ABSTRACT

Synthesis and Biological Evaluation of Potential Vascular Disrupting and Antimitotic Agents Utilizing Benzosuberene, Benzocyclooctene, and Indene Molecular Frameworks

Christine A. Herdman, Ph.D.

Mentor: Kevin G. Pinney, Ph.D.

An investigational approach to cancer treatment involves the use of therapeutic agents that selectively target tumor-associated vasculature. A subset of these compounds is referred to as vascular disrupting agents (VDAs). The majority of clinically-relevant VDAs function biologically as inhibitors of tubulin polymerization, thus interfering with the dynamic instability inherent to the tubulin-microtubule protein system. As a key component of the cytoskeleton associated with eukaryotic cells, this protein system provides shape and structural stability to the endothelial cells that line the vasculature. Tumor associated vasculature provides a promising target for cancer therapeutics due to its primitive nature and abhorrent structure. Microtubule depolymerization leads to endothelial cell morphology changes (flat to round), which results in vasculature collapse and shut down of blood flow, ultimately leading to tumor necrosis. Tumors larger than 2-3 mm³ require their own vasculature for the transportation of oxygen and nutrients, as well as the disposal of waste. Selective targeting of tumor-associated vasculature results

from the structural differences inherent to these vessels versus those feeding healthy tissue.

The natural products combretastatin A-1 (CA1), combretastatin A-4 (CA4), and colchicine are potent inhibitors of tubulin polymerization. While toxicity associated with colchicine treatment limited its use as an anticancer therapeutic, CA1 and CA4, as their corresponding water-soluble prodrug salts CA1P and CA4P respectively, have shown promising results in clinical trials. Drawing on structural similarities inherent to these three natural products, the Pinney Research Group at Baylor University has developed a variety of potent inhibitors of tubulin polymerization that function as VDAs. A benzosuberene-based compound (referred to as KGP18) has emerged as a highly promising agent for further investigation. Using KGP18 as a model, several new analogues have been synthesized and evaluated biologically to expand the structure activity relationship (SAR) profile of the benzosuberene class of compounds and to investigate the efficacy associated with benzocyclooctene and indene ring systems bearing similar functional group motifs. The synthesized target molecules have been evaluated for their ability to inhibit tubulin polymerization (assembly) as well as their cytotoxicity against three human cancer cell lines (NCI-H460, SK-OV-3, and DU-145) in collaborative studies.

In a related study, multi-walled carbon nanotubes (MWCNTs) have been evaluated for their ability to selectively deliver VDAs to tumors and/or tumor-associated vasculature. Initial studies have included dispersion assays of MWCNTs in a variety of organic solvents, as well as adsorption studies utilizing two water-soluble phosphate prodrug salts (CA4P and KGP265). Synthesis and Biological Evaluation of Potential Vascular Disrupting and Antimitotic Agents Utilizing Benzosuberene, Benzocyclooctene, and Indene Molecular Frameworks

by

Christine A. Herdman, B.S.

A Dissertation

Approved by the Department of Chemistry and Biochemistry

Patrick J. Farmer, Ph.D., Chairperson

Submitted to the Graduate Faculty of Baylor University in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Approved by the Dissertation Committee

Kevin G. Pinney, Ph.D., Chairperson

Charles M. Garner, Ph.D.

Robert R. Kane, Ph.D.

Mary L. Trawick, Ph.D.

Christopher M. Rios, Ph.D.

Accepted by the Graduate School August 2016

J. Larry Lyon, Ph.D., Dean

Page bearing signatures is kept on file in the Graduate School.

Copyright © 2016 by Christine A. Herdman

All rights reserved

TABLE OF CONTENTS

LIST OF FIGURES	vii
LIST OF SCHEMES	X
LIST OF TABLES	xi
ACKNOWLEDGMENTS	xii
DEDICATION	xiii
CHAPTER ONE	1
Introduction	1
Vascular Targeting Therapies	I
Angiogenesis Inhibiting Agents	3
Vascular Disrupting Agents	5
Carbon Nanotubes as a Drug Delivery System	
CHAPTER TWO	17
Structural Interrogation of Benzosuberene-Based Inhibitors of Tubulin	
Polymerization	17
Abstract	17
Introduction	
Results and Discussion	
Conclusion	
Experimental Section	
Acknowledgements	
Supplementary Data	
CHAPTER THREE	
Synthesis and Biological Evaluation of Benzocyclooctene-based and Indene-	
based Anticancer Agents that Function as Inhibitors of Tubulin	
Polymerization	
Abstract	
Introduction	
Results and Discussion	103
Biological Evaluation	107
Dynamic bioluminescence imaging	110
Conclusions	113
Experimental Section	114
Acknowledgements	136
Supplementary Data	

CHAPTER FOUR	138
Carbon Nanotubes as a Drug Delivery System – Preliminary Studies	138
Dispersion Experiments	138
Uptake Experiments	140
CA4P Uptake Experiment	142
KGP265 Uptake Experiment	144
CHAPTER FIVE	147
Conclusions	147
APPENDICES	149
APPENDIX A	150
Supporting Information: Structural Interrogation of Benzosuberene-Based	
Inhibitors of Tubulin Polymerization	150
APPENDIX B	419
Synthesis and Biological Evaluation of Benzocyclooctene-based and Indene-	
based Anticancer Agents that Function as Inhibitors of Tubulin	
Polymerization	419
APPENDIX C	525
Permissions	525
REFERENCES	535

LIST OF FIGURES

Figure 1.1 Progression of tumor vasculature. In A, small tumors can survive by leaching oxygen and nutrients from surrounding blood vessels. However, as the tumor grows (B), pro-angiogenic factors are released from the tumor to promote vessel growth from existing vasculature to the tumor. Large tumors (C) require their own vasculature to provide nutrients and to rid itself of	
waste.	4
Figure 1.2. Mechanism of vascular shutdown by a tubulin disrupting agent	6
Figure 1.3. The structure of colchicine.	7
Figure 1.4. The structures of combretastatin A-4, combretastatin A-1, and their phosphate prodrugs, CA4P and CA1P	8
Figure 1.5. Lead compounds to emerge from the Pinney Research Group: OXi6196, OXi6197, KGP18, KGP265, KGP165, OXi8006, and OXi8007.	10
Figure 1.6. SWCNT vs. MWCNT.	.13
Figure 1.7. a) Concentration of free DOX vs. SWCNT-DOX at different time points after injection. b) SWNT–DOX had higher tumor-specific uptake free DOX. Biodistribution in major organs measured 6 h after injection	15
Figure 2. 1. Representative small-molecule inhibitors of tubulin polymerization: colchicine, combretastatins (CA4, CA1), dihydronaphthalene analogue (OXi6196), benzosuberene analogues (KGP18 and KGP156), indole analogue (OXi8006) and benzo[b]furan analogue (BNC105).	20
Figure 2.2 Compilation of synthesized benzosuberene analogues.	.27
Figure 2.3 BLI assessment of vascular disruption caused in MDA-MB-231-luc orthotopic human tumor xenografts by analogue 73. Dynamic BLI was performed at baseline (bottom row), 4 h after VDA administration (middle), and after 24 h (top), and images are shown for representative mice 17 min after administering fresh luciferin substrate on each occasion to each animal. Images show bioluminescent signal intensity overlaid on photographs of the mice. Analogue 73 was administered at 20, 30 or 40 mg/kg IP in saline, and additional mice received saline control or CA4P (120 mg/kg) for comparison. Analogue 73 caused a reduced signal at all doses at 4 h with substantial recovery by 24 h.	33

Figure 2.4. Vascular disruption caused by analogue 73. Relative signal intensity is plotted for the mice shown in Fig. 2.3
Figure 2.5. Dynamic bioluminescence with respect to vascular disruption. Graphs show evolution of light emission from individual MDA-MB-231- <i>luc</i> tumors following administration of luciferin substrate subcutaneously in the fore back region of each mouse at baseline (blue) and 4 h after administration of agent (red). Analogue 73 had a modest effect at 30 mg/kg and a greater effect at 40 mg/kg. By comparison control saline showed a high degree of reproducibility and CA4P showed >90% reduction in light emission
Figure 3.1. Representative small-molecule anti-proliferative agents including colchicine, paclitaxel, CA4, vinblastine, OXi6196, KGP18, KGP156, OXi8006, and BNC105
Figure 3.2. Structures of PR-104 and TH-302100
Figure 3.3 Several clinically relevant VDAs including CA4P CA1P, BNC105, AVE8062, and ZD6126102
Figure 3.4. Compilation of synthesized benzocyclooctene analogues 20, 21, 23, and 24 and indene analogues 28, 29, 31, and 32108
Figure 3.5 Dynamic bioluminescence with respect to vascular disruption. A) Graphs show evolution of light emission from individual MCF7-luc-GFP mCherry breast tumors following administration of luciferin substrate subcutaneously in the fore-back region of each mouse at time 0. Respective curves are baseline (blue), 4 h (red), 24 h (green) and 48 h (purple) post administration of VDA. Left hand panel shows representative mouse with 120 mg/kg analogue 24 and right hand panel shows CA4P (120 mg/kg). B) Photographs show selected images at the 10 min. time point. Left hand group for analogue 24 and right hand group for CA4P for the same mice used to generate the curves for part A. Respective images are each scaled to same values.
Figure 3.6 Histological assessment of tumor necrosis. H&E stained tumor cross sections showing necrotic (pink) and viable (purple) regions at 48 h post treatment for A: Analogue 24 (120 mg/kg) B: CA4P (120 mg/kg) C: Saline113
Figure 4.1. 1 mg/mL of MWCNTs in H ₂ O sonicated for ten minutes139
Figure 4.2. 1 mg/mL of MWCNTs in DMSO sonicated for 10 minute intervals over an hour. Even dispersion is not seen for the DMSO samples (evident with the clumping seen on the filter papers)

Figure 4.3. 1 mg/mL of MWCNTs in dichloromethane or water after 30 minutes of sonication. Both appear to be dispersed in their given solutions	141
Figure 4.4. 100 µl of the MWCNTs/water solution added to 900 µl 10% FBS with media after 30 minutes of sonication. The nanotubes appear to be dispersed	141
Figure 4.5. Structures of CA4P and KGP265.	142
Figure 4.6. Calibration curve for CA4P in water	143
Figure 4.7. Calibration curve for KGP265 in water	145

LIST OF SCHEMES

23 24
2/1
2 4
25
26
)4
)4
)5
)5
)6
)6
)7

LIST OF TABLES

Table 2.1. Inhibition of tubulin polymerization, percent inhibition of colchicine	
binding, and cytotoxicity of the target benzosuberene analogues	27-28
Table 3.1 Inhibition of tubulin polymerization [(expressed as half maximal	
inhibitory concentration (IC_{50})] and cytotoxicity [expressed as growth	
inhibition of 50% (GI ₅₀)] of the eight target analogues synthesized	109

ACKNOWLEDGMENTS

First and foremost, I cannot express enough gratitude to my mentor, Dr. Kevin G. Pinney. Without his superior expertise and unending support, I would never have been able to complete such an accomplishment. I will forever be indebted to his kindness and leadership.

I would also like to thank my committee members, Dr. Garner, Dr. Kane, Dr. Trawick and Dr. Rios, as well as the entire department of chemistry and biochemistry. Everyone's continued efforts to help me with my projects, as well as maintaining the flow of the department has made my career exceptionally enjoyable.

Next, I would like to thank the Pinney group as well as the other graduate students and friends, especially Lindsay Jones, Sara Schlesinger, and Dana Horgen, for their help with all my endeavors, but also for being an outlet and shoulder to lean on when chemistry or graduate school seemed like it was too much to handle. Without them, I for sure would've been miserable.

Lastly, I would like to thank my loving parents and amazing sister. Without their love and support, nothing would be possible. Thank you for encouraging me to always follow my dreams and helping me make them possible.

I'm sure there are plenty of people I have forgotten, but please know if you are a part of my life, you too have helped me along this journey, and for that I am forever grateful.

xii

DEDICATION

Dedicated to Mary Jane, David, and Jen Herdman

> As well as Sally Van Dyke

In Memory of Ethel and Robert Herdman and Karen Van Dyke

CHAPTER ONE

Introduction

Cancer continues to be one of the most devastating diseases across the globe. In 2014, there were an estimated 1.7 million new cases of cancer and almost 600,000 deaths resulting from cancer.¹ The highest incidence of cancer for males occurs in the prostate, while for females it occurs in the breast tissue. However, the largest number of deaths for both men and women attributed to cancer occurs in the lung and bronchi.²

Tumors are classified as either benign or malignant. Benign tumors do not spread and do not invade other tissues, and are not considered a threat to life. Malignant tumors, however, invade neighboring organs, can spread throughout the host, and are life threating. Cancer by definition is malignant, and usually forms a solid mass.³

The primary problem with treating cancer is that no two cancers are exactly alike. The disease differs from person to person and within each location in the body, thus making treatment quite difficult.⁴ Because the disease is unique to each individual, combination therapies are often used to most effectively destroy the cancer.⁵ One developing type of treatment is the use of targeted therapies. These therapies target specific cites of cancer cells that ultimately makes them different from normal, healthy cells.^{6–9}

Vascular Targeting Therapies

In 1971, Judah Folkman noted that tumors between 2 and 3 mm³ stopped growing if they were unable to produce their own vasculature.^{10,11} Folkman determined that by limiting the development of the vasculature and thus inhibiting the flow of nutrients and

oxygen, it could be possible to target tumor vasculature as a form of cancer treatment.¹² Folkman is credited with coining the term "anti-angiogenesis" which refers to treatments, methods, or processes that prevent the formation and development of new vasculature.¹⁰

Following Folkman's discovery in 1971, Juliana Denekamp observed that the obstruction of the blood vessels of solid tumors led to tumor regression.^{13–16} This blockade of blood flow, which was related to morphology changes of vascular endothelial cells, resulted in tumor cell death due to a lack of necessary oxygen and nutrients, ultimately leading to widespread necrosis.¹⁴ Denekamp also reported that tumor cells farther from blood vessels are radioresistant due to lack of oxygen and chemoresistant due to nutritional deprivation, thus other methods rather than chemotherapy and radiotherapy of tumor therapy were necessary for treatment.¹⁵

Since Folkman's and Denekamp's discoveries, targeting tumor vasculature has grown into a substantial research area for cancer therapeutics, and the information surrounding tumor vasculature has become more complex. Over 90% of cancers present as solid tumors, relying on its own vasculature for the supply of oxygen and nutrients (Figure 1.1).¹⁷ The neovasculature found in expanding tumors is vastly different from that found in healthy tissue. The density of the vasculature varies throughout the tumor, with greater densities seen in areas of active growth and less vasculature in regions of necrosis.¹⁸ Tumor vasculature tends to be chaotic due to the rapid proliferation of the tumor.^{11,12,14,15,19} Throughout the vasculature, excessive branching, misshapen vessels, leakiness between the lining endothelial cells, areas of hypoxia, and blind ends are all observed.^{3,11,20} The vessels also lack the organization of arterioles, capillaries, and venules.¹⁸ These structural failures causes nutritional and oxygen deprivation to the

tumor, as well as increased interstitial fluid pressure.^{3,11} Because of the necessity for solid tumors to supply nutrients and oxygen and dispel waste throughout, as well as the immaturity and chaotic nature of the vasculature, the blood vessels provide an optimal target for potential cancer therapies.¹¹

Vascular targeting therapies are divided into two main areas: angiogenesis inhibiting agents (AIAs) and vascular disrupting agents (VDAs). These two approaches vary in their physiological target, the type of disease that is likely to be susceptible to such therapies, and the treatment scheduling.¹³ Angiogenesis inhibitors block the formation of new vasculature, are beneficial to early stage metastatic disease, and require chronic administration.^{13,21} VDAs, on the other hand, target established vasculature, are given acutely, and would be more beneficial in use against advanced diseases.^{13,22}

Angiogenesis Inhibiting Agents

Angiogenesis is the process of new blood vessel formation from preexisting vasculature.²³ Under normal physiological conditions, angiogenesis is only promoted during pregnancy, wound healing, and the menstrual cycle.²⁴ This process is usually extremely controlled and self-limited, but is aberrant in tumor vasculature and necessary for tumor perseverance and metastases.²⁵ Due to the rapid growth of many tumors, cancerous cells up-regulate proangiongenic factors such as vascular endothelial growth factor (VEGF) and platelet-derived endothelial growth factor, which stimulate the formation of new vessels.^{18,26} These factors, in turn, bind to their respective receptors on endothelial cells and activate otherwise dormant cells, which begin to infiltrate the tumor. Of all the angiogenic factors, VEGF is considered the most potent and specific, due to its

necessity for endothelial cell proliferation and blood vessel formation. It is also key in endothelial cell survival signaling in newly formed vessels.²²

Figure 1.1 Progression of tumor vasculature. In A, small tumors can survive by leaching oxygen and nutrients from surrounding blood vessels. However, as the tumor grows (B), pro-angiogenic factors are released from the tumor to promote vessel growth from existing vasculature to the tumor. Large tumors (C) require their own vasculature to provide nutrients and to rid itself of waste (directly reproduced (with permission) from reference 26).

Angiogenesis inhibitors block the growth of new vessels, however, they do not necessarily affect the established vasculature. These agents interact with a number of endothelial targets, which results in an antiangiogenic process. These processes can include the inhibition of endothelial cell migration or proliferation, the induction of apoptosis in endothelial cells, the inhibition of pericyte adherence to endothelial cells, as well as other processes.²⁰ Many angiogenic inhibitors have been developed, and several have gained FDA approval for therapeutic uses in various cancers, the most famous of these being bevacizumab (Avastin®).^{25,27}

Bevacizumab is a monoclonal antibody that inhibits the VEGF signaling pathway.²⁷ It has demonstrated promising results in both preclinical and clinical trials, however only against certain cancer cell lines.²⁸ The activity of bevacizumab is significantly increased when combined with chemotherapy.^{26,27} Because the vasculature of tumors is known to be leaky with increased interstitial fluid pressure, it is believed that by suppressing VEGF signaling, the vessels go through what is known as vascular normalization, which increases the delivery of chemotherapy.^{26,29,30} The presence of VEGF allows for the survival and proliferation of endothelial cells, while the overexpression of VEGF, like that observed in tumors, leads to abnormal vasculature. By down-regulating the signaling of VEGF, the vasculature actively repairs itself to resemble normal vasculature.³⁰ The normalized vessels are less tortuous and allow for increased tumor oxygenation and penetration of drugs, improving the effectiveness of chemotherapy.³⁰

While many antiangiogenic therapies have improved the treatment outcome for different types of cancers, the overall benefit of antiangiogenic therapies is lacking. Many patients benefit from prolonged progression free survival when given antiangiogenic therapies, however the cancer tends to progress in those with heavy disease burden.³¹

Vascular Disrupting Agents

The second type of vascular targeting therapy involves the use of vascular disrupting agents (VDAs). Unlike anti-angiogenic agents, VDAs target already established tumor vasculature, shutting down the tumor blood vessels, ultimately leading to cell death.¹² VDAs can be further divided into biological agents and small molecules, however both types of therapy produce the same tumor necrosis. This necrosis is observed within 95% of the tumor, however a rim of viable cells tend to survive, due to their ability to acquire nutrients from blood vessels affiliated with normal tissue.^{12,14}

The majority of small-molecule VDAs interact with tubulin as their mechanism of action, and these agents are continuing to grow as an area of research in VTA therapy.³²

Tubulin is comprised of two tubulin monomers, the α and β subunit.³³ The heterodimers polymerize in order to form microtubules which are approximately 20-24 nm in diameter.³³

The vast majority of tubulin destabilizing agents bind to the colchicine-binding site on β -tubulin,³² causing microtubule depolymerization, cytoskeletal rearrangements, and activation of actin stress fibers in endothelial cells.²¹ The endothelial cells lose their shape, round up, and detach, which causes resistance to blood flow (Figure 1.2).^{12,34}

Figure 1.2. Mechanism of vascular shutdown by a tubulin disrupting agent (directly reproduced (with permission) from reference ³⁴).

As blood flow through the tumor is diminished, cells begin to die, ultimately leading to extensive tumor necrosis.^{12,34} After administration of a VDA, blood flow stops almost entirely after about one hour, remains quite low for 24 hours, and then blood flow gradually reestablishes itself (due to the viable rim).³⁵ Tumors can become necrotic within 24 hours of a VDA dose,³⁶ and in tumors where the vasculature is vigorous and persistent, the necrosis can effect more than 90% of the tumor.^{35,37}

In the 1940s, colchicine was first shown to have antitumor effects (Figure 1.3).^{17,38} Colchicine is a known tubulin-binding natural product from the autumn crocus *Colchicum autumnale*³⁹ and has demonstrated tumor regression and tumor necrosis, which is attributed to vascular shutdown. However, colchicine is extremely toxic, and thus use of colchicine as a cancer therapeutic could not be continued.^{12,39}

Figure 1.3. The structure of colchicine.

Combretastatin A-4 (CA4) and combretastatin A-1 (CA1) (figure 1.4) are also well known tubulin-binding agents, originally isolated by George Pettit from the African bushwillow tree *Combretum caffrum*.⁴⁰ Both CA4 and CA1 are structurally similar to colchicine and also bind to the colchicine binding site on tubulin. The phosphate prodrug combretastatin A-4P (CA4P) and combretastatin A-1P (CA1P) (Figure 1.4) were synthesized to improve the solubility of CA4 and CA1 in aqueous solutions.^{41,42}

Figure 1.4: The structures of combretastatin A-4, combretastatin A-1, and their phosphate prodrugs, CA4P and CA1P.

The phosphates CA1P and CA4P are cleaved by naturally occurring phosphatase enzymes after administration, thus revealing the parent compounds CA4 and CA1 which are then able to interact with the with tubulin-microtubule protein system.³⁴ Unlike colchicine, CA4P shows antivascular effects well below the maximum tolerated dose, thus allowing for a wide therapeutic window.³⁴ Moderate doses of CA4P in animal models showed a significant decrease in blood flow to P22 rat carcinomas after 5 minutes and almost complete vascular shutdown after 20 minutes.^{34,37}

Through 2014, three phase I clinical trials have been completed with CA4P as a single agent for treatment of anaplastic thyroid cancer. In all three studies, blood flow to the tumor was significantly reduced in the majority of patients.^{43–45} Four phase I clinical trials as CA4P in combination with another anti-cancer agent were also studied. In these studies, CA4P was administered with carboplatin or paclitaxel, radiotherapy, with

radioimmunotherapy alone or in combination with an anti-carcinoembryonic antigen antibody, or with the known antiangiogenic agent bevacizumab.^{44,46–49} In all four studies, it was reported that the combination of CA4P with another anti-cancer agent showed promising tumor responses.^{44,46–49}

In addition to the phase I clinical trials, several phase II studies by the National Cancer Institute and many phase II/III trials by OXiGENE, Inc. (now Mateon Therapeutics) have been completed. The first study evaluated the efficiency of CA4P to treat anaplastic thyroid cancer as a single agent, and the second study examined CA4P in combination with doxorubicin, cisplatin, and radiation therapy.^{44,50} In both studies, no significant tumor response was observed, however in the first study the disease was stabilized in roughly 25% of the patients.^{44,50} In the first phase II/III study, CA4P with carboplatin and paclitaxel was compared to carboplatin and paclitaxel alone, and it was determined that CA4P increased the overall survival of the patients.^{44,51} OXiGENE, Inc. has also completed a phase II study of CA4P in combination with bevacizumab against recurrent ovarian cancer as well as a phase II study (safety and efficacy) of the combination of carboplatin, paclitaxel, bevacizumab, and CA4P to treat non-small cell lung cancer, both with promising results.^{52,53} They are currently in the process of studying CA4P in combination with pazopanib against advanced recurrent ovarian cancer.53

Efforts by the Pinney Research Group (Baylor University) focus on synthesizing potential vascular disrupting agents, using scaffolds similar to those incorporated in both colchicine and the combretastatins, which feature a trimethoxy aryl ring moiety. These scaffolds include, for example, benzo[*b*]thiophenes, ⁵⁴ CA4 and CA1 analogues, ^{55–60}

indenes,⁶¹ dihydronaphthalenes,⁶² benzosuberenes,^{62–64} indoles,^{65,66} and benzocyclooctenes. Some of the most potent analogues to emerge from these investigations included OXi8006,^{65,66} OXi8007,^{65,66} OXi6196,^{61,67} OXi6197,⁶⁷ KGP18^{61,62,64,68} and its corresponding phosphate salt KGP265,^{61,64} and KGP156^{61,63,64,69} (figure 1.5).

All of the described compounds demonstrate inhibition of tubulin polymerization either comparable to or better than CA4, and KGP18 has also exhibited cytotoxicity to several cancer cell lines. Continued efforts in the Pinney Research Group have focused on synthesizing new analogues that could function as anticancer and vascular disrupting agents. This research will be discussed throughout chapters two and three.

Figure 1.5. Lead compounds to emerge from the Pinney Research Group: OXi6196,^{61,67} OXi6197,⁶⁷ KGP18,^{61,62,64,68} KGP265,^{61,64} KGP165,^{61,63,64,69} OXi8006,^{65,66} and OXi8007.^{65,66}

Chapter two of this dissertation is a previously published manuscript. Christine A. Herdman (one of several co-authors) contributed to this manuscript through the synthesis of twelve of the twenty-two final compounds including full characterization, which included proton and carbon NMRs, HPLC, and HRMS. In addition, Christine A. Herdman contributed a significant amount to the writing and editing of the manuscript, as well as the preparation of the supporting data. Dr. Laxman Devkota, Dr. Chen-Ming Lin, and Haichan Niu synthesized the other ten compounds as well as characterized them by NMR, HPLC, and HRMS. They helped write, edit, and prepare the supporting data. Dr. Tracy Strecker from the Trawick Research Group at Baylor University performed the cytotoxicity studies. Dr. Clinton George and Dr. Rajendra Tanpure originally synthesized some of the analogues, however, they were resynthesized by Christine A. Herdman, Dr. Laxman Devkota, or Dr. Chen-Ming Lin. Dr. Ernest Hamel at the National Cancer Institute performed the inhibition of tubulin polymerization studies. Ramona Lopez and Dr. Li Liu of Dr. Ralph Mason's Research Group at the University of Texas Southwestern Medical Center (UTSW) in Dallas, Texas performed the BLI imaging studies.

Chapter three of this dissertation is a manuscript that is in the very final stages of editing prior to being submitted for publication consideration. Christine A. Herdman (one of several co-authors) contributed to this manuscript through the synthesis of all of the final compounds including full characterization, which included proton and carbon NMRs, HPLC, and HRMS. In addition, Christine A. Herdman contributed a significant amount to the writing and editing of the manuscript, as well as the preparation of the supporting data. Dr. Tracy Strecker from the Trawick Research Group at Baylor

University performed the cytotoxicity studies. Dr. Ernest Hamel at the National Cancer Institute performed the inhibition of tubulin polymerization studies. Ramona Lopez and Dr. Li Liu of Dr. Ralph Mason's Group at UT Southwestern performed the BLI imaging studies.

Carbon Nanotubes as a Drug Delivery System

Within the past twenty years,⁷⁰ carbon nanotubes (CNTs) have become an exploding field of research for their broad range of potential applications from energy storage devices to drug delivery systems.⁷¹ CNTs can be divided into two major types: single walled nanotubes (SWCNT) and multi walled nanotubes (MWCNT) (figure 1.6). SWCNTs have an approximate diameter of 1 nm, while MWCNTs have diameters ranging from 2-50 microns.⁷¹ In both SWCNTs and MWNCTs, the tubes are rolled up graphene sheets forming cylinders that can be grown to up to potentially 20 cm in length.⁷²

Because of their strong van der Waals forces, CNTs tend to clump into bundles rather exist as individual tubes. This clumping causes the tubes to be insoluble in media and limits the tubes applications.⁷¹ In order to overcome the strong van der Waals forces, functionalization of the CNTs such as chopping and oxidation have improved the both the biocompatibility and the solubility of the CNTs.^{71,74}

Figure 1.6. SWCNT vs. MWCNT (directly reproduced (with permission) from ref⁷³).

Functionalization of the CNTs can include non-covalent functionalization at both the tips and the sidewalls, covalent functionalization, and encapsulation of bioactive molecules. The most common of the non-covalent methods is to adsorb functional moieties to the external walls through pi interactions.⁷⁴ CNTs can also be chemically modified to introduce carboxylic groups, which through subsequent amidations, esterifications, or formation of salts, various amide and ester links can be synthesized to covalently bond molecules to CNTs.^{71,74–76}

More recently, CNTs have been examined as a drug delivery system. MWCNTs have become especially promising due to their complete internalization by cells as well as their almost complete loss in toxicity (especially observed in the oxidized MWCNT),^{77,78} however SWCNT have also been used as promising drug delivery systems. In one study, doxorubicin, a DNA intercalating agent for the treatment of a

variety of cancers, was combined with oxidized SWCNT as well as monoclonal antibody and fluorescein.^{74,79} Normally, doxorubicin (DOX) has low selectivity, inefficient distribution, and is unable to cross cellular barriers. However while complexed with the SWCNTs, the antibody recognized the tumor while the SWCNT delivered doxorubicin into the cancer cells where it was then released.^{74,79} In another DOX study, DOX loaded onto pegylated SWCNT by pi-pi stacking was studied *in vivo* for its biodistribution and therapeutic efficacy. It was found that DOX-CNT had prolonged blood circulation compared to the free DOX and had a higher tumor specific uptake (figure 1.7).^{74,80} Countless studies have been done utilizing similar drug delivery systems, all improving results from administration of just the parent compound, whether through improving targeting, selectivity, cytotoxicity, or prolonged drug release.^{79–95}

Paclitaxel is universal frontline cancer therapy and a well-known robust antimitotic agent. However, like DOX, has poor solubility, low distribution, and lacks selectivity.^{96,97} In a similar drug delivery system, MWCNTs were complexed to paclitaxel with folic acid and quantum dots to improve the delivery of paclitaxel and improve antitumor activity. Folic acid was used as the targeting ligand, which can bind to receptors on the cancer cells, delivering the paclitaxel to the tumor. The quantum dots were used as fluorescence labeling probes to track the intracellular transport. In this study, paclitaxel bound to MWCNTs improved the delivery of the anticancer drug.⁹⁶

The biggest concern with the use of CNTs is the potential cytotoxic effects of the tubes themselves. The reported toxic side effects vary greatly depending on the study, mostly due to the size of the CNTs, metal impurities, length of the tubes, surface areas,

dispersion and aggregation, functionalization, administration, cell types, and the types of studies, making it hard to compare CNTs across the board.^{98,99}

Figure 1.7. a) Concentration of free DOX vs. SWCNT-DOX at different time points after injection. b) SWNT–DOX had higher tumor-specific uptake free DOX. Biodistribution in major organs measured 6 h after injection (directly reproduced (with permission) from ref.⁸⁰).

There are several general tendencies seen through most of these studies, however. Highly purified CNTs that carry no metal impurities from development exhibit little to no toxic behavior in human cells. Longer CNTs with larger diameters tend to have a greater toxicity, as they are not as easily cleared from cell systems.⁹⁹ By functionalizing CNTs, toxicity can all be but diminished, as functionalization has shown to improve the dispersibility and biocompability.^{99–101}

Toxicity also fluctuate depending on the method of administration of the CNTs. Very few studies have looked at oral and IV administration, which would be more relevant to drug delivery, but in the few studies completed, the results found that CNTs only caused mild inflammation.^{99,102} While some studies found that inhalation resulted in severe inflammation, others resulted in no tissue damage or toxicity.^{99,103–105}

In a continued effort to try to selectively deliver active compounds to tumors, the Pinney Research Group has begun research into utilizing carbon nanotubes as a way to transport synthesized molecules to tumors. Preliminary work with carbon nanotubes with compounds synthesized within the Pinney Research Group will be reviewed in Chapter Four. Medical Grade Molecular Rebar (MGMRTM) CNTs were used in these experiments. MGMR carbon nanotubes differ from traditional commercialized carbon nanotubes. Through their proprietary process, they are able to deliver unbundled, discrete tubes that are 99.9% pure and open on both ends.^{106,107} The tubes are 800-1000 nm in length, have an outer diameter of 12-15 nm, and an inner diameter of 4-5 nm.^{106,107} They can be customized to length and functionalization, depending on the application, making them optimal for synthesis and drug delivery.¹⁰⁸

CHAPTER TWO

Structural Interrogation of Benzosuberene-Based Inhibitors of Tubulin Polymerization

This chapter published as: Herdman, C. A.; Devkota, L.; Lin, C. M.; Niu, H.; Strecker, T. E.; Lopez, R.; Liu, L.; George, C. S.; Tanpure, R. P.; Hamel, E.; Chaplin, D. J.; Mason, R. P.; Trawick, M. L.; Pinney, K. G. Structural Interrogation of Benzosuberene-Based Inhibitors of Tubulin Polymerization. *Bioorganic and Medicinal Chemistry* 2015, *23*, 7497-7520.

The author Christine A. Herdman contributed to this manuscript through the synthesis of twelve of the twenty-two final compounds including full characterization, which included proton and carbon NMRs, HPLC, and HRMS. In addition, Christine A. Herdman contributed a significant amount to the writing and editing of the manuscript, as well as the preparation of the supporting data.

Abstract

The discovery of 3-methoxy-9-(3´,4´,5´-trimethoxyphenyl)-6,7-dihydro-5*H*benzo[7]annulen-4-ol (a benzosuberene-based analogue referred to as KGP18) was originally inspired by the natural products colchicine and combretastatin A-4 (CA4). The relative structural simplicity and ease of synthesis of KGP18, coupled with its potent biological activity as an inhibitor of tubulin polymerization and its cytotoxicity (*in vitro*) against human cancer cell lines, has resulted in studies focused on new analogue design and synthesis. Our goal was to probe the relationship of structure to function in this class of anticancer agents. A series of twenty-two new benzosuberene-based analogues of KGP18 was designed and synthesized. These compounds vary in their methoxylation pattern and separately incorporate trifluoromethyl groups around the pendant aryl ring for the evaluation of the effect of functional group modifications on the fused six-membered aromatic ring. In addition, the 8,9-saturated congener of KGP18 has been synthesized to assess the necessity of unsaturation at the carbon atom bearing the pendant aryl ring. Six of the molecules from this benzosuberene-series of compounds were active ($IC_{50} < 5 \mu M$) as inhibitors of tubulin polymerization while four analogues were comparable (IC_{50} approximately 1 μM) in their tubulin inhibitory activity to CA4 and KGP18. The potency of a bis-trifluoromethyl analogue 74 and the unsaturated KGP18 derivative 73 as inhibitors of tubulin assembly along with their moderate cytotoxicity suggested the potential utility of these compounds as vascular disrupting agents (VDAs) to selectively target microvessels feeding tumors. Accordingly, water-soluble and DMSO-soluble phosphate prodrug salts of each were synthesized for preliminary *in vivo* studies to assess their potential efficacy as VDAs.

Introduction

As solid tumors grow beyond approximately 1 mm³ in size, they require an ever larger vascular network to supply oxygen and nutrients to the cells and remove cellular waste products.¹¹ Since the vasculature feeding tumors tends to grow rapidly to keep up with tumor expansion, it has a tendency to vary in diameter and incorporate bulges and blind ends, rendering it somewhat fragile and chaotic in character.^{21,34,109} The primitive nature of the vascular network in tumors makes it a promising target for cancer therapy.

There are two types of antivascular therapies: angiogenesis inhibiting agents (AIAs) and vascular disrupting agents (VDAs).^{17,22,32} AIAs inhibit the formation of new vasculature in developing tumors, while VDAs damage the already existing tumor vasculature.^{17,110,111} VDAs are further subdivided into biologics and small-molecule

anticancer agents. Inhibitors of tubulin polymerization represent one class of smallmolecule VDAs. These compounds disrupt the tubulin-microtubule protein system and cause structural changes to the endothelial cells lining the vasculature, in response to cell signaling events. These morphological changes eventually lead to irreversible damage to the tumor vasculature, thus starving the tumor of nutrients and oxygen, ultimately leading to tumor necrosis.^{42,112–119}

One class of VDAs interact with the colchicine site on β -tubulin near the α , β tubulin heterodimer interface. Two of the most potent colchicine site binding VDAs are the natural products combretastatin A-4 (CA4)⁴⁰ and combretastatin A-1 (CA1)¹²⁰ originally isolated from *Combretum caffrum*, the South African bushwillow tree (Fig. 2.1). The corresponding phosphate prodrug salts combretastatin A-4P (CA4P)^{36,41} and combretastatin A-1P (CA1P)⁴² have improved water solubility and have been extensively evaluated in both pre-clinical experiments and clinical studies in humans.^{44,121–125}

Significant structural similarities exist among the natural products colchicine, CA4, and CA1 (Fig. 2.1), including a trimethoxy phenyl ring, a separate *p*-methoxy phenyl moiety, and bridging functionality connecting the two rings at a comparable centroid to centroid distance. The relative structural simplicity of CA4 has inspired the synthesis of a vast array of synthetic analogues and derivatives in which both aryl rings and the ethylene bridge have been structurally modified.

Figure 2.1. Representative small-molecule inhibitors of tubulin polymerization: colchicine, combretastatins (CA4, CA1),^{40,120} dihydronaphthalene analogue (OXi6196),^{61,62,67} benzosuberene analogues (KGP18 and KGP156),^{62–64} indole analogue (OXi8006)⁶⁶ and benzo[*b*]furan analogue (BNC105).¹²⁶

An early initial molecular design paradigm led us to utilize clinically relevant non-steroidal, selective estrogen receptor modulators (SERMs) and related compounds as molecular templates modified to mimic colchicine and CA4.^{33,58,127} This led us to the discovery and establishment of benzo[*b*]thiophene,^{54,128,129} benzofuran,^{129,130} dihydronaphthalene, ^{61,62,67} benzosuberene,^{61–64,67} and indole-based⁶⁶ analogues as potent inhibitors of tubulin polymerization (Fig. 2.1). Two benzosuberene analogues (referred to as KGP18^{62,64} and its amino congener KGP156^{61,63}) are especially promising anticancer agents based, in part, on their pronounced cytotoxicity against human cancer cell lines and their efficacy as inhibitors of tubulin polymerization. Our previous studies in this area^{62–64} resulted in two separate synthetic strategies towards the pendant 9-aryl, fused six-seven ring system present in the benzosuberene analogues KGP18 and KGP156. These studies included a variety of functional group modifications designed to probe structural diversity as it relates to biological function. Inspired by our original work with these and related benzosuberene analogues, Maderna and co-workers at Pfizer developed a separate synthetic approach utilizing a ring-closing metathesis (RCM) reaction to form the benzosuberene molecular core and a Suzuki coupling to install the pendant aryl ring.¹³¹ They prepared and evaluated a series of structurally diverse benzosuberene analogues.¹³² Using KGP18 and KGP156 as models, we developed a series of analogues to analyze further functional group modifications for their effects on cytotoxicity and inhibition of tubulin polymerization.

Results and Discussion

Synthesis

Twenty-two benzosuberene analogues (Fig. 2.2) were synthesized and evaluated for both their ability to inhibit tubulin polymerization and for their *in vitro* cytotoxicity against selected human cancer cell lines. Structural modifications to the R₁ and R₂ positions of the fused aryl ring as well as the pendant aryl ring were explored in order to evaluate their impact on tubulin dynamics and cytotoxicity. The synthesis of each benzosuberene analogue involved a Wittig olefination reaction followed by hydrogenation to afford carboxylic acid derivatives 7-12. An intramolecular Friedel-Crafts annulation facilitated by Eaton's reagent (7.7 weight percent P₂O₅ in CH₃SO₃H)^{133,134} yielded benzosuberone analogues 13-18, which were subsequently

treated with requisite aryl-lithium reagents to generate tertiary alcohols 19-27, which upon dehydration afforded the final benzosuberene analogues 28-36 (Scheme 2.1).

Scheme 2.1. Synthesis of benzosuberene analogues 28-36.

Concomitant elimination accompanied the addition of 4-methoxyphenyl lithium,

which resulted in benzosuberene analogue 37 (Scheme 2.2).

Scheme 2.2 Synthesis of benzosuberene analogue 37.

Benzosuberone analogues 13 and 14 were also subjected to a demethylation reaction using the ionic liquid [TMAH][Al₂Cl₇]¹³⁵ to afford phenolic derivatives 38-40. We previously demonstrated the regioselective demethylation of compound 13.^{64,135} Protection of the phenolic moieties as their corresponding *tert*-butyldimethylsilyl (TBS) ethers followed by nucleophilic addition with an appropriately substituted lithiated aryl ring produced tertiary alcohols 44-50, which were subsequently dehydrated to yield TBS protected benzosuberene analogues 51-57 (Scheme 2.3). Removal of the TBS protecting groups upon treatment with TBAF resulted in benzosuberene analogues 64-70 (Scheme 2.4). In our hands, desired benzosuberene analogues 61, 62, and 71 were not accessible by the methodology involving aryl lithium addition, instead yielding recovered starting material. It is possible that competing enolate formation was faster than 1,2-carbonyl addition in these cases. Alternatively, the synthesis of analogues 61, 62, and 71 was accomplished using a Suzuki coupling to attach the pendant aryl ring, similar to the methodology of Maderna and co-workers.¹³¹ Vinyl triflates 58, 59, and 60 were reacted with the corresponding boronic acids to generate target benzosuberene analogues 61 and 62 and TBS protected compound 63, which, after deprotection with TBAF, afforded benzosuberene analogue 71 (Scheme 2.4).

Scheme 2.3. Synthesis of TBS protected analogues 51-57.

The double bond of benzosuberene 69 (KGP18) was reduced to afford benzosuberane analogue 72, which was subsequently converted to its corresponding phosphate salt 73. Benzosuberene analogue 65 was also converted to its phosphate prodrug salt 74 under analogous reaction conditions (Scheme 2.5).

Biological Evaluation

Each of the twenty-two analogues was evaluated biologically for its ability to inhibit tubulin polymerization (cell free assay), as well as its cytotoxicity against human cancer cell lines [SK-OV-3 (ovarian), NCI-H460 (lung), and DU-145 (prostate)]. It is important to note that these two assays, while providing complementary structure activity relationship (SAR) information, represent very different approaches to analyzing the biological activity of the target benzosuberene analogues. It is common for biologically

Scheme 2.4. Synthesis of benzosuberene analogues 61, 62, and 64-71.

active, small-molecule inhibitors of tubulin polymerization to demonstrate IC_{50} values in the low micromolar range (in this type of cell free assay) while demonstrating submicromolar to nanomolar GI_{50} values in terms of cytotoxicity against human cancer cell lines. This activity differential may be due, in part, to requisite stoichiometry differences in regard to the number of molecules of inhibitor bound to tubulin in a cell-based assay versus a pure protein assay, as well as practical assay limits (in the low micromolar range) in the pure protein assay (no cells and no additional microtubule-associated proteins).

Scheme 2.5. Synthesis of reduced benzosuberane analogue 72 and phosphate salts 73 and 74.

Inhibitor generated interference within the dynamic that is inherent to the tubulinmicrotubule protein system in cells may influence signal transduction leading to an amplification of activity in cell-based assays.^{66,136} An initial structure-activity analysis for the 22 compounds for which we obtained biological data (Table 2.1), is perhaps best accomplished by focusing on the studies on the presumptive intracellular target, tubulin. The most extensive data were obtained for effects on tubulin assembly, in part because we have rarely observed substantial inhibition of colchicine binding (> 50%, with 5 μ M inhibitor) if the assembly IC₅₀ is > 3 μ M.

Figure 2.2. Compilation of synthesized benzosuberene analogues.

Table 2.1. Inhibition of tubulin polymerization, percent inhibition of colchicine binding, and cytotoxicity of the target benzosuberene analogues

Compound	Inhibition of tubulin polymerization $IC_{50} (\mu M) \pm$ SD	% Inhibition of colchicine binding ± SD		GI ₅₀ (μM) SRB assay ^a	
			SK-OV-3	NCI-H460	DU-145
CA4	1.0 ^b	$\begin{array}{c} 84 \pm 3 \; (1 \; \mu M), \\ 98 \pm 0.007 \; (5 \\ \mu M) \end{array}$	0.00455	0.00223 ^c	0.00327 ^c
CA4P	>40 ^b	nr	0.00119	0.00194 ^c	0.00323 ^c
KGP18	1.4^{d}	nr	0.0000543 ^e	0.0000418 ^e	0.0000249 ^e
28	>20	nr	32.7	37.5	89.3

29	1.0 ± 0.02	$\begin{array}{c} 37 \pm 5 \; (1 \; \mu M), \\ 72 \pm 0.8 \; (5 \\ \mu M) \end{array}$	0.0516	0.0527	0.0619
30	1.6 ± 0.2	$\begin{array}{c} 65\pm0.6~(5\\ \mu M) \end{array}$	0.330	0.422	0.644
31	>20	nr	0.568	0.763	1.51
32	>20	nr	2.96	3.32	6.03
33	>20	nr	11.5	16.1	12.2
34	>20	nr	31.1	25.5	52.1
35	3.1 ± 0.03	$\begin{array}{l} 30 \pm 4 \; (5 \; \mu M) \text{,} \\ 56 \pm 4 \; (50 \; \mu M) \end{array}$	0.277	0.593	0.708
36	>20	nr	20.5	33.4	48.3
37	>20	nr	40.7	57.7	68.7
61	>20	nr	6.96	10.5	26.2
62	1.2 ± 0.007	$\begin{array}{l} 36\pm5~(1~\mu M),\\ 69\pm3~(5~\mu M) \end{array}$	0.0432	0.120	0.0562
64	>20	nr	0.557	0.652	4.40
65	3.8 ± 0.3	$\begin{array}{l} 8.5 \pm 4 \; (5 \; \mu M), \\ 37 \pm 5 \; (50 \; \mu M) \end{array}$	4.81	4.39	4.92
66	>20	nr	16.8	25.0	21.8
67	7.4 ± 0.06	nr	18.4	10.6	8.59
68	2.7 ± 0.1	$27\pm5~(5~\mu M)$	0.527	0.647	1.02
70	7.7 ± 0.2	nr	0.346	0.691	1.53
71	11 ± 0.4	nr	3.53	4.24	7.54
72	0.70 ± 0.1	$\begin{array}{c} 21 \pm 0.9 \; (1 \\ \mu M), \; 67 \pm 0.6 \\ (5 \; \mu M) \end{array}$	0.408	0.141	0.570
73	>20	nr	0.357	0.145	0.753
74	>20	nr	17.2	16.3	17.5

^{*a*} Average of n ≥ 3 independent determinations ^b Data from ref. ¹³⁷ ^cFor additional data, see ref. ¹³⁷ ^d Data from ref. ⁶⁴ ^e For additional data, see ref. ⁶² nr = not reported

Ten of the evaluated compounds were active inhibitors of tubulin polymerization $(IC_{50} \text{ values} < 20 \ \mu\text{M})$. Structural variability was tolerated (in terms of retained tubulin inhibitory activity) by the incorporation of several groups (H, OCH₃, CH₃) at R₁ while the pendant 3,4,5-trimethoxyaryl motif reminiscent of CA4 and colchicine was maintained. This mirrored our previous observations with other functional groups [OH (parent KGP18), NH₂ (parent KGP156), Br, Cl] situated at R_1 in this same molecular template. Replacement of the R₂ methoxy group with a hydroxyl group, while either maintaining $R_1 = OH$ or modifying R_1 to be a hydrogen atom, led to analogues (70 and 68, respectively) that were also active inhibitors of tubulin polymerization. Variation of the methoxylation pattern (2,3,4-trimethoxy) within the pendant aryl ring also led to active inhibitors of tubulin polymerization when R_1 was H or OH (62 and 71, respectively). Replacement of the trimethoxyaryl ring with either a 3,5-bis-trifluoromethyl aryl ring or a 4-methoxyaryl ring with maintenance of $R_1 = OH$ (compounds 65 and 67, respectively) resulted in benzosuberene analogues that were still inhibitory against tubulin polymerization. Intriguingly, the double-bond reduced analogue 72 was the most active inhibitor of tubulin assembly within the entire series of benzosuberene analogues analyzed. Loss of inhibition of tubulin polymerization was observed when the trimethoxy aryl substituent was replaced with an unsubstituted phenyl ring (28 and 64). While the R_1 methyl analogue 30 functioned as an inhibitor of tubulin polymerization, extension of the alkyl chain to ethyl, propyl, and butyl resulted in the loss of inhibitory activity (as observed with compounds 31, 32, and 33). While ten of the analogues inhibited tubulin assembly, only 29, 30, 62, and 72 demonstrated inhibition values (1.0 μ M, 1.6 μ M, 1.2

29

 μ M, and 0.70 μ M, respectively) comparable to those observed with lead compounds KGP18 and CA4.

Molecular docking studies were carried out on several analogues that were active inhibitors of tubulin polymerization (compounds 29, 62 and 72), and compared to compound **33** with an IC₅₀ > 20 μ M (inactive) in this assay. Docking placed the trimethoxyphenyl ring of all three active analogues in a similar position to that of the trimethoxyphenyl moiety of *N*-deacetyl-*N*-(2-mercaptoacetyl)-colchicine in the structure co-crystallized with tubulin. In contrast, modeling placed multiple top conformations of compound 33 with its trimethoxyphenyl ring outside of this pocket (see Supplementary Data).

Among the twenty-two benzosuberene analogues investigated in this study, the most cytotoxic agents were compounds 29 and 62 (for example, $GI_{50} = 0.0516 \mu M$ and 0.0432 μ M, respectively, against the SK-OV-3 cell line). Both of these compounds bear trimethoxy aryl groups, but, unlike KGP18, they each contain a hydrogen atom at the R₁ position, rather than a hydroxyl group. The cytotoxicity, inhibition of colchicine binding, and the inhibition of tubulin polymerization correlate well for these compounds. Compounds 31 and 64 were not inhibitors of tubulin polymerization (IC₅₀ > 20 μ M), but they were found to be cytotoxic (GI₅₀ < 1 μ M) against two of the three cell lines utilized in this study. Although these compounds are structurally similar to others in this library, they may have an alternate mechanism of inhibiting cell growth. We note the strong antitubulin activity of compound 72, in which the double bond in the seven-membered fused ring was reduced, although this modification appears to be associated with reduced cytotoxicity. This reduction in cytotoxicity (for compound 72) correlates with a decrease in the percent inhibition of colchicine binding (at 1 μ M) relative to compounds 29 and 62, although all three compounds (29, 62, and 72) are comparable in the colchicine binding assay at 5 μ M.

Two compounds, 65 and the strong tubulin inhibitor 72, were selected for conversion to prodrugs (74 and 73, respectively) by phosphorylation, in order to improve water-solubility and potentially bioavailability. As with CA4 (phosphorylated to CA4P), this synthetic transformation eliminated (IC₅₀>20 μ M) the ability to inhibit tubulin polymerization (cell-free assay), while the cytotoxicity was maintained presumably due to phosphatase activity present in the cell-based assay.

We previously demonstrated that dynamic bioluminescence imaging (BLI) provides a facile indication of vascular disruption in luciferase transfected tumors.^{32,138,139} Analysis is noninvasive, and each tumor acts as its own control. Specifically, the substrate luciferin normally diffuses into the blood stream following subcutaneous injection, and, when it reaches a tumor, light emission occurs. Vascular disruption impairs delivery, and reduced light emission is observed. Analogue 73 showed no obvious acute toxicity over 24 h to breast tumor bearing SCID mice following IP administration of saline solutions delivering doses up to 40 mg/kg. Doses of 20 or 30 mg/kg showed a similar modest reduction of BLI signal 4 h after administration. At 40 mg/kg there was approximately a 50% reduction of the emitted signal. In each case, the signal generally returned to its original level within 24 h. By comparison, saline controls showed a highly reproducible signal, and CA4P (a well-established VDA in clinical development) showed greater than 90% reduction at 4 h, which remained depressed (>75%, after 24 h). These data are presented in Figures 3 and 4. Patterns of light emission

31

are presented in Figure 5. The signal intensity for saline emphasizes reproducibility of signal (hence assessment of vasculature) for repeat measurements. As reported previously, CA4P^{32,138,139} caused significant vascular impairment at 4 h. Compound 73 had little effect at 20 or 30 mg/kg, but caused about 50% reduction in light emission at 40 mg/kg. While these initial, preliminary studies at 20, 30, and 40 mg/kg suggested a potential VDA mechanism for analogue 73, future dose escalation studies will be necessary to establish a maximum tolerated dose (MTD) in this mouse model and to confirm the extent to which analogue 73 is capable of disrupting tumor-associated vasculature.

Conclusion

In summary, the results of these experiments have expanded our SAR knowledge regarding effects that modifications of the benzosuberene skeleton play in relationship to cytotoxicity and antitubulin activity. The most promising analogues evaluated in this study demonstrated inhibition of tubulin assembly comparable to CA4 and KGP18, but these compounds had reduced inhibitory effects on colchicine binding and on cell growth. Preliminary *in vivo* BLI evaluation of the VDA capability of benzosuberene analogue **73** against an MDA-MB-231-luc xenograft (in a SCID mouse model) showed efficacy, but, at the doses examined, the effect of 73 was less pronounced than that obtained with an established VDA (in this case, CA4P) currently in clinical development. Future studies with compound 73 and related benzosuberene analogues involving dose escalation and other tumor models to assess vascular damage appear warranted.

Figure 2.3. BLI assessment of vascular disruption caused in MDA-MB-231-luc orthotopic human tumor xenografts by analogue 73. Dynamic BLI was performed at baseline (bottom row), 4 h after VDA administration (middle), and after 24 h (top), and images are shown for representative mice 17 min after administering fresh luciferin substrate on each occasion to each animal. Images show bioluminescent signal intensity overlaid on photographs of the mice. Analogue 73 was administered at 20, 30 or 40 mg/kg IP in saline, and additional mice received saline control or CA4P (120 mg/kg) for comparison. Analogue 73 caused a reduced signal at all doses at 4 h with substantial recovery by 24 h.

Figure 2.4. Vascular disruption caused by analogue 73. Relative signal intensity is plotted for the mice shown in Fig. 2.3.

Experimental Section

Chemistry

General Materials and Methods. Tetrahydrofuran (THF), dichloromethane, ethanol, methanol, dimethylformamide (DMF), and acetonitrile were used in their anhydrous forms. Reactions were performed under nitrogen gas, unless otherwise specified. Thin-layer chromatography (TLC) plates (precoated glass plates with silica gel 60 F254, 0.25 mm thickness) were used to monitor reactions. Purification of intermediates and products was carried out with a Biotage Isolera or Teledyne Combiflash flash purification system using silica gel (200–400 mesh, 60 Å) or RP-18

Figure 2.5 Dynamic bioluminescence with respect to vascular disruption. Graphs show evolution of light emission from individual MDA-MB-231-*luc* tumors following administration of luciferin substrate subcutaneously in the fore back region of each mouse at baseline (blue) and 4 h after administration of agent (red). Analogue 73 had a modest effect at 30 mg/kg and a greater effect at 40 mg/kg. By comparison control saline showed a high degree of reproducibility and CA4P showed >90% reduction in light emission.

pre-packed columns or manually in glass columns. Intermediates and products synthesized were characterized on the basis of their ¹H NMR (500 or 300 MHz), ¹³C NMR (125 or 75 MHz), ¹⁹F (470 MHz) and ³¹P NMR (200 or 120 MHz) spectroscopic data using a Varian VNMRS 500 MHz or a Bruker DPX 300 MHz instrument. Spectra were recorded in CDCl₃, D₂O, (CD₃)₂CO, or CD₃OD. All chemical shifts are expressed in ppm (δ), and peak patterns are reported as broad (br), singlet (s), doublet (d), triplet (t), quartet (q), pentet (p), sextet (sext), septet (sept), double doublet (dd), double double doublet (ddd), and multiplet (m).

Purity of the final compounds was further analyzed at 25 °C using an Agilent 1200 HPLC system with a diode-array detector ($\lambda = 190-400$ nm), a Zorbax XDB-C18 HPLC column (4.6 mm Å~ 150 mm, 5 µm), and a Zorbax reliance cartridge guardcolumn; Method A: solvent A, acetonitrile, solvent B, 0.1% TFA in H₂O; or Method B: solvent A, acetonitrile, solvent B, H₂O; gradient, 10% A/90% B to 100% A/0% B over 0 to 40 min; post-time 10 min; flow rate 1.0 mL/min; injection volume 20 µL; monitored at wavelengths of 210, 230, 254, 280, and 320 nm. Mass spectrometry was carried out under positive or negative ESI (electrospray ionization) using a Thermo Scientific LTQ OrbitrapDiscovery instrument.

5-(2',3'-Dimethoxyphenyl)pent-4-enoic acid (1).^{61,64} To dissolved 3-(carboxypropyl)triphenyl phosphonium bromide (13.04 g, 30.39 mmol) in THF (500 mL) was added potassium *tert*-butoxide (7.43 g, 66.2 mmol), and the reaction mixture was stirred at room temperature for 1 h. 2,3-Dimethoxybenzaldehyde (5.02 g, 30.1 mmol) dissolved in THF (100 mL) was added, and the mixture was stirred at room temperature for 12 h. The THF was removed under reduced pressure, and the resulting material was quenched with 2 M HCl (75 mL) and extracted with EtOAc (3 x 100 mL). The combined organic layers were evaporated under reduced pressure, and the crude reaction product was purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10% A / 90%B (1 CV), 10%A / 90%B \rightarrow 50%A / 50%B (10 CV), 50%A / 50%B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] to afford compound 1 (5.39 g, 21.5 mmol, 72%) as a yellow oil. NMR characterization was conducted after the next step.

5-(2['],3[']-Dimethoxyphenyl)pentanoic acid (7).^{61,64,140} To dissolved carboxylic acid **1** (5.39 g, 21.5 mmol) in methanol (100 mL) was added 10% palladium on carbon (0.43 g) and hydrogen gas. The reaction mixture was stirred at room temperature for 12 h and filtered through Celite®, and the Celite® was washed with EtOAc (3 x 50 mL). The combined organic phase (MeOH and EtOAc) was evaporated under reduced pressure. The resulting organic material was purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B → 40%A / 60%B (10 CV), 40%A / 60%B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] to afford carboxylic acid 7 (4.45 g, 18.7 mmol, 82%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 11.67 (1H, s), 6.99 (1H, t, *J* = 8 Hz), 6.78 (2H, m), 3.86 (3H, s), 3.84 (3H, s), 2.68 (2H, t, *J* = 8 Hz), 2.41 (2H, t, *J* = 7.5 Hz), 1.70 (4H, m). ¹³C NMR (125 MHz, CDCl₃) δ 180.2, 152.7, 147.1, 135.8, 123.8, 121.9, 110.2, 60.6, 55.6, 34.0, 30.8, 29.4, 24.5.

*1,2-Dimethoxy-6,7,8,9-tetrahydro-*5H-*benzo[7]annulen-5-one (13).*^{61,64,141} To carboxylic acid **7** (3.55 g, 14.9 mmol) was added Eaton's reagent (29 mL, 3 g per mmol of compound **7**), and the reaction mixture was stirred at room temperature for 12 h. It was then poured over ice and neutralized with sodium bicarbonate. The reaction mixture was extracted with EtOAc (3 x 50 mL), and the combined organic phase was dried over sodium sulfate and evaporated under reduced pressure. The reaction product was purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc;

37

solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 40%A / 60%B (10 CV), 40%A / 60%B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] to afford benzosuberone 13 (2.43 g, 11.0 mmol, 74%) as a light yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 7.33 (1H, d, *J* = 8.5 Hz), 6.67 (1H, d, *J* = 9 Hz), 3.72 (3H, s), 3.62 (3H, s), 2.83 (2H, t, *J* = 6 Hz), 2.50 (2H, t, *J* = 6 Hz), 1.66 (2H, p, *J* = 6.5 Hz), 1.59 (2H, p, *J* = 6.5 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 204.2, 155.9, 145.8, 135.5, 132.6, 125.2, 109.6, 60.8, 55.6, 40.4, 24.7, 23.0, 20.7.

 $[TMAH][Al_2Cl_7]$.¹³⁵ To dry dichloromethane (150 mL) was added AlCl₃ (19.84 g, 149.1 mmol), and the mixture was stirred and cooled to 0 °C. Trimethylamine hydrochloride (7.11 g, 74.5 mmol) was added, and the reaction mixture was allowed to stir for 2 h at room temperature. The resulting liquid was stored at room temperature under nitrogen.

1-Hydroxy-2-dimethoxy-6,7,8,9-*tetrahydro-*5H-*benzo*[7]*annulen-5-one* (38).^{61,64,142} To benzosuberone 13 (1.01 g, 4.54 mmol) in a 20 mL microwave vial was added [TMAH][Al₂Cl₇] (18.3 mL, 9.08 mmol), and the mixture was subjected to microwave irradiation for 1 h at 80 °C on high absorbance. The solution was then poured into water (50 mL) and extracted with EtOAc (3 x 25 mL). The combined organic phase was dried over sodium sulfate and evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford benzosuberone 38 (0.61 g, 3.0 mmol, 65%) as a yellow oil. ¹H

38

NMR (500 MHz, CDCl₃) δ 7.24 (1H, d, *J* = 8.5 Hz), 6.67 (1H, d, *J* = 9 Hz), 6.26 (1H, s), 3.78 (3H, s), 2.93 (2H, t, *J* = 5.5 Hz), 2.61 (2H, t, *J* = 6.5 Hz), 1.71 (4H, m). ¹³C NMR (125 MHz, CDCl₃) δ 205.0, 149.5, 142.5, 133.0, 127.8, 120.7, 107.9, 55.9, 40.6, 24.4, 23.0, 21.2.

*1-((tert-Butyldimethylsilyl)oxy)-2-dimethoxy-6,7,8,9-tetrahydro-5*H*benzo[7]annulen-5-one (41).*^{61,64} Benzosuberone 38 (2.16 g, 10.5 mmol) was dissolved in dimethylformamide (50 mL). TBSCI (3.16 g, 21.0 mmol) and DIPEA (5.50 mL, 31.6 mmol) were added, and the solution was stirred for 12 h at room temperature. The reaction mixture was washed with water and extracted with EtOAc (5 x 30 mL). The combined organic phase was dried over sodium sulfate and evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 2%A / 98%B (1 CV), 2%A / 98%B \rightarrow 20%A / 80%B (10 CV), 20%A / 80%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford TBS protected analogue 41 (2.37 g, 7.38 mmol, 71%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.23 (1H, d, *J* = 8.5 Hz), 6.62 (1H, d, *J* = 9 Hz), 3.67 (3H, s), 2.88 (2H, t, *J* = 5.5 Hz), 2.53 (2H, t, *J* = 5.5 Hz), 1.64 (4H, m), 0.89 (9H, s), 0.06 (6H, s). ¹³C NMR (125 MHz, CDCl₃) δ 204.3, 152.9, 141.6, 132.9, 132.7, 122.2, 108.6, 54.6, 40.5, 26.0, 24.6, 23.8, 21.1, 18.8, -4.0.

4-((tert-*Butyldimethylsilyl*)*oxy*)-3-*methoxy*-6,7-*dihydro*-5H-*benzo*[7]*annulen*-9-*yl trifluoromethanesulfonate* (60). To an oven-dried flask, diisopropylamine (0.18 mL, 1.3 mmol) dissolved in THF (50 mL) was added and cooled to -78 °C, and *n*-BuLi (0.51 mL, 1.3 mmol) was added. The reaction mixture was stirred for 15 min. TBS protected 41

(0.37 g, 1.2 mmol) dissolved in THF (10 mL) was added dropwise, and the reaction mixture was stirred for 2 h at -78 °C. N-Phenyl-bis(trifluoromethanesulfonimide) (0.45 g, 1.3 mmol) dissolved in THF (10 mL) was then added dropwise, and the reaction mixture was stirred for 12 h while warming from -78 °C to room temperature. After 12 h, the THF was evaporated under reduced pressure, and the resulting solid was washed with water (50 mL) and extracted with EtOAc (3 x 50 mL). The organic layer was dried over sodium sulfate and evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 2% A / 98% B (1 CV), $2\% A / 98\% B \rightarrow 20\% A /$ 80%B (10 CV), 20%A / 80%B (2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] to afford triflate 60 (0.17 g, 0.38 mmol, 33%) as a yellow oil. ¹H NMR (500 MHz, $CDCl_3$) δ 7.10 (1H, d, J = 8.5 Hz), 6.79 (1H, d, J = 8.5 Hz), 6.09 (1H, t, J = 6.5 Hz), 3.82 (3H, s), 2.88 (2H, t, J = 6 Hz), 2.15 (2H, q, J = 6.5 Hz), 2.03 (2H, p, J = 6.5 Hz), 1.03 (9H, s), 0.20 (6H, s). ¹³C NMR (125 MHz, CDCl₃) δ 150.8, 146.5, 132.9, 130.9, 129.9, 126.0, 120.9, 119.7, 108.8, 54.7. 30.5, 26.0, 25.0, 24.5, 18.9, 4.0.

tert-*Butyl((3-methoxy-9-(2['],3['],4[']-trimethoxyphenyl)-6,7-dihydro-*5H*benzo[7]annulen-4-yl)oxy)dimethylsilane (63).* Triflate 60 (0.17 g, 0.38 mmol) was dissolved in THF (25 mL) and 2,3,4-trimethoxyphenyl boronic acid (0.09 g, 0.41 mmol), barium hydroxide octahydrate (0.18 g, 0.57 mmol), and tetrakis(triphenylphosphine)palladium(0) (0.013 g, 0.011 mmol) were added to the solution and refluxed at 80 °C for 2 h. The solution was then filtered through Celite®, and the Celite® was washed with dichloromethane. The organic solution (dichloromethane and THF) was evaporated under reduced pressure. The crude reaction product was purified using flash chromatography using a pre-packed 10 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 2%A / 98%B (1 CV), $2\%A / 98\%B \rightarrow 20\%A / 80\%B$ (10 CV), 20%A / 80%B (2 CV); flow rate: 12 mL/min; monitored at 254 and 280 nm] to afford benzosuberene 63 (0.07 g, 0.15 mmol, 41%) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 6.91 (1H, d, J = 8.5 Hz), 6.64 (1H, d, J = 8.5 Hz), 6.60 (1H, d, J = 8 Hz), 6.44 (1H, d, J = 8 Hz), 6.10 (1H, t, J = 7 Hz), 3.87 (3H, s), 3.83 (3H, s), 3.76 (3H, s), 3.38 (3H, s), 2.89 (2H, t, J = 6.5 Hz), 2.12 (2H, p, J = 7 Hz), 1.95 (2H, q, J = 7Hz), 1.05 (9H, s), 0.22 (6H, s). ¹³C NMR (125 MHz, CDCl₃) δ 153.0, 151.7, 148.5, 142.4, 140.3, 135.8, 132.5, 131.1, 128.2, 124.9, 120.7, 108.0, 106.6, 105.2, 60.6, 60.4, 55.9, 54.6, 33.8, 26.2, 25.5, 24.2, 19.0, -3.9.

3-Methoxy-9-(2´,3, '4´-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-ol (71). TBS-protected benzosuberene 63 (0.068 g, 0.146 mmol) was dissolved in THF (5 mL), and tetrabutylammonium fluoride (0.18 mL, 0.18 mmol) was added. The reaction was stirred at room temperature for 12 h, washed with water, extracted with EtOAc (3 x 25 mL), dried over sodium sulfate, and evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a pre-packed 10 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B → 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 12 mL/min; monitored at 254 and 280 nm] to afford benzosuberene analogue 71 (0.053 g, 0.15 mmol, 96%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 6.91 (1H, d, *J* = 8.5 Hz), 6.63 (1H, d, *J* = 8.5 Hz), 6.61 (1H, d, *J* = 8.5 Hz), 6.37 (1H, d, *J* = 8.5 Hz), 6.10 (1H, t, *J* = 7 Hz), 5.71 (1H, s), 3.87 (3H, s), 3.85 (3H, s), 3.82 (3H, s), 3.42 (3H, s), 2.87 (2H, t, *J* = 7 Hz), 2.15 (2H, p, *J* = 7 Hz), 1.96 (2H, q, *J* = 7 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 153.0,

41

151.8, 144.7, 142.39, 142.36, 140.0, 136.2, 131.0, 128.6, 126.8, 125.0, 119.0, 107.3, 106.6, 60.7, 60.5, 55.94, 55.90, 33.6, 25.6, 23.4. HRMS: Obsvd 379.1516 [M + Na⁺], Calcd for C₂₁H₂₄O₅Na: 379.1516. HPLC (Method B): 16.18 min.

*3,4-Dimethoxy-6,7-dihydro-*5H-*benzo[7]annulen-9-yl trifluoromethanesulfonate* (58). Diisopropylamine (0.84 mL, 6.0 mmol) was dissolved in THF (20 mL) and cooled to -78 °C. *n*-BuLi (2.4 mL, 6.0 mmol) was added dropwise, and the solution was stirred for 15 min. Benzosuberone 13 (1.2 g, 5.4 mmol) dissolved in THF (10 mL) was added dropwise, and the reaction was stirred for 2 h at -78 °C. *N*-Phenyl-bis(trifluoromethanesulfonimide) (2.14 g, 5.99 mmol) dissolved in THF (10 mL) was then added dropwise, and the reaction mixture was stirred for 12 h while warming from -

78 °C to room temperature. After 12 h, the THF was evaporated under reduced pressure, and the resulting solid was washed with water (50 mL) and extracted with EtOAc (3 x 50 mL). The organic layer was dried over sodium sulfate and evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 5%A / 95%B (1 CV), 5%A / 95%B \rightarrow 40%A / 60%B (10 CV), 40%A / 60%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford triflate 58 (1.01 g, 2.87 mmol, 50%) as a yellow oil. NMR characterization was performed after the next step.

3,4-Dimethoxy-9-(2',3',4'-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulene (61). Triflate 58 (0.46 g, 1.3 mmol) was dissolved in THF (25 mL) and 2,3,4trimethoxyphenyl boronic acid (0.31 g, 1.4 mmol), barium hydroxide octahydrate (0.62 g, 2.0 mmol), and tetrakis(triphenylphosphine)palladium(0) (0.05 g, 0.04 mmol) were added to the solution, which was refluxed at 80 °C for 2 h. The solution was then filtered through Celite®, and the Celite® was washed with dichloromethane. The organic solution (dichloromethane and THF) was evaporated under reduced pressure. The crude reaction product was purified using flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 45%A / 55%B (10 CV), 45%A / 55%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford benzosuberene 61 (0.07 g, 0.19 mmol, 15%) as a yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 6.91 (1H, d, *J* = 8.5 Hz), 6.64 (2H, overlapping d, *J* = 8.5 Hz), 6.58 (1H, d, *J* = 8.5 Hz), 6.11 (1H, t, *J* = 7 Hz), 3.86 (3H, s), 3.84 (3H, s), 3.82 (3H, s), 3.81 (3H, s), 3.38 (3H, s), 2.86 (2H, t, *J* = 7 Hz), 2.15 (2H, p, *J* = 6 Hz), 1.95 (2H, q, *J* = 7 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 153.1, 151.7, 151.0, 146.2, 142.4, 140.1, 135.9, 134.9, 130.8, 128.4, 124.9, 123.5, 108.9, 106.7, 61.2, 60.6, 60.3, 55.9, 55.6, 34.4, 25.4, 23.9. HRMS: Obsvd 393.1740 [M + Na⁺], Calcd for C₂₂H₂₆O₅Na: 393.1672. HPLC (Method B): 18.25 min.

*1-((tert-Butyldimethylsilyl)oxy)-2-methoxy-5-phenyl-6,7,8,9-tetrahydro-5*H*benzo[7]annulen-5-ol (44).* To an oven dried flask, THF (50 mL) and phenyl bromide (0.69 mL, 6.5 mmol) were added, and the solution was cooled to -78 °C. *n*-BuLi (2.74 mL, 6.86 mmol) was slowly added to the reaction mixture, which was then stirred at -78 °C for 1 h. TBS-protected 41 (1.55 g, 4.83 mmol) in THF (25 mL) was then added dropwise to the flask, and the reaction mixture was stirred while warming from -78 °C to room temperature over 12 h. The reaction mixture was washed with water and extracted with EtOAc (3 x 50 mL). The combined organic phase was dried over sodium sulfate and evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 2%A / 98%B (1 CV), $2\%A / 98\%B \rightarrow 20\%A / 80\%B$ (10 CV), 20%A / 80%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford tertiary alcohol 44 (0.80 g, 2.01 mmol, 42%) as a clear oil. NMR characterization was performed after the next step.

tert-Butyl((3-methoxy-9-phenyl-6,7-dihydro-5H-benzo[7]annulen-4-

yl)oxy)dimethylsilane (51). Acetic acid (10 mL) was added to alcohol 44 (0.80 g, 2.0 mmol), and the reaction mixture was stirred for 12 h at room temperature. The mixture was washed with water and extracted with EtOAc (3 x 30 mL). The combined organic phase was dried over sodium sulfate. The organic phase was evaporated under reduced pressure, and the crude reaction product was purified by flash chromatography using a pre-packed 10 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 2%A / 98%B (1 CV), $2\%A / 98\%B \rightarrow 20\%A / 80\%B$ (10 CV), 20%A / 80%B (2 CV); flow rate: 12 mL/min; monitored at 254 and 280 nm] to afford benzosuberene **51** (0.38 g, 1.0 mmol, 49%) as a yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 7.28 (5H, m), 6.70 (1H, d, J = 8 Hz), 6.60 (1H, d, J = 8.5 Hz), 6.37 (1H, t, J = 7.5 Hz), 3.81 (3H, s), 2.79 (2H, t, J = 7 Hz), 2.13 (2H, p, J = 7 Hz), 1.98 (2H, q, J = 7.5 Hz), 1.07 (9H, s), 0.26 (6H, s). ¹³C NMR (125 MHz, CDCl₃) δ 148.6, 143.0, 142.8, 141.6, 134.1, 133.3, 128.0, 127.3, 126.8, 122.1, 108.8, 108.4, 54.7, 33.8, 26.2, 25.6, 24.2, 19.0, -3.80.

3-Methoxy-9-phenyl-6, *7-dihydro-5*H-*benzo*[*7*]*annulen-4-ol* (*64*). TBS-protected benzosuberene 51 (0.38 g, 1.0 mmol) was dissolved in THF (25 mL), TBAF (1.20 mL, 1.20 mmol) was added, and the reaction mixture was stirred at room temperature for 12 h.

The solution was washed with water and extracted with EtOAc (3 x 30 mL). The combined organic phase was dried over sodium sulfate and evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a prepacked 10 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 3% A / 97% B (1 CV), $3\% A / 97\% B \rightarrow 30\% A / 70\% B$ (10 CV), 30% A / 70% B (2 CV); flow rate: 12 mL/min; monitored at 254 and 280 nm] to afford benzosuberene analogue 64 (0.12 g, 0.45 mmol, 44%) as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.28 (5H, m), 6.71 (1H, d, *J* = 8.5 Hz), 6.54 (1H, d, *J* = 8.5 Hz), 6.38 (1H, t, *J* = 7.5 Hz), 5.77 (1H, s), 3.91 (3H, s), 2.79 (2H, t, *J* = 7 Hz), 2.16 (2H, p, *J* = 7 Hz), 1.99 (2H, q, *J* = 7Hz). ¹³C NMR (125 MHz, CDCl₃) δ 145.0, 142.8, 142.7, 142.4, 134.6, 128.02, 128.00, 127.8, 127.6, 126.9, 120.6, 107.7, 55.9, 33.5, 25.7, 23.5. HRMS: Obsvd 267.1385 [M + H⁺], Calcd for C₁₈H₁₉O₂: 267.1380. HPLC (Method B): 17.89 min.

((5-(3', 5'-Bis(trifluoromethyl)phenyl)-2-methoxy-6,7,8,9-tetrahydro-5Hbenzo[7]annulen-1-yl)oxy)(tert-butyl)dimethylsilane (45). 1-Bromo-3,5bis(trifluoromethyl)benzene (0.36 g, 1.2 mmol) was dissolved in THF (13 mL), and thereaction flask was cooled to <math>-78 °C. *n*-BuLi (0.55 mL, 2.5 M) was added to the reaction mixture, which was stirred for 1 h. Ketone 41 (0.29 g, 0.91 mmol) was dissolved in THF (5 mL) and slowly added to the reaction mixture over a period of 15 min. The reaction mixture was stirred for 20 h while warming from -78 °C to room temperature. The reaction mixture was diluted with H₂O (25 mL) and extracted with EtOAc (2 × 25 mL), and the organic extract was dried over Na₂SO₄, filtered, concentrated under reduced pressure, and purified by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 60% A / 40% B (10 CV), 60% A / 40% B (2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] to afford alcohol 45 (0.40 g, 0.75 mmol, 82%) as a yellow solid. ¹H NMR (CDCl₃, 500 MHz) δ 7.77 (1H, s), 7.74 (2H, s), 6.95 (1H, d, J = 8.7 Hz), 6.70 (1H, d, J = 8.7 Hz), 3.80 (3H, s), 3.32 (1H, ddd, J = 14.8, 7.6, 2.0 Hz), 2.57 (1H, ddd, J = 14.2, 7.6, 3.0 Hz), 2.41 (1H, s), 2.34 – 2.21 (1H, m), 2.16 (1H, ddd, J = 13.8, 10.3, 3.1 Hz), 1.97 – 1.90 (1H, m), 1.75 – 1.68 (1H, m), 1.67 – 1.57 (1H, m), 1.56 – 1.48 (1H, m), 0.99 (9H, s), 0.18 (3H, s), 0.17 (3H, s). ¹³C NMR (CDCl₃, 125 MHz) δ 149.9, 149.7, 142.5, 137.1, 132.7, 131.6 (q, J = 33.2 Hz), 127.3 (q, J = 3 Hz), 123.5 (q, J = 272.8 Hz), 121.2 (hept, J = 3.8 Hz), 120.3, 108.6, 79.8, 54.8, 41.6, 26.7, 26.2, 25.3, 25.3, 19.1, -3.94, -3.95.

((9-(3',5'-Bis(trifluoromethyl)phenyl)-3-methoxy-6,7-dihydro-5H-

benzo[7]*annulen-4-yl*)*oxy*)(tert-*butyl*)*dimethylsilane* (52). 2 M HCl (8 mL, 16 mmol) was added to a well-stirred solution of alcohol 45 (0.68 g, 1.3 mmol) in EtOH (5 mL), and the reaction mixture was stirred for 12 h at ambient temperature. The reaction mixture was then extracted with EtOAc (4 × 15 mL), and the organic extract was dried over Na₂SO₄, filtered, concentrated under reduced pressure, and purified by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: $2\%A / 98\%B (1 \text{ CV}), 2\%A / 98\%B \rightarrow 15\%A / 85\%B (10 \text{ CV}), 15\%A / 85\%B (2 \text{ CV});$ flow rate: 25 mL/min; monitored at 254 and 280 nm] to afford benzosuberene 52 (0.43 g, 0.84 mmol, 66%) as a white solid. ¹H NMR (CDCl₃, 500 MHz) δ 7.77 (1H, s), 7.74 (2H, s), 6.73 (1H, d, *J* = 8.5 Hz), 6.50 (1H, t, *J* = 7.1 Hz), 6.49 (1H, d, *J* = 8.5 Hz), 3.84 (3H, s), 2.80 (2H, t, *J* = 6.9 Hz), 2.16 (2H, p, *J* = 7.0 Hz), 2.04 (2H, q, *J* = 7.1 Hz), 1.07 (9H, s), 0.27 (6H, s), ¹³C NMR (CDCl₃, 125 MHz) δ 149.3, 145.0, 142.1, 141.1, 133.5, 132.5, 131.5 (q, *J* = 33.3 Hz), 130.8, 128.0 (q, *J* = 3.4 Hz), 123.7 (q, *J* = 272.7 Hz), 121.9, 120.6 (hept, *J* = 3.7 Hz), 109.0, 54.8, 33.8, 26.3, 26.0, 24.4, 19.2, -3.6.

9-(3',5'-Bis(trifluoromethyl)phenyl)-3-methoxy-6,7-dihydro-5H-benzo[7]annulen-4-ol (65). To a solution of TBS-protected analogue 52 (0.43 g, 0.84 mmol) in THF (5 mL) was added TBAF (1.0 mL, 1 M in THF), and the reaction mixture was stirred for 18 h at ambient temperature and then concentrated under reduced pressure. The reaction mixture was washed with water (5 mL) and extracted with EtOAc (3 x 10 mL). The organic extract was dried over Na₂SO₄, filtered, concentrated under reduced pressure, and purified by flash chromatography using a pre-packed 10 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: $6\% A / 94\% B (1 \text{ CV}), 6\% A / 94\% B \rightarrow 50\% A /$ 50%B (10 CV), 50%A / 50%B (2 CV); flow rate: 12 mL/min; monitored at 254 and 280 nm] to afford phenolic benzosuberene analogue 65 (0.26 g, 0.66 mmol, 78%) as a white solid. ¹H NMR (CDCl₃, 500 MHz) δ 7.77 (1H, s), 7.74 (2H, s), 6.74 (1H, d, J = 8.3 Hz), 6.51 (1H, t, J = 7.3 Hz), 6.45 (1H, d, J = 8.4 Hz), 5.83 (1H, s), 3.93 (3H, s), 2.79 (2H, t, J = 6.9 Hz), 2.19 (2H, p, J = 7.1 Hz), 2.05 (2H, q, J = 7.2 Hz). ¹³C NMR (CDCl₃, 125) MHz) δ 145.8, 144.9, 142.9, 140.8, 133.0, 131.5 (q, *J* = 33.4 Hz), 131.2, 128.03, 127.99, 123.6 (q, J = 272.8 Hz), 120.6 (hept, J = 3.9 Hz), 120.4, 108.2, 56.1, 33.4, 26.1, 23.7. ¹⁹F NMR (CDCl₃, 470 MHz) δ -62.80. HRMS: Obsvd 401.0963 [M – H]⁻, Calcd for C₂₀H₁₅F₆O₂: 401.0976. HPLC (Method B): 20.39 min.

9-(3',5'-Bis(trifluoromethyl)phenyl)-3-methoxy-6,7-dihydro-5H-benzo[7]annulen-4-yl disodium phosphate (74). To a well-stirred solution of phenol 65 (0.10 g, 0.25 mmol) in CH₂Cl₂ (10 mL), POCl₃ (153.3 mg, 1.00 mmol) and pyridine (70.8 mg, 0.9 mmol)

were added to the reaction flask. After the reaction mixture was stirred for 15 h at ambient temperature, the solvent was evaporated under reduced pressure. Saturated aqueous Na_2CO_3 (20 mL) was added to the flask, and the reaction mixture was stirred for another 2 h. The reaction mixture was concentrated to dryness with a stream of N_2 gas and purified by flash chromatography using a prepacked C-18 30 g reversed phase column [solvent A: acetonitrile; solvent B: water; gradient: 30% A / 70% B (1 CV), 30% A $/70\%B \rightarrow 100\%A / 0\%B$ (10 CV), 100%A / 0%B (2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] to afford phosphate salt 74 (0.043 g, 0.082 mmol, 33 %) as a white solid. ¹H NMR (D₂O, 500 MHz) δ 7.96 (1H, s), 7.87 (2H, s), 6.91 (1H, d, J = 8.6 Hz), 6.72 (1H, d, J = 8.4 Hz), 6.62 (1H, t, J = 7.4 Hz), 3.84 (3H, s), 2.76 (2H, t, J = 7.0 Hz), 2.17 (2H, p, J = 7.1 Hz), 1.97 (2H, q, J = 7.2 Hz). ¹³C NMR (CD₃OD, 125 MHz) δ 153.1, 146.6, 142.0, 141.9, 137.2, 133.3, 132.6 (q, J = 33.0 Hz), 132.4, 129.0 (q, J = 2.5 Hz), 124.9 (q, J = 271.3 Hz), 125.2 (hept, J = 3.8 Hz), 121.2, 111.1, 56.4, 34.6, 26.9, 25.9. ¹⁹F NMR (D₂O, 470 MHz) δ -62.8. ³¹P NMR (D₂O, 200 MHz) δ -3.5. HRMS: Obsvd 527.0429 $[M + H]^+$, Calcd for $C_{19}H_{16}F_6O_2Na_2O_5P$: 527.0429. HPLC (Method A): 13.79 min.

1-((tert-Butyldimethylsilyl)oxy)-5-(4-hydroxyphenyl)-2-methoxy-6,7,8,9tetrahydro-5H-benzo[7]annulen-5-ol (47). To a solution of 4-methoxyphenyl bromide (0.52 g, 2.8 mmol) in THF (40 mL) at -78 °C was added *n*-BuLi (0.34 mL, 2.5 M in hexanes), and the reaction mixture was stirred for 30 min. Benzosuberone 41 (0.61 g, 1.9 mmol) in THF (20 mL) was added dropwise over a period of 15 min. The reaction mixture was allowed to reach room temperature over 12 h. Upon completion, water was added, and the mixture was extracted with EtOAc (3 x 20 mL). The organic extract was washed with brine, dried over Na₂SO₄, filtered, concentrated under reduced pressure, and purified by flash chromatography using a pre-packed 50 g silica column [solvent A: EtOAc, solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] to afford alcohol 47 (0.32 g, 0.75 mmol, 39%) as a clear oil. ¹H NMR (CDCl₃, 500 MHz) δ 7.26 (1H, d, *J* = 8.6 Hz), 7.15 (2H, d, *J* = 8.8 Hz), 6.81 (2H, d, *J* = 8.8 Hz), 6.73 (1H, d, *J* = 8.7 Hz), 3.81 (3H, s), 3.79 (3H, s), 3.30 (1H, dd, *J* = 14.6, 7.5 Hz), 2.67 – 2.59 (1H, m), 2.14 – 2.04 (2H, m), 1.77 – 1.65 (2H, m), 1.35 – 1.25 (2H, m), 0.99 (9H, s), 0.20 (3H, s), 0.14 (3H, s). ¹³C NMR (CDCl₃, 125 MHz) δ 158.7, 149.2, 141.8, 139.0, 137.6, 132.7, 128.3, 119.1, 113.6, 107.8, 79.4, 55.2, 54.6, 41.2, 27.1, 26.7, 26.1, 25.5, -3.86, -4.22.

tert-*Butyl((3-methoxy-9-(4'-methoxyphenyl)-6,7-dihydro-*5H-*benzo[7]annulen-4-yl)oxy)dimethylsilane (54).* Tertiary alcohol 47 (0.53 g, 1.2 mmol) was dissolved in acetic acid (5 mL) and refluxed for 5 h. No apparent change in TLC was observed, so water (15 mL) was added to the reaction mixture, which was refluxed for 2 h. The solvents were evaporated, and the resulting product was extracted with EtOAc (3 x 15 mL). The combined organic extracts were washed with sat. NaHCO₃, brine, dried over Na₂SO₄, filtered, evaporated under reduced pressure, and purified by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc, solvent B: hexanes; gradient: 5%A / 95%B (1 CV), 5%A / 95%B \rightarrow 50%A / 50%B (10 CV), 50%A / 50%B (2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] to afford a clear oil that solidified as a colorless solid of TBS-protected benzosuberene analogue 54 (0.43 g, 1.1 mmol, 85%). ¹H NMR (CDCl₃, 500 MHz) δ 7.20 (2H, d, *J* = 8.7 Hz), 6.83 (2H, d, *J* = 8.8 Hz), 6.68 (1H, d,

J = 8.4 Hz), 6.58 (1H, d, *J* = 8.4 Hz), 6.26 (1H, t, *J* = 7.3 Hz), 3.81 (3H, s), 3.79 (3H, s), 2.75 (2H, t, *J* = 6.9 Hz), 2.09 (2H, p, *J* = 7.1 Hz), 1.93 (2H, q, *J* = 7.2 Hz), 1.04 (9H, s), 0.23 (6H, s). ¹³C NMR (CDCl₃, 126 MHz) δ 158.7, 148.5, 142.4, 141.5, 135.5, 134.3, 133.3, 129.0, 125.7, 122.0, 113.4, 108.3, 55.3, 54.7, 33.94, 26.2, 25.5, 24.2, 19.0, -3.9.

3-Methoxy-9-(4'-methoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-ol (67). The TBS-protected analogue 54 (0.33 g, 0.8 mmol) was dissolved in THF (5 mL). To the solution, TBAF-3 H₂O (0.96 mmol) was added, and the mixture was stirred for 3 h at room temperature. The reaction was quenched with water (15 mL), followed by the evaporation of organic solvent under reduced pressure. The resultant aqueous phase was then extracted with EtOAc (3 x 20 mL). The combined organic extracts were washed with brine solution, dried over Na₂SO₄, filtered, evaporated under reduced pressure, and purified by flash chromatography using a pre-packed 40 g silica column [solvent A, EtOAc, solvent B, hexanes; gradient 0%A/ 100%B $\rightarrow 100\%$ A/ 0%B over 9.0 min; flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford the benzosuberene analogue 67 (0.21 g, 0.71 mmol, 89%) as a white solid. ¹H NMR (CDCl₃, 500 MHz) δ 7.21 (2H, d, J = 8.7 Hz), 6.83 (2H, d, J = 8.7 Hz), 6.70 (1H, d, J = 8.4 Hz), 6.54 (1H, d, J = 8.4 Hz), 6.28 (1H, t, J = 7.4 Hz), 5.72 (1H, s), 3.90 (3H, s), 3.81 (3H, s), 2.75 (2H, t, J = 7.0 Hz), 2.13 (2H, p, J = 7.0 Hz), 1.95 (2H, q, J = 7.2 Hz). ¹³C NMR (CDCl₃, 126 MHz) δ 158.8, 144.9, 142.4, 142.2, 135.3, 134.8, 129.0, 127.8, 126.1, 120.6, 113.4, 107.6, 55.9, 55.3, 33.7, 25.6, 23.5. HRMS: Obsvd 297.1492 $[M + H^+]$, Calcd for C₁₉H₂₁O₃: 297.1485. HPLC (Method B): 17.42 min.

*1-((tert-Butyldimethylsilyl)oxy)-2-methoxy-5-(3',4',5'-trimethoxyphenyl)-6,7,8,9tetrahydro-*5H-*benzo[7]annulen-5-ol (49).*^{61,64} To an oven dried flask, THF (50 mL) and 3,4,5-trimethoxyphenyl bromide (2.46 g, 9.97 mmol) were added, and the solution was cooled to -78 °C. *n*-BuLi (4.2 mL, 10 mmol) was slowly added to the reaction mixture, which was then stirred at -78 °C for 1 h. Benzosuberone 41 (2.37 g, 7.38 mmol) was then added dropwise to the flask, and the reaction mixture was stirred while warming from -78° C to room temperature over 12 h. The reaction mixture was washed with water and extracted with EtOAc (3 x 50 mL). The combined organic phase was dried over sodium sulfate and evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 60%A / 40%B (10 CV), 60%A / 80%B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] to afford compound 49 (1.80 g, 3.70 mmol, 50%) as a clear oil. NMR characterization was performed after the next step.

tert-Butyl((3-methoxy-9-(3',4',5'-trimethoxyphenyl)-6,7-dihydro-5H-

benzo[7]*annulen-4-yl*)*oxy*)*dimethylsilane* (56). Acetic acid (20 mL) was added to tertiary alcohol 49 (1.80 g, 3.70 mmol), and the reaction mixture was stirred for 12 h at room temperature. The mixture was washed with water and extracted with EtOAc (3 x 30 mL). The combined organic phase was dried over sodium sulfate and evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] to afford TBS-protected benzosuberene

51

56 (1.43 g, 8.38 mmol, 83%) as a clear oil. ¹H NMR (500 MHz, CDCl₃) δ 6.67 (1H, d, J = 8.5 Hz), 6.61 (1H, d, J = 8.5 Hz), 6.50 (2H, s), 6.32 (1H, t, J = 7.5 Hz), 3.85 (3H, s), 3.78 (3H, s), 3.77 (6H, s), 2.78 (2H, t, J = 7 Hz), 2.11 (2H, p, J = 7 Hz), 1.95 (2H, q, J = 7.5 Hz), 1.06 (9H s), 0.25 (6H, s). ¹³C NMR (125 MHz, CDCl₃) δ 152.8, 148.6, 143.1, 141.5, 138.6, 137.3, 133.8, 133.2, 126.7, 122.4, 108.4, 105.3, 60.7, 56.0, 54.5, 34.0, 26.2, 25.6, 24.2, 19.0, -3.8.

*3-Methoxy-9-(3',4',5'-trimethoxyphenyl)-6,7-dihydro-*5H-*benzo[7]annulen-4-ol* (*69*).^{61,62,64,67,131} Benzosuberene 56 (1.43 g, 3.04 mmol) was dissolved in THF (10 mL), TBAF (3.65 mL, 3.6 mmol) was added, and the reaction mixture was stirred at room temperature for 12 h. The solution was washed with water and extracted with EtOAc (3 x 30 mL). The combined organic phase was dried over sodium sulfate and evaporated under reduced pressure affording benzosuberene 69 (0.66 g, 1.9 mmol, 61%) as an orange solid. ¹H NMR (500 MHz, CDCl₃) δ 6.72 (1H, d, *J* = 8.5 Hz), 6.58 (1H, d, *J* = 8 Hz), 6.51 (2H, s), 6.35 (1H, t, *J* = 7 Hz), 5.74 (1H, s), 3.93 (3H, s), 3.87 (3H, s), 3.81 (6H, s), 2.77 (2H, t, *J* = 7 Hz), 2.15 (2H, p, *J* = 7 Hz), 1.97 (2H, q, *J* = 7.5 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 152.8, 145.0, 142.8, 142.3, 138.5, 137.3, 134.2, 127.7, 127.2, 120.8, 107.6, 105.3, 60.9, 56.1, 55.9, 33.6, 25.7, 23.5.

benzo[7]*annulen-1-ol* (72). To benzosuberene 69 (0.66 g, 1.9 mmol) was added methanol (50 mL) and 10% Pd/C (0.42 g). Hydrogen gas was added, and the reaction mixture was stirrred at room temperature for 12 h. The reaction mixture was filtered through Celite®, and the Celite® was washed with EtOAc (3 x 30 mL). The organic phase (MeOH and

2-Methoxy-5-(3',4',5'-trimethoxyphenyl)-6,7,8,9-tetrahydro-5H-

EtOAc) was evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 12 mL/min; monitored at 254 and 280 nm] to afford benzosuberane analogue 72 (0.16 g, 0.45 mmol, 24%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 6.54 (1H, d, *J* = 8.5 Hz), 6.47 (2H, s), 6.17 (1H, d, *J* = 8 Hz), 5.84 (1H, s), 4.17 (1H, d, *J* = 9.5 Hz), 3.89 (3H, s), 3.84 (9H, s), 3.28 (1H, q, *J* = 7.5 Hz), 2.73 (1H, t, *J* = 12 Hz), 2.17(1H, m), 2.02 (2H, m), 1.86 (2H, m), 1.46 (1H, q, *J* = 12 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 153.1, 144.7, 142.6, 141.2, 139.6, 136.2, 128.4, 118.6, 108.1, 105.7, 60.9, 56.1, 55.9, 49.5, 34.7, 30.6, 27.2, 25.4. HRMS: Obsvd 381.1764 [M + Na⁺], Calcd for C₂₁H₂₆O₅Na⁺: 381.1672. HPLC (Method B): 15.30 min.

2-Methoxy-5-(3',4',5'-trimethoxyphenyl)-6,7,8,9-tetrahydro-5H-

benzo[7]*annulen-1-yl disodium phosphate* (73). To benzosuberene analogue 72 dissolved in CH₂Cl₂ (25 mL) was added POCl₃ (0.11 mL, 1.1 mmol) and pyridine (0.1 mL, 1 mmol), and the reaction mixture was stirred at room temperature for 12 h. 2 M NaOH (1.69 mL, 3.38 mmol) was added, and the reaction was stirred for 5 min and extracted with CH₂Cl₂, and the organic layer was evaporated under reduced pressure. NaOH (2 mL, 2 M) was added to the resulting oil, and the solution was refluxed at 60 °C for 15 min. Water was removed under reduced pressure. The crude reaction product was purified by flash chromatography using a pre-packed 12 g C-18 column [solvent A: water; solvent B: acetonitrile; gradient: 0%A / 100%B (1 CV), 0%A / 100%B \rightarrow 100%A / 0%B (10 CV), 0%A / 100%B (2 CV); flow rate: 12 mL/min; monitored at 254 and 280 nm] to afford the benzosuberane phosphate salt 73 (0.024 g, 0.050 mmol, 17%) as a white solid. ¹H NMR (500 MHz, D₂O) δ 6.43 (2H, s), 6.36 (1H, d, *J* = 8.5 Hz), 6.07 (1H, d, *J* = 8.5 Hz), 4.04 (1H, d, *J* = 9.5 Hz), 3.61 (6H, s) 3.60 (3H, s), 3.56 (3H, s), 3.26 (1H, m), 2.55 (1H, t, *J* = 12 Hz), 1.90 (1H, m), 1.65 (4H, m), 1.16 (1H, q, *J* = 10.5 Hz). ¹³C NMR (125 MHz, D₂O) δ 152.2, 150.3, 142.8, 140.5, 140.4, 139.0, 137.3, 134.6, 121.8, 108.6, 105.9, 60.8, 55.4, 48.6, 33.7, 30.0, 33.7, 29.7, 26.6. ³¹P NMR (200 MHz, D₂O, 85% phosphoric acid reference) δ 0.97. HRMS: Obsvd 483.1190 [M + H⁺], Calcd for C₂₁H₂₆O₅Na₂P⁺: 483.1155. HPLC (Method A): 14.23 min.

1,2-Dimethoxy-5-(4'-methoxyphenyl)-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5ol (27). To a solution of 4-methoxyphenyl bromide (0.719 g, 3.84 mmol) in THF (50 mL) at -78 °C was added *n*-BuLi (2.6 mL, 2.5 M in hexanes), and the reaction mixture was stirred for 30 min. Benzosuberone 13 (0.58 g, 2.6 mmol) in THF (15 mL) was added dropwise over 15 min. The reaction mixture was warmed to room temperature over 12 h. Upon completion, water was added, and the mixture was extracted with EtOAc (3 x 20 mL). The organic layer was washed with brine, dried over Na₂SO₄, filtered, concentrated under reduced pressure, and purified by flash chromatography using a pre-packed 80 g silica column [solvent A, EtOAc, solvent B, hexanes; gradient 0%A/ 100%B $\rightarrow 100\%$ A/ 0%B over 20.3 min; flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford alcohol 27 (0.45 g, 1.4 mmol, 54%) as a white solid. ¹H NMR (CDCl₃, 500 MHz) δ 7.39 (1H, d, *J* = 8.7 Hz), 7.15 (2H, d, *J* = 8.8 Hz), 6.83 (2H, d, *J* = 8.8 Hz), 6.79 (1H, d, *J* = 8.7 Hz), 3.89 (3H, s), 3.79 (3H, s), 3.75 (3H, s), 3.25 – 3.18 (1H, m), 2.67 – 2.59 (1H, m), 2.15 – 2.08 (2H, m), 1.93 – 1.86 (1H, m), 1.80 – 1.69 (2H, m), 1.43 – 1.35 (1H, m). ¹³C NMR (CDCl₃, 126 MHz) δ 158.8, 151.7, 146.3, 139.1, 137.5, 135.4, 128.2, 122.31, 113.7, 108.8, 79.4, 61.0, 55.6, 55.2, 41.2, 27.3, 26.6, 25.2.

3,4-Dimethoxy-9-(4'-methoxyphenyl)-6,7-dihydro-5H-benzo[7]annulene (36).

Tertiary alcohol analogue 27 (0.401 g, 1.22 mmol) was dissolved in acetic acid (10 mL), and the mixture was stirred for 12 h at ambient temperature. Water (30 mL) was added, and the reaction mixture was stirred for 2 h. The reaction mixture was extracted with EtOAc (3 x 20 mL). The organic solvent was evaporated under reduced pressure and the residue extracted with EtOAc (3 x 20 mL). The combined organic extracts were washed with brine, dried over Na₂SO₄, filtered, concentrated under reduced pressure, and purified by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc, solvent B: hexanes; gradient: 5%A / 95%B (1 CV), 5%A / 95%B $\rightarrow 50\%$ A / 50%B (10 CV), 50% A / 50% B (2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] to afford benzosuberene analogue 36 (0.31 g, 1.0 mmol, 82%) as a clear oil. ¹H NMR $(CD_3OD, 500 \text{ MHz}) \delta 7.17 (2H, d, J = 8.8 \text{ Hz}), 6.87 (1H, d, J = 8.5 \text{ Hz}), 6.86 (2H, d, J = 8.5 \text{ Hz})$ 8.8 Hz), 6.71 (1H, d, J = 8.5 Hz), 6.30 (1H, t, J = 7.4 Hz), 3.89 (3H, s), 3.85 (3H, s), 3.81 (3H, s), 2.74 (2H, t, J = 7.0 Hz), 2.15 (2H, p, J = 7.1 Hz), 1.94 (2H, q, J = 7.2 Hz).¹³C NMR (CDCl₃, 125 MHz) δ 158.8, 151.3, 146.1, 142.2, 135.9, 135.2, 134.3, 129.0, 125.9, 125.0, 113.5, 109.2, 61.2, 55.6, 55.3, 34.6, 25.5, 24.0. HRMS: Obsvd 281.1597 [M + H⁺], Calcd for C₁₉H₂₃O₂: 281.1536. HPLC (Method B): 19.08 min.

*1,2-Dimethoxy-5-phenyl-6,7,8,9-tetrahydro-*5H-*benzo[7]annulen-5-ol (19).* To an oven dried flask, THF (50 mL) and phenylbromide (0.25 mL, 2.4 mmol) were added, and the solution was cooled to -78 °C. *n*-BuLi (1.0 mL, 2.5 mmol) was slowly added to the reaction mixture, which was then stirred at -78 °C for 1 h. Benzosuberone 13 (0.39 g, 1.8 mmol) was then added dropwise to the flask, and the reaction mixture was stirred while

warming from -78 °C to room temperature over 12 h. The reaction mixture was washed with water and extracted with EtOAc (3 x 50 mL). The combined organic phase was dried over sodium sulfate and evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] to afford tertiary alcohol 19 (0.29 g, 0.97 mmol, 55%) as a pale yellow oil. NMR characterization was performed after the next step.

3,4-Dimethoxy-9-phenyl-6,7-dihydro-5H-benzo[7]annulene (28). Acetic acid (15 mL) was added to tertiary alcohol 19 (0.29 g, 0.97 mmol), and the reaction mixture was stirred for 12 h at room temperature. The mixture was washed with water (50 mL) and extracted with EtOAc (3 x 30 mL). The combined organic phase was dried over sodium sulfate and evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a pre-packed 10 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 5%A / 95%B (1 CV), 5%A / 95%B \rightarrow 50%A / 60%B (10 CV), 40%A / 60%B (2 CV); flow rate: 12 mL/min; monitored at 254 and 280 nm] to afford benzosuberene analogue 28 (0.10 g, 0.36 mmol, 37%) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.30 (5H, m), 6.78 (2H, s), 6.40 (1H, t, *J* = 7.5 Hz), 3.91 (3H, s), 3.90 (3H, s), 2.81 (2H, t, *J* = 7 Hz), 2.19 (2H, p, *J* = 7Hz), 2.01 (2H, q, *J* = 7.5 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 151.5, 146.1, 142.9, 142.6, 135.9, 134.2, 128.1, 128.0, 127.5, 127.0, 125.1, 109.4, 61.2, 55.6, 34.5, 25.6, 24.1.HRMS: Obsvd 303.1363 [M + Na⁺], Calcd for C₁₀H₂₀O₅Na: 303.1356. HPLC (Method B): 19.93 min.

1,2-Dimethoxy-5-(3',4',5'-trimethoxyphenyl)-6,7,8,9-tetrahydro-5H-

benzo[7]*annulen-5-ol* (26).⁶¹ To a solution of 3.4.5-trimethoxyphenyl bromide (0.67 g. 2.7 mmol) in THF (100 mL) at -78 °C was added *n*-BuLi (1.1 mL, 2.5 M in hexanes), and the reaction mixture was stirred for 30 min. Benzosuberone 13 (0.60 g, 2.7 mmol) in THF (15 mL) was added dropwise over 15 min. The reaction mixture was warmed to room temperature over 12 h. Water was added, and the mixture was extracted with EtOAc (100 mL). The organic extract was washed with brine, dried over Na₂SO₄, filtered, concentrated under reduced pressure, and purified by flash chromatography using a prepacked 25 g silica column [solvent A: EtOAc, solvent B: hexanes; gradient: 7%A / 93%B $(1 \text{ CV}), 7\%\text{A} / 93\%\text{B} \rightarrow 56\%\text{A} / 44\%\text{B} (9.2 \text{ CV}), 56\%\text{A} / 44\%\text{B} (1 \text{ CV}); \text{ flow rate: } 25$ mL/min; monitored at 254 and 280 nm] to afford alcohol 26 (0.39 g, 0.99 mmol, 34%) as a light yellow oil. ¹H NMR (CDCl₃, 500 MHz) δ 7.26 (1H, d, J = 8.7 Hz), 6.75 (1H, d, J = 8.8 Hz), 6.49 (2H, s), 3.87 (3H, s), 3.83 (3H, s), 3.74 (3H, s), 3.73 (6H, s), 3.26 - 3.20 (1H, m), 2.56 (1H, ddd, J = 14.1, 6.9, 3.0 Hz), 2.38 – 2.30 (1H, m), 2.21 – 2.21 (1H, m), 2.11 (1H, ddd, J = 14.0, 10.7, 3.1 Hz), 1.93 (1H, ddd, J = 15.3, 7.4, 3.8 Hz), 1.81-1.71 (2H, m), 1.50-1.42 (1H, m). ¹³C NMR (CDCl₃, 126 MHz) δ 153.0, 151.8, 146.2, 141.6, 138.6, 137.2, 135.5, 123.0, 108.8, 104.2, 79.9, 61.0, 60.8, 56.1, 55.5, 41.3, 27.1, 26.3, 25.1.

3,4-Dimethoxy-9-(3',4',5'-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulene (35).⁶¹ Tertiary alcohol analogue 26 (0.5 g, 1 mmol) was dissolved in acetic acid (10 mL) and refluxed for 2 h. Water (30 mL) was added, and the reaction was refluxed for 2 h. The white precipitate thus obtained was filtered and washed with hexanes. On drying, it afforded benzosuberene analogue 35 (0.444 g, 1.2 mmol, 93%) as a colorless solid, which

was not further purified. ¹H NMR (CDCl₃, 500 MHz) δ 6.79 (1H, d, *J* = 8.5 Hz), 6.77 (1H, d, *J* = 8.5 Hz), 6.51 (2H, s), 6.35 (1H, t, *J* = 7.3 Hz), 3.90 (3H, s), 3.89 (3H, s), 3.88 (3H, s), 3.82 (6H, s), 2.77 (2H, t, *J* = 7.0 Hz), 2.17 (2H, p, *J* = 7.1 Hz), 1.98 (2H, q, *J* = 7.2 Hz). ¹³C NMR (CDCl₃, 126 MHz) δ 152.9, 151.5, 146.1, 142.9, 138.4, 137.4 135.9, 133.8, 127.1, 125.3, 109.3, 105.3, 61.3, 60.9, 56.17, 55.6, 34.6, 25.6, 24.2. HRMS: Obsvd 393.1682 [M + Na⁺], Calcd for C₂₂H₂₆O₅Na: 393.1672. HPLC (Method B): 17.52 min.

5-(3',5'-Bis(trifluoromethyl)phenyl)-1,2-dimethoxy-6,7,8,9-tetrahydro-5H-

benzo[7]annulen-5-ol (25). To a solution of 1-bromo-3,5-bis(trifluoromethyl)benzene (0.36 g, 1.2 mmol) in THF (13 mL) at -78 °C was added *n*-BuLi (0.55 mL, 2.5 M), and the reaction mixture was stirred for 1 h. Benzosuberone 13 (0.20 g, 0.91 mmol) in THF (5 mL) was added dropwise over 15 min. The reaction mixture was stirred for 20 h and was warmed to room temperature. The reaction mixture was diluted with H_2O (25 mL) and extracted with EtOAc (2×25 mL). The organic extract was dried over Na₂SO₄, filtered, concentrated under reduced pressure, and purified by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7% A / 93% B (1 CV), 7% A / 93% B $\rightarrow 60\%$ A / 40% B (15 CV), 60% A / 40% B (2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] to afford alcohol 25 (0.45 g, 1.0 mmol, 84%) as a vellow solid. ¹H NMR (CDCl₃, 500 MHz) δ 7.70 (1H, s), 7.67 (2H, s), 6.92 (1H, d, J = 8.7 Hz), 6.63 (1H, d, J = 8.8 Hz), 3.76 (3H, s), 3.67 (3H, s), 3.16 (1H, ddd, J = 14.6, 7.8, 1.9 Hz), 2.50 (1H, s), 2.46 (1H, ddd, J = 14.3, 8.2, 2.8 Hz), 2.37 – 2.24 (1H, m), 2.06 (1H, ddd, J = 14.2, 9.6, 3.0 Hz), 1.91 - 1.85 (1H, m), 1.73 - 1.61 (1H, m), 1.59 – 1.50 (2H, m). ¹³C NMR (CDCl₃, 125 MHz) δ 152.4, 149.8, 146.6, 137.2, 135.6,

131.6 (q, *J* = 33.1 Hz), 127.1 (q, *J* = 3.8 Hz), 123.5 (q, *J* = 272.7 Hz), 123.7, 121.3 (hept, *J* = 4.0 Hz), 109.5, 79.8, 61.1, 55.7, 41.6, 27.0, 25.2, 24.8.

9-(3',5'-Bis(trifluoromethyl)phenyl)-3,4-dimethoxy-6,7-dihydro-5H-

benzo[7]annulene (34). To a solution of tertiary alcohol 25 (0.45 g, 1.0 mmol) in EtOH (10 mL) was added 2 M HCl (10 mL, 20 mmol), and the reaction mixture was stirred overnight. The reaction mixture was then extracted using EtOAc (4×15 mL). The organic extract was dried over Na₂SO₄, filtered, concentrated under reduced pressure and purified by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 5% A / 95% B (1 CV), $5\% A / 95\% B \rightarrow 40\% A / 95\% B$ 60%B (10 CV), 40%A / 60%B (2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] to afford benzosuberene 34 (0.22 g, 0.54 mmol, 54%) as a white solid. ¹H NMR $(CDCl_3, 500 \text{ MHz}) \delta 7.75 (1H, s), 7.71 (2H, s), 6.77 (1H, d, J = 8.5 \text{ Hz}), 6.63 (1H, d,$ 8.5 Hz), 6.49 (1H, t, J = 7.3 Hz), 3.90 (3H, s), 3.88 (3H, s), 2.76 (2H, t, J = 6.9 Hz), 2.18 (2H, p, J = 7.1 Hz), 2.03 (2H, q, J = 7.2 Hz).¹³C NMR (CDCl₃, 125 MHz) δ 152.2, 146.6, 144.7, 140.8, 136.1, 132.4, 131.6 (q, *J* = 33 Hz), 131.1, 128.0 (q, *J* = 3.8 Hz), 124.8, 123.6 (q, J = 272.7 Hz), 120.7 (hept, J = 4.0 Hz), 109.9, 61.4, 55.8, 34.3, 26.0, 24.3. ¹⁹F NMR (CDCl₃, 470 MHz) δ -62.81. HRMS: Obsvd 401.0965 [M – CH₃]⁻, Calcd for C₂₀H₁₅F₆O₂: 401.0976. HPLC (Method B): 21.57 min.

*1,2-Dihydroxy-6,7,8,9-tetrahydro-*5H-*benzo[7]annulen-5-one (40)*.^{61,143} Ketone 13 (0.88 g, 4.0 mmol) was added to the ionic liquid [TMAH][Al₂Cl₇](20.0 mL, 0.497 M). The reaction mixture was subjected to microwave irradiation at 80 °C and 1 atm for 1 h. H₂O (20 mL) was added to the mixture, and the resulting brown liquid was extracted with
dichloromethane (3 x 20 mL). The organic extracts were dried over Na₂SO₄, filtered, evaporated under reduced pressure, and purified by flash chromatography using a prepacked 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 5% A / 95% B (1 CV), 5% A / 95% B \rightarrow 60% A / 40% B (13 CV), 60% A / 40% B (2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] to afford benzosuberone 40 (0.50 g, 2.6 mmol, 65%) as a brown solid. ¹H NMR ((CD₃)₂CO, 500 MHz) δ 7.14 (1H, d, *J* = 8.3 Hz), 6.78 (1H, d, *J* = 8.8 Hz), 3.07 – 2.99 (2H, m), 2.67 – 2.59 (2H, m), 1.84 – 1.77 (2H, m), 1.77 – 1.71 (2H, m). ¹³C NMR ((CD₃)₂CO, 126 MHz) δ 205.4, 148.1, 142.0, 132.3, 128.9, 120.6, 112.3, 40.3, 24.4, 22.8, 21.0.

1,2-Bis((tert-*butyldimethylsilyl)oxy*)-6,7,8,9-*tetrahydro*-5H-*benzo*[7]*annulen*-5one (43).⁶¹ To a solution of catechol 40 (0.68 g, 3.5 mmol) and DIPEA (2.7 mL, 16 mmol) in DMF (5 mL) at 0 °C was added TBSCI (1.60 g, 10.6 mmol) in portions. The reaction mixture was stirred for 18 h, diluted with H₂O (5 mL), and extracted with Et₂O (2 × 20 mL). The organic extract was dried over Na₂SO₄, filtered, concentrated under reduced pressure, and purified by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 0% A / 100% B (1 CV), 0% A / 100% B → 30% A / 70% B (10 CV), 30% A / 70% B (2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] to afford ketone 43 (1.51 g, 3.59 mmol, 99%) as a white solid. ¹H NMR (CDCl₃, 500 MHz) δ 7.29 (1H, d, *J* = 8.5 Hz), 6.75 (1H, d, *J* = 8.5 Hz), 2.97 – 2.94 (2H, m), 2.70 (2H, t, *J* = 6.2 Hz), 1.89 – 1.70 (4H, m), 1.02 (9H, s), 0.96 (9H, s), 0.24 (6H, s), 0.15 (6H, s). ¹³C NMR (CDCl₃, 125 MHz) δ 205.3, 151.2, 143.9, 135.5, 134.0, 122.6, 118.6, 41.0, 26.5, 26.5, 25.3, 25.1, 21.9, 19.2, 18.9, -3.15, -3.19.

1,2-Bis((tert-butyldimethylsilyl)oxy)-5-(3,4,5'-trimethoxyphenyl)-6,7,8,9-

*tetrahydro-*5H*-benzo*[7]*annulen-*5*-ol* (50).⁶¹ To a solution of 3.4.5-trimethoxyphenyl bromide (0.458 g, 1.85 mmol) in THF (20 mL) at -78 °C was added n-BuLi (0.96 mL, 2.5 M in hexanes), and the reaction mixture was stirred for 1 h. Benzosuberone 43 (0.639 g, 1.51 mmol) in THF (20 mL) was added dropwise over 15 min. The reaction mixture was stirred while warming to room temperature over 12 h. Water was added, and the mixture was extracted with EtOAc (4 x 20 mL). The organic extract was washed with brine, dried over Na₂SO₄, filtered, concentrated under reduced pressure, and purified by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc, solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B $\rightarrow 42\%$ A / 58%B (6 CV), 42%A / 58%B→70%A / 30%B (1 CV), 70%A / 30%B → 100%A/0%B, 100%A/0% B (1.1 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] to afford alcohol 50 (0.480 g, 0.81 mmol, 54%) as a clear oil. ¹H NMR (CDCl₃, 500 MHz) δ 7.10 (1H, d, J = 8.7 Hz), 6.72 (1H, d, J = 8.6 Hz), 6.46 (2H, s), 3.83 (3H, s), 3.74 (6H, s), 3.23 – 3.15 (1H, m), 2.57 (1H, ddd, J = 14.0, 6.2, 3.0 Hz), 2.23 – 2.07 (3H, m), 1.94 – 1.84 (1H, m), 1.81 - 1.66 (2H, m), 1.46 - 1.33 (1H, m), 1.00 (9H, s), 0.95 (9H, s), 0.24 (3H, s), 0.23 (3H, s), 0.15 (3H, s), 0.10 (3H, s). ¹³C NMR (CDCl₃, 126 MHz) δ 152.9, 146.4, 143.7, 141.8, 139.1, 137.1, 133.9, 120.0, 117.5, 104.1, 80.0, 60.8, 56.0, 40.9, 26.8, 26.3, 26.2, 26.1, 25.9, 18.9, 18.6, -3.4, -3.6.

((9-(3',4',5'-Trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulene-3,4-diyl)bis(oxy))bis(tert-butyldimethylsilane) (57).⁶¹ Tertiary alcohol 50 (0.44 g, 0.75 mmol) was dissolved in acetic acid (5 mL) and stirred for 12 h at room temperature. The reaction was quenched with water (10 mL) and extracted with Et₂O (3 x 10 mL). The combined

organic extract was washed with sat. NaHCO₃, brine, dried over Na₂SO₄, filtered, and evaporated under reduced pressure to afford the clear oil of TBS-protected benzosuberene analogue 57 (0.38 g, 0.66 mmol, 89%), which was used without further purification. ¹H NMR (CDCl₃, 500 MHz) δ 6.69 (1H, d, *J* = 8.4 Hz), 6.52 (1H, d, *J* = 8.4 Hz), 6.45 (2H, s), 6.33 (1H, t, *J* = 7.3 Hz), 3.85 (3H, s), 3.78 (6H, s), 2.70 (2H, t, *J* = 6.9 Hz), 2.10 (2H, q, *J* = 7.0 Hz), 1.95 (2H, q, *J* = 7.0 Hz), 1.04 (9H, s), 0.95 (9H, s), 0.24 (6H, s), 0.20 (6H, s). ¹³C NMR (CDCl₃, 125 MHz) δ 152.7, 145.9, 143.4, 143.0, 138.6, 137.1, 134.4, 134.2, 126.8, 122.7, 117.9, 105.0, 60.9, 56.0, 33.9, 26.27, 26.25, 25.7, 24.5, 18.9, 18.7, -3.3, -3.4.

9-(3',4',5'-Trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulene-3,4-diol (70). The di-TBS-protected analogue 57 (0.32 g, 0.56 mmol) was dissolved in THF (5 mL). To the solution, TBAF-3 H₂O (1.4 mmol) was added and stirred for 3 h at room temperature. The reaction was quenched with water (15 mL), and the organic solvent was evaporated under reduced pressure. The resulting aqueous phase was then extracted with EtOAc (3 x 20 mL). The combined organic extract was washed with brine, dried over Na₂SO₄, filtered, evaporated under reduced pressure and purified by flash chromatography using a pre-packed 25 g silica gel column [solvent A, EtOAc, solvent B, hexanes; gradient 7%A / 93%B (1 CV), 7%A / 93%B → 60%A / 40%B (10 CV), 60%A / 40%B (5.2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] to afford catechol analogue 70 (0.17 g, 0.49 mmol, 88%) as a white solid. ¹H NMR (CDCl₃, 500 MHz) δ 6.68 (1H, d, *J* = 8.2 Hz), 6.52 (1H, d, *J* = 8.2 Hz), 6.49 (2H, s), 6.33 (1H, t, *J* = 7.4 Hz), 5.29 (1H, s), 5.28 (1H, s), 3.86 (3H, s), 3.79 (6H, s), 2.71 (2H, t, *J* = 7.0 Hz), 2.15 (2H, p, *J* = 7.1 Hz), 1.96 (2H, q, *J* = 7.2 Hz). ¹³C NMR (CDCl₃, 126 MHz) δ 152.8, 142.9, 141.8, 140.8, 138.3, 137.3, 134.1, 128.5, 127.0, 121.7, 112.3, 105.3, 60.9, 56.1, 33.8, 25.6, 23.8. HRMS: Obsvd 365.1444 [M + H⁺], Calcd for C₁₂H₂₃O₅ : 365.1359. HPLC (Method B): 16.18 min.

5-(3',5'-Bis(trifluoromethyl)phenyl)-1,2-bis((tert-butyldimethylsilyl)oxy)-6,7,8,9tetrahydro-5H-benzo[7]annulen-5-ol (46). 1-Bromo-3,5-bis(trifluoromethyl)benzene (0.36 g, 1.2 mmol) was dissolved in THF (13 mL) at -78 °C and *n*-BuLi (0.55 mL, 2.5 M) was then added. The reaction mixture was stirred for 1 h, and then ketone 43 (0.38 g, 0.91 mmol) in THF (5 mL) was added dropwise over 15 min. The reaction mixture was stirred for 20 h, warming from -78 °C to room temperature, and then diluted with H₂O (25 mL) and extracted with EtOAc (3×25 mL). The organic extract was dried over Na₂SO₄, filtered, concentrated under reduced pressure, and purified by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7% A / 93% B (1 CV), $7\% A / 93\% B \rightarrow 100\% A / 0\% B (10 \text{ CV})$, 100% A / 0% B (2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] to afford alcohol 46 (0.43 g, 0.68 mmol, 74%) as a yellow solid. ¹H NMR (CDCl₃, 500 MHz) δ 7.77 (1H, s), 7.72 (2H, s), 6.92 (1H, d, J = 8.6 Hz), 6.73 (1H, d, J = 8.7 Hz), 3.25 (1H, ddd, J = 14.7, 7.6, 1.9 Hz), 2.57 (1H, ddd, J = 14.2, 7.3, 3.1 Hz), 2.31 (1H, s), 2.22 – 2.14 (2H, m), 1.96 – 190 (1H, m), 1.74 – 170 (1H, m), 1.64 – 1.58 (1H, m), 1.54 – 148 (1H, m), 1.01 (9H, s), 0.97 (9H, s), 0.26 (3H, s), 0.23 (3H, s), 0.19 (3H, s), 0.09 (3H, s). ¹³C NMR (CDCl₃, 125 MHz) δ 149.7, 147.2, 144.3, 137.6, 134.0, 131.6 (q, J = 33.1 Hz), 127.2 (q, J = 3.2 Hz), 123.5 (q, J = 273.0 Hz), 121.3 (hept, J = 4.0 Hz), 120.6, 118.3, 79.8, 41.2, 26.8, 26.39, 26.35, 25.9, 25.2, 19.0, 18.7, -3.1, -3.2, -3.5, -3.9.

((9-(3',5'-Bis(trifluoromethyl)phenyl)-6,7-dihydro-5H-benzo[7]annulene-3,4*diyl)bis(oxy))bis(tert-butyldimethylsilane) (53).* Tertiary alcohol 46 (0.43 g, 0.67 mmol) was dissolved in EtOH (5 mL) and 2 M HCl (10 mL, 20 mmol) was then added. The reaction mixture was stirred overnight and then extracted using EtOAc (4×15 mL). The organic extract was dried over Na₂SO₄, filtered, concentrated under reduced pressure and purified by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 2%A / 98%B (1 CV), 2%A / 98%B \rightarrow 15%A / 85%B (10 CV), 15%A / 85%B (2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] to afford benzosuberene 53 (0.22 g, 0.35 mmol, 53%) as a colorless oil. ¹H NMR $(CDCl_3, 500 \text{ MHz}) \delta 7.75 (1H, s), 7.69 (2H, s), 6.72 (1H, d, J = 8.4 \text{ Hz}), 6.49 (1H, t, t)$ J = 7.2 Hz), 6.40 (1H, d, J = 8.4 Hz), 2.73 (2H, t, J = 6.9 Hz), 2.15 (2H, p, J = 7.0 Hz), 2.03 (2H, q, J = 7.1 Hz), 1.07 (9H, s), 0.98 (9H, s), 0.26 (6H, s), 0.23 (6H, s). ¹³C NMR $(CDCl_3, 125 \text{ MHz}) \delta 146.8, 145.0, 144.0, 141.1, 134.7, 133.0, 131.5 (q, J = 33.0 \text{ Hz}),$ 130.8, 127.9 (q, J = 3.1 Hz), 123.6 (q, J = 272.7 Hz), 122.3, 120.6 (hept, J = 3.9 Hz), 118.5, 33.8, 26.43, 26.39, 26.1, 24.8, 19.1, 18.9, -3.1, -3.2.

9-(3',5'-Bis(trifluoromethyl)phenyl)-6,7-dihydro-5H-benzo[7]annulene-3,4-diol (66). TBS-protected analogue 53 (0.43 g, 0.84 mmol) was dissolved in THF (5 mL), and TBAF (1.00 mL, 1 M in THF) was added to the reaction flask. The reaction mixture was stirred for 18 h at ambient temperature, concentrated under reduced pressure, and H₂O (5 mL) was then added. The reaction mixture was extracted with EtOAc (3 x 10 mL). The organic extract was dried over Na₂SO₄, filtered, concentrated under reduced pressure and purified by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 60%A / 40% B (10 CV), 60% A / 40% B (2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] to afford catechol 66 (0.077 g, 0.20 mmol, 57 %) as a white solid. ¹H NMR (CDCl₃, 500 MHz) δ 7.75 (1H, s), 7.71 (2H, s), 6.71 (1H, d, *J* = 8.2 Hz), 6.50 (1H, t, *J* = 7.3 Hz), 6.38 (1H, d, *J* = 8.2 Hz), 5.36 (1H, s), 5.25 (1H, s), 2.73 (2H, t, *J* = 6.9 Hz), 2.19 (2H, p, *J* = 7.0 Hz), 2.04 (2H, q, *J* = 7.2 Hz). ¹³C NMR (CDCl₃, 125 MHz) δ 144.7, 142.4, 141.43 , 140.9, 132.9, 131.6 (q, *J* = 32.9 Hz), 131.1 , 128.8, 128.0 (q, *J* = 2.9 Hz), 123.6 (q, *J* = 272.7 Hz), 121.2, 120.7 (hept, *J* = 3.9 Hz), 112.9, 33.7, 26.0, 23.9. ¹⁹F NMR (CDCl₃, 470 MHz) δ -62.83. HRMS: Obsvd 387.0805 [M – H]⁻, Calcd for C₁₉H₁₃F₆O₂: 387.0820. HPLC (Method B): 18.11 min.

5-(3'-Methoxyphenyl)pent-4-enoic acid (2).^{61,64} To dissolved 3-

(carboxypropyl)triphenyl phosphonium bromide (15.92 g, 37.09 mmol) in THF (500 mL) was added potassium *tert*-butoxide (8.20 g, 73.4 mmol), and the reaction mixture was stirred at room temperature for 1 h. 3-Methoxybenzaldehyde (4.5 mL, 37 mmol) was added, and the reaction mixture was stirred at room temperature for 12 h. The THF was evaporated, and the resulting material was quenched with 2 M HCl (75 mL) and extracted with EtOAc (3 x 50 mL). The combined organic phase was dried over sodium sulfate, filtered, and evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 12% A / 88%B (1 CV), 12% A / 88%B \rightarrow 70%A / 30%B (10 CV), 70%A / 30%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford carboxylic acid 2 (5.63 g, 27.3 mmol, 74%) as a yellow solid. NMR characterization was performed after the next step.

5-(3⁻Methoxyphenyl)pentanoic acid (8).^{61,64,140} To dissolved carboxylic acid 2 (5.63 g, 27.3 mmol) in MeOH (100 mL) was added 10% palladium on carbon (0.44 g) and hydrogen gas. The reaction was stirred at room temperature for 12 h. The reaction mixture was then filtered through Celite®, and the Celite® was washed with EtOAc (3 x 50 mL). The organic phase (MeOH and EtOAc) was evaporated under reduced pressure to afford carboxylic acid 8 (4.27 g, 20.5 mmol, 75%) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 11.2 (1H, s), 7.03 (1H, d, *J* = 8 Hz), 6.62 (2H, d, *J* = 5 Hz), 6.59 (1H, d, *J* = 8.5 Hz), 3.59 (3H, s), 2.44 (2H, t, *J* = 7.5 Hz), 2.21 (2H, d, *J* = 7.5 Hz), 1.52 (4H, m). ¹³C NMR (125 MHz, CDCl₃) δ 180.2, 159.7, 143.7, 129.4, 120.9, 114.3, 111.1, 55.0, 35.6, 34.1, 30.7, 24.5.

2-Methoxy-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (14). To carboxylic acid 8 (4.43 g, 21.3 mmol) was added Eaton's reagent (43 mL, 3 g per mmol of compound 8), and the mixture was stirred at room temperature for 12 h. The mixture was then poured over ice and neutralized with sodium bicarbonate. The aqueous layer was extracted with EtOAc (3 x 50 mL). The combined organic phase was dried over sodium sulfate, evaporated under reduced pressure, and purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 30%A / 70%B (10 CV), 30%A / 70%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford benzosuberone 14 (2.80 g, 14.7 mmol, 70%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.59 (1H, d, *J* = 8.5 Hz), 6.61 (1H, dd, *J* = 8.5, 2.5 Hz), 6.51 (1H, d, *J* = 2.5 Hz), 3.63 (3H, s), 2.70 (2H, t, *J* = 6 Hz), 2.51 (2H, t, *J* = 6 Hz), 1.67 (2H, p, *J* = 7.5 Hz), 1.59 (2H, p, *J* = 5.5 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 203.5, 162.5, 144.1, 131.3, 131.0, 114.7, 111.6, 55.1, 40.5, 32.6, 24.9, 20.5.

2-Hydroxy-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (39).^{61,142} To benzosuberone 14 (0.89 g, 4.7 mmol) in a 20 mL microwave vial was added [TMAH][Al₂Cl₇] (22 mL, 0.53 M), and the reaction mixture was subjected to microwave irradiation for 1 h at 80 °C. The reaction mixture was poured into water (50 mL) and extracted with EtOAc (3 x 25 mL). The combined organic phase was dried over sodium sulfate and evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7% / 93%B (1 CV), 7%A / 93%B \rightarrow 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford alcohol 39 (0.66 g, 3.8 mmol, 80%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.73 (1H, d, *J* = 8.5 Hz), 6.75 (1H, dd, *J* = 8.5, 2.5 Hz), 6.67 (1H, d, *J* = 2 Hz), 3.84 (1H, s), 2.87 (2H, t, *J* = 6 Hz), 2.71 (2H, t, *J* = 6 Hz), 1.82 (4H, m). ¹³C NMR (125 MHz, CDCl₃) δ 204.9, 159.9, 144.8, 131.6, 131.3, 116.3, 113.7, 40.7, 32.7, 25.0, 20.7.

2-((tert-*Butyldimethylsilyl)oxy*)-6,7,8,9-*tetrahydro*-5H-*benzo*[7]*annulen*-5-*one* (42).⁶¹ Phenol 39 (0.42 g, 2.4 mmol) was dissolved in dimethylformamide (50 mL). TBSCl (0.72 g, 4.8 mmol) and DIPEA (1.24 mL, 7.14 mmol) were added, and the solution was stirred for 12 h at room temperature. The reaction mixture was washed with water (50 mL) and extracted with EtOAc (5 x 30 mL). The combined organic phase was dried over sodium sulfate and evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a pre-packed 50 g silica column

[solvent A: EtOAc; solvent B: hexanes; gradient: 7% A / 93% B (1 CV), $7\% \text{ A} / 93\% \text{ B} \rightarrow 60\% \text{ A} / 40\% \text{ B} (10 \text{ CV})$, 60% A / 40% B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford TBS-protected 42 (0.53 g, 1.82 mmol, 77%) as a clear oil. ¹H NMR (500 MHz, CDCl₃) δ 7.62 (1H, d, J = 8.5 Hz), 6.64 (1H, dd, J = 8.5, 2 Hz), 6.56 (1H, d, J = 2 Hz), 2.77 (2H, t, J = 6 Hz), 2.59 (2H, t, J = 6 Hz), 1.75 (2H, p, J = 6.5 Hz), 1.68 (2H, p, J = 6 Hz), 0.90 (9H, s), 0.14 (6H, s). ¹³C NMR (125 MHz, CDCl₃) δ 203.7, 159.0, 143.9, 132.0, 130.9, 120.8, 117.8, 40.5, 32.5, 25.5, 25.0, 20.6, 18.0, -4.5.

2-((tert-*Butyldimethylsilyl)oxy*)-5-(3',4',5'-trimethoxyphenyl)-6,7,8,9-tetrahydro-5H-*benzo*[7]annulen-5-ol (48).⁶¹ To an oven dried flask, THF (50 mL) and 3,4,5trimethoxyphenyl bromide (1.01 g, 4.04 mmol) were added, and the solution was cooled to -78 °C. *n*-BuLi (1.71 mL, 4.27 mmol) was slowly added to the reaction mixture, which was then stirred at -78 °C for 1 h. Benzosuberone 42 (0.53 g, 3.0 mmol) in THF (25 mL) was then added dropwise to the flask, and the reaction mixture was stirred while warming from -78 °C to room temperature over 12 h. The reaction mixture was washed with water and extracted with EtOAc (3 x 50 mL). The combined organic phase was dried over sodium sulfate and evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 5% A / 95% B (1 CV), 5% A / 95% B \rightarrow 40% A / 60% B (10 CV), 40% A / 60% B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford tertiary alcohol 48 (0.470 g, 1.02 mmol, 34%) as a clear oil. NMR characterization was performed after the next step. tert-Butyldimethyl((9-(3',4',5'-trimethoxyphenyl)-6,7-dihydro-5H-

benzo[7]*annulen-3-yl*)*oxy*)*silane* (55).⁶¹ Acetic acid (10 mL) was added to tertiary alcohol 48 (0.47 g, 1.0 mmol), and the reaction mixture was stirred for 12 h at room temperature. The mixture was washed with water and extracted with EtOAc (3 x 30 mL). The combined organic phase was dried over sodium sulfate and evaporated under reduced pressure to afford protected benzosuberene 55 (0.39 g, 0.89 mmol, 87%) as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 6.90 (1H, d, *J* = 8 Hz), 6.77 (1H, d, *J* = 2.5 Hz), 6.67 (1H, dd, *J* = 8.5, 2.5 Hz), 6.49 (2H, s), 6.34 (1H, t, *J* = 7 Hz), 3.86 (3H, s), 3.79 (6H, s), 2.60 (2H, t, *J* = 7 Hz), 2.15 (2H, p, *J* = 7.5Hz), 1.96 (2H, q, *J* = 7 Hz), 1.00 (9H, s), 0.23 (6H, s). ¹³C NMR (125 MHz, CDCl₃) δ 154.4, 152.8, 143.7, 142.8, 138.4, 137.3, 133.0, 130.5, 127.0, 120.0, 117.3, 105.2, 60.9, 56.1, 35.0, 32.6, 25.7, 25.5, 18.2, -4.3.

9-(3 ',4 ',5 '-Trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-3-ol (68).⁶¹ TBSprotected 55 (0.39 g, 0.89 mmol) was dissolved in THF (25 mL), TBAF (1.06 mL, 1.06 mmol) was added, and the reaction mixture was stirred at room temperature for 12 h. The solution was washed with water and extracted with EtOAc (3 x 30 mL). The combined organic phase was dried over sodium sulfate and evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7% A / 93% B (1 CV), 7% A / 93% B → 60% A / 40% B (10 CV), 60% A / 40% B (2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] to afford benzosuberene 68 (0.13 g, 0.40 mmol, 45%) as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 6.89 (1H, d, *J* = 8 Hz), 6.78 (1H, d, *J* = 3 Hz), 6.67 (1H, dd, *J* = 8.5 Hz, 2.5 Hz), 6.50 (2H, s), 6.33 (1H, t, *J* = 7.5 Hz), 6.21 (1H,

s), 3.88 (3H, s), 3.79 (6H, s), 2.59 (2H, t, *J* = 7 Hz), 2.14 (2H, p, *J* = 7 Hz), 1.95 (2H, q, *J* = 7 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 154.9, 152.8, 144.0, 142.7, 138.7, 137.0, 132.1, 130.7, 127.1, 115.4, 112.9, 105.3, 61.0, 56.1, 35.0, 32.6, 25.5. HRMS: Obsvd 349.1417 [M + Na⁺], Calcd for C₂₀H₂₂O₄Na: 349.1410. HPLC (Method B): 14.30 min.

2-Methoxy-5-(3',4',5'-trimethoxyphenyl)-6,7,8,9-tetrahydro-5Hbenzo[7]annulen-5-ol (20).^{61,62,67} To an oven dried flask, THF (50 mL) and 3,4,5trimethoxyphenyl bromide (2.82 g, 11.4 mmol) were added, and the solution was cooled to -78 °C. *n*-BuLi (4.9 mL,12 mmol) was slowly added to the reaction mixture, which was then stirred at -78 °C for 1 h. Benzosuberone 14 (1.60 g, 8.41 mmol) was then added dropwise to the flask, and the reaction mixture was stirred while warming from -78° C to room temperature over 12 h. The reaction mixture was washed with water and extracted with EtOAc (3 x 50 mL). The combined organic phase was dried over sodium sulfate and evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B \rightarrow 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford tertiary alcohol 20 (2.29 g, 6.48 mmol, 76%) as a light yellow oil. NMR characterization was performed after the next step.

3-Methoxy-9-(3',4',5'-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulene (29).^{61,62,67} Acetic acid (15 mL) was added to tertiary alcohol 20 (2.29 g, 6.38 mmol), and the reaction mixture was stirred for 12 h at room temperature. The mixture was washed with water and extracted with EtOAc (3 x 30 mL). The combined organic phase was

dried over sodium sulfate and evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7% A / 93% B (1 CV), 7% A / 93% B → 60% A / 40% B (10 CV), 60% A / 40% B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford benzosuberene 29 (0.362 g, 1.06 mmol, 17%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 6.99 (1H, d, *J* = 8.5 Hz), 6.84 (1H, d, *J* = 2.5 Hz), 6.74 (1H, dd, *J* = 8.5, 2.5 Hz), 6.53 (2H, s), 6.37 (1H, t, *J* = 7.5 Hz), 3.78 (3H, s), 3.81 (3H, s), 3.79 (6H, s) 2.65 (2H, t, *J* = 7 Hz), 2.18 (2H, p, *J* = 7 Hz), 1.98 (2H, q, *J* = 7 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 158.5, 152.8, 143.7, 142.7, 138.5, 137.3, 132.3, 130.5, 126.8, 113.8, 111.1, 105.1, 60.7, 55.9, 54.9, 35.0, 32.7, 25.4. HRMS: Obsvd 363.1574 [M + Na⁺], Calcd for C₂₁H₂₄O₄Na: 363.1567. HPLC (Method B): 18.33 min.

3-Methoxy-6,7*-dihydro-*5H*-benzo[7]annulen-9-yl trifluoromethanesulfonate (59).* To an oven dried flask, diisopropylamine (1.74 mL, 12.4 mmol) dissolved in THF (50 mL) was added and cooled to -78 °C. Then *n*-BuLi (5.0 mL, 12 mmol) was added, and the reaction was stirred for 15 min. Benzosuberone 14 (2.14 g, 11.3 mmol) dissolved in THF was added dropwise and stirred for 2 h at -78 °C. *N*-Phenyl-bis(trifluoromethanesulfonimide) (4.42 g, 12.4 mmol) dissolved in THF was then added dropwise, and the reaction mixture was stirred for 12 h while warming from -78 °C to room temperature. After 12 h, the THF was evaporated under reduced pressure, and the resulting solid was washed with water and extracted with EtOAc (3 x 50 mL). The combined organic layer was dried over sodium sulfate and evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a prepacked 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 2% A / 98% B (1 CV), $2\% \text{ A} / 98\% \text{ B} \rightarrow 20\% \text{ A} / 80\% \text{ B}$ (10 CV), 20% A / 80% B (2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] to afford triflate 59 (2.28 g, 7.07 mmol, 68%) as a yellow solid. ¹H NMR (500 MHz, CDCl₃) 7.51(1H, d, *J* = 8.5 Hz), 6.86 (1H, dd, *J* = 8.5, 2.5 Hz), 6.81 (1H, d, *J* = 3 Hz), 6.15 (1H, t, *J* = 6 Hz), 3.79 (3H, s), 2.77 (2H, t, *J* = 6.5 Hz), 2.20 (2H, q, *J* = 7 Hz), 2.04 (2H, q, *J* = 7 Hz).

3-Methoxy-9-(2',3',4'-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulene (62). Triflate 59 (2.28 g, 7.07 mmol) was dissolved in THF, and 2,3,4-trimethoxyphenyl boronic acid (1.65 g, 7.78 mmol), barium hydroxide octahydrate (3.35 g, 10.6 mmol), and tetrakis(triphenylphosphine)palladium(0) (0.24 g, 0.21 mmol) were added to the solution and refluxed at 80 °C for 2 h. The solution was then filtered through Celite®, and the Celite[®] was washed with dichloromethane (3 x 30 mL). The combined organic solution (THF and dichloromethane) was evaporated under reduced pressure. The crude reaction mixture was purified by flash chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 45% A / 55% B (10 CV), 45% A / 55% B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford benzosuberene 62 (1.05 g, 3.08 mmol, 44%) as a yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 7.02 (1H, d, J = 8.5 Hz), 6.88 (1H, d, J = 2.5 Hz), 6.77 (1H, dd, J = 8.5, 2.5 Hz), 6.58 (2H, s), 6.41 (1H, t, J = 7.5 Hz), 3.91 (3H, s), 3.83 (3H s), 3.82 (6H, s), 2.69 (2H, t, J = 7 Hz), 2.21 (2H, p, J = 7 Hz), 2.00 (2H, q, J = 7.5 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 158.5, 153.4, 152.8, 143.6, 142.7, 138.3, 137.4, 132.3, 130.4, 126.7, 123.5, 113.8, 111.1, 105.2, 60.6, 60.1, 55.8, 54.8, 35.0, 32.7, 25.4. HRMS: Obsvd $363.1573 \text{ [M + Na^+]}$, Calcd for C₂₁H₂₄O₄Na: 363.1567. HPLC (Method B): 18.23 min.

3-Methoxy-9-(4'-methoxyphenyl)-6,7-dihydro-5H-benzo[7]annulene (37). To a solution of 4-methoxyphenyl bromide (0.886 g, 4.73 mmol) in THF (50 mL) at -78 °C was added *n*-BuLi (3.4 mL, 2.5 M in hexanes), and the reaction mixture was stirred for 30 min. Benzosuberone 14 (0.601 g, 3.15 mmol) in THF (25 mL) was added dropwise over a period of 15 min. The reaction mixture was stirred while warming to room temperature over 12 h. Water was added, and the mixture was extracted with EtOAc (100 mL). The organic extract was washed with brine, dried over Na₂SO₄, filtered, concentrated under reduced pressure, and subjected to flash chromatography using a prepacked 40 g silica column [solvent A, EtOAc, solvent B, hexanes; gradient 0% A/100% B \rightarrow 100%A/0%B over 22.9 min; flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford benzosuberene analogue 37 (0.32 g, 1.1 mmol, 36%) as a white solid. ¹H NMR $(CDCl_3, 500 \text{ MHz}) \delta 7.20 (2H, d, J = 8.7 \text{ Hz}), 6.94 (1H, d, J = 8.4 \text{ Hz}), 6.83 (2H, d, J = 8.4 \text{ Hz})$ 8.5 Hz), 6.82 (1H, d, J = 2.5 Hz), 6.73 (1H, dd, J = 8.5, 2.7 Hz), 6.29 (1H, t, J = 7.5 Hz) 3.83 (3H, s), 3.81 (3H, s), 2.63 (2H, t, *J* = 7.0 Hz), 2.16 (2H, p, *J* = 7.1 Hz), 1.96 (2H, q, *J* = 7.2 Hz). ¹³C NMR (CDCl₃, 126 MHz) δ 158.8, 158.3, 143.8, 142.1, 135.3, 133.0, 130.4, 125.9, 113.9, 113.5, 113.5, 111.1, 55.3, 55.2, 35.2, 32.8, 25.4. HRMS: Obsvd 311.1713 $[M + H^+]$, Calcd for C₂₀H₂₁O₃ : 311.1642. HPLC (Method B): 17.65 min.

3-Methoxy-2-methylbenzaldehyde.¹⁴⁴ N', N', N', N'-trimethylethylene diamine (1.84 mL, 14.3 mmol) was dissolved in benzene (25 mL) and cooled to 0° C. *n*-BuLi (5.5 mL, 13 mmol) was added dropwise, and the reaction mixture was stirred for 10 min at room temperature. The reaction mixture was again cooled to 0° C, and *m*-anisaldehyde (1.54 mL, 13.3 mmol) was added. The reaction mixture was stirred for 15 min at room temperature and then cooled to 0° C. Phenyllithium (22.0 mL, 40.0 mmol) was added

dropwise. The reaction mixture was stirred for 12 h at room temperature. THF (20 mL) was then added, and the reaction mixture was cooled to -78 °C. Methyl iodide (5.0 mL, 80 mmol) was added dropwise, and the reaction mixture was stirred for 30 min at room temperature. The reaction mixture was poured into cold 10% HCl (50 mL) and extracted with EtOAc (3 x 30 mL). The combined organic phase was dried over sodium sulfate and evaporated under reduced pressure. The crude reaction product was purified using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 2%A / 98%B (1 CV), 2%A / 98%B $\rightarrow 20\%$ A / 80%B (10 CV), 20%A / 80%B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] to afford 3-methoxy-2-methylbenzaldehyde (2.01 g, 14.3 mmol, 98%) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 9.97 (1H, s), 7.10 (1H, d, *J* = 8 Hz), 6.98 (1H, t, *J* = 8 Hz), 6.74 (1H, d, *J* = 8 Hz), 3.54 (3H, s), 2.23 (3H, s). ¹³C NMR (125 MHz, CDCl₃) δ 192.0, 157.8, 134.9, 128.9, 126.3, 122.7, 114.8, 55.3, 10.0.

5-(3'-Methoxy-2'-methylphenyl)pent-4-enoic acid (3). To dissolved 3-(carboxypropyl)triphenyl phosphonium bromide (6.55 g, 15.3 mmol) in THF was added potassium *tert*-butoxide (3.30 g, 29.0 mmol), and the reaction mixture was stirred at room temperature for 1 h. 3-Methoxy-2-methylbenzaldehyde (2.01 g, 13.4 mmol) dissolved in THF was added to the original reaction mixture, and the reaction mixture was stirred at room temperature for 12 h. The THF was evaporated, and the resulting material was quenched with 2 M HCl (75 mL) and extracted with EtOAc (3 x 100 mL). The combined organic phase was evaporated under reduced pressure and purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 12% A / 88%B (1 CV), 12% A / 88%B \rightarrow 75% A / 25%B (10 CV),

75% A / 25% B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] to afford carboxylic acid 3 (2.12 g, 9.62 mmol, 69%) as a yellow oil. NMR characterization was performed after the next step.

5-(3'-Methoxy-2'-methylphenyl)pentanoic acid (9). To dissolved carboxylic acid 3 (2.12 g, 9.62 mmol) in MeOH (100 mL) was added 10% palladium on carbon (0.44 g) and hydrogen gas. The reaction mixture was stirred at room temperature for 12 h. The mixture was then filtered through Celite®, and the Celite® was washed with EtOAc (3 x 50 mL). The combined organic phase (MeOH and EtOAc) was evaporated under reduced pressure. The residue was purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7% A / 93% B (1 CV), 7% A / 93% B → 40% A / 60% B (10 CV), 40% A / 60% B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] to afford carboxylic acid 9 (1.20 g, 5.40 mmol, 59%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 11.94 (1H, s), 7.23 (1H, t, *J* = 8 Hz), 6.91 (1H, d, *J* = 7.5 Hz), 6.84 (1H, d, *J* = 8.5 Hz), 3.93 (3H, s), 2.77 (2H, t, *J* = 8 Hz), 2.51 (2H, t, *J* = 7 Hz), 2.34 (3H, s), 1.86 (2H, p, *J* = 7.5 Hz), 1.75 (2H, m). ¹³C NMR (125 MHz, CDCl₃) δ 180.4, 157.9, 141.6, 126.1, 124.5, 121.6, 108.0, 55.5, 34.1, 33.4, 30.0, 24.7, 11.3.

2-Methoxy-1-methyl-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (15). To carboxylic acid 9 (1.20 g, 5.40 mmol) was added Eaton's reagent (10.8 mL, 3 g per mmol of compound 9), and the mixture was stirred at room temperature for 12 h. It was then poured over ice and neutralized with sodium bicarbonate. The aqueous layer was extracted with EtOAc (3 x 50 mL). The combined organic phase was dried over sodium

sulfate, evaporated under reduced pressure, and purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 5%A / 95%B (1 CV), 5%A / 95%B \rightarrow 40%A / 60%B (10 CV), 40%A / 60%B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] to afford benzosuberone **15** (2.43 g, 11.0 mmol, 74%) as a light yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 7.42 (1H, d, *J* = 8.5 Hz), 6.64 (1H, d, *J* = 8.5 Hz), 3.72 (3H, s), 2.76 (2H, t, *J* = 6 Hz), 2.53 (2H, t, *J* = 6 Hz), 2.09 (3H, s), 1.69 (2H, p, *J* = 7.5 Hz), 1.61 (2H, p, *J* = 6.5 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 205.9, 160.4, 140.4, 132.6, 127.4, 123.7, 107.6, 55.4, 40.4, 27.0, 24.1, 20.6, 11.0.

2-Methoxy-1-methyl-5-(3, '4',5-trimethoxyphenyl)-6,7,8,9-tetrahydro-5Hbenzo[7]annulen-5-ol (21). To an oven dried flask, THF (50 mL) and 3,4,5trimethoxyphenyl bromide (0.85 g, 3.4 mmol) were added, and the solution was cooled to -78 °C. *n*-Buli (1.5 mL, 3.6 mmol) was slowly added to the reaction mixture, which was then stirred at -78 °C for 1 h. Benzosuberone 15 (0.52 g, 2.6 mmol) was then added dropwise to the flask, and the reaction mixture was stirred while warming from -78 °C to room temperature over 12 h. The reaction mixture was washed with water and extracted with EtOAc (3 x 50 mL). The combined organic phase was dried over sodium sulfate and evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B \rightarrow 60%A / 50%B (10 CV), 60%A / 50%B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] to afford tertiary alcohol 21 (2.29 g, 6.39 mmol, 76%) as a light yellow oil. NMR characterization was performed after the next step. 3-Methoxy-4-methyl-9-(3',4',5'-trimethoxyphenyl)-6,7-dihydro-5H-

benzo[7]*annulene (30).* Acetic acid (15 mL) was added to tertiary alcohol 21 (0.48 g, 1.3 mmol), and the reaction mixture was stirred for 12 h at room temperature. The mixture was washed with water and extracted with EtOAc (3 x 30 mL). The combined organic phase was dried over sodium sulfate and evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a pre-packed 10 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 5% A / 95% B (1 CV), $5\% \text{ A} / 95\% \text{ B} \rightarrow 40\% \text{ A} / 60\% \text{ B}$ (10 CV), 40% A / 60% B (2 CV); flow rate: 12 mL/min; monitored at 254 and 280 nm] to afford benzosuberene 30 (0.16. g, 0.45 mmol, 36%) as a yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 6.86 (1H, d, *J* = 8.5 Hz), 6.69 (1H, d, *J* = 8.5 Hz), 6.53 (2H, s), 6.33 (1H, t, *J* = 7 Hz), 3.87 (3H, s), 3.82 (3H s,) 3.80 (6H, s), 2.69 (2H, t, *J* = 6.5 Hz), 2.29 (3H, s), 2.12 (2H, p, *J* = 7 Hz), 1.91 (2H, q, *J* = 7 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 156.5, 152.8, 143.5, 141.6, 138.5, 137.3, 132.9, 127.4, 126.4, 123.1, 107.4, 105.3, 60.8, 56.1, 55.4, 34.0, 27.7, 25.5, 11.8. HRMS: Obsvd 377.1731 [M + Na⁺], Calcd for C₂₂H₂₆O₅Na: 377.1723. HPLC (Method B): 19.56 min.

2-Ethyl-3-methoxybenzaldehyde.¹⁴⁵ *N',N'N'*-trimethylethlene diamine (1.36 mL, 10.5 mmol) was dissolved in benzene (25 mL) and cooled to 0° C. *n*-BuLi (4.05 mL, 10.1 mmol) was added dropwise, and the reaction mixture was stirred for 10 min at room temperature. The reaction mixture was again cooled to 0 °C, *m*-anisaldehyde (1.34 mL, 9.84 mmol) was added, and the reaction mixture was stirred for 15 min at room temperature. The reaction mixture was then cooled to 0 °C, and phenyllithium (16.4 mL, 29.5 mmol) was added dropwise. The reaction mixture was stirred overnight at room

temperature. THF (20 mL) was then added, and the reaction mixture was cooled to -78 °C. Ethyl iodide (3.7 mL, 59 mmol) was added dropwise, and the reaction mixture was stirred for 30 min at room temperature. The reaction mixture was poured into cold 10% HCl (50 mL) and extracted with EtOAc (3 x 30 mL). The combined organic phase was dried over sodium sulfate and evaporated under reduced pressure. The crude reaction product was purified using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 5% A / 95% B (1 CV), 5% A / 95% B \rightarrow 20% A / 80% B (10 CV), 20% A / 80% B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford 2-ethyl-3-methoxybenzaldehyde (0.91 g, 5.6 mmol, 57%) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 10.24 (1H, s), 7.37 (1H, dd, *J* = 7.5, 1 Hz), 7.23 (1H, t, *J* = 8 Hz), 7.01 (1H, dd, *J* = 8.5, 1 Hz), 3.79 (3H, s), 3.01 (2H, q, *J* = 7.5 Hz), 1.14 (3H, t, *J* = 7.5 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 192.1, 157.6, 135.9, 134.4., 126.7, 122.6, 115.5, 55.7, 17.5, 15.3.

5-(2'-Ethyl-3'-methoxyphenyl)pent-4-enoic acid (4). To dissolved 3-(carboxypropyl)triphenyl phosphonium bromide (3.56 g, 8.30 mmol) in THF (500 mL) was added potassium *tert*-butoxide (2.03 g, 18.1 mmol), and the reaction mixture was stirred at room temperature for 1 h. 2-Ethyl-3-methoxybenzaldehyde (1.35 g, 8.22 mmol) dissolved in THF (100 mL) was added to the original reaction mixture and stirred at room temperature for 12 h. The THF was evaporated, and the resulting material was quenched with 2 M HCl (75 mL) and extracted with EtOAc (3 x 100 mL). The combined organic layer was evaporated under reduced pressure and purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B → 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow

rate: 50 mL/min; monitored at 254 and 280 nm] to afford carboxylic acid 4 (1.78 g, 7.60 mmol, 92%) as an orange-yellow oil. NMR characterization was performed after the next step.

5-(2'-Ethyl-3'-methoxyphenyl)pentanoic acid (10). To dissolved carboxylic acid 4 (1.78 g, 7.60 mmol) in MeOH (50 mL) was added 10% palladium on carbon (0.58 g) and hydrogen gas. The reaction was stirred at room temperature for 12 h. The reaction mixture was then filtered through Celite®, and the Celite® was washed with EtOAc (3 x 50 mL). The combined organic phase (MeOH and EtOAc) was evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7% A / $93\%B (1 \text{ CV}), 7\%A / 93\%B \rightarrow 40\%A / 60\%B (10 \text{ CV}), 40\%A / 60\%B (2 \text{ CV}); \text{ flow}$ rate: 40 mL/min; monitored at 254 and 280 nm] to afford carboxylic acid 10 (0.79 g, 3.3 mmol, 44%) as a clear oil. It is likely in this case that the carboxylic acid became methylated. ¹H NMR (500 MHz, CDCl₃) δ 7.14 (1H, t, J = 8 Hz), 6.82 (1H, d, J = 7.5Hz), 6.75 (1H, d, J = 8.5 Hz), 3.83 (3H, s), 3.70 (3H, s), 2.76 (2H, q, J = 7.5 Hz), 2.70 (2H, t, *J* = 8 Hz), 2.39 (2H, *J* = 7.5 Hz), 1.79 (2H, p, *J* = 7 Hz), 1.68 (2H, p, *J* = 8 Hz), 1.22, (3H, t, J = 7.5 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 173.7, 157.6, 140.9, 130.6, 126.2, 121.7, 108.1, 55.2, 21.2, 33.9, 32.6, 21.1, 25.1, 19.2, 14.5.

1-Ethyl-2-methoxy-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (16). To carboxylic acid 10 (0.79 g, 3.3 mmol) was added Eaton's reagent (6.7 mL, 3 g per mmol of compound 10), and the reaction mixture was stirred at room temperature for 12 h. The mixture was then poured over ice and neutralized with sodium bicarbonate. The aqueous

layer was extracted with EtOAc (3 x 50 mL). The combined organic phase was dried over sodium sulfate, evaporated under reduced pressure, and purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), $7\%A / 93\%B \rightarrow 60\%A / 40\%B (10 \text{ CV})$, 60%A / 40%B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] to afford benzosuberone **16** (0.32 g, 1.6 mmol, 52%) as a yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 7.46 (1H, d, *J* = 8.5 Hz), 6.70 (1H, d, *J* = 8.5 Hz), 3.77 (3H, s), 2.82 (2H, t, *J* = 6 Hz), 2.65 (2H, q, *J* = 7.5 Hz), 2.57 (2H, t, *J* = 6 Hz), 1.75 (2H, p, *J* = 7 Hz), 1.66 (2H, p, *J* = 6.5 Hz), 1.03 (3H, t, *J* = 7.5 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 206.3, 160.3, 139.5, 132.9, 130.0, 127.7, 108.0, 55.4, 40.4, 25.3, 24.9, 20.4, 18.9, 14.5.

*1-Ethyl-2-methoxy-5-(3',4',5'-trimethoxyphenyl)-6,7,8,9-tetrahydro-*5H*benzo[7]annulen-5-ol (22).* To an oven dried flask, THF (50 mL) and 3,4,5trimethoxyphenyl bromide (0.52 g, 2.1 mmol) were added, and the solution was cooled to -78 °C. *n*-BuLi (0.88 mL, 2.2 mmol) was slowly added to the reaction mixture, which was then stirred at -78 °C for 1 h. Benzosuberone 16 (0.32 g, 1.54 mmol) was then added dropwise to the flask, and the reaction mixture was stirred while warming from -78° C to room temperature over 12 h. The reaction mixture was washed with water and extracted with EtOAc (3 x 50 mL). The combined organic phase was dried over sodium sulfate and evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] to afford tertiary alcohol 22 (0.20 g, 0.52 mmol, 33%) as a light yellow oil. NMR characterization was performed after the next step.

4-Ethyl-3-methoxy-9-(3',4',5'-trimethoxyphenyl)-6,7-dihydro-5Hbenzo[7]annulene (31). Acetic acid (15 mL) was added to tertiary alcohol 22 (0.20 g, 0.52 mmol), and the reaction mixture was stirred for 12 h at room temperature. The reaction mixture was washed with water and extracted with EtOAc (3 x 30 mL). The combined organic phase was dried over sodium sulfate and evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a prepacked 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B $(1 \text{ CV}), 7\%\text{A} / 93\%\text{B} \rightarrow 60\%\text{A} / 50\%\text{B} (10 \text{ CV}), 60\%\text{A} / 40\%\text{B} (2 \text{ CV}); \text{ flow rate: } 25$ mL/min; monitored at 254 and 280 nm] to afford benzosuberene 31 (0.085 g, 0.32 mmol, 45%) as a yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 6.85 (1H, d, J = 8.5 Hz), 6.69 (1H, d, J = 8.5 Hz), 6.52 (2H, s), 6.32 (1H, t, J = 7.5 Hz), 3.86 (3H, s), 3.83 (3H, s), 3.81 (6H, s), 2.78 (2H, q, J = 7.5 Hz), 2.69 (2H, t, J = 6.5 Hz), 2.14 (2H, p, J = 7 Hz), 1.92 (2H, q, J = 7 Hz), 1.18 (3H, t, J = 7.5 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 156.5, 153.1, 143.8, 141.3, 139.0, 137.6, 133.4, 129.9, 127.9, 126.7, 107.8, 105.6, 61.2, 56.4, 55.7, 35.2, 27.5, 25.7, 20.0, 15.2. HRMS: Obsvd 391.1891 $[M + Na^+]$, Calcd for C₂₃H₂₈O₄Na: 391.1880. HPLC (Method B): 20.66 min.

3-Methoxy-2-propylbenzaldehyde.¹⁴⁶ N', N', N'-trimethylethlene diamine (1.55 mL, 12.0 mmol) was dissolved in benzene (25 mL) and cooled to 0° C. *n*-BuLi (4.6 mL, 11 mmol) was added dropwise, and the reaction mixture was stirred for 10 min at room temperature. The reaction mixture was again cooled to 0 °C, and *m*-anisaldehyde (1.30

mL, 11.2 mmol) was added. The reaction mixture was stirred for 15 min at room temperature and cooled to 0° C. Phenyllithium (18.7 mL, 33.7 mmol) was added dropwise. The reaction mixture was stirred overnight at room temperature. THF (20 mL) was then added, and the reaction mixture was cooled to -78° C. Propyl iodide (6.7 mL, 67.32 mmol) was added dropwise, and the reaction mixture was stirred for 30 min at room temperature. The reaction mixture was poured into cold 10% HCl (50 mL) and extracted with EtOAc (3 x 30 mL). The combined organic phase was dried over sodium sulfate and evaporated under reduced pressure. The crude reaction product was purified using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 2% A / 98% B (1 CV), 2% A / 98% B $\rightarrow 20\%$ A / 80% B (10 CV), 20% A / 80% B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford 3-methoxy-2propylbenzaldehyde (1.82 g, 10.2 mmol, 91%) as a yellow oil. ¹H NMR (500 MHz, $CDCl_3$) δ 10.19 (1H, s), 7.32 (1H, d, J = 8 Hz), 7.16 (1H, t, J = 7.5 Hz), 6.95 (1H, d, J = 8Hz), 3.71 (3H, s), 2.94 (2H, t, J = 7 Hz), 1.48 (2H, sext, J = 7.5 Hz), 0.88 (3H, t, J = 7.5 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 191.9, 157.8, 134.8, 134.3, 126.7, 122.3, 115.3, 55.5, 25.8, 24.2, 14.0.

5-(3'-Methoxy-2'-propylphenyl)pent-4-enoic acid (5). To dissolved 3-(carboxypropyl)triphenyl phosphonium bromide (4.43 g, 10.3 mmol) in THF (500 mL) was added potassium *tert*-butoxide (2.52 g, 22.5 mmol), and the reaction mixture was stirred at room temperature for 1 h. 3-Methoxy-2-propylbenzaldehyde (1.82 g, 10.2 mmol) dissolved in THF (100 mL) was added to the original reaction mixture and stirred at room temperature for 12 h. The THF was evaporated, and the residue was quenched with 2 M HCl (75 mL) and extracted with EtOAc (3 x 100 mL). The combined organic

phase was evaporated under reduced pressure and purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: $7\%A / 93\%B (1 \text{ CV}), 7\%A / 93\%B \rightarrow 60\%A / 40\%B (10 \text{ CV}), 60\%A / 40\%B (2 \text{ CV});$ flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford compound 5 (2.25 g, 9.06 mmol, 89%) as a yellow oil. NMR characterization was performed after the next step.

5-(3'-Methoxy-2'-propylphenyl)pentanoic acid (11). To dissolved compound 5 (2.25 g, 9.06 mmol) in MeOH (50 mL) was added 10% palladium on carbon (0.47 g) and hydrogen gas. The reaction mixture was stirred at room temperature for 12 h. The mixture was then filtered through Celite®, and the Celite® was washed with EtOAc (3 x 50 mL). The combined organic phase (MeOH and EtOAc) was evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7% A / $93\%B (1 \text{ CV}), 7\%A / 93\%B \rightarrow 40\%A / 60\%B (10 \text{ CV}), 40\%A / 60\%B (2 \text{ CV}); \text{ flow}$ rate: 40 mL/min; monitored at 254 and 280 nm] to afford compound 11 (0.87 g, 3.5 mmol, 38%) as a clear oil. It is likely that the carboxylic acid was methylated during this reaction. ¹H NMR (500 MHz, CDCl₃) δ 7.14 (1H, t, J = 8 Hz), 6.83 (1H, d, J = 7.5 Hz), 6.75 (1H, d, J = 8 Hz), 3.82 (3H, s), 3.71 (3H, s), 2.71 (4H, m), 2.40 (2H, t, J = 7.5 Hz), 1.79 (2H, p, J = 7.5 Hz), 1.66 (4H, m), 1.09 (3H, t, J = 7.5 Hz). ¹³C NMR (125 MHz, CDCl₃) § 173.4, 157.5, 140.9, 128.8, 125.9, 121.2, 107.6, 54.8, 50.9, 33.5, 32.3, 30.7, 27.8, 24.7, 23.1, 14.2.

2-Methoxy-1-propyl-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (17). To carboxylic acid 11 (0.87 g, 3.5 mmol) was added Eaton's reagent (7.0 mL, 3 g per mmol

of compound 11), and the reaction mixture was stirred at room temperature for 12 h. The reaction mixture was then poured over ice and neutralized with sodium bicarbonate. The aqueous layer was extracted with EtOAc (3 x 50 mL). The combined organic phase was dried over sodium sulfate and evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7% A / 93% B (1 CV), $7\% \text{ A} / 93\% \text{ B} \rightarrow 60\% \text{ A} / 40\% \text{ B} (10 \text{ CV})$, 60% A / 40% B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford benzosuberone **17** (0.56 g, 2.41 mmol, 69%) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.45 (1H, d, *J* = 8.5 Hz), 6.68 (1H, d, *J* = 8.5 Hz), 3.75 (3H, s), 2.81 (2H, t, *J* = 6.5 Hz), 2.59 (4H, m), 1.74 (2H, p, *J* = 7 Hz), 1.65 (2H, p, *J* = 6 Hz), 1.42 (2H, sext, *J* = 7.5 Hz), 0.91 (3H, t, *J* = 7.5 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 206.2, 160.4, 139.7, 132.9, 128.5, 127.6, 107.8, 55.2, 40.3, 27.6, 25.3, 24.8, 23.2, 20.3, 14.2.

2-Methoxy-1-propyl-5-(3',4',5'-trimethoxyphenyl)-6,7,8,9-tetrahydro-5Hbenzo[7]annulen-5-ol (23). To an oven dried flask, THF (50 mL) and 3,4,5trimethoxyphenyl bromide (0.80 g, 3.3 mmol) were added, and the solution was cooled to -78 °C. *n*-BuLi (1.4 mL, 3.4 mmol) was slowly added to the reaction mixture, which was then stirred at -78 °C for 1 h. Benzosuberone 17 (0.56 g, 2.4 mmol) was then added dropwise to the flask, and the reaction mixture was stirred while warming from -78° C to room temperature over 12 h. The reaction mixture was washed with water and extracted with EtOAc (3 x 50 mL). The combined organic phase was dried over sodium sulfate and evaporated under reduced pressure. The crude reaction product was purified by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), $7\%A / 93\%B \rightarrow 60\%A / 40\%B (10 \text{ CV})$, 60%A / 40%B (2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] to afford tertiary alcohol **23** (0.53g, 1.3 mmol, 52%) as a colorless oil. NMR characterization was performed after the next step.

3-Methoxy-4-propyl-9-(3',4',5'-trimethoxyphenyl)-6,7-dihydro-5Hbenzo[7]annulene (32). Acetic acid (10 mL) was added to tertiary alcohol 23 (0.53 g, 1.3 mmol), and the reaction mixture was stirred for 12 h at room temperature. The reaction mixture was washed with water and extracted with EtOAc (3 x 30 mL). The combined organic phase was dried over sodium sulfate and evaporated under reduced pressure. The crude reaction mixture was purified by flash chromatography using a pre-packed 10 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7% A / 93% B (1 CV), 7%A / 93%B $\rightarrow 60\%$ A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 12 mL/min; monitored at 254 and 280 nm] to afford benzosuberene 32 (0.13 g, 0.34 mmol, 25%) as a cream-colored solid. ¹H NMR (500 MHz, CDCl₃) δ 6.86 (1H, d, J = 8.5 Hz), 6.70 (1H, d, *J* = 8.5 Hz), 6.53 (2H, s), 6.33 (1H, t, *J* = 7.5 Hz), 3.88 (3H, s), 3.84 (3H, s), 3.82 (6H, s), 2.72 (4H, m), 2.15 (2H, p, J = 7 Hz), 1.93 (2H, q, J = 7 Hz), 1.59 (2H, sext, J = 7 Hz), 1.04 (3H, t, J = 7.5 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 156.4, 152.8, 143.5, 141.3, 138.7, 137.3, 133.1, 128.3, 127.6, 126.4, 107.5, 105.3, 60.9, 56.2, 55.4, 35.0, 28.6, 27.3, 25.5, 23.8, 14.5. HRMS: Obsvd 405.2043 [M + Na⁺], Calcd for $C_{24}H_{30}O_4Na^+$: 405.2036. HPLC (Method B): 21.53 min.

2-(2['],3[']-Dimethoxyphenyl)-4,4-dimethyl-4,5-dihydrooxazole.^{147,148} A mixture of 2,3-dimethoxybenzoic acid (5.00 g, 27.5 mmol) in SOCl₂ (10 mL) was stirred at room

temperature for 24 h. The excess of SOCl₂ was evaporated under reduced pressure, and the residue was diluted with CH₂Cl₂ (80 mL). This solution was added dropwise to a solution of 2-amino-2-methylpropan-1-ol (4.89 g, 55 mmol) in CH₂Cl₂ (150 mL) at -10 °C and stirred for 20 h while warming to room temperature. The resulting suspension was filtered, and the filtrate was evaporated to give the crystalline amide. The latter was treated dropwise with SOCl₂ (10 mL) and stirred at room temperature for another 7 h. The mixture was then poured into diethyl ether (400 mL) to form a suspension, which was then cooled to 0° C, and aqueous NaOH solution (20%, 100 mL) was added. The aqueous layer was extracted with diethyl ether (3 x 100 mL). The combined organic phase was dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The crude reaction product was purified by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A/93%B (3 CV), 7%A/ 93%B $\rightarrow 60\%$ A/ 40%B (10 CV), 60%A/ 40%B (1 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] to afford 2-(2,3-dimethoxyphenyl)-4,4-dimethyl-4,5dihydrooxazole (5.22 g, 22.2 mmol, 81%) as a yellow solid. ¹H NMR (CDCl₃, 500 MHz) δ 7.31-7.00 (3H, m), 4.11 (2H, s), 3.86 (6H, m), 1.39 (6H, s). ¹³C NMR (CDCl₃, 125 MHz) δ 161.3, 153.3, 148.7, 123.8, 123.4, 122.6, 115.0, 79.2, 67.3, 61.4, 56.1, 28.3.

2-(2 '-Butyl-3'-methoxyphenyl)-4,4-dimethyl-4,5-dihydrooxazole.¹⁴⁹ A solution of 2-(2,3-dimethoxyphenyl)-4,4-dimethyl-4,5-dihydrooxazole (5.02 g, 21.4 mmol) in THF (80 mL) was stirred and cooled to -40 °C in a cyclohexanone/dry ice bath. *n*-BuLi (13 mL, 2.5 M) was added dropwise to the reaction flask. The reaction mixture was stirred for 5 h while warming to 0° C. The reaction was quenched with saturated aqueous NH₄Cl and extracted with diethyl ether (3 x 30 mL). The combined organic phase was dried with

Na₂SO₄ and concentrated under reduced pressure. The crude reaction product was purified by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7% A/ 93% B (3 CV), 7% A/ 93% B \rightarrow 60% A/ 40% B (10 CV), 60% A/40% B (1 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] to afford 2-(2-butyl-3-methoxyphenyl)-4,4-dimethyl-4,5-dihydrooxazole as yellow liquid (4.99 g, 19.1 mmol, 89%). ¹H NMR (CDCl₃, 500 MHz) δ 7.23 (1H, dd, *J* = 7.5 Hz, 1.2 Hz), 7.15 (1H, t, *J* = 8.0 Hz), 6.91 (1H, dd, *J* = 8.1, 1.1 Hz), 4.07 (2H, s), 3.82 (3H, s), 1.53-1.47 (2H, m), 1.38 (6H, s), 1.41-1.33 (4H, m), 0.93 (3H, t, *J* = 7.4Hz). ¹³C NMR (CDCl₃, 125 MHz) δ 163.0, 157.7, 132.0, 129.2, 126.1, 121.9, 112.3, 78.8, 67.7, 55.7, 32.4, 28.4, 26.5, 23.1, 14.0.

2-Butyl-3-methoxybenzoic acid.^{149,150} A solution of 2-(2-butyl-3-methoxyphenyl)-4,4-dimethyl-4,5-dihydrooxazole (4.69 g, 17.95 mmol) in 4.5 M HCl (100 mL) was refluxed for 21 h. After cooling to room temperature, the reaction mixture was extracted with diethyl ether (3 x 30 mL), and the combined organic phase was washed with brine, dried with Na₂SO₄, and concentrated under reduced pressure. The crude reaction product was purified by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A/ 93%B (3 CV), 7%A/ 93%B \rightarrow 60%A/ 40%B (10 CV), 60%A/40%B (1 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] to afford 2-butyl-3-methoxybenzoic acid as a colorless liquid (2.45 g, 11.8 mmol, 65%). ¹H NMR (CDCl₃, 500 MHz) δ 7.55 (1H, dd, *J* = 7.9 Hz, 1.1 Hz), 7.24 (1H, t, *J* = 8.0 Hz), 7.05 (1H, dd, *J* = 8.3 Hz, 0.9 Hz), 3.87 (3H, s), 3.01 (2H, m), 1.54 (2H, m), 1.43 (2H, m), 0.95 (3H, t, *J* = 7.3 Hz). ¹³C NMR (CDCl₃, 125 MHz) δ 173.1, 158.0, 134.5, 129.9, 126.2, 122.9, 114.4, 55.8, 32.4, 26.3, 23.1, 13.9.

(2-Butyl-3-methoxyphenyl)methanol. 2-butyl-3-methoxybenzoic acid (2.45 g, 11.8 mmol) was dissolved in THF (40 mL) and stirred for 10 min. LiAlH₄ (7.6 mL, 2.0 M) was then added dropwise, and the reaction mixture was stirred for 10 h while warming to room temperature. The reaction was carefully quenched with a H₂O/THF (1:4) solution, followed by aqueous NaOH (15%, 20 mL), and a precipitate formed. The unwanted precipitate was was removed by filtration through Celite[®]. The Celite[®] and unwanted precipitate were washed with CH_2Cl_2 . The $H_2O/THF/CH_2Cl_2$ filtrate was extracted with EtOAc (3 x 30 mL), and the organic layer was rinsed with brine and dried with Na₂SO₄. The crude reaction product was purified by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7% A/ $93\%B (3 \text{ CV}), 7\%A/93\%B \rightarrow 60\%A/40\%B (10 \text{ CV}), 60\%A/40\%B (1 \text{ CV}); \text{ flow rate:}$ 40 mL/min; monitored at 254 and 280 nm] to afford (2-butyl-3methoxyphenyl)methanol as a colorless liquid (1.94 g, 9.97 mmol, 85%). ¹H NMR (CDCl₃, 500 MHz) δ 7.19 (1H, t, *J* = 8.5 Hz), 7.01 (1H, d, *J* = 7.6 Hz), 6.83 (1H, d, *J* = 8.3 Hz), 4.72 (2H, d, J = 5.3 Hz), 3.83 (3H, s), 2.69 (2H, t, J = 7.4 Hz), 1.49 (4H, m), 0.95 (3H, t, J = 7.2 Hz). ¹³C NMR (CDCl₃, 125 MHz) δ 157.7,139.6, 129.8, 126.6, 120.4, 110.0, 63.2, 55.5, 32.4, 25.5, 23.1, 14.0.

2-Butyl-3-methoxybenzaldehyde. To a well stirred solution of pyridinium chlorochromate (2.586 g, 12 mmol) in CH_2Cl_2 (20 mL) at room temperature, (2-butyl-3methoxyphenyl)methanol (1.936 g, 9.97 mmol) dissolved in CH_2Cl_2 (15 mL) was slowly added via syringe. The reaction mixture was stirred at room temperature for 12 h. The reaction mixture was filtered through Celite[®], and the Celite[®] was washed thoroughly with CH_2Cl_2 . The filtrate was concentrated under reduced pressure and further purified by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7% A/ 93%B (3 CV), 7% A/ 93%B \rightarrow 60% A/ 40%B (10 CV), 60% A/ 40%B (1 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] to afford 2-butyl-3-methoxybenzaldehyde as a dark yellow liquid (1.91 g, 9.93 mmol, 99%). ¹H NMR (CDCl₃, 500 MHz) δ 10.34 (1H, s), 7.46 (1H, dd, *J* = 7.8 Hz, 1.1 Hz), 7.30 (1H, t, *J* = 8.0 Hz), 7.09 (1H, dd, *J* = 8.1 Hz, 0.75 Hz), 3.87 (3H, s), 3.06 (2H, m), 1.53 (2H, m), 1.42 (2H, m), 0.95 (3H, t, *J* = 7.3 Hz). ¹³C NMR (CDCl₃, 125 MHz) δ 192.3, 157.8, 135.0, 134.7, 126.7, 122.1, 115.5, 55.8, 33.5, 23.8, 22.8, 13.9.

5-(2'-Butyl-3'-methoxyphenyl)pent-4-enoic acid (6). A mixture of 3-(carboxypropyl) triphenylphosphonium bromide (4.52 g, 10.6 mmol) and potassium *tert*butoxide (2.62 g, 23.2 mmol) in THF (100 mL) was stirred for 1 h at room temperature. 2-Butyl-3-methoxybenzaldehyde (2.03 g, 10.6 mmol) in THF (20 mL) was added dropwise to the reaction mixture and stirred for 12 h at room temperature. The reaction was quenched with 2 M HCl (15 mL), then extracted with EtOAc (3 x 50 mL). The combined organic phase was washed with brine, dried with Na₂SO₄, and concentrated under reduced pressure. The crude reaction product was purified by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A/ 93%B (3 CV), 7%A/ 3%B \rightarrow 60% A/40% B (10 CV), 60% A/ 40%B (1 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] to afford carboxylic acid 6 (2.38 g, 9.07 mmol, 86%). NMR characterization was performed after the next step. 9.07 mmol) was mixed with 10% Pd/C (0.15 g). Methanol (25 mL) was slowly added, and the reaction mixture was stirred for 12 h at room temperature under a H₂ atmosphere. The suspension was filtered through Celite[®], and the Celite[®] was rinsed with EtOAc. The filtrate (MeOH and EtOAc) was concentrated under reduced pressure, and the crude reaction product was purified by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 20% A/ 80% B (3 CV), 20% A/ 80% B \rightarrow 100% A/ 0% B (10 CV), 100% A/ 0% B (1 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] to afford carboxylic acid 12 (1.48 g, 56.0 mmol, 61%) as a yellow-brown liquid. ¹H NMR (CDCl₃, 500 MHz) δ 7.09 (1H, t, *J* = 7.9 Hz), 6.77 (1H, d,

J = 7.6 Hz), 6.72 (1H, d, J = 8.1 Hz), 3.81 (3H, s), 2.63 (4H, m), 2.40 (2H, t, J = 7.3 Hz),

1.75 (2H, m), 1.64 (2H, m), 1.44 (4H, m), 0.96 (3H, t, *J* = 7.2 Hz). ¹³C NMR (CDCl₃, 125

MHz) δ 179.4, 157.7, 141.1, 129.5, 126.1, 121.5, 108.1, 55.4, 34.0, 32.5, 32.3, 30.8, 25.7,

5-(2'-Butyl-3'-methoxyphenyl)pentanoic acid (12). Carboxylic acid 6 (2.38 g,

24.8, 23.2, 14.0. *I-Butyl-2-methoxy-6,7,8,9-tetrahydro-*5H-*benzo[7]annulen-5-one (18).* Eaton's reagent (28 mL) was added to carboxylic acid 12 (1.48 g, 5.6 mmol) and sonicated until the 12 dissolved. The reaction mixture was then stirred at room temperature for 12 h. Ice was poured into the reaction flask, and then the reaction mixture was neutralized with a sat. NaHCO₃ solution and extracted with EtOAc (3 x 50 mL). The combined organic phase was dried with Na₂SO₄ and concentrated under reduced pressure. The crude reaction product was purified by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A/ 93%B (3 CV), 7%A/

 $93\%B \rightarrow 60\% \text{ A}/40\%B$ (10 CV), 60% A/40%B (1 CV); flow rate: 40 mL/min;

monitored at 254 and 280 nm] to afford ketone 18 (1.13 g, 4.59 mmol, 82%) as a yellow liquid. ¹H NMR (CDCl₃, 500 MHz) δ 7.53 (1H, d, *J* = 8.6 Hz), 6.77 (1H, d, *J* = 8.6 Hz), 3.86 (3H, s), 2.89 (2H, m), 2.67 (4H, m), 1.83 (2H, p, *J* = 6.5 Hz), 1.75 (2H, m), 1.42 (4H, m), 0.96 (3H, t, *J* = 7.1 Hz). ¹³C NMR (CDCl₃, 125 MHz) δ 206.8, 160.6, 139.8, 133.0, 128.9, 127.7, 108.0, 55.5, 40.5, 32.5, 26.5, 25.5, 23.0, 20.0, 20.5, 14.0.

1-Butyl-2-methoxy-5-(3,4,5'-trimethoxyphenyl)-6,7,8,9-tetrahydro-5H-

benzo[7]*annulen-5-ol* (24). 5-Bromo-1,2,3-trimethoxybenzene (1.70 g, 6.9 mmol) was dissolved in THF (20 mL) and cooled to -78 °C. *n*-BuLi (4.06 mL, 2.5 M) was added dropwise, and the reaction mixture was stirred at -78° C. After 1 h, ketone 18 (1.13 g, 4.6 mmol) in THF (15 mL) was added dropwise to the reaction flask. The reaction mixture was stirred for 12 h while warming to room temperature. The reaction was quenched with water (40 mL) and extracted with EtOAc (3 x 30 mL). The combined organic phase was dried with Na₂SO₄ and concentrated under reduced pressure. The crude reaction product was purified by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A/ 93%B (3 CV), 7%A/ 93%B \rightarrow 60% A/ 40%B (10 CV), 60% A/ 40% B (1 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] to afford tertiary alcohol 24 (0.76 g, 1.8 mmol, 40%). ¹H NMR (CDCl₃, 500 MHz) δ 7.39 (1H, d, *J* = 8.7 Hz), 6.72 (1H, d, *J* = 8.8 Hz), 6.51 (2H, s), 3.84 (3H, s), 3.82 (3H, s), 3.74 (6H, s), 2.96 (2H, m), 2.67 (4H, m), 1.82 (4H, m), 1.39 (4H, m), 0.92 (3H, t, *J* = 6.9 Hz).

4-Butyl-3-methoxy-9-(3',4',5'-trimethoxyphenyl)-6,7-dihydro-5H-

benzo[7]*annulene* (33). The tertiary alcohol 24 (0.76 g, 1.8 mmol) was dissolved in acetic acid (10 mL), and the reaction mixture was stirred for 6 h. The reaction was

quenched with water (50 mL) and extracted with EtOAc (3 x 20 mL). The combined organic phase was washed with brine, dried with Na₂SO₄ and concentrated under reduced pressure. The crude reaction product was purified by flash chromatography using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A/93%B (3 CV), 7%A/ 93%B \rightarrow 60%A/ 40%B (10 CV), 60%A/ 40%B (1 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] to afford benzosuberene 33 (0.76 g, 1.8 mmol, quantitative) as a yellowish oil. ¹H NMR (CDCl₃, 500 MHz) δ 6.84 (1H, d, *J* = 8.5 Hz), 6.69 (1H, d, *J* = 8.5 Hz), 6.51 (2H, s), 6.32 (1H, t, *J* = 7.4 Hz), 3.86 (3H, s), 3.83 (3H, s), 3.81 (6H, s), 2.74 (2H, m), 2.68 (2H, t, *J* = 6.9 Hz), 2.13 (2H, p, *J* = 7.0 Hz), 1.91 (2H, q, *J* = 7.3 Hz), 1.53 (2H, m), 1.46 (2H, m), 0.98 (3H, t, *J* = 7.3 Hz). ¹³C NMR (CDCl₃, 125 MHz) δ 156.4, 152.8, 143.5, 141.2, 138.7, 137.3, 133.1, 128.5, 127.5, 126.4, 107.5, 105.3, 60.9, 56.2, 55.4, 34.9, 32.9, 27.3, 26.3, 25.5, 23.2, 14.1. HRMS: Obsvd 397.2374 [M+H]⁺, calcd for C₂₅H₃₃O₄: 397.2373. HPLC (Method B): 22.30 min.

Biological Evaluations

SRB Assay.^{151,152} Inhibition of human cancer cell growth was assessed using the sulforhodamine B assay, as previously described.¹⁵¹ Cancer cell lines were plated at 9000 cells/well into 96-well plates using DMEM supplemented with 5% fetal bovine serum/ 1% gentamicin sulfate and incubated for 24 h. Serial dilutions of the compounds were then added. After 48 h, the cells were fixed with trichloroacetic acid, washed, dried, stained with sulforhodamine B dye (Acid red 52), solubilized, and read at 540 nm and normalized to 630 nm with an automated Biotek plate reader. A growth inhibition of 50% (GI₅₀ or the drug concentration causing 50% reduction in the net protein increase) was calculated from the absorbance data.

Colchicine Binding Assay. Inhibition of [³H]colchicine binding to tubulin was determined using 0.1 mL reaction mixtures. Each reaction mixture contained 1.0 µM tubulin, 5.0 μ M [³H]colchicine (from Perkin-Elmer), 5% (v/v) dimethyl sulfoxide, potential inhibitors at 1.0, 5.0 or 50 μ M and components that were previously demonstrated to stabilize the colchicine binding activity of tubulin¹⁵³ (1.0 M monosodium glutamate [adjusted to pH 6.6 with HCl in a 2.0 M stock solution], 0.5 mg/mL bovine serum albumin, 0.1 M glucose-1-phosphate, 1.0 mM MgCl₂, and 1.0 mM GTP). Incubation was for 10 min at 37 °C, a time point at which the binding reaction in the control is 40-60% complete. Reactions were stopped by adding 2.0 mL of ice-cold water and placing the samples on ice. Each sample was poured onto a stack of two DEAEcellulose filters, followed immediately by 6 mL of ice-cold water, and the water was aspirated under reduced vacuum. The filters were washed with 2 mL water x 3 and, following removal of excess water under a strong vacuum, placed into vials containing 5 mL of Biosafe II scintillation cocktail. Samples were counted the next day in a Beckman scintillation counter. Samples with potential inhibitors were compared to controls with no inhibitor to determine percent inhibition. All samples were corrected for the amount of colchicine that bound to the filters in the absence of tubulin.

Inhibition of Tubulin Polymerization. Tubulin assembly experiments were performed using 0.25 mL reaction mixtures (final volume).¹⁵⁴ The mixtures contained 1 mg/mL (10 μ M) purified bovine brain tubulin, 0.8 M monosodium glutamate (pH 6.6, as above), 4% (v/v) dimethyl sulfoxide, 0.4 mM GTP, and varying compound concentrations. Initially, all components except GTP were preincubated for 15 min at 30

°C in 0.24 mL. After chilling the mixtures on ice, 10 μ L of 10 mM GTP was added. The reaction mixtures were then transferred to cuvettes held at 0 °C in Beckman DU-7400 and DU-7500 spectrophotometers equipped with electronic temperature controllers. The temperature was jumped to 30 °C over about 30 s, and polymerization was followed turbidimetrically at 350 nm for 20 min. Each reaction set included a reaction mixture without compound, and the IC₅₀ was defined as compound concentration that inhibited extent of assembly by 50% after 20 min at 30 °C.

In Vivo Tumor Model. Human breast cancer cells, MDA-MB-231(ATCC), were transfected with a lentivirus containing a firefly luciferase reporter. Highly expressing stable clones were isolated to create the cell line, MDA-MB-231-luc, which was kindly provided by Dr. Edward Graves, Stanford University.¹³⁸ Induction of tumors was carried out by injecting 10⁶ cells mixed with 30% MatrigelTM (BD Biosciences, San Jose, CA) into the mammary fat pads of female SCID mice (UTSW breeding colony). Tumors were allowed to grow to a size of approximately 5 mm in diameter, determined by calipers, before selection for BLI or histological analysis. All animal procedures were approved by the University of Texas Southwestern Medical Center Institutional Animal Care and Use Committee.

In Vivo Bioluminescence Imaging (BLI). Bioluminescence imaging was carried out as described previously.¹⁵⁵ Briefly, anesthetized, tumor bearing mice (O₂, 2% isoflurane, Henry Schein Inc., Melville, NY) were injected subcutaneously in the foreback neck region with 80 μ L of a solution of luciferase substrate, *D*-luciferin (sodium salt, 120 mg/kg, in saline, Gold Biotechnology, St. Louis, MO). Mice were maintained under anesthesia (2% isoflurane in oxygen, 1 dm³/min), while baseline bioluminescence imaging was performed using a Xenogen IVIS[®] Spectrum (Perkin-Elmer, Alameda, CA). A series of BLI images was collected over 35 min using the following settings: auto exposure time, f-stop = 2, Field of view = D, binning = 4 (medium). Light intensity-time curves obtained from these images were analyzed using Living Image® software. Mice were injected intraperitoneally with either 120 μ L of saline (vehicle), CA4P (provided by OXiGENE 120 mg/kg in saline as used previously³² or analogue 73 (20, 30 or 40 mg/kg) in saline immediately after baseline BLI. Bioluminescence imaging was repeated, with new luciferin injections 4 and 24 h later. Dosing with 20 and 30 mg/kg was repeated in a separate cohort of mice.

Acknowledgements

The authors are grateful to the National Cancer Institute of the National Institutes of Health (Grant No. 5R01CA140674 to K.G.P, M.L.T, and R.P.M), the Cancer Prevention and Research Institute of Texas (CPRIT, Grant No. RP140399 to K.G.P., M.L.T., and R.P.M.), and OXiGENE, Inc. (grant to K.G.P. and M.L.T.) for their financial support of this project, and to the NSF for funding the Varian 500 MHz NMR spectrometer (Grant no. CHE-0420802). The content is solely the responsibility of the authors and does not necessarily reflect the official views of the National Institutes of Health. The authors would also thank Dr. James Karban and Dr. Michelle Nemec (Director) for the use of the shared Molecular Biosciences Center at Baylor University, Dr. Alejandro Ramirez (Mass Spectrometry Core Facility, Baylor University) and Dr. Kevin Klausmeyer and Marissa Penney (X-ray analysis). The authors are grateful to Mr. Tyler Goddard (Baylor University) for his contributions to the synthesis of certain
analogues, and to Jeni Gerberich (UTSW) and Dr. Li Li (UTSW) for valuable technical assistance. Imaging was facilitated with the assistance of Resources of the Harold C. Simmons Cancer Center supported through an National Institutes of Health National Cancer Institute Cancer Center Support Grant [Grant 1P30 CA142543], specifically, the Southwestern Small Animal Imaging Resource, and Live Cell Imaging Resource. The IVIS Spectrum was purchased with support of 1S10RR024757.

Supplementary Data

Supplementary data including ¹H NMR, ¹³C NMR, ¹⁹F NMR, ³¹P NMR, HPLC, HRMS for final target compounds and intermediates (¹H NMR, ¹³C NMR, ¹⁹F NMR only), X-ray crystallography for compound 72, an alternative synthetic procedure for compound 30, and molecular docking for compounds 29, 62, and 72 associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.bmc.2015.10.012.

CHAPTER THREE

Synthesis and Biological Evaluation of Benzocyclooctene-based and Indene-based Anticancer Agents that Function as Inhibitors of Tubulin Polymerization

This paper will be published as: Herdman, C.A., Strecker, T.E., Tanpure, R.P. Chen, Z., Winters, A., Gerberich, J., Liu, L., Hamel, E., Mason, R.P., Chaplin, D.J., Trawick, M.L., Pinney, K.G. Synthesis and Biological Evaluation of Benzocyclooctene-based and Indene-based Anticancer Agents that Function as Inhibitors of Tubulin Polymerization.

The author Christine A. Herdman contributed to this manuscript through the synthesis of all eight final compounds including full characterization, which included proton and carbon NMRs, HPLC, and HRMS. In addition, Christine A. Herdman contributed a significant amount to the writing and editing of the manuscript, as well as the preparation of the supporting data.

Abstract

The natural products colchicine and combretastatin A-4 (CA4) have been inspirational for the design and synthesis of structurally related analogues and spin-off compounds as inhibitors of tubulin polymerization. The discovery that a water-soluble phosphate prodrug salt of CA4 (referred to as CA4P) is capable of imparting profound and selective damage to tumor-associated blood vessels paved the way for the development of a new therapeutic approach for cancer treatment utilizing small-molecule inhibitors of tubulin polymerization that also act as vascular disrupting agents (VDAs). Combination of salient structural features associated with colchicine and **CA4** led to the design and synthesis of a variety of fused aryl-cycloalkyl and aryl-heterocyclic compounds that function as inhibitors of tubulin polymerization. Prominent among these compounds is a benzosuberene analogue (referred to as KPG18), which demonstrates sub-nM cytotoxicity against human cancer cell lines and functions (when administed as a water-soluble prodrug salt) as a VDA in mouse models. Structure activity relationship considerations led to the evaluation of benzocyclooctyl [6,8 fused] and indene [6,5 fused] ring systems. Four benzocyclooctene and four indene analogues were prepared and evaluated biologically. Three of the benzocyclooctene analogues were active as inhibitors of tubulin polymerization (IC₅₀ < 5 μ M), and benzocyclooctene phenol 23 was comparable to KGP18 in terms of potency. The analogous indene-based compound 31 also functioned as an inhibitor of tubulin polymerization (IC₅₀ = 11 μ M) with reduced potency. The most potent inhibitor of tubulin polymerization from this group was benzocyclooctene analogue 23, and it was converted to its water-soluble prodrug salt 24 to assess its potential as a VDA. Preliminary in vivo studies, which utilized the MCF7luc-GFP-mCherry breast tumor in a SCID mouse model, demonstrated that treatment with 24 (120 mg/kg) resulted in significant vascular shutdown, as evidenced by bioluminescence imaging at 4 h post administration, and that the effect continued at both 24 and 48 h. Contemporaneous studies with CA4P, a clinically relevant VDA, were carried out as a positive control

Introduction

The colchicine site located on the β -subunit of the α , β -tubulin heterodimer continues to serve as a rich and productive target for a wide-range of structurally diverse smallmolecule anticancer agents. Through a direct binding interaction at the colchicine site, these compounds inhibit the polymerization of the tubulin heterodimer into microtubules. Disruption of the inherent dynamic relationship between microtubules and tubulin

heterodimers leads to two mechanistically distinct, yet complementary, cancer treatment strategies. One approach centers on the well known cytotoxic effect that results when disruption of the tubulin-microtubule system, caused by treatment with small-molecule inhibitors of tubulin polymerization or depolymerization, impacts the ability of cancer cells to divide. A wide-range of small-molecule therapeutic agents has been discovered and developed that function as antiproliferative agents through this mechanism (Fig. 3.1).

Figure 3.1. Representative small-molecule anti-proliferative agents including colchicine, ³⁹ paclitaxel, ^{156,157} CA4, ⁴⁰ vinblastine, ^{158,159} OXi6196, ^{61,67} KGP18, ^{62,64,68} KGP156, ^{63,64,69} OXi8006, ⁶⁶ and BNC105. ^{126,160}

This approach, while productive as an anticancer strategy, has limitations and challenges since both neoplastic and healthy cells are impacted. Targeting strategies such as the use of antibody-drug conjugates (ADCs) bearing active payloads have been successful with two FDA approved ADCs currently available.^{161–163} In another example, the targeting of tumor hypoxia with bioreductively activatable prodrug conjugates (BAPCs) has been

explored^{164,165} with recent clinical trials involving PR-104^{166,167} and TH-302^{168–170} serving as representative examples (Fig. 3.2).

Figure 3.2. Structures of PR-104 and TH-302.

PR-104 is hydrolyzed to its alcohol parent compound by available phosphatases and, under hypoxic conditions, is activated by NADPH-cytochrome P450 reductases to the reactive nitrogen mustards that crosslink to DNA and ultimately cause tumor cytotoxicity.¹⁶⁶ TH-302 utilizes a similar hypoxia reduction strategy in order to release its 2-nitroimidazole trigger leaving the bromo-isophosphoramide mustard to cross link with DNA.¹⁷⁰ The targeting of tumor hypoxia has also been examined with BAPCs that incorporate the tubulin-active natural product combretastatin A-4 (CA4).¹⁷¹ These strategies, along with others, continue to represent areas of ongoing research effort.

A second mechanistic approach to cancer therapy involving inhibition of the tubulinmicrotubule protein system centers on selective disruption of existing vasculature feeding tumors, leading to limitation of oxygen and nutrient delivery to the cells and impedance of the ability of these cells to clear cellular waste products. This ultimately leads to tumor

necrosis. This approach to targeting existing tumor-feeding vasculature utilizes anticancer agents referred to as vascular disrupting agents (VDAs) and is unique and mechanistically distinct from the fairly well-established and more commonly described therapeutic approach employing angiogenesis inhibiting agents (AIAs) that impede the formation of new vessels.^{14,17,22} Rapid neovascularization occurs when tumors grow larger than about 1 mm³, as they can no longer acquire sufficient nutrients from the surrounding vasculature.¹⁹ Such tumors require their own vascular network to supply oxygen and nutrients and remove waste products.^{11,17,22} Because of their rapid growth and development, these vessels feature irregular branching and diameter, poor wall structure, abnormal bulges, and blind ends.^{3,15,19,21,34} This immature vasculature provides an attractive target for cancer therapy. Therapeutic agents that target tumor vasculature are referred to as vascular targeting agents, which can be divided into the AIAs and VDAs.^{3,14,17} AIAs inhibit the growth of new vasculature to the tumor, while VDAs damage already sprouted vessels.^{12,21,26,29,34,172} VDAs are sub-divided into biological agents and small-molecule therapeutics (Fig. 3.3),¹² and treatment with either of these entities leads to tumor necrosis.

Figure 3.3. Several clinically relevant VDAs including CA4P, ^{41,44,49,123,173} CA1P, ^{42,173} BNC105, ^{123,126,160,173,174} AVE8062, ^{173,175–177} and ZD6126.

Colchicine, a natural product originally isolated from the autumn crocus, *Colchicum autumnale*, and the namesake for the colchicine site on tubulin,^{39,179} is a potent inhibitor of tubulin polymerization, but colchicine has a narrow therapeutic window limiting its development as an anticancer agent.^{32,34,36} Another natural product binding to the colchicine site on tubulin is CA4 (Fig. 3.1).⁴⁰ Originally isolated from the African bushwillow tree, *Combretum caffrum*, and synthesized by Pettit and co-workers, CA4 binds tightly to the colchicine site on tubulin and functions as a VDA.^{36,122,180,181} Combretastatin A-4P [(CA4P), Fig. 3.3] was synthesized as a water-soluble prodrug salt for therapeutic use,^{36,41,122,181} and both CA4 and CA4P are now being evaluated in clinical trials.^{43–45,49,121,123}

Drawing upon the key structural motifs of colchicine and CA4, the Pinney Research Group (Baylor University) has a long-standing interest in the discovery and development of new small-molecule anticancer agents that function as highly cytotoxic agents and/or as potent VDAs. Representative examples within this library include combretastatin,^{55,56,58,60} benzo[*b*]thiophene,⁵⁴ dihydronaphthalene,⁶² benzosuberene,^{62– ^{64,68} and indole-based analogues.^{65,66} The Pinney Research Group had previously shown that expansion of the fused alkyl ring of the dihydronaphthalene anticancer agent known as OXi6196 (Fig. 3.1) by one carbon to the fused seven-membered ring benzosuberene anticancer agent known as KGP18 (Fig. 3.1) was an effective design paradigm, since KGP18 was highly cytotoxic against human cancer cell lines and strongly inhibits tubulin polymerization.}

To further elucidate the structure activity relationship (SAR) considerations associated with functionalized fused aryl-carbocyclic ring systems that mimic colchicine and CA4 and their interaction with the tubulin-microtubule system, benzocyclooctene (fused 6,8 ring system) analogues and corresponding indene (fused 6,5 ring system) analogues were prepared by chemical synthesis and subjected to preliminary biological evaluation.

Results and Discussion

Synthesis

Four benzocyclooctene analogues and four indene analogues were synthesized to further investigate SAR considerations associated with fused aliphatic ring structures and corresponding cytotoxicity and inhibition of tubulin polymerization. These analogues were prepared utilizing a synthetic strategy reminiscent of that employed for a variety of benzosuberene analogues developed in the Pinney Research Group.^{64,68} The synthesis of each benzocyclooctene analogue was initiated with a Wittig olefination followed by catalytic hydrogenation to afford carboxylic acids 3 and 4 (Scheme 3.1). A Friedel-Crafts intramolecular annulation was accomplished using Eaton's reagent (7.7 weight

percent P₂O₅ in CH₃SO₃H),¹³³ and the reaction was diluted and cooled in order to facilitate the construction of benzocyclooctanones 5 and 6 (Scheme 3.1). Without dilution and cooling, the desired product was not formed and only starting material remained.

Scheme 3.1. Synthesis of benzocyclooctanone analogues 5 and 6.

A similar catalytic reduction was utilized with starting material *trans*-2,3dimethoxycinnamic acid to afford carboxylic acids 9 and 10, which were cyclized with Eaton's reagent to their corresponding indanone analogues 11 and 12 (Scheme 3.2).

Scheme 3.2. Synthesis of indanone analogues 11 and 12.

Benzocyclooctanone 5 and indanone 11 bearing the *ortho* dimethoxy motif were each subjected to a selective demethylation^{64,68,135} to afford phenolic analogues 13 and 15, which were subsequently protected with TBS to yield 14 and 16 (Scheme 3.3).

Scheme 3.3. Synthesis of TBS-protected benzocyclooctanone 14 and indanone 16.

Trimethoxyphenyllithium (prepared from the corresponding aryl bromide) underwent a 1,2-addition reaction to benzocyclooctanone analogues 5, 6 and 14 to afford the corresponding tertiary alcohols 17, 18, and 19. Subsequent dehydration afforded benzocyclooctene analogues 20 and 21 and TBS-protected analogue 22, which underwent deprotection to afford phenolic benzocyclooctene 23 (Scheme 3.4).

Scheme 3.4. Synthesis of target benzocyclooctene analogues 20, 21, and 23.

Phenolic analogue 23 was converted to its corresponding phosphate prodrug salt 24, in order to increase water solubility for *in vivo* studies (Scheme 3.5).

Scheme 3.5. Conversion of analogue 23 to its corresponding phosphate prodrug salt 24.

Analogous aryl addition reactions were carried out on indanone intermediates 11, 12, and 16 to generate the corresponding tertiary alcohols 25, 26, and 27 (Scheme 3.6). Subsequent dehydration afforded indene analogues 28 29, and 30. Removal of the TBS group afforded phenolic indene 31.

Scheme 3.6. Synthesis of target indene compounds 28, 29, and 31.

The indene phenol **31** was also converted to its corresponding phosphate salt 32 (Scheme 3.7). While TEA proved to be an acceptable base (due to ease of removal) for use in the

synthesis of the eight membered ring phosphate salt 24, in the synthesis of the indene phosphate salt 32 TEA proved to be hard to remove during purification. Altering the base to pyridine solved this problem and allowed the water-soluble phosphate salt 32 to be synthesized in high purity.

Scheme 3.7. Synthesis of target indene water-soluble analogue 32.

Due to their increased size, eight membered rings are the first in the homologous series (3, 4, 5, 6, 7 – membered rings) that can accommodate both *Z* and *E* double bond configurations.^{182,183} However, in our hands only the Z configurations were synthesized. X-ray crystal structures were obtained for benzocyclooctene analogues 20 and 23 to confirm their Z double bond configuration (see Supplementary Data).

Biological Evaluation

The four target benzocyclooctene and four indene analogues were evaluated for their cytotoxicity against human cancer cell lines and for their abilities to inhibit tubulin polymerization and colchicine binding to tubulin (Table 3.1).

Figure 3.4. Compilation of synthesized benzocyclooctene analogues **20**, **21**, **23**, and **24** and indene analogues 28, 29, 31, and 32.

Among the seven compounds synthesized for this study and analyzed biologically, only the target benzocyclooctene analogues (20, 21, and 23) had activities as inhibitors of tubulin polymerization similar to those of CA4 and KGP18. Benzocyclooctene phenol 23 demonstrated the lowest IC₅₀ value (1.2 μ M) among the compounds evaluated in this study. A binding study utilizing radiolabeled colchicine demonstrated that at a concentration of 5 μ M, phenol 23 inhibited colchicine binding by 78%, 20% less than the activity obtained with 5 μ M CA4 (used as a positive control). Considering the three indene analogues, only phenolic indene 31 demonstrated modest inhibition of tubulin polymerization, with an IC₅₀ value of 11 μ M. Table 3.1. Inhibition of tubulin polymerization [(expressed as half maximal inhibitory concentration (IC_{50})] and cytotoxicity [expressed as growth inhibition of 50% (GI_{50})] of the eight target analogues synthesized.

Compound	Inhibition of	% Inhibition	GI ₅₀ (µM) SRB		
	tubulin	of	assay ^a		
	polymerization	colchicine			
	IC_{50} (μ M) ± SD	binding \pm SD			
			NCI-H460	DU-145	SK-OV-3
CA4	1.0 ^b	98	0.00500 ^{c,d}	0.00602 ^{c,d}	0.00506 ^d
		± 0.007			
CA4P	>20 ^b	nr ^e	0.00282 ^c	0.00336 ^c	0.00190
KGP18	1.4 ^f	nr ^e	0.0000418 ^g	0.0000249 ^g	0.0000543 ^g
20	4.5 ± 0.5	31 ± 0.6	0.395	0.448	0.512
21	3.0 ± 0.1	29 ± 5	0.431	0.570	0.400
23	1.2 ± 0.1	78 ± 4	0.107	0.105	0.0811
24	>20	nd ^h	0.0260	0.0410	0.0366
28	>20	nd ^h	42.2	34.6	9.46
29	>20	nd ^h	4.02	4.66	6.15
31	11 ± 2	17 ± 5	0.388	0.362	0.704
32	>20	nd ^h	1.50	3.34	0.334

^{*a*} Average of $n \ge 3$ independent determinations

^b Data from ref. ¹³⁷

^{*c*} For additional data, see ref. ¹³⁷

^{*d*} Data from ref. ⁶⁹

^e nr = not reported

^{*f*} For additional data, see ref. ⁶³

^{*g*} For additional data, see ref. ⁶²

 h nd = not determined

Benzocyclooctene phenol 23 and its corresponding phosphate prodrug salt 24 were the most cytotoxic analogues in these series against the three human cancer cell lines examined (for example, $GI_{50} = 0.105$ and 0.0410μ M against DU-145 (prostate) for analogues 23 and 24, respectively). While structurally similar to KGP18, differing by the addition of one carbon to the aliphatic ring, the phenolic benzocyclooctene analogue is dramatically less cytotoxic than its benzosuberene counterpart. Compounds 23 and 24 had GI_{50} values in the submicromolar range, while the values obtained with KGP18 were all subnanomolar.

Dynamic bioluminescence imaging

Bioluminescence imaging (BLI) is a highly valuable modality with diverse applications in a wide range of biological models and systems.^{138,184,185} BLI is a particularly useful tool for assessing and quantifying *in vivo* blood flow reduction following treatment with a VDA.^{32,138,139,155,186} In the current study MCF7 human breast cancer cells, which had been previously transfected stably to express the enzyme

luciferase, as well as two fluorescent proteins, as designated by MCF7-luc-GFPmCherry, were implanted in in SCID mice, as described previously.¹⁵⁵ Since the luciferase substrate luciferin can be delivered to the tumor via the blood stream, damage to the vessels by a VDA can be quantified by measurement of reduced bioluminescence upon injection of luciferin.³² In the study shown in Fig. 3.5, three mice bearing the MCF7-luc-GFP-mCherry breast tumor were injected ip with analogue 24 (120 mg/kg), and BLI assessment was performed at baseline (0 h, pre-administration) and at 4, 24, and 48 h after administration of 24. In a contemporaneous study, one mouse was treated with CA4P (120 mg/kg) as a positive control, and an additional mouse was treated with saline alone (Fig. 3.5). A limited dose escalation study with analogue 24 in non-tumor bearing SCID mice (60-150 mg/kg, unpublished data) suggested that a dose of 120 mg/kg was tolerated and likely below the maximum tolerated dose (MTD), which has not yet been determined. The optimal CA4P dose in SCID mice for evaluation of VDA efficacy has been previously established at 120 mg/kg.¹³⁸ Single dose treatment with both analogue 24 and CA4P resulted in a significant reduction in bioluminescence (approximately 80% decrease as compared to baseline or saline control; p<0.05) at 4 h after compound injection. While bioluminescence intensity in the mouse treated with compound 24 recovered somewhat at 24 and 48 h, it remained significantly below baseline values (p<0.005). In this study, the BLI data for both analogue 24 and CA4P at 4 h were statistically different from the saline control, but not from each other or from the data obtained at other time points (Fig 3.5). Following the 48 h time point BLI mice were sacrificed and tumors excised and prepared for histology. Routine staining using H&E indicated much more extensive necrosis throughout the tumors following administration

of 24 or CA4P each at 120 mg/kg, as compared with saline control (Fig. 3.6). Thus, analogue 24 is a good candidate for further assessment and may be a therapeutically useful VDA.

Figure 3.5. Dynamic bioluminescence with respect to vascular disruption. A) Graphs show evolution of light emission from individual MCF7-luc-GFP-mCherry breast tumors following administration of luciferin substrate subcutaneously in the fore-back region of each mouse at time 0. Respective curves are baseline (blue), 4 h (red), 24 h (green) and 48 h (purple) post administration of VDA. Left hand panel shows representative mouse with 120 mg/kg analogue 24 and right hand panel shows CA4P (120 mg/kg). B) Photographs show selected images at the 10 min. time point. Left hand group for analogue **24** and right hand group for CA4P for the same mice used to generate the curves for part A. Respective images are each scaled to same values.

Figure 3.6. Histological assessment of tumor necrosis. H&E stained tumor cross sections showing necrotic (pink) and viable (purple) regions at 48 h post treatment for A: Analogue 24 (120 mg/kg) B: CA4P (120 mg/kg) C: Saline.

Conclusions

These studies, which focused on indene and benzocyclooctene ring systems, expanded the known SAR associated with the effect that fused aliphatic ring size plays in regard to cytotoxicity and inhibition of tubulin polymerization. From the group of eight analogues prepared by chemical synthesis with seven compounds evaluated biologically, three benzocyclooctene analogues were strong inhibitors of tubulin polymerization and one indene analogue was a modest inhibitor. The most promising compound (benzocyclooctene analogue 23) was prepared and evaluated as its corresponding watersoluble phosphate salt 24. It demonstrated significant *in vivo* reduction of blood flow (as evidenced by BLI) in an MCF7-luc-GFP-mCherry tumor model in SCID mice, and the results indicated that 24 should undergo further evaluation as a VDA for potential cancer treatment.

Experimental Section

General Materials and Methods

Tetrahydrofuran (THF), CH₂Cl₂, ethanol, methanol, dimethylformamide (DMF), and acetonitrile were used in their anhydrous forms. Reactions were performed under nitrogen gas. Thin-layer chromatography (TLC) plates (precoated glass plates with silica gel 60 F254, 0.25 mm thickness) were used to monitor reactions. Purification of intermediates and products was carried out with a Biotage Isolera flash purification system using silica gel (200–400 mesh, 60 Å). Intermediates and products synthesized were characterized on the basis of their ¹H NMR (500 or 600 MHz) and ¹³C NMR (125 or 150 MHz) spectroscopic data using a Varian VNMRS 500 MHz or a Bruker Ascend 600 MHz instrument. Spectra were recorded in CDCl₃ and D₂O. All chemical shifts are expressed in ppm (δ), coupling constants (J) are presented in Hz, and peak patterns are reported as singlet (s), doublet (d), triplet (t), quartet (q), pentet (p), septet (sept), and multiplet (m).

Purity of the target compounds was further analyzed at 25 °C using an Agilent 1200 HPLC system with a diode-array detector ($\lambda = 190-400$ nm), a Zorbax XDB-C18 HPLC column (4.6 mm Å~ 150 mm, 5 µm), and a Zorbax reliance cartridge guardcolumn; method A: solvent A, acetonitrile, solvent B, H₂O; gradient, 10% A/90% B to 100% A/0% B or method B: solvent A, acetonitrile, solvent B, 0.1% TFA in H₂O over 0 to 40 min; post-time 10 min; flow rate 1.0 mL/min; injection volume 20 µL; monitored at wavelengths of 210, 254, 230, 280, and 360 nm. Mass spectrometry was carried out under positive ESI (electrospray ionization) using a Thermo Scientific LTQ Orbitrap Discovery instrument. 6-(2, 3 - Dimethoxyphenyl)hex-5-enoic acid (1).⁶¹ To a well-stirred solution of 4-(carboxybutyl)triphenyl phosphonium bromide (13.47 g, 30.39 mmol) dissolved in THF (500 mL) at rt was added potassium *tert*-butoxide (7.43 g, 66.2 mmol). After 1 h, 2,3dimethoxybenzaldehyde (5.02 g, 30.1 mmol) dissolved in THF (100 mL) was added to the original reaction mixture, and stirring at room temperature was continued. After 12 h, the THF was evaporated under reduced pressure, and the resulting material was quenched with 2 M HCl (100 mL) and extracted with EtOAc (2 x 100 mL). The combined organic layers were evaporated under reduced pressure. Purification by flash column chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B → 50%A / 50%B (10 CV), 50%A / 50%B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] afforded compound 1 (3.61 g, 14.4 mmol, 48%) as a yellow oil. NMR characterization was determined after the next step.

6-(2, 3, -Dimethoxyphenyl)hexanoic acid (3).⁶¹ To a well-stirred solution of carboxylic acid 1 (3.61 g, 14.4 mmol) dissolved in MeOH (150 mL) was added 10% Pd on carbon (0.74 g) and H₂ gas (balloon), and the reaction was stirred at room temperature for 12 h. The reaction mixture was then filtered through Celite®, the Celite® was washed with EtOAc (3 x 50 mL), and the filtrate (MeOH and EtOAc) was evaporated under reduced pressure. The organic material was purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7% A / 93%B (1 CV), 7%A / 93%B → 40%A / 60%B (10 CV), 40%A / 60%B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] to afford carboxylic acid 3 (3.63 g, 14.4 mmol, quantitative) as a colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ 11.83 (1H, s), 7.01

(1H, t, J = 9.5 Hz), 6.80 (2H, J = 10 Hz), 3.88 (3H, s), 3.86 (3H, s), 2.68 (2H, t, J = 9 Hz), 2.39 (2H, t, J = 16 Hz), 1.70 (4H, m), 1.46 (2H, p, J = 9.5 Hz). ¹³C NMR (CDCl₃, 150 Hz) δ 180.1, 152.7, 147.1, 136.2, 123.8, 121.9, 110.2, 60.5, 55.5, 34.0, 30.4, 29.6, 28.9, 24.5.

1,2-Dimethoxy-benzocylcooct-5-one (5). ⁶¹ To carboxylic acid 3 (4.40 g, 17.4 mmol) was added Eaton's reagent (35 mL, 3 g per mmol of compound **3**), and the mixture was stirred at room temperature for 12 h, at which time it was poured over ice, which was allowed to melt, and the solution was neutralized with sodium bicarbonate. The organic layer was extracted with EtOAc (3 x 50 mL), dried over sodium sulfate, evaporated under reduced pressure, and purified by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 40%A / 60%B (10 CV), 40%A / 60%B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] to afford ketone 5 (0.58 g, 2.5 mmol, 14 %) as a yellow oil. ¹H NMR (CDCl₃, 600 MHz) δ 7.35 (1H, d, *J* = 8.4 Hz), 6.65 (1H, d, *J* = 9 Hz), 3.69 (3H, s), 3.59 (3H, s), 2.94 (2H, t, *J* = 6.6 Hz), 2.73 (2H, t, *J* = 6.6 Hz), 1.59 (4H, m), 1.27 (2H, p, *J* = 6.6 Hz). ¹³C NMR (CDCl₃, 150 Hz) δ 204.9, 155.5, 146.2, 134.7, 133.5, 124.8, 109.6, 60.7, 55.6, 43.9, 27.0, 25.4, 24.7, 24.1.

 $[TMAH][Al_2Cl_7]$.¹³⁵ To dry CH₂Cl₂ (150 mL) was added AlCl₃ (19.84 g, 149.08 mmol), which was stirred and cooled to 0 °C. Trimethylamine hydrochloride (7.11 g, 74.54 mmol) was added, and the mixture was stirred for 2 h at room temperature. The resulting liquid was stored at room temperature under nitrogen.

1-Hydroxy-2-methoxy-benzocyclooct-5-one (13). To ketone 5 (0.57 g, 2.3 mmol) in a 20 mL microwave vial was added [TMAH][Al₂Cl₇] (7.54 mL, 4.69 mmol), and the mixture was reacted in a microwave for 1 h at 80 °C. The solution was poured into water (50 mL), extracted with EtOAc (3 x 25 mL), dried over sodium sulfate, and evaporated under reduced pressure. The crude reaction mixture was purified by flash chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] affording phenol 13 (0.28 g, 1.3 mmol, 54%) as a clear oil. ¹H NMR (CDCl₃, 600 MHz) δ 7.23 (1H, d, *J* = 8.4 Hz), 6.73 (1H, d, *J* = 8.4 Hz), 6.11 (1H, s) 3.85 (3H, s), 3.06 (2H, t, *J* = 6.6 Hz), 2.88 (2H, t, *J* = 6.6 Hz), 1.75 (4H, m), 1.49 (2H, p, *J* = 6 Hz). ¹³C NMR (CDCl₃, 150 Hz) δ 206.4, 148.7, 142.9, 133.7, 126.7, 120.1, 107.9, 56.0, 44.4, 25.9, 25.7, 25.3, 23.9.

1-((tert-Butyldimethylsilyl)oxy)-2-methoxy-benzocyclooct-5-one (14). Phenol 13 (0.22 g, 1.0 mmol) was dissolved in DMF (50 mL). TBSCl (0.30 g, 2.0 mmol) and DIPEA (0.52 mL, 3.0 mmol) were added, and the reaction was stirred for 12 h at room temperature. The reaction mixture was washed with water (50 mL), extracted with EtOAc (5 x 30 mL), dried over sodium sulfate, and evaporated under reduced pressure. The crude reaction mixture was purified by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 2% A / 98%B (1 CV), 2%A / 98%B \rightarrow 20%A / 80%B (10 CV), 20%A / 80%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] affording TBS-protected ketone 14 (0.31 g, 0.93 mmol, quantitative) as a white solid. ¹H NMR (CDCl₃, 600 MHz) δ 7.04 (1H, d, *J* = 8.4 Hz), 6.56 (1H, d, *J* = 9 Hz), 3.62 (3H, s), 2.87 (2H, t, *J* = 6 Hz), 2.69 (2H, t, *J* = 7.2 Hz), 1.58

(4H, m), 1.33 (2H, p, *J* = 3 Hz), 0.81 (9H, s), 0.00 (6H, s). ¹³C NMR (CDCl₃, 150 Hz) δ 207.1, 151.9, 141.9, 133.7, 131.5, 120.9, 108.5, 54.5, 44.5, 26.2, 26.0, 25.8, 25.5, 23.7, 18.8, -3.9.

1-((tert-Butyldimethylsilyl)oxy)-2-methoxy-5-(3',4',5'- trimethoxyphenyl)benzocyclooctan-5-ol (19). To an oven dried flask containing THF (50 mL) was added 3,4,5-trimethoxyphenyl bromide (0.20 g, 0.81 mmol), and the solution was cooled to -78 °C. *n*-BuLi (1.3 mL, 0.85 mmol) was slowly added to the reaction mixture, which was then stirred at -78 °C for 1 h. TBS-protected 14 (0.20 g, 0.60 mmol) was added dropwise to the flask, and the reaction mixture was stirred while warming from -78 °C to room temperature over 12 h, at which time the reaction mixture was washed with water, extracted with EtOAc (3 x 50 mL), dried over sodium sulfate, and evaporated under reduced pressure. The organic material was purified by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 2%A / 98%B (1 CV), 2%A / 98%B \rightarrow 20%A / 80%B (10 CV), 20%A / 80%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] affording tertiary alcohol 19 (0.044 g, 0.088 mmol, 15%) as a yellow oil. NMR characterization was performed after the next step.

1-((tert-Butyldimethylsilyl)oxy)-2-methoxy-5-(3',4',5'-

trimethoxyphenyl)benzocyclooct-5-ene (22). Acetic acid (10 mL) was added to tertiary alcohol 19 (0.044 g, 0.088 mmol), and the reaction mixture was stirred for 12 h at room temperature, at which time the mixture was washed with water (50 mL), extracted with EtOAc (3 x 30 mL), and dried over sodium sulfate. The organic phase was evaporated

under reduced pressure, and the crude reaction mixture was purified by flash chromatography using a pre-packed 10 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 2%A / 98%B (1 CV), $2\%A / 98\%B \rightarrow 20\%A / 80\%B (10 \text{ CV})$, 20%A / 80%B (2 CV); flow rate: 12 mL/min; monitored at 254 and 280 nm] affording TBSprotected 22 (0.022 g, 0.045 mmol, 52%) as a clear oil. ¹H NMR (CDCl₃, 600 MHz) δ 6.68 (1H, d, J = 8.4 Hz), 6.56 (1H, d, J = 8.4 Hz), 6.42 (2H, s), 6.19 (1H, t, J = 7.8 Hz), 3.84, (3H, s), 3.80 (3H, s), 3.78 (6H, s), 3.27 (1H, overlapping doublets, J = 12.6 Hz), 2.23 (1H, m), 1.96 (1H, m), 1.75 (1H, m), 1.66 (1H, q, J = 22 Hz), 1.37 (2H, m), 1.02 (9H, s), 0.27 (3H, s), 0.24 (3H, s).

*1-Hydroxy-2-methoxy-5-(3',4',5' - trimethoxyphenyl)-benzocyclooct-5-ene (23).*⁶¹ TBS-protected benzocyclooctene 22 (0.022 g, 0.045 mmol) was dissolved in THF (10 mL), TBAF (0.031 g, 0.099 mmol) was added, and the reaction mixture was stirred at room temperature for 12 h. The solution was washed with water (50 mL), extracted with EtOAc (3 x 30 mL), dried over sodium sulfate, and evaporated under reduced pressure. The crude reaction mixture was purified by flash chromatography using a pre-packed 10 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 3%A / 97%B (1 CV), $3\%A / 97\%B \rightarrow 30\%A / 70\%B$ (10 CV), 30%A / 70%B (2 CV); flow rate: 36 mL/min; monitored at 254 and 280 nm] affording benzocyclooctene 23 (0.0053 g, 0.014 mmol, 33%) as a white solid. ¹H NMR (CDCl₃ 600 MHz) δ 6.70 (1H, d, *J* = 8.4 Hz), 6.53 (1H, d, *J* = 8.4 Hz), 6.43 (2H, s), 6.21 (1H, t, *J* = 8.4 Hz), 5.76 (1H, s), 3.92 (3H, s), 3.84 (3H, s), 3.78 (6H, s), 3.25 (1H, dd, *J* = 12.6, 7.8 Hz), 2.30 (2H, m), 2.03 (1H, m), 1.79 (1H, m), 1.68 (1H, dt, *J* = 22.2, 11.4 Hz), 1.45 (1H, qd, *J* = 13.2, 4.8 Hz), 1.34 (1H, qd, *J* = 13.2, 4.8 Hz), ¹³C NMR (CDCl₃ 150 MHz) δ 152.8, 145.3, 142.7, 139.7, 139.1, 137.1,

132.3, 129.8, 129.7, 120.3, 107.8, 104.6, 60.9, 56.1, 56.0, 28.3, 26.5, 25.8, 24.7. HRMS: Obsvd 393.1693 [M + Na⁺], Calcd for C₂₂H₂₆O₅Na: 393.1672. HPLC: 16.61 min.

Sodium 2-methoxy-5-(3',4',5'- trimethoxyphenyl)-benzocyclooct-5-en-1-yl phosphate (24). Phosphorus oxychloride (0.18 mL, 1.9 mmol) was cooled to 0 °C in CH₂Cl₂ (10 mL) and triethylamine (0.68 mL, 4.9 mmol) was added, and the reaction mixture was stirred for 5 min. Benzocyclooctene 23 (0.14 g, 0.38 mmol) in CH₂Cl₂ (5 mL) was added to the reaction dropwise, and the reaction mixture was stirred at 0 °C for 1 h and then warmed to room temperature over 12 h. The mixture was then evaporated under reduced pressure. CH₂Cl₂ (10 mL) was added to the resulting residue, and the resulting solution was again evaporated under reduced pressure. This was repeated two more times. The resulting solid was dissolved in a mixture of THF and water (2:1, 6 mL total) and stirred for 1 h. The solution was then cooled to 0 °C, and 0.1 M NaOH was added until a pH of 10 was achieved. The solution was then evaporated under reduced pressure, and the crude product was purified by a C18 30 g reversed phase column [solvent A: acetonitrile; solvent B: water; gradient: 10% A / 90% B (1 CV), 10% A / 90% B \rightarrow 100% A / 0% B (10 CV), 100% A / 0% B (2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] to afford phosphate salt 24 (0.06 g, 0.12 mmol, 32%) as a brown solid. ¹H NMR (D₂O, 600 MHz) δ 6.69 (1H, d, *J* = 8.4 Hz), 6.52 (2H, s), 6.47 (1H, d, *J* = 8.4 Hz), 6.20 (1H, t, J = 7.4 Hz), 3.72 (3H, s), 3.67 (6H, s), 3.63 (3H, s), 3.45 (1H, dd, J = 13.2, 8.4 Hz), 2.14 (1H, dt, J = 13.8, 8.4), 2.05 (1H, t, J = 12 Hz), 1.91 (1H, m), 1.63 (1H, m), 1.43 (1H, dt, J = 22.2, 12 Hz), 1.30 (1H, qd, J = 13.2, 4.8 Hz), 1.16 (1H, qd, J = 13.2, 4.8 Hz). ¹³C NMR (D₂O, 150 MHz) δ 152.2, 151.4 (d, J = 2.25 Hz), 141.1 (d, J = 6.75Hz), 140.0, 138.8, 138.0 (d, J = 3.38 Hz), 135.8, 131.5, 131.2, 123.8, 109.5, 104.9, 60.9,

56.0, 55.6, 28.1, 26.6, 26.3, 23.8. ³¹P NMR (D₂O, 242 MHz) δ -0.25. HRMS: Obsvd 495.1249 [M + H], Calcd for C₂₂H₂₆O₈Na₂P⁺: 495.1155 HPLC: 5.46 min.

1,2-Dimethoxy-5-(3',4',5'- trimethoxyphenyl)-benzocyclooctan-5-ol (17). To an oven dried flask, THF (50 mL) and 3,4,5-trimethoxyphenyl bromide (0.26 g, 1.0 mmol), were added, and the solution was cooled to -78 °C. *n*-BuLi (0.44 mL, 1.1 mmol) was slowly added to the reaction mixture, which was then stirred at -78 °C for 1 h. Benzocyclooctone 5 (0.18 g, 0.77 mmol) was added dropwise to the flask, and the reaction was stirred while warming from -78 °C to room temperature over 12 h, at which time the reaction mixture was washed with water (50 mL), extracted with EtOAc (3 x 50 mL), dried over sodium sulfate, and evaporated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] affording tertiary alcohol 17 (0.15 g, 0.37 mmol, 48%) as a clear oil. NMR characterization was performed after the next step.

1,2-Dimethoxy-5-(3',4',5'- trimethoxyphenyl)-benzocyclooct-5-ene (20). Acetic acid (20 mL) was added to tertiary alcohol 17 (0.15 g, 0.37 mmol), and the reaction mixture was stirred for 12 h at room temperature, at which time the mixture was washed with water (50 mL), extracted with EtOAc (3 x 30 mL), and dried over sodium sulfate. The organic phase was evaporated under reduced pressure, and the crude organic product was purified by flash chromatography using a pre-packed 10 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 60%A /

40% B (10 CV), 60% A / 40% B (2 CV); flow rate: 12 mL/min; monitored at 254 and 280 nm] affording benzocyclooctene 20 (0.082 g, 0.213 mmol, 59%) as a white solid. ¹H NMR (CDCl₃, 600 MHz) δ 6.74 (1H, d, *J* = 8.5 Hz), 6.72 (1H, d, *J* = 8 Hz), 6.41 (2H, s), 6.21 (1H, dd, *J* = 10.8, 9 Hz), 3.93 (3H, s), 3.88 (3H, s), 3.84 (3H, s), 3.78 (6H, s), 3.24 (1H, dd, *J* = 15, 9.6 Hz), 2.27 (2H, m), 2.06 (1H, m), 1.77 (1H, m), 1.65 (1H, dt, *J* = 25.2, 12.6 Hz), 1.37 (2H, m). ¹³C NMR (CDCl₃, 150 MHz) δ 152.8, 151.8, 146.3, 139.7, 139.0, 137.5, 137.2, 131.9, 129.7, 124.8, 109.5, 104.7, 60.9, 60.7, 56.1, 55.6, 28.3, 27.8, 26.0, 24.6. HRMS: Obsvd 407.1859 [M + Na⁺], Calcd for C₁₉H₂₈O₂Na: 407.1829. HPLC: 18.53 min.

6-(3 -*Methoxyphenyl*)*hex-5-enoic acid* (2). ¹⁸⁷ To a well-stirred solution of 4-(carboxybutyl)triphenyl phosphonium bromide (16.29 g, 36.75 mmol) dissolved in THF (500 mL) at rt was added potassium *tert*-butoxide (9.09 g, 81.0 mmol). After 1 h, 2,3dimethoxybenzaldehyde (4.47 mL, 36.8 mmol) dissolved in THF (100 mL) was added to the original reaction mixture, and the resulting reaction mixture was stirred at room temperature for 12 h. The THF was evaporated under reduced pressure, and the resulting material was quenched with 2 M HCl (100 mL) and extracted with EtOAc (2 x 100 mL). The combined organic layer was evaporated under reduced pressure and purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B → 80%A / 20%B (10 CV), 80%A / 20%B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] affording carboxylic acid 2 (8.01 g, 36.7 mmol, 99%) as a yellow oil. NMR characterization was performed after the next step. 6-(3 '-*Methoxyphenyl*)*hexanoic acid* (4). ^{188,189} To dissolved carboxylic acid 2 (8.01 g, 36.7 mmol) in MeOH (150 mL) was added 10% Pd on carbon (0.46 g) and H₂ gas (balloon). The reaction mixture was stirred at room temperature for 12 h. The mixture was then filtered through Celite®, the Celite® was washed with EtOAc (3 x 50 mL), and the filtrate (MeOH and EtOAc) was evaporated under reduced pressure. The combined organic material was purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B → 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] to afford carboxylic acid 4 (7.53 g, 33.9 mmol, 93%) as a colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ 7.21 (1H, t, *J* = 10.2 Hz), 6.78 (1H, d, *J* = 9.6 Hz), 6.76 (2H, m), 3.81 (3H), 2.62 (2H, t, *J* = 9 Hz), 2.38 (2H, t, *J* = 9 Hz), 1.67 (4H, overlapping pentets, *J* = 9 Hz), 1.41 (2H, p, *J* = 9.6 Hz).

2-Methoxy-benzocyclooct-5-ene (6). ^{133,189–191} Carboxylic acid 4 (7.53 g, 33.9 mmol) was dissolved in CH₂Cl₂ (100 mL) and cooled to 0 °C. Eaton's reagent (68 mL, 3 g per mmol of compound 4) was added, and the mixture was stirred while warming to room temperature over 12 h, at which time it was poured over ice, which was allowed to melt, and the solution was neutralized with NaHCO₃. The organic layer was extracted with EtOAc (3 x 50 mL), dried over sodium sulfate, evaporated under reduced pressure, and purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 5%A / 95%B (1 CV), 5%A / 95%B \rightarrow 40%A / 60%B (10 CV), 40%A / 60%B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] to afford ketone 6 (0.45 g, 2.2 mmol, 7 %) as a yellow oil. ¹H NMR (CDCl₃, 600 MHz) δ 7.81 (1H, d, *J* = 9 Hz), 6.63 (1H, dd, *J* = 9, 2.4 Hz), 6.51 (1H, d, *J* = 3 Hz), 3.65

(3H, s), 2.94 (2H, t, *J* = 6.6 Hz), 2.81 (2H, t, *J* = 7.2 Hz), 1.67 (2H, p, *J* = 7.2 Hz), 1.61 (2H, p, *J* = 6.6 Hz), 1.26 (2H, p, *J* = 6 Hz). ¹³C NMR (CDCl₃, 150 Hz) δ 202.4, 162.8, 143.1, 132.2, 131.4, 116.5, 111.5, 55.1, 42.6, 35.3, 27.6, 24.5, 23.0.

2-Methoxy-5-(3',4',5'-trimethoxyphenyl)-benzocyclooctan-5-ol (18). To an oven dried flask containing THF (50 mL) was added 3,4,5-trimethoxyphenyl bromide (0.73 g, 3.0 mmol), and the solution was cooled to -78 °C. *n*-BuLi (4.9 mL, 3.1 mmol) was slowly added to the reaction mixture, which was then stirred at -78 °C for 1 h. Ketone 6 (0.45 g, 2.2 mmol) was then added dropwise to the flask, and the reaction mixture was stirred while warming from -78 °C to room temperature over 12 h, at which time the reaction mixture was washed with water, extracted with EtOAc (3 x 50 mL), dried over sodium sulfate, and evaporated under reduced pressure. The crude reaction mixture was purified by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford tertiary alcohol 18 (0.18 g, 0.48 mmol, 22%) as a yellow oil. NMR characterization was performed after the next step.

2-Methoxy-5-(3',4',5'-trimethoxyphenyl)-benzocyclooct-5-ene (21). Acetic acid (10 mL) was added to tertiary alcohol 18 (0.18 g, 0.48 mmol), and the reaction mixture was stirred for 12 h at rt, at which time the mixture was washed with water (50 mL), extracted with EtOAc (3 x 30 mL), and dried over sodium sulfate. The organic phase was evaporated under reduced pressure, and the crude reaction mixture was purified by flash chromatography using a pre-packed 10 g silica column [solvent A: EtOAc; solvent B:

hexanes; gradient: 5%A / 95%B (1 CV), 5%A / 95%B \rightarrow 40%A / 60%B (10 CV), 40%A / 60%B (2 CV); flow rate: 12 mL/min; monitored at 254 and 280 nm] to afford benzocyclooctene 21 (0.089 g, 0.25 mmol, 52%) as a white solid. ¹H NMR (CDCl₃, 600 MHz) δ 6.95 (1H, d, J = 8.4 Hz), 6.85 (1H, d, J = 2.4 Hz), 6.73 (1H, dd, J = 6.4, 2.4 Hz), 6.44 (2H, s), 6.24 (1H, dd, J = 9, 7.8 Hz), 3.863 (3H, s), 3.857 (3H, s), 3.80 (6H, s), 2.83 (1H, dd, J = 13.2, 7.8 Hz), 2.56 (1H, t, J = 12.6 Hz), 2.29 (1H, dt, J = 13.8, 7.8 Hz), 2.07 (1H, m), 1.80 (1H, m) 1.64 (1H, dt, J = 21, 10.8 Hz), 1.41 (1H, qd, J = 12.6, 4.8 Hz), 1.34 (1H, qd, J = 13.2, 5.4 Hz). ¹³C NMR (CDCl₃, 150 Hz) δ 159.0, 152.8, 144.6, 139.7, 139.0, 137.1, 130.7, 129.3, 114.0, 111.4, 104.6, 60.9, 56.1, 55.2, 33.5, 28.8, 28.3, 24.9. HRMS: Obsvd 377.1724 [M + Na⁺], Calcd for C₂₂H₂₆O₄Na: 377.1723. HPLC: 19.29 min.

3-(2',3'-Dimethoxyphenyl)propanoic acid (9) ^{192,193} Trans-2,3-

dimethoxycinnamic acid (7) (5.00 g, 24.0 mmol) was dissolved in MeOH (100 mL), 10% Pd on carbon (0.82 g) was added, and the mixture was stirred for 12 h under H₂ (balloon). The mixture was then filtered through Celite®, the Celite® was washed with EtOAc (2 x 50 mL). The organic layer (EtOAc and MeOH) was dried over sodium sulfate, concentrated and purified by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexane; gradient: 7%A/ 93%B (1 CV), 7%A/ 93%B \rightarrow 60%A/ 40%B (10 CV), 60%A/40%B (2 CV); flow rate: 40 mL/min; monitored at 254 nm and 280 nm] to afford carboxylic acid 9 (4.34 g, 20.6 mmol, 86%) as a white solid. ¹H NMR (CDCl₃, 500 MHz) δ 11.91 (1H, s), 6.97 (1H, t, *J* = 8 Hz), 6.78 (2H, d, *J* = 8 Hz), 3.85 (3H, s), 3.80 (3H, s), 2.98 (2H, t, *J* = 7.5 Hz), 2.67 (2H, t, *J* = 7.5 Hz). ¹³C NMR (CDCl₃, 150 MHz) δ 179.4, 152.7, 147.1, 133.9, 124.0, 121.7, 111.0, 60.4, 55.5, 34.7, 25.3. 4,5-Dimethoxy-2,3-dihydro-1H-inden-1-one (11) ^{192,194} Carboxylic acid 9 (4.99 g, 23.7 mmol) was mixed with Eaton's reagent (47.5 mL, 3 g per mmol of carboxylic acid 9) and stirred for 72 h at room temperature. The mixture was then poured over ice, neutralized, and extracted with EtOAc (3 x 75 mL). The organic layer was dried over sodium sulfate, concentrated and purified by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexane; gradient: 7%A/93%B (1 CV), 7%A/ 93%B \rightarrow 60%A/ 40%B (10 CV), 60%A/ 40%B (2 CV); flow rate: 40 mL/min; monitored at 254 nm and 280 nm] to afford ketone 11 (2.01 g, 10.5 mmol, 44%) as a yellow solid. ¹H NMR (CDCl₃, 600 MHz) δ 7.06 (1H, d, *J* = 8.4 Hz), 6.62 (1H, d, *J* = 8.4 Hz), 3.61 (3H, s), 3.57 (3H, s), 2.70 (2H, t, *J* = 5.4 Hz), 2.25 (2H, t, *J* = 5.4 Hz). ¹³C NMR (CDCl₃, 150 MHz) δ 204.6, 157.1, 147.4, 145.0, 130.7, 119.4, 112.0, 59.8, 55.8, 36.0, 22.1.

*4-Hydroxy-5-methoxy-2,3-dihydro-1*H-*inden-1-one* (15)^{135,195,196} Ketone 11 (0.70 g, 3.2 mmol) was added to a 20 mL microwave vial with [TMAH][Al₂Cl₇] (10.0 mL, 7.26 mmol) and microwaved for 1 h at 80 °C. The mixture was poured into water, extracted with CH₂Cl₂ (3 x 30 mL), dried over sodium sulfate and purified by flash chromatography using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexane; gradient: 12%A/ 88%B (1 CV), 12%A/ 88%B → 100% A/ 0%B (10 CV), 100% A/ 0%B (2 CV); flow rate: 50 mL/min; monitored at 254 nm and 280 nm] to afford phenol 15 (0.42 g, 2.36 mmol, 72%) as a brown solid. ¹H NMR (CDCl₃, 600 MHz) δ 7.35 (1H, d, *J* = 10.2 Hz), 6.92 (1H, d, *J* = 10.2 Hz), 5.81 (1H, s), 3.97 (3H, s), 3.07 (2H, t, *J* = 6.6 Hz), 2.69 (2H, t, *J* = 6.6 Hz). ¹³C NMR (CDCl₃, 150 MHz) δ 206.0, 150.9, 142.1, 140.5, 131.4, 116.1, 110.4, 56.4, 36.5, 21.9.

4-((tert-*Butyldimethylsilyl)oxy*)-5-methoxy-2,3-dihydro-1H-inden-1-one (16) Phenol 15 (0.90 g, 5.1 mmol) was dissolved in DMF (25 mL), and TBSCI (0.71 g, 4.7 mmol) was added, followed by the addition of DIPEA (1.24 mL, 7.08 mmol). The mixture was stirred for 12 h at room temperature, washed with water, and extracted with EtOAc (5 x 50 mL). The organic layer was dried over sodium sulfate, concentrated and purified by flash chromatography using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexane; gradient: 7% A/ 93% B (1 CV), 7% A/ 93% B \rightarrow 60% A/ 40% B (10 CV), 60% A/ 40% B (2 CV); flow rate: 50 mL/min; monitored at 254 nm and 280 nm] to afford TBS-protected 16 (0.63 g, 2.2 mmol, 91%) as a white solid. ¹H NMR (CDCl₃, 500 MHz) δ 7.30 (1H, d, *J* = 8.5 Hz), 6.83 (1H, d, *J* = 8.5 Hz), 3.81 (3H, s), 2.94 (2H, t, *J* = 6 Hz), 2.56 (2H, t, *J* = 6 Hz), 0.95 (9H, s), 0.12 (6H s). ¹³C NMR (CDCl₃, 150 MHz) δ 205.8, 155.0, 146.3, 141.4, 131.1, 117.4, 111.5, 55.4, 36.4, 25.9, 22.9, 18.6, -4.1.

4-((tert-Butyldimethylsilyl)oxy)-5-methoxy-1-(3´,4´,5´-trimethoxyphenyl)-2,3-

*dihydro-1*H-*inden-1-ol (27).* 5-Bromo-1,2,3-trimethoxybenzene (0.51 g, 2.1 mmol) was dissolved in THF (25 mL) and cooled to -78 °C. *n*-BuLi (1.22 mL, 3.05 mmol) was added dropwise, and the reaction mixture was stirred for 1 h. TBS-protected 16 (0.43 g, 1.53 mmol) was dissolved in THF (10 mL) and added dropwise to the reaction flask, and the mixture was stirred for 12 h while warming to room temperature, at which time it was washed with water, extracted with EtOAc (3 x 30 mL), dried over sodium sulfate, concentrated, and purified by flash chromatography using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexane; gradient: 7%A/ 93%B (2 CV), 7%A/ 93%B \rightarrow 60% A/ 40%B (10 CV), 60% A/40%B (2 CV); flow rate: 50 mL/min; monitored at 254

nm and 280 nm] to afford tertiary alcohol 27 (0.37 g, 0.80 mmol, 37%) as a yellow oil. NMR characterization was performed after the next step.

tert-Butyl((6-methoxy-3-(3',4',5'-trimethoxyphenyl)-1H-inden-7-

yl)oxy)dimethylsilane (30). Acetic acid (15 mL) was added to tertiary alcohol 27 (0.37 g, 0.80 mmol), and the reaction mixture was stirred at room temperature for 12 h, at which time it was washed with water and extracted with EtOAc (3 x 30 mL). The combined organic layer was dried over sodium sulfate, concentrated, and purified by flash chromatography using a prepacked 25 g silica column [solvent A: EtOAc; solvent B: hexane; gradient: 7%A/ 93%B (1 CV), 7%A/ 93%B \rightarrow 60% A/40%B (10 CV), 60% A/40%B (2 CV); flow rate: 25 mL/min; monitored at 254 nm and 280 nm] to afford TBS-protected 30 (0.14 g, 0.32 mmol, 39%) as a clear oil. ¹H NMR (CDCl₃, 600 MHz) δ 6.92 (1H, d, *J* = 6.5 Hz), 6.64 (1H, d, *J* = 7 Hz), 6.59 (2H, s), 6.19 (1H, t, *J* = 2 Hz), 3.69 (9H, s), 3.62 (3H, s), 3.23 (2H, d, *J* = 2 Hz), 0.84 (9H, s), 0.00 (6H, s). ¹³C NMR (CDCl₃, 150 MHz) δ 153.3, 148.8, 144.9, 141.2, 138.2, 137.5, 135.7, 132.1, 128.8, 113.2, 110.3, 104.7, 61.0, 56.2, 55.6, 35.9, 26.1, 18.7, -4.1.

6-Methoxy-3-(3',4',5'-trimethoxyphenyl)-1H-inden-7-ol $(31)^{61}$ TBS-protected 30 (0.46 g, 1.0 mmol) was dissolved in THF (5 mL), TBAF (5.2 mL, 5.2 mmol) was added, and the reaction mixture was stirred at room temperature for 12 h, at which time the mixture was washed with water, extracted with EtOAc (3 x 40 mL), dried with sodium sulfate, evaporated under reduced pressure, and purified by flash chromatography using a prepacked 25 g silica column [solvent A: EtOAc; solvent B: hexane; gradient: 12% A/ 88%B (1 CV), 12%A/ 88%B \rightarrow 100%A/ 0%B (10 CV), 100%A/ 0%B (2 CV); flow rate:

25 mL/min; monitored at 254 nm and 280 nm] to afford indene 31 (0.23 g, 0.70 mmol, 68%) as a yellow oil. ¹H NMR (CDCl₃, 600 MHz) δ 7.08 (1H, d, *J* = 7.8 Hz), 6.87 (1H, d, *J* = 7.8 Hz), 6.80 (2H, s), 6.46 (1H, t, *J* = 2.4 Hz), 5.78 (1H, s), 3.94 (3H, s), 3.91 (9H, s), 3.48 (2H, d, *J* = 2.4 Hz). ¹³C NMR (CDCl₃, 150 MHz) δ 153.3, 144.9, 144.8, 141.8, 139.7, 138.7, 137.6, 131.9, 129.37, 139.35, 111.7, 109.2, 104.8, 61.0, 56.5, 56.2, 34.8. HRMS: Obsvd 351.1203 [M+Na]⁺, calcd for C₁₉H₂₀O₅Na: 351.1208. HPLC: 12.84 min.

Sodium 6-methoxy-3-(3',4',5'-trimethoxyphenyl)-1H-inden-7-yl phosphate (32).

POCl₃ (0.26 mL, 2.8 mmol) was cooled to 0 °C in CH₂Cl₂ (10 mL). Indene 31 (0.23 g, 0.70 mmol) and pyridine (0.20 mL, 2.5 mmol) in CH₂Cl₂ (5 mL) was added to the reaction mixture dropwise, and the reaction mixture was stirred at 0 °C for 1 h. The mixture was then warmed to room temperature over 12 h. The mixture was then evaporated under reduced pressure. CH_2Cl_2 (10 mL) was added to the resulting residue, and the mixture was again evaporated under reduced pressure. This was repeated two more times. The resulting solid was dissolved in a mixture of THF and water (2:1, 6 mL total) and stirred for 1 h. The solution was then cooled to 0 °C, and 0.1 M NaOH was added until a pH of 10 was achieved. The solution was then evaporated under reduced pressure, and the crude product was purified by a C18 30 g reversed phase column [solvent A: acetonitrile; solvent B: water; gradient: 10% A / 90% B (1 CV), 10% A / 90% B \rightarrow 100% A / 0% B (10 CV), 100% A / 0% B (2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] to afford phosphate salt 32 (0.09 g, 0.20 mmol, 28%) as a light brown solid. ¹H NMR (600 MHz, D₂O) δ 6.98 (1H, d, *J* = 8.4 Hz), 6.81 (1H, d, *J* = 7.8 Hz), 6.67 (2H, s), 6.39 (1H, t, J = 1.8 Hz), 3.79 (3H, s), 3.68 (6H, s), 3.65 (3H, s), 3.58 (2H, s).NMR (150 MHz, D_2O) δ 152.4, 150.0 (d, J = 3 Hz), 142.8, 139.5 (d, J = 6.4 Hz), 138.2

(d, J = 2.5 Hz), 137.4, 136.0, 132.4, 130.8, 115.0, 111.1, 104.8, 60.9, 56.3, 55.9, 36.3. ³¹P NMR (242 MHz, D₂O) δ 0.60. HRMS: Obsvd 453.0687 [M + H], Calcd for C₁₉H₂₀O₈Na₂P⁺: 453.0686 HPLC: 4.04 min.

4,5-Dimethoxy-1-(3',4',5'-trimethoxyphenyl)-2,3-dihydro-1H-inden-1-ol (25). 5-Bromo-1,2,3-trimethoxybenzene (1.60 g, 6.47 mmol) was dissolved in THF (50 mL) and cooled to -78 °C. *n*-BuLi (2.7 mL, 6.8 mmol) was added dropwise, and the reaction mixture was stirred for 1 h. Ketone 11 (0.92 g, 4.79 mmol) was dissolved in THF (10 mL) and added dropwise to the reaction flask, and the mixture was stirred for 12 h while warming to room temperature, at which time it was washed with water, extracted with EtOAc (3 x 30 mL), dried over sodium sulfate, concentrated, and purified by flash chromatography using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexane; gradient: 10%A/ 90%B (1 CV), 10%A/ 90%B \rightarrow 80%A/ 20%B (10 CV), 80%A/ 20%B (1 CV); flow rate: 50 mL/min; monitored at 254 nm and 280 nm] to afford tertiary alcohol 25 (1.221 g, 3.39 mmol, 71%) as an orange oil. NMR data was collected after the subsequent step.

6,7-Dimethoxy-3-(3',4',5'-trimethoxyphenyl)-1H-indene (28). Acetic acid (25 mL) was added to tertiary alcohol 25 (1.22 g 3.39 mmol), and the mixture was stirred at room temperature for 12 h. The mixture was washed with water, extracted with EtOAc (3 x 30 mL), dried over sodium sulfate, concentrated under reduced pressure, and purified by flash chromatography using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexane; gradient: 7%A/ 93%B (1 CV), 7%A/ 93%B \rightarrow 60%A/ 40%B (10 CV), 60%A/ 40%B (2 CV); flow rate: 40 mL/min; monitored at 254 nm and 280 nm] to afford

indene 28 (0.56 g, 1.64 mmol, 48%) as a brown solid. ¹H NMR (CDCl₃, 600 MHz) δ 7.28 (1H, d, *J* = 8 Hz), 6.93 (1H, d, *J* = 8.5 Hz), 6.83 (2H, s), 6.44 (1H, s), 3.99 (3H, s), 3.93 (3H, s), 3.91 (9H, s), 3.53 (2H, s). ¹³C NMR (CDCl₃, 150 MHz) δ 153.1, 150.2, 145.2, 144.5, 138.2, 137.4, 136.4, 131.6, 128.6, 115.2, 110.9, 104.5, 60.6, 59.8, 56.0, 55.8, 35.2. HRMS: Obsvd 365.1385 [M+Na]⁺, calcd for C₂₀H₂₂O₅Na: 365.1359. HPLC: 14.96 min.

3-(3⁻Methoxyphenyl)propanoic acid (*10*)¹⁹⁷ 3-methoxycinnamic acid (8) (3.56 g, 19.98 mmol) was dissolved in MeOH (100 mL), and 10% Pd on carbon (0.44 g) was added. The mixture was stirred for 12 h at room temperature under H₂ (balloon). The reaction mixture was then filtered through Celite®, and the Celite® was washed with EtOAc (3 x 30 mL). The filtrate (EtOAc and MeOH) was evaporated under reduced pressure resulting in carboxylic acid 10 (3.59 g, 19.7 mmol, quantitative). ¹H NMR (CDCl₃, 600 MHz) δ 11.93 (1H, s), 7.27 (1H, t, *J* = 7.5 Hz), 6.88 (2H, m), 6.83 (1H, d, *J* = 8 Hz), 3.79 (3H, s), 2.99 (2H, t, *J* = 7 Hz), 2.73 (2H, t, *J* = 7 Hz). ¹³C NMR (CDCl₃, 150 MHz) δ 179.2, 159.9, 142.0, 129.6, 120.7, 114.2, 111.6, 54.9, 35.5, 30.6.

*5-Methoxy-2,3-dihydro-1*H-*inden-1-one* (12)^{67,198} Eaton's reagent (43 mL, 3 g/mmol of carboxylic acid 10) was added to carboxylic acid **10** (3.95 g, 21.9 mmol), and the reaction mixture was stirred at room temperature for 72 h. It was then poured over ice, neutralized, and extracted with EtOAc (3 x 50 mL). The organic layer was dried over sodium sulfate, concentrated, and purified by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexane; gradient: 12%A/ 88%B (1 CV), 12%A/ 88%B \rightarrow 100%A/ 0%B (10 CV), 100%A/ 0%B (10 CV); flow rate: 50 mL/min; monitored at 254 nm and 280 nm] to afford ketone 12 (2.26 g, 13.9 mmol, 64%)
as a green solid. ¹H NMR (CDCl₃, 600 MHz) δ 7.49 (1H, d, *J* = 7.5 Hz), 6.72 (2H, m), 3.72 (3H, s), 2.91 (2H, t, *J* = 6 Hz), 2.48 (2H, t, *J* = 5.5 Hz). ¹³C NMR (CDCl₃, 150 MHz) δ 205.0, 165.1, 158.1, 130.2, 125.0, 115.2, 109.6, 55.5, 36.3, 25.7.

5-Methoxy-1-(3',4',5'-trimethoxyphenyl)-2,3-dihydro-1H-inden-1-ol (26)⁶⁷

5-Bromo-1,2,3-trimethoxybenzene (1.95 g, 7.91 mmol) was dissolved in THF (50 mL), and the mixture was cooled to -78 °C. *n*-BuLi (3.3 mL, 8.3 mmol) was added dropwise, and the reaction mixture was stirred for 1 h. Ketone 12 (0.95 g, 5.86 mmol) was dissolved in THF (10 mL) and added dropwise to the reaction flask, and the mixture was stirred for 12 h warming to room temperature, at which time it was washed with water, extracted with EtOAc (3 x 30 mL), dried over sodium sulfate, concentrated under reduced pressure, and purified by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexane; gradient: 10%A/ 90%B (1 CV), 10%A/ 90%B \rightarrow 80%A/ 20%B (10 CV), 80%A/ 20%B (2 CV); flow rate: 50 mL/min; monitored at 254 nm and 280 nm] to afford tertiary alcohol 26 (1.45 g, 4.39 mmol, 75%) as a yellow oil. NMR data was collected after the subsequent step.

6-Methoxy-3-(3',4',5'-trimethoxyphenyl)-1H-indene (29)⁶⁷ Acetic acid (25 mL) was added to tertiary alcohol 26 (1.45 g 4.39 mmol) and stirred at room temperature for 12 h. The mixture was washed with water, extracted with EtOAc (3 x 30 mL), dried over sodium sulfate, concentrated, and purified by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexane; gradient: 7%A/ 93%B (1 CV), 7%A/93%B → 60%A/ 40%B (10 CV), 60%A/ 40%B (1 CV); flow rate: 50 mL/min; monitored at 254 nm and 280 nm] to afford indene 29 (1.30 g, 4.16 mmol, 95%) as a redyellow oil. ¹H NMR (CDCl₃, 600 MHz) δ 7.47 (1H, d, *J* = 8.5 Hz), 7.08 (1H, d, *J* = 2 Hz), 6.86 (1H, dd, *J* = 10.5, 2 Hz), 6.81 (2H, s), 6.38 (1H, t, *J* = 2 Hz), 3.90 (3H, s), 3.87 (6H, s), 3.79 (3H, s), 3.40 (2H, d, *J* = 1 Hz). ¹³C NMR (CDCl₃, 150 MHz) δ 150.1, 153.3, 146.7, 144.6, 137.6, 136.8, 132.0, 128.4, 120.5, 111.8, 110.6, 104.7, 60.8, 56.1, 55.4, 38.0. HRMS: Obsvd 335.1281 [M+Na]⁺, calcd for C₁₉H₂₀O₄Na: 335.1254. HPLC: 15.95 min.

Biological Evaluations

SRB Assay ^{151,152}. Inhibition of growth of human cancer cells was assessed using the sulforhodamine B assay (SRB), as previously described.¹⁵¹ Cancer cell lines (DU-145, SK-OV-3, and NCI-H460) were plated at 7500-8000 cells/well into 96-well plates using DMEM supplemented with 5% fetal bovine serum/ 1% gentamicin sulfate and incubated for 24 h at 37°C in a humidified incubator. Compound serial dilutions were then added. After 48 h treatment, the cells were fixed with trichloroacetic acid (10% final concentration), washed, dried, stained with sulforhodamine B dye (Acid red 52), washed to remove excess dye, and dried. SRB dye was solubilized, and absorbances were measured at wavelength 540 nm and normalized to values at wavelength 630 nm using an automated Biotek plate reader. A growth inhibition of 50% (GI₅₀ or the drug concentration causing 50% reduction in the net protein increase) was calculated from the absorbance data.

Colchicine Binding Assay. Inhibition of [3 H]colchicine binding to tubulin was measured using reaction mixtures (100 µL each) containing 1.0 µM tubulin, 5.0 µM

[³H]colchicine (from Perkin-Elmer), 5% (v/v) dimethyl sulfoxide, potential inhibitors at 5.0 μM, and components that stabilize the colchicine binding activity of tubulin ¹⁵³ (1.0 M monosodium glutamate [adjusted to pH 6.6 with HCl in a 2.0 M stock solution], 0.5 mg/mL bovine serum albumin, 0.1 M glucose-1-phosphate, 1.0 mM MgCl₂, and 1.0 mM GTP). Incubation was for 10 min at 37 °C, a time point selected because the binding reaction in control reaction mixtures is 40-60% complete. Reactions were stopped with 2.0 mL of ice-cold water, and the reaction mixtures were placed on ice. Each sample was poured onto a stack of two DEAE-cellulose filters (from Whatman), followed by 6 mL of ice-cold water. The samples were aspirated under reduced vacuum. The filters were washed three times with 2 mL water and placed into vials containing 5 mL of Biosafe II scintillation cocktail. Samples were compared to samples with no inhibitor, and percent inhibition was determined. All samples were corrected for the amount of radiolabel bound to the filters in the absence of tubulin.

Inhibition of Tubulin Polymerization. Tubulin polymerization experiments were performed in 0.25 mL reaction mixtures (final volume).¹⁵⁴ The mixtures contained 1 mg/mL (10 μ M) purified bovine brain tubulin, 0.8 M monosodium glutamate (pH 6.6), 4% (v/v) dimethyl sulfoxide, 0.4 mM GTP, and different compound concentrations. All reaction components except GTP were preincubated for 15 min at 30 °C in 0.24 mL. The mixtures were cooled to 0 °C, and 10 μ L of 10 mM GTP were added. Reaction mixtures were transferred to cuvettes held at 0 °C in Beckman DU-7400 and DU-7500 spectrophotometers equipped with electronic temperature controllers. The temperature was jumped to 30 °C, taking about 30 s, and polymerization was followed at 350 nm for

20 min. The IC_{50} was defined as the compound concentration that inhibited extent of polymerization by 50% after 20 min.

In Vivo *Tumor Model.* Human breast cancer cells, MCF7-luc-GFP-mCherry (ATCC), were transfected sequentially with a lentivirus containing firefly luciferase reporter, GFP and mCherry reporter genes, as described previously.¹⁵⁵ Highly expressing stable clones were isolated. Induction of tumors was carried out by injecting 10⁶ cells mixed with 50% MatrigelTM (BD Biosciences, San Jose, CA) into the right upper ventral mammary fat pads of female SCID-NOD mice (UTSW breeding colony). Tumors were allowed to grow to a size of 10-12 mm in diameter, determined by calipers, before selection for BLI. All animal procedures were approved by the University of Texas Southwestern Medical Center Institutional Animal Care and Use Committee.

BLI. BLI was carried out as described previously.¹⁵⁵ Briefly, anesthetized, tumor bearing mice (O_2 , 2% isoflurane, Henry Schein Inc., Melville, NY) were injected subcutaneously in the fore-back neck region with 80 µL of a solution of luciferase substrate, *D*-luciferin (sodium salt, 120 mg/kg, in saline, Gold Biotechnology, St. Louis, MO). Mice were maintained under anesthesia (2% isoflurane in oxygen, 1 dm³/min) while baseline BLI was performed using a Caliper Xenogen IVIS[®] Spectrum (Perkin-Elmer, Alameda, CA). A series of BLI images was collected over 35 min using the following settings: auto exposure time, f-stop = 2, Field of view = D, binning = 4 (medium). Light intensity-time curves obtained from these images were analyzed using Living Image® software and light emission compared based on area under the light emission curve. Mice were injected intraperitoneally with either 120 µL of saline

(vehicle), CA4P (provided by Mateon Therapeutics, Inc.; 120 mg/kg in saline as used previously³² or analogue 24 (120 mg/kg) in saline immediately after baseline BLI. BLI was repeated, with new luciferin injections, 4, 24, and 48 h later.

Histology. Following the 48 h BLI data acquisition, the tumors were excised, bisected and fixed in 4% paraformaldehyde solution. Tumor tissue was processed for paraffin embedding, sectioned and stained by routine methods. H&E staining was performed on one cross section from each tumor. Whole mount high resolution microscopy was obtained using a Zeiss Axioscan Z1 digital slide scanner.

Acknowledgements

The authors are grateful to the National Cancer Institute of the National Institutes of Health (Grant No. 5R01CA140674 to K.G.P, M.L.T, and R.P.M), the Cancer Prevention and Research Institute of Texas (CPRIT, Grant No. RP140399 to K.G.P., M.L.T., and R.P.M.), and Mateon Therapuetics, Inc. (grant to K.G.P. and M.L.T.) for their financial support of this project. The content is solely the responsibility of the authors and does not necessarily reflect the official views of the National Institutes of Health. The authors would also thank Dr. Craig Moehnke and Dr. Michelle Nemec (Director) for the use of the shared Molecular Biosciences Center at Baylor University, Dr. Alejandro Ramirez (Mass Spectrometry Core Facility, Baylor University) and Dr. Kevin Klausmeyer and Marissa Penney (X-ray analysis). The authors are grateful to Mr. Jack Littlejohn and Mr. Jake Lofman (Baylor University) for their contributions to the synthesis of certain analogues. John Shelton (JAR Molecular Pathology core, UTSW) prepared the H&E stained sections. Imaging was facilitated with the assistance of resources of the Harold C. Simmons Cancer Center supported through a National Institutes of Health National Cancer Institute Cancer Center Support Grant [Grant 1P30 CA142543], specifically, the Southwestern Small Animal Imaging Resource, and Live Cell Imaging Resource. The IVIS Spectrum was purchased with support of 1S10RR024757.

Supplementary Data

Supplementary data including 1H NMR, 13C NMR, 31P NMR, HPLC, HRMS for target compounds and intermediates (1H NMR, 13C NMR, only) and X-ray crystallography for compound 20 and 23 associated with this article can be found in the online Supplementary data file.

CHAPTER FOUR

Carbon Nanotubes as a Drug Delivery System – Preliminary Studies

In order to better understand how carbon nanotubes would interact with compounds synthesized in the Pinney Research Group, preliminary studies were carried out in order to evaluate several optimal synthetic conditions. In collaboration with Molecular Rebar Design (MRD, Austin, TX) and BioPact Ventures, LLC (Austin, TX), initial studies focused on determining how well multi-walled carbon nanotubes (MWCNTs) dispersed in different organic solvents that could be used for either adsorption of compounds synthesized in the Pinney Research Group or to synthetically alter the MWCNTs to facilitate adherence of the compounds to the surface. The MWCNTs from Molecular Rebar Design and BioPact Ventures, LLC are unique MWCNTs that are discrete, multi-walled, CNTs referred to as Medical Grade Molecular Rebar (MGMRTM). As a reminder, introductory material on CNTs can be found in Chapter 1.

Dispersion Experiments

In the first dispersion experiment, 1 mg/mL of MWCNTs were sonicated in either deionized (DI)H₂O or DMSO for 10 minute increments. These solvents were chosen as they could easily be used in both synthesis and cytotoxicity cell line testing. After the first ten minutes, the MWCNTs in H₂O appeared to be evenly dispersed (dispersion in this case is considered even distribution of MWCNTs on the filter paper when the solution is applied by the end of pipette tip) (Figure 4.1). However, over the course of an hour, the MWCNTs were never dispersed evenly throughout DMSO (Figure 4.2).

In the second dispersion experiment, MWCNTs dispersed in water were compared to MWCNTs dispersed in dichloromethane. MWCNTs were also dispersed in a 1:10 mixture of the MWCNTS/water solution and 10% fetal bovine serum (FBS) with media (which would be used in cytotoxicity cell line studies). Again, 1 mg/mL solutions of MWCNTs in either water or dichloromethane were sonicated, this time for 30 minutes, and then were tested for dispersion using the quick touch pipette method. Both appeared to be evenly dispersed in solution after 30 minutes (Figure 4.3).

Figure 4.1. 1 mg/mL of MWCNTs in H₂O sonicated for ten minutes.

100 μ l of the MWCNTs in water was added to 900 μ l 10% FBS with media and sonicated for 30 minutes. The MWCNTs appear to be dispersed in this solution as well.

Uptake Experiments

The next preliminary experiments were done in collaboration with Molecular Rebar in Austin, Texas. There, the drug uptake by the MWCNTs was determined for both CA4P and KGP265 (Figure 4.5).

Figure 4.2. 1 mg/ mL of MWCNTs in DMSO sonicated for 10 minute intervals over an hour. Even dispersion is not seen for the DMSO samples (evident with the clumping seen on the filter papers).

Figure 4.3. 1 mg/mL of MWCNTs in dichloromethane or water after 30 minutes of sonication. Both appear to be dispersed in their given solutions.

Figure 4.4. 100 μ l of the MWCNTs/water solution added to 900 μ l 10% FBS with media after 30 minutes of sonication. The nanotubes appear to be dispersed.

Figure 4.5. Structures of CA4P and KGP265.

CA4P Uptake Experiment

A stock solution of 0.045 g/L (0.114 mM) CA4P in water was used to create four different concentrations. These solutions were analyzed by UV-Vis in order to determine a calibration curve. The data were analyzed graphically (Figure 4.6) using the concentrations of 0.015 g/L, 0.03 g/L, 0.045 g/L, and 0.06 g/L CA4P in water ultimately leading to an extinction coefficient of 10338 M^{-1} cm⁻¹

Using the stock solution of CA4P in water (0.045 g/L) and a stock solution of MWCNTs also in water (11.1 mg into 100 mL; 0.111 g/L), varying weight to weight ratios (1:1, 3:1, 6:1, 9:1; CA4P:MWCNTs) were evaluated for uptake of CA4P by MWCNTs. For each ratio, 5 mL of the CA4P stock solution was used with varying amounts of the MWCNTs stock solution. The combined CA4P-MWCNT solution was sonicated in ice water for ten minutes, and the solutions were then filtered through 0.5 µm PVDF filters, leaving any unbound CA4P in water. The filtrate was then analyzed by UV-Vis to determine the concentration of free CA4P, which could be correlated to the uptake of CA4P by the MWCNTs. In this first uptake experiment, the only uptake of

CA4P by the MWCNTs was seen in the 1:1 weight to weight ratio (and this was seen at a 0.10 grams of CA4P per gram of MWCNTs).

Figure 4.6. Calibration curve for CA4P in water.

Because only minimal amounts of CA4P were shown to interact with the MWCNTs, a second uptake experiment was performed using more concentrated stock solutions of both the MWCNTs (55.5 mg into 50 mL of water; 1.11 g/L) and CA4P (0.5 g/L). Weight to weight ratios of 5:1 and 9:1 CA4P to MWCNTs were examined using the same parameters as outlined previously. It was found that in the 5:1 CA4P:MWCNT weight to weight ratio there was a ratio of 0.59 grams of CA4P per gram of MWCNTs, however, for 9:1, the ratio was only 0.017 grams of CA4P per gram of MWCNTs.

One more uptake experiment was explored using CA4P that examined using CA4P in the presence of an excess of MWCNTs. Stock solutions of 1.11 g/L MWCNTs and 0.5 g/L CA4P were used, and a weight to weight ratio of 1:5 CA4P:MWCNTs was mixed. It was expected that there would be a high uptake of CA4P due to the excess of CNTs, however, the gram to gram ratio (CA4P:MWCNT) for the experiment was only 0.039.

KGP265 Uptake Experiment

Following a similar strategy to the CA4P uptake experiment, a stock solution of 0.0665 g/L (0.138 mM) KGP265 in water was used to create four different concentrations. These solutions were analyzed by UV-Vis in order to determine a calibration curve. The data were analyzed graphically (Figure 4.7) using the concentrations of 0.015 g/L, 0.025 g/L, 0.031 g/L, and 0.049 g/L KGP265 in water ultimately leading to an extinction coefficient of 13294 M⁻¹ cm⁻¹.

Using the stock solution of KGP265 in water (0.00665 g/L) and a stock solution of MWCNTs also in water (10.0 mg into 100 mL; 0.10 g/L), varying weight to weight ratios (1:1, 3:1, 6:1, 9:1; KGP265:MWCNTs) were evaluated for uptake of KGP265 by MWCNTs. For each ratio, 5 mL of the KGP265 stock solution was used with varying amounts of the MWCNTs stock solution.

Figure 4.7. Calibration curve for KGP265 in water.

The combined KGP265-MWCNT solution was sonicated in ice water for ten minutes, and the solutions were then filtered through 0.5 μ m PVDF filters, leaving any unbound KGP265 in water. The filtrate was then analyzed by UV-Vis to determine the concentration of free KGP265, which could be correlated to the uptake of KGP265 by the MWCNTs. Uptake of KGP265 by the MWCNTs was seen in each of the ratio experiments, with the most uptake seen in the 6:1 and 9:1 ratios (a 3.1 gram to gram ratio was seen in both the 6:1 and 9:1 experiments).

Because KGP265 had such a high uptake onto the MWCNTs, it shows promise as a candidate for potential use with MWCNTs as a drug delivery system. It was surprising that CA4P, while water soluble, did not interact as favorably with the MWCNTs in these preliminary experiments. At best, CA4P was only 50% adsorbed by the MWCNTs, but this was only observed under very specific ratio conditions. It is interesting to note that CA4P in water acts as a good surfactant for the MWCNTs, dispersing the tubes evenly throughout the solution, however the interaction between the tubes and CA4P may be very weak, and as the poorly bound CA4P-MWCNTs is pressurized through the microfilter, the compound could be removed from the tubes.

Future work is still needed to further develop MWCNTs as a drug delivery system, specifically with the Pinney Research Group compounds in mind. First, many of the phosphate salts synthesized in the Pinney Research Group that also have cytotoxic and tubulin polymerization inhibitory effects should be studied for their uptake with MWCNTs to see if they also are as promising as KGP265 in this regard. Second, for nonwater soluble compounds, functionalization of the MWCNTs could allow for the covalent bonding of compounds to the MWCNTs, which would permit their use as a drug delivery system. Developing this functionalization technique and studying its mechanism of action will be key for future MWCNT work.

CHAPTER FIVE

Conclusions

A focused small library of compounds has been synthesized that utilized either the benzosuberene, benzocyclooctene, or indene molecular frame-work and mimicked structural features reminiscent of the natural products combretastatin A-4 and colchicine. These analogues helped further the understanding in which functional modifications to the aryl rings of the benzosuberene and the ring size of the alkyl ring affected biological activity. Two manuscripts were prepared that describe these research developments, a benzosuberene analogue paper, in which the author synthesized twelve of the twenty-two final compounds, and a benzocyclooctene and indene paper, in which the author synthesized all eight of the final target compounds.

The most promising new target molecule to emerge from these studies was a benzocyclooctene analogue (referred to as KGP481), which is the water-soluble phosphate prodrug of the eight membered phenolic compound KGP433. While less cytotoxic in comparision to the benzosuberene phenolic moiety KGP18, KGP481 demonstrated promising results both as an inhibitor of tubulin polymerization and as a vascular disrupting agent, as evidenced by bioluminescence imaging studies. Further biological evaluation of this benzocyclooctene analogue and additional structure activity relationship studies should be carried out to further explore the full biological potential of KGP481 and structurally similar molecules.

The preliminary work with the MWCNTs showed initial promise as a method to adsorb VDAs and utilize the MWCNTs for drug delivery to tumors. While CA4P had

minimal adsorption to the MWCNTs used in this study, KGP265 was readily adsorbed. Future studies should include the adsorption of other water-soluble phosphate salts by MWCNTs, as well as cytotoxicity studies of KGP265 adsorbed onto MWCNTs. APPENDICES

APPENDIX A

Supporting Information: Structural Interrogation of Benzosuberene-Based Inhibitors of Tubulin Polymerization

This appendix published as supporting information: Herdman, C. A.; Devkota, L.; Lin, C. M.; Niu, H.; Strecker, T. E.; George, C. S.; Tanpure, R. P.; Hamel, E.; Chaplin, D. J.; Mason, R. P.; Trawick, M. L.; Pinney, K. G. Structural Interrogation of Benzosuberene-Based Inhibitors of Tubulin Polymerization. *Bioorganic and Medicinal Chemistry* **2015**, *23*, 7497-7520.

Structural Interrogation of Benzosuberene-Based Inhibitors of Tubulin Polymerization

Christine A. Herdman^a, Laxman Devkota^a, Chen-Ming Lin^a, Haichan Niu^a, Tracy E. Strecker^a, Ramona Lopez^b, Li Liu^b, Clinton S. George^a, Rajendra P. Tanpure^a, Ernest Hamel^c, David J. Chaplin^{a,d}, Ralph P. Mason^b, Mary Lynn Trawick^a, and Kevin G. Pinney^a*

^a Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States

^bDepartment of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9058, United States

^c Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States

^d OXiGENE Inc., 701 Gateway Boulevard, Suite 210, South San Francisco, California 94080, United States

*Corresponding author. Tel.: +1 254 710 4117; fax: +1 254 710 4272.

E-mail address: Kevin_Pinney@baylor.edu (K.G. Pinney).

Appendix A Table of Contents

¹ H and ¹³ C NMR of 2-(2,3-dimethoxyphenyl)-4,4-dimethyl-4,5-dihydrooxazole156
¹ H and ¹³ C NMR of 2-(2-butyl-3-methoxyphenyl)-4,4-dimethyl-4,5-
dihydrooxazole157
¹ H and ¹³ C NMR of 2-butyl-3-methoxybenzoic acid
¹ H and ¹³ C NMR of (2-butyl-3-methoxyphenyl)methanol
¹ H and ¹³ C NMR of 2-butyl-3-methoxybenzaldehyde
¹ H and ¹³ C NMR of compound 6161
¹ H and ¹³ C NMR of compound 7
¹ H and ¹³ C NMR of compound 8164-165
¹ H and ¹³ C NMR of 3-methoxy-2-methylbenzaldehyde
¹ H and ¹³ C NMR of compound 9
¹ H and ¹³ C NMR of 2-ethyl-3-methoxybenzaldehyde
¹ H and ¹³ C NMR of compound 10
¹ H and ¹³ C NMR of 3-methoxy-2-propylbenzaldehyde
¹ H and ¹³ C NMR of compound 11
¹ H and ¹³ C NMR of compound 12178
¹ H and ¹³ C NMR of compound 13
¹ H and ¹³ C NMR of compound 14
¹ H and ¹³ C NMR of compound 15
¹ H and ¹³ C NMR of compound 16
¹ H and ¹³ C NMR of compound 17

¹ H and ¹³ C NMR of compound 18	
¹ H NMR of compound 24	
¹ H and ¹³ C NMR of compound 25	
¹ H and ¹³ C NMR of compound 26	
¹ H and ¹³ C NMR of compound 27	
¹ H, ¹³ C NMR, HPLC, and HRMS of compound 28	
¹ H, ¹³ C NMR, HPLC, and HRMS of compound 29	
¹ H, ¹³ C NMR, HPLC, and HRMS of compound 30	
¹ H, ¹³ C NMR, HPLC, and HRMS of compound 31	
¹ H, ¹³ C NMR, HPLC, and HRMS of compound 32	
¹ H, ¹³ C NMR, HPLC, and HRMS of compound 33	
¹ H, ¹³ C, ¹⁹ F NMR, HPLC, and HRMS of compound 34	
¹ H, ¹³ C NMR, HPLC, and HRMS of compound 35	
¹ H, ¹³ C NMR, HPLC, and HRMS of compound 36	
¹ H, ¹³ C NMR, HPLC, and HRMS of compound 37	
¹ H and ¹³ C NMR of compound 38	
¹ H and ¹³ C NMR of compound 39	
¹ H and ¹³ C NMR of compound 40	
¹ H and ¹³ C NMR of compound 41	
¹ H and ¹³ C NMR of compound 42	
¹ H and ¹³ C NMR of compound 43	
¹ H and ¹³ C NMR of compound 45	

¹ H and ¹³ C NMR of compound 46	285-286
¹ H and ¹³ C NMR of compound 47	287-288
¹ H and ¹³ C NMR of compound 50	289-290
¹ H and ¹³ C NMR of compound 51	291-292
¹ H and ¹³ C NMR of compound 52	293-294
¹ H and ¹³ C NMR of compound 53	295-296
¹ H and ¹³ C NMR of compound 54	297-298
¹ H and ¹³ C NMR of compound 55	299-300
¹ H and ¹³ C NMR of compound 56	301-302
¹ H and ¹³ C NMR of compound 57	303-304
¹ H NMR of compound 59	
¹ H and ¹³ C NMR of compound 60	306-307
¹ H, ¹³ C NMR, HPLC, and HRMS of compound 61	308-313
¹ H, ¹³ C NMR, HPLC, and HRMS of compound 62	314-319
¹ H and ¹³ C NMR of compound 63	320-321
¹ H, ¹³ C NMR, HPLC, and HRMS of compound 64	322-328
¹ H, ¹³ C, ¹⁹ F NMR, HPLC, and HRMS of compound 65	329-338
¹ H, ¹³ C, ¹⁹ F NMR, HPLC, and HRMS of compound 66	339-347
¹ H, ¹³ C NMR, HPLC, and HRMS of compound 67	348-355
¹ H, ¹³ C NMR, HPLC, and HRMS of compound 68	356-361
¹ H and ¹³ C NMR of compound 69	362-363
¹ H, ¹³ C NMR, HPLC, and HRMS of compound 70	364-371

¹ H, ¹³ C NMR, HPLC, and HRMS of compound 71	372-377
¹ H, ¹³ C NMR, HPLC, and HRMS of compound 72	378-383
X-Ray Crystallography Analysis Compound 72	384-390
¹ H, ¹³ C, ³¹ P NMR, HPLC, and HRMS of compound 73	391-398
¹ H, ¹³ C, ³¹ P, ¹⁹ F NMR, HPLC, and HRMS of compound 74	399-409
Alternative Synthesis to Compound 30	410-413
Table 2.1 with statistical analysis	414-415
Molecular docking studies of compounds 29, 62, and 72	416-418

5-(2-butyl-3-methoxyphenyl)pent-4-enoic acid

0 -10 170 160

-10 170 160

0 -10 170 160

-10 Ó

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_3_134000010.D Sample Name: CAH_3_134

HPLC for Compound 28

Instrument 1 2/25/2014 11.07.32 AM Christine Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message.

Page 1 of 4

Instrument 1 2/25/2014 11.07.32 AM Christine Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message. Page 2 of 4

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_3_134000010.D Sample Name: CAH_3_134

Signal 2: DAD1 B, Sig=254,16 Ref=off Signal has been modified after loading from rawdata file!

Totals: 2092.94263 321.40930

Signal 3: DAD1 C, Sig=210,8 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	19.933	BB	0.0995	4793.37109	740.26355	100.0000

Totals: 4793.37109 740.26355

Signal 4: DAD1 D, Sig=230,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	19.933	BB	0.0994	2596.50854	401.65051	100.0000	

Totals	:	2596.50854	401.65051

Signal 5: DAD1 E, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	19.933	BB	0.0995	1007.30444	155.69983	100.0000

Totals: 1007.30444 155.69983

Instrument 1 2/25/2014 11.07.32 AM Christina

Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message.

Page 3 of 4

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_3_134000010.D Sample Name: CAH_3_134

Signal 6: DAD1 F, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

Totals : 1007.30444 155.69983

Signal 7: DAD1 G, Sig=300,16 Ref=off Signal has been modified after loading from rawdata file!

Peak #	RetTime	Туре	Width	Area [mall*s]	Height	Area %
	[]			[[]	
1	19.933	BB	0.1001	240.84787	36.89976	100.0000
Tota.	ls :			240.84787	36.89976	

*** End of Report ***

Instrument 1 2/25/2014 11.07.32 AM Christina

Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message.

Page 4 of 4

HRMS for Compound 28

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_3_123000004.D Sample Name: CAH_3_123

HPLC for compound 29

Instrument 1 10/9/2013 3:45:18 PM Christine

Page 1 of 3

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_3_123000004.D Sample Name: CAH_3_123

	A	rea Percent	Report	
	NE ANG AND AND AND AND AND	and and and and set on our of the set of an	a nati yan pela yan taki nati ana ana ana ana a	na kana mana mana mana mana mana mana ma
Sorted By		Signal		
Multiplier	:	1.0000		
Dilution	:	1.0000		
Use Multiplier & D.	ilution	Factor with	ISTDs	
Signal 1: DAD1 A,	Sig=254,	4 Ref=off		
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	8
		-	-	
1 18.331 BB	0.1006	444.65436	67.72849 1	100.0000
Totals :		444.65436	67.72849	
Signal 2: DAD1 B,	Sig=254,	16 Ref=off		
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	8
		-	-	
1 18.331 BB	0.1008	414.83444	63.04776 1	100.0000
Totals :		414.83444	63.04776	
Signal 3: DAD1 E,	Sig=280,	16 Ref=off		
Deck Detmine Trees	Wide la	2 4 6 6	theight	7.000
# [min]	Iminl	[malite]	[mail]	Area
# [min]			[]	
1 18.331 BB	0.1004	220.03041	33.57787 1	100.0000
Totals :		220.03041	33.57787	
Signal 4: DAD1 F,	Sig=280,	16 Ref=off		
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	8
		-	-	
1 18.331 BB	0.1004	220.03041	33.57787 1	100.0000
Totals :		220.03041	33.57787	

Instrument 1 10/9/2013 3:45:18 PM Christine

Page 2 of 3

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_3_123000004.D Sample Name: CAH_3_123

*** End of Report ***

Instrument 1 10/9/2013 3:45:18 PM Christine

Page 3 of 3

HRMS for compound 29

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_4_13000001.D Sample Name: CAH 4 13

Instrument 1 2/25/2014 11.01.51 PM Christine Page 1 of 4 Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message.

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_4_13000001.D Sample Name: CAH_4_13

Instrument 1 2/25/2014 11.01.51 M Christine Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message. Page 2 of 4

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_4_13000001.D Sample Name: CAH_4_13

Signal 2: DAD1 B, Sig=254,16 Ref=off Signal has been modified after loading from rawdata file!

Totals: 4792.61084 765.89771

Signal 3: DAD1 C, Sig=210,8 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	19.558	VV	0.0978	1.07562e4	1701.31848	100.0000

Totals : 1.07562e4 1701.31848

Signal 4: DAD1 D, Sig=230,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	19.558	VV	0.0952	7260.10791	1157.33716	100.0000

Totals : 7260.10791 1157.33716

Signal 5: DAD1 E, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.675	BB	0.0895	420.21866	70.51888	100.0000
Tota:	ls :			420.21866	70.51888	

Instrument 1 2/25/2014 11.01.51 AM Christina

Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message.

Page 3 of 4

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_4_13000001.D Sample Name: CAH 4_13

Totals : 3360.60635 540.28118

Signal 7: DAD1 G, Sig=300,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	11.675	BV	0.0861	149.43964	26.37713	12.7927
2	19.558	VV	0.0955	1018.72174	161.60686	87.2073

Totals : 1168.16138 187.98399

*** End of Report ***

Instrument 1 2/25/2014 11.01.51 AM Christina

Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message.

Page 4 of 4

HRMS for compound 30

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_4_21000000.D Sample Name: CAH 4 21

HPLC for compound 31

Instrument 1 2/25/2014 3-24-37 PM Christine Page 1 of 3 Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message. Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_4_21000000.D Sample Name: CAH 4 21

Instrument 1 2/25/2014 3.24.37 PM Christine Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message. Page 2 of 3

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_4_21000000.D Sample Name: CAH_4_21

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1	20.661	 BV	0.0908	424.10693	71.94486	100.0000
Tota	Ls :			424.10693	71.94486	

Signal 4: DAD1 F, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	20.661	BV	0.0908	424.10693	71.94486	100.0000

Totals :	424.10693	71.94486
----------	-----------	----------

Signal 5: DAD1 G, Sig=300,16 Ref=off Signal has been modified after loading from rawdata file!

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.650	BB	0.1914	58.18542	4.48376	27.7229
2	20,661	BV	0.0916	151.69656	25,41301	72.2771
Tota.	ls :			209.88199	29.89677	

*** End of Report ***

Instrument 1 2/25/2014 2.24.37 DM Christine

Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message.

Page 3 of 3

HRMS for compound 31

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_4_29000003.D Sample Name: CAH 4 29

Instrument 1 5/19/2014 4:50:29 PM Christine

Page 1 of 4

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_4_29000003.D Sample Name: CAH_4_29

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_4_29000003.D Sample Name: CAH 4 29

Signal 2: DAD1 B, Sig=254,16 Ref=off Signal has been modified after loading from rawdata file!

Totals: 2.71083e4 3524.32036

Signal 3: DAD1 C, Sig=210,8 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	18.289	BV	0.1015	1865.43298	280.66962	5.1837
2	21.540	BV	0.1622	3.41209e4	3424.46191	94.8163

Totals: 3.59864e4 3705.13153

Signal 4: DAD1 D, Sig=230,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	18.289	BV	0.1014	1306.26282	196.81532	4.0403
2	21.534	BV	0.1430	3.10247e4	3515.33618	95.9597

Totals: 3.23309e4 3712.15150

Signal 5: DAD1 E, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	21.535	BV	0.1074	1.94384e4	2855.78076	100.0000

Totals : 1.94384e4 2855.78076

Instrument 1 5/19/2014 4:50:29 PM Christine

Page 3 of 4

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_4_29000003.D Sample Name: CAH_4_29

Signal 6: DAD1 F, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

Totals: 1.94384e4 2855.78076

Signal 7: DAD1 G, Sig=300,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	21.534	BV	0.0938	7832.92432	1309.62927	100.0000

Totals : 7832.92432 1309.62927

*** End of Report ***

Instrument 1 5/19/2014 4:50:29 PM Christine

Page 4 of 4

HRMS for compound 32

Data File C:\CHEM32\1\DATA\HAICHAN NIU\KGP407000006.D Sample Name: KGP407

HPLC for compound 33

Instrument 1 5/22/2014 7.55.33 DM HATCHAN NTU Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message. Page 1 of 6

Data File C:\CHEM32\1\DATA\HAICHAN NIU\KGP407000006.D Sample Name: KGP407

Instrument 1 5/22/2014 7.55.33 DM HATCHAN NITH

Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message.

Page 2 of 6

Data File C:\CHEM32\1\DATA\HAICHAN NIU\KGP407000006.D Sample Name: KGP407

Signal	1: D	AD1 A	, Sig=254,	4 Ref	=off			
Signal	has	been	modified	after	loading	from	rawdata	file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	1.892	BB	0.1220	205.61472	23.05705	1.8377
2	13.794	BB	0.2701	37.55608	1.82508	0.3357
3	16.321	BB	0.2518	29.26817	1.48607	0.2616
4	17.573	BB	0.2588	59.74598	2.94312	0.5340
5	18.230	BV	0.2229	63.97398	3.75268	0.5718
6	18.690	VB	0.2388	31.14396	1.72357	0.2784
7	19.744	BB	0.1574	17.63064	1.54186	0.1576
8	20.486	BB	0.0941	8.51472	1.41805	0.0761
9	21.178	BB	0.2529	172.74390	8.96248	1.5439
10	22.302	BB	0.0998	1.05476e4	1581.28418	94.2714
11	27.446	BB	0.0992	14.75580	2.12002	0.1319

Totals : 1.11886e4 1630.11415

Signal 2: DAD1 B, Sig=254,16 Ref=off Signal has been modified after loading from rawdata file!

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	1.892	BB	0.1472	257.07364	23.21323	2.4674
2	13.794	BB	0.2658	42.60092	2.10777	0.4089
3	16.321	BB	0.2519	29.39858	1.49186	0.2822
4	17.573	BB	0.2544	55,46112	2.78468	0.5323
5	18.230	BV	0.2228	58.92264	3.45830	0.5655
6	18.688	VB	0.2361	29.00475	1.62596	0.2784
7	19.744	BB	0.1552	15.84321	1.40894	0.1521
8	20.486	BB	0.0947	10.03956	1.65767	0.0964
9	22.302	BB	0.0997	9906.66016	1486.84314	95.0838
10	27.446	BB	0.0952	13.86449	2.04266	0.1331

Totals : 1.04189e4 1526.63420

Signal 3: DAD1 C, Sig=210,8 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	1.241	BV	0.1166	112.43739	12.53983	0.4377
2	1.498	VV	0.0978	86.76828	12.38144	0.3378
3	1.583	VB	0.2030	212.25829	12.96423	0.8263

Instrument 1 5/22/2014 7.55.33 DM HATCHAN NITH

Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message.

Page 3 of 6

Data	Fi	le	C:	CHEM32\1\DATA\HAICH	HAN NIU\KGP40700006.D	
Sampl	e	Nan	ne:	KGP407		

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
4	1.892	BB	0.2722	610.39325	28.00976	2.3763
5	9.085	BB	0.3602	37.33203	1.28795	0.1453
6	9.787	BB	0.2183	29.35772	1.72761	0.1143
7	10.946	BB	0.2118	16.74347	1.06277	0.0652
8	11.284	BB	0.0998	9.72657	1.45764	0.0379
9	13.350	BB	0.0951	9.75790	1.69781	0.0380
10	13.792	BB	0.2570	68.78865	3.59853	0.2678
11	15.916	BB	0.1142	30.48277	3.85870	0.1187
12	16.317	BB	0.1950	49.96380	3.36880	0.1945
13	17.322	BV	0.1185	11.81782	1.52267	0.0460
14	17.573	VV	0.1797	82.90123	6.05778	0.3227
15	17.800	VB	0.1581	45.04564	4.68686	0.1754
16	18.225	BV	0.2371	97.94218	5.36237	0.3813
17	18.656	VB	0.1299	51.54269	5.90078	0.2007
18	20.267	BV	0.1402	54.50468	5.57007	0.2122
19	20.486	VV	0.1512	369.62842	33.90767	1.4390
20	20.780	VV	0.2662	439.56110	21.00230	1.7112
21	21.177	VB	0.2569	660.56427	32.80515	2.5716
22	21.538	BV	0.1592	361.84375	36.00524	1.4087
23	22.302	VB	0.1133	1.93617e4	2647.61377	75.3753
24	27.403	BB	0.3710	2875.97852	92.43199	11.1962
Tota.	ls :			2.56870e4	2976.82171	

Signal 4: DAD1 D, Sig=230,16 Ref=off

Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
)
1	1.245	BB	0.0525	6.08144	1.75071	0.0372
2	1.492	BV	0.0864	23.75330	3.93887	0.1453
3	1.586	VB	0.2551	169.37418	8.12729	1.0359
4	1.892	BB	0.1505	300.81332	26.48990	1.8398
5	9.069	BB	0.3211	40.21803	1.57932	0.2460
6	13.335	BB	0.1097	11.15828	1.59429	0.0682
7	13.794	BB	0.2532	86.28983	4.55197	0.5277
8	15.902	BB	0.0896	8.10509	1.39794	0.0496
9	16.319	BB	0.2450	47.99840	2.51118	0.2936
10	17.573	BV	0.1604	43.86290	3.69786	0.2683
11	17.798	VB	0.1637	28.22668	2.79859	0.1726
12	18.228	BB	0.2038	54.62132	3.54339	0.3341
13	18.658	BB	0.1438	20.38937	2.05419	0.1247
14	20.485	BB	0.1017	46.16708	6.93190	0.2824
15	21.531	BV	0.1647	265.59775	25.25007	1.6244
16	22.301	VB	0.1035	1.50731e4	2211.43604	92.1866
17	27.406	BB	0.0975	124.87911	16.64479	0.7638

Instrument 1 5/22/2014 7.55.33 DM HATCHAN NTH

Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message.

Page 4 of 6

Data File C:\CHEM32\1\DATA\HAICHAN NIU\KGP407000006.D Sample Name: KGP407

Totals :	1.63506e4	2324.29829

Signal 5: DAD1 E, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

Peak #	RetTime	Туре	Width	Area	Height	Area *
	[]			[
1	1.586	BB	0.3822	88.06649	2.77503	1.3521
2	1.892	BB	0.1496	198.73843	17.89013	3.0512
3	13.794	BB	0.2504	67.00623	3.57945	1.0287
4	17.574	BB	0.2352	23.93932	1.31028	0.3675
5	18.230	BB	0.2013	23.77900	1.54734	0.3651
6	22.302	BB	0.0984	6101.15137	931.20624	93.6697
7	27.446	BB	0.1011	10.79483	1.48062	0.1657

Totals : 6513.47568 959.78909

Signal 6: DAD1 F, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	1.586	BB	0.3822	88.06649	2.77503	1.3521
2	1.892	BB	0.1496	198.73843	17.89013	3.0512
3	13.794	BB	0.2504	67.00623	3.57945	1.0287
4	17.574	BB	0.2352	23.93932	1.31028	0.3675
5	18.230	BB	0.2013	23.77900	1.54734	0.3651
6	22.302	BB	0.0984	6101.15137	931.20624	93.6697
7	27.446	BB	0.1011	10.79483	1.48062	0.1657
Tota	ls :			6513.47568	959.78909	

Signal 7: DAD1 G, Sig=300,16 Ref=off Signal has been modified after loading from rawdata file!

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	1.586	BB	0.3828	66.66472	2.09758	2.9911
2	1.892	BB	0.1638	167.54794	13.59008	7.5176
3	13.792	BB	0.2464	39.83583	2.16750	1.7874
4	22.302	BB	0.0922	1948.63611	324.06201	87.4318
5	27.449	BB	0.0828	6.06465	1.02903	0.2721

Totals: 2228.74926 342.94620

Instrument 1 5/22/2014 7.55.33 DM HATCHAN NITH

Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message.

Page 5 of 6

Data File C:\CHEM32\1\DATA\HAICHAN NIU\KGP407000006.D Sample Name: KGP407

*** End of Report ***

Instrument 1 5/22/2014 7.55.33 DM HATCHAN NTH

Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message.

Page 6 of 6

HRMS for compound 33

HPLC for compound 34

Acq. Operator	:	Eric Lin				
Acq. Instrument	:	Instrument 1	Location	:	-	
Injection Date	:	3/11/2014 1:58:36 PM				
Acq. Method	:	C:\CHEM32\1\METHODS\MASTERMETHOD	. M			
Last changed	:	3/11/2014 1:55:06 PM by Eric Lin				
Analysis Method	:	C:\CHEM32\1\DATA\ERIC LIN\CML_II	I_101_R15	.D\	DA.M	(MASTERMETHOD.M)
Last changed	:	3/11/2014 2:57:57 PM by Eric Lin				
Sample Info	;	wash				

Method:

0-25 min. (50:50 to 100:0) ACN:Water 25-30 min. (100:0) ACN:Water 30-35 min. (100:0 to 50:50) ACN:Water 35-40 min. (50:50) ACN:Water

Instrument 1 3/11/2014 3:00:12 PM Eric Lin

Page 1 of 5

Instrument 1 3/11/2014 3:00:12 PM Eric Lin

Page 2 of 5

nan kan nan ana ina ina ina ina ina ina ina i	THE RECEIPT AND AND AND AND A	ne sante, mant some some some some some some some some	ni 140 mii 140 mii 140 mii 140 mii 140 mii 140 mii 140	nen kan man man man kan man inin inin man man man man man kan man kan man kan man
Sorted By	:	Signal		
Multiplier	:	1.0000		
Dilution	:	1.0000		
Use Multiplier & D	ilution	Factor with	h ISTDs	
Signal 1: DAD1 A,	Sig=254,	4 Ref=off		
Signal has been m	odified	after load:	ing from raw	data file!
Signal has been m	odified	after load:	ing from raw	data file!
Signal has been m Peak RetTime Type	Width	after load: Area	ing from raw Height	data file! Area
Signal has been m Peak RetTime Type # [min]	Width [min]	after load: Area [mAU*s]	ing from raw Height [mAU]	data file! Area %
Signal has been m Peak RetTime Type # [min] 	Width [min]	after load: Area [mAU*s]	ing from raw Height [mAU] 	data file! Area %
Signal has been m Peak RetTime Type # [min] 1 20.974 BV	Width [min]	after load: Area [mAU*s] 162.18532	Height [mAU] 17.74556	data file! Area % 0.9957
Signal has been m Peak RetTime Type # [min] 	Width [min] 0.1266 0.0950	Area [mAU*s] 162.18532 1.61269e4	Height [mAU] 17.74556 2649.16064	data file! Area % 0.9957 99.0043
Signal has been m Peak RetTime Type # [min] 1 20.974 BV 2 21.574 VB	Width [min] 0.1266 0.0950	after load: Area [mAU*s] 162.18532 1.61269e4	Height [mAU] 17.74556 2649.16064	data file! Area % 1 0.9957 99.0043
Signal has been m Peak RetTime Type # [min] 1 20.974 BV 2 21.574 VB Totals :	Width [min] 0.1266 0.0950	After load: Area [mAU*s] 162.18532 1.61269e4 1.62891e4	Height [mAU] 17.74556 2649.16064 2666.90621	data file! Area % 0.9957 99.0043
Signal has been m Peak RetTime Type # [min] 1 20.974 BV 2 21.574 VB Totals :	Width [min] 0.1266 0.0950	Area [mAU*s] 162.18532 1.61269e4 1.62891e4	Height [mAU] 17.74556 2649.16064 2666.90621	data file! Area % 0.9957 99.0043

Signal 2: DAD1 B, Sig=254,16 Ref=off Signal has been modified after loading from rawdata file!

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	19.629	BV	0.1434	15.67968	1.50705	0.0984
2	20.325	BB	0.0837	7.84197	1.48258	0.0492
3	20.974	BV	0.1269	156.03926	17.03149	0.9797
4	21.574	VB	0.0944	1.57484e4	2610.57349	98.8727

Totals :	1.	59279e4	2630.59461
----------	----	---------	------------

Signal 3: DAD1 C, Sig=210,8 Ref=off Signal has been modified after loading from rawdata file!

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	1.544	VB	0.1616	91.00436	7.09602	0.3682
2	1.861	BB	0.1195	129.13742	16.46471	0.5225
3	3.605	BV	0.1238	19.76291	2.22098	0.0800
4	3.728	VB	0.1876	36.14043	2.74495	0.1462
5	5.335	BV	0.0699	7.31299	1.58168	0.0296
6	7.374	BV	0.3155	131.54974	5.77983	0.5323
7	7.708	VB	0.1477	82.41358	8.61145	0.3335
8	8.085	BV	0.1492	48.02391	5.04047	0.1943
9	8.293	VV	0.1788	82.41489	6.46100	0.3335

Instrument 1 3/11/2014 3:00:12 PM Eric Lin

Page 3 of 5

Data File C:\CHEM32\1\DATA\ERIC LIN\CML_III_101_R15.D Sample Name: CML_III_101_r1

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
10	8.484	VB	0.1196	28.29939	3.60454	0.1145
11	8.870	BB	0.1467	40.12056	4.08138	0.1623
12	9.446	BB	0.1206	8.52363	1.05068	0.0345
13	11.062	BB	0.1804	111.10935	8.28815	0.4496
14	17.666	BV	0.1830	76.52775	5.76194	0.3097
15	19.764	VB	0.3768	263.92871	8.67955	1.0680
16	20.324	BV	0.1196	57.96089	6.93019	0.2345
17	20.974	VV	0.1513	427.89676	38.00670	1.7314
18	21.574	VB	0.1296	2.29555e4	2800.36768	92.8875
19	23.149	BB	0.0962	46.80672	7.35477	0.1894
20	23.913	BB	0.1068	15.62614	2.20080	0.0632
21	24.738	BB	0.1166	53.17654	7.00522	0.2152
Tota.	ls :			2.47132e4	2949.33269	

Signal 4: DAD1 D, Sig=230,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	7.709	BB	0.3239	249.13312	10.09571	1.5249
2	8.086	BV	0.1551	57.38152	5.81611	0.3512
3	8,291	VV	0.1863	98.30637	7.43379	0.6017
4	8.482	VB	0.1140	29.62998	4.01957	0.1814
5	8.868	BV	0.1762	75.49585	6.10649	0.4621
6	9.091	VV	0.1764	31.43843	2.34578	0.1924
7	9.444	VB	0.1488	19.71043	1.84204	0.1206
8	11.062	BB	0.1049	24.78027	3.57223	0.1517
9	13.576	BB	0.5029	106.49190	2.63814	0.6518
10	17.666	BB	0.1714	20.12987	1.66064	0.1232
11	20.974	BV	0.1380	173.49957	17.14832	1.0620
12	21.574	VB	0.0909	1.54119e4	2608.66772	94.3329
13	23.151	BB	0.1007	10.27145	1.52356	0.0629
14	24.737	BB	0.1105	29.60491	4.18738	0.1812
Tota	ls :			1.63378e4	2677.05750	

Signal 5: DAD1 E, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	20.974	BV	0.1231	72.74569	8.22962	0.9803
2	21.574	VB	0.0858	7347.78955	1302.42627	99.0197

Instrument 1 3/11/2014 3:00:12 PM Eric Lin

Page 4 of 5

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
Tota.	Ls :			7420.53524	1310.65589	

Signal 6: DAD1 F, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	20.974	BV	0.1231	72.74569	8.22962	0.9803
2	21.574	VB	0.0858	7347.78955	1302.42627	99.0197

Totals : 7420.53524 1310.65589

Signal 7: DAD1 G, Sig=300,16 Ref=off Signal has been modified after loading from rawdata file!

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	20.973	BV	0.1175	35.49311	4.24565	0.8536
2	21.574	VB	0.0860	4122.53955	729.12970	99.1464

Totals: 4158.03266 733.37535

Signal 8: DAD1 H, Sig=320,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	21.574	BB	0.0878	901.81482	155.12813	100.0000

Totals: 901.81482 155.12813

*** End of Report ***

Instrument 1 3/11/2014 3:00:12 PM Eric Lin

Page 5 of 5

HPLC for compound 35

Acq. Operator	;	Laxman
Acq. Instrument	:	Instrument 1 Location : -
Injection Date	;	1/28/2014 4:36:52 PM
Acq. Method	:	C:\CHEM32\1\METHODS\MASTERMETHOD.M
Last changed	:	1/28/2014 4:31:37 PM by Laxman
Analysis Method	:	C:\CHEM32\1\DATA\LAXMAN\LDIV53-1RUN2002.D\DA.M (MASTERMETHOD.M)
Last changed	:	1/28/2014 5:32:55 PM by Laxman
Sample Info	;	run2

Instrument 1 1/28/2014 5:34:49 PM Laxman

Page 1 of 5

Instrument 1 1/28/2014 5:34:49 PM Laxman

Page 2 of 5

			Area Percent	Report		
1988 (128, 129) 320 (12	a ina ana ana ana ana ana ana ana a	an and and alle was lost particular fragments and	ant was not not not the test sources, she say the re-		THE REPORT OF THE REPORT OF THE REPORT OF THE REPORT OF THE	ne stat hot, por co
Sorte	ed By	:	Signal			
Multi	plier	:	1.0000			
Dilut	cion	:	1.0000			
Use N	Aultiplier	r & Dilution	Factor with	ISTDs		
Signa	al 1: DADI	1 A, Sig=254	,4 Ref=off			
Signa	al 1: DADI	l A, Sig=254	,4 Ref=off			
Signa Peak	al 1: DADI RetTime 1	l A, Sig=254 Type Width	,4 Ref=off Area	Height	Area	
Signa Peak #	al 1: DAD1 RetTime 1 [min]	l A, Sig=254 Fype Width [min]	,4 Ref=off Area [mAU*s]	Height [mAU]	Area %	
Signa Peak # 	Al 1: DADI RetTime 1 [min]	1 A, Sig=254 Type Width [min]	,4 Ref=off Area [mAU*s]	Height [mAU]	Area %	
Signa Peak # 1	Al 1: DAD1 RetTime 1 [min] 	1 A, Sig=254 Type Width [min] BB 0.0826	,4 Ref=off Area [mAU*s] 14.26201	Height [mAU] 2.65778	Area % 0.8361	
Signa Peak # 1 2	RetTime 1 [min] 	I A, Sig=254 Type Width [min] BB 0.0826 BB 0.0929	,4 Ref=off Area [mAU*s] 14.26201 13.40179	Height [mAU] 2.65778 2.14591	Area % 	
Signa Peak # 1 2 3	Al 1: DAD1 RetTime 1 [min] 	I A, Sig=254 Type Width [min] 	,4 Ref=off Area [mAU*s] 14.26201 13.40179 36.18954	Height [mAU] 	Area % 0.8361 0.7857 2.1215	

Totals :	1705.81062	258.54678

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.743	BB	0.0825	15.31448	2.85651	0.9551
2	13.925	BB	0.0930	13.93967	2.22854	0.8693
З	15.492	BB	0.1162	34.20804	4.32975	2.1333
4	17.528	BB	0.1009	1540.03906	233.65747	96.0423
	1			1 600 50106		

Totals :	1603.50126	243.07228
----------	------------	-----------

Signal 3: DAD1 C, Sig=210,8 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.743	VB	0.0846	46.10949	8.32722	1.2122
2	12.210	BB	0.0942	31.44279	5.22819	0.8266
3	13.930	VB	0.1058	44.68492	6.07767	1.1747
4	15.138	BB	0.1074	40.66746	5.55600	1.0691
5	15.493	BB	0.1166	84.69407	10.67318	2.2265
6	17.528	VV	0.1012	3556.32837	537.31000	93.4910
Total	s:			3803.92710	573.17226	

Instrument 1 1/28/2014 5:34:49 PM Laxman

Page 3 of 5

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.376	BB	0.0778	5.0/398	1.02429	0.2062
2	11.743	BB	0.0837	34.19037	6.25711	1.3895
З	15.492	VB	0.1148	57.49661	7.38936	2.3366
4	17.528	VV	0.1010	2363.93970	358.03088	96.0677
Tota:	ls :			2460.70065	372.70165	

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.744	BB	0.0836	33.69853	6.18095	3.3237
2	13.925	BB	0.0929	16.22744	2.59767	1.6005
3	15.493	BB	0.1161	21.33865	2.70186	2,1046
4	17.528	BB	0.1010	942.63556	142.84668	92.9712
Tota.	ls :			1013.90018	154.32717	

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.744	BB	0.0836	33.69853	6.18095	3.3237
2	13.925	BB	0.0929	16.22744	2.59767	1.6005
3	15.493	BB	0.1161	21.33865	2.70186	2.1046
4	17.528	BB	0.1010	942.63556	142.84668	92.9712
Tota	ls :			1013.90018	154.32717	

Signal 7: DAD1 G, Sig=300,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	11.744	BB	0.0831	15.00270	2.77378	4.3629
2	13.925	BB	0.0900	14.52386	2.41986	4.2237
3	17.528	BB	0.1013	314.33951	47.44872	91.4134

Totals :

343.86607 52.64236

Instrument 1 1/28/2014 5:34:49 PM Laxman

Page 4 of 5

*** End of Report ***

Instrument 1 1/28/2014 5:34:49 PM Laxman

Page 5 of 5

HPLC for compound 36

Acq. Operator	:	Laxman	
Acq. Instrumen	: :	Instrument 1 Location :	-
Injection Date	:	1/30/2014 10:16:04 AM	
Acq. Method	:	C:\CHEM32\1\METHODS\MASTERMETHOD.M	
Last changed	:	1/30/2014 9:43:27 AM by Laxman	
Analysis Metho	: h	C:\CHEM32\1\METHODS\MASTERMETHOD.M	
Last changed	:	1/30/2014 11:06:05 AM by Laxman	
Sample Info	:	Run1	

Instrument 1 1/30/2014 11.06.17 BM Lavman

Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message.

Page 1 of 5

 Instrument 1
 1/30/2014
 11.06.17
 IM
 Layman
 Page
 2 of 5

 Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message.
 Page
 2 of 5

			I	Area Percent	. Report		
ne ista noni scal scal	i kan padi padi padi padi padi padi pa	e aan tee aan ute sta	NAT ANY ANY TOP THE ANY ANY ANY	n an	nt inte non van det niet niet die niet niet niet	nen instanti sel sud nen ant den inst	and and sole pair the sole she was too
Sorte	ed By		:	Signal			
Multi	plier		:	1.0000			
Dilut	ion		:	1.0000			
Use M	ultiplie	er & D	ilution	Factor with	n ISTDs		
Signa	1 1: DAI	D1 A,	Sig=254,	4 Ref=off			
Signa Peak	1 1: DAI RetTime	D1 A, Type	Sig=254, Width	.4 Ref=off Area	Height	Area	
Signa Peak #	l 1: DAI RetTime [min]	01 A, Type	Sig=254, Width [min]	.4 Ref=off Area [mAU*s]	Height [mAU]	Area %	
Signa Peak # 	al 1: DAI RetTime [min]	01 A, Type	Sig=254, Width [min]	4 Ref=off Area [mAU*s]	Height [mAU]	Area %	
Signa Peak # 1	Al 1: DAI RetTime [min] 	D1 A, Type BB	Sig=254, Width [min] 0.1604	4 Ref=off Area [mAU*s] 21.42000	Height [mAU] 2.07520	Area % 0.1499	
Signa Peak # 1 2	Al 1: DAI RetTime [min] 14.413 19.089	D1 A, Type BB BV	Sig=254, Width [min] 0.1604 0.0989	4 Ref=off Area [mAU*s] 21.42000 1.41765e4	Height [mAU] 	Area % 0.1499 99.1916	
Signa Peak # 1 1 2 3	Al 1: DAI RetTime [min] 14.413 19.089 19.498	D1 A, Type BB BV VB	Sig=254, Width [min] 0.1604 0.0989 0.1340	4 Ref=off Area [mAU*s] 21.42000 1.41765e4 18.92470	Height [mAU] 2.07520 2207.01196 1.93655	Area % 0.1499 99.1916 0.1324	

Totals :	1.42921e4	2213.21642

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	14.413	BB	0.1601	19.95540	1.93899	0.1477
2	19.088	BV	0.0986	1.34034e4	2097.21265	99.1985
3	19.499	VB	0.1348	17.67035	1.79536	0.1308
4	28.631	BB	0.4580	70,67089	2,11384	0.5230

1.35117e4	2103.06084
	1.35117e4

Signal 3: DAD1 C, Sig=210,8 Ref=off

Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	1.132	BB	0.0614	14.57730	3.58883	0.0679
2	1.418	BV	0.0759	48.01664	10.02032	0.2238
3	1.521	VB	0.0610	54.63629	13.01121	0.2547
4	10.598	BB	0.0938	8.46140	1.41429	0.0394
5	10.893	BB	0.0874	14.87960	2.57484	0.0694
6	12.494	BB	0.1000	8.76446	1.38110	0.0409
7	13.277	BV	0.1336	24.42828	2.55433	0.1139
8	13.472	VV	0.2102	32.02443	2.02785	0.1493
9	14.219	BV	0.0878	7.31985	1.29744	0.0341
10	14.430	VB	0.1658	35.88203	3.38270	0.1673

Instrument 1 1/30/2014 11.06.17 AM Lavman

Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message.

Page 3 of 5

Data File C:\CHEM32\1\DATA\LAXMAN\LDIV139-1ARUN01.D Sample Name: LD-IV-139-1A-1

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
11	16.001	BB	0.1367	17.37272	1.73647	0.0810
12	17.374	BV	0.0930	7.81489	1.32111	0.0364
13	17.538	VB	0.0939	12.18892	1.97756	0.0568
14	17.957	BB	0.1325	13,73361	1.53351	0.0640
15	19.089	BB	0.1154	2.01518e4	2751.83130	93.9339
16	22.228	BB	0.1848	28.84549	2.29175	0.1345
17	24.803	BB	0.1325	21.64288	2.41514	0.1009
18	27.395	BB	0.0445	950.77936	341.76141	4.4319
Tota:	ls :			2.14531e4	3146.12117	

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	1.419	BV	0.0785	8.55047	1.64809	0.0759
2	1.521	VB	0.0891	11.86712	1.79461	0.1053
3	10.893	BB	0.0867	7.44412	1.30266	0.0661
4	14.429	VB	0.1630	15.97235	1.53950	0.1418
5	16.001	BB	0.1503	12.82694	1.16594	0.1138
6	19.088	BB	0.0976	1.09185e4	1729.82043	96.9030
7	24.800	BB	0.1450	15.16185	1.53794	0.1346
8	27.391	BB	0.0488	207.03316	65.66882	1.8374
9	28.635	BB	0.4285	70.09544	2.34659	0.6221

Totals : 1.12674e4 1806.82458

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	13.458	BB	0.2502	33.25743	1.77782	0.4806
2	19.088	BB	0.0978	6887.35742	1088.69373	99.5194

6920.61486 1090.47154

Signal 6: DAD1 F, Sig=280,16 Ref=off

Totals :

Instrument 1 1/30/2014 11.06.17 DM Lavman

Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message.

Page 4 of 5

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	13.458	BB	0.2502	33.25743	1.77782	0.4806
2	19.088	BB	0.0978	6887.35742	1088.69373	99.5194

Totals : 6920.61486 1090.47154

Signal 7: DAD1 G, Sig=300,16 Ref=off

<pre># [min] [min] [mAU*s] [mAU] %</pre>	Peak RetTime Type	Width	Area	Height	Area
I 19.088 BB 0.0978 1975.91748 312.50003 100.000 Totals : 1975.91748 312.50003 Signal 8: DAD1 H, Sig=320,16 Ref=off Peak RetTime Type Width Area Height Area # [min] [mAU] %	# [min]	[min]	[mAU*s]	[mAU]	8
1 19.088 BB 0.0978 1975.91748 312.50003 100.004 Totals : 1975.91748 312.50003 Signal 8: DAD1 H, Sig=320,16 Ref=off Peak RetTime Type Width Area Height Area # [min] [mAU]					
Totals : 1975.91748 312.50003 Signal 8: DAD1 H, Sig=320,16 Ref=off Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 	1 19.088 BB	0.0978	1975.91748	312.50003	100.0000
Signal 8: DAD1 H, Sig=320,16 Ref=off Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 	Totals :		1975.91748	312.50003	
Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 1 19.089 BB 0.1021 162.21338 24.24150 100.000 Totals: 162.21338 24.24150 100.000	Signal 8: DAD1 H,	Sig=320.	,16 Ref=off		
# [min] [min] [mAU*s] [mAU] %	Peak RetTime Type	Width	Area	Height	Area
1 19.089 BB 0.1021 162.21338 24.24150 100.000	# [min]	[min]	[mAU*s]	[mAU]	8
1 19.089 BB 0.1021 162.21338 24.24150 100.00					
Totals : 162.21338 24.24150	1 19.089 BB	0.1021	162.21338	24.24150	100.0000
100,0000 0,000	Totals :		162,21338	24,24150	

*** End of Report ***

Instrument 1 1/30/2014 11.06.17 DM Lavman

Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message.

Page 5 of 5

HPLC for compound 37

Acq. Operator	:	Laxman
Acq. Instrument	:	Instrument 1 Location : -
Injection Date	:	1/24/2014 4:55:16 PM
Acq. Method	:	C:\CHEM32\1\METHODS\MASTERMETHOD.M
Last changed	:	1/24/2014 4:30:40 PM by Laxman
Analysis Method	:	C:\CHEM32\1\DATA\LAXMAN\LDIV137-1A-RUN1.D\DA.M (MASTERMETHOD.M)
Last changed	:	1/24/2014 6:21:25 PM by Laxman
Sample Info	;	Run1-Mastermethod

Instrument 1 1/24/2014 6:26:29 PM Laxman

Page 1 of 5

Instrument 1 1/24/2014 6:26:29 PM Laxman

Page 2 of 5

			I	Area Percent	Report		
na (sa. na) na ma	a leas and and periods and and and	er nach sei an star sei	ten ancan ter ancan in a	er verk, men verk here, kann verk verk ande men verk h	na na jao poli ja jao na na na na na na	100 100 100 100 100 100 100 100 100 100	ndi sele suai tere azis site vist terz a
Sorte	d By		:	Signal			
Multi	plier		:	1.0000			
Dilut	ion		:	1.0000			
Use M	ultiplie	er & D	ilution	Factor with	ISTDs		
Signa	1 1: DAI	D1 A,	Sig=254,	4 Ref=360,10	00		
Signa Peak	1 1: DAI RetTime	D1 A, Type	Sig=254, Width	4 Ref=360,10 Area	00 Height	Area	
Signa Peak #	l 1: DAI RetTime [min]	01 A, Type	Sig=254, Width [min]	4 Ref=360,10 Area [mAU*s]	00 Height [mAU]	Area %	
Signa Peak # 	al 1: DAI RetTime [min]	01 A, Type	Sig=254, Width [min]	4 Ref=360,10 Area [mAU*s]	00 Height [mAU]	Area %	
Signa Peak # 1	Al 1: DAI RetTime [min] 1.836	D1 A, Type BV	Sig=254, Width [min] 0.0409	4 Ref=360,10 Area [mAU*s] 	00 Height [mAU] 	Area % 0.7590	
Signa Peak # 1 2	Al 1: DAI RetTime [min] 1.836 2.169	D1 A, Type BV VB	Sig=254, Width [min] 0.0409 0.0613	4 Ref=360,10 Area [mAU*s] 	00 Height [mAU] 	Area % 0.7590 2.4345	
Signa Peak # 1 2 3	Al 1: DAI RetTime [min] 1.836 2.169 14.224	D1 A, Type BV VB BB	Sig=254, Width [min] 0.0409 0.0613 0.1651	4 Ref=360,10 Area [mAU*s] 	Height [mAU] 6.45327 13.82253 3.20765	Area % 0.7590 2.4345 1.5262	

Totals :	2397.42330	114.33662

Signal 2: DAD1 B, Sig=254,16 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.169	VB	0.0590	58.52003	14.53531	2.6126
2	14.224	BB	0.1630	43.06221	3.77694	1.9225
3	17.658	BV	0.3693	2138.35132	85.04366	95.4649

Totals	:	2239.93356	103.35591

Signal 3: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	1.530	BV	0.0460	1748.86523	600.82697	28.3435
2	2.166	VB	0.0416	1125.40662	444.25931	18.2392
3	17.658	BB	0.3717	3295.98486	130.90834	53.4173
Tota:	ls :			6170.25671	1175.99461	

Instrument 1 1/24/2014 6:26:29 PM Laxman

Page 3 of 5

Signal 4: DAD1 D, Sig=230,16 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	1.531	BV	0.0484	378.01849	121.24623	18.1187
2	2.167	VB	0.0430	291.49344	109.53181	13.9715
3	9.674	BB	0.1070	11.05938	1.48353	0.5301
4	14.224	BB	0.1651	97.43915	8.54247	4.6703
5	17.658	BB	0.3736	1308.33740	51.63680	62.7095

Totals : 2086.34786 292.44084

Signal 5: DAD1 E, Sig=280,16 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	14.224	BB	0.1659	78.54280	6.84231	7.4125
2	17.658	BB	0.3691	981.05591	39,04969	92.5875
Tota.	ls :			1059.59871	45.89200	

Signal 6: DAD1 F, Sig=280,16 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	1,834	BV	0.0789	19.77675	3.44678	1.7756
2	2.170	BB	0.0512	34.41515	10.23419	3.0899
3	14.224	BB	0.1659	78.54280	6.84231	7.0518
4	17.658	BB	0.3691	981.05591	39.04969	88.0826
Tota	ls :			1113.79061	59.57297	

Signal 7: DAD1 G, Sig=280,16 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1	1.834	BV	0.0789	19.77675	3.44678	1.7652	
2	2.055	VB	0.0840	6.56384	1.16043	0.5859	
3	2.170	BB	0.0512	34.41515	10.23419	3.0718	
4	14.224	BB	0.1659	78.54280	6.84231	7.0105	
5	17.658	BB	0.3691	981.05591	39.04969	87.5666	

Instrument 1 1/24/2014 6:26:29 PM Laxman

Page 4 of 5

Totals :	1120.35444	60.73339
----------	------------	----------

Signal 8: DAD1 H, Sig=280,16 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	1.834	BV	0.0789	19.77675	3.44678	1.7756
2	2.170	BB	0.0512	34.41515	10.23419	3.0899
3	14.224	BB	0.1659	78.54280	6.84231	7.0518
4	17.658	BB	0.3691	981.05591	39.04969	88.0826
Tota:	ls :			1113.79061	59.57297	

*** End of Report ***

Instrument 1 1/24/2014 6:26:29 PM Laxman

Page 5 of 5

205.037	149.464	142.505			107,929	55.923	40.617	24.439
H ₃ CO OH								
38								
			hand have a field of	optical fragmany signal state		 -allandon.enspen.		

-10 ò

7.77 7.74 6.96 6.94 6.70 6.70 6.70 6.69 -0.99

6.119

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_3_51_CLEAN2.D Sample Name: CAH_3_51_Clean

HPLC for compound 61

Acq. Operat	or :	Christine			
Acq. Instru	iment :	Instrument 1	Location		
Injection D	ate :	7/18/2013 10:11:0	0 AM		
Acq. Method	L 3	C:\CHEM32\1\METHO	DS\MASTERMETHOD.M		
Last change	ed :	7/18/2013 10:07:0	7 AM by Christine		
Analysis Me	thod :	C:\CHEM32\1\DATA\	CHRISTINE\CAH_3_51_CLEAN	2.D\DA.M	(MASTERMETHOD.M)
Last change	d :	7/18/2013 11:01:1	5 AM by Christine		
Sample Info	;				

Instrument 1 5/19/2014 12:22:57 PM Christine

Page 1 of 3

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_3_51_CLEAN2.D Sample Name: CAH_3_51_Clean

Area Percent Report

Sorted By		:	Sig	nal	
Multiplier		:	1.0	000	
Dilution		:	1.0	000	
Use Multiplier	£	Dilution	Factor	with	ISTDS

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	12.846	VB	0.0826	1498.54224	279.23978	3.5576
2	18.252	VV	0.2144	4.06234e4	2365.51514	96.4424

Totals: 4.21219e4 2644.75491

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	12.846	VB	0.0826	1700.93689	317.25293	3.9841
2	18.250	VV	0.2824	4.09918e4	2386.45435	96.0159

Instrument 1 5/19/2014 12:22:57 PM Christine

Page 2 of 3
Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_3_51_CLEAN2.D Sample Name: CAH_3_51_Clean

Totals :	4.26927e4	2703.70728
----------	-----------	------------

Signal 3: DAD1 E, Sig=280,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	18.235	VB	0.2472	3.38849e4	2256.16064	93.6335
2	28.648	BB	1.5395	2303.96753	18.24143	6.3665

Totals : 3.61888e4 2274.40207

Signal 4: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	18.235	VB	0.2472	3.38849e4	2256.16064	100.0000

Totals: 3.38849e4 2256.16064

Signal 5: DAD1 G, Sig=300,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	18.231	VB	0.1840	1.62398e4	1479.67639	100.0000

Totals: 1.62398e4 1479.67639

*** End of Report ***

Instrument 1 5/19/2014 12:22:57 PM Christine

Page 3 of 3

HRMS for compound 61

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_4_18000001.D Sample Name: CAH 4 18

HPLC for compound 62

Instrument 1 5/19/2014 2:15:22 PM Christine

Page 1 of 3

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_4_18000001.D Sample Name: CAH 4 18

Instrument 1 5/19/2014 2:15:22 PM Christine

Page 2 of 3

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_4_18000001.D Sample Name: CAH 4 18

signal 4: DAD1 F, Sig=280,16 Ref=off
Signal has been modified after loading from rawdata file!

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.211	VB	0.0867	883.39655	154.41168	2.5833
2	14.654	BB	0.0921	1038.45081	172.92358	3.0367
3	17.387	VV	0.1117	1195.93066	155.58759	3.4972
4	18.238	BV	0.1687	3.10785e4	3004.24097	90.8827
Tota	ls :			3.41963e4	3487.16382	

signal 5: DAD1 G, Sig=300,16 Ref=off
Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	18.238	BV	0.1329	1.45295e4	1785.51025	100.0000

Totals: 1.45295e4 1785.51025

*** End of Report ***

Instrument 1 5/19/2014 2:15:22 PM Christine

Page 3 of 3

HRMS for compound 62

Data File C:\CHEM32\1\DATA\CHRISTINE\TG_1_77000003.D Sample Name: TG-1-77

Instrument 1 5/19/2014 12:30:24 PM Christine

Page 1 of 4

Data File C:\CHEM32\1\DATA\CHRISTINE\TG_1_77000003.D Sample Name: TG-1-77

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier	& Dilution	Factor with 1	STDS

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	16.434	BV	0.1007	842.14648	124.77140	2.7087
2	16.799	VB	0.1029	830.52429	122.81729	2.6713
3	17.885	BV	0.1644	2.94180e4	2897.86890	94.6200

Totals : 3.10907e4 3145.45759

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	16.434	BV	0.1008	833.83966	123.42804	2.6899
2	16.799	VB	0.1030	826.67096	122.01691	2.6668

Instrument 1 5/19/2014 12:30:24 PM Christine

Page 2 of 4

Data File C:\CHEM32\1\DATA\CHRISTINE\TG_1_77000003.D Sample Name: TG-1-77

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
3	17.886	BV	0.1638	2.93381e4	2905.61011	94.6433

Totals : 3.09986e4 3151.05506

Signal 3: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	16.434	BV	0.0987	1284.22107	195.25409	3.5227
2	16.799	VB	0.1065	1051.25366	148.74681	2.8837
3	17.885	BV	0.1846	3.41199e4	3002.46069	93.5936
Tota.	ls :			3.64554e4	3346.46159	

Signal 4: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	16.434	BV	0.1028	309.91739	44.74255	1.3397
2	16.800	VB	0.1064	410.00235	58.08295	1.7723
3	17.886	BV	0.1366	2.24138e4	2651.25903	96.8880

Totals : 2.31337e4 2754.08453

Signal 5: DAD1 F, Sig=280,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	16.434	BV	0.1028	309.91739	44.74255	1.3397
2	16.800	VB	0.1064	410.00235	58.08295	1.7723
3	17.886	BV	0.1366	2.24138e4	2651.25903	96.8880
Tota	ls :			2.31337e4	2754.08453	

Instrument 1 5/19/2014 12:30:24 PM Christine

Page 3 of 4

Data File C:\CHEM32\1\DATA\CHRISTINE\TG_1_77000003.D Sample Name: TG-1-77

Signal 6: DAD1 G, Sig=300,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	16.435	VV	0.1028	98.29136	14.19804	0.8305
2	16.800	VB	0.1115	128.30803	17.11167	1.0841
3	17.885	BV	0.1162	1.16091e4	1572.00085	98.0855
Tota:	ls :			1.18357e4	1603.31057	

*** End of Report ***

Instrument 1 5/19/2014 12:30:24 PM Christine

Page 4 of 4

HRMS for compound 64

HPLC for compound 65

Acq. Operator	:	Eric Lin
Acq. Instrument	:	Instrument 1 Location : -
Injection Date	:	3/11/2014 2:51:58 PM
Acq. Method	:	C:\CHEM32\1\METHODS\MASTERMETHOD.M
Last changed	;	3/11/2014 2:48:52 PM by Eric Lin
Analysis Method	:	C:\CHEM32\1\DATA\ERIC LIN\CML_III_095_R16.D\DA.M (MASTERMETHOD.M)
Last changed	:	3/11/2014 3:54:40 PM by Eric Lin
Sample Info	:	wash

Method:

0-25	min.	(50:50 to 100:0) ACN:Water	
25-30	min.	(100:0) ACN:Water	
30-35	min.	(100:0 to 50:50) ACN:Water	
35-40	min.	(50:50) ACN:Water	

Instrument 1 3/11/2014 3:56:33 PM Eric Lin

Page 1 of 6

Instrument 1 3/11/2014 3:56:33 PM Eric Lin

Page 2 of 6

THE REPORT AND	en une sez vez vez vez vez vez ane vez	n yan ana kan kan kan kan kan ang ang ang ang	na na na ba na
Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	15.726	BB	0.0982	20.13693	3.08261	0.2106
2	16.519	BB	0.1184	21.30018	2.68834	0.2227
З	17.679	BV	0.1106	17.70028	2.27860	0.1851
4	17.797	VB	0.1132	25.49945	3.33327	0.2667
5	18.644	BV	0.3221	61.30715	2.46542	0.6411
6	19.013	VB	0.1513	70.46623	6.35964	0.7369
7	19.542	BB	0.1120	57.89999	7.50579	0,6055
8	20.395	BB	0.0922	9198.03418	1528.99988	96.1876
9	21.370	BB	0.0791	13.52444	2.66984	0.1414
10	21.638	BB	0.0835	26.06196	4.78922	0.2725
11	22.943	VV	0.0783	50.66928	10.13774	0.5299
Tota	ls :			9562.60008	1574.31034	

signal 2: DAD1 B, Sig=254,16 Ref=off Signal has been modified after loading from rawdata file!

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.726	BB	0.0983	19.38648	2.96598	0.2103
2	16.519	BB	0.1190	20.82996	2.61210	0.2260
3	17.679	BV	0.1112	17.47881	2,23609	0.1896
4	17.797	VB	0.1132	25.27899	3.30642	0.2742
5	18.643	BV	0.3208	56.03249	2.24808	0.6078
6	19.013	VB	0.1471	65.22282	6.08367	0.7075
7	19.542	BB	0.1113	54.82693	7.16507	0.5947
8	20.394	BB	0.0921	8872.07324	1475.70349	96.2390
9	21.370	BB	0.0791	12.99658	2.56620	0.1410
10	21.638	BB	0.0836	25.24567	4.63317	0.2739
11	22.943	VV	0.0783	49.41745	9.88459	0.5361

Totals : 9218.78941 1519.40486

Instrument 1 3/11/2014 3:56:33 PM Eric Lin

Page 3 of 6

Signal	3:	DAD1	с,	Sig=210,	8 Ref	=off			
Signal	ha	s bee	en 1	modified	after	loading	from	rawdata	file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
		[]				
1	5.674	VB	0.3926	44.06831	1.38739	0.2177
2	7.375	BB	0.4786	214.54793	5.86683	1.0599
З	8.088	BV	0.1815	70.84110	6.00896	0.3500
4	8.505	VV	0.2886	131.47398	5.84208	0.6495
5	9.095	VB	0.3278	81.57391	3.28358	0.4030
6	9.693	BB	0.2099	17.39349	1.11562	0.0859
7	11.228	BV	0.1006	57.96552	8.60018	0.2864
8	11.373	VB	0.0894	14.11614	2.37216	0.0697
9	12.477	BV	0.1629	46.31915	3.78189	0.2288
10	12.762	VB	0.1005	34.67432	5.15360	0.1713
11	15.726	BB	0.1044	51.22066	7.24781	0.2530
12	16.522	BB	0.1089	55.50475	7.80679	0.2742
13	17.133	BB	0.2957	60.25353	2.56871	0.2977
14	17.680	BV	0.1381	80.84849	7.85592	0.3994
15	17.789	vv	0.1288	75.16172	8.37082	0.3713
16	18.136	VB	0.2330	26.68663	1.61339	0.1318
17	18.379	BV	0.1083	47.17024	6.52840	0.2330
18	19.013	VB	0.1081	139.61841	18,91397	0.6897
19	19.541	VB	0.0978	95.36326	14.67350	0.4711
20	20.395	BV	0.1118	1.86236e4	2657.28906	92.0020
21	21.134	vv	0.1510	20.76570	2.03656	0.1026
22	21.370	VB	0.0898	37.02381	6.19101	0.1829
23	21.639	BB	0.0880	63.57571	10.91086	0.3141
24	22.042	BB	0.1008	7.01408	1.01333	0.0347
25	22.943	VV	0.0789	94.95434	18.80930	0.4691
26	23.188	VB	0.1056	43.21199	6.03252	0.2135
27	24.207	BB	0.1019	7.66240	1.17747	0.0379

Totals : 2.02426e4 2822.45171

Signal 4: DAD1 D, Sig=230,16 Ref=off Signal has been modified after loading from rawdata file!

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	7.632	BB	0.3457	244.82117	8.66334	2.3247
2	8.088	BV	0.1865	83.24166	6.91353	0.7904
3	8.504	VV	0.2903	155.94417	6.88412	1.4808
4	9.091	VB	0.3319	95.37034	3.78608	0.9056
5	11.228	BB	0.0986	26.37656	4.01844	0.2505
6	12.477	BB	0.3337	77.63901	2.88735	0.7372
7	15.727	BB	0.1022	20.69559	3.00905	0.1965
8	16.522	BB	0.1230	29.73312	3.57454	0.2823

Instrument 1 3/11/2014 3:56:33 PM Eric Lin

Page 4 of 6

Data File C:\CHEM32\1\DATA\ERIC LIN\CML_III_095_R16.D Sample Name: CML_III_095_r1

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
9	17.680	BV	0.1323	34.43248	3.57857	0.3270
10	17.790	VB	0.1142	25.67534	3.39784	0.2438
11	18.383	BB	0.1008	12.53002	1.95390	0.1190
12	19.012	BB	0.0930	42.09318	6.91282	0.3997
13	19.542	VB	0.1016	41.41371	6.06741	0.3932
14	20.395	BB	0.0922	9513.58496	1581.17224	90.3374
15	21.370	BB	0.0906	17.37347	2.87103	0.1650
16	21.639	BB	0.1049	40.14706	5.51546	0.3812
17	22.943	VV	0.0787	58.11080	11.55836	0.5518
18	23.189	VB	0.1223	11.98790	1.39506	0.1138
Tota	ls :			1.05312e4	1664.15915	

Signal 5: DAD1 E, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.725	BB	0.0922	7.46464	1.24071	0.1873
2	16.520	BB	0.1243	9.99923	1.18650	0.2509
3	17.799	BB	0.1403	28.14871	2.87234	0.7064
4	19.012	BB	0.1053	13.62076	1.90712	0.3418
5	19.542	BB	0.1191	24.31960	2,92321	0.6103
6	20.395	BB	0.0920	3864.91748	643.91962	96.9896
7	21.370	BB	0.0796	5.79338	1.13348	0.1454
8	21.638	BB	0.0838	11.43022	2.08863	0.2868
9	22,943	VB	0.0768	19.18251	3.93981	0.4814
Tota:	ls :			3984.87653	661.21142	

Signal 6: DAD1 F, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.725	BB	0.0922	7.46464	1.24071	0.1873
2	16.520	BB	0.1243	9.99923	1.18650	0.2509
3	17.799	BB	0.1403	28.14871	2.87234	0.7064
4	19.012	BB	0.1053	13.62076	1.90712	0.3418
5	19.542	BB	0.1191	24.31960	2.92321	0.6103
6	20.395	BB	0.0920	3864.91748	643.91962	96.9896
7	21.370	BB	0.0796	5.79338	1.13348	0.1454
8	21.638	BB	0.0838	11.43022	2.08863	0.2868
9	22.943	VB	0.0768	19.18251	3.93981	0.4814

Instrument 1 3/11/2014 3:56:33 PM Eric Lin

Page 5 of 6

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
Tota.	Ls :			3984.87653	661.21142	

Signal 7: DAD1 G, Sig=300,16 Ref=off Signal has been modified after loading from rawdata file!

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	19.012	BB	0.1139	8.24947	1.04762	0.2664
2	19.542	BB	0.1270	16.53314	1.83632	0.5339
3	20.395	BB	0.0921	3057.46191	508.62131	98.7265
4	21.638	BB	0.0804	6.04191	1.16629	0.1951
5	22.943	BB	0.0767	8.61605	1.77379	0.2782

Totals :	3096.90248	514.44532

Signal 8: DAD1 H, Sig=320,16 Ref=off

Signal has been modified after loading from rawdata file!

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	16.519	BB	0.1121	10.13603	1.37369	1.2035
2	20.395	BB	0.0928	832.06708	137.10928	98.7965
Tota:	ls :			842.20311	138.48297	

*** End of Report ***

Instrument 1 3/11/2014 3:56:33 PM Eric Lin

Page 6 of 6

HRMS for compound 65

HPLC for compound 66

Acq. Operator	;	Eric Lin				
Acq. Instrume	nt :	Instrument 1	Loca	tion :	-	
Injection Date	е :	3/11/2014 3:54:22 1	PM			
Acq. Method	:	C:\CHEM32\1\METHOD	S\MASTERMETHOD.M			
Last changed	:	3/11/2014 3:42:14 1	PM by Eric Lin			
Analysis Metho	od :	C:\CHEM32\1\DATA\E	RIC LIN\CML III 08	9 R17.D	\DA.M	(MASTERMETHOD.M)
Last changed	:	3/11/2014 4:44:37 1	PM by Eric Lin	_		
Sample Info	3	wash				

Method:

0-25 min. (50:50 to 100:0) ACN:Water 25-30 min. (100:0) ACN:Water 30-35 min. (100:0 to 50:50) ACN:Water 35-40 min. (50:50) ACN:Water

Instrument 1 8/27/2014 12:25:16 PM Christine

Page 1 of 5

Instrument 1 8/27/2014 12:25:16 PM Christine

Page 2 of 5

		Area Percen	t Report	
nam kan man man man kan man man man man man man man man man m	na ancas na actas in i	an we and the the left the the she and the	101 102 102 102 102 102 102 103 103 103 103 103 103 103	na in an an an an in an
Sorted By	:	Signal		
Multiplier	:	1.0000		
Dilution	:	1.0000		
Use Multiplier & D	ilution	Factor wit	h ISTDs	
Signal 1: DAD1 A,	Sig=254	,4 Ref=off		
Signal has been m	odified	after load	ing from raw	data file!
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	8
1 17.736 BV	0.1074	2060.98120	295.51819	9.0361
2 18.111 VB	0.1228	2.07474e4	2666.64331	90.9639
Totals :		2.28084e4	2962.16150	
Signal 2: DAD1 B, Signal has been m	Sig=254 odified	,16 Ref=off after load	ing from raw	data file!
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	8
1 17 736 PV	0 1074	2009 27014	207 06523	9.0541
2 10 111 VD	0.1074	2 01725 04	201.90333	9.0341
Z IO.III VB	0.1156	2.01/2584	2020.97032	90.9439
Totals :		2.21808e4	2908.94385	
Signal 3: DAD1 C, Signal has been m	Sig=210 odified	,8 Ref=off after load	ing from raw	data file!
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	8
)
1 17.736 BV	0.1083	4991.49316	707.71631	13.9556
2 18.112 VB	0.1746	3.07754e4	2790.98706	86.0444

Totals: 3.57669e4 3498.70337

Instrument 1 8/27/2014 12:25:16 PM Christine

Page 3 of 5

Signal 4: DAD1 D, Sig=230,16 Ref=off Signal has been modified after loading from rawdata file!

Totals : 2.37254e4 3120.44763

Signal 5: DAD1 E, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	17.736	BV	0.1070	546.02472	78.59853	5.7074
2	18.111	VB	0.1085	9020.88184	1274.97351	94.2926

Totals : 9566.90656 1353.57204

Signal 6: DAD1 F, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	17.736	BV	0.1070	546.02472	78.59853	5.7074
2	18.111	VB	0.1085	9020.88184	1274.97351	94.2926

Totals : 9566.90656 1353.57204

Signal 7: DAD1 G, Sig=300,16 Ref=off Signal has been modified after loading from rawdata file!

Peak #	RetTime	Туре	Width	Area [mAU*s]	Height [mAU]	Area %
1	17.736	BB	0.1042	170.52390	25.43328	2.2779
2	18.111	BB	0.1082	7315.54199	1038.30994	97.7221

Totals : 7486.06589 1063.74322

Instrument 1 8/27/2014 12:25:16 PM Christine

Page 4 of 5

*** End of Report ***

Instrument 1 8/27/2014 12:25:16 PM Christine

Page 5 of 5

HRMS for compound 66

HPLC for compound 67

Acq. Operator	:	Laxman
Acq. Instrument	:	Instrument 1 Location : -
Injection Date	¢.	1/27/2014 5:37:35 PM
Acq. Method	:	C:\CHEM32\1\METHODS\MASTERMETHOD.M
Last changed	:	1/27/2014 5:33:50 PM by Laxman
Analysis Method	÷	C:\CHEM32\1\DATA\LAXMAN\LD-IV-131-1A\LDIV131-1ARUN02.D\DA.M (MASTERMETHOD.M)
Last changed	:	1/28/2014 10:47:18 AM by Laxman
		(modified after loading)
Sample Info	:	run1

Instrument 1 1/28/2014 10:52:55 AM Laxman

Instrument 1 1/28/2014 10:52:55 AM Laxman

	A	rea Percent	Report	
na nak man	I NEE TO CALL THE RECTOR AND	and was not live into how one one and the per-	NO NEE YOU AND THE REAL POLY OF A DESIGN	nen kan man man man kan san inin man man anar ana ana ana ana ana ana ana ana
Sorted By	:	Signal		
Multiplier	:	1.0000		
Dilution	:	1.0000		
Jse Multiplier & D	ilution	Factor with	ISTDs	
Signal 1: DAD1 A,	Sig=254,	4 Ref=off		
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAII*e]	[mAII]	8
27 L 111.1.1.4	[444.44]	[muro o]	L'une and l	Q.
 1 12.968 BB	 0.0937	27.01311	4.27345	4.0000
" [min] 1 12.968 BB 2 17.422 BB	 0.0937 0.0976	27.01311 648.31488	4.27345	 4.0000 96.0000
<pre>" [min] 1 12.968 BB 2 17.422 BB Fotals :</pre>	0.0937 0.0976	27.01311 648.31488 675.32799	4.27345 100.04857 104.32202	4.0000 96.0000
<pre>" [MIII] 1 12.968 BB 2 17.422 BB Totals : Signal 2: DAD1 B,</pre>	0.0937 0.0976 sig=254,	27.01311 648.31488 675.32799 16 Ref=off	4.27345 100.04857 104.32202	4.0000 96.0000
<pre>" [HIII] 1 12.968 BB 2 17.422 BB Fotals : Signal 2: DAD1 B, Peak RetTime Type</pre>	0.0937 0.0976 sig=254, Width	27.01311 648.31488 675.32799 16 Ref=off Area	4.27345 100.04857 104.32202 Height	4.0000 96.0000 Area

-						
1	12.968	BB	0.0938	26.28994	4.15377	3.9796
2	17.422	BB	0.0976	626.04687	96.60343	94.7661
3	19.829	BB	0.0944	8.28639	1.33497	1.2543

Totals : 660.62320 102.09217

Signal 3: DAD1 C, Sig=210,8 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.227	BV	0.0829	24.89905	4.61790	1.8119
2	12.969	BB	0.1030	61.09814	8.58504	4.4460
3	17.422	BV	0.1000	1288.22766	197.75839	93.7421
Tota.	ls :			1374.22486	210.96132	

Instrument 1 1/28/2014 10:52:55 AM Laxman

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11 226	BB	0.0760	5 55864	1 15744	0.7525
2	12.970	BB	0.1029	31.45657	4.42585	4.2583
з	15.231	BB	0.1021	7.81155	1.13753	1.0575
4	17.422	BV	0.0980	693.87982	106.45760	93.9317
Tota:	ls :			738.70657	113.17843	

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	12.969	BB	0.0958	17.15126	2.64083	4.3596
2	17.422	BB	0.0977	376.26514	58.01117	95.6404
Tota	ls :			393.41640	60.65200	

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	12,969	BB	0.0958	17.15126	2.64083	4.3596
2	17.422	BB	0.0977	376.26514	58.01117	95.6404
Tota	ls :			393.41640	60.65200	

Signal 7: DAD1 G, Sig=300,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.972	BB	0.1010	9.45148	1.39534	5.3948
2	17.422	BB	0.0977	165.74431	25.52812	94.6052
Tota	ls :			175.19579	26,92346	

Instrument 1 1/28/2014 10:52:55 AM Laxman

Page 4 of 5

Signal 8: DAD1 H, Sig=320,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	17.422	 BB	0.1003	11.65500	1.73621	100.0000
Tota	ls :			11.65500	1.73621	

*** End of Report ***

Instrument 1 1/28/2014 10:52:55 AM Laxman

Page 5 of 5

HRMS for compound 67

Data File C:\CHEM32\1\DATA\CHRISTINE\TG-1-78000007.D Sample Name: TG-1-78

HPLC for compound 68

Instrument 1 10/9/2013 3:38:25 PM Christine

Data File C:\CHEM32\1\DATA\CHRISTINE\TG-1-78000007.D Sample Name: TG-1-78

Area Percent Report

Sorted By		:	Sig	nal	
Multiplier		:	1.0	000	
Dilution		:	1.0	000	
Use Multiplier	&	Dilution	Factor	with	ISTDS

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	14.300	BB	0.0879	1684.01782	289.35425	100.0000

Totals: 1684.01782 289.35425

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	14.300	BB	0.0877	1571.10010	270.80679	100.0000

Totals : 1571.10010 270.80679

Instrument 1 10/9/2013 3:38:25 PM Christine

Data File C:\CHEM32\1\DATA\CHRISTINE\TG-1-78000007.D Sample Name: TG-1-78

Signal 3: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	14.300	BB	0.0878	2134.54639	367.43820	100.0000

Totals : 2134.54639 367.43820

Signal 4: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	14.300	BB	0.0877	870.89191	150.12962	100.0000	

Totals	:	870.89191	150.12962

Signal 5: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	14.300	BB	0.0877	870.89191	150.12962	100.0000

Totals: 870.89191 150.12962

Signal 6: DAD1 G, Sig=300,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	14.300	BB	0.0877	285.43219	49.20289	100.0000

Totals: 285.43219 49.20289

*** End of Report ***

Instrument 1 10/9/2013 3:38:25 PM Christine

HRMS for compound 68

HPLC for compound 70

Acq. Operator	:	Laxman
Acq. Instrument	:	Instrument 1 Location : -
Injection Date	;	9/12/2014 2:43:59 PM
Acq. Method	:	C:\CHEM32\1\METHODS\MASTERMETHOD.M
Last changed	:	9/12/2014 2:31:31 PM by Laxman
Analysis Method	5	C:\CHEM32\1\DATA\LAXMAN\LD-VI-73000001.D\DA.M (MASTERMETHOD.M)
Last changed	:	9/12/2014 5:02:51 PM by Eric Lin
Sample Info	;	Method-Mastermethod

Instrument 1 9/12/2014 5:04:25 PM Eric Lin

man kan anal ana ana inan ana ana ana ana ana ana an) I NAT TAKANG TAK ANG ANG TAK	Area Percent	Report	nar kan nat mai
Sorted By	:	Signal		
Multiplier	:	1.0000		
Dilution	:	1.0000		
Use Multiplier & I	ilution	Factor with	ISTDs	
Signal 1: DAD1 A,	Sig=254,	,4 Ref=off		
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	8
1 12.897 BB	0.0842	5219.16211	948.45355	98.1260
2 13.724 BB	0.1178	99.67384	11.89176	1.8740
Totals :		5318.83595	960.34531	
Signal 2: DAD1 B,	Sig=254,	,16 Ref=off		
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	8
1 12.897 BB	0.0842	4968.39111	902.85382	98.0270
2 13.725 BB	0.1175	100.00153	11,96880	1.9730
Totals :		5068.39264	914.82262	

Signal 3: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	12.897	BV	0.0898	1.29026e4	2218.69849	97.3838
2	13.725	VB	0.1184	346.62473	41.94163	2.6162

Totals : 1.32492e4 2260.64012

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	12.897	BB	0.0850	8459.47461	1519.36890	97.5900
2	13.726	BB	0.1176	208.90370	25.50353	2.4100

Instrument 1 9/12/2014 5:04:25 PM Eric Lin

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
Tota.	Ls :			8668.37831	1544.87242	

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak #	RetTime	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.897	BB	0.0842	3387.88330	615.90149	98.2865
2	13.725	BV	0.1117	59.06462	7.51596	1.7135

Totals: 3446.94792 623.41745

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	12.897	BB	0.0842	3387.88477	615.90149	98.2865
2	13.725	BV	0.1137	59.06182	7.51595	1.7135
Tota.	ls :			3446.94659	623,41744	

Signal 7: DAD1 G, Sig=300,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.897	BV	0.0844	1630.89148	295.33459	98.6910
2	13.724	BB	0.1092	21.63143	2.82855	1.3090
Tota.	ls :			1652.52291	298.16315	

Signal 8: DAD1 H, Sig=320,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	12.898	BB	0.0895	94.41895	16.31277	90.0631
2	13.730	BB	0.0986	10.41746	1.58729	9.9369
Tota	ls :			104.83641	17.90006	

Instrument 1 9/12/2014 5:04:25 PM Eric Lin

Page 4 of 5

*** End of Report ***

Instrument 1 9/12/2014 5:04:25 PM Eric Lin

Page 5 of 5

Data File C:\CHEM32\1\DATA\CHRISTINE\TG_1_86000001.D Sample Name: TG_1_86

HPLC of compound 71

Instrument 1 5/19/2014 12:13:08 PM Christine

Data File C:\CHEM32\1\DATA\CHRISTINE\TG_1_86000001.D Sample Name: TG_1_86

Area Percent Report

Sorted By		:	Sig	nal	
Multiplier		:	1.0	000	
Dilution		:	1.0	000	
Use Multiplier	&	Dilution	Factor	with	ISTDS

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	16.180	VV	0.1421	2.38945e4	2730.56470	96.5205
2	17.227	VB	0.1009	861.36761	130.67624	3.4795

Totals: 2.47558e4 2861.24094

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	16.180	VV	0.1423	2.39879e4	2735.90332	96.5594	
2	17.227	VB	0.1008	854.72571	129.77695	3.4406	

Instrument 1 5/19/2014 12:13:08 PM Christine

Data File C:\CHEM32\1\DATA\CHRISTINE\TG_1_86000001.D Sample Name: TG_1_86

Totals : 2.48426e4 2865.68027

Signal 3: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	16.180	BV	0.1687	2.92081e4	2822.58813	96.3796
2	17.227	BB	0.1002	1097.15686	168.01945	3.6204

Totals : 3.03053e4 2990.60759

Signal 4: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	16.179	VV	0.1104	1.57028e4	2223.08569	100.0000

Totals: 1.57028e4 2223.08569

Signal 5: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	16.179	vv	0.1104	1.57028e4	2223.08569	100.0000

Totals: 1.57028e4 2223.08569

Signal 6: DAD1 G, Sig=300,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	16.179	VV	0.1017	6443.40820	967.43469	100.0000
Tota	ls :			6443.40820	967.43469	

*** End of Report ***

Instrument 1 5/19/2014 12:13:08 PM Christine

HRMS of compound 71

Data File C:\CHEM32\1\DATA\CHRISTINE\TG_1_112000001.D Sample Name: TG_1_112

Instrument 1 6/10/2014 10:11:03 AM Eric Lin

Data File C:\CHEM32\1\DATA\CHRISTINE\TG_1_112000001.D Sample Name: TG_1_112

Area Percent Report

Sorted By		:	Sig	nal	
Multiplier		:	1.0	000	
Dilution		:	1.0	000	
Use Multiplier	&	Dilution	Factor	with	ISTDS

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.303	BB	0.1000	442.72894	67.97310	100.0000
Tota.	ls :			442.72894	67.97310	

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.303	 BB	0.0995	631.04565	97.49252	100.0000
Total	ls :			631.04565	97.49252	

Instrument 1 6/10/2014 10:11:03 AM Eric Lin

Data File C:\CHEM32\1\DATA\CHRISTINE\TG_1_112000001.D Sample Name: TG_1_112

Signal 3: DAD1 C, Sig=210,8 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.303	BV	0.1224	2.13590e4	2755.23682	100.0000

Totals: 2.13590e4 2755.23682

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	15.303	BB	0.0996	7499.44434	1157.97766	100.0000

Totals : 7499.44434 1157.97766

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	15.303	BB	0.0987	1380.06250	215.62195	100.0000

Totals: 1380.06250 215.62195

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	15.303	BB	0.0987	1380.06250	215.62195	100.0000	

Totals: 1380.06250 215.62195

*** End of Report ***

Instrument 1 6/10/2014 10:11:03 AM Eric Lin

HRMS of compound 72

X-ray Crystallographic Analysis:

X-ray crystallographic analysis of compound 72.⁸¹ Crystallographic data were collected on a crystal of 72 with dimensions 0.30 x 0.17 x 0.14 mm³. Data were collected at 150 K on a Bruker X8 Apex using Mo KR radiation ($\lambda = 0.71073$ Å). The structure was solved by direct methods after correction of the data using SADABS. Crystallographic data and definement details for the complex mentioned herein is found in the Supporting Information (Table S1-S5). The thermal ellipsoid plots at 50% probability for compound 73 is displayed in Figure S1. All data were processed using the Bruker AXS SHELXTL software, version 6.10.

Figure S1. X-ray crystallogaphy of compound 72

Table S1. Crystal data and structure refinement for	Compound 72	
Identification code	KP69	
Empirical formula	C21 H26 O5	
Formula weight	358.42	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P c a 21	
Unit cell dimensions	a = 16.5289(7) Å	α= 90°.
	b = 11.7370(4) Å	β = 90°.
	c = 9.4340(4) Å	$\gamma = 90^{\circ}$.
Volume	1830.19(13) Å ³	
Z	4	
Density (calculated)	1.301 Mg/m ³	
Absorption coefficient	0.092 mm ⁻¹	
F(000)	768	
Crystal size	$0.303 \ge 0.165 \ge 0.144 \text{ mm}^3$	
Theta range for data collection	5.211 to 25.675°.	
Index ranges	-20<=h<=18, -14<=k<=12, -11	<=l<=11
Reflections collected	15353	
Independent reflections	3439 [R(int) = 0.0219]	
Completeness to theta = 25.242°	98.8 %	
Absorption correction	Semi-empirical from equivalent	ts
Max. and min. transmission	0.987 and 0.981	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3439 / 1 / 238	
Goodness-of-fit on F ²	1.040	
Final R indices [I>2sigma(I)]	R1 = 0.0270, wR2 = 0.0688	
R indices (all data)	R1 = 0.0283, wR2 = 0.0696	
Absolute structure parameter	0.27(19)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.164 and -0.148 e.Å ⁻³	

	x	У	Z	U(eq)
O(1)	1246(1)	1871(1)	4248(2)	24(1)
O(2)	1430(1)	2238(1)	1512(2)	29(1)
O(3)	3644(1)	8680(1)	4127(2)	28(1)
O(4)	2556(1)	10180(1)	3151(2)	24(1)
O(5)	990(1)	9662(1)	2973(2)	26(1)
C(1)	1350(1)	2969(2)	3795(2)	20(1)
C(2)	1457(1)	3188(2)	2347(2)	20(1)
C(3)	1576(1)	4290(2)	1891(2)	22(1)
C(4)	1583(1)	5174(2)	2885(2)	21(1)
C(5)	1469(1)	4976(2)	4319(2)	19(1)
C(6)	1353(1)	3842(2)	4791(2)	18(1)
C(7)	1236(1)	3543(2)	6335(2)	21(1)
C(8)	465(1)	4047(2)	6998(2)	22(1)
C(9)	551(1)	5284(2)	7436(2)	23(1)
C(10)	674(1)	6106(2)	6204(2)	23(1)
C(11)	1482(1)	5954(2)	5399(2)	21(1)
C(12)	1759(1)	7070(2)	4737(2)	20(1)
C(13)	2579(1)	7317(2)	4714(2)	22(1)
C(14)	2852(1)	8337(2)	4136(2)	22(1)
C(15)	2300(1)	9113(2)	3569(2)	20(1)
C(16)	1482(1)	8849(2)	3561(2)	21(1)
C(17)	1208(1)	7832(2)	4148(2)	22(1)
C(18)	1560(1)	2377(2)	33(2)	30(1)
C(19)	4209(1)	7955(2)	4832(2)	29(1)
C(20)	2828(2)	10219(2)	1717(2)	33(1)
C(21)	138(1)	9516(2)	3108(3)	34(1)

Table S2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10³) for Compound 72. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(1)	1.369(2)	
O(2)-C(2)	1.365(2)	
O(2)-C(18)	1.421(2)	
O(3)-C(14)	1.370(2)	
O(3)-C(19)	1.428(3)	
O(4)-C(15)	1.379(2)	
O(4)-C(20)	1.427(3)	
O(5)-C(16)	1.371(2)	
O(5)-C(21)	1.425(3)	
C(1)-C(6)	1.390(3)	
C(1)-C(2)	1.401(3)	
C(2)-C(3)	1.378(3)	
C(3)-C(4)	1.398(3)	
C(4)-C(5)	1.386(3)	
C(5)-C(6)	1.416(2)	
C(5)-C(11)	1.535(3)	
C(6)-C(7)	1.511(3)	
C(7)-C(8)	1.537(3)	
C(8)-C(9)	1.516(3)	
C(9)-C(10)	1.524(3)	
C(10)-C(11)	1.547(3)	
C(11)-C(12)	1.522(3)	
C(12)-C(13)	1.386(3)	
C(12)-C(17)	1.392(3)	
C(13)-C(14)	1.391(3)	
C(14)-C(15)	1.395(3)	
C(15)-C(16)	1.387(3)	
C(16)-C(17)	1.392(3)	
C(2)-O(2)-C(18)	117.91(17)	
C(14)-O(3)-C(19)	116.57(16)	
C(15)-O(4)-C(20)	113.41(15)	
C(16)-O(5)-C(21)	117.79(16)	
O(1)-C(1)-C(6)	118.90(17)	

Table S3. Bond lengths [Å] and angles [°] for Compound 72.

O(1)-C(1)-C(2)	119.50(17)
C(6)-C(1)-C(2)	121.59(17)
O(2)-C(2)-C(3)	126.22(18)
O(2)-C(2)-C(1)	114.18(17)
C(3)-C(2)-C(1)	119.60(18)
C(2)-C(3)-C(4)	119.23(18)
C(5)-C(4)-C(3)	121.97(18)
C(4)-C(5)-C(6)	118.87(17)
C(4)-C(5)-C(11)	121.39(17)
C(6)-C(5)-C(11)	119.73(17)
C(1)-C(6)-C(5)	118.74(17)
C(1)-C(6)-C(7)	118.67(17)
C(5)-C(6)-C(7)	122.59(17)
C(6)-C(7)-C(8)	114.15(16)
C(9)-C(8)-C(7)	113.66(16)
C(8)-C(9)-C(10)	114.30(17)
C(9)-C(10)-C(11)	114.53(16)
C(12)-C(11)-C(5)	112.05(16)
C(12)-C(11)-C(10)	111.19(15)
C(5)-C(11)-C(10)	113.60(15)
C(13)-C(12)-C(17)	119.96(17)
C(13)-C(12)-C(11)	118.70(16)
C(17)-C(12)-C(11)	121.33(17)
C(12)-C(13)-C(14)	120.18(17)
O(3)-C(14)-C(13)	124.41(18)
O(3)-C(14)-C(15)	115.49(17)
C(13)-C(14)-C(15)	120.05(18)
O(4)-C(15)-C(16)	120.02(17)
O(4)-C(15)-C(14)	120.12(17)
C(16)-C(15)-C(14)	119.54(17)
O(5)-C(16)-C(15)	115.12(17)
O(5)-C(16)-C(17)	124.41(18)
C(15)-C(16)-C(17)	120.46(18)
C(16)-C(17)-C(12)	119.78(18)

Symmetry transformations used to generate equivalent atoms:

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U^{12}
O(1)	36(1)	14(1)	24(1)	0(1)	3(1)	0(1)
O(2)	45(1)	21(1)	22(1)	-4(1)	2(1)	2(1)
O(3)	22(1)	26(1)	37(1)	6(1)	-1(1)	-5(1)
O(4)	38(1)	15(1)	21(1)	0(1)	3(1)	-5(1)
O(5)	28(1)	18(1)	34(1)	2(1)	-5(1)	4(1)
C(1)	17(1)	18(1)	25(1)	2(1)	1(1)	1(1)
C(2)	18(1)	21(1)	22(1)	-3(1)	1(1)	2(1)
C(3)	23(1)	24(1)	19(1)	3(1)	2(1)	2(1)
C(4)	21(1)	16(1)	24(1)	3(1)	2(1)	-1(1)
C(5)	16(1)	17(1)	23(1)	1(1)	1(1)	0(1)
C(6)	14(1)	19(1)	22(1)	2(1)	1(1)	1(1)
C(7)	25(1)	18(1)	19(1)	2(1)	1(1)	2(1)
C(8)	25(1)	22(1)	20(1)	2(1)	2(1)	-4(1)
C(9)	24(1)	24(1)	21(1)	-1(1)	4(1)	1(1)
C(10)	25(1)	18(1)	25(1)	0(1)	1(1)	1(1)
C(11)	23(1)	15(1)	23(1)	1(1)	-1(1)	-1(1)
C(12)	27(1)	15(1)	20(1)	-3(1)	0(1)	-3(1)
C(13)	26(1)	17(1)	24(1)	0(1)	-1(1)	2(1)
C(14)	24(1)	21(1)	21(1)	-2(1)	3(1)	-3(1)
C(15)	30(1)	14(1)	17(1)	-2(1)	2(1)	-5(1)
C(16)	28(1)	15(1)	19(1)	-3(1)	-2(1)	2(1)
C(17)	22(1)	18(1)	25(1)	-3(1)	-1(1)	-2(1)
C(18)	36(1)	32(1)	22(1)	-7(1)	1(1)	4(1)
C(19)	23(1)	30(1)	35(1)	2(1)	0(1)	0(1)
C(20)	47(1)	26(1)	26(1)	3(1)	10(1)	-3(1)
C(21)	29(1)	28(1)	46(1)	-2(1)	-4(1)	8(1)

Table S4. Anisotropic displacement parameters $(Å^2x 10^3)$ for Compound 72. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

Table 5. Hydrogen bonds for 72 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(1)O(2)	0.85(3)	2.17(3)	2.635(2)	115(2)
O(1)-H(1)O(4)#1	0.85(3)	2.47(3)	3.115(2)	133(2)
O(1)-H(1)O(5)#1	0.85(3)	2.25(3)	2.8890(19)	133(2)

Symmetry transformations used to generate equivalent atoms: #1 x,y-1,z

Crystallographic data for structure 72 (deposition number CCDC

1037721) reported in this paper have been deposited with the Cambridge

Crystallographic Data Centre. Copies of the data can be obtained, free of charge, on

application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-

(0) 1223-336033 or e-mail: deposit@ccdc.cam.ac.uk).

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH-4-48000001.D Sample Name: cah-4-48

HPLC of compound 73

Acq. Operator	:	Christine
Acq. Instrument	:	Instrument 1 Location : -
Injection Date	:	7/7/2014 11:35:27 AM
Acq. Method	:	C:\CHEM32\1\METHODS\MASTERMETHOD2.M
Last changed	:	7/7/2014 10:56:34 AM by Christine
Analysis Method	:	C:\CHEM32\1\DATA\CHRISTINE\CAH-4-48000001.D\DA.M (MASTERMETHOD2.M)
Last changed	:	7/7/2014 12:27:43 PM by Christine
Sample Info	:	

Instrument 1 7/7/2014 12:28:48 PM Christine

Page 1 of 4

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH-4-48000001.D Sample Name: cah-4-48

Instrument 1 7/7/2014 12:28:48 PM Christine

Page 2 of 4

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH-4-48000001.D Sample Name: cah-4-48

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	14.233	VV	0.0833	1889.52271	337.36499	100.0000

Totals: 1889.52271 337.36499

Signal 3: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	14.234	VV	0.1789	2.45007e4	2218.16870	100.0000

Totals: 2.45007e4 2218.16870

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	14.233	VV	0.1151	1.67958e4	2302.03564	100.0000

Totals: 1.67958e4 2302.03564

Signal 5: DAD1 E, Sig=240,4 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	14.233	VV	0.0897	9544.16406	1644.86255	100.0000	

Totals : 9544.16406 1644.86255

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
							I
1	14.233	VV	0.0826	3068.52466	554.10748	100.0000	

Totals : 3068.52466 554.10748

Instrument 1 7/7/2014 12:28:48 PM Christine

Page 3 of 4

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH-4-48000001.D Sample Name: cah-4-48

*** End of Report ***

Instrument 1 7/7/2014 12:28:48 PM Christine

Page 4 of 4

HRMS of compound 73

Data File C:\CHEM32\1\DATA\ERIC LIN\CML-III-149-R26.D Sample Name: CML-III-149-r2

HPLC of compound 74

Acq. Operator	:	Eric Lin
Acq. Instrument	:	Instrument 1 Location : -
Injection Date	3	8/4/2014 2:28:38 PM
Acq. Method	:	C:\CHEM32\1\METHODS\MASTERMETHOD.M
Last changed	:	8/4/2014 1:46:20 PM by Eric Lin
Analysis Method		C:\CHEM32\1\DATA\ERIC LIN\CML-III-149-R26.D\DA.M (MASTERMETHOD.M)
Last changed	:	8/27/2014 12:20:33 PM by Christine
Sample Info	;	mastermethod

Instrument 1 8/27/2014 12:22:52 PM Christine

Page 1 of 6

Data File C:\CHEM32\1\DATA\ERIC LIN\CML-III-149-R26.D Sample Name: CML-III-149-r2

Instrument 1 8/27/2014 12:22:52 PM Christine

Page 2 of 6

Data File C:\CHEM32\1\DATA\ERIC LIN\CML-III-149-R26.D Sample Name: CML-III-149-r2

				Area Percen	t Report	
100,000,000,000,000,000	10, 101 JUL 10, 101 JUL 201 JUL	NAL THE OWNER AND A DAY OF A		AN AND AND AND AND AND AND AND AND AND A	10. 100 MIC 107 JULY 108, 109, 209, 209, 209, 209, 207, 208,	nen sen nen men men van van van van met met met met met van
Sorte	d By		:	Signal		
Multip	plier		:	1.0000		
Dilut:	ion		:	1.0000		
Use M	ultipli	er & D	ilution	Factor with	h ISTDs	
Signa	1 1: DA	D1 A,	Sig=254	,4 Ref=off		
Signa	al has D	been m	odified	after load	ing from raw	data file!
Peak I	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
-						
1	10.102	VB	0.1632	33.33345	2.91925	0.2180
2	13.794	VB	0.1164	1.52597e4	1926.53333	99.7820
Total	s:			1.52930e4	1929.45257	
Signa.	1 2: DA	D1 B,	sig=254	16 Ref=off		
Signa	al has b	been m	odified	after load	ing from raw	data file!
Peak I	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
-		[]				
1	10.102	VB	0.1638	32.29185	2.81660	0.2186
2	13.794	VB	0.1162	1.47398e4	1866.08594	99.7814
Total	s :			1.47721e4	1868.90253	
Signa	1 3: DAI	D1 C.	Sig=210	8 Ref=off		
Signa	al has b	been m	odified	after load	ing from raw	data file!
10000						
Peak I	RetTime	Type	Width	Area	Height	Area
#	[min]	*1100	[min]	[mAII*s]	[mAU]	8
1-						1
1	0.014	BV	0.1264	116.59129	15.36866	0.0538
2	0.247	VV	0.2472	1332,98865	78.86525	0.6147
3	0.516	VB	0.1533	1552.54041	154.45248	0.7159
4	0.627	BV	0.0341	268.13446	119,93959	0.1236
5	1.123	W	0.5253	6208.21094	153.02040	2,8628
6	1 363	VV	0 0915	939 56226	141 51839	0 4333
7	1 516	1/1/	0 1214	1505 25052	149 60490	0.6941
0	1 647	VV	0.0561	175 19509	120 27154	0.0041
0	1 714	VV	0.0501	516 10660	116 2206	0.2191
10	1 0 21	DVD	0.00700	100 00506	110.22303	0.2301
11	0 105	DV	0.0128	400.00386	100 64070	1 1100
11	2.135	VV	0.3148	2428.4/144	120.64979	1.1198

Instrument 1 8/27/2014 12:22:52 PM Christine

Page 3 of 6

Data File C:\CHEM32\1\DATA\ERIC LIN\CML-III-149-R26.D Sample Name: CML-III-149-r2

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
12	3.013	VV	2.2150	3.12489e4	168.24092	14.4098
13	6.497	VV	0.6875	4282.35107	75.98831	1.9747
14	7.603	VB	0.7892	3460.69922	52.62601	1.5958
15	9.763	BV	0.1387	32.96905	3.29470	0.0152
16	10.088	VV	0.3678	200.97350	6.81970	0.0927
17	11.297	VB	0.3651	246.68819	8.53868	0.1138
18	12.382	BV	0.1599	44.04943	4.35936	0.0203
19	12.579	VB	0.2161	158.32291	9.61325	0.0730
20	13.795	BB	0.1546	2.43593e4	2356.12231	11.2329
21	16.640	BV	0.0861	8.61282	1.51916	3.972e-3
22	16.787	vv	0.3534	50.88361	1.79118	0.0235
23	17.736	vv	0.1681	152.08693	13.23410	0.0701
24	18.003	VB	0.0973	85.28777	13.21263	0.0393
25	18.294	BB	0.1673	79.26408	6.19386	0.0366
26	20.588	BB	0.0775	27.55946	5.59449	0.0127
27	22.069	BB	0.2297	115.85145	7.27799	0.0534
28	27.365	BB	0.0195	6.61201	5.81724	3.049e-3
29	28.114	BV	0.7154	1.57789e4	300.12476	7.2761
30	29.356	vv	0.7563	2.42025e4	491.68054	11.1606
31	29.887	VB	2,3219	9.61836e4	501.41739	44.3533
32	35.801	BB	0.1517	22.13400	2.31238	0.0102
33	36.223	BV	0.2609	55.02095	3.04299	0.0254
34	36.508	VB	0.1819	36.04284	3.00632	0.0166
35	37.028	BV	0.1866	53.60883	4.38545	0.0247
36	37.389	VB	0.1591	49.88113	5.14453	0.0230
37	38,034	VB	0.1951	36.97443	2.81737	0.0171
38	38.442	BB	0.1327	14.78003	1.82136	6.816e-3
39	39.156	BB	0.2580	71.35019	3.96372	0.0329
40	39.564	BB	0.2068	48.35715	4.00710	0.0223

Totals : 2.16858e5 5322.47151

Signal 4: DAD1 D, Sig=230,16 Ref=off Signal has been modified after loading from rawdata file!

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		[]		[]	-	
1	0.510	BB	0.1227	281.79205	33.32289	1.5359
2	0.626	BV	0.0323	62.86551	30.14817	0.3426
3	0.739	VV	0.1042	377.07275	48.78299	2.0552
4	0.981	vv	0.3857	1086.44214	37.98767	5.9214
5	1.368	VV	0.0797	151.39351	26.08789	0.8251
6	1.518	vv	0.1373	272.69882	25.79583	1.4863
7	1.717	VB	0.1341	182.61948	18.04617	0.9953
8	1.857	BB	0.0617	27.95403	7.81287	0.1524
9	1.961	BB	0.0545	20.80817	5.99101	0.1134
10	3.014	BB	0.6050	267.75238	5.56837	1.4593

Instrument 1 8/27/2014 12:22:52 PM Christine

Page 4 of 6

Data	Fi	le	C:	CHEM32\1\DATA\ERIC	LIN\CML-III-149-R26.D
Sampl	e	Nan	ne:	CML-III-149-r2	

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
11	6.534	BV	0.3767	57.15169	1.91202	0.3115
12	8.138	BB	0.0794	5.82987	1.14436	0.0318
13	9.244	BV	0.3169	31.18376	1.26792	0.1700
14	9.772	VV	0.1416	27.56984	2.68903	0.1503
15	10.099	VB	0.2091	71.74109	4.67413	0.3910
16	11.307	BV	0.1256	22.51918	2.69070	0.1227
17	11.472	VB	0.1012	16.75818	2.46791	0.0913
18	11.967	VB	0.0976	9.49871	1.50531	0.0518
19	12.400	BV	0.1513	21.66013	2.31095	0.1181
20	12.587	VB	0.1309	38.09042	4.15847	0.2076
21	13.794	vv	0.1147	1.28217e4	1649.89600	69.8822
22	15.020	VB	0.1292	30.51363	3.66408	0.1663
23	15.388	BB	0.1131	32.63912	4.37035	0.1779
24	15.986	BV	0.2081	21.80622	1.47846	0.1189
25	16.399	VB	0.1185	27.55081	3.40261	0.1502
26	16.659	BV	0.0876	26.69537	4.74829	0.1455
27	16.807	VB	0.1090	40.28115	5.52840	0.2195
28	17.168	BB	0.1287	25.67058	2.86103	0.1399
29	17.642	BV	0.1179	75.71060	9.61090	0.4126
30	17.770	VV	0.1174	90,70266	11.33053	0.4944
31	18.005	VB	0.1042	39.87554	5.66185	0.2173
32	18.365	BB	0.1760	27.57606	2.03578	0.1503
33	20.589	BB	0.1915	38.05714	2.58892	0.2074
34	22.067	BB	0.2146	74.61647	4.87451	0.4067
35	27.447	BV	0.1212	421.20547	46.70127	2.2957
36	28,051	VV	0.6665	1109.79724	22.15031	6.0487
37	29.339	VB	1.1831	409.78696	4.76587	2.2335

Totals : 1.83476e4 2050.03383

Signal 5: DAD1 E, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

Peak I #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.099	BB	0.1567	12.72469	1.13608	0.1970
2	13.794	BB	0.1140	6446.57959	835.78650	99.8030

Totals : 6459.30428 836.92258

Instrument 1 8/27/2014 12:22:52 PM Christine

Page 5 of 6

Data File C:\CHEM32\1\DATA\ERIC LIN\CML-III-149-R26.D Sample Name: CML-III-149-r2

Signal 6: DAD1 F, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

Totals : 6459.30428 836.92258

Signal 7: DAD1 G, Sig=300,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	12.418	BV	0.1436	13.22460	1.48978	0.4033
2	12.586	VB	0.1478	14.48388	1.36451	0.4417
3	13.794	BB	0.1144	3251,21021	419.63831	99.1550

Totals: 3278.91869 422.49259

Signal 8: DAD1 H, Sig=320,16 Ref=off Signal has been modified after loading from rawdata file!

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		11				
1	0.607	BB	0.0301	9.38681	4.94999	1.2174
2	0.737	BB	0.0659	29.25878	6.58113	3.7946
3	12.413	BV	0.1398	15.82891	1.84999	2.0529
4	12.589	VB	0.1340	22.26375	2.36228	2.8874
5	13.795	BB	0.1197	664.22479	80.99686	86.1439
6	27.461	BB	0.1347	30.10082	2.90944	3.9038
Tota	ls :			771.06386	99.64970	

*** End of Report ***

Instrument 1 8/27/2014 12:22:52 PM Christine

Page 6 of 6

HRMS of compound 74

409

Alternative Synthesis for Compound 30

3-Methoxy-2-methylbenzoic acid

To a well-stirred and pre-cooled 0° C solution of 3-methoxy-2-methylbenzoic acid (500 mg, 3 mmol) in THF (150 mL), LiAlH₄ (1.13 mL, 2.0 M) was added, and the reaction was stirred warming from 0° C to room temperature over 12 h. The reaction mixture was quenched with 7 mL of 20% H₂O in THF added dropwise, and then 10 mL of 15-20% NaOH was added. After filtering through Celite®, the filtrate was extracted with EtOAc (3 x 50 mL). The combined organic phase was dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7% A/ 93% B (3 CV), 7% A/ 93% B \rightarrow 60% A/ 40% B (10 CV), 60% A/ 40% B (1 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] affording the alcohol (0.40 g, 2.67mmol, 89%) as a white powder. ¹H NMR (CDCl3, 500 MHz) δ 7.17 (1H, dd, *J* = 5.0 Hz, 10.0 Hz), 6.97 (1H, d, *J* = 5.0 Hz), 6.82 (1H, d, *J* = 10.0 Hz), 4.66 (2H, s), 3.83 (3H, s), 2.21 (3H, s). ¹³C NMR (CDCl3, 125 MHz) δ 157.7, 139.9, 126.3, 124.7, 120.0, 109.8, 63.5, 55.6, 10.8.

3-Methoxy-2-methylbenzaldehyde

To a well-stirred pyridinium chlorochromate (PCC) in CH₂Cl₂ (40 mL) solution, (3-methoxy-2-methylphenyl)methanol (3.22 g, 21.2 mmol) dissolved in CH₂Cl₂ (25 mL) was slowly added. The reaction mixture was stirred at room temperature for 12 h. The mixture was filtered through Celite®, and the Celite® was washed thoroughly with CH₂Cl₂ (2 x 30 mL). The filtrate was concentrated under reduced pressure and purified by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7% A/ 93% B (3 CV), 7% A/ 93% B \rightarrow 60% A/ 40% B (10 CV), 60% A/ 40% B (1 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] affording the aldehyde (2.70 g, 18 mmol, 85%) as a colorless oil. ¹H NMR (CDCl₃, 500 MHz) δ 10.31 (1H, s), 7.41 (1H, d, *J* = 10.0 Hz), 7.30 (1H, dd, *J* = 5.0 Hz, 10.0 Hz), 7.06 (1H, d, *J* = 10.0 Hz), 3.86 (3H, s), 2.53 (3H, s). ¹³C NMR (CDCl₃, 125 MHz) δ 192.7, 158.1, 135.1, 129.6, 126.6, 123.0, 115.2, 55.9, 10.4.

5-(3'-methoxy-2'-methylphenyl)pent-4-enoic acid

A mixture of 3-(carboxypropyl)triphenylphosphonium bromide (7.8 g, 18.2 mmol) and potassium *tert*-butoxide (4.5 g, 40.1 mmol) in THF (150 mL) was stirred for 1 h at room temperature. A 3-methoxy-2-methylbenzaldehyde (2.70 g, 18 mmol) solution in THF (20 mL) was added dropwise to the reaction mixture. The reaction was quenched with 2 M HCl (30mL), then extracted with EtOAc (3 x 50 mL). The organic extract was washed with brine, dried with Na₂SO₄, concentrated under reduced pressure, and then purified by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7% A/93% B (3 CV), 7% A/93% B \rightarrow 60% A/40% B (10 CV), 60% A/40% B (1 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] affording 5-(3'-methoxy-2'-methylphenyl)pent-4-enoic acid (*E* & *Z*) (3.04 g, 13.8 mmol, 75%) as a pale yellow oil. NMR data was collected after the next step.

5-(3'-methoxy-2'-methylphenyl)pentanoic acid

5-(3'-Methoxy-2'-methylphenyl)pent-4-enoic acid (3.04 g, 13.8 mmol) was mixed with Pd/C powder quickly, and the reaction vessel was purged with nitrogen. Methanol (40 mL) was slowly added, and the reaction vessel was purged again with nitrogen. The reaction was stirred for 12 h at room temperature. The suspension was filtered through Celite®, and the Celite® was rinsed with EtOAc. The filtrate (combined MeOH and EtOAc) was concentrated under reduced pressure and purified by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7% A/ 93% B (3 CV), 7% A/ 93% B \rightarrow 60% A/ 40% B (10 CV), 60% A/ 40% B (1 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] affording 5-(3-methoxy-2-methylphenyl)pentanoic acid (2.1 g, 9.6 mmol 70%) as a white solid. ¹H NMR (CDCl₃, 500 MHz) δ 7.42 (1H, dd, *J*=10.0 Hz, 5.0 Hz), 7.15 (1H, d, *J* = 5.0 Hz), 7.05 (1H, d, *J*=10.0 Hz), 4.15 (3H, s), 2.97 (2H, m), 2.73 (2H, t, *J*=5.0 Hz), 2.51 (3H, s), 2.06 (2H, m), 1.96 (2H, m). ¹³C NMR (CDCl₃, 125 MHz) δ 180.1, 157.7, 141.6, 125.9, 124.6, 121.6, 107.9, 55.6, 34.0, 33.2, 29.9, 24.6, 11.2.

1,2-Dimethoxy-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one

Eaton's reagent (42 mL) was added to 5-(3'-methoxy-2'-methylphenyl)pentanoic acid (2.1 g, 9.6 mmol). The mixture was sonicated until dissolved and stirred at room temperature for 12 h. Ice was poured into the reaction flask, and the mixture was neutralized with sat. NaHCO₃ and extracted with EtOAc. The organic layer was dried with Na₂SO₄, concentrated under reduced pressure, and purified by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7% A/ 93% B (3 CV), 7% A/ 93% B \rightarrow 60% A/ 40% B (10 CV), 60% A/ 40% B (1 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] affording the ketone product (1.87 g, 9.1 mmol, 94%) as a pale yellow solid. ¹H NMR (CDCl₃, 500 MHz) δ 7.53 (1H, d, *J* = 10.0 Hz), 6.76 (1H, d, *J* = 10.0 Hz), 3.85 (3H, s), 2.88 (2H, m), 2.65 (2H, m), 2.21 (3H, s), 1.81 (2H, m), 1.73 (2H, m). ¹³C NMR (CDCl₃, 125 MHz) δ 206.5, 160.5, 140.5, 132.7, 127.5, 123.9, 107.8, 55.6, 40.5, 27.1, 24.2, 20.6, 11.2.

2-Methoxy-1-methyl-5-(3',4',5'-trimethoxyphenyl)-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-ol

5-bromo-1,2,3-trimethoxybenzene (3.39 g, 13.7 mmol) was dissolved in THF (40 mL) and cooled to -78 °C. *n*-BuLi (5.49 mL, 2.5 M) was added dropwise, and the mixture was stirred at -78° C. After 1 h, the ketone (1.87 g, 9.1 mmol) in THF was added dropwise to the reaction flask. The reaction was allowed to stir for 12 h warming to room temperature. The reaction was quenched with water (100 mL) and extracted with EtOAc. The organic layer was dried with Na₂SO₄ and concentrated under reduced pressure. The crude product was further purified by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10% A/ 93% B (3 CV), 10% A/ 93% B \rightarrow 60% A/ 40% B (10 CV), 60% A/ 40% B (1 CV); flow rate: 25 mL/min; monitored at 254 and 280nm] affording the tertiary alcohol (2.38 g, 6.4 mmol, 70%) as a white solid. ¹H NMR (CDCl₃, 500 MHz) δ 7.35 (1H, d, *J* = 10.0 Hz), 6.71 (1H, d, *J* = 10.0 Hz), 6.53 (2H, s), 3.84 (3H, s), 3.83 (3H, s), 3.75 (6H, s), 2.97 (2H, m), 2.55 (2H, m), 2.22 (3H, s), 1.84, (2H, m), 1.30, (2H, m). ¹³C NMR (CDCl₃, 125 MHz) δ 156.7, 153.0, 142.4, 140.7, 137.6, 137.2, 125.3, 124.0, 107.2, 104.2, 80.0, 60.8, 56.1, 55.4, 41.4, 28.5, 26.1, 25.8, 11.9.

3-Methoxy-4-methyl-9-(3',4',5' -trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulene The tertiary alcohol (2.38 g, 6.4 mmol) was dissolved in acetic acid (15 mL) and stirred for 6 h. The reaction was quenched with water (100 mL) and then extracted with EtOAc. The organic phase was washed with brine, dried with Na₂SO₄, concentrated and purified by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7% A/ 93% B (3 CV), 7% A/ 93% B \rightarrow 60% A/ 40% B (10 CV), 60% A/ 40% B (1 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] affording **26** (1.78 g, 5.0 mmol, 78%) as a white powder. ¹H NMR (CDCl₃, 500 MHz) δ 6.86 (1H, d, *J* = 10.0 Hz), 6.70 (1H, d, *J* = 10.0 Hz), 6.52 (2H, s), 6.32 (1H, t, *J* = 7.5 Hz), 3.86 (3H, s), 3.84 (3H, s), 3.80 (6H, s), 2.68 (2H, t, *J* = 6.5 Hz), 2.29 (3H, s), 2.12 (2H, p, *J* = 7.0 Hz), 1.91 (2H, q, *J* = 7.5 Hz). ¹³C NMR (CDCl₃, 125 MHz) δ 156.5, 152.8, 143.5, 141.7, 138.6, 137.3, 133.0, 127.4, 126.5, 123.2, 107.4, 105.3, 60.9, 56.1, 55.5, 34.0, 27.7, 25.5, 11.8. HRMS: Obsvd 355.1906 [M+H]+, calcd for C₂₂H₂₇O₅: 355.1904. HPLC (by method B): 19.87 min.

Compound	$\begin{array}{l} \text{Inhibition of} \\ \text{tubulin} \\ \text{polymerization} \\ \mathrm{IC}_{50} \left(\mu M \right) \pm SD \end{array}$	% Inhibition of colchicine binding ± SD		GI ₅₀ (μM) SRB assay ^a	
			SK-OV-3	NCI-H460	DU-145
CA4	1.0 ^b	$\begin{array}{c} 84\pm3~(1~\mu M)\text{, }98\\ \pm~0.007~(5~\mu M) \end{array}$	$\begin{array}{c} 0.00455 \pm \\ 0.00211 \end{array}$	0.00223°	$0.00327 \pm 0.00215^{\circ}$
CA4P	>40 ^b	nr	$\begin{array}{c} 0.00119 \pm \\ 0.00124 \end{array}$	0.00194 ^e	$\begin{array}{c} 0.00323 \pm \\ 0.00147^{\texttt{c}} \end{array}$
KGP18	1.4 ^d	nr	0.0000543 ^e	0.0000418 ^e	0.0000249 ^e
28	>20	nr	32.7 ± 3.92	37.5 ± 4.21	89.3 ± 30.7
29	1.0 ± 0.02	$\begin{array}{c} 37\pm5(1\;\mu M),72\\ \pm0.8(5\;\mu M) \end{array}$	0.0516 ± 0.0315	0.0527 ± 0.0184	0.0619 ± 0.00509
30	1.6 ± 0.2	$65\pm0.6~(5~\mu M)$	0.330 ± 0.00624	0.422 ± 0.0104	0.644 ± 0.193
31	>20	nr	0.568 ± 0.0718	0.763 ± 0.130	1.51 ± 0.741
32	>20	nr	2.96 ± 0.804	3.32 ± 0.459	6.03 ± 0.0974
33	>20	nr	11.5 ± 5.87	16.1 ± 0.212	12.2 ± 7.59
34	>20	nr	31.1 ± 6.20	25.5 ± 4.01	52.1 ± 2.96
35	3.1 ± 0.03	$\begin{array}{c} 30\pm 4~(5~\mu M),~56\\ \pm 4~(50~\mu M) \end{array}$	0.277 ± 0.294	0.593 ± 0.109	0.708 ± 0.343
36	>20	nr	20.5 ± 13.6	33.4 ± 2.41	48.3 ± 38.3
37	>20	nr	40.7 ± 11.6	57.7 ± 19.1	68.7 ± 18.1
61	>20	nr	6.96 ± 0.503	10.5 ± 0.768	26.2 ± 7.83
62	1.2 ± 0.007	$\begin{array}{c} 36\pm5~(1~\mu M),69\\ \pm3~(5~\mu M) \end{array}$	0.0432 ± 0.00826	0.120 ± 0.0179	0.0562 ±0.0269
64	>20	nr	0.557 ± 0.0358	0.652 ± 0.0543	4.40 ± 1.97
65	3.8 ± 0.3	$\begin{array}{l} 8.5\pm 4(5\mu M),\\ 37\pm 5(50\mu M) \end{array}$	4.81 ± 1.55	4.39 ± 1.36	4.92 ± 0.267
66	>20	nr	16.8 ± 9.60	25.0 ± 3.09	21.8 ± 0.607
67	7.4 ± 0.06	nr	18.4 ± 19.3	10.6 ± 5.26	8.59 ± 6.32
68	2.7 ± 0.1	$27\pm5(5\mu M)$	0.527 ± 0.00634	0.647 ± 0.0160	1.02 ± 0.100
70	7.7 ± 0.2	nr	0.346 ± 0.127	0.691 ± 0.219	1.53 ± 1.02

71	11 ± 0.4	nr	3.53 ± 0.270	4.24 ± 0.208	7.54 ± 5.49
72	0.70 ± 0.1	$\begin{array}{l} 21\pm 0.9~(1~\mu M),\\ 67\pm 0.6~(5~\mu M) \end{array}$	0.408 ± 0.0883	0.141 ± 0.153	0.570 ± 0.147
73	>20	nr	0.357 ± 0.119	0.145 ± 0.161	0.753 ± 0.246
74	>20	nr	17.2 ± 4.94	16.3 ± 1.17	17.5 ± 1.55

Molecular docking

Discovery Studio Client 4.5 (Accelrys) was used to carry out molecular docking studies on several analogues that were active inhibitors of tubulin polymerization (compounds **29**, **62** and **72**), the lead benzosuberene compound **KGP18**, colchicine, and compound **33** ($IC_{50} > 20 \mu M$ in the tubulin polymerization assay). The X-ray structure of of *N*-deacetyl-*N*-(2-mercaptoacetyl)-colchicine (DAMA-colchicine) in the structure co-crystallized with tubulin (1SA0) was the starting structure for these studies. The protein was prepared and DAMA-colchicine was removed, and then docked (CDocker) to validate the docking procedure and parameters. There was excellent agreement between the docked and X-ray crystal structure of the ligand bound to tubulin.

The trimethoxyphenyl ring of colchicine, **KGP18** and all three active analogues was docked in a similar position to that of the trimethoxyphenyl moiety of *N*-deacetyl-*N*-(2-mercaptoacetyl)-colchicine in the structure co-crystallized with tubulin, and very close to the Cys241 residue of the beta subunit.

KGP18 (ball and stick) docked at the DAMA-colchicine binding site of tubulin (1SA0). THR179 and VAL181 (on the right side of the figure) are part of the alpha subunit. All other labeled residues are found in the tubulin beta subunit.

Compound 72 (ball and stick) docked at the DAMA-colchicine binding site of tubulin (1SA0). THR179 and VAL181 (on the right side of the figure) are part of the alpha subunit. All other labeled residues are found in the tubulin beta subunit.

In contrast, docking placed multiple top conformations of compound 33 (IC₅₀ > 20 μ M in the tubulin polymerization assay) with its trimethoxyphenyl ring outside of this pocket. In one top conformation shown below, the butyl chain is placed in the location of the trimethoxyphenyl ring of DAMA-colchicine, and the trimethoxyphenyl moiety of compound 33 is displaced toward the alpha subunit of tubulin.

Compound **33** (ball and stick) docked at the DAMA-colchicine binding site of tubulin (1SA0). THR179 and VAL181 (on the right side of the figure) are part of the alpha subunit. All other labeled residues are found in the tubulin beta subunit.

Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Ravelli, R.B., Gigant, B., Curmi, P.A., Jourdain, I., Lachkar, S., Sobel, A., Knossow, M. (2004) Nature **428**: 198-202 **PubMed**: <u>15014504</u> **DOI**: <u>10.1038/nature02393</u>

APPENDIX B

Synthesis and Biological Evaluation of Benzocyclooctene-based and Indene-based Anticancer Agents that Function as Inhibitors of Tubulin Polymerization
Synthesis and Biological Evaluation of Benzocyclooctene-based and Indene-based Anticancer Agents that Function as Inhibitors of Tubulin Polymerization

Christine A. Herdman^a, Tracy E. Strecker^a, Rajendra P. Tanpure^a, Zhi Chen^a, Alex Winters^b, Jeni Gerberich^b, Li Liu^b, Ernest Hamel^c, Ralph P. Mason^b, David J. Chaplin^{a,d} Mary Lynn Trawick^a, and Kevin G. Pinney^a*

^aDepartment of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States

^bScreening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States

^cMateon Therapeutics, 701 Gateway Boulevard, Suite 210, South San Francisco, California 94080, United States

Appendix B Table of Contents

¹ H and ¹³ C NMR of compound 3	
¹ H of compound 4	
¹ H and ¹³ C NMR of compound 5	
¹ H and ¹³ C NMR of compound 6	
¹ H and ¹³ C NMR of compound 9	
¹ H and ¹³ C NMR of compound 10	
¹ H and ¹³ C NMR of compound 11	
¹ H and ¹³ C NMR of compound 12	
¹ H and ¹³ C NMR of compound 13	
¹ H and ¹³ C NMR of compound 14	
¹ H and ¹³ C NMR of compound 15	
¹ H and ¹³ C NMR of compound 16	
¹ H, ¹³ C NMR, HPLC, and HRMS of compound 20	
X-ray Crystallography data of compound 20	
¹ H, ¹³ C NMR, HPLC, and HRMS of compound 21	
¹ H and ¹³ C NMR of compound 22	
¹ H, ¹³ C NMR, HPLC, and HRMS of compound 23	
X-ray Crystallography data of compound 23	
¹ H, ¹³ C, ³¹ P NMR, HPLC, and HRMS of compound 24	
¹ H, ¹³ C NMR, HPLC, and HRMS of compound 28	
¹ H, ¹³ C NMR, HPLC, and HRMS of compound 29	
¹ H, ¹³ C NMR, HPLC, and HRMS of compound 31	

-10 ó

-10 ò

-10

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_4_88000001.D Sample Name: CAH 4 88

Instrument 1 9/23/2014 9:46:09 AM Christine

Page 1 of 4

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_4_88000001.D Sample Name: CAH_4_88

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	18.533	BV	0.0995	8683.92773	1341.87500	100.0000

Totals : 8683.92773 1341.87500

Signal 3: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	18.533	BV	0.1233	2.02628e4	2646.86206	100.0000

Totals: 2.02628e4 2646.86206

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	18,532	BV	0.1082	1.56791e4	2280.01855	100.0000	

Totals: 1.56791e4 2280.01855

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	17.381	BB	0.1023	16.08844	2.39759	0.2640
2	18.533	BV	0.0995	6078.18750	939.42749	99.7360

Totals : 6094.27594 941.82508

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	18.533	BV	0.0995	6078.18750	939.42749	100.0000

Instrument 1 9/23/2014 9:46:09 AM Christine

Page 3 of 4

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_4_88000001.D Sample Name: CAH_4_88

8750 939.42749

Signal 7: DAD1 G, Sig=300,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.425	BB	0.0866	167.73837	29.38750	8.0605
2	12.244	VB	0.0884	130.17458	22.87446	6.2554
3	18.533	BV	0.0998	1783.07324	274.61212	85,6840
Tota.	ls :			2080.98619	326.87408	

*** End of Report ***

Instrument 1 9/23/2014 9:46:09 AM Christine

Page 4 of 4

X-ray Crystallographic Analysis:

X-ray crystallographic analysis of compound 20. Crystallographic data were collected on a crystal of 20 with dimensions $0.257 \ge 0.138 \ge 0.039 \text{ mm}^3$. Data were collected at 150 K on a Bruker X8 Apex using Mo KR radiation ($\lambda = 0.71073$ Å). The structure was solved by direct methods after correction of the data using SADABS. Crystallographic data and definement details for the complex mentioned herein is found in the Supporting Information (Table S1-S4). All data were processed using the Bruker AXS SHELXTL software, version 6.10.

Table 1. Crystal data and structure refinement for	or Compound 20.	
Identification code	Compound 20	
Empirical formula	C23 H28 O5	
Formula weight	384.45	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 11.7350(5) Å	a= 90°.
	b = 9.4232(5) Å	b= 102.544(2)°.
	c = 18.5619(10) Å	$g = 90^{\circ}$.
Volume	2003.60(17) Å ³	
Z	4	
Density (calculated)	1.275 Mg/m^3	
Absorption coefficient	0.089 mm ⁻¹	
F(000)	824	
Crystal size	$0.257 \ge 0.138 \ge 0.039 \text{ mm}^3$	
Theta range for data collection	2.436 to 29.679°.	
Index ranges	-16<=h<=12, -12<=k<=13, -25	5<=1<=23
Reflections collected	13077	
Independent reflections	5627 [R(int) = 0.0336]	
Completeness to theta = 25.242°	99.3 %	
Absorption correction	Semi-empirical from equivalen	its

Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole 0.902 and 0.885 Full-matrix least-squares on F² 5627 / 0 / 253 1.025 R1 = 0.0541, wR2 = 0.1131 R1 = 0.0879, wR2 = 0.1267 n/a 0.344 and -0.242 e.Å⁻³
 O(1)	3173(1)	14383(1)		Rost.
O(1)	3173(1)	14383(1)		
S (2)	10 (1)	11202(1)	4025(1)	30(1)
O(2)	4861(1)	13357(1)	3412(1)	29(1)
O(3)	857(1)	9497(1)	770(1)	28(1)
O(4)	251(1)	6770(1)	589(1)	23(1)
O(5)	819(1)	4899(1)	1700(1)	27(1)
C(1)	3180(1)	10093(2)	3481(1)	20(1)
C(2)	2272(1)	10643(2)	3767(1)	23(1)
C(3)	2252(1)	12049(2)	3979(1)	24(1)
C(4)	3134(1)	12951(2)	3878(1)	22(1)
C(5)	4042(1)	12422(2)	3577(1)	21(1)
C(6)	4094(1)	10996(2)	3387(1)	19(1)
C(7)	5115(1)	10470(2)	3087(1)	24(1)
C(8)	6151(1)	9948(2)	3694(1)	30(1)
C(9)	6098(1)	8424(2)	3958(1)	32(1)
C(10)	4997(1)	8045(2)	4242(1)	28(1)
C(11)	3994(1)	7669(2)	3619(1)	24(1)
C(12)	3176(1)	8564(2)	3272(1)	21(1)
C(13)	2289(1)	8107(2)	2605(1)	21(1)
C(14)	1906(1)	9084(2)	2043(1)	21(1)
C(15)	1226(1)	8632(2)	1370(1)	21(1)
C(16)	907(1)	7212(2)	1263(1)	20(1)
C(17)	1222(1)	6255(2)	1844(1)	21(1)
C(18)	1921(1)	6696(2)	2514(1)	22(1)
C(19)	2327(2)	14928(2)	4397(1)	36(1)
C(20)	5700(1)	13882(2)	4028(1)	35(1)
C(21)	948(2)	10986(2)	893(1)	32(1)
C(22)	963(1)	6307(2)	95(1)	28(1)
C(23)	1023(2)	3932(2)	2307(1)	36(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2 x \ 10^3)$ for Compound 20. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(4)	1.3749(19)
O(1)-C(19)	1.4217(19)
O(2)-C(5)	1.3859(17)
O(2)-C(20)	1.426(2)
O(3)-C(15)	1.3706(18)
O(3)-C(21)	1.4221(19)
O(4)-C(16)	1.3838(16)
O(4)-C(22)	1.4353(17)
O(5)-C(17)	1.3686(18)
O(5)-C(23)	1.428(2)
C(1)-C(2)	1.390(2)
C(1)-C(6)	1.410(2)
C(1)-C(12)	1.492(2)
C(2)-C(3)	1.384(2)
C(3)-C(4)	1.384(2)
C(4)-C(5)	1.399(2)
C(5)-C(6)	1.394(2)
C(6)-C(7)	1.5094(19)
C(7)-C(8)	1.547(2)
C(8)-C(9)	1.523(2)
C(9)-C(10)	1.539(2)
C(10)-C(11)	1.5015(19)
C(11)-C(12)	1.334(2)
C(12)-C(13)	1.4964(19)
C(13)-C(14)	1.392(2)
C(13)-C(18)	1.397(2)
C(14)-C(15)	1.3947(19)
C(15)-C(16)	1.392(2)
C(16)-C(17)	1.393(2)
C(17)-C(18)	1.3957(19)
C(4)-O(1)-C(19)	117.05(13)
C(5)-O(2)-C(20)	115.76(12)
C(15)-O(3)-C(21)	117.25(12)

Table 3. Bond lengths $[{\rm \AA}]$ and angles $[^{\circ}]$ for Compound 20.

C(16)-O(4)-C(22)	112.51(10)
C(17)-O(5)-C(23)	116.68(12)
C(2)-C(1)-C(6)	119.28(14)
C(2)-C(1)-C(12)	120.02(13)
C(6)-C(1)-C(12)	120.69(12)
C(3)-C(2)-C(1)	121.86(13)
C(2)-C(3)-C(4)	119.33(13)
O(1)-C(4)-C(3)	124.69(13)
O(1)-C(4)-C(5)	115.74(13)
C(3)-C(4)-C(5)	119.51(14)
O(2)-C(5)-C(6)	119.14(12)
O(2)-C(5)-C(4)	119.07(14)
C(6)-C(5)-C(4)	121.62(13)
C(5)-C(6)-C(1)	118.33(12)
C(5)-C(6)-C(7)	119.47(13)
C(1)-C(6)-C(7)	122.20(14)
C(6)-C(7)-C(8)	113.40(12)
C(9)-C(8)-C(7)	116.92(13)
C(8)-C(9)-C(10)	115.17(13)
C(11)-C(10)-C(9)	111.52(13)
C(12)-C(11)-C(10)	125.74(15)
C(11)-C(12)-C(1)	121.55(13)
C(11)-C(12)-C(13)	121.10(14)
C(1)-C(12)-C(13)	117.06(12)
C(14)-C(13)-C(18)	119.84(13)
C(14)-C(13)-C(12)	118.93(13)
C(18)-C(13)-C(12)	121.00(13)
C(13)-C(14)-C(15)	119.92(14)
O(3)-C(15)-C(16)	115.38(12)
O(3)-C(15)-C(14)	124.30(14)
C(16)-C(15)-C(14)	120.30(14)
O(4)-C(16)-C(15)	119.85(13)
O(4)-C(16)-C(17)	120.45(13)
C(15)-C(16)-C(17)	119.67(12)
O(5)-C(17)-C(16)	115.50(12)
O(5)-C(17)-C(18)	124.35(13)

C(16)-C(17)-C(18)	120.14(14)
C(17)-C(18)-C(13)	119.88(14)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for Compound 20. The anisotropic displacement factor exponent takes the form: $-2p^2[\ h^2\ a^{*2}U^{11} + ... + 2\ h\ k\ a^*\ b^*\ U^{12}\]$

700	U^{11}	U^{22}	U ³³	U^{23}	U^{13}	U ¹²
O(1)	34(1)	23(1)	36(1)	-4(1)	14(1)	1(1)
O(2)	33(1)	28(1)	29(1)	-2(1)	14(1)	-12(1)
O(3)	35(1)	24(1)	20(1)	0(1)	-4(1)	0(1)
O(4)	18(1)	30(1)	19(1)	-8(1)	-1(1)	0(1)
O(5)	29(1)	22(1)	26(1)	-4(1)	0(1)	-6(1)
C(1)	20(1)	24(1)	14(1)	1(1)	0(1)	-3(1)
C(2)	18(1)	30(1)	21(1)	0(1)	2(1)	-6(1)
C(3)	18(1)	30(1)	22(1)	-1(1)	4(1)	0(1)
C(4)	24(1)	22(1)	20(1)	-1(1)	3(1)	1(1)
C(5)	20(1)	24(1)	18(1)	2(1)	4(1)	-4(1)
C(6)	19(1)	24(1)	14(1)	0(1)	2(1)	-1(1)
C(7)	24(1)	26(1)	24(1)	-2(1)	9(1)	-2(1)
C(8)	19(1)	34(1)	37(1)	-3(1)	5(1)	-2(1)
C(9)	23(1)	35(1)	33(1)	-2(1)	-3(1)	3(1)
C(10)	28(1)	28(1)	23(1)	3(1)	-4(1)	-2(1)
C(11)	27(1)	23(1)	21(1)	-1(1)	0(1)	-5(1)
C(12)	21(1)	24(1)	17(1)	-1(1)	2(1)	-6(1)
C(13)	18(1)	25(1)	18(1)	-4(1)	2(1)	-2(1)
C(14)	21(1)	21(1)	20(1)	-3(1)	2(1)	-2(1)
C(15)	19(1)	25(1)	18(1)	-1(1)	2(1)	1(1)
C(16)	16(1)	25(1)	18(1)	-6(1)	1(1)	0(1)
C(17)	18(1)	20(1)	24(1)	-5(1)	4(1)	-2(1)
C(18)	22(1)	24(1)	20(1)	-1(1)	1(1)	-2(1)
C(19)	39(1)	33(1)	39(1)	-10(1)	14(1)	5(1)
C(20)	29(1)	34(1)	42(1)	-8(1)	10(1)	-12(1)
C(21)	40(1)	24(1)	27(1)	0(1)	-2(1)	0(1)

C(22)	27(1)	34(1)	23(1)	-8(1)	6(1)	-2(1)
C(23)	52(1)	24(1)	30(1)	0(1)	3(1)	-11(1)

Crystallographic data for structure 20 (deposition number CCDC

1046343) reported in this paper have been deposited with the Cambridge

Crystallographic Data Centre. Copies of the data can be obtained, free of charge, on

application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-

(0) 1223-336033 or e-mail: deposit@ccdc.cam.ac.uk).

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_5_67000001.D Sample Name: CAH_5_67

Instrument 1 1/25/2016 12:09:42 PM Zhe

Page 1 of 4

Instrument 1 1/25/2016 12:09:42 PM Zhe

Page 2 of 4

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_5_67000001.D Sample Name: CAH_5_67

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	19.290	 BB	0.0924	933.50537	154.77390	100.0000
Tota	ls :			933.50537	154.77390	

Signal 3: DAD1 C, Sig=210,8 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		[]				
1	1.376	BV	0.0514	566.59003	167.64386	13.7716
2	11.468	BB	0.1247	1325.44922	147.65602	32.2164
3	19.290	BB	0.0945	2222.16187	367.52441	54.0120
Tota.	ls :			4114.20111	682.82430	

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	1.286	BV	0.1040	63.83619	8.09134	2.6688
2	8.004	BB	0.0727	205.53131	43.84377	8.5927
3	11.468	BB	0.1019	497.50229	70.89946	20.7993
4	19.290	BB	0.0923	1625.05005	269.84534	67.9392
Tota.	ls :			2391.91984	392.67990	

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.004	BB	0.0713	12.97011	2.83754	2.0930
2	11.468	VB	0.0893	11.36858	1.91306	1.8346
3	19.290	BB	0.0924	595.34033	98.72345	96.0724
Tota	ls :			619.67902	103.47405	

Instrument 1 1/25/2016 12:09:42 PM Zhe

Page 3 of 4

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_5_67000001.D Sample Name: CAH_5_67

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	19.290	BB	0.0924	595.34247	98.72340	100.0000
Tota.	ls :			595.34247	98.72340	

Signal 7: DAD1 G, Sig=300,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	19.290	BB	0.0925	181.02713	29.95630	100.0000
Tota	ls :			181.02713	29.95630	

*** End of Report ***

Instrument 1 1/25/2016 12:09:42 PM Zhe

Page 4 of 4

-10 ppm 210

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH-5-15000002.D Sample Name: cah-5-15

Instrument 1 1/28/2015 1:51:49 PM Christine

Page 1 of 4

Instrument 1 1/28/2015 1:51:49 PM Christine

Page 2 of 4

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH-5-15000002.D Sample Name: cah-5-15

Signal 1: DAD1 A, Sig=254,4 Ref=off

Totals: 3.88516e4 2691.22314

Signal 2: DAD1 B, Sig=254,16 Ref=off

Signal 3: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	16.614	BV	0.3761	6.34811e4	2625.34521	100.0000

Totals : 6.34811e4 2625.34521

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	8.564	BB	0.0771	1163.02673	229.77750	2.0414
2	16.611	BV	0.3100	5.58100e4	2782.44800	97.9586

Totals: 5.69730e4 3012.22549

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	8.564	BV	0.0773	953.32397	187.54671	2.7213
2	16.612	BV	0.2055	3.40785e4	2462.50952	97.2787
Tota	ls :			3.50318e4	2650.05623	

Instrument 1 1/28/2015 1:51:49 PM Christine

Page 3 of 4

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH-5-15000002.D Sample Name: cah-5-15

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.564	BV	0.0773	953.32397	187.54671	2.7213
2	16.612	BV	0.2055	3.40785e4	2462.50952	97.2787

Totals : 3.50318e4 2650.05623

Signal 7: DAD1 G, Sig=300,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	8.564	BV	0.0773	555.76282	109.26016	3.9560
2	16.611	BV	0.1668	1.34929e4	1167.44519	96.0440
Toto	10.			1 1019601	1076 70535	

Totals :	1.40486e4	1276.70535

Signal 8: DAD1 H, Sig=320,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	8.564	BB	0.0763	64.41962	12.88749	11.7453
2	11.060	BV	0.0800	13.31195	2.58971	2.4271
3	16.611	BV	0.1653	470.73935	40.60112	85.8276
Tota.	ls :			548.47093	56.07832	

*** End of Report ***

Instrument 1 1/28/2015 1:51:49 PM Christine

Page 4 of 4

X-ray Crystallographic Analysis:

X-ray crystallographic analysis of compound 23. Crystallographic data

were collected on a crystal of **23** with dimensions $0.171 \ge 0.130 \ge 0.089 \text{ mm}^3$. Data were collected at 150 K on a Bruker X8 Apex using Mo KR radiation ($\lambda = 0.71073 \text{ Å}$). The structure was solved by direct methods after correction of the data using SADABS. Crystallographic data and definement details for the complex mentioned herein is found in the Supporting Information (Table S5-S9). All data were processed using the Bruker AXS SHELXTL software, version 6.10.

Table 5. Crystal data and structure refinement for C	ompound 23.		
Identification code	Compound 23		
Empirical formula	C22 H26 O5		
Formula weight	370.43		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	Pbca		
Unit cell dimensions	a = 16.6410(12) Å	$a = 90^{\circ}$.	
	b = 11.1239(8) Å	b = 90°.	
	c = 20.5570(13) Å	g = 90°.	
Volume	3805.4(5) Å ³		
Z	8		
Density (calculated)	1.293 Mg/m ³		
Absorption coefficient	0.091 mm ⁻¹		
F(000)	1584		
Crystal size	$0.171 \ge 0.130 \ge 0.089 \text{ mm}^3$		
Theta range for data collection	2.963 to 26.370°.		
Index ranges	-20<=h<=20, -13<=k<=13, -25<=l<=24		
Reflections collected	80769		
Independent reflections	3865 [R(int) = 0.0567]		
Completeness to theta = 25.242°	99.7 %		
Absorption correction	Semi-empirical from equivalents		

Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole 0.966 and 0.959 Full-matrix least-squares on F^2 3865 / 0 / 252 1.029 R1 = 0.0365, wR2 = 0.0902 R1 = 0.0476, wR2 = 0.0964 n/a 0.264 and -0.179 e.Å⁻³

	X	У	Z	U(eq)
O(1)	6253(1)	3752(1)	2758(1)	33(1)
O(2)	6709(1)	1740(1)	2161(1)	32(1)
O(3)	2132(1)	2432(1)	1252(1)	30(1)
O(4)	1339(1)	3655(1)	318(1)	32(1)
O(5)	2058(1)	5446(1)	-342(1)	33(1)
C(1)	5933(1)	3482(1)	2159(1)	25(1)
C(2)	6161(1)	2438(1)	1831(1)	25(1)
C(3)	5839(1)	2181(1)	1226(1)	28(1)
C(4)	5304(1)	2991(1)	949(1)	28(1)
C(5)	5079(1)	4044(1)	1265(1)	25(1)
C(6)	5379(1)	4281(1)	1893(1)	25(1)
C(7)	5110(1)	5342(1)	2301(1)	29(1)
C(8)	5675(1)	6433(1)	2275(1)	34(1)
C(9)	5567(1)	7256(1)	1691(1)	36(1)
C(10)	5583(1)	6606(1)	1029(1)	33(1)
C(11)	4779(1)	6077(1)	857(1)	29(1)
C(12)	4546(1)	4933(1)	936(1)	26(1)
C(13)	3728(1)	4541(1)	739(1)	26(1)
C(14)	3345(1)	3609(1)	1070(1)	26(1)
C(15)	2548(1)	3322(1)	933(1)	25(1)
C(16)	2122(1)	3961(1)	463(1)	26(1)
C(17)	2516(1)	4872(1)	119(1)	26(1)
C(18)	3313(1)	5152(1)	249(1)	27(1)
C(19)	6957(1)	652(1)	1853(1)	39(1)
C(20)	2608(1)	1511(1)	1544(1)	31(1)
C(21)	761(1)	4440(2)	613(1)	37(1)
C(22)	2446(1)	6392(1)	-692(1)	36(1)

Table 6. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for Compound 23. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(1)	1.3737(16)
O(2)-C(2)	1.3762(16)
O(2)-C(19)	1.4259(17)
O(3)-C(15)	1.3756(16)
O(3)-C(20)	1.4281(16)
O(4)-C(16)	1.3796(16)
O(4)-C(21)	1.4350(18)
O(5)-C(17)	1.3722(16)
O(5)-C(22)	1.4294(17)
C(1)-C(6)	1.3917(19)
C(1)-C(2)	1.3966(19)
C(2)-C(3)	1.3834(19)
C(3)-C(4)	1.3894(19)
C(4)-C(5)	1.3902(19)
C(5)-C(6)	1.4090(18)
C(5)-C(12)	1.4902(19)
C(6)-C(7)	1.5153(18)
C(7)-C(8)	1.537(2)
C(8)-C(9)	1.521(2)
C(9)-C(10)	1.540(2)
C(10)-C(11)	1.505(2)
C(11)-C(12)	1.340(2)
C(12)-C(13)	1.4863(18)
C(13)-C(14)	1.3940(19)
C(13)-C(18)	1.3977(19)
C(14)-C(15)	1.3936(19)
C(15)-C(16)	1.3930(19)
C(16)-C(17)	1.3984(19)
C(17)-C(18)	1.3885(19)
C(2)-O(2)-C(19)	116.88(11)
C(15)-O(3)-C(20)	115.89(11)
C(16)-O(4)-C(21)	113.03(11)
C(17)-O(5)-C(22)	116.09(11)

Table 7. Bond lengths [Å] and angles [°] for Compound 23.

O(1)-C(1)-C(6)	118.07(12)
O(1)-C(1)-C(2)	120.53(12)
C(6)-C(1)-C(2)	121.40(12)
O(2)-C(2)-C(3)	125.67(12)
O(2)-C(2)-C(1)	114.33(11)
C(3)-C(2)-C(1)	120.00(12)
C(2)-C(3)-C(4)	118.93(12)
C(3)-C(4)-C(5)	121.79(12)
C(4)-C(5)-C(6)	119.35(12)
C(4)-C(5)-C(12)	120.49(12)
C(6)-C(5)-C(12)	120.13(12)
C(1)-C(6)-C(5)	118.41(12)
C(1)-C(6)-C(7)	118.32(12)
C(5)-C(6)-C(7)	123.24(12)
C(6)-C(7)-C(8)	114.57(11)
C(9)-C(8)-C(7)	115.49(12)
C(8)-C(9)-C(10)	114.38(12)
C(11)-C(10)-C(9)	112.05(12)
C(12)-C(11)-C(10)	126.89(13)
C(11)-C(12)-C(13)	120.66(13)
C(11)-C(12)-C(5)	120.88(12)
C(13)-C(12)-C(5)	118.32(12)
C(14)-C(13)-C(18)	119.23(12)
C(14)-C(13)-C(12)	120.18(12)
C(18)-C(13)-C(12)	120.46(12)
C(15)-C(14)-C(13)	120.36(12)
O(3)-C(15)-C(16)	116.20(12)
O(3)-C(15)-C(14)	123.22(12)
C(16)-C(15)-C(14)	120.56(12)
O(4)-C(16)-C(15)	120.31(12)
O(4)-C(16)-C(17)	120.79(12)
C(15)-C(16)-C(17)	118.82(12)
O(5)-C(17)-C(18)	123.93(12)
O(5)-C(17)-C(16)	115.24(12)
C(18)-C(17)-C(16)	120.83(12)
C(17)-C(18)-C(13)	120.11(13)

Symmetry transformations used to generate equivalent atoms:

<u>,</u>	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	36(1)	37(1)	24(1)	-7(1)	-8(1)	10(1)
O(2)	32(1)	32(1)	31(1)	-6(1)	-4(1)	9(1)
O(3)	28(1)	27(1)	35(1)	3(1)	-3(1)	-2(1)
O(4)	26(1)	37(1)	34(1)	-2(1)	-8(1)	-4(1)
O(5)	31(1)	41(1)	26(1)	7(1)	-8(1)	-2(1)
C(1)	23(1)	32(1)	21(1)	-4(1)	1(1)	0(1)
C(2)	22(1)	28(1)	26(1)	-1(1)	2(1)	1(1)
C(3)	28(1)	29(1)	26(1)	-6(1)	3(1)	0(1)
C(4)	28(1)	33(1)	22(1)	-3(1)	-2(1)	-3(1)
C(5)	20(1)	31(1)	24(1)	-1(1)	2(1)	-2(1)
C(6)	20(1)	31(1)	24(1)	-4(1)	2(1)	0(1)
C(7)	27(1)	36(1)	24(1)	-4(1)	0(1)	7(1)
C(8)	29(1)	39(1)	35(1)	-14(1)	-4(1)	4(1)
C(9)	31(1)	34(1)	42(1)	-8(1)	2(1)	-5(1)
C(10)	30(1)	36(1)	34(1)	-1(1)	2(1)	-4(1)
C(11)	27(1)	34(1)	27(1)	0(1)	-1(1)	0(1)
C(12)	24(1)	33(1)	21(1)	-2(1)	0(1)	0(1)
C(13)	25(1)	29(1)	23(1)	-5(1)	0(1)	2(1)
C(14)	26(1)	27(1)	24(1)	-1(1)	-3(1)	4(1)
C(15)	27(1)	25(1)	23(1)	-3(1)	1(1)	0(1)
C(16)	24(1)	29(1)	24(1)	-7(1)	-4(1)	-1(1)
C(17)	29(1)	31(1)	19(1)	-3(1)	-4(1)	2(1)
C(18)	29(1)	30(1)	22(1)	-1(1)	0(1)	-2(1)
C(19)	39(1)	34(1)	43(1)	-10(1)	-4(1)	11(1)
C(20)	37(1)	27(1)	30(1)	1(1)	-2(1)	2(1)
C(21)	25(1)	48(1)	38(1)	7(1)	-4(1)	2(1)
C(22)	42(1)	33(1)	31(1)	5(1)	-11(1)	-3(1)

Table 8. Anisotropic displacement parameters (Å2x 103) for Compound 23. The anisotropicdisplacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$

Table 9. Hydrogen bonds for Compound 23 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(1)O(2)	0.879(19)	2.202(18)	2.6623(14)	112.3(15)
O(1)-H(1)O(3)#1	0.879(19)	2.152(19)	2.9046(14)	143.3(16)

Symmetry transformations used to generate equivalent atoms: #1 x+1/2,y,-z+1/2

Crystallographic data for structure 23 (deposition number CCDC

1046344) reported in this paper have been deposited with the Cambridge

Crystallographic Data Centre. Copies of the data can be obtained, free of charge, on

application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-

(0) 1223-336033 or e-mail: deposit@ccdc.cam.ac.uk).

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_5_150000001.D Sample Name: CAH_5_150

Instrument 1 1/19/2016 2:00:34 PM christine

489

Page 1 of 4

Instrument 1 1/19/2016 2:00:34 PM christine

Page 2 of 4

Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_5_150000001.D Sample Name: CAH_5_150

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	4.492	BV	0.1298	105.85542	12.38030	1.8594
2	5.455	BV	0.0955	5587.14062	863.45483	98.1406

Totals: 5692.99605 875.83513

Signal 3: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	4.492	BB	0.1491	1733.28137	172.71095	10.5676
2	5.455	BV	0.1022	1.46685e4	2132.77539	89.4324
- 					12021212121	

Totals :	1.64018e4	2305.48634

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	4.492	BV	0.1383	472.28870	51.84144	70.2817
2	27.393	BB	0.0564	199.70493	52.48211	29.7183

Totals	:	671.99362	104.32355

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	4.491	BV	0.1358	47.16594	5.10381	1.2332
2	5.455	BV	0.0956	3777.51514	583.23889	98.7668
Total	s:			3824.68107	588.34271	

Instrument 1 1/19/2016 2:00:34 PM christine

Page 3 of 4
Data File C:\CHEM32\1\DATA\CHRISTINE\CAH_5_150000001.D Sample Name: CAH_5_150

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	4.491	BV	0.1358	47.16594	5.10381	1.2332
2	5.455	BV	0.0956	3777.51514	583.23889	98.7668
Total	s:			3824.68107	588.34271	

Signal 7: DAD1 G, Sig=300,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	5.455	BB	0.0960	1050.76099	161.39412	100.0000

Totals : 1050,76099 161.39412

*** End of Report ***

Instrument 1 1/19/2016 2:00:34 PM christine

Page 4 of 4

Instrument 1 7/21/2014 4:16:11 PM christine

Page 1 of 4

Instrument 1 7/21/2014 4:16:11 PM christine

Page 2 of 4

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
						[]
1	14.957	BV	0.0960	1.05029e4	1702.27014	100.0000

Totals : 1.05029e4 1702.27014

Signal 3: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	14.957	BV	0.1179	1.93357e4	2627.26172	100.0000

Totals : 1.93357e4 2627.26172

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	14.957	BV	0.0977	1.25838e4	1992.09021	100.0000

Totals : 1.25838e4 1992.09021

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	14.957	BB	0.0951	4634.12646	760.19556	100.0000

Totals : 4634.12646 760.19556

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
							I
1	14.957	BB	0.0951	4634.12646	760.19556	100.0000	

Totals: 4634.12646 760.19556

Instrument 1 7/21/2014 4:16:11 PM christine

Page 3 of 4

*** End of Report ***

Instrument 1 7/21/2014 4:16:11 PM christine

Page 4 of 4

150 140 130 120 -10 190 180 110 100

Instrument 1 8/20/2014 1:09:23 PM Christine

Page 1 of 3

Area Percent Report

Sorted By		:	Sig	nal	
Multiplier		:	1.0	000	
Dilution		:	1.0	000	
Use Multiplier	&	Dilution	Factor	with	ISTDS

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	15.954	BV	0.1202	1.98992e4	2632.82886	100.0000

Totals: 1.98992e4 2632.82886

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	15.955	BV	0.1145	1.87492e4	2588.72656	100.0000

Totals: 1.87492e4 2588.72656

Instrument 1 8/20/2014 1:09:23 PM Christine

Page 2 of 3

Signal 3: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	15.954	BV	0.1145	1.91852e4	2648.36694	100.0000

Totals : 1.91852e4 2648.36694

Signal 4: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	15.954	BV	0.0965	9237.36035	1485.50195	100.0000

Totals : 9237.36035 1485.50195

Signal 5: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	15.954	BV	0.0965	9237.36035	1485.50195	100.0000

Totals : 9237.36035 1485.50195

Signal 6: DAD1 G, Sig=300,16 Ref=off

Peak	RetTime	Туре	Width	Ārea	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	15.954	BB	0.0942	2545.80176	411.13858	94.1161
2	19.185	BB	0.0984	159.15662	24.96513	5.8839
Tota.	ls :			2704.95837	436.10371	

*** End of Report ***

Instrument 1 8/20/2014 1:09:23 PM Christine

Page 3 of 3

ppm 210 -10 ò

Acq. Operat	or :	christine			
Acq. Instru	ment :	Instrument 1	Location	; – – j	
Injection D	ate :	9/2/2015 11:49:32 AM			
Acq. Method	. :	C:\CHEM32\1\METHODS\MAS	TERMETHOD.M		
Last change	d :	9/2/2015 11:46:00 AM by	christine		
Analysis Me	thod :	C:\CHEM32\1\DATA\CHRIST	INE\JVL_1_10300000	1.D\DA.M	(MASTERMETHOD.M)
Last change	d :	9/2/2015 1:22:35 PM by	christine		
Sample Info	;				

Instrument 1 9/2/2015 1:24:34 PM christine

Page 1 of 5

Instrument 1 9/2/2015 1:24:34 PM christine

Page 2 of 5

	į	Area Percen	t Report	
	ne antan su antan in t	ni na	en interne per pet pet del del del del del del del del	a mar kan ana ana ana ana ana ana ana ana ana
Sorted By	:	Signal		
Multiplier	:	1.0000		
Dilution	:	1.0000		
Use Multiplier & D	ilution	Factor with	h ISTDs	
Signal 1: DAD1 A,	Sig=254,	4 Ref=off		
Peak RetTime Type	Width	Area	Height	Area
# [min]	fminl	[mAll*e]	[mail]	8
# [man]	furnl	[1040 2]	[]	
1 12 9/4 170	0 0979	5636 32080	007 72/61	03 0211
0 14 200 W	0.0000	371 10614	60 06303	6 1700
2 14.209 VV	0.0009	3/1.19044	02.00393	0.1789
Totals :		6007.51724	1060.58854	
Signal 2: DAD1 B,	Sig=254,	,16 Ref=off		
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	8
1 12.844 VB	0.0880	5292.54199	935.98364	93.6462
2 14.209 VV	0.0893	359.09149	60.48515	6.3538
Totals :		5651.63348	996.46879	
Signal 3: DAD1 C,	Sig=210,	8 Ref=off		
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	8
				1
1 12.844 WV	0.0925	1.3241304	2191.42236	92 4869
2 14.208 VV	0.0904	1075.65198	178.37202	7.5131
2 14.200 VV	0.0504	10,0,00100	110.01202	1.0101
Totals :		1.43170e4	2369.79439	
at 1 4 mm -				

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.844	VV	0.0891	7398.26025	1285.71204	86.1586
2	14.016	VV	0.0917	9.59935	1.60752	0.1118

Instrument 1 9/2/2015 1:24:34 PM christine

Page 3 of 5

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
3	14.208	VB	0.0880	488.34366	83.83261	5.6871
4	14.600	VB	0.0731	5.42998	1.14918	0.0632
5	15.235	VB	0.0880	685.15985	117.48914	7,9792

Totals : 8586.79310 1489.79048

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.844	BV	0.0868	2311.47363	416.20947	90.9454
2	14.209	vv	0.0889	230.13258	38.96600	9.0546
Tota	ls :			2541.60622	455.17548	

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	12.844	BV	0.0868	2311.47461	416.20947	90.9454
2	14.209	VV	0.0889	230.13316	38.96600	9.0546

Totals : 2541.60777 455.17548

Signal 7: DAD1 G, Sig=300,16 Ref=off

Peak #	RetTime	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.844	BV	0.0868	944.62726	170.05644	88.5016
2	14.209	BV	0.0946	122.72880	19.20041	11.4984
Tota.	ls :			1067.35606	189.25686	

Signal 8: DAD1 H, Sig=320,16 Ref=off

Instrument 1 9/2/2015 1:24:34 PM christine

Page 4 of 5

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.844	BV	0.0875	183.99568	32.77533	77.8242
2	14.208	BB	0.0874	52.42920	9.07247	22.1758
Total	ls :			236.42488	41.84780	

time teer next and teer one teer next teer and teer, so that teer teer and next next teer next teer next teer and

*** End of Report ***

Instrument 1 9/2/2015 1:24:34 PM christine

Page 5 of 5

JVL_1_103

Instrument 1 4/26/2016 1:58:04 PM Christine

Page 1 of 6

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier A	Dilution	Factor with	ISTDS

Instrument 1 4/26/2016 1:58:04 PM Christine

Page 2 of 6

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	1.391	BV	0.0610	7.81049	1.85999	0.0488
2	1.476	VV	0.0836	10.12844	1.74734	0.0633
з	2.998	BB	0.1245	17.02232	1.97571	0.1064
4	3.623	BB	0.1181	25.76275	3.19316	0.1611
5	3.828	BV	0.0699	68.47198	14.82507	0.4281
6	4.043	VV	0.1199	1.56188e4	2025.83167	97.6627
7	4.394	vv	0.0885	55.33225	8.90629	0.3460
8	4.572	VB	0.1021	62.22238	8.63247	0.3891
9	13.863	BB	0.1367	25.87182	2.77756	0.1618
10	18.802	BB	0.1071	9,02090	1.29729	0.0564
11	19.847	BB	0.0948	8.76622	1.44499	0.0548
12	28.654	BB	0.4623	83.38203	2.58484	0.5214
Tota	ls :			1.59925e4	2075.07638	

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	1.391	BV	0.0591	7.21573	1.78816	0.0476
2	1.477	VV	0.0799	9.09765	1.66187	0.0601
3	2.997	BB	0.2996	70.14854	2.96901	0.4631
4	3.624	BB	0.1172	27.39253	3.42800	0.1808
5	3.828	BV	0.0679	59.99481	13.48118	0.3960
6	4.043	VV	0.1190	1.42912e4	1872.98071	94.3370
7	4.395	VB	0.0709	22.35714	4.74763	0.1476
8	4.572	BB	0.0769	27.41272	5.42608	0.1810
9	13.863	BB	0.1386	30.36974	3.26277	0.2005
10	18.802	BB	0.1084	8.06718	1.14245	0.0533
11	19.847	BB	0.0949	8.07938	1.32921	0.0533
12	28.653	BB	1.2066	587.76019	6.16329	3.8798

Totals : 1.51491e4 1918.38036

Signal 3: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	1.384	BV	0.0515	181.29756	53.53682	0.6562
2	1.479	VB	0.0908	101.26290	15.37472	0.3665
3	1.959	BV	0.1503	171.36317	16.61413	0.6203

Instrument 1 4/26/2016 1:58:04 PM Christine

Page 3 of 6

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
4	2.758	VB	0.3937	1774.10779	62.39947	6.4215
5	3.295	BB	0.0764	12.51878	2.33929	0.0453
6	3.630	BB	0.1072	200.15843	28.07985	0.7245
7	3.828	BV	0.0671	138.52396	31.64297	0.5014
8	4.043	VV	0.1570	2.44912e4	2527.73950	88.6480
9	4.392	VB	0.0686	47.80655	10.59979	0.1730
10	4.572	BB	0.0760	63.74675	12.82641	0.2307
11	4.884	BV	0.0744	8.96094	1.85477	0.0324
12	5.023	VB	0.0880	45.50289	7.58052	0.1647
13	13.265	BB	0.1017	15.46335	2.20867	0.0560
14	13.863	BB	0.1410	53.45221	5.61953	0.1935
15	17.911	BB	0.0924	8.66976	1.47981	0.0314
16	22.287	BV	0.2091	18.72872	1.19320	0.0678
17	22.667	VV	0.1811	23.63048	1.95335	0.0855
18	27.495	BB	0.1340	202.18147	23.12298	0.7318
19	28.645	BB	0.4029	68.88494	2.55251	0.2493

Totals : 2.76275e4 2808.71828

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
]
1	1.385	BV	0.0537	35.52041	9.92666	0.2130
2	1.481	VB	0.0696	20.23402	4.24269	0.1213
3	1.964	BB	0.1094	26.49018	3.53564	0.1588
4	2,759	BV	0.3117	411.25793	18.47796	2.4656
5	2,985	VB	0.1213	112.17307	12.91943	0.6725
6	3.629	BB	0.1126	93.04063	12.53667	0.5578
7	3.828	BV	0.0669	73.80240	16.90789	0.4425
8	4.043	vv	0.1205	1.54928e4	1996.45898	92.8845
9	4.393	VB	0.0699	25.51955	5.52837	0.1530
10	4.573	BB	0.0735	34.24681	7.19496	0.2053
11	4.885	BV	0.0784	10.15930	2.02997	0.0609
12	5.020	VB	0.0851	14.67683	2.55004	0.0880
13	13.863	BB	0.1415	70.21961	7.34801	0.4210
14	27.529	BB	0.1549	158.54309	15.29897	0.9505
15	28.653	BB	0.4906	100.96045	2.97006	0.6053
Tota.	ls :			1.66797e4	2117,92632	

Instrument 1 4/26/2016 1:58:04 PM Christine

Page 4 of 6

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak #	RetTime [min]	Туре	Width	Area [mAU*s]	Height [mAU]	Area %
		[]				
1	1.473	VB	0.0704	5.48779	1.13574	0.0911
2	3.621	BV	0.1263	76.58023	8.56689	1.2716
з	3.828	VV	0.0811	48.96879	8.78171	0.8131
4	4.043	VV	0.1181	5779.64941	765.73773	95.9686
5	4.403	VV	0.1005	24.02273	3.48107	0.3989
6	4.574	VB	0.1010	32.78029	4.60598	0.5443
7	13.863	BB	0.1385	54.94780	5.91066	0.9124
Total	ls :			6022.43705	798.21977	

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	06
1	1.473	VB	0.0704	5.48760	1.13574	0.0911
2	3.621	BV	0.1263	76.57832	8.56689	1.2716
3	3.828	VV	0.0811	48.96640	8.78171	0.8131
4	4.043	VV	0.1181	5779.65039	765.73773	95.9687
5	4.403	VV	0.1005	24.02216	3.48060	0.3989
6	4.574	VB	0.1010	32,77953	4.60598	0.5443
7	13.863	BB	0.1385	54.94532	5.91063	0,9123
Tota.	Ls :			6022.42972	798.21928	

Signal 7: DAD1 G, Sig=300,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	3.621	BV	0.1131	83.12932	10.64792	5.1879
2	3.826	VV	0.0800	20.97679	3.82476	1.3091
3	4.043	VB	0.1186	1452.70459	191.39255	90.6600
4	4.575	VB	0.0810	11.73287	2.17350	0.7322
5	13.863	BB	0.1406	33.82201	3.56693	2.1108
Tota	ls :			1602.36558	211.60565	

Instrument 1 4/26/2016 1:58:04 PM Christine

Page 5 of 6

Signal 8: DAD1 H, Sig=320,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		[]				
1	3,621	BV	0.1166	71.65930	8.83325	29.4579
2	3.825	VV	0.0844	14.51530	2.47418	5.9670
З	4.041	VB	0.1372	147.71956	16.38952	60.7250
4	4.573	BB	0.1057	9.36575	1.24525	3.8501
Total	s :			243.25991	28.94220	

*** End of Report ***

Instrument 1 4/26/2016 1:58:04 PM Christine

Page 6 of 6

APPENDIX C

Permissions

From: Andy Reynolds Andy.Reynolds@icr.ac.uk & Subject: RE: Permission to use Figure Date: February 2, 2016 at 11:35 AM To: Herdman, Christine A Christine_Herdman@baylor.edu

Dear Christine

Yes, this is fine (and it is confirmed by the publisher's website - see attached). Please just cite the title, author, journal, publisher and date as seen in the attached.

May I ask, our of curiosity, how you will be using it?

Best, Andy

Andrew R. Reynolds PhD Team Leader Tumour Biology Team Room 3C11.2 / 3N20 The Breakthrough Breast Cancer Research Centre The Institute of Cancer Research 237 Fulham Road London SW3 6JB UK Email: andrew.reynolds@icr.ac.uk Tel: +44 (0)207 153 5235 (office) Tel: +44 (0)207 153 538 (lab) FAX: +44 (0)207 153 538 (lab) FAX: +44 (0)207 153 5340 Web Page: http://www.icr.ac.uk/research/team_leaders/Reynolds_Andrew/ Google Scholar: http://www.icr.ac.uk/research/team_leaders/Reynolds_Andrew/

From: Herdman, Christine A [Christine Herdman@baylor.edu] Sent: 02 February 2016 17:25 To: Andy Reynolds Subject: Permission to use Figure

Hi Prof. Reynolds,

I realize that your article was published in an open access journal that says that you may freely use the content as long as you give credit, however, I just wanted to ask permission to use Fig. 1 from your paper

Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions of the of the angiogenesis in tumor growth and if there was any one else I would need to give credit to? Thank you for your consideration!

Christine

Christine Herdman Pinney Research Group Department of Chemistry and Biochemistry Baylor University

"Learn from yesterday, live for today, hope for tomorrow. The important thing is not to stop questioning. Curiosity has its own reason for existing." -Albert Einstein

The Institute of Cancer Research: Royal Cancer Hospital, a charitable Company Limited by Guarantee, Registered in England under Company No. 534147 with its Registered Office at 123 Old Brompton Road, London SW7 3RP.

This e-mail message is confidential and for use by the addressee only. If the message is received by anyone other than the addressee, please return the message to the sender by replying to it and then delete the message from your computer and network.

Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions Naveen S. Vasudev

Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions

 Author:
 Naveen S. Vasudev

 Publication:
 Angiogenesis

 Publisher:
 Springer

 Date:
 Jan 1, 2014

 Copyright © 2014, The Author(s)

Title:

Permissions Request

This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Springer and BioMed Central offer a reprint service for those who require professionally produced copies of articles published under Creative Commons Attribution (CC BY) licenses. To obtain a quotation, please email <u>reprints@springeropen.com</u> with the article details, quantity(ies) and delivery destination. Minimum order 25 copies.

CLOSE WINDOW

Copyright © 2016 <u>Copyright Clearance Center, Inc.</u> All Rights Reserved. <u>Privacy statement. Terms and Conditions</u>. Comments? We would like to hear from you. E-mail us at <u>customercare@copyright.com</u>

Order Completed

Thank you very much for your order.

This is a License Agreement between Christine A Herdman ("You") and Nature Publishing Group ("Nature Publishing Group"). The license consists of your order details, the terms and conditions provided by Nature Publishing Group, and the <u>payment terms and conditions</u>.

Get the printable license.

License Number	3800870557946			
License date	Feb 02, 2016			
Licensed content publisher	Nature Publishing Group			
Licensed content publication	Nature Reviews Cancer			
Licensed content title	Disrupting tumour blood vessels			
Licensed content author	Gillian M. Tozer, Chryso Kanthou and Bruce C. Baguley			
Licensed content date	Jun 1, 2005			
Type of Use	reuse in a dissertation / thesis			
Volume number	5			
Issue number	6			
Requestor type	academic/educational			
Format	print and electronic			
Portion	figures/tables/illustrations			
Number of figures/tables/illustrations	1			
High-res required	no			
Figures	figure 3			
Author of this NPG article	no			
Your reference number	None			
Title of your thesis / dissertation	Synthesis and Biological Evaluation of Potential Vascular Disrupting Agents Utilizing Indene, Benzosuberene, and Benzocyclooctene Frameworks			
Expected completion date	May 2016			
Estimated size (number of pages)	500			
Total	ORDER MORE CLOSE WINDOW			

Copyright © 2016 <u>Copyright Clearance Center, Inc.</u> All Rights Reserved. <u>Privacy statement</u>. <u>Terms and Conditions</u>. Comments? We would like to hear from you. E-mail us at <u>customercare@copyright.com</u> From: Bhawna Gauri bhawna.gauri@gmail.com Subject: Re: Permission to use Figure Date: February 1, 2016 at 6:14 PM To: Herdman, Christine A Christine_Herdman@baylor.edu

Hii Christine.,

Thank you so much for writing to me.

You can use this figure from my paper but also add a cross reference to the same figure that you are going to use.

I hope it would not be any problem. Feel free to ask any question If needed

Cheers

Bhawna On Tue, Feb 2, 2016 at 3:27 AM, Herdman, Christine A <<u>Christine_Herdman@baylor.edu</u>> wrote: | Hi Prof. Gauri,

I realize that your article was published in an open access journal that says that you may freely use the content as long as you give credit, however, I just wanted to ask permission to use Fig. 3 from your paper

Nanotherapeutics Magic Bullets- a Boon or Bane to Human Health of the single walled and mutliwalled nanotubes and if there was any one else I would need to give credit to? Thank you for your consideration!

Christine

Christine Herdman Pinney Research Group Department of Chemistry and Biochemistry Baylor University

"Learn from yesterday, live for today, hope for tomorrow. The important thing is not to stop questioning. Curiosity has its own reason for existing." -Albert Einstein

Kind regards

BHAWNA GAURI School of Pharmacy CHIRI Health Sciences Curtin University, Perth (Western Australia)

+61-405688-481 bhawna.gauri@gmail.com

Review Article

Nanotherapeutics Magic Bullets- a Boon or Bane to Human Health

Bhawna Gauri*

Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala (Punjab), India

Corresponding Author : Bhawna Gauri

Division of Pharmaceutics Department of Pharmaceutical Sciences and Drug Research Punjabi University, Patiala (Punjab), India Tel: +91-9541717458 E-mail: bhawna.gauri@gmail.com

Received April 23, 2012; Accepted June 04, 2012; Published June 10, 2012

Citation: Gauri B (2012) Nanotherapeutics Magic Bullets- a Boon or Bane to Human Health. J Nanomed Nanotechol 3:142. doi: 10.4172/2157-7439.1000142

Copyright: © 2012 Gauri B. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Related article at Pubmed Scholar Google

Visit for more related articles at

Journal of Nanomedicine & Nanotechnology

Copyright Clearance Center	ghtsLi	nk®	Hom	e Account Info	Help	Q Live Chat
ANGEWANDTE CHARLES AND TRANSPORT	Title:	Supramolecular Stacking of Doxorubicin on Carbon Nanotubes for In Vivo Cancer Therapy		Logged in as: Christine Herdman Account #: 3000996112		
	Author:	Zhuang Liu, Alice C. Fan, Kavya Rakhra, Sarah Sherlock, Andre Goodwin, Xiaoyuan Chen, Qiwe Yang, Dean W. Felsher, Hongjie Dai	a ew ei	LOGOUT		
	Publication	: Angewandte Chemie International Edition				
	Publisher:	John Wiley and Sons				
	Date:	Sep 16, 2009				
	Copyright © 20 KGaA, Weinheir	09 WILEY IVCH Verlag GmbH & Co. n				

Order Completed

Thank you for your order.

This Agreement between Christine A Herdman ("You") and John Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

Your confirmation email will contain your order number for future reference.

Get the printable license.

License Number	3804980086269
License date	Feb 09, 2016
Licensed Content Publisher	John Wiley and Sons
Licensed Content Publication	Angewandte Chemie International Edition
Licensed Content Title	Supramolecular Stacking of Doxorubicin on Carbon Nanotubes for In Vivo Cancer Therapy
Licensed Content Author	Zhuang Liu,Alice C. Fan,Kavya Rakhra,Sarah Sherlock,Andrew Goodwin,Xiaoyuan Chen,Qiwei Yang,Dean W. Felsher,Hongjie Dai
Licensed Content Date	Sep 16, 2009
Licensed Content Pages	5
Type of use	Dissertation/Thesis
Requestor type	University/Academic
Format	Print and electronic
Portion	Figure/table
Number of figures/tables	1
Original Wiley figure/table number(s)	figure 2
Will you be translating?	No
Title of your thesis / dissertation	Synthesis and Biological Evaluation of Potential Vascular Disrupting Agents Utilizing Indene, Benzosuberene, and Benzocyclooctene Frameworks
Expected completion date	May 2016
Expected size (number of pages)	500
Requestor Location	Christine A Herdman

	9000 Chapel Rd 10202
	WOODWAY, TX 76712 United States Attn: Christine A Herdman
Billing Type	Invoice
Billing address	Christine A Herdman 9000 Chapel Rd 10202
	WOODWAY, TX 76712 United States Attn: Christine A Herdman
Total	0.00 USD

Would you like to purchase the full text of this article? If so, please continue on to the content ordering system located here: $\underline{Purchase\ PDF}$

If you click on the buttons below or close this window, you will not be able to return to the content ordering system.

CLOSE WINDOW

Copyright © 2016 <u>Copyright Clearance Center, Inc.</u> All Rights Reserved. <u>Privacy statement</u>. <u>Terms and Conditions</u>. Comments? We would like to hear from you. E-mail us at <u>customercare@copyright.com</u>

Copyright Clearance Center	lhtsLi	nk	Home	Account Info	Help	Q Live Chat
Bioorganic & Medicinal Chemistry	Title:	Structural interrogation of benzosuberene-based inhibito of tubulin polymerization	ors c	ogged in as: Christine Herdman		
in our and the second sec	Author:	Christine A. Herdman, Laxman Devkota, Chen-Ming Lin, Haicha Niu, Tracy E. Strecker, Ramona Lopez, Li Liu, Clinton S. George, Rajendra P. Tanpure, Ernest Hamel, David J Chaplin, Ralph P. Mason, Mary Lynn Trawick, Kevin G. Pinney	an J.			
	Publication:	Bioorganic & Medicinal Chemistry				
	Publisher:	Elsevier				
	Date:	15 December 2015				
	Copyright © 20: Ltd. All rights re	15 Elsevier Ltd. Published by Elsevier served.	r			

Order Completed

Thank you very much for your order.

This is a License Agreement between Christine A Herdman ("You") and Elsevier ("Elsevier"). The license consists of your order details, the terms and conditions provided by Elsevier, and the <u>payment terms and</u> <u>conditions</u>.

Get the printable license.

License Number	3800880301196
License date	Feb 02, 2016
Licensed content publisher	Elsevier
Licensed content publication	Bioorganic & Medicinal Chemistry
Licensed content title	Structural interrogation of benzosuberene-based inhibitors of tubulin polymerization
Licensed content author	Christine A. Herdman,Laxman Devkota,Chen-Ming Lin,Haichan Niu,Tracy E. Strecker,Ramona Lopez,Li Liu,Clinton S. George,Rajendra P. Tanpure,Ernest Hamel,David J. Chaplin,Ralph P. Mason,Mary Lynn Trawick,Kevin G. Pinney
Licensed content date	15 December 2015
Licensed content volume number	23
Licensed content issue number	24
Number of pages	24
Type of Use	reuse in a thesis/dissertation
Portion	full article
Format	both print and electronic
Are you the author of this Elsevier article?	Yes
Will you be translating?	No
Title of your thesis/dissertation	Synthesis and Biological Evaluation of Potential Vascular Disrupting Agents Utilizing Indene, Benzosuberene, and Benzocyclooctene Frameworks
Expected completion date	May 2016
Estimated size (number of pages)	500
Elsevier VAT number	GB 494 6272 12
Permissions price	0.00 USD

VAT/Local Sales Tax	0.00 USD / 0.00 G BP		
Total	0.00 USD		
	ORDER MORE	CLOSE WINDOW	

Copyright © 2016 <u>Copyright Clearance Center, Inc.</u> All Rights Reserved. <u>Privacy statement</u>. <u>Terms and Conditions</u>. Comments? We would like to hear from you. E-mail us at <u>customercare@copyright.com</u>

REFERENCES

- 1. Cancer Facts & Figures 2014, http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2014.
- 2. Cancer Facts and Statistics 2015 | Research | American Cancer Society, http://www.cancer.gov/about-cancer/understanding/statistics.
- 3. Fens, M. H.; Storm, G.; Schiffelers, R. M. *Expert Opin. Investig. Drugs* **2010**, *19*, 1321–1338.
- 4. What Is Cancer? http://www.who.int/mediacentre/factsheets/fs297/en/
- 5. Types of Cancer Treatment | American Cancer Society, http://www.cancer.gov/about-cancer/treatment/types.
- 6. How does targeted cancer therapy work? http://www.cancer.org/treatment/treatmentsandsideeffects/treatmenttypes/targetedt herapy/targeted-therapy-what-is.
- 7. Ramos, P.; Bentires-Alj, M. Oncogene 2015, 34, 3617–3626.
- 8. Rachner, T. D.; Jakob, F.; Hofbauer, L. C. BoneKEy Rep. 2015, 4, 707.
- 9. Wujcik, D. Semin. Oncol. Nurs. 2014, 30, 139–146.
- 10. Folkman, J. N. Engl. J. Med. 1971, 285, 1182–1186.
- 11. Siemann, D. W.; Chaplin, D. J.; Horsman, M. R. Cancer 2004, 100, 2491–2499.
- 12. Pilat, M. J.; LoRusso, P. M. J. Cell. Biochem. 2006, 99, 1021–1039.
- 13. Lippert, J. W. Bioorg. Med. Chem. 2007, 15, 605–615.
- 14. Thorpe, P. E. Clin. Cancer Res. 2004, 10, 415–427.
- 15. Denekamp, J. Br. J. Cancer 1982, 45, 136–139.
- 16. Denekamp, J. Br. J. Radiol. 1993, 66, 181–196.

- Siemann, D. W.; Bibby, M. C.; Dark, G. G.; Dicker, A. P.; Eskens, F. A.; Horsman, M. R.; Marmé, D.; LoRusso, P. M. *Clin. Cancer Res.* 2005, *11*, 416–420.
- 18. Baluk, P.; Hashizume, H.; McDonald, D. M. Curr. Opin. Genet. Dev. 2005, 15, 102–111.
- 19. Denekamp, J. Cancer Metastasis Rev. 1990, 9, 267–282.
- 20. Tor-Christian Aase Johannessen, M. W. *Expert Opin. Ther. Targets* **2012**, *17*, 7–20.
- 21. Siemann, D. W. Cancer Treat. Rev. 2011, 37, 63–74.
- 22. Horsman, M. R.; Bohn, A. B.; Busk, M. Exp Oncol 2010, 32, 143–148.
- 23. Ma, J.; Waxman, D. J. Mol. Cancer Ther. 2008, 7, 3670–3684.
- 24. Gotink, K. J.; Verheul, H. M. W. Angiogenesis 2010, 13, 1–14.
- 25. Bhise, N. S.; Shmueli, R. B.; Sunshine, J. C.; Tzeng, S. Y.; Green, J. J. *Expert Opin. Drug Deliv.* **2011**, *8*, 485–504.
- 26. Vasudev, N. S.; Reynolds, A. R. Angiogenesis 2014, 17, 471–494.
- Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; Ferrara, N.; Fyfe, G.; Rogers, B.; Ross, R.; Kabbinavar, F. N. Engl. J. Med. 2004, 350, 2335–2342.
- 28. Adesunloye, B. A.; Karzai, F. H.; Dahut, W. L. Chem. Immunol. Allergy 2014, 99, 197–215.
- 29. Jain, R. K. Nat. Med. 2001, 7, 987–989.
- 30. Jain, R. K. Science 2005, 307, 58–62.
- 31. Albini, A.; Tosetti, F.; Li, V. W.; Noonan, D. M.; Li, W. W. *Nat. Rev. Clin. Oncol.* **2012**, *9*, 498–509.
- 32. Mason, R. P.; Zhao, D.; Liu, L.; Trawick, M. L.; Pinney, K. G. *Integr. Biol.* **2011**, *3*, 375–387.
- Pinney, K. G. In Vascular-Targeted Therapies in Oncology; Siemann, D. W., Ed.; John Wiley & Sons, Ltd, 2006; pp. 95–121.
- 34. Tozer, G. M.; Kanthou, C.; Baguley, B. C. Nat. Rev. Cancer 2005, 5, 423–435.

- 35. Kanthou, C.; Tozer, G. M. Int. J. Exp. Pathol. 2009, 90, 284–294.
- 36. Dark, G. G.; Hill, S. A.; Prise, V. E.; Tozer, G. M.; Pettit, G. R.; Chaplin, D. J. *Cancer Res.* **1997**, *57*, 1829–1834.
- 37. Tozer, G. M.; Prise, V. E.; Wilson, J.; Cemazar, M.; Shan, S.; Dewhirst, M. W.; Barber, P. R.; Vojnovic, B.; Chaplin, D. J. *Cancer Res.* **2001**, *61*, 6413–6422.
- 38. Seed, L.; Slaughter, D. P.; Limarzi, L. R. Surgery 1940, 7, 696–709.
- 39. Ludford, R. J. J. Natl. Cancer Inst. 1945, 6, 89–101.
- 40. Pettit, G. R.; Singh, S. B.; Hamel, E.; Lin, C. M.; Alberts, D. S.; Garcia-Kendal, D. *Experientia* **1989**, *45*, 209–211.
- 41. Pettit, G. R.; Rhodes, M. R. Anticancer. Drug Des. **1998**, 13, 183–191.
- 42. Pettit, G. R.; Lippert, J. W. Anticancer. Drug Des. 2000, 15, 203–216.
- Dowlati, A.; Robertson, K.; Cooney, M.; Petros, W. P.; Stratford, M.; Jesberger, J.; Rafie, N.; Overmoyer, B.; Makkar, V.; Stambler, B.; Taylor, A.; Waas, J.; Lewin, J. S.; McCrae, K. R.; Remick, S. C. *Cancer Res.* 2002, *62*, 3408–3416.
- 44. Kretzschmann, V. K.; Fürst, R. Phytochem. Rev. 2014, 13, 191–206.
- 45. Rustin, G. J. S.; Galbraith, S. M.; Anderson, H.; Stratford, M.; Folkes, L. K.; Sena, L.; Gumbrell, L.; Price, P. M. *J. Clin. Oncol.* **2003**, *21*, 2815–2822.
- Rustin, G. J.; Shreeves, G.; Nathan, P. D.; Gaya, A.; Ganesan, T. S.; Wang, D.; Boxall, J.; Poupard, L.; Chaplin, D. J.; Stratford, M. R. L.; Balkissoon, J.; Zweifel, M. Br. J. Cancer 2010, 102, 1355–1360.
- 47. Ng, Q.-S.; Mandeville, H.; Goh, V.; Alonzi, R.; Milner, J.; Carnell, D.; Meer, K.; Padhani, A. R.; Saunders, M. I.; Hoskin, P. J. *Ann. Oncol.* **2012**, *23*, 231–237.
- Meyer, T.; Gaya, A. M.; Dancey, G.; Stratford, M. R. L.; Othman, S.; Sharma, S. K.; Wellsted, D.; Taylor, N. J.; Stirling, J. J.; Poupard, L.; Folkes, L. K.; Chan, P.; Pedley, R. B.; Chester, K. A.; Owen, K.; Violet, J. A.; Malaroda, A.; Green, A. J.; Buscombe, J.; Padhani, A. R.; Rustin, G. J.; Begent, R. H. *Clin. Cancer Res.* 2009, *15*, 4484–4492.
- Nathan, P.; Zweifel, M.; Padhani, A. R.; Koh, D.-M.; Ng, M.; Collins, D. J.; Harris, A.; Carden, C.; Smythe, J.; Fisher, N.; Taylor, N. J.; Stirling, J. J.; Lu, S.-P.; Leach, M. O.; Rustin, G. J. S.; Judson, I. *Clin. Cancer Res.* 2012, *18*, 3428– 3439.

- Mooney, C. J.; Nagaiah, G.; Fu, P.; Wasman, J. K.; Cooney, M. M.; Savvides, P. S.; Bokar, J. A.; Dowlati, A.; Wang, D.; Agarwala, S. S.; Flick, S. M.; Hartman, P. H.; Ortiz, J. D.; Lavertu, P. N.; Remick, S. C. *Thyroid Off. J. Am. Thyroid Assoc.* 2009, *19*, 233–240.
- Sosa, J. A.; Elisei, R.; Jarzab, B.; Bal, C. S.; Koussis, H.; Gramza, A. W.; Ben-Yosef, R.; Gitlitz, B. J.; Haugen, B.; Karandikar, S. M.; Khuri, F. R.; Licitra, L. F.; Remick, S. C.; Marur, S.; Lu, C.; Ondrey, F. G.; Lu, S.; Balkissoon, J. ASCO Meet. Abstr. 2011, 29, 5502.
- 52. OXiGENE A Safety and Efficacy Study of Carboplatin, Paclitaxel, Bevacizumab and CA4P in Non-Small Cell Lung Cancer (FALCON). https://clinicaltrials.gov/ct2/show/NCT00653939?term=OXiGENE&rank=6
- 53. CA4P (fosbretabulin). *Mateon*. http://www.mateon.com/product-development/ca4/
- 54. Pinney, K. G.; Bounds, A. D.; Dingeman, K. M.; Mocharla, V. P.; Pettit, G. R.; Bai, R.; Hamel, E. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 1081–1086.
- 55. Pinney, K. G.; Mejia, M. P.; Villalobos, V. M.; Rosenquist, B. E.; Pettit, G. R.; Verdier-Pinard, P.; Hamel, E. *Bioorg. Med. Chem.* **2000**, *8*, 2417–2425.
- Siles, R.; Ackley, J. F.; Hadimani, M. B.; Hall, J. J.; Mugabe, B. E.; Guddneppanavar, R.; Monk, K. A.; Chapuis, J.-C.; Pettit, G. R.; Chaplin, D. J.; Edvardsen, K.; Trawick, M. L.; Garner, C. M.; Pinney, K. G. J. Nat. Prod. 2008, 71, 313–320.
- Hall, J. J.; Sriram, M.; Strecker, T. E.; Tidmore, J. K.; Jelinek, C. J.; Kumar, G. D. K.; Hadimani, M. B.; Pettit, G. R.; Chaplin, D. J.; Trawick, M. L.; Pinney, K. G. *Bioorg. Med. Chem. Lett.* 2008, *18*, 5146–5149.
- 58. Tanpure, R. P.; Harkrider, A. R.; Strecker, T. E.; Hamel, E.; Trawick, M. L.; Pinney, K. G. *Bioorg. Med. Chem.* **2009**, *17*, 6993–7001.
- 59. Tanpure, R. P.; Strecker, T. E.; Chaplin, D. J.; Siim, B. G.; Trawick, M. L.; Pinney, K. G. *J. Nat. Prod.* **2010**, *73*, 1093–1101.
- Tanpure, R. P.; Nguyen, B. L.; Strecker, T. E.; Aguirre, S.; Sharma, S.; Chaplin, D. J.; Siim, B. G.; Hamel, E.; Lippert, J. W.; Pettit, G. R.; Trawick, M. L.; Pinney, K. G. *J. Nat. Prod.* 2011, *74*, 1568–1574.
- 61. Pinney, K. G.; Sriram, M.; George, C.; Tanpure, R. P. Efficient method for preparing functionalized benzosuberenes **2012**. WO2012068284 A2.

- 62. Sriram, M.; Hall, J. J.; Grohmann, N. C.; Strecker, T. E.; Wootton, T.; Franken, A.; Trawick, M. L.; Pinney, K. G. *Bioorg. Med. Chem.* **2008**, *16*, 8161–8171.
- Tanpure, R. P.; George, C. S.; Sriram, M.; Strecker, T. E.; Tidmore, J. K.; Hamel, E.; Charlton-Sevcik, A. K.; Chaplin, D. J.; Trawick, M. L.; Pinney, K. G. *MedChemComm* 2012, *3*, 720–724.
- Tanpure, R. P.; George, C. S.; Strecker, T. E.; Devkota, L.; Tidmore, J. K.; Lin, C.-M.; Herdman, C. A.; MacDonough, M. T.; Sriram, M.; Chaplin, D. J.; Trawick, M. L.; Pinney, K. G. *Bioorg. Med. Chem.* 2013, *21*, 8019–8032.
- 65. MacDonough, M. T.; Strecker, T. E.; Hamel, E.; Hall, J. J.; Chaplin, D. J.; Trawick, M. L.; Pinney, K. G. *Bioorg. Med. Chem.* **2013**, *21*, 6831–6843.
- Hadimani, M. B.; MacDonough, M. T.; Ghatak, A.; Strecker, T. E.; Lopez, R.; Sriram, M.; Nguyen, B. L.; Hall, J. J.; Kessler, R. J.; Shirali, A. R.; Liu, L.; Garner, C. M.; Pettit, G. R.; Hamel, E.; Chaplin, D. J.; Mason, R. P.; Trawick, M. L.; Pinney, K. G. J. Nat. Prod. 2013, 76, 1668–1678.
- 67. Pinney, K. G.; Mocharla, V. P.; Chen, Z.; Hadimani, M.; Kessler, J.; Dorsey, J. M.; Edvardsen, K.; Chaplin, D. J.; Prezioso, J.; Ghatak, A. Tubulin binding agents and corresponding prodrug constructs **2006**. US7001926 B2.
- Herdman, C. A.; Devkota, L.; Lin, C.-M.; Niu, H.; Strecker, T. E.; Lopez, R.; Liu, L.; George, C. S.; Tanpure, R. P.; Hamel, E.; Chaplin, D. J.; Mason, R. P.; Trawick, M. L.; Pinney, K. G. *Bioorg. Med. Chem.* 2015, *23*, 7497–7520.
- Devkota, L.; Lin, C.-M.; Strecker, T. E.; Wang, Y.; Tidmore, J. K.; Chen, Z.; Guddneppanavar, R.; Jelinek, C. J.; Lopez, R.; Liu, L.; Hamel, E.; Mason, R. P.; Chaplin, D. J.; Trawick, M. L.; Pinney, K. G. *Bioorg. Med. Chem.* 2016, 24, 938– 956.
- 70. Iijima, S.; Ichihashi, T. *Nature* **1993**, *363*, 603–605.
- 71. Park, E.-S. In *Physical and Chemical Properties of Carbon Nanotubes*; Suzuki, S., Ed.; InTech, **2013**.
- Zhu, H. W.; Xu, C. L.; Wu, D. H.; Wei, B. Q.; Vajtai, R.; Ajayan, P. M. Science 2002, 296, 884–886.
- 73. Gauri, B. J. Nanomedicine Nanotechnol. 2012, 03, 1–9.
- 74. Vashist, S. K.; Zheng, D.; Pastorin, G.; Al-Rubeaan, K.; Luong, J. H. T.; Sheu, F.-S. *Carbon* **2011**, *49*, 4077–4097.
- 75. DavidB Henthorn In *Materials in Biology and Medicine*; Green Chemistry and Chemical Engineering; CRC Press, **2012**; pp. 91–107.

- Saleh, T. A.; Gupta, V. K. In Advanced Carbon Materials and Technology; Tiwari, A.; Shukla, S. K., Eds.; John Wiley & Sons, Inc., 2014; pp. 317–330.
- 77. Boncel, S.; Zając, P.; Koziol, K. K. K. J. Controlled Release 2013, 169, 126–140.
- 78. Boncel, S.; Müller, K. H.; Skepper, J. N.; Walczak, K. Z.; Koziol, K. K. K. *Biomaterials* **2011**, *32*, 7677–7686.
- Heister, E.; Neves, V.; Tîlmaciu, C.; Lipert, K.; Beltrán, V. S.; Coley, H. M.; Silva, S. R. P.; McFadden, J. *Carbon* 2009, 47, 2152–2160.
- 80. Liu, Z.; Fan, A. C.; Rakhra, K.; Sherlock, S.; Goodwin, A.; Chen, X.; Yang, Q.; Felsher, D. W.; Dai, H. *Angew. Chem. Int. Ed.* **2009**, *48*, 7668–7672.
- 81. Zhang, X.; Meng, L.; Lu, Q.; Fei, Z.; Dyson, P. J. *Biomaterials* **2009**, *30*, 6041–6047.
- Ali-Boucetta, H.; Al-Jamal, K. T.; McCarthy, D.; Prato, M.; Bianco, A.; Kostarelos, K. *Chem. Commun.* 2008, 459–461.
- 83. Park, S.; Yang, H.-S.; Kim, D.; Jo, K.; Jon, S. Chem. Commun. 2008, 2876–2878.
- 84. Li, R.; Wu, R.; Zhao, L.; Hu, Z.; Guo, S.; Pan, X.; Zou, H. *Carbon* **2011**, *49*, 1797–1805.
- 85. Chen, Z.; Pierre, D.; He, H.; Tan, S.; Pham-Huy, C.; Hong, H.; Huang, J. *Int. J. Pharm.* **2011**, *405*, 153–161.
- Cheng, J.; Meziani, M. J.; Sun, Y.-P.; Cheng, S. H. *Toxicol. Appl. Pharmacol.* 2011, 250, 184–193.
- Tripisciano, C.; Kraemer, K.; Taylor, A.; Borowiak-Palen, E. *Chem. Phys. Lett.* 2009, 478, 200–205.
- Bhirde, A. A.; Patel, V.; Gavard, J.; Zhang, G.; Sousa, A. A.; Masedunskas, A.; Leapman, R. D.; Weigert, R.; Gutkind, J. S.; Rusling, J. F. ACS Nano 2009, 3, 307–316.
- Feazell, R. P.; Nakayama-Ratchford, N.; Dai, H.; Lippard, S. J. J. Am. Chem. Soc. 2007, 129, 8438–8439.
- Hampel, S.; Kunze, D.; Haase, D.; Krämer, K.; Rauschenbach, M.; Ritschel, M.; Leonhardt, A.; Thomas, J.; Oswald, S.; Hoffmann, V.; Büchner, B. *Nanomed.* 2008, *3*, 175–182.

- 91. Chen, J.; Chen, S.; Zhao, X.; Kuznetsova, L. V.; Wong, S. S.; Ojima, I. J. Am. *Chem. Soc.* **2008**, *130*, 16778–16785.
- 92. Levi-Polyachenko, N. H.; Merkel, E. J.; Jones, B. T.; Carroll, D. L.; Stewart, J. H. *Mol. Pharm.* **2009**, *6*, 1092–1099.
- 93. Wu, W.; Li, R.; Bian, X.; Zhu, Z.; Ding, D.; Li, X.; Jia, Z.; Jiang, X.; Hu, Y. *ACS Nano* **2009**, *3*, 2740–2750.
- 94. Dumortier, H.; Lacotte, S.; Pastorin, G.; Marega, R.; Wu, W.; Bonifazi, D.; Briand, J.-P.; Prato, M.; Muller, S.; Bianco, A. *Nano Lett.* **2006**, *6*, 1522–1528.
- 95. Samorì, C.; Ali-Boucetta, H.; Sainz, R.; Guo, C.; Toma, F. M.; Fabbro, C.; Ros, T. da; Prato, M.; Kostarelos, K.; Bianco, A. *Chem. Commun.* **2010**, *46*, 1494–1496.
- 96. Zhong Tian; Yinfeng Shi; Min Yin; Hebei Shen; Nengqin Jia *Nano Biomed. Eng.* **2011**, *3*, 155–160.
- 97. Gregory, R. E.; DeLisa, A. F. Clin. Pharm. 1993, 12, 401-415.
- 98. Cui, H.-F.; Vashist, S. K.; Al-Rubeaan, K.; Luong, J. H. T.; Sheu, F.-S. *Chem. Res. Toxicol.* **2010**, *23*, 1131–1147.
- 99. Madani, S. Y.; Mandel, A.; Seifalian, A. M. Nano Rev. 2013, 4, 1–14.
- 100. Takagi, A.; Hirose, A.; Futakuchi, M.; Tsuda, H.; Kanno, J. *Cancer Sci.* **2012**, *103*, 1440–1444.
- 101. Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. Nano Res. 2009, 2, 85–120.
- Foldvari, M.; Bagonluri, M. Nanomedicine Nanotechnol. Biol. Med. 2008, 4, 183– 200.
- Poland, C. A.; Duffin, R.; Kinloch, I.; Maynard, A.; Wallace, W. A. H.; Seaton, A.; Stone, V.; Brown, S.; MacNee, W.; Donaldson, K. *Nat. Nanotechnol.* 2008, *3*, 423–428.
- 104. Mitchell, L. A.; Gao, J.; Wal, R. V.; Gigliotti, A.; Burchiel, S. W.; McDonald, J. D. *Toxicol. Sci. Off. J. Soc. Toxicol.* **2007**, *100*, 203–214.
- 105. Muller, J.; Huaux, F.; Moreau, N.; Misson, P.; Heilier, J.-F.; Delos, M.; Arras, M.; Fonseca, A.; Nagy, J. B.; Lison, D. *Toxicol. Appl. Pharmacol.* **2005**, 207, 221–231.
- 106. Bosnyak, C. P.; Swogger, K. W. Rheological molecular rebar **2014**. US20140275286 A1.

- 107. Bosnyak, C.; Swogger, K.; Henderson, N.; Everill, P. Payload Molecule Delivery Using Functionalized Discrete Carbon Nanotubes **2015**. WO/2015/127332.
- 108. Halvorson, A. the breakthrough. *Bio-Pact Mak. MGMR Carbon Nanotube Solut. Glob. Med. Mark.* http://company.bio-pact.com/the-breakthrough/
- 109. Kanthou, C.; Tozer, G. M. Expert Opin. Ther. Targets 2007, 11, 1443–1457.
- 110. Dougherty, G., J.; Chaplin, D. J. In *Vascular Disruptive Agents for the Treatment of Cancer*; Meyer, T., Ed.; Springer New York: New York, NY, **2010**.
- Siemann, D. W. In Vascular-Targeted Therapies in Oncology; D.W. Siemann, Ed.; John Wiley & Sons, Ltd: London, UK, 2006; pp. 1–8.
- 112. Pettit, G. R.; Singh, S. B.; Boyd, M. R.; Hamel, E.; Pettit, R. K.; Schmidt, J. M.; Hogan, F. *J. Med. Chem.* **1995**, *38*, 1666–1672.
- 113. Ohsumi, K.; Nakagawa, R.; Fukuda, Y.; Hatanaka, T.; Morinaga, Y.; Nihei, Y.; Ohishi, K.; Suga, Y.; Akiyama, Y.; Tsuji, T. *J. Med. Chem.* **1998**, *41*, 3022–3032.
- 114. McGown, A. T.; Fox, B. W. Cancer Chemother. Pharmacol. 1990, 26, 79-81.
- 115. el-Zayat, A. A.; Degen, D.; Drabek, S.; Clark, G. M.; Pettit, G. R.; Von Hoff, D. D. *Anticancer. Drugs* **1993**, *4*, 19–25.
- 116. Pettit, G. R.; Minardi, M. D.; Boyd, M. R.; Pettit, R. K. Anticancer. Drug Des. **2000**, *15*, 397–403.
- 117. Boehle, A. S.; Sipos, B.; Kliche, U.; Kalthoff, H.; Dohrmann, P. Ann. Thorac. Surg. 2001, 71, 1657–1665.
- 118. Pettit, G. R.; Moser, B. R.; Boyd, M. R.; Schmidt, J. M.; Pettit, R. K.; Chapuis, J. C. Anticancer. Drug Des. 2001, 16, 185–193.
- 119. Ohsumi, K.; Hatanaka, T.; Nakagawa, R.; Fukuda, Y.; Morinaga, Y.; Suga, Y.; Nihei, Y.; Ohishi, K.; Akiyama, Y.; Tsuji, T. Anticancer. Drug Des. 1999, 14, 539–548.
- 120. Pettit, G. R.; Singh, S. B.; Niven, M. L.; Hamel, E.; Schmidt, J. M. J. Nat. Prod. **1987**, *50*, 119–131.
- 121. Cooney, M. M.; Ortiz, J.; Bukowski, R. M.; Remick, S. C. *Curr. Oncol. Rep.* **2005**, 7, 90–95.

- 122. Kirwan, I. G.; Loadman, P. M.; Swaine, D. J.; Anthoney, D. A.; Pettit, G. R.; Lippert, J. W.; Shnyder, S. D.; Cooper, P. A.; Bibby, M. C. *Clin. Cancer Res.* 2004, *10*, 1446–1453.
- 123. Baguley, B. C.; McKeage, M. J. Clin. Investig. 2012, 2, 985–993.
- 124. Liu, P.; Qin, Y.; Wu, L.; Yang, S.; Li, N.; Wang, H.; Xu, H.; Sun, K.; Zhang, S.; Han, X.; Sun, Y.; Shi, Y. *Anticancer. Drugs* **2014**, *25*, 462–471.
- 125. Chaplin, D. J.; Horsman, M. R.; Siemann, D. W. Curr. Opin. Investig. Drugs Lond. Engl. 2000 2006, 7, 522–528.
- 126. Flynn, B. L.; Gill, G. S.; Grobelny, D. W.; Chaplin, J. H.; Paul, D.; Leske, A. F.; Lavranos, T. C.; Chalmers, D. K.; Charman, S. A.; Kostewicz, E.; Shackleford, D. M.; Morizzi, J.; Hamel, E.; Jung, M. K.; Kremmidiotis, G. J. Med. Chem. 2011, 54, 6014–6027.
- 127. Pinney, K. G.; Pettit, G. R.; Trawick, M. L.; Jelinek, C. J.; Chaplin, D. J. In *Antitumor Agents from Natural Products*; Kingston, D.; Newman, D.; Cragg, G., Eds.; CRC Press, Taylor and Francis Group: Boca Raton, FL, **2012**; pp. 27–63.
- 128. Chen, Z.; Mocharla, V. P.; Farmer, J. M.; Pettit, G. R.; Hamel, E.; Pinney, K. G. J. *Org. Chem.* **2000**, *65*, 8811–8815.
- 129. Pinney, K.; Pettit, G.; Mocharla, V.; Del, P. M.; Shirali, A. Anti-Mitotic Agents Which Inhibit Tubulin Polymerization **1998**. WO9839323 (A1).
- 130. Kessler, R. J. Synthesis and Evaluation of New Inhibitors of Tubulin Polymerization and their Corresponding Prodrugs as Potential Vascular Targeting Agents. Masters Thesis, Baylor University: Waco, TX, **2002**.
- 131. Chen, Z.; O'Donnell, C. J.; Maderna, A. Tetrahedron Lett. 2012, 53, 64-66.
- 132. Chen, Z.; Maderna, A.; Sukuru, S. C. K.; Wagenaar, M.; O'Donnell, C. J.; Lam, M.-H.; Musto, S.; Loganzo, F. *Bioorg. Med. Chem. Lett.* **2013**, *23*, 6688–6694.
- 133. Eaton, P. E.; Carlson, G. R.; Lee, J. T. J. Org. Chem. 1973, 38, 4071–4073.
- 134. Tanis, V. M.; Moya, C.; Jacobs, R. S.; Little, R. D. *Tetrahedron* **2008**, *64*, 10649–10663.
- 135. Kemperman, G. J.; Roeters, T. A.; Hilberink, P. W. *Eur. J. Org. Chem.* **2003**, *2003*, 1681–1686.
- 136. Verdier-Pinard, P.; Kepler, J. A.; Pettit, G. R.; Hamel, E. *Mol. Pharmacol.* **2000**, *57*, 180–187.

- 137. Pettit, G. R.; Grealish, M. P.; Herald, D. L.; Boyd, M. R.; Hamel, E.; Pettit, R. K. *J. Med. Chem.* **2000**, *43*, 2731–2737.
- 138. Zhao, D.; Richer, E.; Antich, P. P.; Mason, R. P. FASEB J. 2008, 22, 2445–2451.
- Alhasan, M. K.; Liu, L.; Lewis, M. A.; Magnusson, J.; Mason, R. P. *PLoS ONE* 2012, 7, e46106.
- 140. Gardner, P. D.; Horton, W. J.; Thompson, G.; Twelves, R. R. J. Am. Chem. Soc. **1952**, *74*, 5527–5529.
- 141. Caunt, D.; Crow, W. D.; Haworth, R. D.; Vodoz, C. A. J. Chem. Soc. Resumed **1950**, 1631–1635.
- 142. Horton, W.; Pitchforth, L. J. Org. Chem. 1960, 25, 131–132.
- 143. Carpenter, P. D.; Humphreys, D. J.; Proctor, G. R.; Rees, L. G. J. Chem. Soc. [Perkin 1] **1974**, 1527–1531.
- 144. Comins, D. L.; Brown, J. D. J. Org. Chem. 1989, 54, 3730-3732.
- 145. Richtzenhain, H.; Meyer-Delius, M. Chemishe Berichte 1948, 81, 81–92.
- 146. Gapinski, D. M.; Roman, C. R.; Rinkema, L. E.; Fleisch, J. H. J. Med. Chem. 1988, 31, 172–175.
- 147. Meyers, A. I.; Mihelich, E. D. J. Am. Chem. Soc. 1975, 97, 7383-7385.
- 148. Meyers, A. I.; Gabel, R.; Mihelich, E. D. J. Org. Chem. 1978, 43, 1372–1379.
- 149. Flippin, L. A.; Berger, J.; Parnes, J. S.; Gudiksen, M. S. J. Org. Chem. **1996**, *61*, 4812–4815.
- 150. Flippin, L. A.; Carter, D. S.; Dubree, N. J. P. *Tetrahedron Lett.* **1993**, *34*, 3255–3258.
- Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A. J. Natl. Cancer Inst. 1991, 83, 757– 766.
- 152. Vichai, V.; Kirtikara, K. Nat. Protoc. 2006, 1, 1112–1116.
- 153. Hamel, E.; Lin, C. M. Biochim. Biophys. Acta BBA Gen. Subj. 1981, 675, 226–231.

- 154. Hamel, E. Cell Biochem. Biophys. 2003, 38, 1–21.
- 155. Liu, L.; Beck, H.; Wang, X.; Hsieh, H.-P.; Mason, R. P.; Liu, X. *PloS One* **2012**, *7*, e43314.
- 156. Schiff, P. B.; Horwitz, S. B. Proc. Natl. Acad. Sci. 1980, 77, 1561–1565.
- 157. Schiff, P. B.; Horwitz, S. B. Biochemistry (Mosc.) 1981, 20, 3247–3252.
- 158. Gorman, M.; Neuss, N.; Svoboda, G. H.; Barnes, A. J.; Cone, N. J. J. Am. Pharm. Assoc. 1959, 48, 256–257.
- 159. Owellen, R. J.; Owens, A. H.; Donigian, D. W. Biochem. Biophys. Res. Commun. 1972, 47, 685–691.
- 160. Kremmidiotis, G.; Leske, A. F.; Lavranos, T. C.; Beaumont, D.; Gasic, J.; Hall, A.; O'Callaghan, M.; Matthews, C. A.; Flynn, B. *Mol. Cancer Ther.* 2010, 9, 1562– 1573.
- 161. Lambert, J. M. Br. J. Clin. Pharmacol. 2013, 76, 248-262.
- 162. Prota, A. E.; Bargsten, K.; Diaz, J. F.; Marsh, M.; Cuevas, C.; Liniger, M.; Neuhaus, C.; Andreu, J. M.; Altmann, K.-H.; Steinmetz, M. O. *Proc. Natl. Acad. Sci.* 2014, *111*, 13817–13821.
- Ma, D.; Hopf, C. E.; Malewicz, A. D.; Donovan, G. P.; Senter, P. D.; Goeckeler, W. F.; Maddon, P. J.; Olson, W. C. *Clin. Cancer Res.* 2006, *12*, 2591–2596.
- 164. Hay, M. P.; Hicks, K. O.; Wang, J. In *Tumor Microenvironment and Cellular Stress*; Koumenis, C.; Hammond, E.; Giaccia, A., Eds.; Advances in Experimental Medicine and Biology; Springer New York, **2014**; pp. 111–145.
- 165. Wilson, W. R.; Hay, M. P. Nat. Rev. Cancer 2011, 11, 393-410.
- 166. McKeage, M. J.; Jameson, M. B.; Ramanathan, R. K.; Rajendran, J.; Gu, Y.; Wilson, W. R.; Melink, T. J.; Tchekmedyian, N. S. *BMC Cancer* 2012, *12*, 1–10.
- 167. Abbattista, M. R.; Jamieson, S. M. F.; Gu, Y.; Nickel, J. E.; Pullen, S. M.; Patterson, A. V.; Wilson, W. R.; Guise, C. P. *Cancer Biol. Ther.* **2015**, *16*, 610–622.
- 168. Chawla, S. P.; Cranmer, L. D.; Tine, B. A. V.; Reed, D. R.; Okuno, S. H.; Butrynski, J. E.; Adkins, D. R.; Hendifar, A. E.; Kroll, S.; Ganjoo, K. N. J. Clin. Oncol. 2014, 1–11.

- 169. Liu, Q.; Sun, J. D.; Wang, J.; Ahluwalia, D.; Baker, A. F.; Cranmer, L. D.; Ferraro, D.; Wang, Y.; Duan, J.-X.; Ammons, W. S.; Curd, J. G.; Matteucci, M. D.; Hart, C. P. Cancer Chemother. Pharmacol. 2012, 69, 1487–1498.
- Meng, F.; Evans, J. W.; Bhupathi, D.; Banica, M.; Lan, L.; Lorente, G.; Duan, J.-X.; Cai, X.; Mowday, A. M.; Guise, C. P.; Maroz, A.; Anderson, R. F.; Patterson, A. V.; Stachelek, G. C.; Glazer, P. M.; Matteucci, M. D.; Hart, C. P. *Mol. Cancer Ther.* 2012, *11*, 740–751.
- 171. Thomson, P.; Naylor, M. A.; Everett, S. A.; Stratford, M. R. L.; Lewis, G.; Hill, S.; Patel, K. B.; Wardman, P.; Davis, P. D. *Mol. Cancer Ther.* **2006**, *5*, 2886–2894.
- 172. Folkman, J. Nat. Rev. Drug Discov. 2007, 6, 273–286.
- 173. Ji, Y.-T.; Liu, Y.-N.; Liu, Z.-P. Curr. Med. Chem. 2015, 22, 1348–1360.
- 174. Rischin, D.; Bibby, D. C.; Chong, G.; Kremmidiotis, G.; Leske, A. F.; Matthews, C. A.; Wong, S.; Rosen, M.; Desai, J. *Clin. Cancer Res.* **2011**, *17*, 5152–5160.
- 175. Hori, K.; Saito, S.; Nihei, Y.; Suzuki, M.; Sato, Y. Jpn. J. Cancer Res. **1999**, 90, 1026–1038.
- 176. Hori, K.; Saito, S. Br. J. Cancer 2003, 89, 1334–1344.
- 177. Blay, J.-Y.; Pápai, Z.; Tolcher, A. W.; Italiano, A.; Cupissol, D.; López-Pousa, A.; Chawla, S. P.; Bompas, E.; Babovic, N.; Penel, N.; Isambert, N.; Staddon, A. P.; Saâda-Bouzid, E.; Santoro, A.; Franke, F. A.; Cohen, P.; Le-Guennec, S.; Demetri, G. D. *Lancet Oncol.* 2015, *16*, 531–540.
- 178. Davis, P. D.; Dougherty, G. J.; Blakey, D. C.; Galbraith, S. M.; Tozer, G. M.; Holder, A. L.; Naylor, M. A.; Nolan, J.; Stratford, M. R. L.; Chaplin, D. J.; Hill, S. A. *Cancer Res.* **2002**, *62*, 7247–7253.
- 179. Lee, R. M.; Gewirtz, D. A. Drug Dev. Res. 2008, 69, 352-358.
- 180. Grosios, K.; Holwell, S. E.; McGown, A. T.; Pettit, G. R.; Bibby, M. C. *Br. J. Cancer* **1999**, *81*, 1318–1327.
- Iyer, S.; Chaplin, D. J.; Rosenthal, D. S.; Boulares, A. H.; Li, L.-Y.; Smulson, M. E. *Cancer Res.* **1998**, *58*, 4510–4514.
- 182. Neuenschwander, U.; Hermans, I. J. Org. Chem. 2011, 76, 10236–10240.
- 183. Cossy, J.; Arseniyadis, S.; Meyer, C. *Metathesis in Natural Product Synthesis: Strategies, Substrates and Catalysts*; John Wiley & Sons, **2011**.

- 184. Paley, M. A.; Prescher, J. A. MedChemComm 2014, 5, 255–267.
- 185. Ma, X.; Hui, H.; Shang, W.; Jia, X.; Yang, X.; Tian, J. Curr. Drug Targets 2015, 16, 542–548.
- 186. Zhou, H.; Hallac, R. R.; Lopez, R.; Denney, R.; MacDonough, M. T.; Li, L.; Liu, L.; Graves, E. E.; Trawick, M. L.; Pinney, K. G.; Mason, R. P. Am. J. Nucl. Med. Mol. Imaging 2015, 5, 143–153.
- 187. Gapinski, D. M.; Mallett, B. E.; Froelich, L. L.; Jackson, W. T. J. Med. Chem. 1990, 33, 2807–2813.
- Ross, R. A.; Henry, N.; Nabi, S. N.; Nabi, S. N.; Das, N. K.; Beattie, I. R.; Cocking, P. A.; Finar, I. L.; Saunders, K. J.; Goldup, A.; Morrison, A. B.; Smith, G. W.; Blake, A. R.; Bascombe, K. N.; Cowperthwaite, M.; Shaw, R.; Barlow, C. B.; Guthrie, R. D.; Murphy, D.; Askam, V.; Bailey, D.; Jaques, D.; Donaldson, J. D.; O'Donogue, J. D.; Oteng, R.; Powell, J.; Shaw, B. L.; Es, T. van; Bramwell, P. S.; Fitton, A. O.; Glover, E. E.; Morris, G. H.; Morgan, E. N.; Palmer, P. J.; Kruszynska, L.; Williamson, W. R. N.; McCleverty, J. A.; Davison, A.; Wilkinson, G.; Allan, L. T.; Swan, G. A.; Lewis, J.; Mabbs, F.; Law, H. D.; Goldwhite, H.; Heacock, R. A.; Hutzinger, O. J. Chem. Soc. Resumed 1965, 3854–3904.
- 189. Bauer, R. A.; Wenderski, T. A.; Tan, D. S. Nat. Chem. Biol. 2013, 9, 21-29.
- 190. Mandal, A.; Bhattacharya, S.; Raychaudhuri, S. R.; Chatterjee, A. J. Chem. Res. Synop. **1988**, 366–367.
- 191. Kammath, V. B.; Šolomek, T.; Ngoy, B. P.; Heger, D.; Klán, P.; Rubina, M.; Givens, R. S. J. Org. Chem. 2013, 78, 1718–1729.
- 192. Perkin, William H., J.; Robinson, R. J. Chem. Soc. Trans. 1914, 105, 2376–2392.
- 193. Williams, J. D.; Khan, A. R.; Cardinale, S. C.; Butler, M. M.; Bowlin, T. L.; Peet, N. P. *Bioorg. Med. Chem.* 2014, 22, 419–434.
- 194. Pati, M. L.; Abate, C.; Contino, M.; Ferorelli, S.; Luisi, R.; Carroccia, L.; Niso, M.; Berardi, F. *Eur. J. Med. Chem.* **2015**, *89*, 691–700.
- 195. Fujii, N.; Irie, H.; Yajima, H. J. Chem. Soc. [Perkin 1] 1977, 2288–2289.
- 196. Day, J. P.; Lindsay, B.; Riddell, T.; Jiang, Z.; Allcock, R. W.; Abraham, A.; Sookup, S.; Christian, F.; Bogum, J.; Martin, E. K.; Rae, R. L.; Anthony, D.; Rosair, G. M.; Houslay, D. M.; Huston, E.; Baillie, G. S.; Klussmann, E.; Houslay, M. D.; Adams, D. R. *J. Med. Chem.* **2011**, *54*, 3331–3347.
- 197. Cohen, A. J. Chem. Soc. 1935, 429-436.

198. Ingold, C. K.; Piggott, H. A. J. Chem. Soc. Trans. 1923, 123, 1469–1509.