface agent, the Feedforward agent begins generating setpoints at a 

predetermined frequency, in real-time, according the ULDC. As the setpoints are 

generated, they are sent to the Feedback agent to calculate feedback control. The first 

setpoint sent starts the Feedback agent. 

Once the Feedforward and Feedback agents are functioning, the power plant 

simulator (PPS) is started choosing an initial power level equal to the first unit load 

demand in the ULDC. Choosing the initial power level this way ensures the simulation 

will not become unstable because of a large initial error between the output level of the 

plant and the unit load demand. If this error gets too large, the feedback controller may 

overcompensate, potentially driving the system unstable. 

The PPS, described in more detail in the next section, models the behavior of the 

160 MW power plant in real-time. The PPS is connected to the computer network used 

by the MAS and can send and receive MAS messages. This allows the MAS to change 

the input values of the power plant model and allows the PPS to send calculated model 

output values to the MAS. 
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When the PPS is started, it will begin broadcasting the output values to a specific 

port number using the user datagram protocol (UDP), so that any agent that needs this 

information can use it. This behavior simulates the real world situation where the MAS 

would have access to sensors connected to an actual power plant unit. The Feedback, 

Monitoring and Neural Network agents are listening for messages sent on the PPS output 

port, and when the Monitoring and Neural Network agents receive their first message, 

they will begin performing their task. This behavior also allows the Feedback agent to 

collect the power plant output to calculate feedback values.  

The Database and Gain Optimizer agents will continue to standby until they are 

needed to store or retrieve data or optimize gains, respectively. When the MAS is done 

with a simulation, the data stored by the Monitoring agent can be used to analyze the 

performance of individual agents, as well as the MACS as a whole. It is in this manner 

that the agents will be tested and shown to behave as intended in the following sections.  

 
4.1.2 The Power Plant Simulator 

 The Power Plant Simulator (PPS) is a real-time software model of the 160 MW 

oil-fired drum-type boiler-turbine-generator unit, described in Section 2.2. The PPS is the 

dynamic system controlled by the MACS. The simulator was programmed in Matlab and 

communicates with the MACS over a computer network using UDP to send and receive 

MAS messages.  

Running the PPS software will cause a GUI to appear that allows a user to start 

the simulator after specifying an initial power level. The power level is used to generate 

initial conditions, consisting of drum steam pressure, steam quality, and initial control 

values, for the ordinary differential equations (ODEs) that describe the power plant 
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model. The initial conditions are generated using the HPSO algorithm used in the 

reference governor to find stable control values and drum steam pressure. Using the 

specified power level and the drum steam pressure level found in the previous step, 

another search is performed to find an initial steam quality that corresponds to an initial 

water level deviation of zero. 

 Once the initial conditions are found, the PPS will begin an endless loop, solving 

the ODEs using a time-step set by the user every for iteration of the loop. At the 

beginning of every iteration, the PPS checks for incoming communication from the 

MACS that would contain new control variables to be used in calculating the solution to 

the ODEs. This is how the PPS simulates changes in the control valve positions. 

 After checking for new control values, the PPS calculates the power, drum steam 

pressure, and water level deviation that would result from the specified time-step of 

power plant operation at the current input and state variable values. The third step in the 

loop is to record the final conditions of the ODE solution as initial conditions for use in 

the next iteration and send the calculated output values to the MACS by sending an MAS 

message. This message is broadcast to all computers connected to the MAS network that 

are listening on a specific port. The agents needing this information, such as the Feedback 

and Monitoring agents, would simply listen on this port to receive the data whenever it is 

sent. A flowchart of the PPS behavior is shown in Fig. 4.1. 

 The PPS simulates the power plant behavior in real-time by keeping track of the 

time the current loop took to execute and pauses execution for the difference of that 

amount of time and the specified time-step. By doing this, the simulation of one time-step 

of power plant dynamics will take that amount real time to execute. For the PPS to work 
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Fig. 4.1. Flow diagram of the basic operation of the Power Plant Simulator. 
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properly, the computer used to run the software must be able to execute one loop in an 

amount of time shorter than the time-step. As the PPS is running, the current power plant 

input and output values are displayed on the GUI. The GUI was created using the Matlab 

Graphical User Interface Development Environment (GUIDE). 

 
4.1.3 Interface Agent GUI 

 The Interface agent GUI allows a user to communicate with the MACS through 

the Interface agent. The Interface agent GUI is mainly used to load ULDC data, stored in 

Matlab data files, and send that data to the Feedforward agent as the first step in 

initializing a MACS simulation. Other functionality that has been added for 

experimentation with the MACS is the ability to manually change agents’ tasks, feedback 

gains in the Feedback agent, and optimization preference values in the Feedforward agent.  

The Interface agent and GUI are initialized by the same script in this thesis. When 

the script is executed, the Interface agent is started and waits for instruction from the GUI. 

Once an operation is requested, the Interface agent decides how it should be executed, as 

explained in Section 3.3.1. The Interface agent can also be used to retrieve MAS or 

power plant data to display for the user in the GUI. Like the PPS GUI, the Interface agent 

GUI was created using GUIDE.  

 
4.2 Simulation and Testing Results 

This section explains how the MACS was tested and discusses the results. The 

explanation includes a discussion of the methods for testing the individual agents, as well 

as the entire control system. The results of the MACS tests are discussed to explain how 

the agents and the control system as a whole were shown to perform as designed.   
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4.2.1 Feedforward Agent 

Since the Feedforward agent functions as the reference governor in the MACS, 

the operation of the setpoint optimization algorithm and the accuracy of the FFNN model 

used by the optimization are tested to show that the Feedforward agent can perform as 

described in Section 2.3. The setpoint optimization is tested in four stages. The first stage 

considers only one objective function and the subsequent stages add an objective function 

to show the effect each of them has on the optimization. Each stage was performed at 

power levels across the full range of operation and, from the results, is shown to perform 

as designed.  

The accuracy of the FFNN is tested by comparing the result of performing 

setpoint optimizations for power levels across the full range of operation using the 

equation model and the FFNN model to evaluate the cost of candidate solutions. If the 

FFNN has successfully been trained to model the equations, there will be little or no error 

between the setpoints generated using each model for a given power level. Furthermore, 

the Feedforward agent is shown to perform as designed in later sections by the successful 

overall performance of the MACS. 

 
 4.2.1.1 Testing the setpoint optimization.  As previously mentioned, the setpoint 

optimization procedure uses a hybrid particle swarm optimization (HPSO) algorithm. The 

number of particles and the maximum number of iterations were chosen such that the 

variation in the resulting control setpoints and boiler pressure reference level produced by 

the setpoint optimization was consistently less than 10-4 for 100 trials at power levels 

starting at 10 MW and increasing by 10 MW to 160 MW. The number of particles chosen 

was 120, where each particle represents a candidate solution evaluated each iteration. The 
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lowest maximum iteration number that met the mentioned criteria using 120 particles was 

170. Since the number of iterations directly effects the time it takes to perform an 

optimization, it is desirable to choose the maximum iteration number as small as possible. 

The number of particles has very little effect on the time it takes to perform the 

optimization compared to the maximum iteration number, but it is still desirable to use 

only as many as needed. 

 The remaining optimization parameters, listed in Section 2.3.2, were chosen to be 

as those in [3], where 1 2 2c c  , min 0.3w   and max 0.8w  , and preference values are 

1 1  , 2 0.5  , 3 1  , and 4 0  . The operating objectives are, as previously stated, 

the minimization of the objective functions Ji(u), for 1, 2,3, 4i  , which represent the 

minimization of load-tracking error, fuel consumption through the fuel valve, u1, pressure 

drop across the steam valve, u2, and pressure drop across the feedwater valve, u3, 

respectively. The setpoint optimization method is tested by performing multiple setpoint 

optimizations and changing which objectives are used in order to observe the effect on 

the setpoints generated. This is intended to show that using each objective function has 

the desired effect on the results. The results of this test are shown in four cases for power 

levels of 10 MW, 60 MW, 110 MW, and 160 MW to provide results representing the full 

range of operation. 

In order to compare the results of setpoint optimization, the optimal values of 

each of the control inputs, with respect to the operating objectives, are listed in Table 4.1 

for the power output levels of interest. These values are taken from the tables in 

Appendix A, which contain the minimum and maximum stable valve positions for 
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various power output levels over the possible range or operation.  According to the 

objective functions, it is desired that u1 be minimized and u2 and u3 be maximized. 

The first case performs the setpoint optimizations using only the load-tracking 

error, J1(u), as an objective function. To use only this objective function, the preference 

values are set to 1 1  , 2 0  , 3 0  , 4 0  , or  1 0 0 0  . As shown in Table 

4.2 under Case 1, the load-tracking errors resulting from the setpoint optimizations 

performed in this manner are smaller than double precision floating-point format can 

represent and is shown as zero. Comparing the resulting control setpoints, u1, u2, and u3, 

to the optimal ones in Table 4.1, it can be seen that these values are not optimized. This is 

the expected result, since the control values were not used as cost criterion for the 

setpoint optimizations. 

 The second case performs setpoint optimizations using the load-tracking error and 

the minimization of fuel consumption, J1(u) and J2(u), as objective functions. To do this, 

the preference values are set to  1 0.5 0 0  . As shown in Table 4.2 under Case 2, 

the load-tracking errors resulting from the setpoint optimizations are again zero. However, 

this time the fuel valve positions, u1, match the optimal ones in Table 4.1. This represents 

the successful minimization of fuel consumption, because minimizing the fuel valve 

position will result in the least amount of fuel consumption for particular power level. 

Comparing the resulting control setpoints for u2 and u3 will show that, as expected, these 

values are not optimized. Therefore, these setpoint optimizations were successful 

according to the operating objectives used.  

The third case performs setpoint optimizations using the load-tracking error, the 

minimization of fuel consumption, and the minimization of energy loss across the steam 
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valve, J1(u), J2(u), and J3(u), as objective functions, setting the preference values to 

 1 0.5 1 0  . As shown in Table 4.2 under Case 3, the load-tracking errors 

resulting from the setpoint optimizations are again zero and the fuel valve positions have 

been minimized. This time the steam valve positions, u2, were maximized, matching the 

optimal values shown in Table 4.1. This represents the successful minimization of energy 

loss across the steam valve, because more energy is lost the more the steam valve is 

closed due to the increased pressure from the restriction in flow. Therefore, the setpoint 

optimizations in this case were also successful according to the operating objections used.  

The forth case shows there is no significant difference in the setpoint optimization 

result when the pressure drop across the feedwater valve, J4(u), is included as a cost 

function in the setpoint optimization. This objective was included in the Case 4 by setting 

the preference values to  1 0.5 1 1  , where setting 4 1   causes J4(u) to have the 

most effect on the result of the optimization. Case 4 in Table 4.2 shows that including the 

minimization of the pressure drop across the feedwater valve as an operating objective 

only causes a change in results from Case 3 at low power levels. This is caused by the 

small variability in feedwater valve position, u3, for a given power level, where the 

feasible range for the feedwater valve is the largest at very low power levels (see Fig. 

2.4c). Since the power plant does not operate at a power level low enough for operating 

objective J4(u) to have an effect during normal operation, this operating objective is not 

used in simulation in this thesis. 

 
 4.2.1.2 Testing the accuracy of the FFNN model.  The FFNN used to evaluate the 

performance of the control setpoint optimization predicts the steady-state output levels 

corresponding to a combination of control input values. The data used to train this ANN 
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Table 4.1: Optimal values for u1, u2, and u3 according to J2(u), J3(u), and J4(u) for the 
power demand levels tested. 

 

Euld J2(u) = Min(u1) J3(u) = Max(u2) J4(u) = Max(u3) 

10 MW 0.0625 0.4968 0.1400 
60 MW 0.2702 1.1816 0.4101 
110 MW 0.4871 1.1816 0.7028 
160 MW 0.7016 1.1815 0.9806 

 
 

Table 4.2: Results of control optimization verification tests. 
 

Case 1 Resulting control values and generation error with β = [1 0 0 0]. 
Euld |E-Euld| u1 u2 u3 

10 MW 0 0.1226 0.2940 .0897 
60 MW 0 0.2857 0.8926 0.4072 
110 MW 0 0.5165 0.8851 0.6955 
160 MW 0 0.7154 1.0559 0.9731 

Case 2 Resulting control values and generation error with β = [1 0.5 0 0]. 
Euld |E-Euld| u1 u2 u3 

10 MW 0 0.0625 0.4968 0.0809 
60 MW 0 0.2702 1.620 0.4054 
110 MW 0 0.4871 1.1477 0.6878 
160 MW 0 0.7016 1.1642 0.9696 

 

Case 3 Resulting control values and generation error with β = [1 0.5 1 0]. 
Euld |E-Euld| u1 u2 u3 

10 MW 0 0.0625 0.4968 0.0809 
60 MW 0 0.2702 1.1816 0.4101 
110 MW 0 0.4871 1.1816 0.7028 
160 MW 0 0.7016 1.1815 0.9806 

 

Case 4 Resulting control values and generation error with β = [1 0.5 1 1]. 
Euld |E-Euld| u1 u2 u3 

10 MW 4.5342E-03 0.0716 0.4968 0.1354 
60 MW 0 0.2702 1.1815 0.4101 
110 MW 0 0.4871 1.1816 0.7028 
160 MW 0 0.7016 1.1815 0.9806 
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was generated by calculating the control values, u1, u2, and u3, using the equations in (2.4) 

for combinations of electric power, E, and drum steam pressure, P, where E varies from 

10 MW to 180 MW in steps of 1 MW and P varies from the minimum stable pressure for 

each E to the maximum, shown in Fig. 2.3, in steps of 5 kg/cm2.  

A test was done to determine the number of hidden neurons that would allow a 

trained FFNN to most accurately model the training data. The test involved using the 

training data generated from the steady-state equations to train FFNNs initialized with 

different numbers of hidden neurons. The number of hidden neurons ranged from 7 to 30.  

The number seven is chosen as the minimum based on the Hecht-Nielson 

Theorem, which states that any continuous function f : In → Rm can be approximated by a 

feedforward network with 2n + 1 hidden nodes, where n is the number of inputs and m is 

the number of outputs [24,25]. The maximum number of nodes was chosen as 30 as a 

higher number of hidden neurons means longer training and simulation times. For each 

trial, a FFNN was initialized and trained with the same data for a maximum 50,000 

iterations using the Levenberg-Marquardt backpropagation training algorithm. The 

number of hidden neurons producing the lowest mean-squared error was chosen as the 

best. Therefore, the number of hidden nodes used is 30. 

To test whether or not the FFNN is capable of accurately modeling the equations 

in (2.4), and therefore able to produce an accurate optimization result when using a 

FFNN in place of the equations, both the equation model and the FFNN model were 

implemented in setpoint optimizations performed for power demand levels from 10 MW 

to 160 MW in increments of 5 MW. Each test performed used the optimization 

parameters noted in the previous section. In Fig. 4.2, which shows the results of the test 
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Fig. 4.2. The result of setpoint optimization performed comparing the equation model with the FFNN 

model. 
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optimizations performed, it can be seen that using the FFNN is equivalent to using the 

equation model, because the control setpoints, u1, u2, and u3, resulting from the use of 

both models for optimization are approximately equal. This implies that the FFNN was 

successfully trained to model the equations in (2.4). 

 To give a quantifiable result, the mean-squared and maximum error of the 

difference in setpoints generated by the two methods, shown in Fig. 4.2, are given for 

each control variable in Table 4.3, where ueq is the result of optimization using the 

equations and unn is the result of optimization using the neural network. Using the steady-

state model equations in (2.5), the difference in steady-state power and pressure caused 

by changing each control variable by the maximum error is shown in Table 4.4. For 
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example, in Table 4.4, the u1 column shows the difference in steady-state power and 

pressure caused by changing only the fuel valve position by the maximum difference in 

the setpoints produced for u1 using the two methods, shown in Table 4.3. The u2 and u3 

columns in Table 4.4 show the results for the same changes in u2 and u3, respectively. 

Large values in Table 4.4 would indicate that the FFNN was not trained well and that the 

Feedforward agent will likely produce setpoints that are not optimized with respect to the 

objective functions. 

  

 

4.2.2 Feedback Agent 

To test the performance of the Feedback agent, which was designed to perform 

the feedback control function in the MACS, the PPS simulator was used to simulate the 

result of MAS control with and without the Feedback agent. The unit load demand for 

these simulations is a ramp in power level from 130 MW to 140 MW at a rate of 5%/min, 

which is the maximum acceptable rate in practice. The Feedforward agent was used in 

both cases to provide the control setpoints and output reference levels. 

Table 4.3: The mean-squared and maximum error of the difference in setpoints generated 
by the setpoint optimization using the equation and FFNN models. 

 
 u1 u2 u3 

MSE(ueq-unn) 2.6013e-16 1.0594e-12 2.3694e-14 
max(|ueq-unn |) 1.1315e-11 4.3260e-6 1.1159e-7 

 
Table 4.4: The difference in power and pressure setpoints caused by changing each 
control variable by the maximum error shown in Table 4.3. 
 

 u1 u2 u3 
E(max|ueq-unn |) (MW) 0 1.6727e-5 9.1931e-6 

P(max|ueq-unn |) (kg/cm2) 0 7.0581e-5 5.1246e-5 
 



83 

The result of the described simulation without the Feedback agent is shown in 

Figs. 4.3 and 4.4. In Fig. 4.3a, the power output response to the increase in power level 

without feedback is very slow, taking approximately 1300 seconds to meet the final 

setpoint. Fig. 4.3b shows the pressure response to be similarly slow, taking approximately 

the same time to reach the final setpoint. The water level response, shown in Fig. 4.3c, 

shows the water level deviation rising to a level of approximately 170 mm above the 

level setpoint, which would not be acceptable in a real-world scenario. These results 

show a base case for evaluating the Feedback agent performance, and also that feedback 

control is necessary for acceptable operation of this plant. 

The result of the simulation with the Feedback agent active is shown in Figs. 4.5 

and 4.6. The gains used in the Feedback agent for this simulation were the result of an 

offline gain optimization performed a step input in power level from 130 MW to 131 

MW. These gains are shown in Table 4.5, where the columns contain the proportional 

and integral gain values corresponding to the control loops that control u1, u2, and u3, 

respectively. 

In Fig. 4.5a, the power output response to Feedback agent control matches the 

demand much more closely than in the case without feedback control, taking less than 

200 seconds to make the 10 MW change in power level. The pressure response to 

Feedback agent control, shown in Fig. 4.5b, is also much better than in the case without 

feedback control, closely matching the demand and meeting the final setpoint in 

approximately 200 seconds. The water level response, shown in Fig. 4.5c, is much better 

as well, never deviating more than 10mm from the setpoint level. These results show that 
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(a) 

(b) 

(c) 
 

Fig. 4.3. The PPS response to a ramp in power level without feedback control. 
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(a) 

(b) 

(c) 
 

Fig. 4.4. The change in control valve positions corresponding to the ramp in power level in Fig 4.3 without 
feedback control. 
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(a) 

(b) 

(c) 
 

Fig.4.5. The PPS response to a ramp in power level with feedback control from the Feedback agent. 
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(a) 

(b) 

(c) 
 

Fig.4.6. The change in control valve positions corresponding to the ramp in power level in Fig 4.5 with 
feedback control. 
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the Feedback agent can successfully perform feedback control of the power plant model 

as part of the MAS designed in this thesis. 

 

 

One thing to notice in the results in Fig. 4.5 is the consistent difference in the 

power demand and the power response during the ramp, appearing to be a time-delay in 

the response compared to the demand. This is caused by the fact that the demand is 

changing frequently during the ramp, and control actions are changing to meet the new 

demands as they are given. This does not give the power plant enough time to catch up to 

the demand before a new one is given, and the only way it could catch up during a ramp 

is to generate control actions in anticipation of future demand changes. 

However, the pressure level in Fig. 4.5b does catch up to the demand initially, but 

lags behind toward the end of the ramp. It does so because the feedback controller causes 

it to overshoot the current demand at the beginning, but settles to lag behind the demand 

toward the end. The water level in Fig. 4.5c increases in response to the increase in power 

demand and, similar to the power output response, does not catch up until the demand 

stops changing. 

Looking at Fig. 4.5c, there appears to be some oscillation in the water level 

response. This is caused by the fact that the setpoints are changed once every second and 

the feedback changes the control variables ten times per second. When the setpoints are 

changed to represent an increase in power level, the control valves are changed in 

Table 4.5: Optimized feedback gain values used in the Feedback agent simulation. 
 

 ufb1 ufb2 ufb3 
Kp 0.0550 -0.0055 0.0114 
Ki 9.7480e-06 -3.1380e-06 8.2410e-06 
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response to the new setpoints, causing the water level to rise. During the remaining time 

before a new setpoint is given, the Feedback agent is trying to decrease the water level 

back to the setpoint. This happens every time the demand is changed until the ramp in 

power level is complete. This process causes an oscillation in the water level that has a 

frequency of 1 Hz. 

To solve this problem, another simulation was performed for the same ramp in 

power, but the Feedforward agent was made to generate setpoints ten times faster. The 

result of this simulation is shown in Fig2. 4.7 and 4.8. The power output and pressure 

responses, shown in Fig.4.7a and Fig. 4.7b, respectively, very much resemble the 

corresponding responses in Fig. 4.5, having slightly improved by decreasing the error 

between the demands and the output levels. The water level response has also improved, 

showing a slight decrease in the error between the response and the demand. However, 

the main difference is that there is much less oscillation due to the changes in setpoints. 

Therefore, a higher frequency in setpoint generation is better in terms of minimizing the 

water level oscillation, and increases the effectiveness of feedback control in terms of 

following the changes in setpoints.  

Although the increase in setpoint generation frequency decreased the oscillatory 

response in the water level to a more acceptable level, the Feedforward agent was not 

able to generate the setpoints at the new frequency in real time. Instead, the setpoints 

were generated before starting the simulation and were applied by the Feedforward agent 

at the appropriate time. The Feedforward agent was designed to generate new setpoints 

once a second to allow the optimization sufficient time to execute. However, this problem 

is due to a lack of performance capability of the computers used to perform the 



90 

(a) 

(b) 

(c) 
 

Fig.4.7. The PPS response to a ramp in power level with feedback control implemented by the Feedback 
agent. 
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(a) 

(b) 

(c) 
 

Fig.4.8. The change in control valve positions corresponding to the ramp in power level in Fig 4.7 with 
feedback control implemented by the Feedback agent. 
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simulation and may be solved by implementing this control system on higher 

performance equipment. 

 
4.2.3 Gain Optimizer Agent 

 To test the performance of the Gain Optimizer agent, a MAS simulation was 

performed using gains in the Feedback agent that would allow the error between the 

power plant output and the demand to be greater than the error thresholds that are used to 

trigger the gain optimization in the Gain Optimizer agent. Once the Gain Optimizer agent 

is triggered, it has been programmed to provide new feedback gains in 45 seconds or less 

so that they are implemented in 50 seconds or less.  

The simulation is performed for a ramp in power level from 130 MW to 140 MW, 

changing at a rate of 5%/min. The HPSO algorithm uses 5 particles, which is 

significantly less than the control optimization, because of the time it takes to simulate 

each particle, or candidate gain set. The increased time in evaluating candidate solutions 

is caused by the need to simulate the dynamic response of every particle to obtain a 25-

second simulation of the control response caused by each candidate gain set. Since one of 

the candidate solutions is initialized to the PI gains used in the Feedback agent when the 

optimization begins, the resulting gains cannot be worse than the gains currently used. 

This is due to the fact that if a better solution is not found, the currently used gains will 

perform the best and will be reused. 

The other optimization parameters, outlined in Section 2.3.2, are c1 = c2 = 2,    

wmin = 0.5 and wmax = 1.0, and preference values are β1 = 1, β2 = 0.25, and β3 = 0.5. The 

preference values, βi, correspond to the cost functions, Ji for i = 1,2,3, as mentioned in 

(2.11), and represent the sum-squared error of the difference between the power, pressure, 
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and water level deviation demand and the simulation output, respectively. The error level 

thresholds which activate the gain optimization procedure are ±1 MW, ±2 kg/cm2, and 

±10 mm for power, drum pressure, and water level deviation, respectively. The results of 

the simulation are shown in Figs. 4.9 and 4.10. 

Fig. 4.9 shows that an error threshold was exceeded at 21.4 seconds when the 

water level output rose to above 10 mm in deviation from the setpoint. This violation 

caused the Gain Optimizer to begin optimizing new feedback gains. The new gains were 

sent to the Feedback agent and implemented at 68.7 seconds in the simulation, which was 

47.3 seconds from the time the violation occurred. This means that the Gain Optimizer 

agent used the 45 seconds allotted for the gain optimization, and it took less than the 

remaining 5 seconds for necessary communication and data transfer to take place. 

The power output and pressure responses, shown in Figs. 4.9a and 4.9b, do not 

show much change from the implementation of the new feedback gains, showing only a 

brief fluctuation in output at the time the change occurred. The water level output, shown 

in Fig. 4.9c, climbs to almost 30 mm above setpoint before the optimized gains are 

implemented, at which point the water level spikes quickly to approximately 35 mm and 

falls sharply to below 5 mm above setpoint. Once the new gains are implemented, the 

water level remains at a more acceptable level between 5 mm. This simulation shows 

that the Gain Optimizer agent can be used to optimize gains, when needed, and 

implement them in a timely manner. Therefore, the Gain Optimizer agent is shown to 

perform as designed. The initial PI gains, optimized PI gains, and the bounds set for the 

gains in the optimization procedure are shown in Tables 4.6-4.8. The position of the 

control valves during the simulation are shown in Fig. 4.10. 
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(a) 

(b) 

(c) 
 

Fig.4.9. The PPS response to a ramp in power level with feedback control implemented by the Feedback 
agent before and after replacing the PI gains with optimized ones. 
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(a) 

(b) 

(c) 
Fig.4.10. The change in control valve positions corresponding to the ramp in power level in Fig 4.9 with 

feedback control implemented by the Feedback agent before and after replacing the PI gains with 
optimized ones. 
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4.2.4 Neural Network Agent 

This section explains how the layer-recurrent neural network (LRNN) used in the 

Gain Optimizer agent was trained, how it was shown to perform successfully in modeling 

the 160 MW power plant unit, and how the Neural Network agent was shown to perform 

its intended function. 

 
4.2.4.1 LRNN Training.  The training of the LRNN used in the Gain Optimizer 

agent to evaluate the performance of candidate gain sets it trained in three stages. These 

stages are global training, local training, and online training. Global training is performed 

offline using continuous time data generated from the dynamic power plant model 

equations, (2.1) and (2.2), that represents the full range of stable power plant operation, 

defined by the power-pressure window in Fig. 2.3.  

Table 4.6: Initial feedback gain values. 
 

 ufb1 ufb2 ufb3 

Kp 0.0500 -0.0010 0.0010 
Ki 0.0000 0.0000 0.0000 

 
Table 4.7: Optimized feedback gain values. 

 
 ufb1 ufb2 ufb3 

Kp 0.0539 -0.0044 0.0240 
Ki 4.0997e-07 -4.4096e-07 4.6715e-08 

 
Table 4.8: Constraints on search space for finding optimal feedback gains. 

 

 ufb1 ufb2 ufb3 

Kpmin 0.0000 -0.0100 0.0000 
Kpmax 0.1000 0.0000 0.0750 
Kimin 0.0000 -1.0000e-06 0.0000 
Kimax 1.0000e-06 0.0000 1.0000e-06 
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Figure 4.11. Divisions of the power-pressure window into 9 training data regions. 
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This data was obtained by dividing the power-pressure window into 9 regions, as 

shown in Fig. 4.11, and randomly choosing a number of power-pressure points in each 

region using a uniform distribution. The power-pressure points are then used to calculate 

corresponding control values using the steady-state equations in (2.4) and (2.5). The 

control values are then used to form an input vector for simulating dynamic power plant 

output to be used for training, where the simulation of the control points allows a certain 

amount of time at each point. 

The control points generated from Region 1 are simulated first, progressing 

through the Regions in order to Region 9. This keeps the pressure from varying too much 

and causing the simulation to go unstable, which would ruin the collected data for 

training. The data is generated without feedback control, except for a feedback control 
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loop used to keep the water level from becoming unstable. Once the data is generated, it 

can be used to train the LRNN using the Levenberg-Marquardt training algorithm. The 

process of generating data and training the LRNN is done twice for global training. 

Next, local training is performed offline. The method used to generate data for 

global training is also to generate data for local training, except data is generated in only 

one region. The region in which data is generated for local training depends on what 

power level the MACS will begin controlling the FFPU. For example, if for a given 

simulation the starting power level is 80 MW and the pressure setpoint from the 

Feedforward agent is 67.3 kg/cm2, data from Region 2 would be used for local training. 

The process of generating local training data and training the LRNN is done four times, 

being careful not to train the local region so much that the general accuracy is lost. 

The LRNN is now ready for online implementation in the Neural Network agent. 

Once the MACS is online, the Neural Network agent will begin collecting power plant 

input-output data in real-time, incrementally training the LRNN with that data. The 

online training will keep the LRNN accurate at simulating the power plant dynamics at 

the operating level of the power plant, which is what is needed for gain optimization  

A test was done to determine the number of hidden neurons that would allow a 

trained LRNN to most accurately model the training data. The test involved generating 

one set of global data and using it to train LRNNs initialized with different numbers of 

hidden neurons. The number of hidden neurons ranged from 7 to 30.  

The number 7 was chosen as the minimum since it is the minimum necessary to 

model any continuous function using a FFNN for a system with 3 inputs [24,25], where 

the LRNN is a modified FFNN. The number 30 was chosen as a maximum since a higher 
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number of hidden neurons means longer training and simulation times. Three trials were 

performed for each number of hidden neurons. For each trial, a LRNN was initialized and 

trained with the same data for 1000 iterations using the Levenberg-Marquardt training 

algorithm. Then, the resulting mean-squared errors were averaged, and the number of 

hidden neurons producing the lowest average mean-squared error was chosen as the best. 

Therefore, the number of hidden neurons chosen for the LRNN is 25. 

 
4.2.4.2 LRNN and Neural Network Performance.  The ability of the LRNN to 

model the power plant dynamics was tested in Section 4.2.3 when it was used in the Gain 

Optimizer to evaluate the performance of feedback gain sets when the Gain Optimizer 

was called on to optimize new feedback gains. Since the gain optimization was successful, 

the LRNN was shown to accurately model the behavior of the 160 MW power plant. 

Furthermore, the Neural Network agent was shown in that simulation to perform 

successfully, as the LRNN used in the optimization had been trained online by the Neural 

Network agent when it was used by the Gain Optimizer agent. 

 
4.2.5 Overall Multi-Agent Control System 

 To demonstrate the successful overall function of the MACS, two simulations 

were performed using all of the MACS functionality described in this thesis. The first 

simulation tests the MACS’s ability to effectively control the power plant model during 

wide-range operation. The second simulation tests the MACS’s ability to successfully 

control the power plant during a real-world type operation. 

 
 4.2.5.1 MACS Simulation Using a Wide-Range ULDC.  To test the ability of the 

MACS to control the PPS for wide-range operation, a simulation was run using a ULDC 
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that changes between 50 MW and 160 MW by ramping the power level at the maximum 

allowable of 5%/min, shown in Fig. 4.12a. The initial gain values used for feedback 

control were those in Table 4.5. Setpoints were dispatched from the Feedforward agent at 

a rate of 10 Hz to minimize oscillation in the water level, as was discussed in Section 

4.2.2. Since the computers used for this simulation could not generate setpoints that 

quickly in real-time, the setpoints were generated beforehand. The thresholds values for 

initiating a gain optimization were ±1 MW, ±2 kg/cm2, and ±10 mm for power, pressure 

and water level deviation, respectively. The results of the simulation are shown in Figs. 

4.12 and 4.13. 

The power output and pressure responses, shown in Figs. 4.12a and 4.12b, follow 

the demand power and pressure very closely, but lag slightly behind the demand levels 

during ramp changes in power level for the same reason explained in Section 4.2.2. The 

water level deviation, shown in Fig. 4.12c, stays within ±10 mm except for the times 

when the ULDC begins or ends a ramp. During these times, the water level briefly spikes 

and quickly returns to within ±10 mm. This simulation shows that the MACS can be used 

successfully to control the PPS during wide-range operation. Therefore, the MACS is 

shown to perform as designed under these conditions. 

Since the spikes in the water level would have unnecessarily caused the Gain 

Optimizer agent to trigger, the Feedback agent was programmed not to initiate a gain 

optimization unless the output levels for power, pressure or water level deviation 

remained above their respective threshold value for more than 3 seconds. This way, the 

gain optimization would not trigger due to a false alarm. The delay time for when to 

trigger a gain optimization once an output level threshold is exceeded is a design 
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(a) 

(b) 

(c) 
 

Fig.4.12. The PPS response to a wide-range load cycle under the control of the MACS. 
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(a) 

(b) 

(c) 

Fig.4.13. The change in control valve positions corresponding to the wide-range load cycle in Fig 4.9  
under the control of the MACS. 
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parameter dependant on the system to be controlled. The delay of 3 seconds used here 

was chosen arbitrarily to avoid unnecessary gain optimization. Optimizing the delay 

value was not a focus in this thesis.  

 
4.2.5.2 MACS Simulation Using a Realistic ULDC.  To test the ability of the 

MACS to control the PPS under a more realistic scenario, the load cycle for a typical 

summer weekday is used as the ULDC, where the load data is defined by the IEEE RTS-

96 data given in [x6]. The IEEE RTS-96 data defines typical load cycles for weekdays 

and weekend days for each of the four seasons in terms of a percentage of the maximum 

generation capacity. In this case, the maximum generation capacity is 160 MW. Similar 

to the simulation in the previous section, the initial gain values used for feedback control 

were those in Table 4.5, pregenerated setpoints were dispatched from the Feedforward 

agent at a rate of 10 Hz and the thresholds values for initiating a gain optimization were 

±1 MW, ±2 kg/cm2, and ±10 mm for power, pressure and water level deviation, 

respectively. The results of the simulation are shown in Figs. 4.14 and 4.15. 

Similar to the simulation in the previous section, the power output and pressure 

responses, shown in Figs. 4.14a and 4.14b, closely follow the power and pressure 

demands, only slightly lagging behind, and the water level deviation, shown in Fig. 4.14c, 

stays within ±10 mm except for sharp spikes that represent overshoot due to a change in 

the rate at which the power demand level is changing. A 3-second delay is also used here 

to avoid unnecessary gain optimization. This simulation shows that the MACS can be 

used successfully to control the PPS for a realistic load cycle. Therefore, the MACS is 

shown to perform as designed under these conditions. 
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(a) 

(b) 

(c) 

Fig.4.14. The PPS response to a load cycle representing a typical summer weekday under the control of the 
MACS. 
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(a) 

(b) 

(c) 

Fig.4.15. The change in control valve positions corresponding to the wide-range load cycle in Fig 4.9 under 
the control of the MACS. 
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CHAPTER FIVE 

Conclusions 

 This chapter summarizes the research presented in this thesis and draws 

conclusions regarding the results from the tests performed in the previous chapter. Also, 

potential research that can be done to extend the research presented here is discussed. 

 
5.1 Conclusions 

The goal of this thesis was to design, implement, and test a multi-agent system 

(MAS) intended for decentralized optimized multi-objective control of a fossil fuel power 

unit (FFPU). This control methodology is intended to provide optimized control of an 

FFPU while allowing the customization of operating goals as needed to conform to 

changing market situations, such as changing regulations, the cost of fuel, and load 

demands on the unit. To do this, a MAS was developed consisting of agents that have 

been designed to perform specific tasks, which in coordination, achieve the desired 

control. This MAS was designed for a smaller, simpler FFPU model in order to focus on 

developing the MAS without the added difficulty of accounting for the complexity of a 

larger power plant model. 

The agents developed to implement the control system are the Feedforward agent, 

Feedback agent, Gain Optimizer agent, Neural Network agent, Interface agent, 

Delegation agent, Database agent, Monitoring agent and Free agent. These agents were 

developed and individually tested by performing various experiments, the results of 

which were analyzed for agent performance. The agents were also implemented in 



107 

coordination as an MAS and were tested by using the MAS to control a 160 MW FFPU 

model and analyzing the results.  

The Feedforward agent was developed to implement an optimal reference 

governor that provides customizable coordinated control (CC) by optimizing control 

setpoints according to prioritized operating objectives that can be changed online. This 

agent uses a feedforward artificial neural network (ANN) model to evaluate the 

performance of the optimal setpoints in the hybrid particle swarm (HPSO) optimization 

method used to determine the optimal references. Each of the operating objective 

functions was tested to confirm that they had the desired effect on the setpoint 

optimization results. Because these tests were successful, it was shown that the setpoint 

optimization can be successfully used to optimize control setpoints according to 

programmed operating objectives, thereby enabling customizable CC of the power plant 

unit. Also, the ANN model is shown to accurately represent the steady-state equations by 

producing the same result when used in the optimization. 

The Feedback agent was developed to implement feedback control, which is a 

necessary part of any control system. This agent implements feedback control of the 

FFPU while monitoring the effectiveness of that control. If for any reason the gains used 

in the feedback controller are not performing well, the Feedback agent has been designed 

to automatically request new, optimized ones. To show that the Feedback agent could be 

effectively used to implement feedback control in the multi-agent control system 

(MACS), the Power Plant Simulator (PPS) was used to simulate the response of the 

power plant model to control by the MACS with and without the Feedback agent. The 

vast improvement of the power plant response when using the Feedback agent, as 
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opposed to no feedback control, indicates that the Feedback agent can effectively provide 

feedback control of an FFPU. 

The Gain Optimizer agent was developed to optimally tune the feedback gains in 

the case where the ones being used in the Feedback agent are no longer sufficient for 

stable efficient control of the FFPU. Similar to the Feedforward agent, this agent uses a 

dynamic ANN to evaluate the performance of the HPSO algorithm used to produce 

optimized gains for feedback control. To show that the Gain Optimizer agent can produce 

improved gains when needed, a simulation was run in which the MAS was used to 

control the PPS, but the Feedback agent was intentionally initialized with gains that 

would cause the power plant model output to exceed one or more of the thresholds that 

trigger a gain optimization. When the first threshold was exceeded, the Feedback agent 

successfully detected the violation and notified the Gain Optimizer agent. At that point, 

the Gain Optimizer performed the gain optimization within the specified time and the 

new gains were sent to the Feedback agent and implemented. Once the new gains were 

applied, the Feedback agent was able to return all output levels below the threshold 

values. This success showed that the Gain Optimizer agent can perform as intended.  

The Neural Network agent was developed to maintain the accuracy of the ANN 

model used in the Gain Optimizer agent. It does so by continuously collecting real-time 

power plant data and using it to adapt the layer-recurrent neural network (LRNN) to be 

accurate at simulating the current operating level, which is needed for the gain 

optimization procedure. The ability of the Gain Optimizer to produce improved gains 

shows that the Neural Network agent performs as intended, since the Gain Optimizer uses 
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the LRNN trained by the Neural Network agent to evaluate the performance of the gains 

that are implemented.  

The Interface agent, Delegation agent, Database agent, and Monitoring agent 

were developed to provide the ability for an operator to interact with the control system, 

agent management, a data storage and retrieval service, and a system monitor, 

respectively. There was not a good way to show the individual performance of these 

agents, since they provide services that do not directly affect the physical processes of the 

plant. However, the overall success of the MACS in controlling the PPS shows that they 

can perform as they were intended. 

The Free agent was designed to provide flexibility in the MAS by enabling the 

assignment and reassignment of agents as needed. This agent was also designed to serve 

as a redundant backup should any of the other agents fail, as a number of extra Free 

agents can be initialized for the sole purpose of standing by to assume a failed agent’s 

task in the event of an agent failure. Similar to some of the other agents in the MAS, this 

agent’s operation was hard to demonstrate. However, all agents start as Free agents, and 

the MAS would not function if the Free agents did not perform as designed. Therefore, 

the overall success of the MACS in controlling the PPS shows that the Free agent 

functions as intended. Agent failures were not tested in this thesis as this issue was not a 

focus.  

In addition to testing the functionality of individual agents, the MACS as a whole 

was tested. In the two tests that were performed, the MACS was shown to be able to 

implement successful control of the PPS for a wide-range ULDC and for a ULDC 

representing the load cycle for a typical summer weekday. These results show that the 
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agents are able to work in harmony with each other to perform the intended function of 

the control system.  

In conclusion, this thesis shows that a MAS can be used to implement a control 

system intended for a FFPU. This thesis also shows that agents can be used to implement 

each of the control techniques discussed here. Furthermore, this thesis shows that these 

agents can be successfully implemented simultaneously in a MAS to achieve the 

coordinated goal of customizable optimized multiobjective power plant control of an 

FFPU.  

 
5.2 Future Research  

Though the MAS discussed in this thesis was successfully developed and tested 

entirely using Matlab, it is desirable to use a computing platform that is better suited for 

multi-threaded programming. One such platform is the Java Agent Development 

Environment, or JADE. Like the name implies, JADE is built on Java, which is well-

suited for multi-threaded computing. Another advantage to JADE is that the 

communication standard put forth by the Foundation for Intelligent Programmable 

Agents (FIPA) used in this project is already built in. Therefore, it is a recommendation 

of the thesis that future work pertaining to MASs meant for power plant control 

applications make use of JADE, while possibly making use of Matlab to perform the 

more complex computations. 

Although this thesis discusses an MACS designed to control a small-scale FFPU, 

the MAS control methodology is intended for use in larger, more complicated FFPUs. A 

simple FFPU is used here so that the MACS could be designed and developed without 

the added difficulty of accounting for the complexity of the FFPU model. There has been 
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work done to develop a MACS to control a 600 MW FFPU as an extension to this 

research, which was also done in Matlab. An opportunity for further research includes the 

development and testing of a MACS designed for a large-scale FFPU using JADE as the 

MAS platform. 

Another opportunity for further research would be to develop more agents to 

perform additional tasks not addressed in this thesis, such as fault diagnosis. One appeal 

of the MACS method is extensibility. Because of this characteristic, there is much room 

for control functionality that can be added by developing more agent types.  

The MACS, as well as modern conventional control systems, is heavily dependent 

on computer technology, and is therefore vulnerable to cyber attack. Cyber attacks can 

severely damage a power plant unit, causing power outages and potentially harming 

personnel operating the facility, among other things. Because of this threat, there are 

opportunities for research in the area of cyber security to develop methods for protecting 

power plant control systems from malicious manipulation. 
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APPENDIX A 
 

Operating Window Data 

The two tables below contain the data needed to construct the power-pressure and power-

input operating windows for the 160 MW power plant used in this thesis. 

 
Table A.1 Upper pressure limit data. 

 
E P ρf u1 u2 u3 L 

(MW) (kg/cm2) (kg/m3) (p.u.) (p.u.) (p.u.) (m) 

10.0 237.4 318.1 0.3225 0.2102 0.1226 0.0000 
20.0 231.8 312.0 0.3610 0.2362 0.1683 0.0000 
40.0 220.9 300.8 0.4385 0.2965 0.2607 0.0000 
60.0 210.2 290.1 0.5167 0.3551 0.3544 0.0000 
80.0 199.7 278.9 0.5956 0.4251 0.4495 0.0000 
100.0 189.5 268.1 0.6752 0.5032 0.5459 0.0000 
120.0 179.5 257.8 0.7555 0.5907 0.6439 0.0000 
140.0 169.7 247.1 0.8366 0.6890 0.7434 0.0000 
160.0 160.2 236.8 0.9183 0.7996 0.7996 0.0000 
180.0 150.9 226.3 1.000 0.9245 0.9245 0.0000 

 
Table A.2 Lower pressure limit data. 

 
E P ρf u1 u2 u3 L 

(MW) (kg/cm2) (kg/m3) (p.u.) (p.u.) (p.u.) (m) 

10.0 32.0 493.0 0.0785 0.4205 0.0708 0.0000 
20.0 32.0 485.2 0.1274 0.6554 0.1315 0.0000 
40.0 36.3 468.8 0.2287 1.0000 0.2504 0.0000 
60.0 52.1 449.9 0.3392 1.0000 0.3591 0.0000 
80.0 67.3 430.2 0.4486 1.0000 0.4637 0.0000 
100.0 82.1 409.2 0.5574 1.0000 0.5654 0.0000 
120.0 96.5 386.2 0.6656 1.0000 0.6649 0.0000 
140.0 110.7 360.2 0.7734 1.0000 0.7626 0.0000 
160.0 124.6 328.8 0.8808 1.0000 0.8587 0.0000 
180.0 138.4 284.6 0.9879 1.0000 0.9534 0.0000 



114 

APPENDIX B 

Calculation of the RGA Matrix for the 160 MW FFPU Model 

 The relative gain array (RGA) matrix is calculated for the 160 MW FFPU Model 

used in this thesis. This is done to show the strength of interaction between the input and 

output variables defined by the third order three-input three-output power plant model to 

determine the configuration of feedback control loops. The result of this calculation is 

used in Section 2.4 to justify the configuration of the feedback controller. Reference [26] 

was used as a resource for the following calculations. 

The first step in calculating the RGA matrix is to obtain a linear state-space model 

of the dynamic equations in (2.1) and (2.2). The linearization of the model was performed 

in [26], resulting in a model of the form: 

x Ax Bu   (B.1a) 

y Cx Du   (B.1b) 
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Next, the process gain matrix, K, and the transpose inverse of the gain matrix,  T1R K  , 

need to be calculated, assuming K is invertible. The process gain matrix is obtained by 

calculating the transfer matrix, T(s), for the state-space model defined in (B.2) and (B.3), 

and calculating the elements of K using the equation: 

 
0
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K T s


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This produces the elements of K as follows: 
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Because of the s in the denominator of equations (B.5g) through (B.5h), it is 

advantageous to rewrite the process gain matrix and its inverse as follows: 
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Defining L appropriately, the following substitution can be made: 
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From (B.8), R, is defined as follows: 
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Now, the RGA matrix is calculated in terms of (B.6) and (B.9) using a Hadamard product, 

or element-by-element product, to obtain the following: 
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From the result in (B.10), the RGA matrix can be calculated for specific combinations of 

P, ρf, u1, u2, and u3 to determine the strength of interaction between inputs and outputs at 

different operating points. 

 To design the feedback controller in Section 2.4 the RGA matrix was calculated 

for specific values of E, P, ρf, u1, u2, and u3 encompassing the full range of operation, 

shown in plot form in Fig. B.1. From these calculations, the feedback controller was 

simplified to consist of control loops that modify the output variables using the input 

variable that most strongly affects it. The values of E vary from 10 MW to 180 MW in 

steps of 10 MW. For each of the values of E, variables P, u1, u2, and u3 were generated by 

the reference governor described in Section 2.3. The values for ρf were chosen such that 

the steady-state value of L is zero for the corresponding values of E, P, u1, u2, and u3. The 

variables are chosen this way, because the control references used to govern the operation 
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of the power plant unit are also chosen in this manner, and the feedback control system is 

meant to regulate the power plant system to match these references. 

The rows of the RGA matrix, i=1, 2, 3, represent the output variables, E, P, and L 

and the columns of the RGA matrix, j=1, 2, 3, represent the input variables, u1, u2, and u3, 

respectively. The elements of the RGA matrix, λij, are normalized values representing the 

strength of interaction between the input and output variable corresponding to the row 

and column number. The strongest interaction between inputs and outputs is denoted by 

the value in each column closest to 1.  

From Fig. B.1, it can be seen that λ11, λ22, and λ33 represent the strongest 

interaction for their column, for all power levels, where λ11 represents the interaction 

between the fuel valve, u1, and the power output, E, λ22 represents the interaction between 

the steam valve, u2, and the boiler pressure, P, and λ33 represents the interaction between 

the feedwater valve, u3, and the water level deviation, L . Therefore, the feedback control 

 
 

Fig. B.1. Result of RGA matrix calculations. 
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loops shown in Section 2.4 were designed such that the error between the power output 

and the power setpoint, Ed-E, drives the feedback control for the fuel valve, the error 

between the boiler pressure output and the boiler pressure setpoint, Pd-P, drives the 

feedback control for the steam valve, and the error between the water level deviation and 

the water level deviation setpoint, Ld-L, drives the feedback control for the feedwater 

valve. 
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APPENDIX C 

Artificial Neural Networks 

ANNs were originally inspired by the structure, function, and processing power of 

the extensive networks of neurons in the human brain that coordinate sensory perception 

into muscular and glandular responses in the body. Comprising these networks are three 

types of neurons: sensory neurons, motor neurons, and interneurons. The sensory neurons 

are the neurons that receive input to the human neural network (HNN) from the nerve 

endings that make up the five senses: hearing, sight, touch, taste and smell. Based on the 

strength of the impulses received from the nerve endings, the sensory neurons will either 

fire their own impulses or do nothing. The interneurons serve to process information from 

the sensory layer, and relay the processed result to the motor neurons. The motor neurons 

are connected to different muscles and glands in the body, and have the ability to 

stimulate them based on the impulses received from the interneurons, forming the output 

layer of the human brain.  

 The neurons that make up the HNN are connected via axons and dendrites, which 

are used to send and receive electrical impulses, respectively. When a neuron receives an 

impulse, inhibitory or excitatory, through its dendrites, the sum of these impulses is 

evaluated against the neuron’s excitation threshold, where the impulse strength is 

determined by the strength of the synaptic connection through which it is received. If the 

result exceeds a neuron’s excitation threshold, then it will send an impulse through its 

axon to the other neurons or cells it is connected to.  
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Fig. C.1. Process model of artificial neuron.

 Similar to the HNN, ANNs are comprised of artificial neurons that form an input 

layer, one or more processing hidden layers, and an output layer. The artificial neuron, as 

originally proposed by [14], models the neurons in the brain by summing its received 

inputs and evaluates them against a threshold to decide the output. This process is shown 

in Fig. B.1, where pi are the inputs representing electrical impulses received by neurons 

in the brain, wi are weights representing the strength of the synaptic connections between 

neurons, b is an adjustable bias value that adjusts the threshold level to assist with 

modeling learning in the brain, s is the sum of products of the inputs and weights plus the 

bias value, f is the activation function of the neuron, or excitation threshold function, 

which evaluates s to determine a neuron’s output, and a is the resulting output, shown in 

equation form below where n is the number of inputs: 

 There are many functions that can be used as the activation function, f, in artificial 

neurons that make up ANNs. The log-sigmoid transfer function, or adaptations thereof, is 

a commonly used transfer function in artificial neurons, pictured below. This transfer 

function behaves differently from the way the McCullough-Pitts neuron treats incoming 

signals. The McCullough-Pitts neuron uses the hard-limit transfer function which outputs 
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a zero when the input is below the threshold and outputs a one when the input is at or 

above the threshold. Instead, the log-sigmoid transfer function is an approximation of the 

hard-limit transfer function that allows a more dynamic response as opposed to the binary 

response of the hard-limit transfer function. Therefore, the log-sigmoid transfer function, 

shown in Fig. B.2, allows ANNs the ability to model the behavior of nonlinear systems 

more accurately than when using only the hard-limit function.  

 There are many types of ANNs that can be used to model dynamic systems, 

forecast system behavior, and recognize patterns, among other applications. Three main 

differences between types of ANNs that enable the different functionalities are the way 

neurons are interconnected, the number of hidden layers and artificial neurons used in 

each layer, and the excitation threshold functions used in the artificial neurons. Only two 

types of ANNs are used in this thesis: FFNNs and LRNNs. 

 

 
Fig. C.2. Log-Sigmoid and Hard-Limit transfer functions used in artificial neurons with a bias value, b, 
of zero. 
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