
ABSTRACT

Bayesian Method of Predicting In-Game Win Probability Across Sports

Jason Maddox, Ph.D.

Mentor: Jane Harvill, Ph.D.

In this dissertation, we create different in-game win probability models for

several sports using a Bayesian methodology. In the first chapter, we create a college

basketball model using score differential and time and compare the model to other

models found in literature. In the second chapter, we extend the model from the

first chapter into the NBA. In doing so, we also make adjustments to aid in the

performance of the model. In the third chapter, we create a college football win

probability model, accounting for many more factors than the score differential and

time.
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CHAPTER ONE

Introduction and Literature Review

1.1 College Basketball Literature Review

Sports analytics is not a new science. Work spans more than 30 years and

a large range of difficulty. Since the early 2000s, research in statistical methods

for sports analytics has risen dramatically. The review articles of Kubatko et al.

(2007), Santos-Fernandez et al. (2019), and Terner and Franks (2021) provide a

fairly comprehensive review for sports analytics for a wide variety of sports, including

basketball.

Generally speaking, models for predicting the outcome of a sporting event can

be classified into two systems: (1) pregame prediction or (2) in-game, or in-play,

prediction. Pregame prediction involves determining the outcome of a game before

play begins. In contrast, in-game prediction attempts to use the progress during a

game to determine win probabilities that vary as a function of in-game variables,

for example, elapsed game time, or score difference. The focus of this paper is in-

game prediction, and more specifically, during the course of the game estimating the

probability the home team wins, or the “in-game win probability.”

Estimating in-game win probability has long been a problem of interest. Many

different methods for accurately estimating in-game win probability are found in the

literature. Cooper et al. (1992) collected and analyzed data from 200 basketball

games, 100 baseball games, 100 hockey games, and 100 football games to investigate

when, during the course of a game for each of the sports, it is most likely to know the

final outcome of the game. With respect to basketball they concluded, “late game

leaders in basketball go on to win about four in five times,” and that percentage is
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“no different in football or hockey.” They also found that “home teams in basketball

were more than three times as likely as visiting teams to make a fourth-quarter

comeback,” and that the home winning percentage for basketball (64.1%) was the

strongest evidence of a home-team advantage across major American sports.

One of the earlier papers on predicting in-game win probability for baseball is

attributed to Lindsey (1963) who used the maximum likelihood estimator to deter-

mine the probability the home team wins given the inning the game is in and the

home team’s lead. He looked into how many times a team had won in prior games

when in the same position as the current game was in. That information was then

used to determine that team’s empirical winning percentage. Up until his work,

baseball decisions were based on what would maximize the scoring output for an

inning. Lindsey’s groundbreaking research instead focused on determining how each

decision would affect the probability that a team wins instead of only the change in

expected score. A more recent development in estimating in-game win probability

is Lock and Nettleton (2014) who use random forests that combine pre-play vari-

ables to estimate win probability before each play of an NFL game. More detail the

methodology by Lock and Nettleton can be found in Section 1.3.

In-game basketball analytics began to surface when Westfall (1990) developed

a graphical summary of the scoring activity for a basketball game that is a real-

time plot of the score difference versus the elapsed time. The features of the graph

provided easy access to largest leads, lead changes, come-from-behind activity, and

other interesting game features. Over time, models for forecasting in-game win

probability have become more complex. Some are built on expert predictions, some

on betting paradigms, and others on within-game metrics.

Shirley (2007) modeled a basketball game using a Markov model with three

states and used that model for estimating in-game win probability. He defines the

three states of the Markov model by considering which team has possession (having

2



two values), how that team gained the possession (with five values), and the number

of points scored on the previous possession (four values), with a total of 40 states.

Shirley’s goals were to provide a detailed “microsimulation” of a basketball game.

Rows of the transition matrix were modeled using multinomial logit models. He then

incorporates effects for the transition probabilities, resulting in a baseline transition

matrix, and then a unique transition matrix for every match-up between two teams.

Štrumbelj and Vračar (2012) improved upon the model of Shirley by taking

into consideration the strengths of the two teams and estimated transition proba-

bilities using performance statistics. They evaluated this approach along with logit

regression, a latent strength rating method, and bookmaker odds. They found that

the Markov model approach is appropriate for modeling a basketball game and pro-

duces forecasts of a quality comparable to that of other statistical approaches, while

giving more insight into basketball. Vračar et al. (2016) extended the state descrip-

tion to capture other facets beyond in-game states so that the transition probabilities

become conditional on a broader game context. Apart from the in-game event label,

the extended state description also includes game time, the points difference, and

the opposing teams’ characteristics. They argue that by doing so, the model’s tran-

sition probabilities become conditional on a broader game context (and not solely

on the current in-game event), which brings several advantages: it provides a means

to infer the teams’ specific behavior in relation to their characteristics, and to mit-

igate the intrinsic non-homogeneity of the progression of a basketball game (which

is especially evident near the end of the game).

Bashuk (2012) proposed using cumulative win probabilities over the duration

of a game to measure team performance. Using five years of game play, he generated

a Win Probability Index for NCAA basketball. He created the index using the

maximum likelihood estimate (MLE) of home wins
total games

for each combination of minutes
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left and score differential in the data. Using that index he created an open system

to measure the impact, in terms of win probability added, of each play.

More recently, Benz (2019) developed a logistic regression approach. In this

model, the coefficients of the covariates are allowed to change a function of time,

i.e., the effects of the coefficients are dynamic in nature. More on the methodology

of Benz can be found in Section 2.3.2. Chen and Fan (2018) developed a method for

modeling point differences using a functional data analysis (FDA) approach. They

argue that there are two major advantages of modeling the latent score difference in-

tensity process using FDA. First, it allows for arbitrary dependent structure among

score change increments. This removes potential model mis-specifications and ac-

commodates momentum which is often observed in sports games. Second, further

statistical inferences using FDA estimates will not suffer from inconsistency due to

the issue of having a continuous model yet discretely sampled data.

Shi and Song (2019) develop a discrete-time, finite-state Markov model for the

progress of basketball scores and use it to conditionally predict the probability the

home team wins or loses by a certain amount. They find that an empirical study

shows that the proposed model performs well, and more profoundly it can have

positive return when they bet with the market. Song and Shi (2020) present an

in-play prediction model based on the gamma process. The model is team-specific;

it takes account of the relative strengths of the two teams playing in a match. They

apply a Bayesian dynamic forecasting procedure that can be used to predict the

final score and total points. Finally, Song et al. (2020) modify the gamma process

by employing betting lines, letting the expectation of the final points total equal the

pregame betting line. They find their model can produce a positive return on the

over-under betting market, and their model has an application in monitoring the

betting market.
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While the techniques outlined above have various pros and cons, the methods

for estimating the in-game win probability proposed here are aimed at improving the

approaches of Stern (1994), Deshpande and Jensen (2016), and Benz (2019). Stern

modeled the difference between the home and visiting teams’ scores as a Brownian

motion process with drift equal to the points in favor of the home team. This model,

which is equivalent to a probit regression model, results in a relationship between the

home team’s lead and the probability of victory for the home team. His approach

is one of the earliest to provide a mechanism for allowing time to be continuous,

and to use that continuity in modeling the probabilities. Deshpande and Jensen

extended the work of Stern by applying a Bayesian framework to the probit model.

Benz extended Stern by allowing for multiple covariates with dynamic coefficients.

1.2 NBA Literature Review

Sports analytics has become a well-established area of research. Work spans

more than 30 years and a large range of difficulty. Since the early 2000s, research in

statistical methods for sports analytics has risen dramatically. The review articles

of Kubatko et al. (2007), Santos-Fernandez et al. (2019), and Terner and Franks

(2021) provide a fairly comprehensive review for sports analytics for a wide variety

of sports, including basketball. One problem of interest is predicting the probability

that the home team wins during the course of the game, or predicting “in-game win

probability.”

Speaking broadly, models for predicting the outcome of a sporting event can

be classified into two systems: (1) pregame prediction or (2) in-game, or in-play,

prediction. Pregame prediction involves determining the outcome of a game before

play begins. Once play begins, the process of predicting the outcome ends. In

contrast, in-game prediction attempts to use the progress during a game to determine
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win probabilities that vary as a function of in-game variables, for example, elapsed

game time or score difference. The focus of this paper is in-game prediction.

For a variety of sports, there are many different methods for accurately esti-

mating in-game win probability found in the literature. For basketball, one of the

first attempts to estimate in-game basketball analytics is Westfall (1990) who de-

veloped a graphical summary of the scoring activity for a basketball game that is

a real-time plot of the score difference versus the elapsed time. The features of the

graph provided easy access to largest leads, lead changes, come-from-behind activ-

ity, and other interesting game features. As computing technology and algorithms

have become more sophisticated, models for forecasting in-game win probability

have become more complex. Some are built on expert predictions, some on betting

paradigms, and others on within-game metrics. Shirley (2007) modeled a basketball

game using a Markov model with three states and used that model for estimat-

ing in-game win probability. Štrumbelj and Vračar (2012) improved upon that by

taking into consideration the strengths of the two teams and estimated transition

probabilities using performance statistics. Vračar et al. (2016) extended the state

description to capture other facets beyond in-game states so that the transition

probabilities become conditional on a broader game context. Bashuk (2012) pro-

posed using cumulative win probabilities over the duration of a game to measure

team performance. Using five years of game play, he generated a win probability

index for NCAA basketball. Using the index, he created an open system to mea-

sure the impact, in terms of win probability added, of each play. More recently,

Benz (2019) developed a logistic regression approach where the coefficients of the

covariates are allowed to change a function of time, i.e., the effects of the coefficients

are dynamic in nature. Chen and Fan (2018) developed a method for modeling

point differences using a functional data approach. Shi and Song (2019) develop a

discrete-time, finite-state Markov model for the progress of basketball scores, and
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use it to conditionally predict the probability the home team wins or loses by a

certain amount. Song and Shi (2020) present an in-play prediction model based

on the gamma process. They apply a Bayesian dynamic forecasting procedure that

can be used to predict the final score and total points. Song et al. (2020) modify

the gamma process by employing betting lines, letting the expectation of the final

points total equal the pregame betting line. Maddox et al. (2022a) develop three

Bayesian approaches with dynamic priors. The adjusted model with a dynamic prior

is, overall, the better of their three proposed methods. In this paper, we adopt the

approach of Maddox et al. for predicting in-game win probabilities for games in

the National Basketball Association (NBA). Additional considerations are made to

their methodology upon the extension to the NBA, such as an refinement of the

prior, improvement of the binning method and a more sophisticated adjustment

from pregame information into the model for estimating in-game win probabilities.

In addition, the win probabilities that ESPN publishes on their website have been

collected to compare to the methodology proposed by Maddox et al..

1.3 CFB Literature Review

Sports analytics has become a well-established area of research. Work spans

more than 30 years and a large range of difficulty. Since the early 2000s, research in

statistical methods for sports analytics has risen dramatically. The review articles

of Kubatko et al. (2007), Santos-Fernandez et al. (2019), and Terner and Franks

(2021) provide a fairly comprehensive review for sports analytics for a wide variety

of sports, including football. One problem of interest is predicting the probability

that the home team wins during the course of the game, or predicting “in-game win

probability.”

Speaking broadly, models for predicting the outcome of a sporting event can

be classified into two systems: (1) pregame prediction or (2) in-game, or in-play,

7



prediction. Pregame prediction involves determining the outcome of a game before

play begins. Once play begins, the process of predicting the outcome ends. In

contrast, in-game prediction attempts to use the progress during a game to determine

win probabilities that vary as a function of in-game variables, for example, elapsed

game time or score difference. The focus of this paper is in-game prediction for

college football.

One of the earlier papers on predicting in-game win probability for baseball

is attributed to Lindsey (1963) who used the maximum likelihood estimator to de-

termine the probability the home team wins given the inning the game is in and

the home team’s lead. He looked into how many times a team had won in prior

games when in the same position as the current game was in. That information

was then used to determine that team’s empirical winning percentage. Up until his

work, baseball decisions were based on what would maximize the scoring output

for an inning. Lindsey’s groundbreaking research instead focused on determining

how each decision would affect the probability that a team wins instead of only the

change in expected score. A more recent development in estimating in-game win

probability was approached by Benz (2019) who modeled college basketball in-game

win probability by using a series of logistic regressions at different times throughout

games on score differential and pregame win probability. He then smooths the mul-

tiple logistic regression models into a single smooth function. Maddox et al. (2022b)

propose a Bayesian model for the National Basketball Association (NBA) based on

time and score differential as the two predictors. Much of their methodology can be

extended to college football, but different predictors must be considered. Score and

time are not as solely informative about win probability in football as in basketball

because many more factors play a large role, such as field position or down and dis-

tance. This paper instead uses separate models for expected possessions remaining

8



and expected score differential following the current and subsequent possessions as

predictors themselves for the win probability model.

Within the game of football, Lock and Nettleton (2014) use random forests

that combine pre-play variables of everything contributing to the state of the game

to estimate win probability before each play of a National Football League (NFL)

game. The model just builds a random forest on all the variables they have access

to. For more detail on how random forests are built, see Section 4.4.1. Pro Football

Reference (2012) create a quasi “black box” model, where they go into some detail

about creating their win probability model using expected points along with pregame

win probability and the known standard deviation of the end of the game score

differential. However, many of the details used for their model are not mentioned.

Later, Ruscio and Brady (2021) compare the performance of the random forest

model by Lock and Nettleton and the model put forth by Pro Football Reference

when applied to the NFL. Their findings were that there was no discernable difference

between the two models. They then modified the way the Pro Football Reference

model uses game time to improve accuracy and to handle plays in overtime. Their

modified model performs slightly better than the random forest model by Lock

and Nettleton for plays throughout regulation and in overtime. Ruscio and Brady

were able to obtain the Pro Football Reference model for their paper to reproduce

the results. Pro Football Reference were also reached out to for this paper, but

they declined to provide more detail on their model. Therefore, the Pro Football

Reference model is unable to be reproduced and compared in this paper. However,

as Ruscio and Brady found the Lock and Nettleton and Pro Football Reference

performed similarly, it may be assumed that is also the case for college football.
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CHAPTER TWO

Bayesian Estimation of In-Game Home Team Win Probability for Division-I
College Basketball

2.1 Introduction

Sports analytics is not a new science. Work spans more than 30 years and

a large range of difficulty. Since the early 2000s, research in statistical methods

for sports analytics has risen dramatically. The review articles of Kubatko et al.

(2007), Santos-Fernandez et al. (2019), and Terner and Franks (2021) provide a

fairly comprehensive review for sports analytics for a wide variety of sports, including

basketball.

Generally speaking, models for predicting the outcome of a sporting event can

be classified into two systems: (1) pregame prediction or (2) in-game, or in-play,

prediction. Pregame prediction involves determining the outcome of a game before

play begins. In contrast, in-game prediction attempts to use the progress during a

game to determine win probabilities that vary as a function of in-game variables,

for example, elapsed game time, or score difference. The focus of this paper is in-

game prediction, and more specifically, during the course of the game estimating the

probability the home team wins, or the “in-game win probability.”

Estimating in-game win probability has long been a problem of interest. Many

different methods for accurately estimating in-game win probability are found in the

literature. Cooper et al. (1992) collected and analyzed data from 200 basketball

games, 100 baseball games, 100 hockey games, and 100 football games to investigate

when, during the course of a game for each of the sports, it is most likely to know the

final outcome of the game. With respect to basketball they concluded, “late game

leaders in basketball go on to win about four in five times,” and that percentage is
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“no different in football or hockey.” They also found that “home teams in basketball

were more than three times as likely as visiting teams to make a fourth-quarter

comeback,” and that the home winning percentage for basketball (64.1%) was the

strongest evidence of a home-team advantage across major American sports.

One of the earlier papers on predicting in-game win probability for baseball is

attributed to Lindsey (1963) who used the maximum likelihood estimator to deter-

mine the probability the home team wins given the inning the game is in and the

home team’s lead. He looked into how many times a team had won in prior games

when in the same position as the current game was in. That information was then

used to determine that team’s empirical winning percentage. Up until his work,

baseball decisions were based on what would maximize the scoring output for an

inning. Lindsey’s groundbreaking research instead focused on determining how each

decision would affect the probability that a team wins instead of only the change in

expected score. A more recent development in estimating in-game win probability is

Lock and Nettleton (2014) who use random forests that combine pre-play variables

to estimate win probability before each play of an NFL game. Additionally, Ryall

(2011) used play-by-play data with pregame Elo rankings to develop a model for

Australian Rules football. The concept of using pregame power rankings is one that

will be adopted here.

In-game basketball analytics began to surface when Westfall (1990) developed

a graphical summary of the scoring activity for a basketball game that is a real-

time plot of the score difference versus the elapsed time. The features of the graph

provided easy access to largest leads, lead changes, come-from-behind activity, and

other interesting game features. Over time, models for forecasting in-game win

probability have become more complex. Some are built on expert predictions, some

on betting paradigms, and others on within-game metrics. Shirley (2007) modeled

a basketball game using a Markov model with three states and used that model for
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estimating in-game win probability. Štrumbelj and Vračar (2012) improved upon

the model of Shirley by taking into consideration the strengths of the two teams

and estimated transition probabilities using performance statistics. Vračar et al.

(2016) extended the state description to capture other facets beyond in-game states

so that the transition probabilities become conditional on a broader game context.

Bashuk (2012) proposed using cumulative win probabilities over the duration of a

game to measure team performance. Using five years of game play, he generated a

Win Probability Index for NCAA basketball. Using that he created an open system

to measure the impact, in terms of win probability added, of each play.

More recently, Benz (2019) developed a logistic regression approach. In this

model, the coefficients of the covariates are allowed to change a function of time, i.e.,

the effects of the coefficients are dynamic in nature. Chen and Fan (2018) developed

a method for modeling point differences using a functional data approach. Shi

and Song (2019) develop a discrete-time, finite-state Markov model for the progress

of basketball scores, and use it to conditionally predict the probability the home

team wins or loses by a certain amount. Song and Shi (2020) present an in-play

prediction model based on the gamma process. They apply a Bayesian dynamic

forecasting procedure that can be used to predict the final score and total points.

Finally, Song et al. (2020) modify the gamma process by employing betting lines,

letting the expectation of the final points total equal the pregame betting line.

While the techniques outlined above have various pros and cons, the methods

for estimating the in-game win probability proposed here are aimed at improving the

approaches of Stern (1994), Deshpande and Jensen (2016), and Benz (2019). Stern

modeled the difference between the home and visiting teams’ scores as a Brownian

motion process with drift equal to the points in favor of the home team. This model,

which is equivalent to a probit regression model, results in a relationship between the

home team’s lead and the probability of victory for the home team. His approach
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is one of the earliest to provide a mechanism for allowing time to be continuous,

and to use that continuity in modeling the probabilities. Deshpande and Jensen

extended the work of Stern by applying a Bayesian framework to the probit model.

Benz extended Stern by allowing for multiple covariates with dynamic coefficients.

The remainder of the chapter is organized as follows. Section 2.2 contains

a more thorough overview of Stern (1994) and Deshpande and Jensen (2016), two

methods for in-game probability designed specifically for NBA games, and Benz

(2019), which was designed for NCAA games. In Sections 2.2.1 and 2.2.2, a modified

enhanced Bayesian approach is proposed that not only improves in-game predictions

compared to existing methods, but also is suitable for application to NCAA basket-

ball. Section 2.3 presents a description of the data used in the study. Following

that description is the result of estimating the in-game home team win probability

to over 30,000 NCAA basketball games, and then using the estimated model to pre-

dict the outcome of over 10,000 NCAA games. To illustrate utility in Section 2.4,

the models are applied to the 2016 Division 1 NCAA Tournament Championship

game between the University of North Carolina and Villanova University. Finally,

Section 2.5 contains a summary and concluding remarks.

2.2 Estimating In-Game Win Probability

For a specific game, consider the random process that is the home team’s lead

at time t = 0, 1, . . . , 2399, where t is the game time elapsed in seconds. At a specific

time t and for a specific home team lead ℓ, let pt,ℓ denote the in-game probability

that the home team will win the game at the end of regulation. At the beginning

of the game, t = ℓ = 0, the estimator of p0,0 is dependent on the method used for

estimating in-game win probability.

When considering multiple games i = 1, 2, . . . ,M , let Yi = 1 if the home team

wins game i and 0 otherwise. Consider pt,ℓ as a continuous function of t and ℓ.
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A classic approach to estimating pt,ℓ in any (t, ℓ) cell is the maximum likelihood

estimator. Specifically, define Nt,ℓ as the number of games in which the home team

leads by ℓ points after t seconds, and define nt,ℓ =
∑Nt,ℓ

i=1 Yi, the number of games

in the (t, ℓ) cell that the home team wins in regulation. Then on each (t, ℓ) cell,

the random variable nt,ℓ has a binomial(Nt,ℓ, pt,ℓ) distribution. Within each cell, the

maximum likelihood estimator of pt,ℓ is p̄t,ℓ = nt,ℓ/Nt,ℓ. At (0, 0), p̄0,0 = n0,0/N0,0.

Let Xt represent the home team lead after t seconds. Another approach to

estimating pt,ℓ is found in Stern (1994). Stern estimates in-game home team win

probability via a Brownian motion process with drift µ points per second home

team lead and finite variance σ2; that is,

p̃t∗,ℓ = P (X1 > 0 |Xt∗ = ℓ) = Φ

(
ℓ+ (1− t∗)µ√

(1− t∗)σ2

)
, (2.1)

where t∗ ∈ [0, 1) represents re-scaled time t and Φ(·) denotes the standard normal cu-

mulative distribution function. Although Xt is discrete, the model in equation (2.1)

treats Xt as a continuous random variable. Stern suggests a continuity correction

factor be applied ℓ, although he also noted the continuity correction factor results in

little improvement in the model’s performance. He provides empirical evidence that

the Brownian motion model provides a good fit to the score differences when applied

across multiple games. Stern noted the model (2.1) can be interpreted as a probit

regression model relating the game outcome to the transformed variables ℓ/
√
1− t∗

and
√
1− t∗, and with coefficients σ−1 and µ/σ. At t∗ = 0 and ℓ = 0, p̃0,0 = Φ(µ/σ),

signifying that µ/σ indicates the magnitude of the home field advantage. Specifying

the home team advantage can be accomplished several ways. Stern (1994) suggests

letting µ be the home field advantage in the particular sport, and for the NBA,

µ = 5 or 6 points. They also note that the home team wins in approximately 55%

to 65% of games, and so σ can be chosen so that values of µ/σ are in the 0.12 to

0.39 range.
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Taking the approach as outlined in Deshpande and Jensen (2016), the game is

partitioned into cells based on time (in seconds) and point differential. Some (t, ℓ)

cells may have small values of Nt,ℓ, which have the potential to result in estimators

of pt,ℓ with very large standard errors. To address this issue, windows can be de-

fined and centered on (t, ℓ) in such a way that the in-game win probability remains

relatively constant across the window. In basketball, since no offensive possession

can result in more than four points the window with respect to ℓ can be reasonably

defined as [ℓ − 2, ℓ + 2]. Moreover, since most offensive possessions last at least six

seconds the width of the time window is taken to be six. The same notation will be

adopted for any [t − 3, t + 3] × [ℓ − 2, ℓ + 2] window; that is, Nt,ℓ is the number of

games in the window in which the home team has led by any value in [ℓ− 2, ℓ + 2]

points after any time in [t − 3, t + 3] seconds and nt,ℓ =
∑Nt,ℓ

i=1 Yi, distributed as a

binomial(Nt,ℓ, pt,ℓ) random variable.

Benz (2019) presents a logistic regression model for estimating pt,ℓ. The model

improves upon his win probability model built into his ncaahoopR package. For a

specific game, Benz considers time intervals of the form (t′−∆, t′], where t′ = 2400−t

is the time remaining in the game. Pregame spread and score differential are included

as covariates. Each covariate has a coefficient that is allowed to change as function

of time remaining. The time intervals overlap each other by 90%. The value of

∆ is adjusted as time remaining approaches zero. Using a training set of 10,949

games from the 2016-2017 and 2017-2018 seasons, Benz finds empirical values for the

model coefficients. He illustrates that, as the amount of time remaining in a game

decreases, the importance of of pregame spread decreases in a nonlinear fashion,

and the importance of score differential increases, also in a nonlinear fashion. An

investigation of the scale of the coefficients reveals that score differential becomes

the more important predictor after the half.
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Bayesian methods provide another approach to estimating pt,ℓ. It is well-known

that the beta family is a conjugate prior for estimating pt,ℓ. Let αt,ℓ > 0 and βt,ℓ > 0

be the shape parameters of the beta prior on pt,ℓ. Then for each window within the

(t, ℓ) plane, the Bayes estimator of pt,ℓ is the mean of the posterior; specifically

p̂t,ℓ =
nt,ℓ + αt,ℓ

Nt,ℓ + αt,ℓ + βt,ℓ
. (2.2)

For all t = 0, 1, . . . ,M , on all windows centered at (t, ℓ), Deshpande and Jensen

(2016) propose the beta prior

pt,ℓ ∼


beta(0, 10), for ℓ < −20,

beta(5, 5), for −20 ≤ ℓ ≤ 20,

beta(10, 0), for ℓ > 20.

(2.3)

The choice of prior depends only on the home team lead ℓ, and does not take into

account the time remaining in the game t.

2.2.1 Dynamic Prior for In-Game Home Team Win Probability

The scale parameters in (2.3) rely only on the home team lead ℓ, not taking into

account the interaction between ℓ and time remaining. Also notable is that for |ℓ| >

20, which occurs 8.5% of the time, the prior parameters yields an improper prior.

In these cases, the prior may overwhelm the information in the data. To model the

interaction between the home team lead and the time elapsed, we propose choosing

the scale parameters for the beta prior dynamically, as illustrated in Figure 2.1

and specified in Table 2.1. The choices of the time scales and prior parameters

were determined based upon the lead author’s six years of experience working as an

analyst for a major Division 1 NCAA Basketball men’s team. From a basketball

coaching perspective, there are not many times in the first half of a game that

strategies or game plans change, so the prior for the first half of a game remained

relatively non-informative and constant across time. During the second half, coaches

often have a goal of winning the first ten minutes, minutes 10–15, 15–19, and the
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last minute, which is where the changes in the prior along time take place. At each

time point, the change in prior based on score differential were shrunk down closer

to a score differential of zero because small differences in score differential indicate

more as the game moves further on.

Table 2.1: Specification of dynamic beta prior.

Color Prior

Red beta(19,1)

Orange beta(9,1)

Yellow beta(4,1)

White beta(1,1)

Green beta(1,4)

Light blue beta(1,9)

Blue beta(1,19)

The time intervals illustrated in Figure 2.1 are: [0, 1200), [1200, 1800),

[1800, 2100), [2100, 2340), and [2340, 2400]. Observed home-team differential inter-

vals are time dependent. For the small number of games when the |ℓ| > 50, the

beta(19, 1) or beta(1, 19) prior is applied accordingly. In the rare instance that a

specific (t, ℓ) window had no observed data, for a positive differential, the largest

posterior probability of a home team win is used; for a negative differential, the

smallest posterior probability of a home team win is used. This choice of poste-

rior estimates is justified since windows with empty cells are those windows with

large score differentials relative to the elapsed time. Moreover, that the combination

hasn’t occurred in over 30,000 games. Therefore, the choice of the largest or small-
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Figure 2.1: Illustration of dynamic beta prior.

est estimate is reasonable. Using the dynamic prior, for any (t, ℓ) in the plane, the

dynamic Bayesian estimator of pt,ℓ is given as in equation (2.2).

The newly proposed choice of prior is proper for all (t, ℓ) combinations and is

much less likely to overwhelm the information in the data. More importantly, the

dynamic prior models the in-game home team win probability as a combination of

(t, ℓ). As with the prior in (2.3), the size of the score differential |ℓ| has an affect on

the estimated in-game win probability. However, the newly proposed dynamic prior

also models the estimated in-game win probability as a function of the game time

elapsed. In particular, early in the game (for small t), even for a relatively large

score differential, the dynamic prior allows for a larger probability of a comeback

than late in the game, for the same differential.
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2.2.2 Adjustment of Bayesian Estimator

For any game, the skill of the two teams playing has a definitive impact on

how likely it is a team will win. If two teams are evenly matched, then accurately

predicting which team will win is more difficult than if one team is much more

skilled than the other. Accordingly, team skill should also be taken into account

when estimating the in-game win probability. None of the previously described

estimators incorporate such a measure. In the following, we propose an adjusted

Bayesian estimator for in-game win probability, where the adjustment incorporates

the skills of the teams in the game.

To determine the adjustment, or the pregame point spread, the team ratings

and home team advantage are used. The point differential is commonly modeled

using a normal distribution with a standard deviation of 10 points; see for exam-

ple, Adams (2019). The mean for each game is computed using the difference in

the two teams’ ratings with a 3.5 point advantage added for the home team. The

value 3.5 commonly used as an adjustment that shows the worth of the home court in

evenly matched games. It differs from the parameter µ in (2.1), which measures home

court advantage in conference and non-conference games. Since in non-conference

games the home team tends to be better, the value of µ will be greater than the 3.5

point advantage. Using the normal quantile function, the pregame point spread can

be converted to a pregame winning probability, p̂p say, for each team. For the rare

case when a non Division 1 team appeared in the database, that team is given a

rating slightly lower than the lowest ranked Division 1 team. While this may not be

accurate for each of these occurrences, no power rankings on Division 2 and lower

teams are available. During the game at each time t, the probability the home team

wins p̂∗t,ℓ is the weighted average of the pregame win probability and the current un-

adjusted in-game probability, p̂t,ℓ found using the dynamic Bayesian model described
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in Section 2.2.1; that is,

p̂∗t,ℓ =

(
2400− t
2400

)
p̂p +

(
t

2400

)
p̂t,ℓ (2.4)

The adjustment has the following effect. In a tight contest, the in-game win

probability is shifted such that the higher ranked team is predicted to be more likely

to win. When the higher ranked team is winning, the probability the higher ranked

time will win is larger than a lower ranked team that is winning at the same time

by the same margin. The choice of a linear weighting function for the influence of

the pregame win probability p̂p on p̂∗t,ℓ was influenced by its interpretability, sim-

plicity, and effectiveness of a linear model. Further work on the effectiveness of the

improvements that might be obtained by more complicated weighting models.

2.3 Comparison of Methods for Estimation and Prediction

In the following, the performances of the MLE (baseline), the probit model

estimator of Stern (1994), the Bayesian estimator with prior given in (2.3) from Desh-

pande and Jensen (2016), and the proposed Bayesian estimator with dynamic prior

in Table 2.1 and Figure 2.1 are compared from both the modeling and prediction

perspectives. The games that are used in conducting the study are from the 2012-

2013 seasons up until the 2019-2020 season, which was cut short due to COVID.

In Subsection 2.3.1, the data is more thoroughly described, and the data collection

process and its challenges are discussed. In Section 2.3.2 the models are used to com-

pute estimates of in-game home team win probability using 30,789 games beginning

with the 2012-2013 season and ending with the 2017-2018 season. In Section 2.3.3,

the model estimates are used to predict the outcome of the 10,853 games from the

2018-2019 season and the 2019-2020 season. The performances of the models are

compared through Brier Score and misclassification rates.
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2.3.1 NCAA Data, Collection and Challenges

Play-by-play data from ESPN was scraped using R and the package rvest.

Since play-by-play data is not readily available on ESPN’s site for college basket-

ball games prior to 2012, the data collected begins with the 2012-2013 season and

continues through the completion of the 2019-2020 season.

Due to inconsistencies in data collection and formatting, the data used does

not contain play-by-play data for every game for all teams. From each conference,

a randomly selected team was chosen for inclusion in Tables 2.2 and 2.3, which

shows the percentage of all games played for each season in the data. In general,

smaller schools have a lower percentage of games with available data than larger

schools. However, the lack of information did not appear systematic, and is not seen

as problematic, since the data does include play-by-play information for many other

similar teams.

Table 2.2: Percentage of games played for which data was collected by ESPN for
selected programs from each conference (Part I).

Team Conference 12-13 13-14 14-15 15-16 16-17

Cent Arkansas ASUN 76.7% 93.1% 79.3% 100.0% 100.0%

UMass Lowell America East NA 89.3% 89.7% 96.6% 93.5%

UCF American 90.0% 93.5% 93.3% 96.7% 97.2%

George Mason Atlantic 10 78.9% 87.1% 87.1% 100.0% 88.2%

NC State ACC 17.1% 94.4% 97.2% 97.0% 100.0%

Texas Tech Big 12 19.4% 90.6% 96.9% 93.8% 96.9%

Xavier Big East 67.7% 91.2% 83.8% 100.0% 89.5%

N Arizona Big Sky 87.5% 90.6% 92.1% 86.7% 100.0%

Gardner-Webb Big South 85.3% 90.9% 94.3% 87.9% 93.9%

Ohio State Big Ten 10.8% 85.7% 85.7% 100.0% 100.0%
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Team Conference 12-13 13-14 14-15 15-16 16-17

UC Irvine Big West 75.7% 91.4% 85.3% 86.8% 91.7%

Delaware Colonial 60.6% 94.3% 90.0% 86.7% 100.0%

UNC Charlotte Conference USA 75.0% 90.3% 90.6% 93.9% 96.7%

Oakland Horizon 81.8% 87.9% 90.9% 94.3% 97.1%

Harvard Ivy 69.0% 90.6% 80.0% 90.0% 96.4%

Fairfield MAAC 74.3% 87.5% 96.8% 97.0% 96.8%

Kent State Mid-American 80.0% 78.1% 91.4% 93.8% 91.7%

Morgan State MEAC 62.5% 41.9% 58.1% 41.9% 63.3%

Drake Missouri Valley 78.1% 90.3% 96.8% 96.8% 100.0%

San Diego State Mountain West 44.1% 91.7% 94.4% 92.1% 90.9%

St Francis (PA) Northeast 89.7% 80.6% 100.0% 96.7% 97.1%

SE Missouri St Ohio Valley 63.6% 53.1% 96.7% 93.1% 97.0%

Colorado Pac-12 36.4% 94.3% 90.9% 94.1% 94.1%

Bucknell Patriot League 79.4% 90.0% 88.2% 93.5% 100.0%

Missouri SEC 32.4% 94.3% 96.9% 100.0% 93.8%

Furman Southern 90.3% 83.3% 93.9% 94.3% 91.4%

McNeese State Southland 54.8% 87.1% 87.1% 93.1% 100.0%

Jackson State SWAC 41.4% 32.3% 43.8% 41.7% 34.4%

Omaha Summit League 80.6% 46.9% 69.0% 90.6% 96.9%

South Alabama Sun Belt 83.3% 90.3% 97.0% 87.9% 96.9%

BYU West Coast 58.3% 94.3% 94.3% 97.3% 94.1%

Chicago State WAC 75.8% 90.6% 62.5% 87.5% 100.0%
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Table 2.3: Percentage of games played for which data was collected by ESPN for
selected programs from each conference (Part II).

Team Conference 17-18 18-19 19-20 Total

Cent Arkansas ASUN 91.4% 93.9% 90.3% 90.6%

UMass Lowell America East 93.3% 96.9% 90.6% 92.8%

UCF American 96.9% 87.9% 96.7% 94.0%

George Mason Atlantic 10 97.0% 93.9% 96.9% 91.1%

NC State ACC 97.0% 100.0% 100.0% 87.8%

Texas Tech Big 12 97.3% 97.4% 93.5% 85.7%

Xavier Big East 97.1% 97.1% 96.9% 90.4%

N Arizona Big Sky 93.8% 96.8% 86.7% 91.8%

Gardner-Webb Big South 96.9% 85.7% 90.9% 90.7%

Ohio State Big Ten 97.1% 97.1% 100.0% 84.6%

UC Irvine Big West 91.4% 89.2% 100.0% 88.9%

Delaware Colonial 100.0% 90.9% 90.9% 89.2%

UNC Charlotte Conference USA 93.1% 93.1% 100.0% 91.6%

Oakland Horizon 97.0% 100.0% 84.8% 91.7%

Harvard Ivy 100.0% 93.5% 89.7% 88.7%

Fairfield MAAC 93.9% 93.5% 93.8% 91.7%

Kent State Mid-American 97.1% 100.0% 96.9% 91.1%

Morgan State MEAC 81.3% 83.3% 71.0% 62.9%

Drake Missouri Valley 97.1% 97.1% 97.1% 94.1%

San Diego State Mountain West 93.9% 94.1% 100.0% 87.7%

St Francis (PA) Northeast 96.8% 90.9% 84.4% 92.0%

SE Missouri St Ohio Valley 93.5% 87.1% 100.0% 85.5%

Colorado Pac-12 93.8% 97.2% 93.8% 86.8%
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Team Conference 17-18 18-19 19-20 Total

Bucknell Patriot League 97.1% 97.0% 97.1% 92.8%

Missouri SEC 97.0% 96.9% 100.0% 88.9%

Furman Southern 93.9% 90.9% 100.0% 92.3%

McNeese State Southland 96.4% 93.5% 90.6% 87.8%

Jackson State SWAC 50.0% 40.6% 90.6% 46.8%

Omaha Summit League 93.5% 90.6% 93.8% 82.7%

South Alabama Sun Belt 96.9% 97.1% 96.8% 93.3%

BYU West Coast 100.0% 90.6% 100.0% 91.1%

Chicago State WAC 96.9% 84.4% 89.7% 85.9%

Part of the play-by-play data includes the arena where the game was played.

Teams are assigned multiple home arenas in situations where that is appropriate

due to design, i.e., Villanova, or because of a one off, for example, TCU playing

their home games in a different arena for the 2014-2015 season due to renovations.

While ESPN is not globally consistent in the way information is stored, this effect on

home-arena determination is rare. It should also be noted that occasionally teams

play in what could be considered a home game with respect to fan attendance and

location. An example of this is when the University of Kansas plays in Kansas City.

Despite these issues, the database of games is large enough that the overall accuracy

of the data used in the analysis is unaffected.
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Finally, to capture each team’s power rating prior to each game, data was

scraped from the website teamrankings.com.1 This site was chosen over other

systems that may outperform teamrankings.com because teamrankings.com has

historical daily power ratings available and the other sites do not. An alternative to

using these ratings might be the betting spread from Las Vegas betting lines.

2.3.2 Estimating Home Team In-Game Win Probability

Estimates of in-game home team win probability from the MLE, probit model,

Bayes model using the prior in (2.3), and the dynamic Bayes model are given in Fig-

ures 2.2 through 2.5. For each t = 0, 1, . . . , 2399 and |ℓ| = 0, 1, . . . , 104 cell, the

estimates are illustrated by letting the color of any (t, ℓ) represent the estimated

value of pt,ℓ. The values |ℓ| = 104 are taken from a game played on Dec. 30, 2013,

when Southern University beat Champion Baptist College by a score of 116-12, the

largest margin of victory for any game included in the data described in Section 2.3.1.

Historically, the largest margin of defeat in college men’s basketball occurred on

Jan. 12, 1992 when Troy State University, the home team, beat DeVry University

of Atlanta by a score of 258-141. For any cell, blue represents an estimated in-game

home team win probability of approximately zero, white an estimated probability of

approximately 0.5, and red an estimated probability of approximately one. Exami-

nation of these four figures reveals some common features. In particular, when the

score differential is large, in almost all (t, ℓ) cells, all models result in approximately

equal estimated probabilities. Additionally, by the end of the game the estimated

win probability goes to either zero or one for all four models.

Estimated probabilities using the traditional MLE and probit models are seen

in Figures 2.2 and 2.3, respectively. The probit model of Stern (1994) was fit to the

data, and values for µ and σ were estimated via maximum likelihood. The estimates

1 teamrankings.com lacks data for December 3, 2012. For games played on that date, the team
ratings from the previous day were used.
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Figure 2.2: Maximum likelihood estimates of in-game home team win
probability.

were µ̂ = 5.88 and σ̂ = 14.26, giving µ̂/σ̂ = 0.41. While the estimate for µ does

fall within the suggested five or six points, the ratio of the mean to the standard

deviation is slightly larger than the upper bound 0.39. This should not be of concern,

since in NCAA Division 1 basketball, the home team wins approximately 67% of the

time, compared to only 55% - 65% for the NBA. The MLE and probit models are

fitted using information in a cell, as opposed to a window, and so are more cells with

missing data than the Bayesian estimates in Figures 2.4 and 2.5. Additionally, the

MLE are less smooth than the other three. In Figure 2.2, up until t = 1100, a few

windows on the lower bound of the estimates are red, indicating that even though

the home team is down early in the game by a very large margin, the probability the

home teams wins is approximately one. These cells illustrate one of the problems in
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Figure 2.3: Probit model estimates of in-game home team win probability.

using the MLE. The estimates produced in these cells are based on a single game.

In February of 2018, Drexel University came back from a 34-point deficit to win

over the University of Delaware by a score of 85-83. This comeback is the “largest

come-from-behind win in the history of Division I basketball” (ESPN/Associated

Press, 2018). Delaware led by a score of 53-19 with 2:36 remaining in the first

half. For a many of the cells associated in the first half of this game, both Nt,ℓ

and nt,ℓ are one, resulting in a p̄t,ℓ = 1. For this specific game, on these specific

cells, the MLE performs perfectly on this training data. However, as evidenced by

other games where the home team fell behind early – just not as badly as Drexel –

the home team lost with high relative frequency. In short, cells with low values of

Nt,ℓ result in unreliable estimates because the estimators have large standard errors.

Rare events are not as problematic when using the probit model since the drift µ
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Figure 2.4: Bayesian estimates of in-game home team win probability.

and variance σ are included in the estimator for each cell. The Bayesian estimates

perform better estimating probabilities for rare events for two reasons. The first is

seen in a type of interpretation of the scale parameters in the choice of prior. The

first scale parameter can be interpreted as the number of “pseudo-wins” in a cell,

and the second scale parameter as the number of “pseudo-losses.” In this way, the

scale parameter choices can be seen as increasing the number of games in a specific

window in a way that is intuitive for that window. Specifically if the home team is

ahead, then first scale parameter being large effectively acts to increase the number

of wins in that cell. On the other hand, if the home team is behind, the second

scale parameter is large, and thus acting to increase the number of losses. The

second reason rare events do not effect the Bayesian estimates as drastically as the

MLE or as the probit model is due to the Bayesian estimates being computed over
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Figure 2.5: Dynamic Bayesian estimates of in-game home team win
probability.

a small window, as opposed to on a cell. Estimates from the Bayes models, shown

in Figures 2.4 and 2.5, are slower to increase the win probability early in the game

compared to the MLE and probit model estimates. As previously mentioned, because

the Bayes estimates are computed using information in a small window around the

cell, their overall appearance is smoother. The most prominent difference in the

two Bayesian estimates is for score differentials between −20 and 20 points. In

that range, the Bayes estimates using the prior in (2.3) tends to result in moderate

probabilities (0.4 to 0.6) for a early in the game, and for longer period of elapsed

time than the Bayes estimates with the dynamic prior.

Figures 2.6 through 2.8 illustrate the estimated in-game home team win prob-

abilities using the adjusted Bayes estimator with dynamic prior. Because the es-
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timated probability is affected by the pregame home team win probability, three

values of p̂p were selected to illustrate the performance of the newly proposed esti-

mator. Of the 30,789 games in the data, approximately 67% were won by the home

team, motivating the choice of p̂p = 0.67. The other two choices of pregame home

team win probability were found by adding and subtracting 0.3 from 0.67. For all

of the 30,789 games, the adjusted Bayes estimator of equation (2.4) was applied.

For a pregame win probability of p̂p = 0.67, the adjusted in-game home team win

probabilities are see in Figure 2.6. Figures 2.7 are the estimates for games with a

pregame win probability of 0.97, and Figure 2.8 for those with p̂p = 0.37. A visual

comparison of the graphs in Figures 2.2 through 2.4 to Figures 2.6 through 2.8 leads

to the conclusion that the unadjusted estimates perform very differently than the

adjusted estimates. In particular, the adjusted estimates tend to change more slowly

than the adjusted estimates. This is especially true in the first half of the game.

The implications of this slower change is that the adjusted estimates are less likely

to produce a high win probability early in the game for large leads. Later in the

game, the adjusted estimates change more rapidly. An animated Shiny app showing

the evolution of the adjusted dynamic Bayes estimates as a function of p̂p can be

found online at jasontmaddox.shinyapps.io\Win Probability.

2.3.3 Assessing the Models Predictive Performance

The six models fitted in Section 2.3.2 were used to predict the outcome of

the 10,853 games in 2018-2019 season and the 2019-2020 season. Two of the more

common model evaluation methods used in classification of binary prediction models

are Brier Score and misclassification rates. The predictive performances of the MLE,

probit model, Bayes with prior in (2.3), Bayes with dynamic prior, and adjusted

Bayes model with dynamic prior are compared below using the two measures.
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Figure 2.6: Adjusted dynamic Bayesian estimates for a pregame win probability of
.67.

Brier Score is analogous to the sum of the squared errors in linear regression

and has the advantage of maintaining the continuous information of all estimations.

The square of the difference between the estimated probability is compared to the

observed binary outcome. In the context of in-game home team win probabilities,

this observed binary outcome is denoted yi and is the observed value of Yi as defined

in Section 2.2. To interpret Brier Score, if Yi = 1 for all i, and the predicted

probability is also one for every i, then Brier Score will be zero, indicating perfect

prediction. On the other hand, if for all i, Yi = 0, and the estimated probability is

one, then Brier Score will be one, the worst possible Brier Score.
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Figure 2.7: Adjusted dynamic Bayesian estimates for a pregame win probability of
.97.

To compute Brier Score in this context, let p̃t,ℓ represent the estimated in-game

home team win probability for any one of the six methods. For each (t, ℓ) cell in the

test data set consisting of the 10,853 games, let N∗
t,ℓ represent the number of games in

the cell in which the home team led by ℓ points at time t; that is, N∗
t,ℓ is the number

of games observed in that cell. Then for non-missing estimated probabilities, Brier

Score is

B =
1

Q

2399∑
t=0

104∑
ℓ=−104

N∗
t,l∑

j=1

(p̃t,ℓ − yj)2 ,

where Q is the sum of N∗
t,ℓ in cells without missing p̃t,ℓ. Values of Q for the models

are given in Table 2.4.
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Figure 2.8: Adjusted dynamic Bayesian estimates for a pregame win probability of
.37.

Table 2.4: Number of points in computing Brier Score and the misclassification rates
for six estimation methods.

Model

Season MLE Probit Bayes (Adj) Dyn Bayes Benz

2018-2019 13,118,309 13,118,309 13,122,430 13,123,200 3,553,584

2019-2020 12,916,158 12,916,158 12,922,503 12,924,000 3,439,214
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Misclassification rates transform the estimated probabilities into binary indi-

cators. Specifically, a false positive occurs if the estimated in-game home team win

probability is greater than 0.5 and the home team loses (Yi = 0). A false negative

occurs when the estimated in-game home team win probability is less than 0.5 and

the home team wins (Yi = 1). According to the same summing operations for cal-

culating Brier Score, the number of false positives FP and false negatives FN are

counted, and then the two values are added. Using this, the misclassification rate is

defined by

MR =
FP + FN

Q
.

Because Brier Score maintains the values of the estimated probabilities, it con-

veys more information about the models ability to predict than the misclassification

rate. However, due to the sum of squares in Brier Score, misclassification rate is

more easily interpreted. Both of the evaluation metrics for each of all models are

provided in Table 2.5.

Table 2.5: Evaluation of predictive performances the 2018-2019 and 2019-2020 sea-
sons.

2018-2019 Season 2019-2020 Season

Model Brier Score Misclass Rate Brier Score Misclass Rate

MLE 0.1453 0.2183 0.1397 0.2084

Probit 0.1452 0.2180 0.1398 0.2086

Bayes 0.1451 0.2182 0.1396 0.2081

Dyn Bayes 0.1450 0.2182 0.1396 0.2081

Adj Dyn Bayes 0.1284 0.1870 0.1261 0.1827

Benz 0.1247 0.1799 0.1187 0.1688
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With respect to these metrics, the MLE, probit model, Bayes model, and Bayes

model with dynamic prior appear to perform similarly. However, with values of Q

exceeding 26,000,000, these slight differences may be indicative of a true difference in

performance. In contrast, the adjusted Bayesian model with dynamic prior clearly

out performs the other methods, having both lower Brier Score, and misclassification

rate. Benz’s model typically outperforms the best of the Bayesian approaches. The

faster decrease for the contribution of pregame spread and faster increase for the

contribution of point differential may account for the improved performance. Addi-

tionally, Benz’s model only updates when a play-by-play event occurs as opposed to

every second (see Table 2.4) which may explain the differences between the models’

performances.

Tables 2.6 and 2.7 show Brier Score and the misclassification rates, respectively

for the methods in this paper at the half (20 minutes remaining), with 10, 2, and 1

minute remaining. All methods improved substantially as the game progresses. The

two best models are the adjusted dynamic Bayes and Benz’s model. There is very

little difference in the performance of the other models.

Table 2.6: In-game evaluation of Brier Score for the 2018-2019 seasons.

2018-2019 Season 2019-2020 Season

Time remaining (in minutes)

20 10 2 1 20 10 2 1

Probit 0.149 0.109 0.060 0.050 0.141 0.102 0.061 0.051

Bayes 0.149 0.108 0.060 0.050 0.141 0.102 0.060 0.050

Dyn Bayes 0.149 0.108 0.060 0.050 0.141 0.102 0.060 0.050

Adj dyn Bayes 0.139 0.106 0.060 0.050 0.134 0.101 0.060 0.050

Benz 0.130 0.101 0.056 0.039 0.135 0.095 0.048 0.039
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Table 2.7: In-game evaluation of missclassification rate for the 2018-2019 seasons.

2018-2019 Season 2019-2020 Season

Time remaining (in minutes)

20 10 2 1 20 10 2 1

Probit 0.224 0.156 0.086 0.070 0.206 0.147 0.082 0.070

Bayes 0.223 0.156 0.085 0.070 0.203 0.147 0.082 0.070

Dyn Bayes 0.223 0.156 0.085 0.070 0.203 0.147 0.082 0.070

Adj dyn Bayes 0.197 0.149 0.085 0.070 0.186 0.140 0.082 0.070

Benz 0.192 0.140 0.070 0.051 0.198 0.131 0.063 0.051

2.4 Application of Model to a Specific Game

To illustrate utility for a single game, the six estimation techniques were ap-

plied to the 2016 NCAA Division 1 Championship Game between the University

of North Carolina (UNC) and Villanova University. The traces of the estimated

in-game home team win probabilities for all six methods are seen in Figure 2.9. The

game was played at NRG Stadium in Houston, Texas, a neutral site. UNC was

listed as the home team, as one of the four #1 seeds in the Tournament that year.

Villanova was a #2 seed, but was favored slightly over UNC by teamrankings.com.

The estimated pregame win probability for UNC to win the game was p̂p = 0.49. The

first three points of the game were scored one minute and five seconds into the game

by UNC’s Joel Berry II. Nineteen seconds later, Kris Jenkins of Villanova made a

lay-up, and the score was 2-3. The game stayed close, and at the end of the first half

(1,200 seconds into the game), UNC led Villanova 39-34. An investigation of the
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six estimators shows that the MLE, probit model, Bayes, and unadjusted dynamic

Bayes all quickly react to the early scores, bumping up the UNC win probability to

as high as 0.75. Benz’s model also increases the UNC win probability, but not as

much as the other four. The adjusted dynamic Bayes changes very little. At the half,

when UNC’s lead was five points, the four unadjusted methods predict UNC will

win with a probability of around 0.85. Benz’s model returns a probability of 0.75.

On the other hand, the adjusted Bayesian estimate does not react as drastically as

the other four in the early part of the game, because the pregame win probability is

influencing the returned values.

Five minutes and 52 seconds (1,552 seconds) into the second half, Villanova

had tied the game. At that time, the estimated probability of a UNC win drops

to around 0.5 for all six methods, and Benz’s method returns a value of slightly

less than 0.5. As the game continued, and the clock wound down, the six estimates

increase and decrease according to the score differential. In the last few minutes of

the game, the change in the six estimates is more unified in response to the change

in score differential than in the first half of the game. At around time 2,370 seconds

elapsed, Villanova had an eight point lead, and all models give UNC a very small

chance of winning. UNC pulled within one point with one minute remaining. With

six seconds remaining in the game, Marcus Page of UNC hit a 3-point jump shot to

tie the game at 74-74, and all six estimators jump to a home team win probability of

greater than 0.5. With less than one second remaining, Kris Jenkins shot a 3-pointer

which went through the net after time expired. Villanova won the championship by a

score of 77-74, and all six estimators drop to zero, showing how Villanova taking the

lead with no time remaining drastically affects the home team’s (UNC) probability

of winning.
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Figure 2.9: Win probability graph for 2016 NCAA Championship Game.

2.5 Conclusion

For NCAA basketball games, two new methods are proposed for estimating or

predicting in-game home team win probabilities. The first newly proposed method is

a Bayesian estimator with a prior distribution that changes as a function of lead dif-

ferential and time elapsed, which was called the Bayesian estimator with a dynamic

prior. The second method adds to the original estimate a time-weighted adjustment

based on pregame win probability computed from daily ratings. In this paper, the

adjustment was applied only to the Bayesian estimate with dynamic prior. It is

reasonable to conclude the adjustment would improve the performance of the other

estimators, just as it did the dynamic Bayesian estimator. A comparison of the

methods for the purpose of estimation shows that the two proposed estimates out-

performs the estimates from the three standard methods, and is competitive with

the logistic model of Benz. For prediction, the adjusted dynamic Bayesian method
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out performs the other, based on a comparison of both Brier Score and misclassifica-

tion rates. There are a number of additional problems to be investigated. First note

the methodology can be easily restructured based on the total time of the game to

apply to other basketball leagues, most notably the National Basketball Association

(NBA). Also of interest is the effect on the estimators for different window choices.

Another consideration is that the adjustment resulted in a substantial improvement

on the prediction of the adjusted dynamic Bayesian estimator. The adjusted dy-

namic Bayes model performed almost as well as Benz’s model. Another area of

investigation that remains is to determine a function of time that gives pregame win

probability a more quickly decreasing role than the linear function considered here.

It is also likely that other pregame metrics, or some combination of pregame met-

rics, in place of the pregame win probability derived from the power rankings (found

on teamrankings.com) might improve the outcome. These other metrics include

different power rankings, ELO rating, score-differential, and other team statistics;

any of these can be used singularly, as in this paper, or combined. Finally, the de-

velopment of these types of models for other sports also presents unique challenges

that are worth investigating.
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CHAPTER THREE

Bayesian Estimation of In-Game Home Team Win Probability for National
Basketball Association Games

3.1 Introduction

Sports analytics has become a well-established area of research. Work spans

more than 30 years and a large range of difficulty. Since the early 2000s, research in

statistical methods for sports analytics has risen dramatically. The review articles

of Kubatko et al. (2007), Santos-Fernandez et al. (2019), and Terner and Franks

(2021) provide a fairly comprehensive review for sports analytics for a wide variety

of sports, including basketball. One problem of interest is predicting the probability

that the home team wins during the course of the game, or predicting “in-game win

probability.”

Speaking broadly, models for predicting the outcome of a sporting event can

be classified into two systems: (1) pregame prediction or (2) in-game, or in-play,

prediction. Pregame prediction involves determining the outcome of a game before

play begins. Once play begins, the process of predicting the outcome ends. In

contrast, in-game prediction attempts to use the progress during a game to determine

win probabilities that vary as a function of in-game variables, for example, elapsed

game time or score difference. The focus of this paper is in-game prediction.

For a variety of sports, there are many different methods for accurately esti-

mating in-game win probability found in the literature. For basketball, one of the

first attempts to estimate in-game basketball analytics is Westfall (1990) who de-

veloped a graphical summary of the scoring activity for a basketball game that is

a real-time plot of the score difference versus the elapsed time. The features of the

graph provided easy access to largest leads, lead changes, come-from-behind activ-
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ity, and other interesting game features. As computing technology and algorithms

have become more sophisticated, models for forecasting in-game win probability

have become more complex. Some are built on expert predictions, some on betting

paradigms, and others on within-game metrics. Shirley (2007) modeled a basketball

game using a Markov model with three states and used that model for estimat-

ing in-game win probability. Štrumbelj and Vračar (2012) improved upon that by

taking into consideration the strengths of the two teams and estimated transition

probabilities using performance statistics. Vračar et al. (2016) extended the state

description to capture other facets beyond in-game states so that the transition

probabilities become conditional on a broader game context. Bashuk (2012) pro-

posed using cumulative win probabilities over the duration of a game to measure

team performance. Using five years of game play, he generated a win probability

index for NCAA basketball. Using the index, he created an open system to mea-

sure the impact, in terms of win probability added, of each play. More recently,

Benz (2019) developed a logistic regression approach where the coefficients of the

covariates are allowed to change a function of time, i.e., the effects of the coefficients

are dynamic in nature. Chen and Fan (2018) developed a method for modeling

point differences using a functional data approach. Shi and Song (2019) develop a

discrete-time, finite-state Markov model for the progress of basketball scores, and

use it to conditionally predict the probability the home team wins or loses by a

certain amount. Song and Shi (2020) present an in-play prediction model based

on the gamma process. They apply a Bayesian dynamic forecasting procedure that

can be used to predict the final score and total points. Song et al. (2020) modify

the gamma process by employing betting lines, letting the expectation of the final

points total equal the pregame betting line. Maddox et al. (2022a) develop three

Bayesian approaches with dynamic priors. The adjusted model with a dynamic prior

is, overall, the better of their three proposed methods. In this paper, we adopt the
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approach of Maddox et al. for predicting in-game win probabilities for games in

the National Basketball Association (NBA). Additional considerations are made to

their methodology upon the extension to the NBA, such as an refinement of the

prior, improvement of the binning method and a more sophisticated adjustment

from pregame information into the model for estimating in-game win probabilities.

In addition, the win probabilities that ESPN publishes on their website have been

collected to compare to the methodology proposed by Maddox et al..

The remainder of the paper is organized as follows. Section 3.2 provides a

brief description of the data and the data collection process. Section 3.3 contains

an more thorough explanation of the dynamic Bayesian estimator in Maddox et al.

(2022a) and describes the adjustments necessary to implement their approach to

games in the NBA. Section 3.4 presents the adjusted dynamic Bayesian method

for estimating in-game home team win probabilities, along with a comparison of

performances of the dynamic Bayesian and adjusted dynamic Bayesian estimators

and the ESPN counterpart. To illustrate utility, Section 3.5 applies the Bayesian

approaches to a specific NBA game, and compares that to the ESPN counterpart.

The paper concludes with a summary in Section 3.6.

3.2 Data Collection

The primary goal of the models that developed within is to find a practical

approach for effectively predicting regular season in-game home team win probabil-

ity for a single NBA game or a collection of NBA games. The data collected for

investigating the proposed models performances were taken from ESPN. Specifically,

play-by-play data from ESPN was scraped using R (R Core Team, 2021) and the

package rvest (Wickham, 2021). The data was collected starting with the beginning

of the 2012-13 NBA season through the 2019-20 season, when play was halted due

to the COVID-19 pandemic. Due to the unprecedented and unpredictable nature
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of playing the end of the 2019-20 season inside of a “bubble” with all games on a

neutral court, along with attendance limitations and inconsistent schedules for the

2020-21 season, the end of the 2019-20 season and the entire 2020-21 season are

omitted. The postseason is also not included, since it is conceivable that postseason

games have different behavior than regular season games.

Along with collecting the play-by-play data from ESPN, ESPN has their own

win probability model. Their model for estimating in-game win probability is not

accessible, and may be considered a “black box” model. The predicted win proba-

bilities for the 2018-19 and 2019-20 seasons are available on ESPN’s API that can

be accessed through the ESPN Developer Center.1 There is a general form of the

URL for NBA game back-end data providing access to the win probabilities. For

each game, the game id changes in the URL. The game ids are scraped for all games

in each season, then input into this URL to scrape the win probabilities throughout

the game.

3.3 Dynamic Bayesian Estimator

For a specific game, consider the random process that is the home team’s lead

at time t = 0, 1, . . . , 2879, where t is the game time elapsed in seconds. At a specific

time t and for a specific home team lead ℓ, let pt,ℓ denote the in-game probability

that the home team will win the game at the end of regulation. When considering

multiple games i = 1, 2, . . . ,M , let Yi = 1 if the home team wins game i and 0

otherwise. Consider pt,ℓ as a continuous function of t and ℓ. Maddox et al. (2022a)

establish an estimator of pt,ℓ using a Bayesian approach. For each cell, they combine

the data with a beta(αt,ℓ, βt,ℓ) prior where αt,ℓ and βt,ℓ are chosen based on t and ℓ.

Specifically, the game is partitioned into cells based on time (in seconds) and point

differential. Some (t, ℓ) cells may have small values of Nt,ℓ = number of games in that

1 The description of the ESPN Developer Center may be found at www.espn.com/apis/
devcenter/overview.html.
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cell, which have the potential to result in estimators of pt,ℓ with very large standard

errors. To address this issue, windows can be defined and centered on (t, ℓ) in such a

way that the in-game win probability remains relatively constant across the window.

In basketball, since no offensive possession can result in more than four points the

window with respect to ℓ can be reasonably defined as [ℓ− 2, ℓ+2]. Moreover, since

most offensive possessions last at least six seconds the width of the time window is

taken to be six. The same notation will be adopted for any [t−3, t+3]× [ℓ−2, ℓ+2]

window; that is, Nt,ℓ is the number of games in the window in which the home team

has led by any value in [ℓ− 2, ℓ+2] points after any time in [t− 3, t+3] seconds and

nt,ℓ =
∑Nt,ℓ

i=1 Yi, distributed as a binomial(Nt,ℓ, pt,ℓ) random variable. Based on the

binomial distribution, a simple estimator for in-game home team win probability for

for each (t, ℓ) combination is the maximum likelihood estimator

p̄t,ℓ =
nt,ℓ

Nt,ℓ

. (3.1)

In Section 3.3.2, limitations of this binning method are explained and addressed.

Then Maddox et al. apply a Bayesian methods approach to estimate pt,ℓ. Since

the beta family of distributions is a conjugate prior for the binomial distribution,

the beta-binomial connection is used to estimate pt,ℓ. Let αt,ℓ > 0 and βt,ℓ > 0 be

the shape parameters of the beta prior on pt,ℓ. Then for each window within the

(t, ℓ) plane, the Bayes estimator of pt,ℓ is the mean of the posterior beta distribution,

specifically

p̂t,ℓ =
nt,ℓ + αt,ℓ

Nt,ℓ + αt,ℓ + βt,ℓ
. (3.2)

In Maddox et al., the choice of αt,ℓ and βt,ℓ are dependent both on the time remaining

in the game and the score differential, leading to a “dynamic prior.” For the NBA

dynamic Bayesian estimator, the choice of parameters for the beta prior is described

in Section 3.3.1.
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3.3.1 Dynamic Prior for NBA Games

For the NBA, a more precise prior structure for the structure of the prior

distribution is proposed compared to Maddox et al. (2022a). A sample of 14 NBA

experts, including NBA front office associates were polled. For each combination of

elapsed time and home team lead in Table 2.1, the experts provided their estimation

of the probability of a team winning, regardless of home team. The sample mean

p̃t,ℓ and sample variance s2t,ℓ of the probabilities were computed. The two scale

parameters were estimated via a method-of-moments type approach. The system of

equations

p̃t,ℓ =
αt,ℓ

αt,ℓ + βt,ℓ
,

s2t,ℓ =
αt,ℓβt,ℓ

(αt,ℓ + βt,ℓ)
2 (αt,ℓ + βt,ℓ + 1)

,

is solved for αt,ℓ and βt,ℓ, yielding

αt,ℓ = −
p̃t,ℓ
(
p̃2t,ℓ − p̃t,ℓ + s2t,ℓ

)
s2t,ℓ

βt,ℓ =
(p̃t,ℓ − 1)

(
p̃2t,ℓ − p̃t,ℓ + s2t,ℓ

)
s2t,ℓ

,

as long as (p̃t,ℓ − 1)p̃t,ℓ(p̃
2
t,ℓ − p̃t,ℓ + s2t,ℓ) ̸= 0.

In Table 2.1, the score differential is presented when the home team has the

lead. The greater the lead, the more likely the home team will win, and this is

modeled with a left-skewed prior. On the other hand, if the visiting team has the

lead, then the roles of αt,ℓ and βt,ℓ are reversed, and the prior becomes right-skewed.

The prior densities in Figure 3.1 illustrate this principle. The curves are beta density

priors plotted by home-team win probability. For example, the fifth row in Table 2.1

for t = 360, 361, . . . , 719 seconds and the home team has a lead of ℓ = 10, 11, . . . , 19

points has a beta(19, 7) prior seen in the figure as the blue density curve. On

the other hand, if the away team as the same lead, then the prior is a beta(7,

19), represented by the red curve. At any time, if the game is tied (ℓ = 0), or is
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Figure 3.1: Densities of beta(19, 7) prior (in blue) and beta (7, 19) prior
(in red).

sufficiently close in score for the amount of time remaining, the prior distribution is

flat, or “uninformative,” meaning it gives equal weight to both teams winning the

game.

Figure 3.2 shows the maximum likelihood estimates (MLE) p̄t,ℓ from equa-

tion (3.1) and Figure 3.3 the Bayesian estimates p̂t,ℓ from equation (3.2) for the

same data. The graph of the MLE is not as smooth as the graph of the Bayesian

estimates. This is easily explained by noting that the MLE are computed on each

(t, ℓ) point, and not across a rectangular bin. There are more points (t, ℓ) with no

games (and so no estimate) than rectangular bins with no games. Moreover, since

each MLE is computed based on the number of games at point (t, ℓ), the standard

error of the MLE is likely to be greater than the corresponding Bayesian estimate.

The Bayesian prior parameters have an interesting interpretation, first noted

by Deshpande and Jensen (2016). The parameter αt,ℓ can be interpreted as the
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number of “pseudo-wins” in that cell; likewise βt,ℓ as the number of “pseudo-losses.”

Through this interpretation, the two parameteres can be seen as a way of increasing

the number of games in a specific (t, ℓ) cell. If the home team is ahead, then first

scale parameter being large effectively acts to increase the number of wins in that

cell. On the other hand, if the home team is behind, the second scale parameter

is large, and acts to increase the number of losses. These ideas contribute to the

smoother appearance of the Bayesian estimates.

Table 3.1: Imputed parameters for beta prior

Elapsed Time (t) Home Team

(sec.) Lead (ℓ) αt,ℓ βt,ℓ

0 – 360 0 – 9 1 1

0 – 360 10 – 14 18 9

0 – 360 ≥ 15 54 6

361 – 720 0 – 9 1 1

361 – 720 10 – 19 19 7

361 – 720 ≥ 20 34 3

721 – 1440 0 – 9 1 1

721 – 1440 10 – 19 18 5

721 – 1440 ≥ 20 51 2

1441 – 2160 0 – 9 1 1

1441 – 2160 10 – 14 22 6

1441 – 2160 15 – 19 15 2

1441 – 2160 ≥ 20 71 2

2161 – 2520 0 – 9 1 1

2161 – 2520 10 – 14 22 3

2161 – 2520 15 – 19 25 2
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Elapsed Time (t) Home Team

(sec.) Lead (ℓ) αt,ℓ βt,ℓ

2161 – 2520 ≥ 20 133 2

2521 – 2700 0 – 9 1 1

2521 – 2700 10 – 14 46 3

2521 – 2700 15 – 19 48 1

2521 – 2700 ≥ 20 133 1

2701 – 2820 0 – 4 1 1

2701 – 2820 5 – 9 10 2

2701 – 2820 10 – 14 104 3

2701 – 2820 ≥ 15 328 2

2821 – 2879 0 – 2 1 1

2821 – 2879 3, 4 10 2

2821 – 2879 5 – 9 17 1

2821 – 2879 ≥ 10 167 1

3.3.2 Binning Procedure for NBA Games

The approach in Maddox et al. (2022a) fixes bin area; in other words, regardless

of time remaining and score differential, the length and width of all bins are equal.

However there are practical issues with fixed area binning, especially closer to the

end of the game. Consider that during the middle of the game, a two point difference

in score should not have a major effect on the win probability. However, closer to

the end of a close game a two point difference in score could have a very large effect
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Figure 3.2: Maximum likelihood estimate of home team win probability.

on win probability. For example, suppose there are five seconds remaining and a

tie score with a jump ball to take place. Intuitively there should be about a 50%

probability that either team wins the game. However, with the same amount of

time if one of those teams is up by two points, that team should have a greater

than 50% probability of winning. In this scenario, it is not reasonable to use the

same bin width on score differential at the end of the game as at the beginning. We

propose that between 2700 and 2820 seconds into the game, or three to one minutes

remaining, the width of the score differential bins is shortened to [ℓ− 1, ℓ+ 1], and

after 2820 seconds into the game, or in the last minute, there is no binning on score

differential. The bin widths on time remain the same at the end of the game, because

with a specific score differential a small shift in time should not have a large effect

on win probability even at the end of the game.
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Figure 3.3: Dynamic Bayesian estimate of home team win probability.

3.4 Adjusted Dynamic Bayesian Estimator

In-game win probability is certainly a function of time and score differential

during the game. However, it is also affected by the skill of the teams playing

the game. Incorporating some measure of team ability in to the model was also

discussed in Maddox et al. (2022a). The normal distribution quantile function was

used to convert the pregame point to a pregame home team win probability p̂p for

each team. The pregame probability, p̂p, was added into the model for predicting

in-game win probability so that the weight of p̂p decreased linearly as a function of

time remaining in the game to get a final adjusted Bayesian estimate of in-game

home-team win probability. In what follows, the model for finding p̂p and including

it in the model is refined by allowing for more complex models for including p̂p.
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The resulting final “adjusted dynamic Bayesian” estimates are compared with the

non-adjusted dynamic Bayesian estimates and the ESPN counterparts.

3.4.1 Brier’s Score

Brier’s score is a statistic used to compare the performance of different methods

for estimating probabilities. Brier’s score is the average of the square of the difference

between the estimated probability and the observed binary outcome. In the context

of in-game home team win probabilities, this observed binary outcome is denoted

yi and is the observed value of Yi as defined in Section 3.3. To interpret Brier’s

score, if Yi = 1 for all i, and the predicted probability is also one for every i, then

Brier’s score will be zero, indicating perfect prediction. On the other hand, if for all

i, Yi = 0, and the estimated probability is one, then Brier’s score will be one, the

worst possible Brier’s score.

To compute Brier’s score, if ρt,ℓ represent the estimated in-game home team

win probability. For each (t, ℓ) cell, let N∗
t,ℓ represent the number of games in the

cell in which the home team led by ℓ points at time t; that is, N∗
t,ℓ is the number of

games observed in that cell. Then for non-missing estimated probabilities, Brier’s

score is

B =
1

Q

2879∑
t=0

58∑
ℓ=−58

N∗
t,l∑

j=1

(ρt,ℓ − yj)2 ,

where Q is the sum of N∗
t,ℓ in cells without missing ρt,ℓ. When evaluating the models

using Brier’s Score, the 2018-19 and 2019-20 seasons are used as testing data, each

having Q = 6, 590, 576 observations.

3.4.2 Pregame Win Probabilities

Maddox et al. (2022a) adjustment to dynamic Bayesian estimator by including

a measure of pregame win probabilities, linearly shifting the weight from pregame

51



win probabilities to in-game win probabilities across using

p̂∗t,ℓ =

(
S − t
S

)
p̂p +

(
t

S

)
p̂t,ℓ, (3.3)

where S is the number of seconds in the game, and is 2,880 for NBA games2 , p̂t,ℓ

is given in equation (3.2) using the binning procedure described in Section 3.3.2

and the prior structure given in Table 3.1, p̂∗t,ℓ is the final predicted win probability

and p̂p is the pregame win probability. Incorporating pregame win probabilities into

the model helps to improve predictive accuracy because team quality plays a role

in predicting who may win a game. The linear adjustment is simple, and only a

function of time remaining.

In what follows, we investigate three different functions for incorporating

pregame probabilities. The first is a linear function of only time remaining. The

second is a linear function of time remaining and score differential. The third is lin-

ear in time, but quadratic in score differential. Other variations to the three weight

functions were considered. For example, including a quadratic term for time was at-

tempted. However, the more complicated models would not converge appropriately

for R to optimize the performance accurately.

Let the A be some set of numbers. Then for a specific number a, the indicator

function 1A(a) is defined as

1A(a) =


1 if a ∈ A, and

0 otherwise.

The three weight functions specifically considered here are

B1 = bt,

B2 = c1t+ c2|ℓ|,

B3 = d0 + d110(ℓ) + d2t+ d3|ℓ|+ d4ℓ
2.

2 In Maddox et al., S = 2, 400, the number of seconds in the NCAA basketball game.
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Each one of these weight functions yields a competing model for including pregame

win probabilities, which can be represented

p∗t,ℓ,j =


p̂p, Bj ≤ 0

(1−Bj)p̂p +Bj p̂t,ℓ, 0 < Bj < 1

p̂t,ℓ Bj ≥ 1

, j = 1, 2, 3.

The model for p∗t,ℓ,1 is equivalent to the model in equation (3.3) for b = 1/2880

of Maddox et al.. The weight function B2 includes a linear dependence on both

time and score differential. Additionally, if the value of B2 is greater than one,

only p∗t,ℓ,2 = p̂t,ℓ, the Bayesian estimator in equation (2.2). Finally, p∗t,ℓ,3 specifies a

linear effect in time remaining, but quadratic effect of score differential as well as

an intercept term, d0. As with B2, if B3 > 1, p∗t,ℓ,3 = p̂t,ℓ. Since ℓ enters B3 through

only |ℓ| and ℓ2, B3 is more likely to be greater than 1.

Values for b, c1, c2, d0, d1, . . . , d4 are estimated by choosing those values which

minimize Brier score for each p∗t,ℓ,j tested on data from the 2018–19 and 2019–20

seasons. The Brier score for each p∗t,ℓ,j is shown in Table 3.2. The model p∗t,ℓ,3 is the

most accurate predictor when using seasons 2018-20 to evaluate the model built on

seasons 2012-2018. The fitted model for B3 that provided the minimal Brier score is

B3 = −1.10633− 0.0231310(ℓ) + 0.00027t+ 0.06618|ℓ| − 0.00139ℓ2.
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Using this expression for B3, the model

p∗t,ℓ,3 =


p̂p B3 ≤ 0

(1−B3)p̂p +B3p̂t,ℓ, 0 < B3 < 1

p̂t,ℓ, B3 ≥ 1

is the “adjusted dynamic Bayesian estimator.”

Table 3.2: Brier Scores for models determining pregame probability
proportion.

Proportion Model Brier Score

Linear Time (B1) 0.1622

Linear Time & Score (B2) 0.1613

Quadratic (B3) 0.1598

Figures 3.4 through 3.6 illustrate the estimated in-game home team win proba-

bilities using the adjusted Bayes estimator, p∗t,ℓ,3. Because the estimated probability

is affected by the pregame home team win probability, three values of p̂p were se-

lected to illustrate the performance of the newly proposed estimator. Of the 7,376

games in the training data, approximately 59% were won by the home team, moti-

vating the choice of p̂p = 0.59. The other two choices of pregame home team win

probability are p̂p = 0.59± 0.3.

3.4.3 Model Comparison

For each second of each game from the 2018-19 and 2019-20 seasons, Brier’s

score was computed. The Brier Scores for each of the three models are shown in

Table 3.3. As mentioned previously, ESPN’s win probability model is not publicly

available, and the model itself cannot be reproduced. However, ESPN does release
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Figure 3.4: Adjusted dynamic Bayesian estimates for average home team pregame
win probability.

the results of the model, which were scraped from their website. Using Brier Scores,

ESPN’s win probability model does outperform the new adjusted dynamic Bayesian

model for both seasons in the test data set. However, Tables 3.4 and 3.5 shows

the performance of each model at different times during the game. The adjusted

dynamic Bayesian model performs better than the ESPN model at several points

in the fourth quarter in both seasons. This may indicate that future improvements

could be made to the adjusted dynamic Bayesian model by adjusting the pregame

portion of the model.

55



−50

0

50

0 1000 2000 3000
Time elapsed

S
co

re
 d

iff
er

en
tia

l

0.00

0.25

0.50

0.75

1.00
p

Figure 3.5: Adjusted dynamic Bayesian estimates for above average home team
pregame win probability.

Table 3.3: Brier Scores for predictive performances for the 2018-2019 and 2019-2020
seasons.

2018-2019 Season 2019-2020 Season Total

Bayes with dynamic prior 0.1663 0.1736 0.1697

Adjusted dynamic Bayes 0.1568 0.1635 0.1598

ESPN win probabilities 0.1550 0.1621 0.1582
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Figure 3.6: Adjusted dynamic Bayesian estimates for below average home team
pregame win probability.

Table 3.4: In-game evaluation of predictive performances for the 2018-2019
season.

Time remaining (in minutes)

Model 24 12 6 3 1

Dyn Bayes 0.1761 0.1194 0.0935 0.0775 0.0537

Adj Dyn Bayes 0.1702 0.1168 0.0927 0.0773 0.0537

ESPN 0.1666 0.1181 0.0931 0.0769 0.0536
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Table 3.5: In-game evaluation of predictive performances for the 2019-2020
season.

Time remaining (in minutes)

Model 24 12 6 3 1

Dyn Bayes 0.1840 0.1334 0.1071 0.0822 0.0588

Adj Dyn Bayes 0.1762 0.1300 0.1063 0.0819 0.0588

ESPN 0.1738 0.1311 0.1079 0.0829 0.0584

3.4.4 TeamRankings.com vs. Elo

While various metrics can be used to arrive at pregame win probabilities, short

of adjusting for starting lineups, power rankings should work well in determining the

pregame win probabilities. Metrics from TeamRankings.com might not be superior

to others. However, many others do not have public daily ratings. Another common

and well-researched win probability system, called the Elo ranking system, is often

used to predict team performance for a game which can be used to compare the

differences between various power ranking systems. The website FiveThirtyEight.

com provides historical Elo ratings for each team for each day they played a game

dating back to the 1946-47 season.

We can compare the performance of TeamRankings.com win probabilities and

Elo win probabilities by both comparing their Brier scores or by comparing their

performance when applied to the model introduced in this paper. These results

are found in Table 3.6. The lower Brier score for TeamRankings.com pregame pre-

dictions compared to that of the Elo model shows TeamRankings.com performs

better overall. Additionally, when the Elo pregame win probabilities are applied to
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the methodology outlined in this paper the Brier score for the adjusted dynamic

Bayesian model is 0.1598 using TeamRankings.com compared to 0.1605 for Elo.

Table 3.6: Brier Scores for TeamRankings.com compared to Elo.

Pregame probability model Pregame model In-game model

TeamRankings.com 0.2167 0.1598

Elo 0.2179 0.1605

3.5 Application to a Game

On November 23, 2019 the Chicago Bulls travelled to play at the Charlotte

Hornets, in what was expected to be a trivial, low-profile regular season game be-

tween two relatively unsuccessful teams. However, the game quickly turned into one

of the most exciting games of the season, with Zach LaVine setting a career high

of 49 points, including a game-winning 3-point shot with less than one second left

in the game3 . The Bulls ended the game on a 16-7 run in the last minute of the

game. The win probabilities for this game produced from each of the three models

are displayed in Figure 3.7. The largest differences in estimated win probability for

the three models occur early on during the game. This is to be expected, as early on

in the game there will be more variance in win probability due to more time allow-

ing for many possible unpredictable occurrences in the game. Throughout the first

three quarters of the game, ESPN predicts a larger probability of the Bulls winning

the game than the other two models. However, many of the rises and falls in the

three models occur at the same time in the game. During the fourth quarter, the

three models are close to indistinguishable from each other, each giving very similar

results for this particular game. Lastly, at the end of the game all three models had

3 Since that game, LaVine scored a new career high 50 points on April 9, 2021 against the
Atlanta Hawks.
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Figure 3.7: In-game win probabilities for Chicago at Charlotte.

an extremely high probability that the Hornets would win, signifying the remarkable

run the Bulls went on in the last minute, culminating in a buzzer beating three point

shot that swung all three models from predicting a Hornets’ win to a Bulls’ win.

The graph shows this by what appears to be an almost perfectly vertical blue line

at the end of the game. However, that line is actually all three models having home

win probability close to 1, then plummeting to zero once LaVine’s shot is made.

3.6 Conclusion

Two new methods are proposed for estimating in-game win probability for

NBA games. Both are an extension and enhancement of the methods in Maddox

et al. (2022a), which provide a number of models for estimating in-game home-

team win probabilities for NCAA basketball. The first proposed “dynamic Bayesian

estimator,” uses a prior that has been calculated based on the distribution of pre-

60



dicted win probabilities from 14 NBA field experts, including several anonymous

front office associates within the NBA. The second method, referred to as the “ad-

justed dynamic Bayesian estimator,” adjusts the dynamic Bayesian estimator based

on pregame win probabilities obtained from TeamRankings.com. The adjustment is

optimized over a function of both time and score so that as the game moves on or the

score differential increases, the adjusted dynamic Bayesian estimator will begin to

approach the dynamic Bayesian estimator rather than the pregame win probability.

These two methods are then compared to the win probability model that ESPN uses

for seasons 2018-19 and 2019-20. The ESPN model performs the best overall, but

there are times during the game the adjusted dynamic Bayesian model performs the

best, indicating that there are some features of the model that estimate probabilities

well and some that could be improved upon in the future, such as the calculation of

pregame win probability.
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CHAPTER FOUR

Bayesian Estimation of In-Game Home Team Win Probability for Division-I FBS
College Football

4.1 Introduction

Sports analytics has become a well-established area of research. Work spans

more than 30 years and a large range of difficulty. Since the early 2000s, research in

statistical methods for sports analytics has risen dramatically. The review articles

of Kubatko et al. (2007), Santos-Fernandez et al. (2019), and Terner and Franks

(2021) provide a fairly comprehensive review for sports analytics for a wide variety

of sports, including football. One problem of interest is predicting the probability

that the home team wins during the course of the game, or predicting “in-game win

probability.”

Speaking broadly, models for predicting the outcome of a sporting event can

be classified based on two objectives: (1) pregame prediction or (2) in-game, or in-

play, prediction. Pregame prediction involves determining the outcome of a game

before play begins. Once play begins, the process of predicting the outcome ends. In

contrast, in-game prediction attempts to use the progress during a game to determine

win probabilities that vary as a function of in-game variables, for example, elapsed

game time or score difference. The focus of this paper is in-game prediction for

college football.

One early paper on predicting in-game win probability for baseball is at-

tributed to Lindsey (1963), who used a conditional maximum likelihood estimator to

determine the probability the home team wins given the current inning the game and

the home team’s lead. Lindsey used historical information to determine percentages

the home team had won in a variety of scenarios, and applied those to the current
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game to determine current team’s estimated win probability as the game progressed.

Up until this work, baseball decisions were based on what would maximize the scor-

ing output for an inning. In contrast, Lindsey’s groundbreaking research focused on

determining how each decision would affect the probability that a team wins instead

of only the change in expected score. A more recent development in estimating

in-game win probability was approached by Benz (2019) who modeled college bas-

ketball in-game win probability by using a series of logistic regressions at different

times throughout games on score differential and pregame win probability. He then

smooths the multiple logistic regression models into a single smooth function. Mad-

dox et al. (2022b) propose a Bayesian model for the National Basketball Association

(NBA) based on time and score differential as the two predictors. Much of their

methodology can be extended to college football, but different predictors must be

considered. In football, score and time are not as informative for estimating win

probability. A simple consideration of the two sports makes clear a different model

is required for each. For example, in basketball, teams score often and quickly –

often within seconds of each other – and one possession can result in zero up to five

points. However, it is unusual for a team to score in seconds in a football game, and

the possible values for scores are not sequential integers. Additionally, in football,

many other variables contribute to the likelihood of a score, such as field position or

down-and-distance.

Only a few attempts have been proposed for in-game prediction of win prob-

ability for (American) football. Lock and Nettleton (2014) use a random forest of

regression trees with up to ten predictor variables to combine pre-play variables

to estimate in-game win probability before any play of an National Football League

(NFL) game. Pro Football Reference (2012) create a quasi “black box” model, where

they go into some detail about creating their win probability model using expected

points along with pregame win probability and the known standard deviation of
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the end of the game score differential. However, many of the details used for their

model are not provided. Later, Ruscio and Brady (2021) compare the performance

of the random forest model by Lock and Nettleton and the model put forth by Pro

Football Reference when applied to the NFL. Their findings were that there was

no discernable difference between the two models. Ruscio and Brady were able to

obtain the Pro Football Reference model for their paper to reproduce the results.

For Australian rules football, Ryall (2011) used play-by-play data with pregame Elo

rankings to develop a model for Australian Rules football. In what follows, a new

approach that uses Bayesian methods is proposed. Explanatory variables for pre-

dicting in-game win probability include expected number of possessions remaining

and expected score differential and with pregame power rankings.

The remainder of the paper is organized as follows. Section 4.2 details the

process of gathering and cleaning the data. Section 4.3 presents a method for mod-

eling the expected number of possession remaining in a college football game. In

Section 4.4, multiple models are proposed for best estimation of the expected score

and compared to each other. The resulting estimates of expected remaining posses-

sions and expected score are used as predictors for the overall win probability model

described in Section 4.5. The models for win probability are evaluated and applied

to a specific game in Section 4.6. Section 4.7 provides closing remarks.

4.2 Data Collection

The primary goal of the proposed models is effective practical prediction of in-

game home team win probability for a single college football game or a collection of

college football games during the regular season. The data collected for investigating

the proposed models performances were taken from ESPN. Specifically, play-by-play

data from ESPN was scraped using R (R Core Team, 2021) and the package rvest

(Wickham, 2021). For football games, ESPN does not display all plays on each
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game’s webpage by default. Instead, they store the data in a back end server that

can be accessed through the ESPN Developer Center. 1 There is a general form

of the URL for college football back-end data providing access to the play-by-plays.

For each game, the game id changes in the URL. The game ids are scraped for all

games in each season, then input into this URL to scrape the play-by-plays for each

game. The data was collected starting with the beginning of the 2004 college football

season through the 2021 season, excluding the 2020 season due to the uniqueness of

that season resulting from the COVID-19 pandemic.

There were some issues that occurred working with the raw data from ESPN’s

back-end server. As when working with any raw data, there can be typographical

errors or mislabels that must be evaluated and corrected, if correction is possible.

Clear identifiers were not always reliable; for example, errors were found on which

team had possession of the ball. The data was combed through many times to

ensure that specific identifiers for the game state were correctly labeled. For some

games, play-by-play data was not available in any capacity. This was true especially

for games during or close to the 2004 season. There was no clear pattern to which

games had no play-by-play data. However, enough games were collected on all

seasons that the missing games should not have a negative impact on the analysis.

4.3 Possessions Remaining Model

Within the game of college football, pace or tempo of play has been a key

discussion point for the last 20 years. Mike Leach is considered a modern day football

pioneer. While the head football coach at Texas Tech University, Leach ushered in a

new offensive play style which he carried with him to Washington State University

and then Mississippi State University. The style of play is commonly called the

“air-raid” or “up-tempo” offense. A primary feature of the play style is that as

1 The description of the ESPN Developer Center may be found at www.espn.com/apis/
devcenter/overview.html.
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little time as possible is used between successive offensive plays. The philosophy is

minimizing time between snaps prevents the opponent from successfully setting up

their defense.

The most common measure of a team’s pace is the team’s average number

of plays per game. However, Troch (2016) introduces time between consecutive

offensive plays as a viable alternative. He argues that average number of plays per

game does not take into account the tempo of the opponent or the number of run

versus pass plays a team calls. Because of incomplete passes, pass plays will stop

the clock more frequently than run plays. Therefore, the more pass plays a team

attempts, the more plays that team will run during a game, without it necessarily

being due to that team’s tempo.

For the purposes of the win probability model, interest lies more in the number

of possessions that remain in the game than the time between consecutive offensive

plays. The more possessions there are remaining, the more snaps, and the more

potential points are left for teams to score in the game. Troch’s critique of plays

per game not accounting for the opponent is valid. A new method is proposed that

is similar to the method put forth by Pomeroy (2012) for college basketball. He

calculates pace based on the number of possessions a team would expect to have in

a game against a team that plays with average tempo.

In what follows, the term “pace” is defined as the expected number of posses-

sions against an opponent that plays with average tempo. Pace is calculated by a

recursive algorithm as described with the following steps for each season. For iter-

ation m and team k = 1, 2, . . . , n, let ξk,m represent pace. For a given season, n is

the number of Football Bowl Subdivision (FBS) teams.

(1) For all teams k = 1, . . . , n, initialize ξk,0 ≡ 0.

(2) Choose δ > 0 to be small.2 While maxk{|ξk,m − ξk,m−1|} > δ,

2 The value δ = 0.0001 was used.
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(a) Calculate the average pace for all teams,

µm =
1

n

n∑
k=1

ξk,m−1.

(b) For each team k = 1, . . . , n, let κk represent the collection of indices

corresponding to opponent teams played during the regular season. For

each team k, sum the paces of the opponent teams,

ψk,m =
∑
j∈κk

ξj,m−1, k = 1, . . . , n.

(c) Find the average difference between the total number of possessions

played xk,m and the expected possessions played ψk,m,

ϵk,m =
xk,m − ψk,m

wk

, k = 1, . . . , n,

where wk is the number of games the team k played in the given season.

(d) Assign the updated pace for teams based on their number of possessions

above expected,

ξk,m = µm + ϵk,m, k = 1, . . . , n.

(3) When maxk{|ξk,m − ξk,m−1|} ≤ δ, the convergence criteria is satisfied and

the pace ξk for each team is taken to be the final iterative value of ξk.m.

The fastest and slowest team paces for Power 5 FBS teams for the 2021 season

are shown in Table 4.1. The Power 5 teams with the highest pace are teams that are

known for having up-tempo, pass heavy offenses. For example, Pitt and Tennessee

had two of the highest scoring offenses in the nation due to their fast pace. On the

other end, teams known for their slow-it-down, run-based offensive style have the

lower pace. Kansas State and Boston College are known for their grind-it-out style

that does not translate into many possessions or points.
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Table 4.1: Fastest and slowest paces for Power 5 teams for the 2021 regular
season.

Rank Team Pace (ξk)

11 Oklahoma State Cowboys 30.11

16 Duke Blue Devils 29.69

21 Pitt Panthers 29.13

22 Colorado Buffaloes 29.04

23 Tennessee Volunteers 28.96

124 Boston College Eagles 23.96

125 Kentucky Wildcats 23.76

127 Oregon Ducks 23.19

128 BYU Cougars 22.90

129 Kansas State Wildcats 22.42

To compute the value of expected possessions remaining after a play, denoted

τ , the two teams’ paces are averaged and the average is weighted with a decreasing

linear function of the time left in the game. If ξ1 and ξ2 represent the pace for the

two teams in the game, and t the number of seconds elapsed during the game, then

τ is given by

τ =

(
3600− t
3600

)(
ξ1 + ξ2

2

)
. (4.1)

4.4 Point Value Model

There have been many attempts to accurately predict the point value of a drive

in football. Many models are explained in generalities, but the details are vague. For

example, one of the more notable expected point models was posted by a user named
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“Mike” and is featured on Sports-Reference.com Pro Football Reference (2012).

A linear model is used to predict the average point value for a possession given down,

distance, and yards to end zone. However the website does not disclose the specifics

of the model. The author of this paper contacted SportsReference.com. They did

not wish to provide any details regarding the model.

Many of the models predict the point value of the current drive. However, they

fail to account for the dependency of the success of the next drive on the outcome

of the current drive. Consider, for example, the situation when a team has a fourth

down 99 yards away from the end zone. That team will almost certainly punt, which

will typically result in the opposing team receiving the ball with good field position,

making that opponent more likely to score. On the other hand, if a team has the

ball just a few yards from the end zone, they are likely to score. They will then kick

the ball off and the opponent would likely start their following possession about 75

yards from the end zone. These two contrasting scenarios illustrate the effect of a

prior possession on the likelihood of the subsequent possession resulting in a score

and thus on the in-game win probability. Therefore, instead of modeling the point

value of only the current possession, the proposed model is built on the combined

score for both the current possession and the following opponent possession.

Four competing models are used to predict the point value of the current and

ensuing possessions using the predictor variables in Table 4.2. The first model is a

linear regression model with no interactions. The second is a linear regression that

includes all 26 = 64 interactions between the nine predictors, with the exception of

any interactions involving offensive pace, defensive pace, or number of possessions.

The third and fourth models are a random forest model and an extreme gradient

boosting (XGBoost) model, respectively. Literature on linear regression is prevalent,

and the technique is commonly applied. However, random forests and the XGBoost

models are more current, lesser known techniques. Random forest and XGBoost
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models have become more important with advances in computation. Sections 4.4.1

and 4.4.2 provide overviews of these techniques. For more detail on random forest

see James et al. (2013), and for more detail on XGBoost, see Chen and Guestrin

(2016) and Jain (2022).

Table 4.2: Predictor variables in competing models for predicting the point values of
the current and ensuing possessions.

Time remaining (3600− t) Offensive score Defensive score

Down Distance Yards to end zone

Number of possessions played by time t Offensive pace Defensive pace

4.4.1 Random Forest Model

The random forest model is built on many independent decision trees. A

decision tree is a machine learning algorithm that takes the data as a whole, finds

the “best” predictor/value of predictor pair to split the data into two groups, or

child nodes. What is “best” is determined by the predictive power, that is, the

one that would minimize root mean square error (RMSE) or mean absolute error

(MAE) of the model, using the average response in each node as the prediction for

the observations that fall in that node. Each of these child nodes are then split again

by the same process, with splitting continuing to occur until some stopping criteria

is reached. This stopping criteria could be the maximum number of splits in a tree,

the maximum depth of the tree, or the maximum number of terminal nodes.

To build a random forest, a sample with replacement is taken from the data,

typically the same size as the data. This sample is used to build a decision tree,

then another sample, independent from the previous, is taken and another tree is

built. This is repeated many times to gather many independent trees. To make a

prediction, an observation is inserted into each tree, with the prediction being the
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average response from its terminal node. These predictions from each of the trees

are then averaged to obtain the overall prediction for the random forest.

Machine learning models, such as random forests, do not require assumptions

such as statistical models do. Instead, they have parameters that require “tuning.”

For example, the maximum number of splits in a tree is a parameter that could

be tuned for each random forest model. The process would be to run the model

on several different values for the maximum number of splits, then the number

that minimizes the MAE of the test data would be chosen for this model. The fewer

number of splits in the tree, the less fit each tree becomes to the training data, causing

a greater risk of underfitting the data. Likewise, the larger number of splits in each

tree, the greater the risk of overfitting the training data. Parameters for random

forests can be split into two categories, tree-based parameters and model-based

parameters. Tree-based parameters are applied to each tree individually and include,

but are not limited to maximum number of splits, minimum number of observations

in a terminal node, and maximum parameters considered at each split. Model-based

parameters are values pertaining to the random forest as a whole and include, but

are not limited to number of trees in the model and probabilities attached to each

observation of being included in each sample for building the tree.

4.4.2 XGBoost Model

An extreme gradient boosting model is similar to a random forest in that it is a

machine learning algorithm that is built on numerous decision trees. The difference

lies in that instead of the trees being independent from another, each tree is built

one at a time on the errors of the previous tree in XGBoost. Each tree is also

weighted down by a shrinkage factor, η, 0 < η < 1, to help prevent the tree from

learning too quickly and over-fitting the training data. In the training set, denote

x as the collection of all predictor variables in the training set and xi as the vector
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of predictor values of observation i, yi be the response variable value, and f̂(xi) be

predicted value from the model f̂(x) at xi. The XGBoost algorithm can be set up

as follows:

(1) Initialize f̂ 0(xi) ≡ 0 and r0i = yi for all i in the training set, where r0i is the

residuals for each observation before any iterations in the algorithm.

(2) For b = 1, 2, . . . , B, where B is the total number of trees in the algorithm,

repeat the following:

(a) Fit a tree f̂ b(x) to rb−1, the residuals from the most recently updated

model.

(b) Update f̂ b(x) by adding a shrunken version of the new tree,

f̂(x)← f̂(x) + ηf̂ b(x).

(c) For each i, update the residuals,

rbi ← rb−1
i − ηf̂ b(xi).

(3) Output the boosted model,

f̂(x) =
B∑
b=1

ηf̂ b(x).

Choice of B is critical, since for larger values of B, that is, a model with more

trees, η must be closer to zero to prevent over-fitting the training data. If η is large,

say close to 1, then the first tree built will start to fit the training data well, and

trees later on in the algorithm will be fitting residuals that are more likely due to

noise than to an actual signal.

Tuning of the XGBoost model can often be time consuming due to the number

of parameters to tune around and the amount of time it can take to run each iteration

of the model for large data sets. XGBoost has the same tree-based parameters that

are present in random forest models, most notably the depth of the tree, because the
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depth of each tree is the largest possible interaction depth the model can detect. The

additional model-based parameters that need tuning are B and η which are tuned

simultaneously. There are many methods for tuning parameters of the XGBoost

model, one of which is performed using the following steps.

(1) Choose a relatively large η, somewhere between 0.05 and 0.2.

(2) Optimize B for this shrinkage value, keeping B to a value where a machine

can run the model relatively quickly.

(3) Tune tree-based parameters using the values of η and B obtained in the first

two steps.

(4) Decrease η and increase B proportionally until the model’s performance

improves minimally. Measures of the model’s performance include statistics

like MAE or RMSE.

4.4.3 Test and Training Data for Models

To fit the point value model, and later the win-probability model, the data

was separated into a test data set and two training data sets. In particular, the last

five of the 17 seasons were designated as the test data for the win probability model

described in Section 4.5 and evaluated in Section 4.6. For the remaining 12 seasons,

half of the data were randomly selected to act as the overall data for the point value

model. This data will be referred to as the “point value data.” The other half were

used to build the win probability model.

4.4.4 Point Value Model Selection

To determine which of the four point value models is best, the point value

data was further separated into test and training data sets. Each of the four point

value models were built on the training set that was randomly pulled from the point
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value data and then applied to the point value test data. The models were compared

using mean absolute error (MAE). The results are shown in Table 4.3. For both lin-

ear regression models, the average difference between the predicted point difference

for the current and following possession and the actual point difference was slightly

more than three points per play. The random forest model slightly outperforms

the regression models, lowering the MAE to slightly below three points. The XG-

Boost model performs the best, with the lowest MAE by a margin at least 0.2949

points. Therefore, the XGBoost model is adopted to predict the point differential

for the current and subsequent possessions. Conclusions about model performance

are similar based on root mean square error.

Table 4.3: Performance of point value models using test MAE.

Model MAE

Linear regression 3.0805

Regression w/ inter 3.0614

Random forest 2.9751

XGBoost 2.6802

4.5 Win Probability Model

For a specific game, consider the random process that is the expected lead

for the home team following the current and succeeding possession, which will now

be referred to as expected score, ω. The expected score will shift as time in the

game moves forward, or equivalently as the expected possessions remaining in the

game, τ , decreases, where τ is calculated as in (4.1). For specific values of τ and ω,

letD pτ,ω represent the in-game probability that the home team will win the game.

When considering multiple games i = 1, 2, . . . ,M , let Yi = 1 if the home team wins

game i and 0 otherwise. Consider pτ,ω as a continuous function of τ and ω. Maddox
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et al. (2022a) introduce a Bayesian estimator of in-game win probability, pt,ℓ, based

on current time t and score differential ℓ, in college basketball. Their methods

are extended and adapted to the NBA in Maddox et al. (2022b). In both papers,

Maddox et al. argue that the nature of a basketball game makes time and score

differential excellent predictors for in-game win probability. For college football,

instead of using time and score differential as predictors, τ and ω are preferred for

two reasons. First, and most obviously, the nature of the games of basketball and

football are inherently different. As opposed to basketball, the predictors τ and ω

contain more information about current the state of the game, and account for which

team has the ball, how physically close (on the field) that team is to scoring, etc.

We now extend the methods of Maddox et al. (2022b) to estimate pτ,ω for college

football.

4.5.1 Naive Estimator of In-game Win Probability

For each combination of τ and ω rounded to the nearest whole number, con-

sider the (τ, ω) “cell.” On a specific cell, the number of wins by the home team,

nτ,ω, follows a binomial(Nτ,ω, pτ,ω) distribution, where Nτ,ω is the total number of

games that are observed in the (τ, ω) cell. Due to the total number of possible cells,

one for each combination of τ and ω, some cells may have a small value of Nτ,ω,

resulting in a large standard error for any estimator for pτ,ω. Deshpande and Jensen

(2016) and Maddox et al. (2022a,b) suggest a binning approach to address the small

sample sizes. Windows centered around (τ, ω) can be created in such a way that

the in-game win probability remains relatively constant across the window. For cre-

ating the interval around expected score, since scores were considered for each two

possessions, a shift of two possessions will rarely have a major affect on win prob-

ability. Moreover within college football for similar score differentials, two or fewer

possessions should not have a large effect on the win probability, especially early

75



in the game. Therefore a reasonable interval for expected possessions remaining is

defined as [τ − 2, τ + 2]. To determine an interval for the expected score, note that

when an offense scores, the fewest points attainable is three points from a field goal.

Therefore, the interval on expected score is taken to be [ω − 3, ω + 3]. The same

notation will be adopted for any [τ −2, τ +2]× [ω−3, ω+3] window; that is, Nτ,ω is

the number of games in the window in which the home team has an expected lead

by any value in [ω − 2, ω + 2] points with any expected possessions remaining in

[τ − 2, τ + 2], and given the specific value of Nτ,ω, nτ,ω =
∑Nτ,ω

i=1 Yi, distributed as a

binomial(Nτ,ω, pτ,ω) random variable. Based on the binomial distribution, a simple

estimator for in-game home team win probability for for each (τ, ω) window is the

maximum likelihood estimator

p̄τ,ω =
nτ,ω

Nτ,ω

. (4.2)

As a given game approaches the end of regulation, each individual point and posses-

sion will have a larger impact on the in-game win probability. Therefore the windows

should be modified at the end of the game to reflect this. Starting from fifteen ex-

pected possessions remaining, the proposed method shortens window lengths and

widths; that is, the length of interval around each of expected score and expected

number of possessions remaining will gradually decrease until there is an expected

two possesses remaining, when the intervals’ widths become zero.

4.5.2 Dynamic Bayesian Estimator

To elicit a prior distribution for in-game win probability, Maddox et al. (2022b)

suggest polling a sample of industry experts. The same can be done for college

football. The authors contacted a panel of 14 college football experts, including

coaches from a major Division I college football team and respected media personnel.

Each provided their estimate of the probability a team wins for each combination

of score differential, ℓ, and time elapsed, t, in Table 4.4, regardless of which team
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is the home team. Note that t and ℓ are the actual time and score differential in

the hypothetical game and are not the same as the previously defined τ and ω. To

reduce the level of complexity and increase the likelihood of response, the authors

choose to ask the question of win probability in terms of t and ℓ as opposed to τ

and ω.

The Bayesian prior parameters have an interesting interpretation, first noted

by Deshpande and Jensen (2016). The parameter αt,ℓ can be interpreted as the

number of “pseudo-wins” in the (t, ℓ) cell; likewise βt,ℓ as the number of “pseudo-

losses.” Through this interpretation, the two parameters can be seen as a way of

increasing the number of games in a specific (t, ℓ) cell. If the home team is ahead,

then first scale parameter being large effectively acts to increase the number of

wins in that cell. On the other hand, if the home team is behind, the second scale

parameter is large, and acts to increase the number of losses.

The sample mean p̃t,ℓ and sample variance s2t,ℓ, of the probabilities were com-

puted. The two scale parameters were estimated via a method-of-moments type

approach. The system of equations

p̃t,ℓ =
αt,ℓ

αt,ℓ + βt,ℓ
,

s2t,ℓ =
αt,ℓβt,ℓ

(αt,ℓ + βt,ℓ)
2 (αt,ℓ + βt,ℓ + 1)

,

is solved for αt,ℓ and βt,ℓ, yielding

αt,ℓ = −
p̃t,ℓ
(
p̃2t,ℓ − p̃t,ℓ + s2t,ℓ

)
s2t,ℓ

βt,ℓ =
(p̃t,ℓ − 1)

(
p̃2t,ℓ − p̃t,ℓ + s2t,ℓ

)
s2t,ℓ

,

as long as (p̃t,ℓ − 1) p̃t,ℓ
(
p̃2t,ℓ − p̃t,ℓ + s2t,ℓ

)
̸= 0.

In Table 4.4 the score differential is presented when the home team has the

lead. The larger the lead, the more the prior is left-skewed. On the other hand, if

the visiting team has the lead, then the roles of αt,ℓ and βt,ℓ are reversed, causing the
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prior to be right-skewed. At any time, if the game is tied (ℓ = 0), or is sufficiently

close in score for the amount of time remaining, the prior distribution is a diffuse

beta(1, 1) prior, allowing the likelihood to drive the results in the posterior.

Table 4.4: Imputed parameters for beta prior.

Elapsed Time (t) Home Team

(sec.) Lead (ℓ) αt,ℓ βt,ℓ

[0, 900] [0, 7] 1 1

[0, 900] (7, 14] 21 10

[0, 900] (14, 28] 16 3

[0, 900] (28,∞) 59 1

(900, 1800] [0, 7] 1 1

(900, 1800] (7, 14] 15 7

(900, 1800] (14, 28] 11 2

(900, 1800] (28,∞) 44 1

(1800, 2700] [0, 7] 1 1

(1800, 2700] (7, 14] 14 4

(1800, 2700] (14, 28] 13 1

(1800, 2700] (28,∞) 126 1

(2700, 3300] [0, 3] 1 1

(2700, 3300] (3, 7] 28 16

(2700, 3300] (7, 14] 27 8

(2700, 3300] (14, 21] 11 1

(2700, 3300] (21,∞) 98 1

(3300, 3480] 0 1 1

(3300, 3480] (0, 3] 29 18

(3300, 3480] (3, 7] 17 6
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Elapsed Time (t) Home Team

(sec.) Lead (ℓ) αt,ℓ βt,ℓ

(3300, 3480] (7, 10] 13 2

(3300, 3480] (10, 14] 16 1

(3300, 3480] (14,∞) 98 1

(3480, 3600) 0 1 1

(3480, 3600) (0, 3] 21 10

(3480, 3600) (3, 7] 18 5

(3480, 3600) (7, 10] 16 1

(3480, 3600) (10,∞) 91 1

The maximum likelihood estimator in (4.2) is based on τ and ω. However, the

elicited prior is based on t and ℓ. Consequently, the in-game win probability will

be written pt,ℓ,τ,ω. Since the beta family of distributions is a conjugate prior for the

binomial distribution, the beta-binomial connection is used to estimate pt,ℓ,τ,ω with

the mean of the posterior beta distribution, specifically

p̂t,ℓ,τ,ω =
nτ,ω + αt,ℓ

Nτ,ω + αt,ℓ + βt,ℓ
. (4.3)

4.5.3 Adjusted Dynamic Bayesian Estimator

During a game, the in-game win probability is clearly a function of expected

possessions remaining and expected score. However, it is also affected by the overall

skill of the teams playing the game. The skill level can be incorporated using pregame

win probabilities for each game. The normal distribution quantile function was used
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to convert the pregame point spread to a pregame home team win probability p̂p for

each game using the method outlined by Maddox et al. (2022a).

Maddox et al. (2022b) introduce three different functions to incorporate pregame

probabilities. The first is a linear function of only time remaining. The second is a

linear function of time remaining and score differential. The third is linear in time,

but quadratic in score differential. Other variations to the three weight functions

were considered. For example, including a quadratic term for time was attempted.

However, the more complicated models would not converge appropriately for R to

optimize the performance accurately. The three weight functions specifically consid-

ered here are

D1 = bt,

D2 = c0 + c1t+ c2|ℓ|,

D3 = d0 + d1t+ d2|ℓ|+ d3ℓ
2.

Each of the weight functions yields a competing model for including pregame win

probabilities, which can be represented as

p∗t,ℓ,τ,ω,j =


p̂p, Dj ≤ 0

(1−Dj) p̂p +Dj p̂t,ℓ,τ,ω, 0 < Dj < 1

p̂t,ℓ,τ,ω, Dj ≥ 1

, j = 1, 2, 3,

where p∗t,ℓ,τ,ω,j is the final predicted win probability associated with weight function

Dj.

Values for b, c0, . . . , d3 are estimated by minimizing Brier score for each p∗t,ℓ,τ,ω,j

computed from the holdout test data. The Brier scores for each p∗t,ℓ,τ,ω,j are shown

in Table 4.5. The model p∗t,ℓ,τ,ω,2 is the most accurate predictor for the test data.

The fitted model for D2 that provided the minimal Brier score is

D2 = 0.09589 + 0.00018t+ 0.02523ℓ.
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Using this expression for B2, the model

p∗t,ℓ,τ,ω,2 =


p̂p, D2 ≤ 0

(1−D2) p̂p +D2p̂t,ℓ,τ,ω, 0 < D2 < 1

p̂t,ℓ,τ,ω, D2 ≥ 1

is the “adjusted dynamic Bayesian estimator.” The percent of in-game win proba-

bility accounted for in the final predicted win probability is displayed in Figure ??.

As desired, early on in any game the majority of the final predicted win probability

comes from the pregame win probability. However, as the game draws to an end or

one team takes a large lead, the final predicted win probability gets closer and closer

to the dynamic Bayesian estimator.

Table 4.5: Brier scores for models determining in-game probability
proportion.

Proportion Model Brier Score

Linear Time (D1) 0.1272

Linear Time & Score (D2) 0.1250

Quadratic (D3) 0.1265

4.6 Model Evaluation and Application

For each play from each game from the 2017 through 2021 seasons, excluding

the 2020 season, Brier score was computed. The Brier scores of the three models,

dynamic Bayesian estimator, adjusted dynamic Bayesian estimator, and the ran-

dom forest model proposed by Lock and Nettleton (2014) are shown in Table 4.6.

Brier’s score is a statistic used to compare the performance of different methods for

estimating probabilities. Brier’s score is the average of the square of the difference

between the estimated probability and the observed binary outcome. In the context
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Figure 4.1: Graphical function of D2.

of in-game home team win probabilities, this observed binary is Yi as defined in Sec-

tion 4.5. To interpret Brier’s score, if Yi = 1 for all i, and the predicted probability

is also one for every i, then Brier’s score will be zero, indicating perfect prediction.

On the other hand, if for all i, Yi = 0, and the estimated probability is one, then

Brier’s score will be one, the worst possible Brier’s score. Both Bayesian models out-

perform the random forest model. The dynamic Bayesian model with the pregame

adjustment is the model that performs best overall.

Table 4.6: Brier scores for predictive performances for 2017 through 2021
seasons.

Model Brier Score

Dynamic Bayes 0.1453

Adjusted dynamic Bayes 0.1250

Random forest 0.1705
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Figure 4.2: In game win probability for 2021 Big 12 Championship.

To observe the performance of each model further, each model can be applied

to a specific game, observing the features of the models as the game progresses. The

models are run for the 2021 Big 12 Championship game between Baylor University

and Oklahoma State University. The results can be seen in Figure 4.2.

On December 4, 2021, the Baylor Bears and Oklahoma State Cowboys met

at AT&T Stadium in Dallas, Texas for the Big 12 Championship game. Oklahoma

State was the home team. During the regular season, Oklahoma State had beaten

Baylor, and were considered the favorite to win this game. The probability traces

for the game for each of the three models is seen in Figure 4.2. The adjusted

dynamic Bayes model (red curve) shows that Oklahoma State is favored by starting

at well over 50% chance that Oklahoma State would win. Early in the game, one
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of the features that leads to the Bayesian models outperforming the random forest

(blue line) is can be seen. The random forest model is too quick to jump to a win

probability close to 0 or 1, especially early in the game. The game got off to a

relatively slow start, but by halftime Baylor had surprised many by jumping out to

a 21-6 lead. At that time, all three models predicted Baylor was most likely to win.

In the second half, Oklahoma State started to make a come back. Halfway through

the third quarter, Oklahoma State was able to score a touchdown and make the

score 21-13, significantly raising their probability of winning. The Cowboys then

had another significant uptick in their win probability with ten minutes to go when

they earned a first-and-goal from the Baylor one-yard line, appearing to be on the

verge of scoring a touchdown with the potential to tie the game. However, Baylor

was able to hold Oklahoma State to just a field goal, maintaining their lead and their

edge in win probability. The climax of the game came with three minutes left when

Oklahoma State started a drive from their own 10 yard line. They methodically

drove the ball down the field and once again ended up with a first-and-goal, this

time from the two-yard line with 80 seconds left. Being down by 5 points, they were

not going to kick a field goal. Instead, they had four attempts to score a touchdown

to win the game. With so many attempts from so close, it appeared likely that

Oklahoma State would be able to score, driving their win probability in the two

Bayesian models over 50% despite trailing. Once again the Baylor defense made an

impressive goal line stand, keeping Oklahoma State out of the end zone, ultimately

less than half of a yard short, sealing the victory for Baylor.

4.7 Conclusion

Two new methods are proposed for estimating in-game win probability for

college football games. Both are an extension and enhancement of the methods

in Maddox et al. (2022a,b), which provide a number of models for estimating in-
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game home-team win probabilities for NCAA basketball and NBA basketball re-

spectively. The first proposed “dynamic Bayesian estimator,” uses expected score

differential and expected possessions remaining as predictors, which are modeled

from the data themselves, and a prior that has been calculated based on the dis-

tribution of predicted win probabilities from 14 college football field experts. The

second method, referred to as the “adjusted dynamic Bayesian estimator,” adjusts

the dynamic Bayesian estimator based on pregame win probabilities obtained from

TeamRankings.com. The adjustment is optimized over a function of both time and

score so that as the game moves on or the score differential increases, the adjusted

dynamic Bayesian estimator will begin to approach the dynamic Bayesian estimator

rather than the pregame win probability. These two methods are then compared to

the random forest win probability model proposed by Lock and Nettleton (2014).

Both new models outperform the standard random forest model, with the adjusted

dynamic Bayesian estimator performing the best out of all of the models.
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CHAPTER FIVE

Summary and Conclusions

5.1 College Basketball Conclusion

For NCAA basketball games, two new methods are proposed for estimating or

predicting in-game home team win probabilities. The first newly proposed method is

a Bayesian estimator with a prior distribution that changes as a function of lead dif-

ferential and time elapsed, which was called the Bayesian estimator with a dynamic

prior. The second method adds to the original estimate a time-weighted adjustment

based on pregame win probability computed from daily ratings. In this paper, the

adjustment was applied only to the Bayesian estimate with dynamic prior. It is

reasonable to conclude the adjustment would improve the performance of the other

estimators, just as it did the dynamic Bayesian estimator. A comparison of the

methods for the purpose of estimation shows that the two proposed estimates out-

performs the estimates from the three standard methods, and is competitive with

the logistic model of Benz. For prediction, the adjusted dynamic Bayesian method

out performs the other, based on a comparison of both Brier Score and misclassifica-

tion rates. There are a number of additional problems to be investigated. First note

the methodology can be easily restructured based on the total time of the game to

apply to other basketball leagues, most notably the National Basketball Association

(NBA). Also of interest is the effect on the estimators for different window choices.

Another consideration is that the adjustment resulted in a substantial improvement

on the prediction of the adjusted dynamic Bayesian estimator. The adjusted dy-

namic Bayes model performed almost as well as Benz’s model. Another area of

investigation that remains is to determine a function of time that gives pregame win
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probability a more quickly decreasing role than the linear function considered here.

It is also likely that other pregame metrics, or some combination of pregame met-

rics, in place of the pregame win probability derived from the power rankings (found

on teamrankings.com) might improve the outcome. These other metrics include

different power rankings, ELO rating, score-differential, and other team statistics;

any of these can be used singularly, as in this paper, or combined. Finally, the de-

velopment of these types of models for other sports also presents unique challenges

that are worth investigating.

5.2 NBA Conclusion

Two new methods are proposed for estimating in-game win probability for

NBA games. Both are an extension and enhancement of the methods in Maddox

et al. (2022a), which provide a number of models for estimating in-game home-

team win probabilities for NCAA basketball. The first proposed “dynamic Bayesian

estimator,” uses a prior that has been calculated based on the distribution of pre-

dicted win probabilities from 14 NBA field experts, including several anonymous

front office associates within the NBA. The second method, referred to as the “ad-

justed dynamic Bayesian estimator,” adjusts the dynamic Bayesian estimator based

on pregame win probabilities obtained from TeamRankings.com. The adjustment is

optimized over a function of both time and score so that as the game moves on or the

score differential increases, the adjusted dynamic Bayesian estimator will begin to

approach the dynamic Bayesian estimator rather than the pregame win probability.

These two methods are then compared to the win probability model that ESPN uses

for seasons 2018-19 and 2019-20. The ESPN model performs the best overall, but

there are times during the game the adjusted dynamic Bayesian model performs the

best, indicating that there are some features of the model that estimate probabilities
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well and some that could be improved upon in the future, such as the calculation of

pregame win probability.

5.3 CFB Conclusion

Two new methods are proposed for estimating in-game win probability for col-

lege football games. Both are an extension and enhancement of the methods in Mad-

dox et al. (2022a) and Maddox et al. (2022b), which provide a number of models

for estimating in-game home-team win probabilities for NCAA basketball and NBA

basketball respectively. The first proposed “dynamic Bayesian estimator,” uses ex-

pected score differential and expected possessions remaining as predictors, which are

modeled from the data themselves, and a prior that has been calculated based on the

distribution of predicted win probabilities from 14 college football field experts. The

second method, referred to as the “adjusted dynamic Bayesian estimator,” adjusts

the dynamic Bayesian estimator based on pregame win probabilities obtained from

TeamRankings.com. The adjustment is optimized over a function of both time and

score so that as the game moves on or the score differential increases, the adjusted

dynamic Bayesian estimator will begin to approach the dynamic Bayesian estimator

rather than the pregame win probability. These two methods are then compared to

the random forest win probability model proposed by Lock and Nettleton. Both new

models outperform the standard random forest model, with the adjusted dynamic

Bayesian estimator performing the best out of all of the models.
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