ABSTRACT

Quantum-dot Cellular Automata as an Implementation for Random Number

Generation
Heath McCabe

Director: Enrique Blair, Ph.D.

Quantum-dot Cellular Automata (QCA) provides a viable low-power alternative to
conventional implementations of classical computing machines. QCA cells with no
biasing voltage will yield a “1” or a “0” with a 50% chance of being “1” and 50%
chance of being “0” upon measurement. Applying a bias voltage to a QCA cell
allows this probability to be tuned such that the probability of measuring a “1” could
range anywhere from 0 to 1. Many applications benefit from equal probabilities of
measuring “0” or “1,” but some applications such as stochastic computing require
having an adjustable probability of measurement outcomes. Performing a series of
measurements can be used to serially create a random number of any desired size.
Thus, tuning the probability of a QCA cell can be used as an implementation for
random number generation. Furthermore, this system is suitable for applications
in which zero outcome bias is desired, or a specific and dynamically-tunable bias is
desired. We discuss the quantum mechanics of random number generation using a
QCA cell, as well as different physical implementations for a QCA random number
generator.
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CHAPTER ONE

Introduction

The eternal objective for electrical engineering research is to make smaller,
faster, more efficient, and more powerful electronics. To that end, one important
benchmark is Moore’s Law: the projection that the number of transistors in a given
area of a processor will double roughly every 2 years. At this projected rate of
increase, eventually the devices will become too small for the underlying physics
to continue behaving appropriately. Additionally, as devices become smaller, their
power consumption and heat output increase. There is a certain point at which the
heat output of the device will damage it to the point of self-destruction, a side effect
which must be avoided. Two key limiting factors, the size of the devices causing
unwanted quantum mechanical oddities and the heat dissipation of the devices, are
key motivators for QCA logic devices. Quantum-dot Cellular Automata (QCA) is
proposed as a next step in computing device technology as well as a new approach

for random number generation.

Motivation for QCA

Transistors are becoming very small and are approaching a limit beyond which
quantum mechanics will introduce unwanted effects into device operation [1] [2]. A
new solution will be needed in order to create devices that are more powerful once that
size limit is reached and silicon devices cannot be shrunk any further. An explanation
of the implications regarding the present topic is given by McIntyre [3].

Another key problem facing the future of transistor-based computing is heat

dissipation. As a conductor gets smaller, a constant current passing through it will



create more heat; this is exactly what is occuring in silicon devices which, is a key
reason why processor clock rates are leveling off. The power equation, Equation 1
below, helps to explain this phenomena by proving that power is directly related
to area. Power traveling through wires tends to convert itself into thermal energy,
as anyone who has unplugged a cell phone cord from the wall after it has been in
use can confirm. So, in turn, smaller wires tends to create more heat output. This

relationship is explored in depth in Lent’s article [2].
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=I’R (1)

- P(p%)

QCA is one potential solution to this problem. The nature of Quantum-
dot Cellular Automata QCA is that it does not rely on currents traveling through
wires. This allows it to operate at very high speeds without becoming overheated. [2],
[4]. QCA devices can help us continue to make our computers more efficient, more

powerful, and faster [2].

Introduction to QCA Operation

QCA circuits are made up of cells that act both as wires and logic gates. An
array of cells in a line acts as a wire, transmitting a bit down the line. Particular
structures of cells can implement the fundamental logic operations (AND, OR, NOT).
The cell-cell response function illustrated in Figure 2 shows the polarization induced
on cell 1 based on driver cell 2. This demonstrates that a target cell can have a high
magnitude polarization from a rather small driver polarization, which can allow for
very fast clocking of QCA circuits. In Figure 3, it can be seen that for larger tunneling

energy v, the target cell’s polarization has a more linear response to the driver cell’s
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Figure 1: QCA Cell States. This figure illustrates the possible states for a 4-dot QCA
cell.

polarization. It is also clear that for small tunneling energy v only a small positive

polarization is needed on the driver to make the target cell have a bit value of 1.

Basic Operation

A molecular QCA cell is made up of two molecules, each having one free elec-
tron. The cell as a whole then has two free electrons within it, which can be localized
into one of two possible configurations when the cell is in the “active state”. The ac-
tive state is synonymous with a “high clock” state. These two possible configurations

)

in which the electrons may localize are termed “polarizations,” which are quantified
by assigning a value P € [—1,+1]. The computational basis states for QCA are |0)
and |1) which correspond to P = —1 and P = +1, respectively, as illustrated in Fig-

ure 1. That is to say that “logic states are encoded no longer as voltages but rather

by the positions of individual electrons” [2].

Clocking

Clocking helps transmit data through a circuit, and provides synchronization

for complex circuits. Clocking in QCA is achieved by forcing the electrons into an
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Figure 2: Cell-Cell Response Curve [5] showing how a target cell’s polarization is
affected by a changing driver cell polarization.
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Figure 3: Cell-Cell Response Curve generated in Matlab. This plot shows the polar-
ization of a target cell as a function of driver cell polzarization. The three curves show
that a higher 7 (clock) makes the target cell more sensitive to the driver polarization.



active state at specific intervals. In Figure 1, the two cells shown on the left are active
and the right cell is in the null state. Thus when the clock is “high” the cells in that
clock region have valid data and when the clock is “low” the cells in that region are
in a null state. When the clock signal goes high, the cells in that clock zone will be
pushed into the active state and assume the bit values that would be expected from
the circuit design for that moment in time. Then when the clock signal goes low
again, the cells in that clock zone are pulled back down into the null state and are
ready to evaluate logic again the next time the clock goes high.

Figure 5 shows the output of the simulation for the majority gate shown in
Figure 4a. Notice that the output enters an active state when clock 1 goes low. This
is a little counterintuitive because typically, one would say that a “high clock” puts
the cells in its area into an active state, but this is simply how the QCADesigner tool

operates.

Majority Gate

The majority gate is the natural method of implementing the AND and OR
operation in QCA. This gate requires exactly 3 inputs and produces 1 output. Fig-
ure 4a shows how a majority gate is implemented using QCA cells. Figure 5 shows
the simulation results for the majority gate schematic. For clarification and for verifi-
cation, the truth table for the majority gate shown in Figure 6 can be cross referenced
with the simulation results.

The majority gate can be made to function as an AND gate by forcing one
of the inputs to be 0, because achieving a majority vote requires that both of the
remaining inputs be 1. This can be verified by examining the top half of the majority
gate’s truth table which is shown in Figure 6. Similarly, the majority gate can be made
to function as an OR gate by forcing one of the inputs to be 1, because achieving

a majority vote requires only one remaining input be a 1. This can be verified



by examining the bottom half of the majority gate’s truth table which is shown in
Figure 6.

It is important to note that the majority gate must have 3 inputs because of
the physics that underlies its operation. Coulombic interaction between the 2 free
electrons of one cell and those of its neighbor enables QCA to operate, and because
of the superposition of Coulombic interactions, when three cells meet as shown in
the majority gate schematic in Figure 4a, the result is “computed” on the center cell
(the leftmost purple cell as shown in the same figure). Two wires with the same bit
value can be joined together, as in Figure 4b, to produce an output with the same
bit value. However, two wires joining together in the same way, but with different
bit values, will not produce any consistent result. This is important to note: there is
not a natural logic operation in QCA that takes two inputs.
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Figure 4: Majority Gate Schematic

QCA Clircuits and Simulation

QCA circuits are made up of binary wires, inverters, majority gate, and programmable
AND/OR gates. This project primarily relies on circuit design and simulation via a
library of Matlab code. It allows for visualizing a QCA circuit, and takes into account

the complex calculations involved in expanding the Hamiltonian matrix to the full



Simulation Results
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Figure 5: Majority Gate simulation result generated using QCA Designer. All eight
possible inputs are shown in the top three rows. The output of the majority gate is
shown in the fourth row. The four clock zones used in the schematic are shown in
the bottom four rows. By using four clock zones, each area of the circuit is able to
have active data in it, while the other zones are able to process different data.

Hilbert space, in order to accurately model the relationships between cells. Pictured
in Figure 7 is a wire entering an inverter on the left and an output wire exiting on
the right which is designed and simulated via this collection of Matlab code.
Another tool which is used for circuit design and simulation is QCADesigner.
This tool allows for simple design and up to four clock phases, and a nice graphical
output feature. Figure 4 shows a majority gate design using QCADesigner, with the

inputs A, B, and C on clock 1, the green cells on clock 2, the purple cells on clock 3,
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Figure 6: Majority Gate truth table. From this, it can be seen that taking A = 0
causes AND gate behavior, and taking A = 1 causes OR gate behavior.
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Figure 7: Inverter schematic generated via Matlab. This is a circuit of 6-dot cells,
which have thre possible states: |0),|1), |null).

and the yellow output cell on clock 4. Figure 5 shows the simulation output for this

same majority gate.



QCA Progress

QCA technologies have been simulated and implemented with promising re-
sults. Quantum mechanical calculations can simulate the operation of a QCA array
and provide a proof of concept before researchers take the steps to implement cir-
cuits in hardware. As of 1994, Lent had performed mathematical simulations proving
the proper functioning of a QCA full adder circuit [5]. These simulations prove the
possibility of QCA full adder circuits, which inspires confidence that more complex
and useful QCA circuits are forthcoming. An interesting takeaway from this same
research is the concept that “we can confidently predict the results by just considering
each element as a separate computing component” [5]. This means that if an idea for
a new component arises, we can simply perform the necessary checks to ensure that
device performs its operation without having to consider the QCA cell’s operation
as fundamentally different than in other contexts. This scalability saves lots of time
that would have otherwise been required for simulation and testing.

Both metal-dot and molecular-dot QCA cell implementations have been ex-
plored by researchers. Molecular QCA cells offer some advantages over the previous
metal-dot implementations. One major factor is that they could operate at room
temperature, as opposed to the frigid temperatures previously required [2] [4] while
supporting electron transfer rates (clock speeds) on the order of 10'? per second [6].
Due to the size differences, the molecular QCA implementation could offer much
greater density. The junctures for the metal-dot QCA cell are roughly 60 nm by 60

nm [2] whereas the molecular implementation would be smaller than 1 nm [6].

Introduction to Stochastic Computing

Stochastic computing is a method of performing operations which uses bit

streams having particular probabilities to represent its operand values. A stochastic



value s can hold a value s € [0.00,+41.00]. Here probability refers the percent of bits
in the stream which are 1’s: thus the stream {0, 0,0, 1} represents the value s = 0.25,
as does the stream {0,0,1,1,0,0,0,0}. These stochastic values are used as the inputs
to a stochastic operator, and the operator outputs another stochasatic value. See
Figure 8 for a simple example use of a stochastic multiplier.

A stochasitc value can be represented by a bit string of any size, but bit string
length comes with a tradeoff. Longer bit strings allow for more precise calculations
while consuming more time and energy. Using a 2-bit value may work for a limited
set of problems, but it limits the number of values that can be represented. A value
represented as an n-bit string can represent 2" distinct values, so clearly a longer

string increases flexibility in the values that can be represented.
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Figure 8: Stochastic multiplier example. Here, input 1 is the stochastic value s1 = 0.2
and input 2 is s2 = 0.3. As expected, the output value is the expected product, s3 =
0.06. For stochastic processes, longer input values lead to more precise calculations
while requiring more time and energy.

It is important to consider the energy costs of generating all the random num-
bers required for a stochstic comupting system. It turns out that creating the input
values for these systems is not trivial, and that it may even offset the energy savings
stochastic computing could provide over conventional computing. Because a stochas-
tic adder, which is a single OR gate, and a stochastic multplier, which is a single
AND gate require very minimal hardware, the processing takes much less energy
than conventional methods [7]. However, generating random numbers with conven-
tional random number generators uses a lot of energy, to the point that the net energy

savings is reduced or nonexistent [7]. Considering the energy of both random number
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generation and stochastic processing, a stochastic multipler only consumes less energy
than conventional processing methods for up to 3-bit precision. However, ignoring
the energy required to generate stochastic inputs, the stochastic multiplier cell uses
less energy than conventional methods for up to 12-bit precision numbers [7]. This is
very promising for future work on stochastic processing, if the energy requirements

for generating the random number inputs could be reduced.

Conclusion

The subsequent work focuses on the probabilistic nature of a single QCA cell
and how this can be manipulated to implement a tunable hardware random number
generator. A low energy method of fast random number generation will be of use in
stochastic computing, as well as many other applications including cryptography and

quantum communications.
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CHAPTER TWO

Theory

Creating a tunable random number generator using a coupled pair of quantum
dots or “DQD?” is possible because there are particular parameters which can be used
to affect the probabilities of measuring a |0) or a |1). These parameters are the
hopping or tunneling energy ~ and the bias A. The tunneling energy is a measure
of how much energy is required to move from one state to the other, and the bias
is a measure of how much one state is preferred over the other. By tuning these
parameters, one alters the energetics of the DQD such that the probability of the
cell changes. By doing this dynamically and measuring the cell repeatedly, tunable
random number generation can be accomplished.

First, we must cover the mathematics of determining a cell’s state. The charge
basis of a DQD is defined as B = {|0),|1)}. A DQD’s state may be, in accordance
with quantum mechanical theory, any complex superposition [1)) = ¢y |0) + ¢1]1).
However, a measurement of a DQD will yield only a “0” or “1” which is reduced
from the state |¢)). However, due to the probabalistic nature of quantum systems, 2
distinct measurements of the DQD will not necessarily return the same answer. The

probability of measuring a particular state is expressed as:

p(k) = |ew|* = e (2)

The Hamiltonian is a helpful way of characterizing the energetics of a system.
The matrix contains information on the energies of each state, and the transition
energy required to change states. We can use a Hamiltonian to characterize the
energetics of a system of QCA dots interacting with each other. The Hamiltonian of

a 4-dot cell is expressed as:

12
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where v is the tunneling energy between basis states, and A is the detuning, o, and

o, are Pauli operators:

oz = |1) (0] +10) (1]
(4)
0. = [1) (1] = 10) (0]

The solutions to the time-indepedent Schrodinger equation are the eigenstates |¢,,)

with their corresponding eigenenergies F,,, where n € 1,2 and E; < FEs.

E} is used to represent the ground state eigenenergy, and the eigenstate |¢;) represents
the ground state. Likewise, the state |¢o) denotes the excited state with energy Es.

It can be shown that:

B = LA (6)
and:
61) = ————(a]0) +|1)) (7)
1/ — a2 + 1 )
using:
AR N

2y
Given a system relaxed into the ground state |¢;), a position measurement
will randomly yield a state |¢) € {|0),|1)} with the probabilities in Equation 9. A

graphical representation of these probabilities is shown in Figure 9 for A € [—1,+1].

13
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Figure 9: This curve shows how the probability of measuring each state as the bias is
adjusted. This principle is what allows easy tuning of the measurement probabilities.

Importantly, these probability equations depend on A, a tunable driver po-
larization. This means that the probability of a cell, the probability that a given
measurement will yield |1), can be dynamically modified. Therefore, by performing
some number N consecutive measurements on a DQD an N-bit random number can
be assembled by placing one randomly generated bit in a string after the previously
measured bit.

A QCA based random number generator requires no software post process-
ing. This means the energy used to generate a stochastic number is only the energy
required to bring the cell from its ground state |¢;) to its measured state. Each

measurement projects the system onto one of the basis states, either |0) or |1). The

14



average energy required to generate a random bit is:

2 2
Eog = 4, (10)
V4?2 + A?
and the total power required to generate bits at a rate of N bits/s is:
Ptot = EavgN
11
N -
/472 +A2
Equation 11 was graphed for v = 0.03 eV and for a range of A = [—1,1]

eV. The resulting graph is shown below in Figure 10. This figure illustrates that the
worst case scenario for power consumption occurs at A = 0. From this realization a
general expression for the max power required to generate bits at a rate of N bits/s

was found, and is shown in Equation 12.

Ptot(A = 0) = N7 <12)

For generating a string of random bits, it will likely be preferable to use re-
peated measurements of a single DQD to generate a random bit sequence in a serial
method. Here, one quantum device is associated with each stochastic input. The
alternative is a parallel method, which would require a massive network of intercon-
nections from a large number of DQDs to a single logic gate input. Because generation
of a bit string will be a serial operation, the relaxation time 7} for the quantum sys-
tem will play an important role in defining the bit rates possible for generating a
stochastic bit sequence as well as setting the time scale for single measurement oper-

ations. Figure 11 show the timing scheme required for generating random bits from

the DQD.
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Figure 10: Average power dissipation and probability shown as a function of A with
v = 0.03 eV. The maximum power is consumed for A=0, which corresponds to
p(1)=0.5. This maximum power for a rate N = 10® bits/s is 480.6 fW.
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Figure 11: Showing timing of measurement then relaxing for generating bits with a
QCA cell. This is the process for generating just 2 bits, but the cycle can go on for
any desired number of bits.
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CHAPTER THREE

Device Implementation

Quantum-dot Cellular Automata (QCA) cell implementation is an active area
of analysis with lots of open questions. These questions include determining optimal
qualities of a good candidate molecule, how the state of a QCA cell can be read,
and how sample reading must be spaced out in time. Systems of quantum dots with
localized charge states have been fabricated and tested for application in a low-power,
classical computing paradigm known as Quantum-dot Cellular Automata [8] [9]. QCA
Devices have been implemented using both metallic quantum dots [2] [10], and using
semiconductor devices [2]. Molecular cells offer certain benefits over other options,
particularly operating temperature and size. State read-out may be achieved by

measuring the charge state using single-electron transistors (SET) electrometers.

Single Electron Transistor Readout

Bit read-out may be done using SET electrometers, which have demonstrated
sensitivity to sub-nanometer displacements of single electrons [11]. This high level of
sensitivity makes it a great tool for tiny systems such as QCA cells. An SET can be
useful in taking measurements of any quantum system which has two distinct charge
states [12]. Since a QCA cell has a defined basis of ) € {|0),|1)}, the SET is a
good fit for this application. An important question to consider is whether the SET
will be able to measure within an appropriate amount of time to avoid causing other
problems. Determining how long a measurement should take, and how long to wait
between consecutive measurements, is a challenging task and finding answers to these

questions will require future research.
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The Quantum Zeno effect can help inform the optimal measurement time
for a quantum mechanical system. This effect states that there exists “inhibition
of transitions between quantum states by frequent measurements” [13]. This is to
say that if measurements are taken too frequently, the system will not have time
to evolve after being collapsed during the last measurement, resulting in continuous
measurement. A continuously measured state can never decay [13]. So, if you know

the state of the system at all times, it will never change.

Metal-dot Cell Implementation

Capacitively coupled metal dot QCA cells yield “experimental results show
excellent agreement with theory” [2]. The great accomplishment of building real-life
QCA celles demonstrated that QCA computing devices are attainable. However, this
implementation does have its drawbacks. For example, testing was conducted at a
temperature of 15 mK [2], because higher temperatures would disturb the proper
operation of the cells. Some of the issues that arise due to the small size of the cell
are “quantum effects and nondeterministic behavior of small current” [14].

Metal-dot QCA devices have been fabricated and used to gather data [2]. In
these experiments, the device under test consisted of four Aluminum (Al) islands
having two input dots D1 and D2 and two output dots D3 and D4. Two Al —
AlO,— Al tunnel junctions were contructed on a Silicon substrate using electron beam-
lithography and shadow evaporation creation techniques to allow electrons to travel
between the dots. This arrangement is shown below in Figure 12. In a lithographic
implementation, the detuning A may be achieved by directly applying a voltage
between dots 1 and 0: A = ¢V, where ¢ is the mobile charge, and V is the applied
voltage.

Important considerations for comparing the metal-dot implementation covered

in Orlov’s research and possible molecular implementations are cell area, operating

18
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Figure 12: Metal-Dot QCA Implementation [2]

temperature, and switching speed. The area of the junctions in a metal dot cell is

7

“about 60 nm by 60 nm,” and the base temperature of the cell is 15 mK at the time
of the experiments performed [2]. For a metal-dot QCA implementation a damping
rate of 0.15 GHz is obtained [15] [16] using with intercell coupling F0 = 0.62 meV.
This damping rate tells us that a metal-dot QCA has a relaxation time of 6.7 ns,

which in turn gives us back a possible clocking rate of 1.5 GHz.

Molecular-dot Cell Implementation

Molecular DQDs have been conceived for applications such as molecular charge
qubits [17] and room temperature, low-power classical computing devices known as
quantum-dot cellular automata [8] [18]. Such molecular-dot QCA systems could sup-
port clocking rates “well beyond the GHz range” [6]. Here, a single mixed-valence
molecule provides a coupled pair of dots, with redox centers functioning as quantum
dots. In one system proposed for biasing a DQD using an applied electric field, [19]

the detuning is

A=—qkF-d. (13)

19
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a cell.
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Here ¢. > 0 is the fundamental charge, E is the applied biasing electric field,
and @ is the vector of length a in a direction pointing from dot 0 to dot 1 as in
Figure 13. Here, |d| is the distance between the coupled dots, and for a differocenyl
acetylene (DFA) molecule this distance is a mere a = 0.67 nm [6]. For a DQD based
on an ionic DFA, it has been calculated that relaxation times under a field-driven
bias are 77 = 1 ps [20]. Taking T = 10 ps, it will be possible to generate stochastic
bits at a rate of 100 Gb/s. It is also important to keep sample times of the time

scale At,, < 1ps.

Conclusion

As stated above, the molecular implementation has a notable advantage in
regards to size, having a distance of just 0.62 nm rather than the 60 nm distance
between dots in the metal-dot implementation. Also, the molecular implementation
supports room temperature operation, while the metal-dots require cryogenic cool-
ing. Finally, the molecular implementation supports THz range switching speeds,
while metal dots do not even keep up with current semiconductor device speeds. The
molecular-dot cells are clearly better on all accounts, other than the ease of imple-
mentation. Current lithographic techniques can produce metal-dot cells, while further

work is required to create molecular cells.
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CHAPTER FOUR

Discussion

QCA is a technology that could enable electronics to continue getting faster,
smaller, and more efficient after semiconductor transistor based devices cannot con-
tinue shrinking. It can be used to implement a logically complete set, which means
that it is suitable for designing all types of digital circuits. It also has the unique
ability to act as a random number generator, due to the quantum mechanical behav-
ior inherent in its operation. This random number generation implementation will
use far less power than traditional methods, and it requires no post-processing in
software.

A molecular QCA based random number generator can generate random bits
at a rate of 100 Gb/s or higher. The maximum power required to generate bits at
a rate of 100 million bits per second is just 480.6 fW. This maximum occurs when
A = 0 which corresponds to a probability p(|1)) = 0.5. The minimum power, which
occurs when A = —1 and A = 1 is just 28.8 fW. This device would meet the need for
lower energy random numbers, which would help a variety of applications including
cryptography [21], stochastic computing, and quantum communications protocols like

BBS4 [22).

Further Questions

There are several questions which must be further explored before these sys-
tems can be implemented to their full potential. This research is complemented by
chemists whose research is instrumental in finding molecules which exhibit the correct

properties to act as QCA cells. Such a molecule should have 2 redox centers, should
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have 1 free electron, should be small in size, and should be easy to create. Becuase
the power required to generate a bit string is directly related to hopping energy -,
which is shown in Equation 12, it will be helpful to keep this value low. Some of the
more specific properties of an ideal candidate molecule are currently being explored.

An important step to take is to physically realize this system. There is incred-
ible value in being able to gather data and information from a hardware implemen-
tation of this theory to understand how well our models truly describe the system.
A reliable method for fabricating cells using such small molecules is not yet known.
Some promising work has been done using DNA tiling, which may be used to create
molecular QCA devices in the future [24].

Another important step to take in the future is to consider how the DQD ran-
dom number generator would interface with the stochastic processor. This should be
done efficiently because as more buffering and processing are included in the system,
more latency is introduced. This interfacing could be done by using all QCA logic.
QCA cells can implement the three basic logic operations, as explored in Chapter 1,
so the digital logic gates needed for the stochastic computing could be implemented
directly using QCA. In this way the need for measuring input values would be elimi-
nated, and only the system’s output value would need to be measured.

The power consumption of QCA should be further explored to determine the
marginal benefit of using QCA for RNG compared to traditional methods. Analyzing
the power usage of each method can help to develop a full comparison. Power analysis
of QCA has been explored by Lent [25], and an equation for the power consumed due

to an arbitrary bit rate is provided in Equation 11, but further exploration is needed.
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