
ABSTRACT

Brillouin and Transverse Mode Instabilities in Fiber Amplifiers
for High-Energy Laser Systems

Joshua T. Young, Ph.D.

Advisor: Jonathan Hu, Ph.D.

High-energy fiber lasers have developed a lot of interest due to their appli-

cations in industry, medicine, and defense. Recent advances enabled an explosive

growth in operating power to the scale of multi-kilowatts. However, nonlinear effects

such as the Brillouin instability (BI) and the transverse mode instability (TMI) im-

pose limits on the power of high-energy fiber amplifiers. This dissertation focuses on

the theoretical modeling of these nonlinear effects. The goal is to model these effects

and further propose new mitigation techniques to increase the operating powers and

advance the techniques for high-energy fiber amplifiers. The nonlinear effects in op-

tical fibers often involve mode coupling. Avoided crossings occur when two modes

are strongly coupled to each other and share similar propagation constants. We

start with a tutorial to study avoided crossings in one-dimensional slab waveguides

in both index guiding and antiresonant waveguides. We use simple one-dimensional

slab waveguides as examples to illustrate the physics and properties of avoided cross-

ings in more complicated specialty optical fibers. We study the TMI in an Yb-doped

fiber amplifier in the presence of a single higher-order mode (HOM). Current mod-

eling techniques for TMI require that the longitudinal discretization be substantially

smaller than the beat length between the fundamental mode and HOM. We for-

mulate the phase-matched model for TMI, which only considers the phase-matched



terms that contribute to the coupling between the fundamental mode and HOMs.

By doing so, the number of sections in the longitudinal discretization may be greatly

decreased, which leads to a large computational win with no loss of accuracy. The

BI may be modeled as a three-wave mixing process where two optical modes interact

with a resonant acoustic mode. We consider phase modulation of the input pump as a

suppression technique for BI. We show that piecewise parabolic phase waveforms like

sawtooth and triangle phase may provide larger power thresholds compared to that

of the more commonly used pseudorandom bitstream (PRBS) modulation. Because

of the nearly rectangular spectrum associated with piecewise parabolic phase modu-

lation, these modulation schemes are better fitted for power scaling such as spectral

beam combining. Recently, our piecewise parabolic phase idea that was published

was experimentally demonstrated. We further consider a single computational model

that models BI and TMI together. A multi-time-scale approach must be used since

these nonlinear effects evolve over drastically different time scales. Both BI and TMI

depend differently on the core diameter of the fiber. At and under the pump power

threshold for the combined BI-TMI model, the pump power threshold closely follows

that of the individual BI and TMI models. However, BI may trigger TMI when strong

BI leads to stochastic oscillations in the fundamental mode amplitude. This feature

cannot be predicted by modeling either BI or TMI alone. At the end, we discuss the

future prospects for high-energy laser fiber amplifiers and give a summary.
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CHAPTER ONE

Introduction

1.1 High-power lasers

Fiber lasers have desirable features such as robust single mode operation, high

gain, and efficient energy conversion [1–4]. Over the last few decades fiber lasers

have seen an explosive increase in operating powers [1–4]. Originally fiber lasers were

thought to only apply to telecommunication applications because of low attenuation

and the ability to support high-capacity channels compared to regular cables [3, 5–

7]. The performance improvement has made fiber lasers a successful, fast increasing

commercial business, thanks to the advanced technologies in high-quality fibers and

fiber components. High energy lasers now have a plethora of applications ranging

from material machining and cutting [8], medicine [8], and defense [8, 9]. Even with

60 years of successful active research since laser invention [10], the research on high-

power lasers has not reached an end, and the demand for lasers with a higher power

keeps increasing. High-energy fiber amplifiers have made significant headway and

improvement in output powers due to the use of double-clad fiber geometries [11,12],

which were first proposed in 1974. Figure 1.1 shows a schematic of the double-clad

fiber geometry. The dark blue region represents the high index doped core, the black

circles in the dark blue region represent the rare-earth dopants, the light blue region

represents the inner cladding, the dark gray region shows the outer cladding, and

the red and yellow arrows represent the pump and signal light, respectively. The

main benefit of the double-clad fiber is the ease of getting the pump light into the

fiber. Rather than attempting to couple high power pump light into a small core,

the double-clad fiber has a high power, low brightness pump injected into a much

larger inner cladding. As the pump light propagates down the fiber, the light gets

absorbed by a rare-earth doped core. The result is extremely efficient conversion

1



of low brightness pump light into a high-power coherent output. Since then, there

has been an almost exponential growth in output power for continuous wave lasers,

reaching to the 10-kW level [13]; however, further increase of the power threshold in

single mode fibers has been challenging.

Nonlinear effects have regularly been a roadblock in achieving larger output pow-

ers, such as self-focusing [14], stimulated Raman scattering (SRS) [14], the Brillouin

instability (BI) due to stimulated Brillouin scattering (SBS) [14], and the transverse

mode instability (TMI) [15]. While extensive work has been done on the modeling

and mitigation of certain nonlinear effects, the interaction between multiple nonlin-

ear effects is not well understood. With current suppression techniques and fiber

designs, BI and TMI appear to be the main limiting nonlinear effects that prohibit

further power scaling. There is a strong motivation to further study these effects

so that effective simulation modeling tools and mitigation techniques may be devel-

oped to increase operating powers. The study of the BI and TMI is the focus of this

dissertation.

1.2 Brillouin instability

The Brillouin instability (BI) arises in fiber amplifiers from stimulated Brillouin

scattering (SBS). For SBS to emerge, thermally seeded acoustic phonons interact with

a forward propagating optical mode. At low input pump powers, this interaction

Figure 1.1. Double clad fiber geometry.
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results in spontaneous Brillouin scattering where acoustic phonons are spontaneously

excited. These acoustic phonons enable the transfer energy to a backward propagating

Stokes mode due to the acousto-optic effect. As the pump power increases, the

forward and backward optical modes constructively and destructively interfere with

each other, which at sufficiently high powers can lead to a resonant acoustic wave

that enables significant power transfer between forward and backward propagating

optical modes due to electrostriction. This will often cause a drop in output power

with large, reflected pulses that are directed toward the pump or laser source but can

also cause physical damage to the fiber in extreme cases. Figure 1.2 shows the modes

used to describe the behavior of BI. The Stokes mode has a negative wavenumber,

the fundamental (pump) mode has a positive wavenumber, and the acoustic mode

varies longitudinally along the fiber.

Typical concepts for suppressing BI involve either reducing the overlap between

optical and acoustic modes, disrupting the resonant acoustic mode, and broadening

the laser linewidth to that greater than the Brillouin linewidth. Reducing the overlap

between acoustic and optical modes requires specially designed fibers such as photonic

crystal fibers (PCFs). Disrupting the density fluctuations in the material has been

done experimentally by applying thermal and mechanical stress gradients along the

fiber. Of the concepts previously discussed, broadening the laser linewidth does not

require any modifications to the amplifier design since broadening the laser linewidth

may be done with phase modulation [16–19]. Power threshold for BI is commonly

defined as when the reflected Stokes power reaches 1% of the pump power [16–19].

Figure 1.2. Schematic of modes for BI.
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When light passes through an optical fiber, each component in the spectrum will have

a Brillouin gain linewidth associated with it, which is typically redshifted by tens of

GHz [20–22]. Phase modulation techniques such as white noise [17, 23], sinusoidal

[17], chirped seed [24], piecewise parabolic phase [19], and pseudo-random bitstream

(PRBS) [17,18,23,25,26] have all been used in experiment and simulation to suppress

BI. Phase modulation suppresses BI by broadening the effective Brillouin linewidth,

lowering the peak Brillouin gain, and equalizing the gain across the Brillouin gain

spectra.

1.3 Transverse mode instability

The transverse mode instability (TMI) is another nonlinear effect that limits the

output power of HEL fiber amplifiers. First documented in 2010 [15], TMI is ob-

served as the sudden onset in an unstable transverse output mode profile. What

starts as a near Gaussian beam quickly devolves into a time dependent multimode

output profile. TMI significantly reduces the output beam quality and increases the

difficulty of successful beam combining for power scaling applications. TMI’s root

comes from quantum defect heating. TMI starts from the constructive and destruc-

tive interference between the forward optical fundamental mode and forward optical

higher-order mode (HOM) that is offset by the fundamental mode by around a kHz.

The light interference pattern that develops creates a temperature grating along the

longitudinal direction of the fiber because of the thermo-optic effect. The tempera-

ture grating causes a refractive index grating that enables power transfer between the

fundamental mode and HOM. In low power cases there is oscillatory power transfer

between the fundamental mode and HOM but increasing operating power may lead to

chaos where nearly all of the power in the fundamental mode transfers to HOMs with

no steady state reached. Figure 1.3 shows a schematic of the modes present when

4



considering TMI. Both the fundamental and HOM travel in the forward direction of

the fiber. For TMI, only the transverse temperature profile is considered.

Suppressing TMI can be divided between intrinsic and extrinsic methods. Intrinsic

suppression techniques involve modifying fiber design such as reducing the spatial

overlap between the gain profile and HOMs [27], reducing the spatial overlap between

the fundamental mode and HOMs [27], minimizing the distance between the shift in

total intensity when HOMs are present [27], and designing the fiber such that HOMs

are not supported in some region [27]. Extrinsic techniques refer to suppression of

TMI without modifying the fiber design such as inducing bend loss [28, 29] for the

HOM and optimizing the difference between pump and signal wavelengths [2,30,31].

1.4 Other nonlinear effects

While BI and TMI are the lowest order nonlinear effects exhibited in fiber ampli-

fiers, other nonlinear effects may arise, such as stimulated Raman scattering (SRS)

and self-focusing [14, 32]. Like SBS, SRS can be induced by the interaction of vibra-

tions in the crystal lattice of the waveguide. When these vibrations correspond to

optical phonons, SRS arises, whereas when the vibrations involve acoustic phonons

SBS is manifested. The frequency shifts are also different for SRS and SBS, the for-

mer is usually on the scale of THz and the latter on the scale of GHz. Self-focusing is

another unique nonlinear effect in that it does not depend on the light intensity like

Figure 1.3. Schematic of modes for TMI.
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BI and TMI do, but rather on the total power [32]. Therefore, changing the mode

diameter alone will not suppress self-focusing. On the other hand, self-focusing has a

power threshold a few orders of magnitude larger than that of BI or TMI, which in

the case for silica fibers is around 5 MW [32].

1.5 Organization of dissertation

The rest of the dissertation is organized as follows: Chapter two describes mode

coupling in simple one-dimensional slab waveguides for both index guiding and anti-

resonant structures. The avoided crossings in effective index for the modes are also

studied. The coupled-mode equations that describe the interaction in simple slab

waveguide structures are expanded to understand and compare avoided crossing be-

havior with that of the more complicated in design hollow-core fibers. Chapter three

reviews the current theoretical models used to simulate the transverse mode insta-

bility based on coupled-mode theory. The full model and phase-matched model are

compared. TMI is computationally intensive to model on the account that the entire

fiber must be discretized in three dimensions. The phase-matched model allows for a

much coarser longitudinal discretization and leads to a large computational speedup

with no loss of accuracy. Chapter four describes theoretical modeling and suppres-

sion of the Brillouin instability using phase modulation. Chapter five describes a

multi-time-scale approach to simultaneously model the Brillouin and transverse mode

instabilities in a single simulation. Fiber geometry is optimized to achieve the largest

output power at the pump power threshold. A summary is then given in Chapter

six. We also discuss future prospects for mitigation and modeling of nonlinear effects

that limit operating power in fiber amplifiers.
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CHAPTER TWO

Avoided Crossings in Slab Waveguides

This chapter published as part of [33]: J. T. Young, C. Wei, J. Hu, and C. R.
Menyuk, “Mode coupling at the avoided crossings in slab waveguides with

comparison to optical fibers: tutorial” J. Opt. Soc. Am. B 38(12), F104–F114
(2021).

In this chapter, we describe the avoided crossings in slab waveguides and compare

the behavior to that of optical fibers. Avoided crossings are important in many

waveguides and resonators. That is particularly the case in modern-day solid-core

and air-core optical fibers that often have a complex geometry. The study of the

mode coupling at the avoided crossings often leads to a complicated analysis. In

this tutorial, we aim to explain the basic features of avoided crossings in a simple

slab waveguide structure so that the modes can be found analytically, with simple

sinusoidal and exponential forms. We first review coupled-mode theory for the guided

mode in a slab waveguide, which has a higher index in the core. We study the effective

index of the guided true mode for the five-layer slab waveguide including two core

layers with a higher index compared to the index in the three cladding layers. Then,

we study the same structure by using the overlap between approximate modes that

are confined in the two individual core slabs. When the two individual core slabs are

not near each other, the avoided crossing using the true modes within the two-slab

waveguide agrees well with the results using the overlap between the two approximate

modes. We also study coupled-mode theory and avoided crossings for leaky modes

in an antiresonant slab waveguide. We obtain good agreement between the results

using the true leaky mode and the results using the overlap between the approximate

modes. We then discuss examples of avoided crossings in solid-core and air-core

optical fibers. We describe the similarities and differences between the optical fibers

and the simple slab waveguides that we have analyzed in detail.
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2.1 Introduction

2.1.1 Avoided crossings in different devices

Avoided crossings between modes appear in many optical waveguides and res-

onators. They often occur between modes in a single waveguide or resonator, or due

to coupling between modes in different waveguides or resonators that are in close

proximity. The study of the mode coupling in hollow-core fibers often leads to a

complicated analysis, because the modes experiencing avoided crossings in hollow-

core fibers are leaky modes [34], which requires a computational solution due to the

complex structures. Leaky modes and avoided crossings have long been studied in

optical systems. While the theory of avoided crossing is well understood in the case

of guided modes in optical waveguides, there has been little or no study of avoided

crossings in optical waveguides that have leaky modes and whose structure is suf-

ficiently simple for the modes to be derived analytically. In this tutorial, we focus

on one-dimensional slab waveguides to study the avoided crossings for leaky modes

in a simple context. The formulation of coupled-mode analysis has been presented

in Ref. [35]. This formulation of coupled-mode theory applies to guided modes, and

it cannot be directly applied to leaky modes. We describe here the revision of the

coupled-mode equations that is necessary to describe leaky modes in one-dimensional

slab waveguides.

Optical waveguides can be divided into two categories: one-dimensional waveg-

uides and two-dimensional waveguides. The slab waveguides in one-dimensional struc-

tures appear in a wide range of applications, including photonic-integrated circuits

(PICs). PICs may make possible high-throughput and low-power signal processors

that overcome the limits of conventional electronic digital signal processing technol-

ogy [36]. One-dimensional PIC structures have been studied, but no detailed study of

avoided crossings has been carried out using slab waveguides. Avoided crossings can

play an important role in the mode coupling in silicon PICs [37]. Recently, hollow-
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core optical fibers that are two-dimensional waveguides have been widely studied and

can have low loss values around 0.5 dB/km [38–44]. These fibers can be designed

so that most of the power is transmitted through an air core with low loss and low

nonlinearity. As a result, hollow-core fibers are useful for a variety of applications,

such as high-power delivery [45], biological applications [46,47], gas lasers [48–50], and

supercontinuum generations [51]. In air-core optical fibers, such as negative curvature

fibers, the fundamental core mode couples strongly to additional core and cladding

modes in certain conditions. The analysis of avoided crossings using antiresonant

glass partitions can provide insight into the mode coupling and the loss of the core

mode in negative curvature fibers [52–54]. If the glass partition thickness corresponds

to antiresonance in the slab waveguide, then the fundamental mode loss is low. In this

case, the width of the avoided crossing, which is defined as the minimum difference in

effective indices of the coupled modes, is small due to weak coupling. When the glass

thickness corresponds to resonance, there is a larger avoided crossing width, and the

fundamental mode experiences a higher loss. In addition, ring resonators have been

successfully used for filters, biosensing, and frequency comb generation [55]. Mode

coupling and avoided crossings are important in understanding the efficiency of ring

resonators.

2.1.2 Brief history on the study of avoided crossings

Avoided crossings, also known as anticrossings, were first described in quantum

mechanics by Neumann and Wigner who showed that energy levels of electronic

states cannot cross [56]. Avoided crossings have also been used to explain the non-

intersection of electron energy states for different molecules [57, 58]. The first dis-

cussion of avoided crossings in optics was made in 1963 by Eck et al. in their study

of fluorescence [59]. In 1979, Marcuse and Kaminow observed avoided crossings of

transverse electric (TE) and transverse magnetic (TM) modes within a thin-film slab
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waveguide [60]. The first study of avoided crossings in optical fibers was carried out

in 1988 in a fiber-optic ring resonator [61]. More recently, avoided crossings have be-

come important in understanding the coupling between the core and cladding modes

in solid-core photonic crystal fibers [62], photonic bandgap fibers (PBGFs) [63–67],

negative curvature fibers [52–54], and kagome fibers [68]. In high power laser systems

using a photonic crystal fiber, it was later found that the avoided crossing induced

by the pump profile, bending, or index depression may lead to unwanted deforma-

tions of the output beam [62]. On the other hand, avoided crossings have been used

for optical filters [69], refractive index sensors [70–72], temperature sensors [73], and

higher-order mode (HOM) suppression [52,74, 75].

The rest of this tutorial is organized as follows: in Sec. 2.2, we review the equa-

tions for the coupled-mode theory for the guided mode in a high-index core slab

waveguide. Section 2.3 describes an example of a guided mode in a slab waveguide,

where the index of core, ng, is larger than the index of cladding, nc. We compare

the computational results, computed using the finite difference method (FDM), to

the results from coupled-mode theory. Section 2.4 describes the derivation of the

coupled-mode theory for leaky modes in an antiresonant slab waveguide. Section 2.5

shows an example of mode coupling in an antiresonant slab waveguide. We again

compare the computational results to the results from coupled-mode theory. In Sec.

2.6, we discuss how the insights that we have gained can be applied to more complex

geometries, and we conclude in Sec. 2.7.

2.2 Coupled-mode theory for guided modes in a slab waveguide

We start with a description of the guided modes in a one-dimensional five-layer

slab waveguide with two core layers and three cladding layers, shown in Fig. 2.1(a).

The refractive index of the two guiding layers is ng and the refractive index of the

surrounding layers is nc. To have guided modes, we must have ng > nc. The thick-

10



Figure 2.1: (a) Illustration of the two-core index-guided waveguide structure. (b) Illustra-
tion of the refractive index profiles for waveguides 1, 2, and 3. [Reprinted/Adapted] with
permission from [33] © Optica Publishing Group.

nesses of the guiding layers are t1 and t2. In coupled-mode theory, we decouple the

two guiding layers by considering the modes in two waveguides each of which has one

guiding layer, corresponding to one of the two guiding layers in the original waveguide,

labeled waveguide 3 in Fig 2.1(b).

The refractive index distributions for waveguides 1, 2, and 3 are denoted by n1(x),

n2(x), and n3(x), respectively, and may be written as

n2
1(x) = n2

c + n2
−
(x),

n2
2(x) = n2

c + n2
+(x),

n2
3(x) = n2

c + n2
−
(x) + n2

+(x),

(2.1)

where n2
+(x) and n

2
−
(x) are defined as
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n2
+(x) =















n2
g − n2

c g/2 < x < g/2 + t2

0 otherwise

,

n2
−
(x) =















n2
g − n2

c −t1 − g/2 < x < −g/2

0 otherwise

.

(2.2)

We will focus on TE modes. In this case, the field component Ey obeys the Helmholtz

equation,

∂2Ey

∂z2
+
∂2Ey

∂x2
+
n2(x)ω2

0

c2
Ey = 0. (2.3)

If we consider one mode in waveguide 1 with a normalized transverse profile ψ1(x)

and wavenumber β1 and one mode in waveguide 2 with normalized transverse profile

ψ2(x) and wavenumber β2, then there is a propagating electric field in waveguide 3

that may be written approximately as

Ey(x, z, t) = A1(z)ψ1(x)exp[i(ω0t− β1z)] + A2(z)ψ2(x)exp[i(ω0t− β2z)]. (2.4)

The transverse mode profiles ψ1(x) and ψ2(x) are normalized so that
∫

∞

−∞
|ψ1,2|

2dx =

1. The parametersA1(z) andA2(z) are slowly varying amplitudes for waveguides 1 and 2

respectively, so that

−β2
1ψ1 +

∂2ψ1

∂x2
+
n2
1(x)ω

2
0

c2
ψ1 = 0,

−β2
2ψ2 +

∂2ψ2

∂x2
+
n2
2(x)ω

2
0

c2
ψ2 = 0.

(2.5)

Substituting Eq. (2.4) into Eq. (2.3) and using Eq. (2.5) with the slowly varying

envelope approximation so that, |∂2A1,2/∂z
2| ≪ β1,2|∂A1,2/∂z|, we obtain
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−2iβ1ψ1
∂A1

∂z
exp(−iβ1z)− 2iβ2ψ2

∂A2

∂z
exp(−iβ2z)

+
n2
+(x)ω

2
0

c2
A1ψ1exp(−iβ1z) +

n2
−
(x)ω2

0

c2
A2ψ2exp(−iβ2z) = 0.

(2.6)

We now multiply the above equation by ψ∗

1(x) and ψ
∗

2(x), integrate over x, and use

the normalized fields, yielding two equations,

∂A1

∂z
+
iκ12
2β1

A2exp[i(β1 − β2)z] = 0,

∂A2

∂z
+
iκ21
2β2

A1exp[−i(β1 − β2)z] = 0,

(2.7)

where

κ11 =
ω2
0

c2

∫

∞

−∞

n2
+(x)|ψ1(x)|

2dx,

κ12 =
ω2
0

c2

∫

∞

−∞

n2
−
(x)ψ∗

1(x)ψ2(x)dx,

κ21 =
ω2
0

c2

∫

∞

−∞

n2
+(x)ψ1(x)ψ

∗

2(x)dx,

κ22 =
ω2
0

c2

∫

∞

−∞

n2
−
(x)|ψ2(x)|

2dx.

(2.8)

In the derivation, we assume that ψ1(x) and ψ2(x) are well confined in the individ-

ual waveguides, so that
∫

∞

−∞
ψ∗

1(x)ψ2(x)dx ≪ 1, κ11 ≪ κ12, and κ22 ≪ κ21. The

amplitudes in the individual waveguides can be written as

A1 = R1exp[i∆βz/2],

A2 = R2exp[−i∆βz/2],

(2.9)

where ∆β = β1 − β2, while R1 and R2 are slowly varying quantities. Using Eq. (2.9),

we can rewrite Eq. (2.7) in matrix form as

dR

dz
= iλR = −i







∆β/2 κ12/(2β1)

κ21/(2β2) −∆β/2






R, (2.10)
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where R can be written as

R =







V1

V2






eiλz = Veiλz. (2.11)

Equation (2.10) is a standard matrix algebra eigenvalue problem, where V is the

eigenvector. The condition for a nontrivial solution for V is that the determinant of

the matrix in Eq. (2.10) must vanish. We then find

−
(∆β)2

4
+ λ2 −

κ12κ21
4β1β2

= 0, (2.12)

which yields the solution λ1,2, where

λ1,2 = ∓
1

2

[

(∆β)2 +
κ12κ21
β1β2

]1/2

. (2.13)

According to Eq. (2.11), the corresponding normalized eigenvectors are






V1

V2






=







−κ12

β1(∆β + 2λ)






/{κ212 + [β1(∆β + 2λ)]2}1/2. (2.14)

When ∆β ≫ κ12, κ21, we find that λ1,2 = ∓∆β/2, and the solutions for V are (0, 1)

or (1, 0) which means the two solutions are entirely in waveguide 2 or waveguide 1.

When ∆β = 0, we find that β1 = β2 and κ12 = κ21 yielding the solutions of (1/2, 1/2)

or (−1/2, 1/2) for V; hence, the solution in field intensity is nearly equal in both

waveguides.

Using Eqs. (2.4), (2.9), and (2.11), the field in waveguide 3 may be written as

Ey(x, z, t) = V1ψ1(x)exp[i(ω0t− β′

1z)] + V2ψ2(x)exp[i(ω0t− β′

2z)], (2.15)

with

neff1 = β′

1/k0 =
1

k0

(

β1 + β2
2

− λ1

)

,

neff2 = β′

2/k0 =
1

k0

(

β1 + β2
2

− λ2

)

,

(2.16)
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where k0 is the wavenumber, and neff1,2 = β′

1,2/k0 are the effective indices of the two

modes that we are considering. We now obtain the width of the avoided crossing

when β1 = β2 and ∆β = 0,

δ = |neff1 − neff2| =
1

k0

(

κ12κ21
β1β2

)1/2

, (2.17)

which we define as the minimum difference in effective indices for the two modes in

waveguide 3. The coupling coefficients κ12 and κ21 are given in terms of the approxi-

mate modes according to Eq. (2.8). We have thus found that the refractive index of the

true modes and the avoided crossing in waveguide 3 can be approximately obtained

using the refractive index and mode profiles of the modes of waveguides 1 and 2.

2.3 Example of mode coupling in a slab waveguide with guided modes

In this section, we will use the equations from Sec. 2.2 to study the mode coupling

between the fundamental modes in the five-layer slab waveguide with two core layers

and three cladding layers (waveguide 3). We consider an example with ng = 1.45 and

nc = 0.96ng = 1.39 that was previously studied [34]. The thickness of the first glass

layer, t1, is fixed at 5 µm. The wavelength is 1 µm. The gap between glass slabs, g, is

fixed at 2 µm. We increase the thickness of the second glass layer, t2, from 4 µm to 12

µm so that the avoided crossing can be observed. In Fig. 2.2(a), the solid blue curves

show the effective indices of the modes in the two-layer slab waveguide 3, shown in

Fig. 2.1. The dotted green curve shows the effective index for the fundamental mode

of waveguide 1, which has a constant value of 1.44742. The dotted orange curves

show the effective indices for the fundamental mode and the first high-order mode of

waveguide 2, which has a changing thickness, t2. We use the FDM to calculate the

computational modes and the effective indices.

In Fig. 2.2(a), the dotted curves for the effective index of the two single-layer

waveguides overlap with the solid blue curves for the effective index of the two-layer

waveguide, except within an avoided crossing region. An avoided crossing occurs when
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Figure 2.2: (a) Effective index for the fundamental core mode in waveguide 1 and 2 (dashed
curves) and waveguide 3 (solid curve) as a function of t2. Inset in (a) shows a magnified plot
so that the avoided crossing may be easily seen. (b) Magnified plot in Fig. 2.2(a) around
the first avoided crossing at t2 = 5 µm. Insets show mode profiles in the waveguide 3. The
red dashed curve shows the effective index obtained from Eq. (2.16). [Reprinted/Adapted]
with permission from [33] © Optica Publishing Group.
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t2 is 5.0 µm or 10.6 µm, and the modes in the two high-index glass layers couple. To

show the avoided crossing clearly, the inset in Fig. 2.2(a) shows a magnified plot near

the first avoided crossing so that the differences in the effective indices may be easily

distinguished. The insets in Fig. 2.2(b) show the mode profiles in waveguide 3 for

different t2 thicknesses equal to 4.7, 5.0, and 5.3 µm near the first avoided crossing.

When t2 < 5 µm, the modes are well confined in one of the glass layers. When

t2 = 5 µm, where the avoided crossing occurs, the two modes become a hybrid even

or odd mode, which is located in both of the two high-index layers. When t2 > 5 µm,

the coupling decreases and the two modes are again primarily located in one of the two

glass waveguides. If we follow the modes along either of the continuous branches of the

effective index, we see that the mode switched from one waveguide to the other. This

mode-swapping is a characteristic feature of avoided crossings. We now use Eq. (2.17)

from coupled-mode theory to study the avoided crossing, as shown in the dashed red

curves in Fig. 2.2(b). We found that the dashed red curves using Eq. (2.17) agree

exactly with a computational FDM calculation of the modes in waveguide 3. Hence,

the overlap of approximate modes confined in waveguides 1 and 2 via coupled-mode

theory can account for the avoided crossing and makes it possible to approximate the

true modes in waveguide 3.

We now set t1 = t2 = 5 µm and vary the gap, g, between the core layers. We

plot the difference in the effective indices during the avoided crossing, δ, between

the fundamental mode in core layer 1 and the fundamental mode in core layer 2, in

Fig. 2.3. The top right inset in Fig. 2.3 gives an illustration of δ, showing the minimum

difference between effective indices of the modes in waveguide 3. The bottom left

inset shows a magnified plot of δ for small gap sizes so that differences between the

computational result and the result from coupled-mode theory may be distinguished.

The parameter, δ, can be used to quantify the width of the avoided crossing and

the strength of coupling between modes. A larger avoided crossing corresponds to a
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Figure 2.3: Avoided crossing width calculated using the minimum difference in the effective
index, δ, vs. the gap separation in waveguide 3. The solid blue curve shows the computa-
tional result, and the dashed red curve shows the approximate result from coupled-mode
theory [Eq. (2.17)]. The top right inset shows a magnified plot of Fig. 2.2(b) to illustrate
the avoided crossing at when g = 2 µm and t1 = t2 = 5 µm. The bottom left inset shows a
magnified plot when g is between 0.04 and 0.5 µm. [Reprinted/Adapted] with permission
from [33] © Optica Publishing Group.

stronger coupling. The value of δ decreases exponentially as g increases. As the gap

between adjacent core layers increases, the overlap between modes decreases, leading

to the decrease of the avoided crossing width. For very small gaps, the agreement

between the computational result and the approximate result from Eq. (2.17) breaks

down.

2.4 Coupled-mode theory in an antiresonant slab waveguide

In an antiresonant slab waveguide, the antiresonance condition is needed to guide

the mode in the central air slab [76]. To satisfy the antiresonance condition, the

phase difference in the directly transmitted transverse wave vector and transverse

wave vector with an additional two reflections must be an odd multiple of π. The
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glass thickness required for the antiresonance condition is given by [76–78]

Figure 2.4: (a) Illustration of the two-core antiresonant slab waveguide. (b) Definitions of
refractive index profiles. [Reprinted/Adapted] with permission from [33] © Optica Pub-
lishing Group.

t = (m− 0.5)λ/[2(n2
g − n2

0)
1/2], (2.18)

where m is a positive integer. To study coupled-mode theory in a leaky, antireso-

nant slab waveguide, we consider the slab waveguide that we show in Fig. 2.4(a),

which has two large air slabs surrounded by glass-air-glass layers. We use two closely-

spaced higher-index glass layers (a double glass partition) as a barrier between the

mode-confining air slabs, denoted as Wcore1,2, to reduce the mode content between

cores 1 and 2. In negative curvature fibers [77], center modes are naturally separated

from the cladding air modes. The negative curvature in the glass layer strongly con-

fines the fundamental mode so that it has low loss. To achieve a similar confinement

in the single slab structures that we are considering, we have found that it is necessary

to use the double glass partitions that we show in Fig. 2.4.

Antiresonant waveguides are waveguides in which a lower index or air core is

surrounded by higher-index or glass barriers, which is then surrounded in turn by more
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lower-index or air regions [34]. These can then be surrounded by more barriers, leading

to more complex structures. Slab waveguides with this structure are antiresonant

reflecting optical waveguides (ARROW) [76, 79], and if the outside cladding layers

are lower-index or air, then there are no completely confined modes, and the modes

of the structure will all be leaky [34]. However, the modes can be well-confined in the

core with low leakage if an antiresonant condition is obeyed [76,77].

Similar to the five-layer slab waveguide simulations that appeared in Sec. 2.2,

three structures are used to understand the coupling of adjacent air-core layers. The

refractive index distributions for the waveguides 1, 2, and 3 in Fig. 2.4(b) are given

by n1(x), n2(x), and n3(x),

n2
1(x) = n2

−
(x) + n2

m(x) + n2
0,

n2
2(x) = n2

+(x) + n2
m(x) + n2

0,

n2
3(x) = n2

−
(x) + n2

+(x) + n2
m(x) + n2

0,

(2.19)

where

n2
+(x) =































n2
g − n2

0 (t+ g/2 +Wcore2) < x < (2t+ g/2 +Wcore2)

n2
g − n2

0 (2t+ 3g/2 +Wcore2) < x < (3t+ 3g/2 +Wcore2)

0 otherwise

,

n2
−
(x) =































n2
g − n2

0 −(3t+ 3g/2 +Wcore1) < x < −(2t+ 3g/2 +Wcore1)

n2
g − n2

0 −(2t+ g/2 +Wcore1) < x < −(t+ g/2 +Wcore1)

0 otherwise

,

n2
m(x) =































n2
g − n2

0 −(g/2 + t) < x < −g/2

n2
g − n2

0 g/2 < x < g/2 + t

0 otherwise

.

(2.20)
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The field component Ey once again obeys the Helmholtz equation, Eq. (2.3); how-

ever, all the modes are leaky [34]. Absorbing boundary layers (ABLs) must be used

to calculate the propagation constants in leaky waveguides and the validity of this

approach is described in detail in [34]. The field in the coupled structure with an

index of n3(x) is approximated by Eq. (2.4). The transverse electric field distribu-

tions and propagation constants for the modes in waveguides 1 and 2 are denoted by

ψ1(x), ψ2(x), β1, and β2, respectively. The transverse field distributions ψ1(x) and

ψ2(x) are the solutions of the wave equation in the corresponding waveguide with the

index distributions n1(x) and n2(x), which yields

−β2
1ψ1 +

∂2ψ1

∂x2
+
n2
1(x)ω

2
0

c2
ψ1 = 0,

−β2
2ψ2 +

∂2ψ2

∂x2
+
n2
2(x)ω

2
0

c2
ψ2 = 0.

(2.21)

We normalize the transverse mode fields so that
∫

∞

−∞
|ψ1,2|

2dx = 1, which is possible

once the absorbing layers are added and is feasible if the leakage power in the modes

is small [34]. We carry out an analysis that is analogous to the analysis in Sec. 2.2,

and we find

∂A1

∂z
+
iκ11A1

2β1
+
iκ12
2β1

A2exp[i(β1 − β2)z] = 0,

∂A2

∂z
+
iκ22A2

2β2
+
iκ21
2β2

A1exp[−i(β1 − β2)z] = 0,

(2.22)
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where

κ11 =
κ+11 − I12κ

+
21

1− |I12|2
,

κ12 =
κ−12 − I12κ

−

22

1− |I12|2
,

κ21 =
κ+21 − I∗12κ

+
11

1− |I12|2
,

κ22 =
κ−22 − I∗12κ

−

12

1− |I12|2
,

κ+11 =
ω2
0

c2

∫

∞

−∞

n2
+(x)|ψ1(x)|

2dx,

κ−12 =
ω2
0

c2

∫

∞

−∞

n2
−
(x)ψ∗

1(x)ψ2(x)dx,

κ+21 =
ω2
0

c2

∫

∞

−∞

n2
+(x)ψ1(x)ψ

∗

2(x)dx,

κ−22 =
ω2
0

c2

∫

∞

−∞

n2
−
(x)|ψ2(x)|

2dx,

I12 =

∫

∞

−∞

ψ∗

1(x)ψ2(x)dx.

(2.23)

We note that I12 may not be negligible since there can be significant overlap within

the two glass and air slabs that separate the air-core layers. We now introduce new

variables Ã1 and Ã2 as

A1 = Ã1exp

(

−
iκ11
2β1

z

)

,

A2 = Ã2exp

(

−
iκ22
2β2

z

)

.

(2.24)

Equation (2.22) then becomes

∂Ã1

∂z
+
iκ12
2β1

Ã2exp[i(∆β)z] = 0,

∂Ã2

∂z
+
iκ21
2β2

Ã1exp[−i(∆β)z] = 0,

(2.25)

where ∆β = β1−β2+
κ11

2β1

− κ22

2β2

. The amplitudes in the individual waveguides can be

written as

Ã1 = R1exp(i∆βz/2),

Ã2 = R2exp(−i∆βz/2),

(2.26)
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where R1 and R2 are slowly vary quantities. Substituting Eq. (2.26) into Eq. (2.25),

we obtain the same matrix form as Eq. (2.10),

dR

dz
= iλR = −i







∆β/2 κ12/(2β1)

κ21/(2β2) −∆β/2






R, (2.27)

where R can be written as, eiλz[V1 V2]
T, and T represents the matrix transpose

operator. We may use the same procedure that is described by Eqs. (2.10) − (2.14)

in Sec. 2.2 with a slightly changed β′

1 and β′

2. The effective indices of the modes in

waveguide 3 are given by

neff1 = β′

1/k0 =
1

k0

(

β1 +
κ11
2β1

−
∆β

2
− λ1

)

,

neff2 = β′

2/k0 =
1

k0

(

β2 +
κ22
2β2

+
∆β

2
− λ2

)

.

(2.28)

Again, the width of the avoided crossing, which is defined as the minimum difference

in effective indices for the modes in waveguide 3, is given by

δ = |neff1 − neff2| =
1

k0

(

κ12κ21
β1β2

)1/2

, (2.29)

which is the same as in Eq. (2.17), but with different expressions for κ12 and κ21 in

Eq. (2.23). The refractive index of the modes and the avoided crossing in the multi-

layer slab waveguide can then be derived using the refractive index and mode profiles

of the approximate modes in the two single air-core antiresonant slab waveguides,

just as we did with guided modes in Sec. 2.2.

2.5 Mode coupling in antiresonant slab waveguides

In this section, we will use the equations in Sec. 2.4 to study the mode coupling of

the antiresonant slab waveguide in Fig. 2.4(a). According to the structures shown in

Fig. 2.4, the thickness of the air-core layer in waveguide 1, Wcore1, is fixed at 30 µm.

The cladding thickness, Wclad, is fixed at 37 µm. The glass thickness, t, is fixed at

0.72 µm, which yields the antiresonance condition for a wavelength of 1 µm. The
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air gap, g, is set to 5 µm. An absorbing boundary condition was introduced in the

simulation with a width of 150 µm. The index in the ABL is modeled as [34]

n(x) = n0

[

1 + i

(

|x| − L1,2

WABL

)2

s

]1/2

, (2.30)

where n0 is the index of air, WABL is the ABL thickness, L1,2 are the distances from

the center to the beginning of the ABL as denoted in Fig. 2.4(a). We set s = 6×10−6

so that the mode field will decay as it reaches the edge of the simulation window. We

increase Wcore2 from 20 µm to 70 µm so that the avoided crossings can be observed

in waveguide 3. In Fig. 2.5(a), the effective indices for the modes in waveguide 1 and

waveguide 2 are plotted by dotted green and orange curves, respectively. The effective

indices for the modes in waveguide 3 are plotted by solid blue curves. Their effective

indices cross with the effective index of waveguide 1 at 30 µm and 60 µm, respectively.

The inset in Fig. 2.5(a) shows a magnified plot at the first avoided crossing so that

differences in effective indices may be easily distinguished. This index matching

explains the avoided crossing and coupling of the modes in waveguide 3 when Wcore2

is 30 µm or 60 µm. IfWcore2 further increases, more couplings will occur whenWcore2 is

a multiple ofWcore1, which corresponds to the coupling between the fundamental mode

in the first air core and an HOM in the second air core in waveguide 3. Figure 2.5(b)

shows a magnified plot of Fig. 2.5(a) so that the differences in mode profiles near

the first avoided crossing may be illustrated. The insets show mode profiles when

Wcore2 is 29.95 µm, 30 µm, or 30.05 µm. The solid blue curves in Fig. 2.5(b) show

the mode indices in waveguide 3. The dashed red curves show the effective indices

using Eq. (2.28). The two methods agree well. When Wcore2 < 30 µm, the modes are

well confined in one of the air-core layers. When Wcore2 = 30 µm, where the avoided

crossing occurs, the two modes couple with each other and become a hybrid even or

odd mode, which is located in both air-cores. When Wcore2 > 30 µm, the coupling

disappears and the two modes change places between the two air layers.
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Figure 2.5: (a) Effective index for the fundamental core mode in waveguide 1 and 2 (dotted
curves). Effective indices for the two fundamental core modes in waveguide 3 (solid curves).
(b) Magnified plot in Fig. 2.5(a) around the first avoided crossing at Wcore2 = 30 µm. Insets
show the mode in the waveguide 3 around the avoided crossing with different Wcore2. The
dashed red curves show results using Eq. (2.28). (c) Leakage loss of the hybrid modes in
waveguide 3 at the first avoided crossing. [Reprinted/Adapted] with permission from [33]
© Optica Publishing Group.
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Figure 2.6: Width of the avoided crossing and loss at the avoided crossing as a function
of the glass thickness with g = 2 µm and Wcore1 = Wcore2 = 30 µm. [Reprinted/Adapted]
with permission from [33] © Optica Publishing Group.

Figure 2.5(c) shows that the leakage loss curves calculated using the FDM for the

modes in waveguide 3 also exhibit an avoided crossing. As shown in Figs. 2.5(a)−(b),

one of the two coupled modes always resides in the wider air layer and has a larger

effective index, as the core size in Wcore2 increases. The leakage loss for the modes

confined in the core is dominated by the core size, when the same antiresonant layers

are used. Hence, the mode that resides in the wider air layer always has a lower

leakage loss, which leads to an avoided crossing in the leakage loss curves.

Next, we study the impact of glass layer thickness, t, on the width of the avoided

crossing, δ, in waveguide 3. We fix Wcore1 and Wcore2 at 30 µm. We show the results

in Fig. 2.6. The solid blue and dashed red curves show the width of the avoided

crossing as the glass thickness varies. The solid blue curve shows the computational
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Figure 2.7: Width of avoided crossing and loss during an avoided crossing as a function of
the width of air gap g with t = 0.72 µm and Wcore1 = Wcore2 = 30 µm. [Reprinted/Adapted]
with permission from [33] © Optica Publishing Group.

result, while the dashed red curve shows the result from Eq. (2.29). The solid orange

curve represents the loss. When the glass thickness is near 0.72 and 1.2 µm, which

corresponds to antiresonance, the mode loss is low, and the width of the avoided

crossing is small due to weak coupling. When the glass thickness is 0.95 µm, the

resonance condition is satisfied, which leads to a large avoided crossing width and

high loss.

We also study different gap sizes and show the results in Fig. 2.7. The glass thick-

ness is now fixed at 0.72 µm. The solid blue and dashed red curves show respectively

the computational result and the result from Eq. (2.29) for the avoided crossing width

in waveguide 3. The solid orange curve represents the loss. When the air gap ap-

proaches a multiple of Wcore1 = Wcore2 = 30 µm, coupling between the air mode in
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Figure 2.8: Schematic structure of a rare-earth doped (green region) double-clad LPF.
[Reprinted/Adapted] with permission from [62] © Optica Publishing Group.

the core and HOM in the air gap becomes strong, the loss increases, and the width

of avoided crossing increases.

2.6 Avoided crossings in optical fibers

Previous sections describe avoided crossings for the guided modes and leaky modes

in slab waveguides where the modes can be described analytically. Avoided crossings

play an important role in solid-core photonic crystal fibers [62], photonic bandgap

fibers [63–67], negative curvature fibers [52–54], and kagome fibers [68], where simple

analytical expressions for the modes do not exist and the modes must be found com-

putationally. This section discusses two examples of avoided crossings in solid-core

and air-core photonic crystal fibers. We then describe the similarities and differences

between avoided crossings in the optical fibers and the simpler slab waveguides that

we have analyzed in detail.

Jansen et al. [62] studied a large pitch photonic crystal fiber (LPF) as shown in Fig.

2.8. The pitch, Λ, diameter of hole, d, and wavelength are 30 µm, 0.9 µm, and 1.03 µm,

respectively. The motivation to use an LPF with a large mode area comes from the
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Figure 2.9: Detailed plot of one broad and two narrow avoided crossings (marked in green
vertical lines). The modes involved in avoided crossings are shown in black, red, light blue,
and blue. [Reprinted/Adapted] with permission from [62] © Optica Publishing Group.

requirement for high average output power. The advantage of using an LPF is that

the HOMs are delocalized from the core, which leads to a reduction in the excitation

of HOMs from a near-Gaussian beam, as well as increased loss for the HOMs [62].

Jansen et al. [62] also showed that different pump core diameters, bending radii and/or

index depression may lead to avoided crossings that manifest themselves in unwanted

deformations of the output beam. Figure 2.9 shows three avoided crossings in the

effective index curves for the fundamental mode and the HOMs. As the air-clad

diameter increases, the transverse mode profiles switch between modes. The same

switching behavior is present in the slab waveguides that we analyzed in the previous

sections and is generally present in any system with avoided crossings. Figure 2.10

shows the evolution of the transverse mode profiles at the first avoided crossing. As

the air-clad diameter changes from 185 µm to 195 µm, the fundamental mode evolves

to the HOM and the HOM profile completely switches places from the cladding to

the core. The mode-switching that we show in Figs. 2.9 and 2.10 for the solid-core

LPFs is analogous to the mode-switching that we showed in Figs. 2.2 and 2.5 for the

slab waveguides.

Hollow-core fibers may also exhibit avoided crossings. A large core size is often

used in hollow-core fibers to lower the fiber loss. At the same time, HOMs exist in
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Figure 2.10: Transverse mode profiles of the modes involved in the broad avoided crossing
of Fig. 2.9 around an air-clad diameter of 188.5 µm. Across the avoided crossing, the
former fundamental mode evolves into an HOM, and an HOM takes over the role as the
fundamental mode. Reprinted with permission from [62]. Copyright 2011 Optical Society
of America.

the fiber with a large core. It is preferable to suppress higher-order core modes while

preserving low leakage loss for the fundamental core mode [52, 75]. This approach is

analogous to using resonant coupling between the core modes and defect modes in

photonic bandgap fibers [63–67]. The work by Uebel et al. [75] optimized the ratio

of the capillary tube diameter, d, to the air-core diameter, D so that an avoided

crossing between the higher-order core modes and the fundamental tube modes leads

to an increase in the loss of the higher-order core modes. Figure 2.11(a) shows the

cross-section of the negative curvature fiber considered along with illustrations for the

parameters d and D. Figures 2.11(b) and 2.11(c) show the transverse mode profiles

for the fundamental mode and first HOM, respectively. Figure 2.12(a) shows the

effective indices of the fundamental mode in orange, the first HOM in blue, and the

antiresonant element (ARE) mode in red. The effective indices for the HOM and

ARE mode exhibit an avoided crossing at a ratio d/D = 0.68. Figure 2.12(b) shows

the loss for the fundamental mode, HOM, and ARE mode. At the ratio d/D = 0.68,

the HOM loss exponentially increases while the fundamental mode loss stays low.

To quantify the suppression of HOMs, Uebel et al. [75] introduced a figure of merit

(FOM) as FOMlm = αlm/α01 − 1, where αlm is the loss for the LPlm mode in dB/m

and α01 is the loss of the fundamental core mode. The gray-shaded area in Fig. 2.12(b)
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Figure 2.11: (a) Sketch of the structure, with the key dimensions marked in core diameter
D, capillary inner diameter d, and wall thickness t. (b) Fundamental LP01 mode is strongly
confined. (c) HOM experiences high loss because they are coupled to modes in the capil-
laries. Light in the core leaks out to the solid glass sheath (indicated by the blue arrows).
[Reprinted/Adapted] with permission from [75] © Optica Publishing Group.

shows the region where FOM11 > 20. Figure 2.12(c) shows a magnified plot of the

avoided crossing between the HOM and the ARE mode.

In two-dimensional air-core bandgap fibers, West et al. [64] showed that loss is

related to the width of the avoided crossing between the air-core mode and the surface

modes supported at the core-cladding interface, which is consistent to what appears

in Fig. 2.12 near the avoided crossing. Hence, the width of an avoided crossing is

a key parameter in determining the loss of the fundamental core mode. Debord et

al. [68] observed and analyzed a similar avoided crossing in the kagome fibers.

In both solid-core and air-core optical fibers, the core mode couples strongly to

other core modes and cladding modes under certain conditions. The analysis of

avoided crossings is useful in determining the mode coupling and the loss of the core

mode in specialty solid-core and hollow-core fibers when coupling occurs between the

core mode and cladding modes. Due to the complexity in design of many modern-

day specialty fibers, numerical solutions must be employed to calculate the effective

indices and observe the avoided crossings. However, the basic switching behavior and

its dependence on the width of the avoided crossing are unchanged.
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Figure 2.12: (a) Modal refractive indices of the LP01 (orange) and even and odd LP11 (blue)
modes. (b) Modal losses and FOM11 (green). The brown dashed curves in each plot refer
to the antiresonant element (ARE) mode of an isolated ARE capillary. For optimal HOM
suppression, d/Λ = 0.68. The geometrical parameters are t/D = 0.01 and D/λ = 20. The
gray-shaded area in (b) shows the region where FOM11 > 20. (c) Magnified plot of the
avoided crossing in Fig. 2.12(a). [Reprinted/Adapted] with permission from [75] © Optica
Publishing Group.

There are differences in the leakage loss curves during the avoided crossings be-

tween the slab waveguides and optical fibers. Because the slab waveguide is a one-

dimensional structure, the leakage loss is dominated by the core size, meaning that

one of the two modes will always have a higher loss as we change Wcore2 during the

avoided crossing, as shown in Fig. 2.5. Hence, one of the two coupled modes always

has a lower loss compared to the other coupled mode, and an avoided crossing is

manifested in the leakage loss curves in Fig. 2.5(c). In two-dimensional structures,

such as specialty optical fibers, the mode in the cladding has a higher loss than the

mode in the core. Hence, the leakage loss curves in Fig. 2.12(b) cross, rather than

forming an avoided crossing.
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2.7 Summary

In this tutorial, we present coupled-mode theory in slab waveguides for both

guided modes in index-guided waveguides and leaky modes in antiresonant waveg-

uides. The theory for the former is classical and is covered in many textbooks, but

the latter is not. Our goal is to emphasize the analogy between these two waveguide

types. Antiresonant photonic crystal fibers have become important in applications,

but geometries are too complex to be simply analyzed. For both waveguide types,

we considered a geometry with two cores. For the index-guided waveguide, the two

cores are separated and surrounded by a lower-index cladding. For the antiresonant

waveguide, the two air cores are separated from each other and from the air cladding

by double-glass partitions. Although the modes in the antiresonant waveguides are

leaky, the theoretical development to determine the mode coupling near an avoided

crossing is almost identical. Antiresonance implies that the avoided crossings are

weak and the modes are well confined to the cores. This behavior is analogous to

guided-mode waveguides with a large gap between cores. When the modes are well-

confined, the leakage is low, and hence so is the loss. The correlation between loss and

width of the avoided crossing is important in applications to photonic crystal fibers

since it is usually desirable to have low loss. There is no analogous loss mechanism in

index-guided waveguides. Coupled-mode theory accurately predicts the magnitude

of the avoided crossings and their locations as parameters vary for both waveguide

types.

In conclusion, we have shown that it is possible to explain the principal features

of avoided crossings in index-guided and antiresonant waveguides using a simple slab

waveguide model. We have also shown that a coupled-mode theory that is close to the

standard theory for guided modes can be used to predict the behavior of the avoided

crossings for leaky modes. We discussed examples of avoided crossings in solid-core

and air-core optical fibers. We described the similarities and differences between the
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specialty optical fibers and the simpler slab waveguides that we have analyzed in

detail. Thus, this model is a useful basis for understanding avoided crossings in the

more complex geometries that are typically found in photonic crystal fibers.
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CHAPTER THREE

Phase-Matched Model for the Transverse Mode Instability

This chapter published as [80]: C. R. Menyuk, J. T. Young, J. Hu, A. J. Goers, D.
M. Brown, and M. L. Dennis, “Accurate and Efficient Modeling of the Transverse

Mode Instability in High Energy Laser Amplifiers,” Opt. Express 29(12),
17746–17757 (2021).

In this chapter, we formulate the phase-matched model for the transverse mode

instability (TMI) and compare it to the full model. We study TMI in the limit where

a single higher-order mode (HOM) is present. We demonstrate that when the beat

length between the fundamental mode and the HOM is small compared to the length

scales on which the pump amplitude and the optical mode amplitudes vary, TMI is

a three-wave mixing process in which the two optical modes beat with the phase-

matched component of the index of refraction that is induced by the thermal grating.

This limit is the usual limit in applications, and in this limit TMI is identified as

a stimulated thermal Rayleigh scattering (STRS) process. We demonstrate that a

phase-matched model that is based on the three-wave mixing equations can have a

large computational advantage over current coupled mode methods that must use

longitudinal step sizes that are small compared to the beat length.

3.1 Introduction

Ytterbium-doped fiber amplifiers that produce kilowatt output powers have been

developed in the past decade [4,26,81–85]. However, the thermal or transverse mode

instability (TMI) has become a major barrier to achieving even higher output powers

[2,3,86]. Despite almost a decade of work since the original observation of TMI in fiber

amplifiers by Jauregui et al. [87] and Eidam et al. [88], it still remains only partially

understood, and computationally-efficient methods that are sufficiently accurate for

amplifier design have been lacking. It was recognized early by Smith and Smith [89]
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that the instability could be explained by a thermal grating that is induced by the

beating of the fundamental mode of the optical fiber with a higher-order mode at a

slightly lower frequency and the quantum defect heating that ensues.

Subsequent work by Jauregui et al. [90], Dong [91], and Smith and Smith [92]

identified the instability as a stimulated thermal Rayleigh scattering (STRS) process.

In particular, Dong [91] developed a three-wave mixing model that is analogous to

models of the Brillouin instability due to stimulated Brillouin scattering (SBS). This

identification has remained somewhat controversial, although Kong et al. [93] directly

observed the STRS process in a fiber amplifier. Ward et al. [94] and Naderi et al. [95]

developed a model of TMI based on a coupled mode method that makes no reference

to three-wave interactions. The complexity of TMI has obscured its identification as

an STRS-driven, three-wave process. The conditions that are required to treat TMI

as a three-wave instability have not been elucidated.

In this work, we demonstrate that the key requirement is that the beat length LB =

2π/∆β must be small compared to any other longitudinal scale lengths, where ∆β is

the difference between the wavenumber of the fundamental mode and any higher-order

modes (HOMs) at the same frequency. This condition usually applies in practice. In

this limit, we derive the three-wave equations that govern TMI. Terms that are not

phase-matched are neglected. This approach is similar to Dong’s approach [91], but

is more general.

We further demonstrate that this approach has a large computational advantage.

Approaches that use the coupled mode method, like the approach of Naderi et al. [95],

must use longitudinal steps in their computations that are small compared to the beat

length. As a result, Naderi et al. [95] limited their study to a high-gain amplifier with

a length of 1.6 m, which is substantially shorter than typical ytterbium-doped fiber

amplifiers. Approaches that use the finite-element method to calculate the optical

mode profile on each longitudinal step like that of Ward [96] must take steps that are
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small compared to the optical wavelength and typically require large computational

resources. Our approach is only limited by the longitudinal scale lengths over which

the amplitudes of the optical modes, the thermal mode, and the pump mode change.

These lengths are typically far larger than the beat length. For the examples that we

consider in this chapter, which correspond to realistic Yb3+-doped fiber amplifiers,

the computational speedup is more than a factor of 100.

3.2 Theoretical model

We may write the index of refraction as n(r⊥, z, t) = n0(r⊥) +∆n(r⊥, z, t), where

n0(r⊥) is the unperturbed index of refraction, and we set ∆n≪ n0, which is always the

case (∆n/n0 ∼ 10−5). We will use the slowly varying envelope approximation, which

is an excellent approximation in this system due to the large discrepancy between the

wavelength and the next-smallest scale, which is the intermodal beat length LB. We

will also assume that time derivatives of the index of refraction can be ignored when

calculating the inter-modal coupling. That is again an excellent approximation, given

the large disparity between the light period and the time scale on which either the

gain changes (microseconds) or the temperature changes (milliseconds). We assume

as well that the only coupling is between modes that are propagating in the forward

direction. We start with the expression from coupled mode theory for two coupled

modes [97, 98],

dA0

dz
=
iω2

βc2

∫

d2r⊥n0∆n
[

|E0|
2A0 + E

∗

0 · E1 exp(−i∆βz)A1

]

,

dA1

dz
=
iω2

βc2

∫

d2r⊥n0∆n
[

|E1|
2A1 + E

∗

1 · E0 exp(i∆βz)A0

]

,

(3.1)

where E0 and E1 are the normalized transverse mode profiles for the fundamental

mode and the HOM, while A0 and A1 are the corresponding amplitudes. We have set

β ≡ β0 ≈ β1 since ∆β = β0 − β1 ≪ β0,1. Equation (3.1) is valid when only a single

HOM is present or when the amplitudes of the other HOMs are small compared to

A0 and A1.
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To solve Eq. (3.1) at any point in time t, we must find ∆n(r⊥, z, t). Due to the

factors exp(±i∆βz) that appear in Eq. (3.1), it is necessary to determine ∆n(r⊥, z, t)

with a computational resolution ∆z that is small compared to the beat length LB =

2π/∆β even though the field amplitudes vary slowly compared to this length. Since

we must determine the transverse dependence of ∆n as well, this constraint is compu-

tationally demanding. We can bypass this difficulty by replacing the field ∆n(r⊥, z, t)

with three fields ∆n0(r⊥, z, t), ∆n+(r⊥, z, t), and ∆n−(r⊥, z, t), which are defined so

that

∆n = ∆n0 +
1

2
[∆n+ exp(i∆βz) + ∆n− exp(−i∆βz)], (3.2)

and ∆n0, ∆n+, and ∆n− all vary slowly compared to the beat length LB. When we

substitute Eq. (3.2) into Eq. (3.1) and keep only the phase-matched terms, we obtain

dA0

dz
=
iω2

βc2

∫

d2r⊥n0

[

|E0|
2∆n0A0 +

1

2
E

∗

0 · E1∆n+A1

]

,

dA1

dz
=
iω2

βc2

∫

d2r⊥n0

[

|E1|
2∆n0A1 +

1

2
E

∗

1 · E0∆n−A0

]

.

(3.3)

The terms that are not phase-matched are rapidly oscillating and do not contribute

significantly to the integrals. All terms in Eq. (3.3) vary slowly in z. It then becomes

possible to integrate Eq. (3.3) with no loss of accuracy while using a resolution in z

that is far larger than is necessary with Eq. (3.1).

The form of Eq. (3.3) makes clear that in the limit where Eq. (3.3) is valid, TMI

is effectively a three-wave process in which two optical fields combine with a density

field. The condition for Eq. (3.3) to be valid is that all terms must vary slowly

compared to the beat length. This condition is almost always met in practice. Since

the density field is thermally driven, this process is a stimulated Rayleigh scattering

process. We discuss this identification in more detail in the Appendix.

The procedure that we use to obtain ∆n0, ∆n+, and ∆n− in terms of the field

and as a function of time is analogous to the procedure that is used by Naderi et

al. [95] that is illustrated in Fig. 3.1.
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Figure 3.1: Schematic flow diagram of the computational procedure. The time step occurs
when T (t + ∆t) is calculated using Q(t). [Reprinted/Adapted] with permission from [80]
© Optica Publishing Group.

We begin by writing the signal intensity Is(r⊥, z, t) as

Is(r⊥, z, t) = Is0 +
1

2
[Is+ exp(i∆βz) + Is− exp(−i∆βz)] , (3.4)

where

Is0 =
β

2µ0ω

(

|E0|
2|A0|

2 + |E1|
2|A1|

2
)

, Is+ = I∗s− =
β

µ0ω
E

∗

1 · E0A
∗

1A0, (3.5)

all vary slowly compared to LB. The behavior of a Yb-doped fiber amplifier is accu-

rately described as a two-level system at realistic power levels [4]. Given Is(r⊥, z, t)

and the pump intensity Ip(z, t), we next compute the upper state density N2(r⊥, z, t)

of the Yb ions, which is given by

N2 =
σ
(a)
p (Ip/~ωp) + σ

(a)
s (Is/~ω)

[

σ
(a)
p + σ

(e)
p

]

(Ip/~ωp) +
[

σ
(a)
s + σ

(e)
s

]

(Is/~ω) + 1/τ
N0, (3.6)

where ω and ωp are the signal and pump angular frequencies, respectively, τ is the

spontaneous decay time of the upper level, N0 is total density of Yb ions, and σ
(a)
p , σ

(e)
p ,

σ
(a)
s , and σ

(e)
s are the absorption and emission cross-sections at the pump and signal

frequencies. Because Is appears in both the numerator and denominator of Eq. (3.6),

the density N2 will have higher harmonics that are proportional to exp(±im∆β) with

m > 1. We will truncate this expression since the harmonics with m > 1 are not

phase-matched. Explicitly, we find that Eq. (3.6) has the form

N2 =
A+B cos θ

C +D cos θ
N0, (3.7)

39



where θ = ∆βz + φ and φ = ∠(A∗

1A0E
∗

1 · E0). We have

A = σ(a)
p

Ip
~ωp

+ σ(a)
s

Is0
~ω

, B = σ(a)
s

|Is+|

~ω
,

C =
[

σ(a)
p + σ(e)

p

] Ip
~ωp

+
[

σ(a)
s + σ(e)

s

] Is0
~ω

+
1

τ
,

D =
[

σ(a)
s + σ(e)

s

] |Is+|

~ω
.

(3.8)

We note that D < C and B < C is a consequence of Is+ < Is0, which in turn follows

from the Cauchy-Schwartz inequality. We now write

N2 ≃ N20 +
1

2
[N2+ exp(i∆βz) +N2− exp(−i∆βz)] , (3.9)

where

N20 =
A

C

1

r

(

1−
BD

AC

1

1 + r

)

N0,

N2+ = N∗

2− =
A

C

2

r(1 + r)

(

B

A
−
D

C

)

N0 exp(iφ),

(3.10)

with r = (1−D2/C2)1/2 [99]. Equation (3.10) is an exact truncation, not an expan-

sion. We will show in Sec. 3 that the contribution of higher harmonics with m > 1

are negligible.

The next stages in the procedure are more straightforward. TMI is generated by

the heat deposition due to the quantum defect between the pump and the signal,

which in turn leads to a time-delayed temperature response that changes the index of

refraction. The temperature response depends linearly on the heat deposition, which

in turn depends linearly on the upper state density. From the expression for the heat

deposition Q,

Q =

(

1−
ω

ωp

)

[

σ(a)
p N0 −

(

σ(a)
p + σ(e)

p

)

N2

]

Ip, (3.11)

we find

Q0 =

(

1−
ω

ωp

)

[

σ(a)
p N0 −

(

σ(a)
p + σ(e)

p

)

N20

]

Ip,

Q+ = Q∗

−
= −

(

1−
ω

ωp

)

(

σ(a)
p + σ(e)

p

)

N2+Ip,

(3.12)
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where Q = Q0+(1/2)[Q+ exp(i∆βz)+Q− exp(−∆βz)]. Similarly, from the expression

for the temperature evolution,

ρC
∂T

∂t
− κ∇2

⊥
T = Q, (3.13)

where ρ is the density, C is the heat capacity, and κ is the heat diffusivity, we find

ρC
∂T0
∂t

− κ∇2
⊥
T0 = Q0, ρC

∂T+
∂t

− κ∇2
⊥
T+ = Q+, (3.14)

where T = T0 + (1/2)[T+ exp(i∆βz) + T− exp(−∆βz)] and T− = T ∗

+. Integrating

Eq. (3.13) over time in the full model and Eq. (3.14) over time in the phase-matched

model, we can now obtain T (r⊥, z, t+∆t)− T (r⊥, z, t). Since the temperature tends

to a constant Troom at large radius, the appropriate boundary conditions for both

T and T0 at large radius are T0 = Troom, and the appropriate boundary condition

for T+ is T+ = 0. This integration is where the basic time step occurs, as we show

schematically in Fig. 3.1, and it is this step that is computationally time-consuming.

We can now find the change in the index of refraction. There are two contributions

to the index of refraction that we must take into account. The first contribution is

from the temperature change, for which ∆nT = (dn/dT )(T − Troom) and ∆nT0 =

(dn/dT )(T0 − Troom), ∆nT+ = (dn/dT )T+ in the phase-matched model. The second

contribution is from the gain,

g(r⊥, z, t) =
(

σ(e)
s + σ(a)

s

)

N2(r⊥, z, t)− σ(a)
s N0(r⊥), (3.15)

from which we find

∆ng = −i
c

2ω

[(

σ(e)
s + σ(a)

s

)

N2(r⊥, z, t)− σ(a)
s N0(r⊥)

]

. (3.16)

It follows that

∆ng0 = −i
c

2ω

[(

σ(e)
s + σ(a)

s

)

N20 − σ(a)
s N0

]

,

∆ng+ = −∆n∗

g− = −i
c

2ω

(

σ(e)
s + σ(a)

s

)

N2+,

(3.17)
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where ∆ng = ∆ng0 + (1/2)[∆ng+ exp(i∆βz) + ∆ng− exp(−i∆βz)]. Although ∆ng is

purely imaginary, the components ∆ng+ and ∆ng− are not. Naderi et al. [95] have

pointed out that the corresponding phase shift does not contribute to the instability,

but plays an important role in the energy balance. Finally, we obtain ∆n0 = ∆nT0 +

∆ng0, ∆n+ = ∆nT++∆ng+, and ∆n− = ∆nT−+∆ng−. In the full model, the terms

that are not phase-matched are rapidly oscillating and do not contribute significantly

to the overall gain or loss. In the phase-matched model, the slowly varying terms

∆n0, ∆n+, and ∆n− are used to replace ∆n, as shown in Eq. (3.2), and the overall

gain or loss for the fundamental mode and HOM can be predicted.

To complete the model equations, we must obtain the pump intensity Ip(z, t). We

use the expression

dIp
dz

= ±
[(

σ(e)
p + σ(a)

p

)

N2 −N0

]

Ip, (3.18)

where the overbar indicates that the population densities are averaged over the cross-

section of the pump. The sign depends on whether the pump is forward- or backward-

propagating. Eq. (3.18) becomes

dIp
dz

= ±
[(

σ(e)
p + σ(a)

p

)

N20 −N0

]

Ip, (3.19)

in the phase-matched model.

In this chapter, we focused on the contribution to TMI due to the quantum defect

heating. It has been shown that photodarkening can also contribute to TMI [30,

100]. Photodarkening contributes to the thermally induced index grating coherently

with quantum defect heating [2]. Hence, the heat source term and absorption term

from photodarkening [30] could be added to Eqs. (3.11,3.12) and Eqs. (3.15,3.16),

respectively, to include the photodarkening effect in the phase-matched model for

TMI.
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3.3 Verification, accuracy, and timing of the phase-matched model

In this section, we first verify the phase-matched model, [Eqs. (3.3), (3.8), (3.12),

(3.14), (3.17), (3.19)] by comparing its predictions to those of the full model, [Eqs. (3.1),

(3.6), (3.11), (3.13), (3.16), (3.18)]. We will show that agreement is excellent for a

realistic amplifier system similar to the system that Naderi et al. [95] considered, but

using a fiber length of 10 m, which is a typical experimental length [85,101]. We then

consider in more detail the error as a function of the step size ∆z and show that the

phase-matched model has a significant computational advantage.

3.3.1 Verification

We show the basic set of parameters that we are considering in Table 3.1. These

parameters are similar to those used in [95], but with a more realistic amplifier length

of 10 m. We use the alternating-direct-implicit (ADI) method to integrate the temper-

ature equations, and we used the Runge-Kutta method to carry out the z-integration.

In all the simulations reported here, we used a 140×140 µm2 square grid for the trans-

verse integration with a 2× 2 µm2 grid spacing. We verified that using a larger grid

size of 160 × 160 µm2 with a smaller grid spacing of 1 × 1 µm2 makes a negligible

difference in Figs. 3.2 and 3.3. We chose the z-step sufficiently small so that the

relative error is below 1%. In all the simulations reported here, we used a noise seed

ratio at the entry to the optical fiber of 10−4 between the higher-order mode and the

Table 3.1. TMI model simulation parameters

Lfiber = 10 m ncore = 1.45031

Dcore = 50 µm N .A. = 0.03

Dcladding = 250 µm λpump = 977 nm

N0 = 1× 1025 m−3 λsignal = 1064 nm

σ
(e)
p = 1.87× 10−27 m2 σ

(a)
p = 1.53× 10−24 m2

σ
(e)
s = 6× 10−27 m2 σ

(a)
s = 3.58× 10−25 m2
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Figure 3.2: Power ratio ρ(t) = PHOM(t)/Ptotal(t) at the end of the amplifier vs. time t.
The pump power equals 250 W. [Reprinted/Adapted] with permission from [80] © Optica
Publishing Group.

fundamental mode. We verified that using a noise seed ratio of 10−3 or 10−5 does not

change the agreement between the full and phase-matched models that we present in

Figs. 3.2 and 3.3.

In Fig. 3.2, we show a comparison of the ratio ρ(t) = PHOM(t)/Ptotal(t) of the

power in the higher-order mode PHOM(t) to the total power Ptotal(t) at the end of the

fiber as a function of time. In the case that we show here, the input pump power

Ppump equals 250 W. With this pump power, we find that ρ(t) rises to a maximum of

17%, shown as a dot in Fig. 3.2, before returning to a value that is close to the initial

higher-order mode seeding. We observe excellent agreement between the full model

and the phase-matched model. As the pump power increases, we continue to observe

excellent agreement between the two models, although when the pump power is large

enough where both models predict chaotic oscillations, the agreement is qualitative
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Figure 3.3: Maximum power ratio max[ρ(t)] at the amplifier end vs. input pump power
Ppump. The threshold ratio of 1% occurs when Ppump = 207 W. [Reprinted/Adapted] with
permission from [80] © Optica Publishing Group.

rather than quantitative. This behavior is expected since small changes in the seeding

ratio also produce large changes in this limit due to the butterfly effect [102].

In Fig. 3.3, we show max[ρ(t)] vs. Ppump and a dotted line that corresponds to

a ratio of 1%. We observe excellent agreement between the phase-matched model

and the full model. In this work, we define the threshold power as the lowest pump

power at which max[ρ(t)] > 0.01, i.e., the ratio of PHOM(t)/Ptotal(t) exceeds 1% at

any time. Beyond this threshold, the beam quality rapidly degrades [87,88,103,104].

This definition of the threshold is consistent with studies of amplifier limits due to

SBS. In the case considered here, the threshold power equals 207 W.

In Fig. 3.4, we show the temperature as a function of longitudinal position z and

the absolute value of its spatial Fourier transform at a distance of 10 µm from the

amplifier center and a time t = 0.5 ms. We set Ppump = 450 W. In Fig. 3.4(a), where

we show the temperature as a function of position, we see that the agreement between
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the full model and the phase-matched model appears excellent. In the inset, where

we show the spatial oscillations, the two models appear indistinguishable. However,

the subtle difference is visible in Fig. 3.4(b), where we show the absolute value of the

spatial Fourier transform, |FT(T )| = |
∫

T (z) exp(ikz) dz|. Agreement is excellent for

the central harmonic, as well as the two surrounding harmonics which are located at

k = ±∆β = ±528 m−1. However, the phase-matched model has no contribution from

the harmonics at ±n∆β, where n ≥ 2. It is precisely these higher harmonics that we

are neglecting.

3.3.2 Accuracy and timing

In the phase-matched model, the number of dependent variables is almost twice

as large as in the full model. In particular, it is necessary to solve the temperature

equation, Eq. (3.14), for both T0 and T+ instead of just solving the temperature

equation, Eq. (3.13), for the single temperature T . As a result, we have found that the

computational load on each z-step increases by roughly a factor of two. However, it is

possible to take significantly larger steps, leading to a large computational advantage.

In Fig. 3.5, we show max[ρ(t)] for both the full model and phase-matched model as

a function of LB/∆z when Ppump = 250 W, so that the pump power is slightly above

threshold. As expected, the full model requires an LB/∆z > 60 to converge, while

the phase-matched model appears to have converged in this case when LB/∆z ≃ 2.

In order to quantify the convergence, we define the relative error, ǫ, as the dif-

ference between our computation at a given ∆z and a four-point Richardson ex-

trapolation [105]. For the full model, we used LB/∆z = 80, 40, 20, and 10 for the

extrapolation. For the phase-matched model, we used LB/∆z = 40, 20, 10, and 5.

In Fig. 3.6(a), we show the relative error as a function of LB/∆z. We see that

achieving a relative error of 1% with the full model requires LB/∆z ≃ 90, while the

46



Figure 3.4: Temperature T at a point that is 10 µm from the amplifier center when t = 0.5
ms. (a) T vs. z. Agreement is excellent between the full model and the phase-matched
model. The inset shows that the details of the temperature oscillations agree. (b) |FT(T )|
vs. k, where k is the spatial Fourier transform variable. Agreement for the central harmonic
and the harmonics at k = ±∆β is excellent. The inset shows excellent agreement for the
harmonic at k = ∆β. However, the harmonics at k = ±n∆β for n ≥ 2 are not present
in the phase-matched model. [Reprinted/Adapted] with permission from [80] © Optica
Publishing Group.
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Figure 3.5: Convergence of the maximum power ratio at the amplifier end as LB/∆z in-
creases. We set Ppump = 250 W. [Reprinted/Adapted] with permission from [80] © Optica
Publishing Group.

same relative error can be obtained with the phase-matched model when LB/∆z ≃ 2.

Figure 3.6(a) also illustrates that the full model is second-order accurate in ∆z, so

that the relative error decreases proportional to (∆z)−2. This result is consistent

with the result of Naderi et al. [95], but may be surprising since our integration in

z is done using the Runge-Kutta method. This result indicates that the global error

is dominated by the accumulated error in computing the index of refraction. The

variation of the relative error in the phase-matched model is more complex since it

depends on the rate at which all the dependent variables change as a function of z.

A complete error analysis is beyond the scope of this study, but Fig. 3.6(a) indicates

that it decreases rapidly as ∆z increases until it has become quite small.

In Fig. 3.6(b), we show the runtime of both the full model and the phase-matched

model using 16 cores in a shared memory system that consists of dual Intel E5-

2695 V4 processors. We observe that the runtime for the phase-matched model is
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Figure 3.6: (a) Relative error vs. LB/∆z for the cases shown in Fig. 3.4. (b) Runtime vs.
LB/∆z. The runtime for the phase-matched model is approximately twice as long as the
runtime for the full model. Dots indicate the corresponding runtime with a relative error of
1%, as shown in (a). [Reprinted/Adapted] with permission from [80] © Optica Publishing
Group.

approximately twice as the runtime for the full model, which is consistent with the

greater computational load per step in the phase-matched model. When we compare

the runtime corresponding to a relative error of 1%, shown with dots, we found a

runtime of 163 hours for the full model and 1.17 hours for the phase-matched model,

49



indicating that the phase-matched model runs a factor of 139 faster in this case.

While we obtain a speedup of 139 in our study, this number will vary with different

simulation parameters. Nevertheless, the advantage of using phase-matched model is

clear.

3.4 TMI as an STRS process

The identification of TMI as an STRS process has remained somewhat contro-

versial due to the complexity of TMI. Here, we will briefly argue in favor of this

identification in the limit where the phase-matched model holds. We then point out

some of the similarities and differences with the instability due to stimulated Bril-

louin scattering (SBS), which is another important effect limiting the performance of

high-energy fiber laser amplifiers [106].

Rayleigh scattering is commonly observed as a spontaneous process. It is well

known as the reason the sky is blue [107] and imposes a fundamental loss limit

on optical fiber transmission [108]. It also imposes a fundamental limit on fiber

interferometers and hence on opto-electronic oscillators [109].

Observation of STRS has proved more elusive, particularly in optical fibers. Zhu

et al. [110] reported an observation of STRS in 2010, and Kong et al. [93] reported an

observation of STRS in 2016. It is difficult to observe directly, and another observation

that was reported in 2012 [111] was later shown to be incorrect [112].

STRS and SBS can be treated together theoretically because both are due to

density fluctuations [101]. Rayleigh scattering is driven by isobaric processes, while

Brillouin scattering is driven by isentropic processes. Both are three-wave scattering

processes in which two optical fields couple to density fluctuations. When Eq. (3.3)

holds, it is evident that TMI can be treated as a three-wave scattering process in which

two optical modes couple to density fluctuations and that this process is isobaric.

Hence, it is reasonable to identify TMI as an STRS-driven process.
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While both STRS and SBS are three-wave processes in which two optical modes

couple to density fluctuations, there are important differences—particularly in optical

fibers. Rayleigh scattering is often referred to as an inelastic process, but that is

almost never strictly true. Energy and momentum conservation implies that there

is typically a small frequency offset. In the case of TMI this offset is quite small—

on the order of a few kilohertz [89–92]. This offset plays a critical role in driving

the instability, but it lies well within the linewidth of the optical modes, which is

typically on the order of 100 MHz. While there is a significant difference between

the wavenumbers of the fundamental and higher-order modes, this difference is small

compared to the wavenumber of both modes (∆β/β ∼ 10−5). Both modes propagate

in the same direction, but have different mode profiles. By contrast, the two optical

modes that become unstable due to SBS are both fundamental modes, but they

propagate in opposite directions. As a consequence, the wavenumber offset equals

twice the wavenumber of each of the optical modes. The frequency offset, which is

given by (the acoustic velocity)×(twice the wavenumber of the optical modes), is of

10–20 GHz and much larger than the linewidth of the optical modes. These differences

can be traced to the fundamental physical difference between pressure fluctuations,

which propagate, and entropy fluctuations, which do not.

3.5 Coupled-mode theory background for TMI

The standard coupled-mode equations in Ref. [95] have been used to successfully

model the transverse mode instability (TMI). The equations have been derived in

the book from Marcuse [97] for coupled mode theory. For the completeness of this

chapter, we give a detailed step-to-step derivation for the coupled mode equations.

We follow the steps from Marcuse [97] but provide more steps to serve as a tutorial

to understand the coupled mode theory for the general audience.
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For time-harmonic electromagnetic fields, the curl Maxwell’s equations become

∇× E = −jωµ0H, (3.20a)

∇×H = jωǫ0n
2
E. (3.20b)

Next we express the ∇ operator, E, and H, as the sum of transverse and longitudinal

components.

∇ = ∇⊥ + ẑ∂/∂ z, (3.21a)

E = E⊥ + Ez, (3.21b)

H = H⊥ +Hz. (3.21c)

We can express the curl of E and H as transverse and longitudinal components,

(∇× E)⊥ = ∇⊥ × Ez + ẑ× ∂E⊥/∂ z, (3.22a)

(∇× E)z = ∇⊥ × E⊥, (3.22b)

(∇×H)⊥ = ∇⊥ ×Hz + ẑ× ∂H⊥/∂ z, (3.22c)

(∇×H)z = ∇⊥ ×H⊥, (3.22d)

where the subscripts on the left hand side indicate the transverse or longitudinal

component of the curl operator.

Using (3.22b) and (3.22d) with (3.20a) and (3.20b), we then find that

Ez = ∇⊥ ×H⊥(1/jωǫ0n
2), (3.23a)

Hz = ∇⊥ × E⊥(−1/jωµ0). (3.23b)

Now we need to find E⊥ and H⊥, since the longitudinal components will automat-

ically be found by (3.23a) and (3.23b). We use (3.21a), (3.21c), (3.22c), and (3.22d)

to expand (3.20b)

∇⊥ ×H⊥ +∇⊥ ×Hz + ẑ×
∂H⊥

∂ z
= jωǫ0n

2(Ez + E⊥).
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Using (3.23a), we obtain

∇⊥ ×H⊥ +∇⊥ × (∇⊥ × E⊥)(−1/jωµ0) + ẑ×
∂H⊥

∂ z
=

jωǫ0n
2(∇⊥ ×H⊥(1/jωǫ0n

2) + E⊥),

or,

(−1/jωµ0)∇⊥ × (∇⊥ × E⊥) + ẑ×
∂H⊥

∂ z
= jωǫ0n

2
E⊥. (3.24a)

Similar procedure with (3.20a) yields

(1/jωǫ0)∇⊥ × (∇⊥ × [1/n2]H⊥) + ẑ×
∂E⊥

∂ z
= −jωµ0H⊥. (3.24b)

To express the refractive index, we find

n = n(x, y, z). (3.25)

We assume waves propagate in the z direction with

e−jβν z. (3.26)

An ideal waveguide has an index that is independent of z such that

n0 = n0(x, y). (3.27)

We then replace the index terms and the field relation in the z direction in (3.24a)

and (3.24b) by using (3.26) and (3.27) and find equations for the transverse electric

and magnetic field vectors,

(−1/jωµ0)∇⊥ × (∇⊥ × Eν⊥)− (jβν)ẑ×Hν⊥ = jωǫ0n
2
0Eν⊥, (3.28a)

(1/jωǫ0)∇⊥ × (∇⊥ × [1/n2
0]Hν⊥)− (jβν)ẑ× Eν⊥ = −jωµ0Hν⊥, (3.28b)

where Eν⊥ and Hν⊥ are the transverse mode profiles and ν labels the mode num-

ber.
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We now rewrite (3.23a) and (3.23b) for each transverse mode,

Eνz = ∇⊥ ×Hν⊥(1/jωǫ0n
2), (3.29a)

Hνz = ∇⊥ × Eν⊥(−1/jωµ0). (3.29b)

We can use a series expansion of the transverse mode vectors as the sum of guided

modes and radiation modes

E⊥ =
N
∑

ν=1

aνEν⊥ +
∑

∫

∞

0

apEp⊥dp, (3.30a)

H⊥ =
N
∑

ν=1

bνHν⊥ +
∑

∫

∞

0

bpHp⊥dp. (3.30b)

We then disregard the coupling to radiation modes to simplify the above notation

and use

E⊥ =
∑

ν

aνEν⊥, (3.31a)

H⊥ =
∑

ν

bνHν⊥. (3.31b)

We now substitute the field expressions in (3.31a) and (3.31b) into the differential

equations (3.24a) and (3.24b) which gives

(−1/jωµ0)∇⊥ × (∇⊥ ×
∑

ν

aνEν⊥) + ẑ×
∂
∑

ν bνHν⊥

∂z
= jωǫ0n

2
∑

ν

aνEν⊥.

We can further rearrange the above equation, which gives

∑

ν

{aν(−1/jωµ0)∇⊥ × (∇⊥ × Eν⊥) + (∂bν/∂z)ẑ×Hν⊥ − jωǫ0n
2aνEν⊥} = 0,

(3.32a)

and similarly,

(1/jωǫ0)∇⊥ × (∇⊥ × [1/n2]
∑

ν

bνHν⊥) + ẑ×
∂
∑

ν aνEν⊥

∂z
= −jωµ0

∑

ν

bνHν⊥,

or,
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∑

ν

{bν(1/jωǫ0)∇⊥ × (∇⊥ × [1/n2]Hν⊥) + (∂aν/∂z)ẑ× Eν⊥ − jωµ0bνHν⊥} = 0.

(3.32b)

Multiplying (3.28a) by aν , and adding the term (∂bν/∂z)ẑ × Hν⊥ to both sides

yields

aν(−1/jωµ0)∇⊥ × (∇⊥ × Eν⊥)− aν(jβν)ẑ×Hν⊥ + (∂bν/∂z)ẑ×Hν⊥ =

aνjωǫ0n
2
0Eν⊥ + (∂bν/∂z)ẑ×Hν⊥.

Rearranging the above equation yields

aν(−1/jωµ0)∇⊥ × (∇⊥ × Eν⊥) + (∂bν/∂z)ẑ×Hν⊥ =

aνjωǫ0n
2
0Eν⊥ + [aν(jβν) + (∂bν/∂z)]ẑ×Hν⊥.

(3.33)

Substituting (3.33) into (3.32a) gives us

∑

ν

{[aν(jβν) + (∂bν/∂z)]ẑ×Hν⊥ − jωǫ0(n
2 − n2

0)aνEν⊥} = 0. (3.34a)

A similar procedure by multiplying (3.28b) by bν , subtracting the term (∂aν/∂z)ẑ×

Eν⊥ from both sides, and substituting the result into (3.32b) yields

∑

ν

{[bν(jβν) + (∂aν/∂z)]ẑ× Eν⊥ + (1/jωǫ0)bν∇⊥ × (∇⊥ × [n−2 − n−2
0 ]Hν⊥)} = 0.

(3.34b)

Next, we take the scalar product of (3.34a) with E∗

µ⊥ then integrate over the

infinite cross-section

∫∫

∑

ν

{[aν(jβν) + (∂bν/∂z)]E
∗

µ⊥ · ẑ×Hν⊥ − jωǫ0(n
2 − n2

0)aνE
∗

µ⊥ · Eν⊥}dxdy = 0.

We can rearrange the above equation to yield:

∑

ν

{[aν(jβν) + (∂bν/∂z)](−βνδνµ/µ0ω)} = jωǫ0
∑

ν

∫∫

(n2 − n2
0)aνE

∗

µ⊥ · Eν⊥dxdy,
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where we use the normalization

∫∫

dxdy ẑ · [Eν⊥ ×H
∗

µ⊥] = βνδνµ/µ0ω. (3.35)

The only contribution on the left-hand side is under the condition when ν = µ

because of the Kronecker delta δνµ, so

[aµ(jβµ) + (∂bµ/∂z)](−βµ/µ0ω) = jωǫ0
∑

ν

∫∫

(n2 − n2
0)aνE

∗

µ⊥ · Eν⊥dxdy.

We can further rearrage terms and obtain

aµ(jβµ) + (∂bµ/∂z) =
∑

ν

Kνµaν , (3.36a)

where

Kνµ = (ω2/jβµc
2)

∫∫

(n2 − n2
0)E

∗

µ⊥ · Eν⊥ dxdy. (3.36b)

Using the same procedure on (3.34b) with H∗

µ⊥, then integrating over the infinite

cross-section, we find

bµ(jβµ) + (∂aµ/∂z) =
∑

ν

kνµbν , (3.37a)

where

kνµ = (−µ0/jǫ0βµ)

∫∫

H
∗

µ⊥ · ∇⊥ × [∇⊥ × [(n−2 − n−2
0 )Hν⊥]] dxdy. (3.37b)

The above equation (3.37b) appears with an awkward form. To simplify (3.37b),

we substitute ∇⊥ ×Hν⊥ by using (3.29a), which yields

kνµ = (−µ0/jǫ0βµ)

∫∫

H
∗

µ⊥ · ∇⊥ × [(n−2 − n−2
0 )(jωǫ0n

2
0)Eνz] dxdy.
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With the plane-wave approximation and rearranging the refractive index terms,

we obtain

kνµ = (ω/ǫ0βµc
2)

∫∫

(1/n2)(n2 − n2
0)Eνz · ∇⊥ ×H

∗

µ⊥ dxdy.

Substituting ∇⊥ ×Hν⊥ with (3.29a) into the above expression again yields

kνµ = (ω/ǫ0βµc
2)

∫∫

(1/n2)(n2 − n2
0)Eνz · (−jωǫ0n

2
0)E

∗

µz dxdy,

or,

kνµ = (ω2/jβµc
2)

∫∫

(n2
0/n

2)(n2 − n2
0)E

∗

µz · Eνz dxdy. (3.38)

Now we consider the coupled mode equations (3.36a) and (3.37a) in the absence

of coupling, so that kνµ = Kνµ = 0. We take the z derivative of (3.37a) and insert it

into (3.36a), and obtain

aµ(jβµ)− 1/(jβµ)∂
2aµ/∂z

2 = 0,

or,

∂2aµ/∂z
2 + β2

µaµ = 0. (3.39a)

Similar procedure of taking the z derivative of (3.36a) and inserting it into (3.37a)

gives

∂2bµ/∂z
2 + β2

µbµ = 0. (3.39b)

Equations (3.39a) and (3.39b) have solutions in the form

aµ = a+µ + a−µ , (3.40a)

bµ = a+µ − a−µ , (3.40b)
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with

a+µ = c+µ e
−jβµz, (3.41a)

a−µ = c−µ e
+jβµz. (3.41b)

The term with e−jβµz represents a wave traveling in the positive z direction and

the term with e+jβµz corresponds to a wave traveling in the negative z direction.

Next we substitute (3.40a) into (3.36a)

∂

∂z
(a+µ − a−µ ) + jβµ(a

+
µ + a−µ ) =

∑

ν

Kνµ(a
+
ν + a−ν ).

We can group the terms in association with the same propagation direction and

obtain

[
∂a+µ
∂z

+ jβµa
+
µ ]− [

∂a−µ
∂z

− jβµa
−

µ ] =
∑

ν

Kνµ(a
+
ν + a−ν ). (3.42a)

Similarly, substituting (3.40b) into (3.36b) and grouping common terms yields

[
∂a+µ
∂z

+ jβµa
+
µ ] + [

∂a−µ
∂z

− jβµa
−

µ ] =
∑

ν

kνµ(a
+
ν − a−ν ). (3.42b)

Addition and subtraction of (3.42a) and (3.42a) finally yields

∂a+µ
∂z

= −jβµa
+
µ +

1

2

∑

ν

K+,+
νµ a+ν +K+,−

νµ a−ν , (3.43a)

∂a−µ
∂z

= jβµa
−

µ +
1

2

∑

ν

K−,−
νµ a−ν +K−,+

νµ a+ν , (3.43b)

with

Kp,q
νµ = pKνµ + qkνµ = ω2/jβµc

2

∫∫

[pE∗

µ⊥ · Eν⊥ + q(n2
0/n

2)E∗

µz · Eνz](n
2 − n2

0)dxdy,

(3.43c)
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where p or q are (+) or (−) as superscripts or (+1) or (−1) as factors.

The terms a+,−
µ rapidly oscillate. We introduce a slowly varying approximation by

substituting (3.40a) into (3.43a). We also assume that coupling occurs only between

forward propagating modes so that c−µ = 0 which yields

∂c+µ e
−jβµz

∂z
= −jβµc

+
µ e

−jβµz +
1

2

∑

ν

K+,+
νµ c+ν e

−jβνz,

or,

∂c+µ
∂z

e−jβµz − jβµc
+
µ e

−jβµz = −jβµc
+
µ e

−jβµz +
1

2

∑

ν

K+,+
νµ c+ν e

−jβνz.

After canceling the common term, we obtain

∂c+µ
∂z

=
1

2

∑

ν

K+,+
νµ c+ν e

j(βµ−βν)z. (3.44)

All the above equation derivations follow the main steps from [97]. We now relabel

variables to obtain the expression used in [80,95]

c+ → A, µ→ l, ν → m, βµ → −βl, βν → −βm, dxdy → d2r⊥.

Now equation (3.44) becomes

∂Al

∂z
=

jω2

2βlc2

∑

m

∫

d2r⊥(n
2 − n2

0)[E
∗

l⊥ · Em⊥ + (n2
0/n

2)Elz · Emz]e
j(βm−βl)z. (3.45)

We find that (n2 − n2
0) ≈ 2n0∆n, with ∆n = n − n0. We also limit our study to

just one fundamental mode and one higher-order mode, and the other longitudinal

mode is neglected. We let ∆β = β0 − β1, β0 ≈ β1 ≡ β. The coupled mode equations

for a fundamental mode and single higher-order mode (HOM) become

∂A0

∂z
=
jω2

βc2

∫

d2r⊥(n0∆n)[|E0|
2A2

0 + E
∗

0 · E1A1e
−j∆βz], (3.46a)

∂A1

∂z
=
jω2

βc2

∫

d2r⊥(n0∆n)[|E1|
2A2

1 + E
∗

1 · E0A0e
+j∆βz], (3.46b)

where in this case A0 and A1 are the amplitudes for the fundamental and HOM.
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3.6 Conclusions and discussion

In this work, we derived the three-wave mixing equations that govern TMI in

the limit where a single higher-order mode is present, and the longitudinal rate of

change of all quantities is slow compared to the beat length. This limit normally

applies in practice. In this limit, TMI can be identified as an STRS process, and we

reviewed the theoretical justification for this identification in the appendix, where we

also discussed similarities and differences between STRS and SBS in the Appendix.

There, we verified the accuracy of the phase-matched model in a Yb3+-doped fiber

amplifier with a relatively simple step index profile. The amplifier that we considered

is like that of Naderi et al. [95], but has a more realistic 10-m length. We demonstrated

that this model reproduces the nonlinear saturation of the higher-order mode and

the instability threshold that are predicted by the full model. We demonstrated a

computational speedup that is more than a factor of 100.

We derived the three-wave mixing equations in the case that a single higher-order

mode is present, but we expect this result to be more broadly applicable when several

higher-order modes are present. In the linear limit below threshold when HOMs have

low power, HOMs will only interact with the fundamental mode. In that case, the

three-wave mixing equations can be extended by adding a new set of equations for

the index of refraction, Yb3+ population density, heat, temperature, and optical mode

amplitude for each of the HOMs. The computational complexity scales proportional

to M , where M is the number of modes. More generally, we anticipate that the

three-wave mixing equations can be extended to include a coupling between all the

modes as long as none of the beat lengths between any of mode pairs becomes large

enough to be comparable to the scale length on which any of the amplitudes change.

However, the computational complexity grows proportional to M2, and higher-order

nonlinear interactions with a slowly varying amplitude could invalidate this approach.
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CHAPTER FOUR

Piecewise Parabolic Phase Modulation for BI Suppression

This chapter published as [19]: J. White, J. T. Young, C. Wei, J. Hu, and C. R.
Menyuk, “Seeding fiber amplifiers with piecewise parabolic phase modulation for

high SBS thresholds and compact spectra,” Opt. Express 27(3), 2962–2974 (2019).

In this chapter, we study phase modulation techniques for the suppression of the

Brillouin instability (BI). We propose using piecewise parabolic phase modulation of

the seed laser for suppressing BI in a fiber amplifier. A 9 m passive fiber is used in

simulation. Compared with random phase modulation and 0-π pseudo-random phase

modulation, the piecewise parabolic phase waveform yields a higher SBS threshold per

unit bandwidth. If the bandwidth is defined as the range of frequencies containing

85% of the total power, the threshold for parabolic phase modulation is 1.4 times

higher than the threshold for the five- or seven-bit pseudo-random modulation format.

If the bandwidth is defined more tightly, e.g., the range of frequencies containing 95%

of the total power, the threshold for parabolic phase modulation is three times higher.

For both cases, achieving a bandwidth of 1.5 GHz requires a maximum phase shift of

30 radians.

4.1 Phase modulation as a suppression technique

Narrow-linewidth, high-power fiber amplifiers are needed for both coherent and

incoherent beam combining or for spectral combining of multiple amplifiers. For co-

herent beam combining, a narrower linewidth improves combining efficiency in the

presence of path length mismatch [113], allows higher angle beam steering, and en-

ables better wavefront predistortion [114]. For the type of spectral beam combining

in which a grating is the output coupler, a narrower linewidth reduces the output

beam spreading due to diffraction. A larger number of parallel amplifiers can also be
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accommodated under the fiber gain spectrum, allowing higher powers to be reached.

However, narrow linewidths lower the threshold for stimulated Brillouin scattering

(SBS). This trade-off has led to a search for seed spectra that allow the highest

threshold per unit bandwidth.

Pseudo-random bit sequence (PRBS) waveforms have a power spectrum with an

envelope that is approximately sinc2, and random phase modulation waveforms typi-

cally have a Gaussian spectrum. Many lasers tend to exhibit a random walk in phase,

leading to a Lorentzian spectrum. The optimum shape for spectral combining is rect-

angular. Nearly rectangular spectra can be obtained with linearly-chirped seeds with

sawtooth or triangular frequency waveforms, i.e., a phase that is piecewise parabolic

in time. This chapter explores the suitability of chirped seeds with modulation peri-

ods in a range that covers the characteristic times given by the phonon lifetime and

the fiber transit time. For a given spectral bandwidth, we will show how the threshold

for sawtooth and triangular frequency waveforms depends on the period, and compare

to the results for PRBS, random phase, and random-walk phase modulation.

SBS mitigation in a high-power amplifier has been achieved by engineering the

fiber and by modulating the laser beam introduced into the amplifier as a seed.

Random phase modulation of a narrow band laser has been realized by applying a

white noise generator to an external electro-optic phase modulator [115–118]. More

recently, PRBS waveforms with π phase shifts have been extensively investigated for

SBS mitigation [119, 120]. A comprehensive theoretical study showed that “for a

fiber length of length 9 m the patterns at or near n = 7 provide the best mitigation

of SBS with suppression factors approaching 17 dB at a modulation frequency of 5

GHz” [17]. We will use those results as a benchmark for comparison to the waveforms

we propose.

A frequency chirp of 1.2 × 1018 Hz/s has previously been used to suppress SBS

in an 8.4 ns pulsed fiber amplifier [121]. A discontinuous frequency chirp (consisting
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of a succession of 30-MHz jumps) and a low-pass-filtered white noise source have also

been used to suppress SBS in a high-gain parametric fiber amplifier [23]. A chirp

with a period much longer than the fiber transit time has been used in an amplifier

with a 25 m final stage to achieve a fundamental-mode pump-limited output of 1.6

kW [122]. For coherent combining, this waveform has the advantage that path length

differences can be compensated with an acousto-optic frequency shifter [123]. The

other significant advantage is that it is expected to yield fiber-length-independent

SBS thresholds [124]. However, the techniques used to obtain µs-ms period chirps

with 1-100-nm-wide spectra [125,126] may not be applicable to the 10-100 ns period

chirps with the sub-nm spectra that are desirable for spectral beam combining.

More sophisticated waveforms can be generated with a nonlinear algorithm that

varies the phase at every point in time in order to minimize a cost function based on

the difference between the resulting and ideal spectra [127]. The waveform can be

programmed into an arbitrary waveform generator and used to drive an electro-optic

modulator. This technique has been used to impress a 2-GHz-wide flat spectrum with

between 16 and 380 discrete lines onto a seed, allowing amplification to 300 W [128].

Fringe visibility was also measured in a coherent combination experiment, and com-

pared to standard- and filtered-PRBS modulation. Crosstalk between neighboring

frequencies puts a limit on how closely the lines can be spaced, and thus the flatness

of the spectrum. Crosstalk is not an issue with a swept-frequency source because the

frequencies are not all present at the same time and position within the fiber.

The most recent work in this direction uses a model that includes the cross-

interactions between spectral lines [129]. It also uses a genetic-algorithm-based Pareto

multi-objective nonlinear optimization to minimize the Brillouin Stokes power and

minimize the laser linewidth. The sawtooth and the triangle frequency chirp that

we propose both have a phase that is piecewise parabolic in time (Fig. 4.1). These

waveforms are comparatively simple and therefore can be generated without sophis-
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ticated algorithms and electronics. SBS threshold for a passive fiber is commonly

taken to be a ratio of 10− 2 between the time-averaged backward Stokes power and

the incident laser power, both measured at the fiber entrance ( z = 0 ). For purposes

of comparing different modulation formats, the exact definition of threshold should

not play a large role.

Comparing spectra of different shapes requires a definition of spectral width. We

define it as the range of frequencies that encompass a given fraction of the total power.

(The spectra we consider are nominally symmetric, so the range will be centered on

the mean frequency.) A commonly used fraction is 85%.

Future systems, or different applications, e.g., close spectral packing of amplifiers,

may require a tighter standard, e.g., 90% or 95%. This could also be the case for

spectral beam combining systems in which the extraneous power, propagating at

a large diffraction angle, causes a problem in the far field and therefore has to be

dissipated internally before it reaches the exit aperture. Another consideration is

how much of the light is useful when it reaches the far field or the focal plane of a

lens. It is necessary to weigh whether it is more useful to have the extraneous 15%

packed tightly against the other 85%, or distributed over a wide frequency range.

Considerations such as these could give rise to a tighter definition of bandwidth in

practice. Therefore, we consider spectral widths of 85%, 90%, and 95% power to

illustrate the difference between the following spectra: Lorentzian (arising from a

random phase walk), Gaussian (arising from a random phase), sinc2 (arising from a

PRBS waveform), and nearly rectangular (arising from either a sawtooth or triangular

frequency chirp). We consider the case where the entire seed spectrum is incident upon

the fiber, although in some experiments the extraneous spectral components could

be filtered before entering the fiber. Figure 4.2 shows the five spectra, normalized

to have the same total power and the same 85% width. The spectrum in the fourth

row is from one period of a triangle chirp waveform with the period equal to twice
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the transit time of a 9 m fiber, i.e., 87 ns [130]. The chirp amplitude is adjusted to

give the correct 85% bandwidth. The spectrum in the fifth row is the raw Fourier

transform of one period of a sawtooth chirp waveform with an 87 ns period.

Within the 85% width, the Lorentzian clearly has the most variation, the Gaussian

and sinc2 have substantially less variation, and the spectrum of the sawtooth chirp or

Figure 4.1: Phase (above) as a function of time, and frequency (below) as a function of time
for the sawtooth (solid line) and triangle (dashed line) frequency chirp. [Reprinted/Adapted]
with permission from [19] © Optica Publishing Group.
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Figure 4.2: Frequency spectra associated with (1st row) a random phase walk (Lorentzian),
(2nd row) a 0-π generic PRBS waveform (sinc2), (3rd row) random frequency modulation
(Gaussian), (4th row) one period of a triangle chirp, and (5th row) one period of a sawtooth
chirp. Plots in the left (right) column have a linear (log) vertical axis. The log scales all
show three orders of magnitude variation. All spectra are normalized to have a total power
of one and the same 85% width. The 90% (blue) and 95% (red) widths are also shown. The
90% width is omitted from the last rows. [Reprinted/Adapted] with permission from [19]
© Optica Publishing Group.
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the smoothed triangle chirp have even less. Given the nonlinear nature of the SBS,

less variation in the seed spectrum raises the threshold.

As mentioned above, the spectral distribution of the out-of-band 15% also has

practical implications. Spreading it over a wide range of frequencies, as with the

Lorentzian and sinc2 spectra, may lower the threshold, but also reduce by 15% the

impact of the output beam at the target or sample, and create other problems. Thus

there are application-specific tradeoffs to be considered, in addition to the threshold.

Also shown in Fig. 4.2 are the 90% and 95% bandwidths. For the Lorentzian and

sinc2 spectra, these widths are substantially larger than the 85% widths, but for the

rectangular spectra, they are only marginally wider.

4.2 Theoretical model and parameters

We model the SBS following previous treatments that solve the coupled first order

equations representing propagation of the laser and Stokes wave, buildup of the acous-

tic wave, and initiation from a Langevin noise source representing thermal phonons

throughout the length of the fiber [131]. Our code has been verified by comparison

with experiments and previous theoretical work [17, 122,124].

There are many parameters involved in even a basic simulation of SBS in a fiber

amplifier. Some choices will favor one modulation format, other choices may favor

another, so it is hard to draw universal conclusions about the relative merit. We

analyze a passive fiber, and use parameters equal to those in [17], reproduced in

Table 4.1.

While intensity is the fundamental quantity, thresholds will be reported on the

basis of power coupled into a 10 µm core fiber, for a direct comparison to [17]. There

is no transverse spatial dependence in our calculation, i.e., it is a plane wave model,

a standard approximation for a fiber with only the fundamental mode present.
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Our 9 m fiber length corresponds to a 7 m active fiber, which would typically

absorb 95% of a 976 nm pump beam, and a 2 m delivery fiber. Of course, the

longitudinal dependence of the intensity in our simulation is quite different from that

of an amplifier with 20 dB of gain. Since gain in the active fiber adds another degree

of freedom in the comparison, we model a passive fiber in this chapter, consistent

with [17].

4.3 Power threshold for different modulation schemes

As a function of incident power, the backward Stokes power increases rapidly

around the threshold value, later saturating as the reflectivity approaches one. The

data for six waveforms with the same 85% bandwidth are shown in Fig. 4.3. The

sawtooth and triangle waveforms have a period of 23 ns. The thresholds are shown

by the intersection with the dashed line.

For a signal with a linewidth much narrower than the Brillouin linewidth and the

inverse of the fiber transit time, the threshold is 2.4 W. This value will be used to

normalize the other thresholds. The normalized threshold for sawtooth and triangle

waveforms has a broad peak ranging from a period of 1/∆νB = 2πτ to twice the fiber

Table 4.1. BI simulation parameters

silica density ρ0 2201 kg/m3

optical angular freq. ω 1.77× 1015 rad/s

electrostrictive constant γe 1.95

refractive index n 1.5

temperature T 300 K

sound velocity νs 5.9× 103 m/s

fiber core area A 7.85× 10−11 m2

Brillouin angular freq. ΩB 10.1× 1010 rad/s

fiber length L 9 m

2π×phonon lifetime 2πτ 17.5 ns
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Figure 4.3: Backward Stokes power vs. incident laser power for waveforms with 85% band-
widths of 1.5 GHz (left to right): random walk phase, random phase, PRBS 5, PRBS 7,
triangle chirp, sawtooth chirp. The latter two have a period of 23 ns. [Reprinted/Adapted]
with permission from [19] © Optica Publishing Group.

transit time (Fig. 4.4). The three characteristic times are indicated with vertical

lines. The thresholds for a random walk, a random phase, PRBS 5, and PRBS 7 are

also shown for reference. For an 85% bandwidth equal to 1.5 GHz, the normalized

threshold for the sawtooth waveform has a maximum of 16, achieved at a period of

23 ns, or 1.3/∆νB, and a maximum phase shift of 32 radians (Fig. 4.4). A second peak

appears at a period of 95 ns, or 2nL/c. No additional peaks appear at longer periods.

The peak at 23 ns is of more practical interest because of the smaller required phase

shifts. When compared on the basis of 85% bandwidths, the sawtooth chirp at the

optimum period has a threshold 23% higher than PRBS 7, 44% higher than PRBS 5,

1.9 × higher than random phase modulation, and 3.0 × higher than a random walk

phase.

The data for a 1.5 GHz bandwidth defined by the (tighter) 90% power criterion

show a 4-6% decrease in threshold for the linear chirps, a 16-17% drop for the random
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Figure 4.4: Normalized threshold vs. the period, for the following waveforms: sawtooth
frequency chirp, triangle frequency, PRBS 5, PRBS 7, random walk in phase, and random
phase. All have an 85% bandwidth of 1.5 GHz. (Right axis) Maximum phase shift required
for the chirped waveforms. Also indicated are 2π times the phonon lifetime, fiber transit
time (43 ns), and round trip time. [Reprinted/Adapted] with permission from [19] © Optica
Publishing Group.

Figure 4.5: Normalized threshold vs. the period for the same waveforms, with a 90% band-
width of 1.5 GHz. (Right axis) Maximum phase shift required for the chirped waveforms.
[Reprinted/Adapted] with permission from [19] © Optica Publishing Group.

walk and random phase, and a 33% decrease for the PRBS (Fig.4.5). At the optimum

period of 23 ns, the sawtooth waveform has a threshold 75% higher than the PRBS

waveforms, and 31 radians are required. Note that the random phase and PRBS 5

have nearly the same threshold.

The data for a 1.5 GHz bandwidth defined by the 95% power criterion show

further small threshold decreases for the linear chirps, and large decreases for the

70



Figure 4.6: Normalized threshold vs. the period for the same waveforms with a 95% band-
width of 1.5 GHz. (Right axis) Maximum phase shift required for the chirped waveforms.
[Reprinted/Adapted] with permission from [19] © Optica Publishing Group.

other formats. At a period of 23 ns, the sawtooth waveform has a threshold that

is 3.5 × larger than the PRBS 5 waveform, and 29 radians are required. With this

definition of bandwidth, the random phase modulation has a higher threshold than

either of the two PRBS waveforms (Fig. 4.6).

4.4 Discussion

For piecewise-parabolic phase waveforms, the threshold is relatively constant for

periods ranging from 20 to 100 ns. The threshold decrease at long periods has a

macroscopic origin. For periods longer than twice the fiber transit time, the Stokes

wave originating at z = L no longer encounters the entire seed bandwidth while

propagating to z = 0 . The threshold decreases at short periods because the stimulated

phonons do not have time to sufficiently decay before they find themselves again

in resonance with the laser-Stokes difference frequency. At short periods, the high

fundamental Fourier component also means that the spectrum will be composed of

harmonics spaced further apart, thus better resolved, putting more structure into the

spectrum, thus lowering the threshold.
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The optimal operating point for both the sawtooth and triangle waveforms is at a

period of 23 ns. At this period, the maximum threshold has been achieved with a re-

quired phase shift of 30 radians, which will scale linearly with bandwidth. Increasing

the period increases the required phase shift without increasing the threshold. The

small differences in threshold between the triangle and sawtooth waveforms are repro-

ducible, but the choice between sawtooth and triangle may come down to practical

considerations other than threshold. For an experimental realization, the triangular

waveform has the advantage of no large abrupt change in phase. The sawtooth wave-

form has the advantage of requiring a chirp that is half as large and has only one

sign.

Future work could focus on electro-optic modulators capable of producing a 30

radian phase shift. The voltage applied to current waveguide e-o modulators is limited

by the need to dissipate electrical power. Stringing multiple e-o modulators in series

is limited by throughput, which is largely determined by the inefficiency of coupling

the fundamental mode of the fiber pigtail to the fundamental mode of the waveguide,

and vice versa. A potential solution is the lithium niobate on SiO2 technology which

allows long waveguides, CMOS-compatible driving voltages, and 70 Gbit s−1 data

rates [132]. An alternative to large phase shifts and piecewise parabolic waveforms

with 20-30 ns periods, is to reproduce the parabola modulo 2π. This shifts the

practical difficulty to generating rapid 2π phase shifts at more frequent intervals.

4.5 Conclusions

For fiber amplifiers, seed lasers with piecewise parabolic phase waveforms, e.g.,

those produced by a sawtooth or triangular linear frequency chirp, offer a significantly

higher SBS threshold, compared to the conventional random phase variation, and

pseudo-random waveforms. The definition of bandwidth for spectra of qualitatively

different shapes is shown to have a large influence on the relative thresholds. For
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example, at the 85% power definition, the PRBS waveforms have a threshold superior

to that of the random phase. At the 95% power definition, the random phase has a

higher threshold.

The trend in spectral beam combining toward squeezing more amplifiers under

the Yb gain curve will favor the nearly rectangular spectra provided by the parabolic

phase waveforms. Applications where the far-out-of-bandwidth power has to be dis-

sipated will also benefit from the relatively compact rectangular spectrum.

Compared to binary waveforms, e.g., PRBS, coherent combination with piecewise

parabolic and random phase waveforms will require tighter path length matching,

due to their analog nature.

Practical implementation of the piecewise parabolic waveforms will depend on

the development of electro-optic modulators with adequate throughput and capable

of 30 radian phase shifts. Modulators producing more modest phase shifts could

be used if the frequency response is sufficient to generate the same parabolic phase

shift, modulo an integer multiple of 2π. If we compare the bandwidth required of

the phase modulators, the piecewise parabolic waveforms require 5 × less modulator

bandwidth than the PRBS waveforms, for a given spectral bandwidth.
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CHAPTER FIVE

Tradeoff Between the Brillouin and Transverse Mode Instabilities

This chapter published as [133]: J. T. Young, A. J. Goers, D. M. Brown, M. L.
Dennis, K. Lehr, C. Wei, C. R. Menyuk, and J. Hu, “Tradeoff Between the Brillouin
and Transverse Mode Instabilities in Yb-doped Fiber Amplifiers,” Opt. Express

30(22), 40691–40703 (2022).

In this chapter, we formulate a model that includes the Brillouin instability (BI)

and the transverse mode instability (TMI) in a single simulation. The BI due to stim-

ulated Brillouin scattering (SBS) and the TMI due to stimulated thermal Rayleigh

scattering (STRS) limit the achievable power in high-power lasers and amplifiers.

The pump power threshold for BI increases as the core diameter increases, but the

threshold for TMI may decrease as the core diameter increases. In this chapter, we

use a multi-time-scale approach to simultaneously model BI and TMI, which gives us

the ability to find the fiber diameter with the highest power threshold. We formulate

the equations to compare the thresholds of the combined and individual TMI and

BI models. At the pump power threshold and below, there is a negligible difference

between the full and individual models, as BI and TMI are not strong enough to

interact with each other. The highest pump threshold occurs at the optimal core

size of 43 µm for the simple double-clad geometry that we considered. We found that

both effects contribute equally to the threshold, and the full BI and TMI model yields

a similar threshold as the BI or TMI model alone. However, once the reflectivity is

sufficiently large, we find in the full BI and TMI model that BI may trigger TMI

and reduce the TMI threshold to a value lower than is predicted in simulations with

TMI alone. This result cannot be predicted by models that consider BI and TMI

separately. Our approach can be extended to more complex geometries and used for

their optimization.
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5.1 Introduction

Stimulated Brillouin Scattering (SBS) and stimulated thermal Rayleigh scattering

(STRS) can lead respectively to the Brillouin instability (BI) and the transverse mode

instability (TMI) which limit the output power in optical fibers [3, 4, 134]. For BI, a

forward-propagating optical mode couples to an acoustic mode and the same optical

mode propagating in the backward direction (Stokes mode) [16, 17, 19, 119, 124, 135,

136]. For TMI, an optical mode couples to a higher-order mode (HOM) that has

nearly the same frequency [2, 87–89, 94, 95, 137] and a transverse thermal mode. In

both cases, the instability is characterized by exponential growth that leads to a sharp

pump power threshold, beyond which significant power is transferred to modes other

than the forward-propagating fundamental mode. Both instabilities impose limits on

the output power of Yb3+-doped fiber amplifiers, and the interaction between these

two instabilities is not well understood. Also, the limits that they impose depend

differently on the fiber core diameter. As the fiber core diameter increases, all else

being equal, the BI threshold increases because the optical intensity decreases for

a fixed power. However, as the fiber core diameter increases, the TMI threshold

may decrease due to an increased interaction between the fundamental mode and

the HOM. The wavenumbers of the HOMs at the same frequency come closer to the

wavenumber of the fundamental mode, easing the coupling condition for the thermal

mode so that TMI is more easily triggered. Thus, a tradeoff typically exists between

BI and TMI as the diameter increases.

Figure 5.1 illustrates schematically the dependence of the pump power threshold

for the individual BI and TMI effects. Using mitigation techniques for BI such as

phase modulation [17, 19] will likely decrease the core diameter where both BI and

TMI play a roughly equal role in limiting the pump power threshold. On the other

hand, mitigation techniques for TMI, such as fiber bending [29, 138], fiber tapering

[139], gain filtering [27], use of specially designed photonic crystal fibers [140], and
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Figure 5.1: Illustration of the tradeoff between the Brillouin instability and the transverse
mode instability. [Reprinted/Adapted] with permission from [133] © Optica Publishing
Group.

detuning of the pump and signal wavelengths [30, 31] will increase the core diameter

at which both BI and TMI play an equal role in limiting the pump power threshold.

Thus, it is typically the case that the maximum power threshold is obtained for

designs in which BI and TMI play a roughly equal role in limiting the power. Hence,

it is critical to develop a model that can study the interaction between BI and TMI.

In this chapter, we determine the optimal fiber core diameter for an Yb3+-doped

fiber amplifier with a simple double-clad geometry. Previous research has examined

the tradeoff among BI and TMI [86,106,141]. Here, we formulate the full BI and TMI

model and compare this full model to their respective individual models at different

pump powers in order to highlight the differences between them. Simultaneously

modeling BI and TMI is challenging because the time scales on which they develop

are different. BI, which is associated with acoustic phonons, has a characteristic

time scale on the order of nanoseconds, while TMI, which is associated with thermal

diffusion, has a time scale on the order of milliseconds. This large difference in time

scales implies that a multi-time-scale approach must be used. For that reason, almost
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Figure 5.2: Time step scheme. After each TMI time step, a series of BI steps are taken
until the fundamental mode and Stokes mode reach steady state. [Reprinted/Adapted] with
permission from [133] © Optica Publishing Group.

all work to date has considered these two instabilities separately. In this chapter, we

describe a multi-time-scale approach that allows us to simultaneously model BI and

TMI. This approach can be extended to more complex geometries in which the overlap

of the fundamental mode with the acoustic mode, the thermal mode, and HOMs is

minimized. That in turn will make it possible to optimize the optical fiber designs to

increase the threshold powers.

5.2 Modeling scheme

Figure 5.2 shows the time discretization scheme for the simulation. Between two

TMI iteration steps, which are separated by a time on the order of 1 ms, we take

many small time steps, which are separated by a time on the order of 1 ns in order to

take BI into consideration. Once the modes have reached steady state on the BI time

scale, we jump to the next TMI step. For simplicity, we keep the z-step the same

when modeling both BI and TMI. At a minimum, three optical modes representing

the forward fundamental mode, forward HOM, and backward fundamental Stokes

mode, one thermal mode, and one acoustic mode must be considered for the full BI

and TMI simulation.

Figure 5.3 shows an illustration of all the modes that we keep in our model. To

model TMI, we include the fundamental mode and one HOM. Most theoretical studies

of TMI to date focus on evolution after the onset of TMI when the fundamental mode

is significantly depleted. These studies are of little interest for most applications,

including applications to high-energy laser beam production, because once forward
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propagating HOMs have a total power that exceeds about 1% of the output power,

the beam quality is unacceptably degraded [88]. Hence, only one HOM is needed

to determine the onset of TMI. In BI modeling, we only account for the backward-

propagating Stokes mode that is generated by the fundamental mode since we only

consider cases where the HOM does not make up the majority of the output power

at or below the threshold.

We must also clarify the nomenclature that we use for the different modes. In

the TMI literature, it is usual to refer to the optical modes as the pump mode,

fundamental mode, and HOM. However, in the BI literature, it is usual to refer

to the optical modes as the pump mode and Stokes mode. Although, there is no

ambiguity for the Stokes mode, the pump mode in the BI literature corresponds to

the fundamental mode in the TMI literature. In this chapter, we will refer to the

mode that pumps the laser amplifier as the pump mode, the mode that is amplified

as the fundamental mode, the optical mode generated by TMI as the HOM, and the

optical mode generated by BI as the Stokes mode.

Figure 5.3: Illustration of the modes for the BI and TMI simulations. The pump (kpump),
fundamental mode (kfundamental), and HOM (kHOM) propagate in the positive z-direction
and have positive wavenumbers. The Stokes mode (kStokes) propagates backwards and has a
negative wavenumber. We represent the density oscillation for kacoustic, and the oscillation
in the transverse temperature flow for kthermal. [Reprinted/Adapted] with permission from
[133] © Optica Publishing Group.
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5.3 Model for BI and TMI

In much of the current literature, the equations that describe BI use an electric

field amplitude for each mode that has been normalized so that the power for mode

l, Pl, is given by Pl = (1/2)ncǫ0Aeff |El|
2, where Aeff is the effective area [142]. This

choice of normalization is possible since both the forward-propagating fundamental

mode and the backward-propagating Stokes mode have the same transverse mode pro-

file. In the case of TMI, this normalization is no longer possible since the fundamental

mode and the HOM have different mode profiles. Moreover, as Kobyakov et al. [143]

have pointed out, this choice is of limited utility since the definition of Aeff becomes

ambiguous, and it is important to correctly account for the overlap between the op-

tical and acoustic modes when computing gain coefficients. For that reason, we will

consistently use field amplitudes Al that are normalized so that Pl = (1/2)cnǫ0|Al|
2

where Al = El(Aeff,l)
1/2. The amplitudes of the fundamental mode, HOM, and Stokes

mode will be denoted as AF, AH, and AS, respectively.

In this chapter, we will focus on fibers with a simple geometry in which the

interacting modes are all LP modes in a single polarization so that we may write the

electric field for mode l as [97]

El(r⊥, z, t) = x̂
1

2
[Al(z, t)El(r⊥)exp(iβz − iωt) + c.c.], (5.1)

where x̂ denotes the mode polarization direction, Al (l=F, H, or S) denotes the mode

amplitude, and El(r⊥) is the transverse mode profile, normalized so that
∫

d2r⊥|El(r⊥)|
2 =

1. We note that ES(r⊥) = EF(r⊥). We then find that the equations describing TMI

may be written as [80]

dAF

dz
= CFFAF + CFHAH,

dAH

dz
= CHHAH + CHFAF,

(5.2)
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where

CFF =
iω2

βc2
n0

∫

d2r⊥|EF|
2∆n0,

CFH =
iω2

βc2
n0

∫

d2r⊥E
∗

FEH∆n+,

CHF =
iω2

βc2
n0

∫

d2r⊥EFE
∗

H∆n−,

CHH =
iω2

βc2
n0

∫

d2r⊥|EH|
2∆n0.

(5.3)

Here, the quantities CFF, CFH, CHF, and CHH are optical gains or losses influenced by

TMI. These gains or losses do not vary on the BI’s nanosecond time scale since they

are only dependent on the change in refractive index and temperature, which vary on

the order of milliseconds. In Eq. (5.3), we are using the phase-matched model [80],

in which we set

∆n(z, t) = ∆n0(z, t) +
1

2
[∆n+(z, t)exp(i∆βz) + ∆n−(z, t)exp(−i∆βz)], (5.4)

where ∆n(z, t) is the total change in the refractive index due to TMI and ∆β =

βH − βF represents the difference in propagation constants of the fundamental mode

and HOM. The basic assumption of the phase-matched model is that all quantities

have a component that varies slowly along the fiber compared to the beat length

2π/∆β and a component that oscillates at the beat length period, whose complex

amplitude varies slowly compared to the beat length. In the phase-matched model,

we ignore contributions to ∆n(z, t) from higher harmonics of ∆β. It was previously

shown that this approximation greatly speeds the computational calculations with no

loss in accuracy [80] since the contributions of higher harmonics that are proportional

to exp(im∆βz) with m > 1 are negligible. Conversely, we have |∆β| ≪ βH, βF ≈ β.

We model BI [16, 17] including the contributions from TMI using the equations
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∂AF

∂z
+

1

νg

∂AF

∂t
= CFFAF + CFHAH + iκASρ,

∂AH

∂z
+

1

νg

∂AH

∂t
= CHHAH + CHFAF,

−
∂AS

∂z
+

1

νg

∂AS

∂t
= CFFAS + iκAFρ

∗,

∂ρ

∂t
+ π∆νBρ = i

Λ

Aeff,F

AFA
∗

S + f,

(5.5)

where ρ(z, t) is the acoustic wave density, κ and Λ are the optical and acoustic coupling

parameters [16], ∆νB is the Brillouin linewidth, and Aeff,F is the effective area for the

fundamental mode and Stokes mode. The parameters CFF, CFH, CHF, and CHH are

the TMI contributions to the evolution of different fields according to Eq. (5.3).

The quantity νg represents the group velocity of the fundamental mode. Since the

frequency difference between the fundamental mode and HOM is on the order of

kHz, we assume that the difference in group velocities between the two modes is

negligible. Since the Stokes mode and fundamental mode share nearly the same

transverse mode profile, and the frequency shift between them is only on the order

of tens of GHz [21, 22], we assume that gain and group velocity for the Stokes mode

is the same as for the fundamental mode. We assume that the acoustic noise source

f(z, t) is white thermal noise [16, 131], which is delta-correlated such that

〈f(z, t)f ∗(z′, t′)〉 = Qδ(z − z′)δ(t− t′). (5.6)

Here, the coefficient Q is the phonon strength parameter and is expressed as

Q =
4πkTρ0∆νB

v2Aeff

, (5.7)

where k is the Boltzmann constant, T is the temperature along the fiber, and v is the

speed of sound through the material.

To model the heat flow in the fiber, we write

ρ0C
∂T0
∂t

+ κ∇2
⊥
T0 = Q0, ρ0C

∂T+
∂t

+ κ∇2
⊥
T+ = Q+, (5.8)
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where, consistent with the phase-matched model [80], we write the temperature as

T = T0 + (1/2)[T+ exp(i∆βz) + T− exp(−i∆βz)], and we assume that T0, T+, and

T− = T ∗

+ all vary slowly along z compared to the beat length 2π/∆β. We similarly

write Q = Q0+(1/2)[Q+ exp(i∆βz)+Q− exp(−i∆βz), where Q0, Q+, and Q− = Q∗

+

all vary slowly compared to the beat length. More details on the phase-matched

model that we use here can be found in [80].

When including BI in our model, we only consider the Stokes mode generated

by the fundamental mode. Since we focus on the power threshold, the power in the

HOM is low (1%) compared to the power in the fundamental mode. Any Stokes light

generated from the HOM would be orders of magnitude smaller than the Stokes light

generated from the fundamental mode and would make a negligible contribution to

the reflectivity. Also, we only consider the forward propagating fundamental mode

as any backward propagating fundamental modes would be small at or below the

threshold.

Since the gain and temperature profiles vary on the scale of milliseconds, they

may be treated as time-independent in each BI evolution, which occurs on the scale

of nanoseconds. This implies that CFF, CFH, CHF, and CHH are fixed with respect

to the BI time step. After each TMI step, we solve the BI equations, taking time

steps on the order of picoseconds until a steady state is reached. When modeling the

BI portion of the simulation, we set the temporal step size ∆t = ∆z/νg, where ∆z

is the step size in the longitudinal direction [16, 17]. In each BI time step, we first

propagate the fundamental mode and the HOM in the forward direction. Then, we

propagate the Stokes mode in the backward direction. This relaxation algorithm is

commonly used for two-point boundary value problems [144], where AF(z = 0, t) =

[2PF0/(cnǫ0)]
1/2, AS(z = L, t) = 0, and PF0 is the input optical power of the signal

in fundamental mode. At the beginning of the simulation, we assume that AS(z, t <

0) = 0. We propagate the optical fields for 40 fiber transient times to ensure that
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the power reaches a steady state, and we then take a statistical average of the Stokes

mode at the front of the fiber and the power at the fiber output for an additional 40

fiber transient times. The transient time equals L/νg, which is 7.7 ns in this case.

Because we use a noise source to seed the BI process, we must take a statistical

average, which better reflects experimental measurement.

Table 5.1 shows the fiber parameters used for the simulation [16, 95]. The ratio

of cladding diameter, dclad, to core diameter, dcore, is fixed at 5 to ensure that the

total signal gain is the same within 5% for all core sizes when the pump power is

below threshold. The overall goal of our simulation is to vary the core diameter to

find the highest threshold when both BI and TMI are considered. Consistent with

prior work [80,95], we assume that the frequency difference between the fundamental

mode and the HOM is 1 kHz. We consider a numerical aperture of 0.03, which is

consistent with the numerical apertures reported in experiments [145–147]. We use a

10th-order super-Gaussian profile for the rare-earth doping concentration in the fiber

cross-section [148].

In this chapter, we focus on the contribution to TMI due to the quantum defect

heating [89, 94, 95]. It has been shown that photodarkening can also contribute to

TMI [30, 100]. Photodarkening contributes to the thermally induced index grating

coherently with quantum defect heating [2]. Hence, the heat source term and absorp-

tion term from photodarkening [30] could in principle be added to the phase-matched

model for TMI [80].

5.4 BI and TMI threshold at core diameters of 30 and 45 µm

When we refer to the threshold, we are always referring to the pump power thresh-

old that is limited by either BI or TMI. We define the threshold for BI, Ppump,BI, as

the input pump power at which the reflectivity defined as ρS = PS(z = 0)/[PF(z =

L)+PS(z = 0)] reaches 1%, where the overline indicates an average over the 40 tran-
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Figure 5.4: Reflectivity ρS due to BI and the HOM content ρH due to TMI as a function of
pump power for a core diameter of (a) d = 30 µm and (b) d = 45 µm. The results here are
obtained using the full model that includes both BI and TMI. [Reprinted/Adapted] with
permission from [133] © Optica Publishing Group.
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sient fiber times tf = Ln/c, as described in the previous section. This definition of

reflectivity is used in the gain fiber so that the reflectivity represents the ratio of the

reflected power relative to the amount of total output power that is reflected, and

the lower and upper bounds of ρS in this definition are 0 and 1, which is consistent

with the definition of the HOM content. To ensure that the power reaches a steady

state due to TMI, we also average the reflectivity in the full model over the last 50

TMI steps. We define the threshold for TMI, Ppump,TMI, as the input pump power at

Table 5.1. BI-TMI model simulation parameters

Fiber length L 1.6 m

Core index ncore 1.45031

Numerical aperture N .A. 0.03

Signal power Psig 30 W

HOM seed power PHOM 3 mW

Pump emission σ
(e)
p 1.87× 10−27 m2

Signal emission σ
(e)
s 6× 10−27 m2

z step ∆z 8× 10−5 m

t step,TMI ∆tTMI 20 µs

t step, BI ∆tBI 0.774 ps

Transverse step ∆x,∆y 2 µm

Doping concentration N0 6× 1025 m−3

Brillouin linewidth ∆νB 57 MHz

Heat lifetime τ 0.85 ms

Pump wavelength λpump 977 nm

Signal wavelength λsignal 1064 nm

Pump absorption σ
(a)
p 1.53× 10−24 m2

Signal absorption σ
(a)
s 3.58× 10−25 m2

Density ρ0 2200 kg/m3

Heat capacity C 703 J/(kg −K)

Thermal conductivity κ 1.38 W/(m−K)

Initial temperature T 300 K
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which the HOM content defined as ρH = max{PH(z = L)/[PF(z = L) + PH(z = L)]}

reaches 1% [80]. We write the maximum in the definition since the impact of TMI is

determined by this maximum value [80,95]. When we consider BI and TMI together,

the threshold, Ppump,full, is defined as the pump power at which the maximum of the

reflectivity ρS or the HOM content ρH reaches 1%. We study the thresholds for BI

and TMI using the full model described in the previous section for core diameters of

30 and 45 µm. The dashed blue and dotted red curves in Fig. 5.4 show reflectivity,

ρS, and the HOM content, ρH, respectively, as a function of pump power. For fibers

with the smaller core diameter of 30 µm, shown in Fig. 5.4(a), the pump power is

197 W when the reflectivity ρS reaches 1%, and the pump power is 323 W when

the HOM content ρH reaches 1%. In this case, BI plays a more important role and

reaches threshold at a lower pump power since the relatively small core size increases

the intensity. By contrast, for fibers with the larger core diameter of 45 µm, the pump

power is 391 W when the reflectivity ρS reaches 1%, and the pump power is 348 W

when the HOM content ρH reaches 1%. In this case, TMI is the dominant effect that

limits the pump power threshold due to a stronger coupling between the fundamental

mode and the HOM. When TMI is the limiting nonlinear effect, decreasing the core

diameter improves the TMI threshold.

5.5 BI and TMI thresholds as a function of core diameter

In Fig. 5.5(a), the solid green curve shows the threshold Ppump,full, which is the

power, including the effects of both BI and TMI. We also show Pfund, which is the

output power for the fundamental mode at the pump power threshold Ppump,full. As

explained in the previous section, increasing the diameter increases the modal area

and lowers the intensity, which helps to improve the BI threshold. However, further

increasing the diameter eventually increases the impact of the HOM in our study,

which lowers the TMI threshold. The cutoff diameter in our study for the HOM
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Figure 5.5: (a) Pump power threshold when we consider BI and TMI altogether or BI
and TMI separately. The fundamental mode power Pfund shows the output power for
the fundamental mode at the pump power threshold Ppump,full. (b) Reflectivity ρS and
HOM content ρH for the full model at the corresponding pump power threshold, Ppump,full,
indicated by the green curve in (a). [Reprinted/Adapted] with permission from [133] ©
Optica Publishing Group.
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is at 27.2 µm. Decreasing the core diameter to values near the cutoff of the HOM

will cause the HOM to be less confined and greatly increase the TMI threshold. In

Fig. 5.5(b), the dashed and dotted green curves show the reflectivity ρS and the

HOM content ρH, respectively, for the full model at the corresponding pump power

indicated by the green curve in Fig. 5.5(a). Since our definition of threshold is when

either the reflectivity or the HOM content reaches 1%, the curves in Fig. 5.5(b) will

be capped at 1%. Figure 5.5(b) clearly indicates the limiting effect on the instability

corresponding to the pump power threshold curve in Fig. 5.5(a). The core diameter

of 43 µm yields the highest threshold; at that diameter the threshold contributions

due to BI and TMI are equal. The dash-dotted orange curve in Fig. 5.5(a) shows the

output power at the pump power threshold, which indicates the maximum output

power at the optimal core diameter of 43 µm.

In Fig. 5.5(a), the dotted red curve shows the threshold power, Ppump,TMI, when

only TMI is present. The dashed blue curve shows the threshold power, Ppump,BI,

when only BI is present. At a small diameter of 20 µm, the full model agrees with

the BI only model, that only includes BI, as there is a negligible influence on the

pump power threshold due to TMI. At a large diameter of 60 µm, the threshold for

the full model agrees with the threshold for the TMI only model, the model that only

includes TMI, as BI makes a negligible contribution to the pump power threshold.

5.6 Comparison of the individual and full models

Figure 5.4 also shows that when the full BI and TMI model is considered, the

TMI threshold for a core diameter of 30 µm is lower than the threshold for a core

diameter of 45 µm. This result is contrary to the expectation that decreasing the core

diameter should increase the TMI threshold. In Fig. 5.4(a), we see that after the

BI threshold is reached at 197 W, there is significant reflection of the output power.

We observe that the onset of TMI may occur at a lower-than-normal pump power
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when the reflectivity due to BI is sufficiently high and the pump power is above the

BI threshold so the reflectivity is greater than 1%.

Next, we study when BI will trigger TMI. Figure 5.6 shows the full model reflec-

tivity and HOM content compared to the HOM content from the TMI only model as

a function of pump power. The core diameter is 30 µm. The dashed blue and dotted

red curves are replotted from Fig. 5.4(a) so that the comparison may be easily made.

The solid green curve shows the HOM content from the TMI only model. The dotted

black horizontal line in Fig. 5.6 marks the 1% threshold criterion. Figure 5.6 shows

that when the pump power is under 200 W, the reflectivity is low, and there is a

negligible difference between the HOM content predicted by the TMI only model and

the full model. However, further increasing the pump power past 200 W yields an

increase in reflectivity that then triggers TMI in the full model. The TMI threshold

Figure 5.6: Reflectivity and HOM content from the full model and the TMI only model as a
function of pump power. The core diameter is 30 µm. [Reprinted/Adapted] with permission
from [133] © Optica Publishing Group.
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Figure 5.7: (a) Reflectivity from the full model, (b) reflectivity from the BI only model,
(c) HOM content from the full model, and (d) HOM content from the TMI only model as
a function of pump power and core diameter. Black circles in (a)−(d) show pump powers
of 150, 250, and 350 W at a core diameter of 30 µm. [Reprinted/Adapted] with permission
from [133] © Optica Publishing Group.
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with the full model is at a pump power of 323 W compared to the TMI only threshold

of 946 W.

In this example, the onset of BI at 1% does not trigger TMI, but rather TMI

is trigged by BI when the reflectivity reaches about 10%. If there is significant re-

flectivity, much greater than the 1% used to denote the onset of BI, the interaction

between the Stokes and fundamental mode causes the fundamental mode to fluctuate

stochastically along the fiber. Rather than seeding the HOM directly, these fluctua-

tions may make it possible for the fundamental mode and the HOM to interact. This

result is consistent with experiments of Lee et al. [149] who found that stimulated

Brillouin scattering may induce TMI and that the TMI threshold closely follows the

BI threshold. This behavior is not captured by previous models that consider TMI

or BI separately.

To gain a better understanding of the interaction between the TMI and BI, we

now compare the full model and individual models at different power levels so that

any differences between them may be distinguished. Figures 5.7(a)−(d) show the

full model reflectivity ρS,full, BI only reflectivity ρS,BI, full model HOM content ρH,full,

and TMI only HOM content, ρH,TMI as a function of pump power and core diameter.

In Fig. 5.7(a), the reflectivity increases as the power increases or the core diameter

decreases.

To further understand the difference in predicted reflectivity and HOM content

between the individual BI and TMI models to the full model, we show the difference in

predicted reflectivity ∆ρS = |ρS,BI− ρS,full| and HOM content ∆ρH = |ρH,TMI− ρS,full|,

between the full model and individual models in Fig. 5.8. The temperature in the

full model increases due to the quantum defect, which can lead to a difference in

the predicted reflectivity values between the full model and the BI only model, as

shown in Fig. 5.8(a). Figure 5.8(b) shows that when the full model is under the BI

threshold, there is a negligible difference in the predicted HOM content between the
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full model and the TMI only model. However, once there is significant reflectivity at

dcore = 30 µm and Ppump = 350 W, the HOM content predicted by the full model

differs from the HOM content predicted by the TMI only model.

To compare the HOM content that is predicted by the different models, we study

the evolution of the reflectivity and the HOM content as a function of time for the

three regions marked with circles in Fig. 5.7. Figures 5.9(a)−(c) show the reflectivity

Figure 5.8: Absolute value of the difference in the predicted (a) reflectivity and (b) HOM
content between the full and individual models. [Reprinted/Adapted] with permission from
[133] © Optica Publishing Group.
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Figure 5.9: Reflectivity and HOM content as a function of time for pump powers of
(a) 150 W, (b) 250 W, and (c) 350 W with a core diameter of 30 µm. [Reprinted/Adapted]
with permission from [133] © Optica Publishing Group.
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and the HOM content for pump powers of 150, 250, and 350 W, respectively, as a

function of time. The core diameter is 30 µm. The solid blue, dashed green, and

solid red curves represent the HOM content from a TMI only simulation ρH,TMI,

HOM content for the full model ρH,full, and reflectivity from the full model ρS,full,

respectively. When the pump power is 150 W, the averaged reflectivity is 0.043%

which is under the BI threshold. The HOM content predicted by the full model and

by the TMI only model are nearly identical. In this case, adding BI in the model does

not have any impact on TMI. At a pump power of 250 W, the averaged reflectivity

is near 8.9%. Both the TMI only model and full model lead to a small HOM content

below 1%. The difference in the peak HOM content is also small. Hence, around

the BI threshold, the interaction between BI and TMI is not significant, as shown

in Fig. 5.9(b). However, when the pump power increases to 350 W, the averaged

reflectivity reaches 27%. The higher reflectivity leads to amplitude modulation of

the signal and triggers TMI, as shown in Fig. 5.9(c). In this case, the large BI leads

to significant power transfer between the fundamental mode and the Stokes mode.

Hence, there is a substantial difference in the time evolution of the HOM contents

between the full model and the TMI only model, which leads to different contours in

Figs. 5.7(c) and (d).

5.7 Conclusions

BI and TMI have been modeled separately in the past, but including both effects

in one simulation is necessary to determine when and how they interact particularly

since both effects have roughly equal magnitudes at the optimal operating points in

the parameter space. We formulate the equations to model both BI and TMI in

a single simulation. For the system model and parameters that we considered, the

optimal core diameter with a maximum power threshold is around 43 µm. For small

core sizes less than the optimal core diameter of 43 µm, BI dominates and TMI plays
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little role in limiting the pump power threshold. For core sizes that are greater than

43 µm, the BI effect is negligible, and the full model with both BI and TMI yields

a similar threshold as the threshold for TMI alone. The difference between the full

model and individual model pump power thresholds is negligible in this case, as BI

and TMI are not strong enough to interact with each other. At large pump powers

and small core diameters, where the reflectivity is large, BI may trigger TMI due

to modulation of the power in the fundamental mode, so that the TMI threshold is

significantly lower than is the case when modeling TMI alone.

Combining both BI and TMI in a single simulation makes it possible to simulta-

neously optimize the fiber design to minimize both effects and yield the highest power

thresholds.
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CHAPTER SIX

Summary and Future Prospects

6.1 Summary

In this dissertation, first we studied avoided crossings due to mode coupling in

adjacent slab waveguides. The principal features of avoided crossings in index-guided

and antiresonant waveguides may be explained by using a simple one-dimensional slab

waveguide model. We also showed that the coupled mode theory that predicts the

behavior of avoided crossings in guided modes may be modified to predict the avoided-

crossing behavior for leaky modes. We described the similarities and differences

between the specialty optical fibers and the simpler slab waveguides and found that

this model is a useful basis for understanding avoided crossings in the more complex

geometries that are typically found in photonic crystal fibers. The motivation to

study avoided crossings in antiresonant slab waveguides comes from the idea of using

gas-filled negative curvature fibers which may be used for high-energy laser beam

production and may lead to the suppression of nonlinear effects like BI and TMI.

Fiber designs such as negative curvature fiber may support multiple transverse modes

that all have low loss since the optical mode is confined in a low index gas core. This

may enable certain conditions where transverse modes interact and couple leading to

avoided crossings which is not ideal for high-energy laser systems.

Second, we formulated the phase-matched model for TMI which is described as

three-wave mixing equations with a single HOM. TMI is induced by a thermally

seeded refractive index grating that couples power from usually a near Gaussian

fundamental mode to other HOMs. In extreme cases TMI is characterized by a

temporally changing unstable output mode profile which may severely affect power

scalability in high-energy laser systems and unpredictable behavior when propagat-

ing through the atmosphere. In the phase-matched model, only the first harmonic
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frequency tone that describes the refractive index and temperature grating which

causes TMI is considered and was found that higher harmonic tones do not signifi-

cantly contribute to the evolution of TMI. With the fiber parameters considered, the

phase-matched model showed a large computational speedup with no loss of accuracy

compared to the full model, which includes all high frequency components that make

up the refractive index and temperature gratings.

Third, we studied how the BI may be suppressed using piecewise parabolic phase

modulation. BI is caused by the interaction of acoustic phonons and forward propa-

gating light, where at sufficient powers causes large pulses to be reflected toward the

laser source. Phase modulation works by broadening the laser linewidth which spreads

the gain among many frequency tones which lowers the overall Brillouin gain. Piece-

wise parabolic phase modulation has a particular advantage over other popular phase

modulation techniques such as PRBS, in that the associated spectrum for piecewise

parabolic phase modulation is nearly rectangular. This is desirable in power scaling

applications that rely on spectral beam combining compared to PRBS, which has a

sinc2 envelope in its spectrum. We compared the performance of piecewise parabolic

phase modulation such as triangle and sawtooth modulation to PRBS phase modula-

tion. The triangle and sawtooth frequency modulation with a period of 23 ns yielded

a higher BI threshold compared to PRBS 5 and PRBS 7 with a modulation frequency

of 1.5 GHz. However, the drawback to piecewise parabolic phase modulation is the

large phase shifts required but may be possible with Lithium niobate electro-optic

modulators [132].

Lastly, we formulated equations to model BI and TMI in a single simulation. A

multi-time-scale approach must be used since each of the nonlinear effects evolve at

drastically different rates. Combining both nonlinear effects into a single simulation

is only possible due to the use of the phase-matched model for TMI. The full model

for TMI requires that the longitudinal discretization be much smaller than the beat
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length LB/∆z and was shown in [80] that this requirement led to over a 100-fold

increase in wall time. Adding the BI model with gain terms influenced by TMI as

previously mentioned would quickly lead to unreasonably large wall times. BI which

is due to the interaction of optical and acoustic modes, occurs on the nanosecond

time scale; whereas TMI which is attributed to thermal diffusion, occurs on a scale of

milliseconds. Only a single backward Stokes mode and forward HOM are needed for

the study since the interest is to find the pump power threshold under both effects.

At and under the pump power threshold, there is negligible interaction between the

two nonlinear effects, and the total pump power threshold may be described as the in-

tersection of the individual threshold curves for BI and TMI. However, at sufficiently

high pump power and small core diameter, there is some region where BI may stim-

ulate TMI due to large stochastic amplitude modulation of the fundamental mode.

This result cannot be predicted by either the BI or TMI only model alone.

6.2 Future Prospects

Because of their excellent beam quality, fiber amplifier-based high-energy lasers

have grown in popularity. We expect extensive work to continue regarding the de-

velopment of higher output powers for high-energy lasers, especially with the current

political atmosphere in the world. With the addition of computationally efficient

simulation modeling tools previously described, it will be feasible to optimize fiber

geometries and achieve larger operating powers. Further improvements in the power

thresholds for fiber amplifiers may be done with either intrinsic methods such as op-

timizing the fiber design by employing photonic crystal fibers and fiber tapering, or

extrinsic methods like fiber coiling optimization and tuning of the laser parameters.

Most of the research related to simulation and theory regarding TMI have treated

the thermal seed source as quantum defect heating. While defect heating may con-

tribute to the heat load in a fiber amplifier, it has recently been shown that another
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heat source may also contribute to the TMI threshold, which is photodarkening [2].

Photodarkening leads to the development of color centers in the fiber. The fiber de-

velops a non transparent center that absorbs signal and pump light. The absorption

spectra is centered in the visible region of light, hence ”color center”, however, the tail

of the absorption spectra creeps into the 1 µm region [2, 150]. Thus photodarkening

may affect typical signal and pump wavelengths used in fiber amplifiers. It has been

shown though that thermally annealing the fiber may temporarily increase the TMI

power threshold [2]. Accurate modeling of photodarkening may lead to additional

suppression of the TMI effect.

Nonlinear effects like BI and TMI may be suppressed using photonic crystal fiber

designs. One avenue of pursuit is to employ gas filled negative curvature fibers. Neg-

ative curvature fibers with a broad bandwidth and low loss have drawn attention

because it is possible to fill the fibers with fluids [151–154]. Filling negative curva-

ture fibers with gases such as H2 or N2O gases [155–157] and using a pump at 1.5

µm, emission near 4.5 µm has been observed. Being able to host gases allows nega-

tive curvature fibers to serve as mid-infrared lasers, which are currently being used

in sensing, medical, and defense applications [158]. Designing hollow-core negative

curvature fibers to find the optimum structure that can simultaneously provide low

transmission loss at both the pump and signal wavelength for different gases. Hollow-

core fibers usually have a large core with higher order modes, even with some higher

order mode suppression scheme. This will enable the study of nonlinear effects like

BI and TMI in fiber lasers that employ negative curvature fibers.

Along with PCFs, tapering of the core diameter may also mitigate nonlinear ef-

fects. The number of transverse modes that may be supported is directed tied to

the diameter of the fiber. Increasing the fiber diameter also increases the number

of transverse optical modes that may be supported. Tapering of the core diameter

may be used to effectively make a portion of the fiber single mode thereby suppress-
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ing TMI by yielding high loss for HOMs, and by tapering to a large diameter the

intensity may be kept low to suppress BI. Preliminary study of fiber tapering has

been successfully demonstrated using a saddle shaped fiber to suppress TMI [139].

Optimizing the taper design will lead to larger output powers. Another avenue to

pursue is efficient fiber coiling methods. Coiling the fiber results in an exponential

increase in loss for HOMs while the fundamental mode sees relatively low loss; how-

ever, at sufficiently small bend radii, the fundamental mode can also see large loss,

which is followed by a decrease in output power. Coiling techniques usually rely on

monotonical increase in bend radius where the fiber is coiled in a flat spiral, which

is usually implemented so that cold plates can thermally regulate the fiber tempera-

ture. Coiling techniques with the intention of providing the maximum possible loss

for the HOM while keeping power in the fundamental mode may prove beneficial in

increasing threshold powers for nonlinear effects. We believe that further research

in this field will lead to more developments for high energy laser applications in the

medical, industrial, manufacturing, and defense industries.
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single mode 3 kW average power from a directly diode pumped ytterbium-
doped low NA fiber amplifier,” Opt. Express 24(6), 6011–6020 (2016).

[29] R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by
optimizing the fiber coiling methods,” Laser Phys. Lett. 14, 025101 (2017).

[30] C. Jauregui, H.-J. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified
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