
ABSTRACT

Topics in Dimension Reduction and Missing Data in Statistical Discrimination

Phil D. Young, Ph.D.

Chairperson: Jack D. Tubbs, Ph.D.

This dissertation is comprised of four chapters. In the first chapter, we define

the concept of linear dimension reduction, review some popular linear dimension

reduction procedures, discuss background research that we use in chapters two and

three, and give a brief outline of the dissertation contents.

In chapter two, we derive a linear dimension reduction (LDR) procedure for

statistical discriminant analysis for multiple multivariate skew-normal populations.

First, we define the multivariate skew-normal distribution and give several applica-

tions of its use. We also provide marginal and conditional properties of the MSN

random vector. Then, we state and prove several lemmas used in a series of theo-

rems that present our LDR procedure for the multivariate skew-normal populations

using parameter configurations. Lastly, we illustrate our LDR method for multiple

multivariate skew-normal distributions with three examples.

In the third chapter, we define and rigorously prove the existence of the mul-

tivariate singular skew-normal (MSSN ) distribution. Next, we state and prove dis-

tributional properties for linear combinations, marginal, and conditional random

variables from a MSSN distribution. Then, we state and prove several lemmas

used in deriving our LDR transformation for the multiple MSSN distributions with

assorted parameter combinations. We then state and prove several theorems con-



ii

cerning the formulation of our LDR technique. Finally, we illustrate the effectiveness

of our LDR technique for multiple multivariate singular skew-normal classes with

two examples.

In chapter four, we compare two statistical linear discrimination procedures

when monotone missing training data exists in the training data sets from two dif-

ferent multivariate normally distributed populations with unequal means but equal

covariance matrices. We derive the maximum likelihood estimators (MLE s) for the

partitioned population means and the common covariance matrix in an appendix.

Additionally, we contrast two classifiers: a linear combination discriminant func-

tion derived from Chung and Han (C-H ) (2000) and a linear classifier based on the

MLE of two multivariate normal training samples with identical monotone missing

training-data in one or more features. We then perform two Monte Carlo simulations

with various parameter configurations to compare the effectiveness of the MLE and

C-H classifiers as the correlation between features for the population covariance ma-

trix increases. Moreover, we compare the two competing classifiers using parametric

bootstrap estimated expected error rates for a subset of the well-known Iris data.
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4.6 Graphs of the ÊERD versus ρ for p = 40. . . . . . . . . . . . . . . . . . 99

vi



LIST OF TABLES

4.1 UTA Admissions Office . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2 Quantiles of p-values for Mardia’s Tests: UTA Admissions . . . . . . . . 103

4.3 Partial Iris Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4 Quantiles of p-values for Mardia’s Tests: Partial Iris Data . . . . . . . . 106

vii



ACKNOWLEDGMENTS

First and foremost, I would like to thank God, who has blessed both my

family and me in so many ways. His guidance, unconditional love, and abounding

compassion have kept me going during the tough times.

Next, I would like to thank my family for every bit of love and support that

they have given me throughout the years. Mom, Dad, and Alissa, I love you so

much and want you to know that your constant support has meant the world to me.

Mom, thank you for everything you have done for me. You have done so much. To

my sister, Alissa, I also want to thank you for sticking by me throughout the years.

I have really enjoyed getting to know you and am happy that we have grown closer

together in recent years.

To the entire faculty from the Department of Statistical Sciences, I would like

to thank you very much. To Dr. Hill, Dr. Stamey, Dr. Bratcher, Dr. Seaman, Dr.

Tubbs, Dr. Harvill, Dr. Johnson, and Dr. Maddox, I would like to say thank you

for taking the time to teach me. Whether it was inside or outside of the classroom,

you were always willing to answer questions and offer your knowledge.

To other professors outside of this department, I would like to thank Dr. Brian

Raines, Dr. David Ryden, and Wes Evans. Thank you for showing me that I had

the potential to be successful in the field of mathematics, and thank you for your

inspiration. If you had not taken somewhat of an interest in me, I would have given

up a long time ago.

To my fellow students in the department, thank you for all your help and

support. Thank you for the laughs, the help on homework, and, especially, the

help on the computer. I would especially like to thank Johnny Seaman and Daniel

Beavers for your endless supply of laughter and good humor when it was very much

viii



in demand. Also, thank you to Stephanie Powers, Jo Wick, and Brandi Greer,

who have always been willing to help me whenever help was needed. The people I

have worked with have been smart, talented, and considerate, which has helped me

considerably in being the best that I can be.

To my best friends outside of the department, namely Derek Barnett, Joe

Khurana, Cody Smith, and D.B. Briscoe, I would like to thank you for friendship

throughout the years. Though your help has been unrelated to statistics, your

advice, encouragement, and moral support have been solid and uplifting.

Finally, I would like to thank my father, Dean Young. Dad, you are a great

father, teacher, and friend. I want to thank you from the bottom of my heart for

sticking with me and helping me through this long and arduous journey. Words

cannot express how much I care about you or how much I appreciate all the hard

work you have put into working with me. I know that without a father like you,

I would be completely lost. Thank you once again, and I look forward to working

with you.

ix



DEDICATION

To my family

x



CHAPTER ONE

A Review of Dimension Reduction and Various Dimension Reduction Methods for
Supervised Classification

1.1 Introduction

An escalation in data collection procedures and an expansion in storage capa-

bilities have made data dimension reduction necessary in recent years. Dimension

reduction is required to transform high-dimensional data into significantly smaller

dimensional data without incurring a significant loss of information.

We formulate the dimension reduction problem as follows. Suppose we obtain

the p-dimensional data matrix

Xp×N ≡ [x11,x12, ...,x1n1 ,x21,x22, ...x2n2 , ...,xm1,xm2, ...,xmnm ] ,

containing training data sampled from m distinct populations where xij ∈ Rp×1 for

i ∈ {1, 2, ...,m} and j ∈ {1, 2, ..., ni}, with N =
m∑

i=1

ni observations. Here, xij denotes

the jth observation for the ith class. A dimension reduction technique transforms

the data matrix X into a q-dimensional data matrix

Yq×N ≡ [y11,y12, ...,y1n1 ,y21,y22, ...y2n2 , ...,ym1,ym2, ...,ymnm ]

with yij ∈ Rq×1, where q � p, while retaining the geometric characteristics of the

data in the process. That is, we seek a transformation T : Rp×1 → Rq×1 such that

T (xij) = yij for i ∈ {1, 2, ...,m} and j ∈ {1, 2, ..., ni}.

Dimension reduction can be categorized into two basic forms: linear and non-

linear. Nonlinear dimension reduction (NLDR) techniques are advantageous for

nonlinear data. In NLDR, we wish to retain the discriminatory information of

high-dimensional data by reducing the original data to a lower-dimensional form

when our data points lie on a nonlinear manifold. Some popular NLDR techniques
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include multidimensional scaling, isomaps, kernel principal components analysis, dif-

fusion maps, locally linear embedding, and Laplacian eigenmaps. However, in this

dissertation, we focus only on linear dimension reduction LDR.

We can partition LDR into two main approaches: LDR and feature subset

selection. Feature subset selection selects a subset of original variables that are rel-

evant for constructing robust learning models. The feature subset selection process

helps the researcher better understand the data by indicating which features are

important. Once chosen, the dimensions retained by feature subset selection are

directly interpretable. On the other hand, linear feature selection is the process of

mapping elements of high-dimensional space into a lower-dimensional subspace us-

ing a linear transformation. In LDR, a high-dimensional observation xij ∈ Rp×1 is

transformed to a small dimension by the linear transformation yij = Kxij, where the

matrix K ∈ Rq×p represents a linear projection from the p-dimensional feature space

to the lower q-dimensional transformed space. If the dimension reduction performs

well, we expect that most of the relevant classification information will be contained

in the reduced data.

An additional application of feature selection is data visualization. A re-

searcher may have an extraordinary ability to recognize systematic patterns in a

dataset but generally be unable to adequately interpret a dataset if the data dimen-

sion is greater than three. To permit the visualization of high-dimensional data, we

frequently wish to choose two or three of the most informative transformed features

in the dataset and plot them so that we can envision the data relationships in a

reduced dimension.

We have several reasons to perform dimension reduction. For instance, Cun-

ningham (2007) has claimed that implementing dimension reduction can reveal new

knowledge about a dataset. Furthermore, data vectors may contain many highly

correlated variables, and the pertinent data might be explicable with only a few
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variables. Using dimension reduction, we can determine the most important features

to explain the essential phenomenon of the data while simultaneously eliminating

the redundant information. Dimension reduction is often applied even when one

is dealing with extremely high-dimensional and computationally advanced models.

Pavlenko (2003) has stated that another motivation for dimension reduction is when

“expensive” measurement occurs. Here, the term “expensive” implies “costly” with

respect to time, money, or computational speed. Pavlenko further states that “the

omission of certain features or sets of features, while naturally destroying the pos-

sible optimality of standard discriminant analysis, will not seriously affect the error

probability or any other criterion of interest.”

Researchers implement dimension reduction for supervised classification in

a wide variety of fields, including engineering, astronomy, biology, face and voice

recognition, remote sensing, economics, consumer transactions, and microarray data.

Hamsici and Martinez (2008) have discussed methods in which dimension reduction

can be administered in numerous disciplines. For example, for p > 2, psychologists

and anthropologists may desire a two-dimensional visualization from a collection of

n p-dimensional sample observations belonging to m classes in order to draw infer-

ences about the different groups. Also, one goal of medical diagnosis is to determine

a specific combination of factors that describe a set of m subclasses of a disease.

Specifically, different treatments are required for each stage of cancer, and, there-

fore, one needs to extricate the primary factors used for classifying stages of cancer

to ensure the proper treatment. With the utilization of dimension reduction, we can

determine the ideal combination of features by reducing the original p-dimensional

data to q components most indicative of the disease level. Also, in computer vi-

sion and speech analysis, we wish to find the smallest-dimensional subspace where

the class distributions can be efficiently separated. This q-dimensional subspace is

preferable to the original p-dimensional data because lower-dimensional representa-
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tions of multivariate populations for learning algorithms generally perform better,

faster, and more efficiently.

Another motivation for dimension reduction is known as the curse of dimen-

sionality. The term “curse of dimensionality” was coined by Richard Bellman (1961),

and, according to Donoho (2000), refers to Bellman’s assertion that “if our goal is

to optimize a function over a continuous product domain of a few dozen variables by

exhaustively searching a discrete space defined by a crude discretization, we could

easily be faced with the problem of making tens of trillions of evaluations of the

function.” According to Chen (2007), the curse of dimensionality alludes to the

condition in which we lack the essential assumptions to simplify our model so that

the sample size needed to accurately estimate our multivariate dataset is exponen-

tially amplified as the dimension increases. The curse of dimensionality causes an

extremely low rate of convergence when one attempts to approximate a statistical

function in high dimensions. Carreira-Perpinan (1997) affirms that the curse of di-

mensionality often induces the existence of correlations in large-dimensional feature

vectors. Hence, even with a large sample size, estimating the density of the data

provides a questionably large optimal integrated squared mean. However, one can

often circumvent this dimensionality curse to estimate a statistical function with the

assistance of a dimension reduction technique.

1.2 Some Common LDR Methods for Statistical Supervised Classification

The first known LDR method for statistical classification was derived by R.

A. Fisher (1936), who originated the linear discriminant function (LDF ) for two

classes. Let w ∈ Rp×1. The optimization criterion for Fisher’s LDF is as follows:

max
w 6=0

w′Sbw

w′Sww
,

where

Sb = (x̄1 − x̄2) (x̄1 − x̄2)
′
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is the between-class scatter matrix, and

Sw =
2∑

i=1

ni∑
j=1

(xj − x̄i) (xj − x̄i)
′

is the within-class scatter matrix. Also, w is defined to be the generalized eigenvec-

tor,

x̄i =
1

ni

ni∑
j=1

xij (1.1)

is the ith class sample mean, and xij is the jth observation vector for group i, where

i = 1, 2, and j = 1, 2, ..., ni.

In 1948, C. R. Rao generalized Fisher’s LDF to multiple classes in his doc-

toral dissertation, written under Fisher, and published his results in Rao (1948).

This classification and dimension reduction method is known as linear discriminant

analysis (LDA). The goal of LDA is to produce a linear transformation that max-

imizes the ratio of the average between-class scatter matrix relative to the average

within-class scatter matrix. Essentially, we wish to determine W ∈ Rq×p such that

the Fisher criterion,

max
W 6=0

W′SBW

W′SWW
,

is maximized, where

SW =
m∑

i=1

ni∑
j=1

(xij − x̄i) (xij − x̄i)
′

and

SB =
m∑

i=1

ni (x̄i − x̄) (x̄i − x̄)′

denote the within-class and between-class scatter matrices, respectively. Also,

x̄ =
1

N

m∑
i=1

ni∑
j=1

xij

denotes the overall sample mean, x̄i is defined in (1.1), N =
m∑

i=1

ni, j ∈ {1, 2, ..., ni},

and i ∈ {i, 2, ..,m}. While LDA is usually not regarded as a dimension reduction
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procedure, it can be employed as one. This method is often adopted for speech and

face recognition classification problems.

Despite its popularity, LDA has limitations. For example, LDA does not nec-

essarily yield an optimal reduced subspace with dimensionality q � p because LDA

does not incorporate discriminatory information contained in the differences of the

covariance matrices and parameters other than the group means. Moreover, LDA

assumes that the covariance matrices for all m classes are equal, which is highly

improbable in real-life problems.

Principal components analysis (PCA) is possibly the most widely used dimen-

sion reduction technique in practice. Two possible explanations for its popularity

are that it is theoretically simple and that it utilizes the covariance matrices of

the variables. The goal of PCA is to determine orthogonal linear combinations of

the original variables, known as principal components (PCs), each with the largest

possible variance. We can then reduce the data dimension by discarding the less-

important principal components. The first PC is a linear combination with the

largest variance. We denote the first principal component by s1 = x′w1, where

w1 = arg max
‖w=1‖

V ar (x′w) .

The second PC is the linear combination with the second largest variance that is

orthogonal to the first PC, etc. The total number of PCs equals the total number

of variables. In other mathematical fields, such as engineering, PCA is sometimes

known as the Singular Value Decomposition (SVD), the Hotelling transform, the

empirical orthogonal function (EOF ) method, or the Karhunen-Loeve transform.

Despite its approval and useful properties, PCA also has shortcomings. One

limitation of PCA is that it yields only a linear subspace and thus does not work well

with data on nonlinear manifolds. In addition, the principal components themselves

do not necessarily correspond to any meaningful physical quantities. Furthermore,

the number of PCs we are required to keep is unclear, although unwritten rules
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are often practiced. As a solution, one highly practiced policy is to eliminate com-

ponents whose eigenvalues are smaller than a fraction of the average eigenvalue.

Another rule is that we keep as many PCs as we need to explain a portion of the

total variance. We can determine the number of principal components by using the

eigenvalue decomposition theorem to rewrite Σ as

Σ = UΛU′,

where U ∈ Rp×p is an orthogonal matrix containing the eigenvectors of Σ and

Λ = diag (λ1, ..., λp) is the diagonal matrix of the ordered eigenvalues λ1 ≥ ... ≥ λp.

According to Fodor (2002), the total variation equals the sum of the eigenvalues of

the covariance matrix such that

p∑
i=1

V ar (si) =

p∑
i=1

λi =

p∑
i=1

trace (Σ),

where si denotes the ith principal component and λi denotes the ith eigenvalue. Then,

the term
k∑

i=1

λi/trace (Σ)

provides the cumulative proportion of explained variance for the first k principal

components.

According to Martinez and Kak (2001), several differences exist between PCA

and LDA. For instance, LDA focuses solely on class discrimination while PCA

works directly with the data on the overall estimated covariance structure and dis-

regards the underlying class membership. However, they also conclude that PCA

outperforms LDA as a dimension reduction method when the training sample sizes

are small relative to the full data dimension or when the training data does accu-

rately represent the true distribution. In addition, Balakrishnama and Ganapathi-

raju (1998) claim that the shape and location of the original data sets change when

transformed to a different space in PCA. On the other hand, LDA does not change
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the location but simply yields more class separability while simultaneously confirm-

ing a decision region between classes.

Projection pursuit (PP ) is a LDR technique different from LDA and PCA

in that it incorporates third-order information, which is suitable for non-Gaussian

datasets. The term “projection pursuit” was introduced by Friedman and Tukey

(1974), as was the term “projection index.” The projection index usually measures

some countenance of non-normality because the normal distribution has the least

structure. Given a projection index that defines the “interestingness” of a direction,

PP searches for the directions that optimize the index. A projection is defined in the

sense of “interestingness” if it contains linear or nonlinear structure. If the structure

is linear, then correlations between variables are quickly detected by linear regres-

sion. Skewness, multimodality, and strong peaks are concentrated along nonlinear

manifolds if the structure is nonlinear.

According to Carreira-Perpinan (1997), one primary use of PP is that it avoids

the curse of dimensionality when implemented with regression or density estimation.

A popular higher-order projection index is contingent upon the negative Shannon en-

tropy. Fodor (2002) states that if we are given a random variable x with probability

distribution f , its negative entropy is

Q (x) ≡
∫
f (x) log (f (x)) d (x) . (1.2)

The normal distribution minimizes (1.2), which is in accordance with finding di-

rections that maximize the entropy of the projected data. However, because PP

works well with linear projections, it is not well-suited to deal with highly nonlinear

structures. Also, computation for PP can be problematic because it handles higher

than second-order information.

Factor analysis (FA) is a LDR technique that is comparable to PCA when

the error terms can be assumed to have the same variance but, unlike PCA, is based

on second-order data summaries. In FA, we assume that the measured variables
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depend on a relatively small number of unknown common features, and we wish to

discover a linear combination of original features for dimension reduction of datasets.

Like previously mentioned LDR methods, FA has advantages and disadvan-

tages. According to Warner (2007), FA can be an expedient tool during the process

of theory development and theory testing and can instruct us on how many factors

are needed to account for the correlations among the variables included in the study.

Moreover, FA is advantageous for the reinspection of existing measures. However,

FA is often used as a desperation tactic to summarize information in a messy dataset.

Also, researchers sometimes mistakenly view the results of exploratory FA as proof

of the existence of latent variables, even though the set of latent factors obtained in

FA is highly dependent on the selection of variables measured.

In FA, a random vector x ∈ Rp×1 with E (x) = 0 and covariance matrix

V ar (x) = Σ satisfies the k-factor model, where k ≤ p, if x = Λw + v, where Λp×k

is a matrix of constants, and wk×1 and vp×1 are the “random common factors”

and “specific factors,” respectively. All factors in the model are uncorrelated, and

common factors are standardized to have variance one. Additionally, E (w) = 0,

V ar (w) = I, E (v) = 0, Cov (vi, vj) = 0 for i 6= j, and Cov (w,v) = 0. Provided

these assumptions hold,

Cov (v) = Ψ = diag (ψ11, ..., ψpp) .

According to Fodor (2002), if the covariance matrix is of the form V ar (x) =

Σ = ΛΛ′ + Ψ, then the k-factor model holds. Because xi =
k∑

j=1

λijwj + vi for

i = 1, 2, ..., p, the variance of xi is σii =
k∑

j=1

λ2
ij + ψii, where c2i =

k∑
j=1

λ2
ij is called the

communality and represents the variance of xi, and ψii is called the specific variance,

which is the contribution in the variability of xi for its vi. The term λ2
ij measures the

importance of the dependence of xi on the common factor wj. If several variables

xi have high values of λij on specified factor wj, then the implication is that those

variables are redundant measurements.
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Fodor (2002) has stated that independent component analysis (ICA) is cur-

rently a popular dimension reduction method where the objective is to determine

rotations that maximize standards for independence. The ICA procedure uses a

higher-order model that seeks linear projections that are as nearly statistically inde-

pendent as possible but not necessarily orthogonal. ICA is a generalization of the

concepts behind PCA and PP , although no order exists with the ICs, contrary to

PCA. While PCA looks for uncorrelated variables, where for all i 6= j, 1 ≤ i, j ≤ p,

Cov (xi, xj) = E [(xi − µi) (xj − µj)] = E (xixj)− E (xi)E (xj) = 0,

ICA looks for independent variables, where

f (x1, ..., xp) = f1 (x1) · ... · fp (xp) .

Independence is a much stronger property than uncorrelatedness. Uncorrelatedness

involves second-order statistics, but independence depends on all the higher-order

statistics. Once estimated, the independent components (ICs) can be ordered ac-

cording to the norms of the columns of the mixing matrix, a similar ordering to that

of PCs, or according to some non-Gaussian measure.

The noise-free ICA model for the p-dimensional random vector x attempts to

estimate the components of the k-dimensional vector s and the p × k full column

rank mixing matrix Ap×k, where

x = As,

where the components of s are as independent as possible. Pertaining to feature

selection, the columns of A represent the reduced feature space of the data, and the

components of s give the reduced features.

As stated in Ravisekar (2006), ICA has several drawbacks. For instance, the

transformed features we obtain while employing ICA may not be orthogonal. Also,

the selection of the optimal number of dimensions of the source data vectors in

ICA has yet to be addressed. Moreover, ICA might not reduce the original data
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dimension. Despite its demerits, ICA has been applied to many different problems,

including exploratory data analysis, blind source separation, blind deconvolution,

and feature selection.

While most of the previously mentioned LDR techniques are not new, a vast

amount of research involving LDR continues today. Some newer LDR methods

include those by Hennig (2004), Loog and Duin (2001), Loog and Duin (2004),

Khambatla and Leen (1997), Lotikar and Kothari (2000), and Tang et al. (2005).

The LDR method considered “best” depends on the specific characteristics

of the dataset and the goals of the researcher. Throughout the remainder of this

dissertation, we consider a preferred dimension reduction method to be the one that

minimizes the Bayes probability of misclassification (BPMC).

1.3 Background Research for Upcoming Chapters

In this section, we focus on a LDR method first proposed by Peters, Redner,

and Decell (1978) based on the concept of linear sufficient statistics. Given a domi-

nated family, D , of probability measures defined on the Borel subsets of a topological

linear subspace X and a continuous linear transformation T : Rp → Rq, let

M ≡ [µ2|...|µm|Σ2 − I|...|Σm − I] . (1.3)

Peters, Redner, and Decell (1978) have provided necessary and sufficient conditions

for T to be a linear sufficient statistic for D . This condition is TT+M = M. Thus,

they show that rank (M) = k is the smallest dimension for which there exists a

linear sufficient dimension reduction matrix. However, they do not explicitly deter-

mine the p× k linear dimension reduction matrix T.

Odell (1979) and Decell, Odell, and Coberly (1981) have constructively de-

rived the proposed LDR method proposed by Peters, Redner, and Decell (1978) for

multiple multivariate Gaussian populations with known parameters based on mini-

mizing the BPMC in the reduced space. This linear feature selection method is as

11



follows: Suppose we have m distinct multivariate normal populations Π1,Π2, ...,Πm

with known population means µi and positive-definite covariance matrices Σi with

i = 1, 2, ...,m. Then, q = rank (K) is the smallest dimension (q ≤ p) such that

G = G (K) if and only if K = AF′, where M = FH with rank (M) = rank (F) =

rank (H) = q, A is an arbitrary nonsingular q × q matrix, and M is given in (1.3).

We remark that K is not unique because A is arbitrary. Thus, if we let A = (F′F), K

becomes F+, the Moore-Penrose pseudoinverse of F. Also, Odell (1979) has general-

ized the LDR problem for Gaussian populations with known parameters by showing

that if the coefficients of a family of continuous stochastic processes with finite basis

satisfy particular assumptions, then a q-dimensional basis may be established that

contains the information in the original p-dimensional family of process for q � p.

While multivariate normal models are mathematically tractable, they do not

always accurately characterize a dataset and generally are not a realistic option.

For these reasons, we often depict populations to be nonnormal. Young, Odell, and

Marco (1985) have shown that the LDR procedure proposed by Odell (1979) and

Decell et al. (1981) also performs well for certain symmetric unimodal nonnormal

populations without increasing the BPMC, and the M method of dimension reduc-

tion is extended to multivariate θ-generalized normal densities, a family of densities

defined by Goodman and Kotz (1973).

In a realistic setting, we must estimate all population parameters, and the

aforementioned LDR techniques, assuming known parameters, do not directly ap-

ply. Tubbs, Coberly, and Young (1982) have proposed a solution to the problem

of applying the LDR proposed by Odell (1979) and Decell et al. (1981) when class

parameters are known by using the SVD to determine a lower-dimensional feature

space that does not significantly increase the BPMC for the sampling case of the

Bayes classification rule. Chapters two and three of this dissertation can be viewed

as an extension of the LDR research based on the concept of linear sufficient statistics
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described in this section. Here, we apply extend the previously mentioned research

to the multivariate skew-normal and the multivariate singular skew-normal distri-

butions.

The outline of this dissertation is as follows. In Chapter two, we derive a

LDR technique for statistical discriminant analysis with multiple multivariate skew-

normal populations. We first define the multivariate skew-normal distribution, pro-

vide several real-life situations where it is applied, and detail the origin of its exis-

tence. Next, we state the distributions of a linear combination and the marginal and

conditional distributional properties. Then, we assemble and prove several lemmas

used in the derivation of our LDR method followed by a series of theorems that

present our LDR procedure for the multivariate skew-normal populations with vari-

ous restrictions on the parameter configurations. Lastly, we provide three examples

illustrating our LDR technique for multiple multivariate skew-normal distributions.

In Chapter three, we define the multivariate singular skew-normal distribu-

tion and rigorously prove its existence. Next, we state and prove distributional

properties for linear combinations, marginal random variables, and conditional ran-

dom variables. Then, we state and prove several lemmas that we use in deriving our

LDR transformation for the multiple multivariate singular skew-normal distributions

with various parameter configurations. We then state and prove several theorems

concerning the formulation of our LDR technique followed by their corresponding

proofs. Finally, through two examples, we illustrate the effectiveness of our LDR

technique for multiple multivariate singular skew-normal classes.

In Chapter four, we compare two statistical linear discrimination procedures

when monotone missing data exists in the training-data sets from two different mul-

tivariate normally distributed populations with equal covariance matrices. We derive

the maximum likelihood estimators (MLE s) for two partitioned population means

and a common covariance matrix. Also, we introduce the two competing classifiers:
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a linear combination discriminant function derived from Chung and Han (2000) (C-

H ) and a linear classifier based on the MLE of two multivariate normal training

samples with identical monotone missing data in one or more features. We then

use two Monte Carlo simulations with various parameter configurations to compare

the utility of the MLE and C-H classifiers as the correlation increases among fea-

tures for two populations with unequal means and equal covariance matrices. Also,

we compare the two competing classifiers using parametric bootstrap estimated ex-

pected error rates for two real-data sets. To validate the assumption of multivariate

normality, we use Mardia’s test for multivariate skewness and kurtosis to establish

that both populations from both data sets are multivariate normally distributed.

Our Monte Carlo simulation and real-data comparison results indicate that when

features are highly correlated, the MLE classifier can considerably outperform the

C-H classifier, but when features are not highly correlated, the C-H classifier can

slightly outperform the MLE classifier.
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CHAPTER TWO

Linear Dimension Reduction for Multiple Multivariate Skew-Normal Densities

2.1 Introduction

Our goal for this chapter is to derive a linear dimension reduction method

for multiple multivariate skew-normal (MSN ) distributions. In Section 2, we define

the MSN distribution, give its history, and present some of its useful properties.

In Section 3, we provide some preliminary lemmas used in the proof of our main

result. In Section 4, we give the main result, which is our linear dimension reduction

technique for multiple MSN densities. We give three examples in Section 5 and

some brief comments in Section 6.

2.2 Some Notation and the Multivariate Skew-Normal Distribution

Throughout the remainder of the chapter, we use the notation Rm×n to rep-

resent the vector space of all m× n matrices over the real field R. Also, we let the

symbol RS
n×n represent the cone of all n × n symmetric matrices of real numbers.

In addition, the symbols R≥
n and R>

n represent the cone of all symmetric nonneg-

ative definite and positive definite matrices, respectively, in Rn×n. Moreover, for

A ∈ Rm×n we use N (A) to represent the null space and C (A) to denote the column

space of A.

Although the multivariate normal distribution is well-known and readily math-

ematically tractable, it does not always model random phenomena. The MSN distri-

bution has many different applications that often appear with variables that follow

properties of the normal distribution but have undergone selective reporting. When

handling data, we sometimes must account for hidden truncation. For example,

Arnold and Beaver (2002) provide an example where investigators collect data for
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measuring and reporting archaeological pottery shards that are large enough not to

fall through the sieve used on-site. Another common application for the skew-normal

distribution is the modeling of insurance risk.

Azzalini (1985) introduced the multivariate skew-normal distribution as an

extension of the univariate normal distribution to account for symmetry. Arnold

and Beaver (2002) noticed that skew-normal distributions may be encountered in

situations in which the observations comply with a normal principle but have been

truncated with respect to a hidden covariable. This phenomenon was illustrated by

the joint distribution of height and waist measurements of selected individuals for

elite troops. In conjunction with coauthors, Azzalini extended the univariate normal

distribution to include a multivariate analog of the MSN distribution. A formal def-

inition of the MSN density function parameterized by Vernic (2006) is given below.

Definition 2.1. A random vector x is said to follow a MSN distribution with

skewness parameter γ, written x ∼ SNp (µ,Σ, δ0,γ), if its density function is

p(x) =
1

Φ (δ0)
ϕp (x; µ,Σ) Φ

(
δ0 + γ ′ Σ−1(x− µ)√

1− γ ′ Σ−1γ

)
, (2.1)

where x ∈ Rp×1, µ ∈ Rp×1, Σ ∈ R>
p×p, γ ∈ Rp×1, δ0 ∈ R, φ(x) is the multivariate

normal density function, and Φ(x) is the univariate standard normal density func-

tion.

The parameter vector γ regulates the skewness of (2.1), and when γ = 0,

density (2.1) corresponds to a multivariate normal density function. Authors such

as Arnold and Beaver (2002) and Azzalini and Capitanio (1999) have often chosen

δ0 = 0 to simplify the definition of the MSN density so that

p (x) = 2ϕp (x;µ,Σ) Φ

(
γ′Σ−1 (x− µ)√

1− γ ′Σ−1γ

)
.

Vernic (2005) has stated the moment-generating function (MGF ) of density

(2.1) without proof. Here, we offer a proof of the MGF of the MSN random vector

with density (2.1).
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Theorem 2.1. Let v ∼ SNp (0, Ip, δ0,γ) and x ∼ SNp (µ,Σ, δ0,γ), where v =

Σ− 1
2 (x− µ). Hence,

Mv (t) =
1

Φ (δ0)
exp

{
t′t

2

}
Φ

(
λ0 + λ′

1t√
1 + λ′

1λ1

)
,

where

δ0 ≡
λ0√

1 + λ′
1λ1

,λ1 ≡
Σ− 1

2 γ√
1− γ′Σ−1γ

, and 1 + λ′
1λ1 = 1− γ′Σ

−1
γ

with

λ0 ≡
δ0√

1 + δ′1δ1

and δ1 ≡
λ1√

1 + λ′
1λ1

.

Also, note that

λ′
1Σ

1
2 t√

1 + λ′
1λ1

=

√
1− γ ′Σ−1γ

1

γ ′Σ− 1
2Σ

1
2 t√

1− γ ′Σ−1γ

= γ ′t. (2.2)

Then,

Mx (t) = Mµ+Σ1/2v (t)

= exp {t′µ}MV

(
Σ1/2t

)
= exp {t′µ} 1

Φ (δ0)
exp

{
t′Σ

1
2Σ

1
2 t

2

}
Φ

(
λ0 + λ′

1Σ
1
2 t√

1 + λ′
1λ1

)

=
1

Φ (δ0)
exp

{
t′µ +

t′Σt

2

}
Φ

(
δ0 +

√
1− γ ′Σ−1γ√
1− γ ′Σ−1γ

γ ′Σ− 1
2Σ

1
2 t

)

= exp

{
t′µ +

t′Σt

2

}
Φ (δ0 + γ ′t)

Φ (δ0)
.

Propositions pertaining to a linear combination MSN of random variables,

the marginal MSN distribution for a MSN random vector, and the conditional

distribution of components of a MSN random vector originally provided by Vernic

(2005) are given below. The following proposition expresses the distribution of

Cx + b, where the vector x is MSN, C ∈ Rm×p is full row rank, and b ∈ Rm×1.
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Proposition 2.1. Let b ∈ Rm×1 and C ∈ Rm×p with rank m, where m ≤ p. If

x ∼ SNp (µ,Σ, δ0,γ), then b + Cx ∼ SNp (b + Cµ,CΣC′, δ0,Cγ).

The following proposition describes the properties of subvectors of a MSN vector.

Proposition 2.2. Let x ∼ SNp (µ,Σ, δ0,γ). If we partition x = (x′
1,x

′
2)

′ into two

subvectors of dimensions m and p−m, respectively, and correspondingly partition

Σ =

 Σ11 Σ12

Σ21 Σ22

 ,µ =

 µ1

µ2

 , and γ =

 γ1

γ2

 , (2.3)

then

(i) x1 ∼ SNm (µ1,Σ11, δ0,γ1);

(ii) x2 ∼ SNp−m (µ2,Σ22, δ0,γ2).

In particular, the univariate marginal distributions of x are given by

xj ∼ SN1

(
µj, σ

2
j , δ0, γj

)
with σ2

j = σjj for j = 1, ..., p.

The above proposition regarding the marginal distribution of a MSN random

vector is now used for deriving the consequent proposition regarding the conditional

distribution of x1 given x2. Vernic (2005) references Arnold and Beaver (2002) to

express the conditional density function of a partitioned MSN density function as

stated in Proposition 2.2. We present a proof to validate our assertion that the

conditional density function of a MSN density function does not follow a skew-

normal distribution. We use a lemma from Vernic (2005) to derive our result.

Lemma 2.1. Let Σ ∈ Rp×p, µ ∈ Rp×1, and γ ∈ Rp×1 be defined as in (2.3). Then,

γ ′Σ−1 (x− µ) = γ ′
2Σ

−1
22 (x2 − µ2) +

(
γ ′

1 − γ ′
2Σ

−1
22 Σ21

)
Σ−1

1|2
(
x1 − µ1|2

)
.
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Proof : First, Vernic (2005) has noted that

Σ−1 =

 T11 T12

T21 T22

 ,
where T11 = Σ−1

1|2 =
(
Σ11 −Σ12Σ

−1
22 Σ21

)−1
, T12 = −Σ11Σ12Σ

−1
2|1,

T21 = −Σ−1
22 Σ21Σ

−1
1|2, and T22 = Σ−1

2|1 =
(
Σ22 −Σ21Σ

−1
11Σ12

)−1
and

Σ12Σ−1
22 = −T−1

11 T12.

Then,

γ ′Σ−1 (x− µ) =
(
γ ′

1T11 + γ ′
2T21

)
(x1 − µ1) +

(
γ ′

1T12 + γ ′
2T22

)
(x2 − µ2)

=
(
γ ′

1T11 + γ ′
2T21

) (
x1 − µ1|2

)
+
[(

γ ′
1T11 + γ ′

2T21

)
Σ12Σ−1

22

+
(
γ ′

1T12 + γ ′
2T22

)]
(x2 − µ2)

=
(
γ ′

1T11 + γ ′
2T21

)
T−1

11 T11

(
x1 − µ1|2

)
+ γ ′

2Σ
−1
22 (x2 − µ2)

=
(
γ ′

1 − γ ′
2Σ

−1
22 Σ21

)
Σ−1

1|2

(
x1 − µ1|2

)
+ γ ′

2Σ
−1
22 (x2 − µ2) .

Proposition 2.3. Let x ∼ SNp (µ,Σ, δ0,γ), and let the parameters µ, Σ, and γ

be partitioned as in (2.3). Then, the conditional density function of x1|x2 is

1

Φ (β0)
ϕm

(
x1; µ1|2,Σ1|2

)
Φ
(
l0 + l′1Σ

− 1
2

1|2
(
x1 − µ1|2

))
,

where

µ1|2 ≡ µ1 + Σ12Σ
−1
22 (x2 − µ2) , (2.4)

Σ1|2 ≡ Σ11 −Σ12Σ
−1
22 Σ21, (2.5)

l0 ≡
δ0 + γ ′

2Σ
−1
22 (x2 − µ2)√

1− γ′Σ−1γ
, (2.6)

β0 ≡
δ0 + γ ′

2Σ
−1
22 (x2 − µ2)√

1− γ ′
2Σ

−1
22 γ2

, (2.7)

and

l1 ≡
(
Σ11 −Σ12Σ

−1
22 Σ21

)−1/2 (
γ1 −Σ12Σ

−1
22 γ2

)√
1− γ ′Σ−1γ

. (2.8)
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Proof : From Definition 2.1, the joint probability density function of x is

f (x) =
1

Φ (δ0)
ϕp (x; µ,Σ) Φ

(
δ0 + γ ′Σ−1 (x− µ)√

1− γ ′Σ−1γ

)
.

Also, Proposition 2.2 states that the marginal density function of x2 is

f (x2) =
1

Φ (δ0)
ϕp−m (x2; µ2,Σ22) Φ

(
δ0 + γ ′

2Σ
−1
22 (x2 − µ2)√

1− γ ′
2Σ

−1
22 γ2

)
.

Then by Lemma 2.1, the conditional density function of x1|x2 is

f (x1|x2) =

1
Φ(δ0)

ϕp (x; µ,Σ) Φ

(
δ0+γ′Σ−1(x−µ)√

1−γ′Σ−1γ

)
1

Φ(δ0)
ϕp−m (x2; µ2,Σ22) Φ

(
δ0+γ′2Σ

−1
22 (x2−µ2)√

1−γ′2Σ
−1
22 γ2

)
=

1

Φ (β0)
ϕm

(
x1; µ1|2,Σ1|2

)
Φ

(
δ0 + γ ′Σ−1 (x− µ)√

1− γ ′Σ−1γ

)

=
1

Φ (β0)
ϕm

(
x1; µ1|2,Σ1|2

)
×

Φ

(
δ0 + γ ′

22Σ
−1
22 (x2 − µ2)√

1− γ ′Σ−1γ
+

(
γ1 −Σ12Σ

−1
22 γ2

)′√
1− γ ′Σ−1γ

Σ−1
1|2
(
x1 − µ1|2

))

=
1

Φ (β0)
ϕm

(
x1; µ1|2,Σ1|2

)
Φ
(
l0 + l′1Σ

− 1
2

1|2
(
x1 − µ1|2

))
, (2.9)

where µ1|2, Σ1|2, l0, β0, and l1 are defined in (2.4) - (2.8), respectively. Clearly,

(2.9) is not in the form of the skew-normal density function in Definition 2.1, which

implies that the conditional density function of a MSN distribution does not have a

MSN density function.

2.3 Bayes Statistical Classification

The Bayes statistical classifier discriminates based on knowledge of the prob-

ability density functions p(x|Πi), i = 1, 2 . . . ,m, of each class. Bayes discrimination

is optimal in the sense that it maximizes the class a posteriori probability pro-

vided all class distributions are known. More precisely, suppose we have m classes

Π1,Π2, ...,Πm with a priori probabilities α1, α2, . . . , αm that are assumed known.

Let λ(Πi|Πj) be a measure of loss when x is assigned to class Πi and belongs to
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class Πj, i 6= j. The goal of statistical decision theory is to obtain a decision rule

that assigns an unlabeled observation x to Πk if p(Πk|x) is the maximum overall a

posteriori density p(Πi|x), i = 1, 2, . . . ,m.

More precisely, if one assumes the loss function

λ (Πi|Πj) =

 0, i = j

1, i 6= j
,

the Bayes classifier assigns x to class Πk if

p(Πk|x) > p(Πj|x), j = 1, 2, . . . ,m, j 6= k.

This decision rule partitions the measurement or feature space intom disjoint regions

Π1,Π2, . . . ,Πm such that x is assigned to class Πk if x ∈ Πk. Using Bayes’ rule, one

can express the a posteriori probabilities of class membership p(Πk|x) as

p(Πk|x) =
αkp(x|Πk)

p(x)
.

Then, one can re-express the Bayes classification as:

Assign x to Πk if

αkp(x|Πk) > αj p(x|Πj) j = 1, . . . ,m, j 6= k.

This decision rule is known as Bayes’ classification rule for minimum error.

We now consider the assumption that the class density p(x|Πi) has a MSN

density function, i.e., x ∼ SNp (µi,Σi, δ0,γi) , i ∈ {1, 2, ...,m}, where µi, γi ∈

Rp×1 and Σi ∈ R>
p×p. Thus, for class Πi, x has density

p(x|Πi) =
1

Φ (δ0)
ϕp (x; µi,Σi) Φ

(
δ0 + γ ′

i Σ
−1
i (x− µi√

1− γ ′
i Σ

−1
i γi

)
.

Because (2.1) is positive and the logarithm function is monotonic, the Bayes classifier

for classifying x into one of two MSN densities can be expressed as:

Assign x to Π1 if

− ln (Φ (δ0)) + ln (ϕp (x; µ1,Σ1)) + ln

(
Φ

(
δ0 + γ ′

1 Σ−1
1 (x− µ1)√

1− γ ′
1 Σ−1

1 γ1

))
>
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− ln (Φ (δ0)) + ln (ϕp (x; µ2,Σ2)) + ln

(
Φ

(
δ0 + γ ′

2 Σ−1
2 (x− µ2)√

1− γ ′
2 Σ−1

2 γ2

))
and to Π2, otherwise.

For the case of m > 2 populations or classes, the generalized distance function

is

di(x) ≡ − ln (Φ (δ0)) + ln (ϕn (x; µi,Σi)) + ln

(
Φ

(
δ0 + γ ′

i Σ
−1
i (x− µi)√

1− γ ′
i Σ

−1
i γi

))
,

where i = 1, 2, ...,m. The Bayes decision rule is to classify an unlabeled observation

vector x into the class Πk if dk(x) = min{di(x), i = 1, 2, . . . ,m}.

2.4 Preliminary Results

The proof of our new linear dimension reduction theorem requires the following

notation and lemmas. Consider M ∈ Rp×(m−1)(p+1), where

M ≡
[
E−1

2 (d2 − d1) |...|E−1
m (dm − d1) |E2 − E1|...|Em − E1|a2 − a1|...|am − a1

]
,

with ai,di ∈ Rp×1, Ei ∈ RS
p×p, where rank (Ei) = p for i = 1, 2, ...,m, and E1 6= Ek

for some k, where 2 ≤ k ≤ m . Also, let rank(M) = q < p, and let M = FG,

where F ∈ Rp×q and G ∈ Rq×(m−1)(p+1) with rank (F) = rank (G) = q. Then, the

Moore-Penrose pseudoinverse of M is M+ = G+F+, MM+ = FGG+F+ = FF+,

and MM+M = FF+M = M. This property implies that for i = 1, 2, ...,m,

(1) FF+ (ai − a1) = ai − a1,

(2) FF+ (Ei − E1) = Ei − E1,

(3) FF+
[
E−1

i (di − d1)
]

= E−1
i (di − d1).

We now provide nine lemmas that we use in the proof of our main LDR results.

The reader can find the proofs of Lemmas 2.1-2.3 in Onsupreth and Young (2008).

Lemma 2.2. Let di ∈ Rp×1, F ∈ Rp×q , and C = R[I−FF+] , where R ∈ R (p−q)×p

such that rank(C) = p − q and Ei ∈ RS
p×p for i = 1, 2, ...,m, such that properties
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(1) - (3) hold. Then,

(a) FF+(Ei − E1) = (Ei − E1)FF+,

(b) FF+Ei = EiFF+,

(c) (I− FF+)Ei = E1(I− FF+),

(d) CEiC
′ = CE1C

′.

The following lemma establishes the inverse of the quantity F+ΣiF
+′.

Lemma 2.3. Let F ∈ Rp×q and Ei ∈ RS
p×p with rank (Ei) = p for i = 1, ...,m, such

that properties (1) - (3) hold. Then, (F+EiF
+′)

−1
= F′E−1

i F .

The subsequent lemma gives the inverse of a full-rank partitioned matrix, and one

can find a proof in Lewis and Odell (1971).

Lemma 2.4. Let A ∈ Rp×p, where rank (A) = p, and let A be partitioned as

A =

 A11 A12

A21 A22

 ,
where A11 ∈ Rq×q, A22 ∈ R(p−q)×(p−q), A21 ∈ R(p−q)×q, and A12 ∈ Rq×(p−q). Then,

A−1 =

 B11 B12

B21 B22

 ,
where B11 =

[
A11 −A12A

−1
22 A21

]−1
, B22 =

[
A22 −A21A

−1
11 A12

]−1
,

B12 = −A−1
11 A12B22, and B21 = −A−1

22 A21B11.

The following lemma gives results that are used in the proof of our main dimension

reduction theorem.

Lemma 2.5. Let ai,di ∈ Rp×1, F ∈ Rp×q , and Ei ∈ RS
p×p with rank (Ei) = p for

i = 1, ...,m, such that properties (1) - (3) hold, and let C = R[I − FF+], where

R ∈ R (p−q)×p such that rank(C) = p− q. Then, for i = 2, . . . ,m,
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(a) CF = 0,

(b) Cdi = Cd1,

(c) Cai = Ca1,

(d) Cdi + CEiF
+′(F+EiF

+′)−1(y − F+ di) = Cd1, where y ∈ Rp×1,

(e) CEiC
′ −CEiF

+′(F+EiF
+′)−1F+EiC

′ = CE1C
′,

(f) a′iC
′
[
CEiC

′ −CEiF
+′ (F+EiF

+′)
−1

F+EiC
′
]−1

(Cx−Cd1)

= (Ca1)
′ [CE1C

′]−1 (Cx−Cd1),

(g) (F+EiC
′)
[
CEiC

′ −CEiF
+′ (F+EiF

+′)
−1

F+EiC
′
]−1

Cai = 0,

(h) Cai −CEiF
+′ (F+EiF

+′)
−1

F+ai = Ca1.

Proof of (a). The proof of (a) is trivial and is thus omitted.

Proof of (b). Let R ∈ R(p−q)×p. From property (3), we have that

FF+E−1
i (di − d1) = E−1

i (di − d1) ⇒ E−1
i FF+ (di − d1) = E−1

i (di − d1)

⇒
(
I− FF+

)
(di − d1) = 0

⇒ R
(
I− FF+

)
(di − d1) = 0

⇒ Cdi = Cd1.

P roof of (c). From property (1), we have that

FF+ (ai − a1) = ai − a1

⇒ R
(
I− FF+

)
(ai − a1) = 0

⇒ Cai = Ca1.
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Proof of (d). First, note that

F+EiC
′ = F+Ei

(
I− FF+

)
R′

=
(
F+Ei − F+EiFF+

)
R′

= 0.

Because CEiF
+′ = (F+EiC

′)
′
, the term CEiF

+′ (F+EiF
+′)

−1
(y − F+di) = 0.

Then, by Lemma 2.5.b, we conclude that

Cdi + CEiF
+′ (F+EiF

+′)−1 (
y − F+di

)
= Cd1.

P roof of (e). Part (e) follows from Lemma 2.3 because

CEiF
+′(F+EiF

+′)−1F+EiC
′ = CEiF

+′F′E
−1
i FF+EiC

′

= CEiE
−1
i FF+FF+EiC

′

= CFF+EiC
′

= 0.

P roof of (f). Using Lemmas 2.5.c and 2.5.e, we have

(Cai)
′
[
CEiC

′ −CEiF
+′ (F+EiF

+′)−1
F+EiC

′
]−1

(Cx−Cd1)

= (Ca1)
′ [CEiC

′ −CEiF
+′E−1

i EiFF+C′]−1
(Cx−Cd1)

= (Ca1)
′ [CE1C

′]
−1

(Cx−Cd1) .

P roof of (g). Using Lemma 2.5.e, we see that

(
F+EiC

′) [CEiC
′ −CEiF

+′ (F+EiF
+′)−1

F+EiC
′
]−1

Cai

=
[
F+Ei

(
I− FF+

)
R′] [CEiC

′]
−1

Cai

=
[
F+
(
I− FF+

)
EiR

′] [CEiC
′]
−1

Cai

= 0.
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Proof of (h). Using Lemma 2.2.b, Lemma 2.3, Lemma 2.5.b, and the fact that

FF+ is orthogonal to C, we have

Cai −CEiF
+′ (F+EiF

+′)−1
F+ai = Cai −CEiF

+′
(
F′E

−1
i F

)
F+ai

= Ca1 −CEi

(
FF+

)′
E−1

i FF+ai

= Ca1 −C
(
FF+

)′
EiE

−1
i FF+ai

= Ca1.

Lemma 2.6. Let F ∈ Rp×q and C = R[I − FF+], where R ∈ R (p−q)×p such that

rank(C) = p− q, and Ei ∈ RS
p×p for i = 1, ...,m, such that properties (1) - (3) hold,

and let

A =

 F+EiF
+′ F+EiC

′

CEiF
+′ CEiC

′

 .
Then,

A−1 =

 F′ E−1
i F 0

0 (CE1C
′)−1

 .
P roof : Let A be defined in the statement of the lemma. Then, by Lemma 2.4,

A−1 =

 B11 B12

B21 B22

 ,
where

B22 =
[
CEiC′ −

(
CEiC′) (F+EiF+′)−1 (F+EiC′)]−1

=
[
CE1C′]−1

by Lemmas 2.5.e and 2.2.c. Next, by Lemmas 2.2.b and 2.3, and because FF+ ∈

C⊥ (C), we have

26



B12 =
[
−
(
F+EiF

+′)−1 (
F+EiC

′) (CE1C
′)
−1
]

= −F′E
−1
i FF+EiC

′ (CE1C
′)
−1

= −F′E
−1
i EiFF+C′ (CE1C

′)
−1

= 0.

Next, by Lemma 2.2.b and Lemma 2.3, we see that

B11 =
[
F+EiF

+′ − F+EiC
′ (CEiC

′)
−1

CEiF
+′
]−1

=
[
F+EiF

+′ − F+Ei

(
I− FF+

)
R′ (CEiC

′)
−1

CEiF
+′
]−1

=
[
F+EiF

+′ −
[
F+Ei − F+EiFF+

]
R′ (CEiC

′)
−1

CEiF
+′
]−1

=
[
F+EiF

+′]−1

= F′E
−1
i F.

Finally, by Lemma 2.2.b and because C /∈ C
(
FF+

)
, we have that

B21 =
[
− (CE1C

′)
−1

CEiF
+′ (F+EiF

+′)−1
]

= − (CE1C
′)
−1

CEiF
+′
(
F′E

−1
i F

)
= − (CE1C

′)
−1

CEiE
−1
i

(
FF+

)′
F

= − (CE1C
′)
−1

CF

= 0.

Hence, Lemma 2.6 holds.

Lemma 2.7. Let ai ∈ Rp×1, F ∈ Rp×q , and G ∈ Rq×(m−1)(p+1), and let H ≡[
F+′

C′

]′
be a full-rank matrix, where C = R[I− FF+] and R ∈ R (p−q)×p such

that rank(C) = p − q. Also, let rank(M) = q < p, and let F and G be matrix

components of a full-rank decomposition of M so that M = FG with rank(F) =

rank(G) = q. Then, for i = 2, . . . ,m, we have

(Hai)
′ HE−1

i H′ (Hai) = a′iF
+′
(
F′E

−1
i F

)
F+ai + a′1C

′ (CE1C
′)
−1

Ca1.
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Proof : We have that

(Hai)
′ HE−1

i H′ (Hai) = a′iH
′

 F′E−1
i F 0

0 (CE1C
′)−1

Hai

=

[
a′iF

+′ a′iC
′

] F′E−1
i F 0

0 (CE1C
′)−1


 F+ai

Cai


=

[
a′iF

+′F′E−1
i F a′iC

′ (CE1C
′)−1

] F+ai

Cai


= a′iF

+′F′E
−1
i FF+ai + a′1C

′ (CE1C
′)
−1

Ca1.

Lemma 2.8. Let x ∼ SNp (µi,Σi, δ0,γi) for i ∈ {1, 2, ...,m}, let H ≡
[

F+′
C′

]′
,

where F and C are defined in Lemma 2.2, and let γ1 ∈ N (C). Then,

g
(
F+x|Cx; Πi

)
=

1

Φ (δ0)
ϕq

(
F+x;F+µi,F

+ΣiF
+′
)
× (2.10)

Φ
(
l0i + l′1i

(
F+ΣiF

+′)− 1
2
(
F+x− F+µi

))
,

where

l0i ≡
δ0√

1− ki

, (2.11)

and

l1i ≡
(F+ΣiF

+′)
−1/2

(F+γi)√
1− ki

, (2.12)

with

ki = γ ′
iF

+′F′Σ
−1
i FF+γi.

P roof : Using Proposition 2.2, Proposition 2.3, and the fact that γ1 ∈ N (C), we

have

l0i =
δ0 + (Cγ1)

′ (CΣ1C
′)−1 (Cx−Cµ1)√

1− ki

=
δ0√

1− ki

.
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Also, because γ1 ∈ N (C),

δ0 + (Cγ1)
′ (CΣ1C

′)−1 (Cx−Cµ1)√
1− (Cγ1)

′ (CΣ1C′)−1 (Cγ1)
= δ0.

In addition, from Proposition 2.3 the MSN location parameter for (2.10) is

F+µi + F+ΣiC′ (CΣ1C′)−1 (Cx−Cµ1)

= F+µi + F+Σi

(
I− FF+

)
R′ (CΣ1C′)−1 (Cx−Cµ1)

= F+µi +
(
F+Σi − F+ΣiFF+

)
R′ (CΣ1C′)−1

= F+µi,

and the corresponding dispersion parameter is

F+ΣiF+′ − F+ΣiC′ (CΣ1C′)−1 CΣiF+′

= F+ΣiF+′ − F+Σi

(
I− FF+

)
R′ (CΣ1C′)−1 CΣiF+′

= F+ΣiF+′ −
(
F+Σi − F+Σi

)
R′ (CΣ1C′)−1 CΣiF+′

= F+ΣiF+′.

Finally, Proposition 2.3 gives

l1i ≡

(
F+ΣiF+′ − F+ΣiC′ (CΣ1C′)−1 CΣiF+′

)− 1
2
(
F+γi − F+ΣiC′ (CΣ1C′)−1 Cγ1

)
√

1− ki

,

which simplifies to

l1i =
(F+ΣiF+′)−

1
2 (F+γi)√

1− ki
.

In addition, note that

ki = γ ′
1C

′ (CΣ1C′)−1 Cγ1 + γ ′
iF

+′F′Σ−1
i FF+γi

= γ ′
iF

+′F′Σ−1
i FF+γi

because γ1 ∈ N (C).

Lemma 2.9. Define the random vector x ∼ SNp (µi,Σi, δ0,γi) for class Πi, where

i ∈ {1, 2, ...,m}, and let H ≡
[

F+′
C′

]′
be a full-rank matrix, where F+ and C
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are defined in Lemma 2.2. Then, Cx ∼ SNp−q (Cµ1,CΣ1C
′, δ0,Cγ1), where

f (Cx|Πi) =
1

Φ (δ0)
ϕp−q

(
Cx;Cµ1,CΣ1C′)Φ

δ0 + (Cγ1)
′ (CΣ1C′)−1 (Cx−Cµ1)√

1− (Cγ1)
′ (CΣ1C′)−1 Cγ1

 .

If γ1 ∈ N (C), then the marginal density function reduces to

f (Cx|Πi) = ϕp−q (Cx;Cµ1,CΣ1C
′) .

P roof : The proof follows from part (ii) of Proposition 2.2.

Lemma 2.10. Let x ∼ SNp (µ,Σ, δ0,γ), where H ∈ Rp×p and rank (H) = p. Then,

p (Hx|θ) = p (x|θ), where p (·|θ) is the p-dimensional skew-normal density function

with parameters θ = {µ,Σ, δ0,γ}.

Proof : Let p (·|θ) denote the MSN density with parameters θ. Then,

p (Hx|θ) =
1

Φ (δ0)
ϕp

(
Hx;Hµ,HΣH′)Φ

δ0 + γ ′H′ (HΣH′)−1 (Hx−Hµ)√
1− γ ′H′ (HΣH′)−1 Hγ


=

1
Φ (δ0)

1

(2π)n/2 |HΣH′|1/2
exp

{
−1

2
(Hx−Hµ)′

(
HΣH′)−1 (Hx−Hµ)

}
×

Φ

(
δ0 + γ ′HH−1Σ−1 H−1H(x− µ)√

1− γ ′HH−1Σ−1 H−1Hγ

)

=
1

Φ (δ0)
ϕp (x;µ,Σ) Φ

(
δ0 + γ ′Σ−1(x− µ)√

1− γ ′Σ−1γ

)

= p (x|θ) .

Next, we present a series of theorems that form the main results of this chapter.

The theorems utilize the Moore-Penrose pseudoinverse F+, where M = FG of a full-

rank decomposition in order to obtain a linear compression matrix that preserves

the full-feature Bayes assignment of the vector x ∈ Rp×1 to the MSN population Πk

for k ∈ {1, ...,m}.

Theorem 2.2
(
γi = γj,Σi = Σj, δ0i = δ0j

)
. Let Πi have a priori probability αi > 0

and be represented by the distribution SNp (µi,Σ, δ0,γ) with location parameter µi
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such that µ1 6= µk for some k ∈ {2, ...,m}, skewness parameter γi = γ, dispersion

parameter Σi = Σ, and scalar δ0i = δ0 for i ∈ {1, 2, ...,m}. Next, let

M ≡
[
Σ−1 (µ2 − µ1) |Σ−1 (µ3 − µ1) |...|Σ−1 (µm − µ1)

]
,

where M = FG is a full-rank decomposition of M with rank(M) = q < p, and

let C = R
(
I− FF+

)
and R ∈ R(p−q)×p. Also, let x be an unlabeled observation

belonging to Πr for r ∈ {1, ...,m}. Then, the p-variate Bayes classifier assigns x to

Πk for k ∈ {1, ...,m} if and only if the q-dimensional Bayes classifier assigns F′x to

Πk.

Proof : Let w=

 u

y

=

 F+
q×p

C(p−q)×p

x, where x ∼ SNp (µk,Σ, δ0,γ) for some k ∈

{1, 2, ...,m}. Also, let H ≡
[

F+′ C′

]′
with C = R(I−FF+), where R ∈ R(p−q)×p

is rank(R) = p − q so that rank (H) = p. Then, w ∼ SN (Hµk,HΣH′, δ0,Hγ),

where

Hµk =

 F+µk

Cµk

 and HΣH′ =

 F+ΣF+′ F+ΣC′

CΣF+′ CΣC′

 , k ∈ {1, 2, ...,m}.
By Lemma 2.8,

g (u|y) =
1

Φ (δ0)
ϕq

(
F+x;F+µk,F

+ΣF+′)Φ
(
l0 + l′1

(
F+ΣF+′)− 1

2
(
F+x− F+µk

))
,

where

l0 =
δ0√

1− γ ′F+′
(
F′Σ−1F

)
F+γ

(2.13)

and

l1 =

(
F+ΣF+′)−1/2

F+γ√
1− γ ′F+′

(
F′Σ−1F

)
F+γ

. (2.14)
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Also, from Lemma 2.9, the marginal density of y is

h (y) = ϕp−q (Cx;Cµ1,CΣC′) Φ

δ0 + (Cγ)′ (CΣC′)−1 (Cx−Cµ1)√
1− (Cγ)′ (CΣC′)−1 (Cγ)

 .

Now recall that the p-variate Bayes classification procedure assigns x to Πj if and

only if

αj
1

Φ (δ0)
ϕ
(
x; µj,Σ

)
Φ

(
δ0 + γ ′ Σ−1

(
x− µj

)√
1− γ ′ Σ−1γ

)
>

αi
1

Φ (δ0)
ϕ (x; µi,Σ) Φ

(
δ0 + γ ′ Σ−1 (x− µi)√

1− γ ′ Σ−1γ

)
for i = 1, ...,m, i 6= j, which is equivalent to

αjϕ
(
Hx;Hµj,HΣH′)Φ

δ0 + γ ′H′ (HΣH′)−1 (Hx−Hµj

)√
1− γ ′H′ (HΣH′)−1 Hγ

 >

αiϕ (Hx;Hµi,HΣH′) Φ

δ0 + γ ′H′ (HΣH′)−1 (Hx−Hµi)√
1− γ ′H′ (HΣH′)−1 Hγ


for i = 1, ...,m, i 6= j. Hence, for i, j = 1, 2, ...,m and i 6= j, we have

αjϕq

(
F+x;F+µj,F

+ΣF+′)Φ
(
l0 + l′1

(
F+ΣF+′)− 1

2
(
F+x− F+µj

))
×

ϕp−q (Cx;Cµ1,CΣC′) Φ

δ0 + (Cγ)′ (CΣC′)−1 (Cx−Cµ1)√
1− (Cγ)′ (CΣC′)−1 (Cγ)

 >

αiϕq

(
F+x;F+µi,F

+ΣF+′)Φ
(
l0 + l′1

(
F+ΣF+′)− 1

2
(
F+x− F+µi

))
×

ϕp−q (Cx;Cµ1,CΣC′) Φ

δ0 + (Cγ)′ (CΣC′)−1 (Cx−Cµ1)√
1− (Cγ)′ (CΣC′)−1 (Cγ)


for i = 1, ...,m, i 6= j by Lemma 2.8. Finally, because

ϕp−q (Cx;Cµ1,CΣC′) and Φ

δ0 + (Cγ)′ (CΣC′)−1 (Cx−Cµ1)√
1− (Cγ)′ (CΣC′)−1 (Cγ)


do not depend on k for k = 2, ...,m, we have that

αjϕq

(
F+x;F+µj,F

+ΣF+′)Φ
(
l0 + l′1

(
F+ΣF+′)− 1

2
(
F+x− F+µj

))
>
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αiϕq

(
F+x;F+µi,F

+ΣF+′)Φ
(
l0 + l′1

(
F+ΣF+′)− 1

2
(
F+x− F+µi

))
,

where l0 and l1 are defined in (2.13) and (2.14), respectively.

Hence, if the p-variate Bayes classifier assigns the unlabeled observation x

into Πj, then the q-variate Bayes classifier assigns F′x into Πj because C (F+) =

C (F′). The preceding arguments are reversible and, thus, the original p-variate

Bayes classification assignment is preserved by the linear transformation y = F′x.

The following corollary provides the conditions in which the linear dimension

reduction matrix reduces to Fisher’s linear discriminant function.

Corollary 2.1. Let Πi, i = 1, 2, be represented by p-dimensional MSN populations

with a priori probability αi > 0, mean vector µi such that µ1 6= µ2, skewness

parameter γ = γ1 = γ2, dispersion parameter Σ = Σ1 = Σ2, and scalar parameter

δ0 = δ01 = δ02. Next, let

M ≡
[
Σ−1 (µ2 − µ1)

]
,

where rank (M) = 1 < p. Then, the p-variate Bayes procedure assigns x to Πk for

k = 1, 2 if and only if the one-dimensional Bayes procedure assigns M′x to Πk.

Proof : The proof consists of substitution of M for F and M+ for F+ in Theorem

2.2.

Theorem 2.3
(
γi = γj,Σi 6= Σj, δ0i = δ0j

)
. Let Πi have a priori probability αi > 0

and be represented by the distribution SNp (µi,Σi, δ0,γ) with location parameter

µi such that µ1 6= µk, dispersion parameter Σi such that Σi 6= Σj for some i, j ∈

{2, ...,m}, skewness parameter γi = γ, and skew scalar δ0i = δ0 for i ∈ {1, 2, ...,m}.

Next, let

M ≡
[
Σ−1

2 (µ2 − µ1) |...|Σ−1
m (µm − µ1) |Σ2 −Σ1|...|Σm −Σ1

]
,
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where M = FG is a full-rank decomposition of M with rank(M) = q < p, and

let C = R
(
I− FF+

)
and R ∈ R(p−q)×p. Also, let x be an unlabeled observation

belonging to Πj for j ∈ {1, ...,m}. Then, the p-variate Bayes classifier assigns x to

Πk for k ∈ {1, ...,m} if and only if the q-dimensional Bayes classifier assigns F+x to

Πk.

Proof : Let w =

 u

y

=

 F+
q×p

C(p−q)×p

x, where x ∼ SNp (µk,Σk, δ0,γ) for k ∈

{1, 2, ...,m}. Let H ≡
[

F+′ C′

]′
with C = R(I − FF+), where R ∈ R(p−q)×p

with rank(R) = p−q so that rank (H) = p. Then, w ∼ SN (Hµk,HΣkH
′, δ0,Hγ),

where

Hµk =

 F+µk

Cµk

 and HΣkH
′ =

 F+ΣkF
+′ F+ΣkC

′

CΣkF
+′ CΣ1C

′

 , k ∈ {1, 2, ...,m}.
By Lemma 2.8,

g (u|y) =
1

Φ (δ0)
ϕq

(
F+x;F+µk,F

+ΣkF
+′
)

Φ
(
l0k + l′1k

(
F+ΣkF+′)− 1

2
(
F+x− F+µk

))
,

where

l0k =
δ0√

1− γ ′F+′
(
F′Σ−1

k F
)
F+γ

(2.15)

and

l1k =
(F+ΣkF

+′)
−1/2

F+γ√
1− γ ′F+′

(
F′Σ−1

k F
)
F+γ

. (2.16)

Also, by Lemma 2.9, the marginal density of y is

h (y) = ϕp−q (Cx;Cµ1,CΣ1C
′) Φ

δ0 + (Cγ)′ (CΣ1C
′)−1 (Cx−Cµ1)√

1− (Cγ)′ (CΣ1C′)−1 (Cγ)

 .
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The p-variate Bayes procedure assigns x to Πj if and only if

αj
1

Φ (δ0)
ϕ
(
x; µj,Σj

)
Φ

δ0 + γ ′ Σ−1
j

(
x− µj

)√
1− γ ′ Σ−1

j γ

 >

αi
1

Φ (δ0)
ϕ (x; µi,Σi) Φ

(
δ0 + γ ′ Σ−1

i (x− µi)√
1− γ ′ Σ−1

i γ

)
for i = 1, ...,m, i 6= j, which, by Lemma 2.10, implies

αjϕ
(
Hx;Hµj,HΣjH

′)Φ

δ0 + γ ′H′ (HΣjH
′)−1 (Hx−Hµj

)√
1− γ ′H′ (HΣjH′)−1 Hγ

 >

αiϕ (Hx;Hµi,HΣiH
′) Φ

δ0 + γ ′H′ (HΣiH
′)−1 (Hx−Hµi)√

1− γ ′H′ (HΣiH′)−1 Hγ


for i = 1, ...,m, i 6= j. Hence, for i, j = 1, 2, ...,m and i 6= j, we have

αjϕq

(
F+x;F+µj,F

+ΣjF
+′)Φ

(
l0j + l′1j

(
F+ΣjF

+′)− 1
2
(
F+x− F+µj

))
×

ϕp−q (Cx;Cµ1,CΣ1C
′) Φ

δ0 + (Cγ)′ (CΣ1C
′)−1 (Cx−Cµ1)√

1− (Cγ)′ (CΣ1C′)−1 (Cγ)

 >

αiϕq

(
F+x;F+µi,F

+ΣiF
+′)Φ

(
l0i + l′1i

(
F+ΣiF

+′)− 1
2
(
F+x− F+µi

))
×

ϕp−q (Cx;Cµ1,CΣ1C
′) Φ

δ0 + (Cγ)′ (CΣ1C
′)−1 (Cx−Cµ1)√

1− (Cγ)′ (CΣ1C′)−1 (Cγ)


for i = 1, ...,m, i 6= j by Lemma 2.8. Finally, because

ϕp−q (Cx;Cµ1,CΣ1C
′) Φ

δ0 + (Cγ)′ (CΣ1C
′)−1 (Cx−Cµ1)√

1− (Cγ)′ (CΣ1C′)−1 (Cγ)


does not depend on k for k = 2, ...,m, we have

αjϕq

(
F+x;F+µj,F

+ΣjF
+′)Φ

(
l0j + l′1j

(
F+ΣjF

+′)− 1
2
(
F+x− F+µj

))
>

αiϕq

(
F+x;F+µi,F

+ΣiF
+′)Φ

(
l0i + l′1i

(
F+ΣiF

+′)− 1
2
(
F+x− F+µi

))
,
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where l0k and l1k are defined for Πk in (2.15) and (2.16), respectively. Thus, if

the unlabeled observation x is classified into Πj, then F+x is classified into Πj.

The preceding arguments are reversible and, therefore, the original p-variate Bayes

classification assignment is preserved by the linear transformation y = F+x.

Theorem 2.4.
(
γi 6= γj,Σi = Σj, δ0i = δ0j

)
. Let Πi have a priori probability αi >

0 and be represented by the distribution SNp (µi,Σ, δ0,γi) with location parameter

µi such that µ1 6= µk and skewness parameter γi such that γ1 6= γk for some

k ∈ {2, ...,m}, dispersion parameter Σi = Σ, and scalar δ0i = δ0 for i ∈ {1, 2, ...,m}.

Next, let

M ≡
[
Σ−1 (µ2 − µ1) |...|Σ−1 (µm − µ1) |γ2 − γ1|...|γm − γ1

]
,

where M = FG is a full-rank decomposition of M with rank(M) = q < p, and

let γ1 ∈ N (C), where C = R
(
I− FF+

)
with R ∈ R(p−q)×p. Also, let x be an

unlabeled observation belonging to Πj for j ∈ {1, ...,m}. Then, the p-variate Bayes

procedure assigns x to Πk for k ∈ {1, ...,m} if and only if the q-dimensional Bayes

procedure assigns F+x to Πk.

Proof : Let w=

 u

y

=

 F+
q×p

C(p−q)×p

x, where x ∼ SNp (µk,Σ, δ0,γk) for some

k ∈ {1, 2, ...,m}. Let H ≡
[

F+′ C′

]′
with C = R(I − FF+), where R ∈

R(p−q)×p such that rank(R) = p − q, and, thus, rank (H) = p. Then, w ∼

SN (Hµk,HΣH′, δ0,Hγk), where

Hµk =

 F+µk

Cµk

 and HΣH′ =

 F+ΣF+′ F+ΣC′

CΣF+′ CΣC′

 , k ∈ {1, 2, ...,m}.
By Lemma 2.8,

g (u|y) =
1

Φ (δ0)
ϕq

(
F+x;F+µk,F

+ΣF+′)Φ
(
l0k + l′1k

(
F+ΣF+′)− 1

2
(
F+x− F+µk

))
,
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where

l0k =
δ0√

1− γ ′
kF

+′
(
F′Σ−1F

)
F+γk

(2.17)

and

l1k =

(
F+ΣF+′)−1/2

F+γk√
1− γ ′

kF
+′
(
F′Σ−1F

)
F+γk

. (2.18)

Also, by Lemma 2.9 and the fact that γ1 ∈ N (C), the marginal density of y is

h (y) = ϕp−q (Cx;Cµ1,CΣC′) .

Let p(·|Πi) denote the p-dimensional MSN density corresponding to population Πi,

i = 1, ...,m. Recall that the p-variate Bayes procedure assigns x to Πj if and only if

αj
1

Φ (δ0)
ϕ
(
x; µj,Σ

)
Φ

(
δ0 + γ ′

j Σ−1
(
x− µj

)√
1− γ ′

j Σ−1γj

)
>

αi
1

Φ (δ0)
ϕ (x; µi,Σ) Φ

(
δ0 + γ ′

i Σ−1 (x− µi)√
1− γ ′

i Σ
−1γi

)
for i = 1, ...,m, i 6= j, which is equivalent to

αjϕ
(
Hx;Hµj,HΣH′)Φ

δ0 + γ ′
jH

′ (HΣH′)−1 (Hx−Hµj

)√
1− γ ′

jH
′ (HΣH′)−1 Hγj

 >

αiϕ (Hx;Hµi,HΣH′) Φ

δ0 + γ ′
iH

′ (HΣH′)−1 (Hx−Hµi)√
1− γ ′

iH
′ (HΣH′)−1 Hγi


for i = 1, ...,m, i 6= j. Hence, for i, j = 1, 2, ...,m and i 6= j, we have

αjϕq

(
F+x;F+µj,F

+ΣF+′)Φ
(
l0j + l′1j

(
F+ΣF+′)− 1

2
(
F+x− F+µj

))
×

ϕp−q (Cx;Cµ1,CΣC′) >

αiϕq

(
F+x;F+µi,F

+ΣF+′)Φ
(
l0i + l′1i

(
F+ΣF+′)− 1

2
(
F+x− F+µi

))
×

ϕp−q (Cx;Cµ1,CΣC′)

for i = 1, ...,m, i 6= j by Lemma 2.8. Finally, we have that

αjϕq

(
F+x;F+µj,F

+ΣF+′)Φ
(
l0j + l′1j

(
F+ΣF+′)− 1

2
(
F+x− F+µj

))
>
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αiϕq

(
F+x;F+µi,F

+ΣF+′)Φ
(
l0i + l′1i

(
F+ΣF+′)− 1

2
(
F+x− F+µi

))
,

where l0k and l1k are defined for the kth class in (2.17) and (2.18), respectively,

because ϕp−q (Cx;Cµ1,CΣC′) does not depend on k for k = 2, ...,m. Hence, if the

p-variate Bayes classifier assigns the unlabeled observation x into Πj, then the q-

variate Bayes classifier assigns F+x into Πj. The preceding arguments are reversible

and, thus, the original p-variate Bayes classification assignment is preserved by the

linear transformation y = F+x.

Corollary 2.2. Let Πi have a priori probability αi > 0 and be represented by

distribution SNp (µi,Σ, δ0,γi) with location parameter µi such that µ1 6= µk, skew

parameter γi such that γ1 6= γk for some k ∈ {2, ...,m}, dispersion parameter Σ,

and scalar δ0 for i ∈ {2, ...,m}. In addition, let Π1 be represented by the multivariate

distribution Np (µ1,Σ). Next, let

M ≡
[
Σ−1 (µ2 − µ1) |...|Σ−1 (µm − µ1) |γ2|...|γm

]
,

where M = FG is a full-rank decomposition of M with rank (M) = q < p, and let

γ1 ∈ N (C), where C = R
(
I− FF+

)
and R ∈ R(p−q)×p. Also, let x be an unlabeled

observation vector belonging to Πj for j ∈ {1, 2, ...,m}. Then, the p-variate Bayes

classifier assigns x to Πk for k ∈ {1, 2, ...,m} if and only if the q-dimensional Bayes

classifier assigns F+x to Πk.

Proof : The proof follows immediately because γ1 = 0.

Theorem 2.5
(
γi 6= γj,Σi 6= Σj, δ0i = δ0j

)
for i = 1, 2, ...,m. Let Πi have a priori

probability αi > 0 and be represented by distribution SNp (µi,Σi, δ0,γi) with loca-

tion parameter µi such that µ1 6= µk, skewness parameter γi such that γ1 6= γk,

dispersion parameter Σi such that Σ1 6= Σk, and scalar δ0 for some k ∈ {2, ...,m}.
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Next, let

M ≡
[
Σ−1

2 (µ2 − µ1) |...|Σ−1
m (µm − µ1) |Σ2 −Σ1|...|Σm −Σ1|γ2 − γ1|...|γm − γ1

]
,

where M = FG is a full-rank decomposition of M with rank(M) = q < p, and

let γ1 ∈ N (C). Also, let x be an unlabeled observation vector belonging to

Πk for j ∈ {1, 2, ...,m}. Then, the p-variate Bayes classifier assigns x to Πk for

k ∈ {1, ...,m} if and only if the q-dimensional Bayes classifier assigns F+x to Πk.

Proof : Let w=

 u

y

=

 F+
q×p

C(p−q)×p

x, where x ∼ SNp (µk,Σk, δ0,γk), k =

1, 2, ...,m. Let H be a full-rank p × p matrix defined by H ≡

 F+

C

 with

C = R(I − FF+) with R ∈ R(p−q)×p full rank such that rank(R) = p − q. Then,

w ∼ SN (Hµk,HΣkH
′, δ0,Hγk), where

Hµk =

 F+µk

Cµk

 and HΣkH
′ =

 F+ΣkF
+′ F+ΣkC

′

CΣiF
+′ CΣ1C

′

 ,
for i = 1, 2, ...,m. By Lemma 2.8,

g (u|y) =
1

Φ (δ0)
ϕq

(
F+x;F+µk,F

+ΣkF+′)Φ
(
l0k + l′1k

(
F+ΣkF+′)− 1

2
(
F+x− F+µk

))
,

where

l0k =
δ0√

1− γ ′
kF

+′
(
F′Σ−1

k F
)
F+γk

(2.19)

and

l1k =
(F+ΣkF

+′)
−1/2

F+γk√
1− γ ′

kF
+′
(
F′Σ−1

k F
)
F+γk

. (2.20)

Also, by Lemma 2.9 and the fact that γ1 ∈ N (C), the marginal density of y is

h (y|Πk) = ϕp−q (Cx;Cµ1,CΣ1C
′) . (2.21)
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The p-variate Bayes classification procedure assigns an unlabeled observation x to

Πj if and only if

αj
1

Φ (δ0)
ϕ
(
x; µj,Σj

)
Φ

δ0 + γ ′
j Σ−1

j

(
x− µj

)√
1− γ ′

j Σ−1
j γj

 >

αi
1

Φ (δ0)
ϕ (x; µi,Σi) Φ

(
δ0 + γ ′

i Σ−1
i (x− µi)√

1− γ ′
i Σ

−1
i γi

)
for i = 1, 2, ...,m, i 6= j, which, by Lemma 2.10, implies

αj
1

Φ (δ0)
ϕ
(
Hx;Hµj,HΣjH

′)Φ

δ0 + Hγ ′
jH

′ (HΣjH
′)−1 (Hx−Hµj

)√
1− γ ′

jH
′ (HΣjH′)−1 Hγj

 >

αi
1

Φ (δ0)
ϕ (Hx;Hµi,HΣiH

′) Φ

δ0 + γ ′
iH

′ (HΣiH
′)−1 (Hx−Hµi)√

1− γ ′
iH

′ (HΣiH′)−1 Hγi

 .

Hence, for i, j = 1, 2, ...,m and i 6= j, we have

αj
1

Φ (β0j)
ϕq

(
F+x;F+µj,F

+ΣjF
+′)Φ

(
l0j + l′1j

(
F+ΣjF

+′)− 1
2
(
F+x− F+µj

))
×

ϕp−q (Cx;Cµ1,CΣ1C
′) >

αi
1

Φ (β0i)
ϕq

(
F+x;F+µi,F

+ΣiF
+′)Φ

(
l0i + l′1i

(
F+ΣiF

+′)− 1
2
(
F+x− F+µi

))
×

ϕp−q (Cx;Cµ1,CΣ1C
′)

for i = 1, 2, ...,m, i 6= j by Lemma 2.8. Therefore,

αj
1

Φ (β0j)
ϕq

(
F+x;F+µj,F

+ΣjF
+′)Φ

(
l0j + l′1j

(
F+ΣjF

+′)− 1
2
(
F+x− F+µj

))
>

αi
1

Φ (β0i)
ϕq

(
F+x;F+µi,F

+ΣiF
+′)Φ

(
l0i + l′1i

(
F+ΣiF

+′)− 1
2
(
F+x− F+µi

))
,

because ϕp−q (Cx;Cµ1,CΣ1C
′) does not depend on k for k = 2, ...,m and because

γ1 ∈ N (C), where l0k and l1k are defined in (2.19) and (2.20) for Πk, respectively.

Hence, if p-variate Bayes classifier assigns the unlabeled observation x into Πj, then

the q-variate Bayes classifier assigns F+x into Πj. The preceding arguments are
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reversible, and, thus, the original p-variate Bayes classification is preserved by the

linear transformation y = F+x.

Corollary 2.3. Let Πi have a priori probability αi > 0 and be represented by

the distribution SNp (µi,Σi, δ0,γi) with location parameter µi such that µ1 6= µk,

dispersion parameter Σi such that Σ1 6= Σk, skew parameter γi such that γ1 6= γk

for some k ∈ {2, ...,m}, and scalar δ0 for i ∈ {2, ...,m}. In addition, let Π1 be

represented by the distribution Np (µ1,Σ1). Next, let

M ≡
[
Σ−1

2 (µ2 − µ1) |...|Σ−1
m (µm − µ1) |Σ2 −Σ1|...|Σm −Σ1|γ2|...|γm

]
,

where M = FG is a full-rank decomposition of M with rank (M) = q < p, and let

γ1 ∈ N (C), where C = R
(
I− FF+

)
and R ∈ R(p−q)×p. Also, let x be an unla-

beled observation vector belonging to Πj for j ∈ {1, 2, ...,m}. Then, the p-variate

Bayes classification procedure assigns x to Πk for k ∈ {1, 2, ...,m} if and only if the

q-dimensional Bayes classification procedure assigns F+x to Πk.

Proof : The proof follows immediately from Theorem 2.5 because γ1 = 0.

If rank (M) = p, one can use Theorems 2.2 through 2.5 to obtain a q×p linear

compression matrix that preserves the full-feature PMC. Also, in many situations

when Theorems 2.2 through 2.5 hold, we may desire to determine a low-dimensional

representation with dimension less than q, say dimension r, where 1 ≤ r < q < p.

Thus, we seek to construct an r-dimensional representation of the density p (x|Πi),

i = 1, 2, ...,m, which preserves the original p-dimensional BPMC as much as possi-

ble.

One method of approximating M by rank (r) matrix, where 1 ≤ r < p, is the

singular value decomposition (SV D) approximation to M. We use the following

theorem to determine a rank (r) approximation to the linear sufficient matrix M.

Theorem 2.6. (Tubbs et al. (1982)): Let C
(p)
s,t denote the class of all s× t real ma-
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trices of rank p, and let C(r) denote the class of all s × t real matrices of rank

r where 1 ≤ r < p. If Ap ∈ C
(p)
s,t and Ar ∈ C

(r)
s,t , given by Ar = UDrV

′,

then ‖Ap −Ar‖ < ‖Ap −X‖ for all X ∈ C
(r)
s,t , where Ap = UDpV

′, Dp =

diag (d1, d2, ..., dp), Dr = diag (d1, d2, ..., dr, 0r+1, ..., 0p), and ‖Ak‖ is the usual Eu-

clidean or Frobenius norm of a matrix Ap, given by ‖Ap‖ =

(
s∑

i=1

t∑
j=1

|aij|2
)

=(
p∑

i=1

d2
i

)
. Furthermore, ‖Ap −Ar‖ =

(
p∑

i=r+1

d2
i

)1/2

.

2.5 Examples

Example 2.1. In the first example, we demonstrate a low-dimensional repre-

sentation for three MSN populations having unequal means but equal skew, dis-

persion, and scalar parameters. Consider the three seven-dimensional populations

SN7 (µ1,Σ, δ0,γ), SN7 (µ2,Σ, δ0,γ), and SN7 (µ3,Σ, δ0,γ), where

Π1 : µ1 = [.25, .5, .75, 1, 1.25, 1.5, 1.75]′ ,

Π2 : µ2 = [.5, 1, 1.5, 2, 2.5, 3, 3.5]′ , and

Π3 : µ3 = [1, 2, 3, 4, 5, 6, 7]′ .

In addition, we have the common dispersion parameter

Σ =



4.67 .15 .15 .15 .15 .15 .15

.15 4.67 .15 .15 .15 .15 .15

.15 .15 4.67 .15 .15 .15 .15

.15 .15 .15 4.67 .15 .15 .15

.15 .15 .15 .15 4.67 .15 .15

.15 .15 .15 .15 .15 4.67 .15

.15 .15 .15 .15 .15 .15 4.67



.

Also, we have common skew parameter

γ = [.75, .76, .77, .78, .79, .80, .81]′
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with δ0i = 0, i = 1, 2, 3. Using Theorem 2.2 to formulate a low-dimensional matrix,

we obtain

M′ =

 .014 .069 .124 .180 .235 .290 .345

.041 .206 .372 .539 .705 .870 1.04


′

,

where rank (M) = 1. Therefore, by Theorem 2.2, the three original seven-dimensional

density functions can be transformed to the reduced dimension q = 1 without in-

creasing the BPMC. An approximate one-dimensional representation space is C (F),

where

F′ =

[
.024 .124 .223 .322 .421 .520 .619

]
.

Our reduced location parameters are

µ1 = 2.95, µ2 = 5.89, and µ3 = 11.79

with common dispersion parameter σ = 5.28 and common skew parameter γ = 1.78.

5 10 15 20

0.01

0.02

0.03

0.04

Π1

Π2
Π

3

Figure 2.1: The optimal one-dimensional representation for the three seven-dimensional
skew-normal densities defined in Example 2.1.
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Example 2.2. In the second example, we demonstrate a low-dimensional repre-

sentation for three MSN populations having unequal location, dispersion, and skew

parameters. Consider the three six-dimensional populations, SN6 (µ1,Σ1, δ01,γ1),

SN6 (µ2,Σ2, δ02,γ2), and SN6 (µ3,Σ3, δ03,γ3), with

Π1 : µ1 =



1

1

1

1

1

1


,Σ1 =



2 .2 .4 .4 .1 .2

.2 2 .4 .4 .4 .4

.4 .4 2 .2 .4 0

.4 .4 .2 2 .4 .4

.1 .4 .4 .4 2 .4

.2 .4 0 .4 .4 2


,γ1 =



.763

.698

.698

.821

.829

.745



Π2 : µ2 =



3

4

4

2

2

3


,Σ2 =



2.6 .8 1 1 .7 .8

.8 2.6 1 1 1 1

1 1 2.6 .8 1 .6

1 1 .8 2.6 1 1

.7 1 1 1 2.6 1

.8 1 .6 1 1 2.6


,γ2 =



.963

.898

.898

1.021

1.029

.945



Π3 : µ3 =



3.93

4.05

3.95

4.05

4.03

3.95


,Σ3 =



1.4 −.4 −.2 −.2 −.5 −.4

−.4 1.4 −.2 −.2 −.2 −.2

−.2 −.2 1.4 −.4 −.2 −.6

−.2 −.2 −.4 1.4 −.2 −.2

−.5 −.2 −.2 −.2 1.4 −.2

−.4 −.2 −.6 −.2 −.2 1.4


,γ3 =



1.063

.998

.998

1.121

1.129

1.045


,

with δ0i = 0, i = 1, 2, 3. As an aside we remark that γ1 ∈ N (C). Using Theorem

2.5 to formulate a linear dimension reduction matrix, we obtain
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M =



.271 .5 .6 .6 .6 .6 .6 .6 1.4 1.4 1.4 1.4 1.4 1.4 .2 .3

.843 .5 .6 .6 .6 .6 .6 .6 1.4 1.4 1.4 1.4 1.4 1.4 .2 .3

.877 .5 .6 .6 .6 .6 .6 .6 1.4 1.4 1.4 1.4 1.4 1.4 .2 .3

−.331 .5 .6 .6 .6 .6 .6 .6 1.4 1.4 1.4 1.4 1.4 1.4 .2 .3

−.390 .5 .6 .6 .6 .6 .6 .6 1.4 1.4 1.4 1.4 1.4 1.4 .2 .3

.437 .5 .6 .6 .6 .6 .6 .6 1.4 1.4 1.4 1.4 1.4 1.4 .2 .3


,

where rank (M) = 2. Therefore, by Theorem 2.5, the original six-dimensional

MSN density functions can be transformed into two-dimensional density functions

without increasing the probability of misclassification under the Bayes classification

assignments. Because C (F+) = C (F′), an optimal two-dimensional representation

space is C (F), where

F′ =

 .408 .413 .413 .403 .403 .409

−.015 .449 .476 −.503 −.551 .120

 .
For Π1, we now have the reduced parameters

µ1R =

 2.449

−.015

 ,Σ1R =

 3.565 −.094

−.094 1.649

 , and γ1R =

 1.858

−.147

 .
For Π2, we have reduced parameters

µ2R =

 7.368

1.904

 ,Σ2R =

 7.165 −.131

−.131 1.649

 , and γ2R =

 2.348

−.152

 .
The reduced parameters for Π3 are

µ3R =

 9.777

−.146

 ,Σ3R =

 11.964 −.180

−.180 1.65

 , and γ3R =

 2.593

−.155

 .
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Figure 2.2: The optimal two-dimensional representation for the three six-dimensional skew-
normal populations given in Example 2.2.

Immediately above, we portray a two-dimensional representation of the original six-

dimensional MSN populations. A one-dimensional representation of these three

populations is obtainable if we use the SVD in Theorem 2.6; however, we lose some

discriminatory information by applying this procedure. For the first population, we

obtain parameters

Π1 : µ1R = 2.449, σ1R = 3.57, and γ1R = 1.86.

Also, for the second population, we obtain parameters

Π2 : µ2R = 7.368, σ2R = 7.17, and γ2R = 2.35.

Finally, for the third population, we obtain parameters

Π3 : µ3R = 9.777, σ3R = 11.96, and γ3R = 2.59.

Example 2.3. In the third example, we use Theorem 2.5 to formulate a low-

dimensional representation for three populations with unequal location, dispersion,
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and skew parameters with original dimension p = 7. Consider the configuration

SN7 (µ1,Σ1, δ01,γ1), SN7 (µ2,Σ2, δ02,γ2), and SN7 (µ3,Σ3, δ03,γ3) with

10 15

0.02

0.04

0.06

0.08

0.10

Π1
Π

Π 3

2

Figure 2.3: A one-dimensional approximate representation for the three six-dimensional
skew-normal populations in Example 2.2.

Π1 :µ1 = [1, 1.5, 3, 4, 2.5, 2, 6]′ ,

Σ1 = (.10)J + 2.99I7,

γ1 = [.675, .683, .707, .723, .698, .678, .755]′

Π2 :µ2 = [2, 3, 6, 8, 5, 4, 12]′ ,

Σ2 = (.01)J + 2.99I7,

γ2 = [.575, .583, .607, .623, .598, .655]′

Π3 :µ3 = [3.997, 4.497, 5.997, 6.997, 5.497, 4.997, 8.997]′ ,

Σ3 = J + 2.99I7,

γ3 = [1.075, 1.083, 1.107, 1.123, 1.098, 1.078, 1.155]′ ,

where J denotes the 7×7 matrix of 1’s and I7 denotes the 7×7 identity matrix with
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δ0i = 0, i = 1, 2, 3. Using Theorem 2.5 to formulate a dimension reduction matrix,

we obtain

M =



0.31 .3 −.09 −.09 −.09 −.09 −.09 −.09 −.09 .9 .9 .9 .9 .9 .9 .9 −.1 .4

0.48 .3 −.09 −.09 −.09 −.09 −.09 −.09 −.09 .9 .9 .9 .9 .9 .9 .9 −.1 .4

0.98 .3 −.09 −.09 −.09 −.09 −.09 −.09 −.09 .9 .9 .9 .9 .9 .9 .9 −.1 .4

1.31 .3 −.09 −.09 −.09 −.09 −.09 −.09 −.09 .9 .9 .9 .9 .9 .9 .9 −.1 .4

0.81 .3 −.09 −.09 −.09 −.09 −.09 −.09 −.09 .9 .9 .9 .9 .9 .9 .9 −.1 .4

0.64 .3 −.09 −.09 −.09 −.09 −.09 −.09 −.09 .9 .9 .9 .9 .9 .9 .9 −.1 .4

1.98 .3 −.09 −.09 −.09 −.09 −.09 −.09 −.09 .9 .9 .9 .9 .9 .9 .9 −.1 .4


with rank (M) = 2. Therefore, by Theorem 2.5, the original seven-dimensional

MSN density functions can be transformed into two-dimensional density functions

without increasing the probability of misclassification under the Bayes classification

assignments. Because C (F+) = C (F′), an optimal two-dimensional representation

space is C (F), where

F′ =

 .344 .353 .380 .397 .371 .362 .433

.473 .353 −.006 −.246 .113 .233 −.724

 .
Note, once again, that γ1 ∈ N (C), and, hence, the requirements for Theorem 2.5

are met.

For the first population, we now have reduced two-dimensional parameters

Π1 : µ1R =

 10.41

3.63

 ,Σ1R =

 3.69 −.037

−.037 2.99

 , and γ1R =

 1.86

−.028

 .
Also, for the second population, we have reduced two-dimensional parameters

Π2 : µ2R =

 15.53

7.53

 ,Σ2R =

 3.06 −.004

−.004 2.99

 , and γ2R =

 1.60

−.014

 .
Finally, for the third population, we have reduced two-dimensional parameters

Π3 : µ3R =

 18.33

3.21

 ,Σ3R =

 9.97 −.37

−.37 3.01

 , and γ3R =

 2.92

−.083

 .
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Figure 2.4: The optimal two-dimensional representation for the three seven-dimensional
skew-normal populations in Example 2.3.

Immediately above, we portray a two-dimensional representation of the original

seven-dimensional MSN populations. A one-dimensional representation of these

three populations is obtainable if we use the SVD described in Theorem 2.6; how-

ever, we lose some discriminatory information by applying this procedure. For the

first population, we obtain the reduced one-dimensional parameters

Π1 : µ1R = 10.41, σ1R = 3.69, and γ1R = 1.86.

For the second population, we obtain the reduced one-dimensional parameters

Π2 : µ2R = 15.53, σ2R = 3.06, and γ2R = 1.60.

The reduced one-dimensional parameters for the third population are

Π3 : µ3R = 18.33, σ3R = 9.97, and γ3R = 2.92.
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Figure 2.5: A one-dimensional approximate representation for the three skew-normal pop-
ulations in Example 2.3.

2.6 Concluding Remarks

We have presented a simple and flexible algorithm for low-dimensional rep-

resentation of data from several MSN populations under different parametric con-

figurations with possibly unequal dispersion and skew parameters. Necessary and

sufficient conditions have been given for attaining the smallest dimensional subspace

q � p that preserves the original Bayes classification assignments. Also, we have

given a constructive proof for obtaining a low-dimensional representation space for

multiple MSN densities when certain conditions are satisfied.

In addition, we remark that the restriction γ1 ∈ N (C) is not as limiting as one

might initially believe. If γ1 /∈ N (C) or Corollary 2.2 and Corollary 2.3 do not hold,

we can perform a Box-Cox transformation on the m populations so that at least one

population is represented by an approximate multivariate normal population. We

can then apply Corollary 2.2 or 2.3, depending on the parameter configuration.

We note several advantages of our newly proposed low-dimensional representa-

tion or LDR method given in Theorems 2.2-2.5. First, the method is not restricted to
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a one-dimensional representation regardless of the number of populations. Second,

the method allows for equal and unequal covariance structures. Third, the origi-

nal feature dimension p does not significantly impact the computational complexity.

Finally, the skewness parameters allow for density functions that are shaped much

differently from multivariate normal densities.
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CHAPTER THREE

Linear Dimension Reduction for Multiple Multivariate Singular Skew-Normal
Densities

3.1 Introduction

The theorems from Chapter 2 hold true provided we have a multivariate skew-

normal distribution with nonsingular dispersion parameter Σi, i = 1, 2, ...,m. How-

ever, the dispersion parameter may be singular. In this chapter, we give necessary

and sufficient conditions for which a low-dimensional linear transformation of the

original data will preserve the expected Bayes probability of misclassification in the

original measurement space when the populations have a multivariate skew-normal

distribution with singular dispersion parameters Σi, i = 1, 2, ...,m. In addition, we

give a method for construction of this linear dimension-compression matrix.

It is a well-known fact that the density of a normally distributed vector with

singular covariance matrix does not exist with respect to the Lebesgue measure on

Rp. However, Khatri (1968) has shown that a multivariate normal density function

does exist on a subspace of Rp. Van Perlo-ten Kleij (2004) has defined the multi-

variate singular normal distribution as follows:

Definition 3.1. If x ∼ SNp (µ,Σ) with rank (Σ) = k < p, then x has the proba-

bility density function

f (x) = (2π)−
p
2

[
r∏

i=1

λi (A)

]− 1
2

exp

{
−1

2
(x− µ)′ Σ+ (x− µ)

}
(3.1)

for x ∈ V = µ + K (Σ)⊥ with respect to the Lebesgue measure λV on an affine

subspace V of Rp of dimension k. As in Chapter 2, the notation Σ+ represents the

Moore-Penrose pseudoinverse of Σ.
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Let x ∼ SNp (µ,Σ, δ0,γ) with rank (Σ) = k < p. Then, the null space of

Σ has dim [N (Σ)] = p − k, and the random vector x will have outcomes in an

affine subspace of Rm. We now present a derivation to prove the existence of the

multivariate skew-normal (MSSN ) density. Our derivation is similar to one used by

van Perlo-ten Kleij (2004) for the singular multivariate normal density.

Proposition 3.1. Let x ∼ SNp (µ,Σ, δ0,γ) with rank (Σ) = k < p. Then, x ∈ V

with probability one, where V ≡ µ +N (Σ)⊥.

Clearly, V is an affine subspace of Rp with dimension k. Now, let Σ = CΛC′

be a spectral decomposition of Σ with

Λ = diag (λ1, ..., λk, 0, ..., 0) =

 Λ1 0

0 0

 ,
where Λ1 = diag (λ1, ..., λk), λ1 ≥ ... ≥ λk > 0, and C is an orthogonal p×p matrix.

Moreover, let

C = [C1,C2] ,

where C1 = [c1, c2, ..., ck] and C2 = [ck+1, ck+2, ..., cp]. Hence, {c1, ..., cm} is an

orthonormal basis for Rm such that {c1, ..., ck} is an orthonormal basis for N (Σ)⊥

and {ck+1, ..., cp} is an orthonormal basis for N (Σ). Furthermore, C (Σ) = N (Σ)⊥,

where C (Σ) denotes the column space of Σ. Then,

x ∈ C⊥ (Σ) ⇔ x′y = 0 for all y ∈ C (Σ)

⇔ x′Σz = 0 for all z ∈ Rk

⇔ Σx = 0

⇔ x ∈ N (Σ) .
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Proof : We observe that

P (x ∈ V) = P
(
(x− µ) ∈ N (Σ)⊥

)
= P (y′ (x− µ) = 0 for all y ∈ N (Σ))

= P
(
c′j (x− µ) = 0 for j = k + 1, ..., p

)
.

Then, for j = k + 1, ..., p,

c′j (X− µ) ∼ SSN
(
0, c′jΣcj, δ0, c

′
jγ
)

= δ{0},

where δ{0} denotes a degenerate random variable. Therefore,

P (x /∈ V) = P
(
c′j (x− µ) 6= 0 for some j = k + 1, ..., p

)
≤

m∑
j=k+1

P
(
c′j (x− µ) 6= 0

)
= 0,

which implies P (x ∈ V) = 1.

Now we derive the probability density function of x with respect to the Lebesgue

measure λV on V . Consider the affine transformation T : Rk → V defined by

x = C1y + µ.

Note that y = T−1 (x) = C′
1 (x− µ). Let λk denote the Lebesgue measure on Rk.

The following properties hold for T :

(i) T is onto and one-to-one;

(ii) T is bicontinuous;

(iii) λV = λkT
−1.

Property (iii) holds for all µ ∈ V and for all orthonormal bases c1, ..., ck for the

subspace V −µ. For the following theorem and for the remainder of the chapter, we

use

detrA ≡
r∏

i=1

λi (A) (3.2)
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to denote the product of the r nonzero eigenvalues of A ∈ RS
n×n such that rank (A) =

r.

Theorem 3.1. If x ∼ SSNp (µ,Σ, δ0,γ) with rank (Σ) = k < p, then x has the

probability density function

f (x) =
1

Φ (δ0)
(2π)−

k
2 [detkΣ]−

1
2 exp

(
−1

2
(x− µ)′ Σ+ (x− µ)

)
Φ

(
δ0 + γ ′Σ+ (x− µ)√

1− γ ′Σ+γ

)
(3.3)

for x ∈ µ+N (Σ)⊥ with respect to the Lebesgue measure λV , where detkΣ is defined

in (3.2).

Proof : Let y = C′
1 (x− µ), where y ∼ SNm (0,Λ1, δ0, τ ) and τ = C′

1γ. From the

characteristic function of y, we know that y1, ..., yk are independently distributed

with yi ∼ SNm (0, λi, δ0, τ ) for i = 1, ..., k. This fact implies that y has density

function

h (y) =
k∏

i=1

1

Φ (δ0i)
(2π)−

1
2λ

− 1
2

i exp

(
−1

2
y2

i /λi

)
Φ

(
δ0i + (τ 2

i ) yi/λi√
1− τ 2

i /λi

)

=
1

Φ (δ0)
(2π)−

k
2 [detkΛ1]

− 1
2 exp

(
−1

2
y′Λ

−1
1 y

)
Φ

(
δ0 + τ ′Λ−1

1 y√
1− τ ′Λ−1

1 τ

)
with respect to the Lebesgue measure λk on Rk, where τ 2

i /λi < 1 and τ ′Λ−1
1 τ < 1.

We have y = T−1 (x). Let B be any measurable set in V . Then,

P (x ∈ B) = P
(
T−1 (x) ∈ T−1 (B)

)
= P

(
y ∈ T−1 (B)

)
=

∫
T−1(B)

hdλk

=

∫
T−1(B)

hdλVT

=

∫
B

h
(
T−1 (x)

)
dλV (x) .
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Also, note that

γ ′Σ+γ = γ ′

 C1Λ
−1
1 C′

1 0

0 0

γ

= γ ′C′
1Λ

−1
1 C1γ.

Then, a representation of the MSSN density function is

f (x) = h
(
T−1 (x)

)
=

1

Φ (δ0)
(2π)−

k
2 [detkΛ1]

− 1
2 exp

(
−1

2
(x− µ)′ C1Λ

−1
1 C′

1 (x− µ)

)
×

Φ

(
δ0 + γ ′C1Λ

−1
1 C′

1√
1− γ ′C1Λ

−1
1 C′

1γ

)

=
1

Φ (δ0)
(2π)−

k
2 [detkΣ]−

1
2 exp

(
−1

2
(x− µ)′ Σ+ (x− µ)

)
×

Φ

(
δ0 + γ ′Σ+ (x− µ)√

1− γ ′Σ+γ

)
, (3.4)

which is a density function of x on V with respect to λV . If we take k = p in (3.4),

the probability density function (3.4) becomes the regular MSSN density function

(2.1) with respect to the Lebesgue measure on Rp.

Definition 3.2. If x ∼ SSNp (µ,Σ, δo,γ) with rank (Σ) = k < p, then x has the

probability density function

p(x|Π) =
1

Φ (δ0)
ϕS

p (x; µ,Σ) Φ

(
δ0 + γ ′Σ+(x− µ)√

1− γ ′Σ+γ

)
, (3.5)

where x ∈ Rp×1, µ ∈ Rp×1, Σ ∈ R≥
p×p, γ ∈ Rp×1, δ0 ∈ R, and ϕS

p (x) and Φ(x)

denote the p-dimensional singular normal density function defined in (3.1) and the

univariate standard normal distribution function, respectively.

Here, we derive the singular skew-normal moment-generating function.

Theorem 3.2. Let v ∼ SNp (0, Ip, δ0,γ) and x ∼ SSNp (µ,Σ, δ0,γ), where

rank (Σ) = k < p with v =
[
Σ

1
2

]+
(x− µ). Hence,

Mv (t) =
1

Φ (δ0)
exp

{
t′t

2

}
Φ

(
λ0 + λ′

1t√
1 + λ′

1λ1

)
,
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where

δ0 =
λ0√

1 + λ′
1λ1

,λ1 =

[
Σ

1
2

]+
γ√

1− γ′Σ+γ
, and 1 + λ′

1λ1 = 1− γ ′Σ+γ.

Also,

λ′
1Σ

1
2 t√

1 + λ′
1λ1

=

√
1− γ ′Σ+γ

1

γ ′
[
Σ

1
2

]+
Σ

1
2 t√

1− γ ′Σ+γ
= γ ′t,

where γ ∈ C (Σ). Then,

Mx (t) = Mµ+Σ1/2v (t)

= exp {t′µ}Mv

(
Σ1/2t

)
= exp {t′µ} 1

Φ (δ0)
exp

{
t′Σ

1
2Σ

1
2 t

2

}
Φ

(
λ0 + λ′

1Σ
1
2 t√

1 + λ′
1λ1

)

=
1

Φ (δ0)
exp

{
t′µ +

t′Σt

2

}
Φ

(
δ0 +

√
1− γ ′Σ+γ√
1− γ ′Σ+γ

γ ′
[
Σ

1
2

]+
Σ

1
2 t

)

= exp

{
t′µ +

t′Σt

2

}
Φ (δ0 + γ ′t)

Φ (δ0)
,

where γ ∈ C (Σ).

We now give two fundamental properties for the MSSN random vector. Propo-

sition 3.2 provides the linear combination of a MSSN density function. Next,

Proposition 3.3 gives the marginal density functions for the MSSN density func-

tion. Also, Proposition 3.4 gives the conditional density function of the MSSN

density function.

Proposition 3.2. Let b ∈ Rm×1 and C ∈ Rm×p with rank (C) = m, where m ≤ p.

If x ∼ SSNp (µ,Σ, δ0,γ), where rank (Σ) = k < p, then

Cx + b ∼ SSNm (Cµ + b,CΣC′, δ0,Cγ) .

Proof : For t ∈ Rp, the moment-generating function of Cx is given by

Mb+Cx (t) = expt′bMx (C′t)

= exp

{
t′Cµ + t′b +

t′CΣC′t

2

}
Φ (δ0 + γ ′C′t)

Φ (δ0)
. (3.6)
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Because (3.6) is the moment-generating function of a MSSN distribution with

rank (Σ) = k < p, we conclude that Ax ∼ SSNm (Aµ,AΣA′, δ0,Aγ).

Proposition 3.3. Let x ∼ SSNp (µ,Σ, δ0,γ). If we partition x = [x′
1,x

′
2]
′ into two

subvectors of dimensions m and p−m, respectively, and correspondingly partition

Σ =

 Σ11 Σ12

Σ21 Σ22

 ,µ =

 µ1

µ2

 , and γ =

 γ1

γ2

 , (3.7)

then

(i) x1 ∼ SSNm (µ1,Σ11, δ0,γ1);

(ii) x2 ∼ SSNp−m (µ2,Σ22, δ0,γ2).

Proof : We will use the moment-generating function. Taking t2 = 0, we get

Mx

 t1

0

 = exp

{
t′1µ1 +

t′1Σ11t1

2

}
Φ (δ0 + γ ′

1t1)

Φ (δ0)

in order to obtain (i). In order to show (ii), we set t1 = 0 and see that

Mx

 0

t2

 = exp

{
t′2µ2 +

t′2Σ22t2

2

}
Φ (δ0 + γ ′

2t2)

Φ (δ0)
.

Proposition 3.4. Let x ∼ SSNp (µ,Σ, δ0,γ). If we partition x, µ, Σ, and γ as in

(3.7), then the conditional density function of x1|x2 is

g (x1|x2) =
1

Φ (β0)
ϕS

m

(
x1; µ1|2,Σ1|2

)
Φ

(
l0 + l′1

(
Σ

1
2

1|2

)+ (
x1 − µ1|2

))
,

where

µ1|2 ≡ µ1 + Σ12Σ
+
22 (x2 − µ2) , (3.8)

Σ1|2 ≡ Σ11 −Σ12Σ
+
22Σ21, (3.9)

l0 ≡
δ0 + γ ′

2Σ
+
22 (x2 − µ2)√

1− γ ′Σ+γ
, (3.10)
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β0 ≡
δ0 + γ ′

2Σ
+
22 (x2 − µ2)√

1− γ ′
2Σ

+
22γ2

, (3.11)

and

l1 ≡

[(
Σ1|2

) 1
2

]+ (
γ1 −Σ12Σ

+
22γ2

)
√

1− γ ′Σ+γ
. (3.12)

Proof : From Definition 3.2, the joint density function of x is

f (x) =
1

Φ (δ0)
ϕS

p (x; µ,Σ) Φ

(
δ0 + γ ′Σ+ (x− µ)√

1− γ ′Σ+γ

)
.

Also, Proposition 3.3 states that the marginal density function of x2 is

f (x2) =
1

Φ (δ0)
ϕS

p−m (x2; µ2,Σ22) Φ

(
δ0 + γ ′

2Σ
+
22 (x2 − µ2)√

1− γ ′
2Σ

+
22γ2

)
.

By the definition of the conditional density function of x1 given x2, we have that

f (x1|x2) =

1
Φ(δ0)

ϕS
p (x; µ,Σ) Φ

(
δ0+γ′Σ+(x−µ)√

1−γ′Σ+γ

)
1

Φ(δ0)
ϕS

p−m (x2; µ2,Σ22) Φ

(
δ0+γ′2Σ

+
22(x2−µ2)√

1−γ′2Σ
+
22γ2

)
=

1

Φ (β0)
ϕS

m

(
x1; µ1|2,Σ1|2

)
×

Φ

(
δ0 + γ ′

2Σ
+
22 (x2 − µ2)√

1− γ ′Σ+γ
+

(
γ1 −Σ12Σ

+
22γ2

)
√

1− γ ′Σ+γ
Σ+

1|2
(
x1 − µ1|2

))

=
1

Φ (β0)
ϕS

m

(
x1; µ1|2,Σ1|2

)
Φ

(
l0 + l′1

(
Σ

1
2

1|2

)+ (
x1 − µ1|2

))
,

where µ1|2, Σ1|2, l0, β0, and l1 are given in (3.8) through (3.12), respectively.

Because (3.5) is positive and the logarithm function of (3.5) is monotonic

increasing, the Bayes decision rule for classifying x for the two-population MSSN

case can be found explicitly. The Bayes decision rule is:

Assign x to Π1 if

1

Φ (δ0)
ϕS

p (x; µ1,Σ1)Φ

(
δ0 + γ ′

1Σ
+
1 (x− µ1)√

1− γ ′
1Σ

+
1 γ1

)
>

1

Φ (δ0)
ϕS

p (x; µ2,Σ2) Φ

(
δ0 + γ ′

2Σ
+
2 (x− µ2)√

1− γ ′
2Σ

+
2 γ2

)
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and to Π2, otherwise. For the case of m > 2 classes, the Bayes classification rule

is to classify the unlabeled observation vector x into class Πk corresponding to the

minimum distance function dSN
k = min {p (x|Πi) , i = 1, 2, ...,m}.

3.2 Preliminary Results

The proof of our new linear dimension reduction theorem for MSSN densities

requires the following notation and lemmas. Consider M ∈ Rp×(m−1)(p+1), where

M ≡
[
E+

2 (d2 − d1) |...|E+
m (dm − d1) |E2 − E1|...|Em − E1|a2 − a1|...|am − a1

]
,

where ai,di ∈ Rp×1, Ei ∈ RS
p×p with rank (Ei) = k < p for i = 1, 2, ...,m and E1 6=

Ek for at least one value of k, where 2 ≤ k ≤ m. Also, let rank (M) = 1 ≤ q < p, and

let M = FG, where F ∈ Rp×q and G ∈ Rq×(m−1)(p+1) with rank (F) = rank (G) = q.

Then, the Moore-Penrose pseudoinverse of M is M+ = G+F+, and we have that

MM+ = FGG+F+ = FF+ and MM+M = FF+M = M. This property implies

that for i = 1, 2, ...,m,

(1)FF+ (ai − a1) = ai − a1,

(2)FF+ (Ei − E1) = Ei − E1, and

(3)FF+
[
E+

i (di − d1)
]

= E+
i (di − d1).

We now give three lemmas used in the proof of our main result. The reader

can find the proofs of Lemmas 3.1 and 3.2 in Onsupreth and Young (2005).

Lemma 3.1. Let F ∈ Rp×q and C = R[I − FF+] , where R ∈ R (p−q)×p such that

rank(C) = p − q and Ei ∈ RS
p×p with rank (Ei) < p for i = 1, 2, ...,m, such that

properties (1) - (3) hold. Then,

(a) FF+(Ei − E1) = (Ei − E1)FF+,

(b) FF+Ei = EiFF+,

(c) (I− FF+)Ei = E1(I− FF+), and

(d) CEiC
′ = CE1C

′.
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The following lemma provides the pseudoinverse for the quantity F+EiF
+′.

Lemma 3.2. Let F ∈ Rp×q and Ei ∈ RS
p×p with rank (Ei) < p for i = 1, 2, ...,m,

such that properties (1) - (3) hold. Then,
(
F+EiF

+′)+
= F′E+

i F.

Lemma 3.3. Let F ∈ Rp×q, Ei ∈ RS
p×p with rank (Ei) < p, and C = R[I − FF+] ,

where R ∈ R (p−q)×p such that rank(C) = p − q for i = 1, 2, ...,m, such that

properties (1) - (3) hold. Then, CEiF
+′

= 0.

Proof : By Property (2), we have that

CEiF
+′

= R
(
I− FF+

)
EiF

+′

= R
(
Ei − FF+Ei

)
F+′

= 0.

Lemma 3.4. Let ai,di ∈ Rp×1, F ∈ Rp×q, and Ei ∈ RS
p×p with rank (Ei) < p for

i = 1, 2, ...,m such that properties (1) - (3) hold, and let C = R
[
I− FF+

]
, where

R ∈ R(p−q)×p such that rank (C) = p− q. Then, for i = 1, 2, ...,m,

(a) CF = 0,

(b) Cdi = Cd1,

(c) Cai = Ca1,

(d) Cdi + CEiF
+′ (

F+EiF
+′)+

(y − F+di) = Cd1, where y ∈ C (Ei),

i = 2, 3, ...,m,

(e) CEiC
′ −CEiF

+′ (
F+EiF

+′)+
F+EiC

′ = CE1C
′,

(f) a′iC
′
[
CEiC

′ −CEiF
+′ (

F+EiF
+′)+

F+EiC
′
]+

(Cx−Cd1)

= (Ca1)
′ (CE1C

′)+ (Cx−Cd1),

(g) F+EiC
′
[
CEiC

′ −CEiF
+′ (

F+EiF
+′)+

F+EiC
′
]+

Cai = 0,

(h) Cai −CEiF
+′ (

F+EiF
+′)+

F+ai = Ca1.
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Proof of (a). The proof of (a) is obvious and is not given.

Proof of (b). Let (di − d1) ∈ C (Ei), i = 2, 3, ...,m. Then,

FF+
[
E+

i (di − d1)
]

= E+
i (di − d1) ⇒ Ei

(
I− FF+

)
E+

i (di − d1) = 0

⇒
(
I− FF+

)
EiE

+
i (di − d1) = 0

⇒ R
(
I− FF+

)
(di − d1) = 0

⇒ Cdi = Cd1.

P roof of (c). Because (ai − a1) ∈ C (F), we have that

FF+ (ai − a1) = ai − a1 ⇒
(
I− FF+

)
(ai − a1) = 0

⇒ R
(
I− FF+

)
(ai − a1) = 0

⇒ Cai = Ca1.

P roof of (d). From Lemma 3.3, we have(
CEiF

+′
)(

F+EiF
+′
)′

F+EiC
′ = 0,

and from Lemma 3.1.d, we see that CEiC
′ = CE1C

′.

Proof of (e). Part (e) follows as a direct result of Lemmas 3.1.d and 3.3.

Proof of (f). From Lemmas 3.3 and 3.4.b, we have

(Cai)
′
[
CEiC

′ −CEiF
+′
(
F+EiF

+′
)+

F+EiC
′
]+

(Cx−Ca1)

= (Ca1)
′ [CE1C

′]
+

(Cx−Ca1) .

P roof of (g). From Lemma 3.3, we see that

F+EiC
′
[
CEiC

′ −CEiF
+′
(
F+EiF

+′
)+

F+EiC
′
]+

Cai

=
[
F+Ei

(
I− FF+

)
R′] [CEiC

′]
+

Cai

=
[
F+
(
I− FF+

)
EiR

′] [CEiC
′]

+
Cai

= 0.
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Proof of (h). From Lemma 3.3, we have

Cai −CEiF
+′
(
F+EiF

+′
)+

F+ai = Ca1.

Lemma 3.5. Let F ∈ Rp×q and C = R
[
I− FF+

]
, where R ∈ R(p−q)×p such that

rank (C) = p − q, and Ei ∈ RS
p×p with rank (Ei) < p for i = 1, 2, ...,m, such that

properties (1) - (3) hold. Also, let

A =

 F+EiF
+′

F+EiC
′

CEiF
+′

CEiC
′

 .
Then,

A+ =

 F′E+
i F 0

0 (CE1C
′)+

 .
P roof : The proof is a direct result of Lemmas 3.1.d, 3.2, and 3.3.

Lemma 3.6. Let M be defined as M = FG with rank (F) = rank (G) = q, where

ai ∈ Rp×1, F ∈ Rp×q, G ∈ Rq×(m−1)(p+1), and Ei ∈ RS
p×p with rank (Ei) < p, and

let C = R
[
I− FF+

]
, where R ∈ R(p−q)×p such that rank (C) = p − q. Also, let

rank (M) < q, where 1 ≤ q < p, and let F and G be matrix components of a full

rank decomposition of M with rank (F) = rank (G) = q. Then, for i = 1, 2, ...,m,

(Hai)
′ HE+

i H′ (Hai) = aiF
+′
(
F′E

+
i F
)

F+ai + a′1C
′ (CE1C

′)
+

Ca1.

P roof : We have that

(Hai)
′ (HE+

i H′) (Hai) = a′iH
′

 F′E+
i F 0

0 (CE1C
′)+

Hai

=

[
a′iF

+′ a′iC
′

] F′E+
i F 0

0 (CE1C
′)+


 F+ai

Cai


= a′iF

+′F′E
+
i FF+ai + a′1C

′ (CE1C
′)

+
Ca1.
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Lemma 3.7. Let x ∼ SSNp (µi,Σi, δ0,γi) for i ∈ {1, 2, ...,m}, and let H be the

full-rank matrix H ≡ [F+′ C]
′
, where F and C are defined previously. Then, the

conditional density function of F+x|Cx is

g
(
F+x|Cx

)
=

1

Φ (β0)
ϕS

q

(
F+x;F+µi,F

+ΣiF
+′)× (3.13)

Φ

(
l0i + l′1i

[(
F+ΣiF

+′) 1
2

]+ (
F+x− F+µi

))
,

where

β0 ≡
δ0 + (Cγ1)

′ (CΣ1C
′)+ (Cx−Cµ1)√

1− (Cγ1)
′ (CΣ1C′)+ (Cγ1)

, (3.14)

l0i ≡
δ0 + (Cγ1)

′ (CΣ1C
′)+ (Cx−Cµ1)√

1− ki

,

and

l1i ≡

[(
F+ΣiF

+′) 1
2

]+
(F+γi)

√
1− ki

for ki = γiF
+′F′Σ+

i FF+γi + γ ′
1C

′ (CΣ1C
′)+ Cγ1.

Proof : Using Proposition 3.4, we have

l0i =
δ0 + (Cγ1)

′ (CΣ1C
′) (Cγ1)√

1− ki

.

In addition, from Proposition 3.4, the MSSN location parameter is

F+µi + F+ΣiC
′ (CΣ1C

′) (Cx−Cµ1) = F+µi

because (F+ΣiC
′)
′
= CΣiF

+′ = 0 by Lemma 3.3. Also, the dispersion parameter is

F+ΣiF
+′ − F+ΣiC

′ (CΣ1C
′)

+
CΣiF

+′ = F+ΣiF
+′

because CΣiF
+′ = 0 by Lemma 3.3. Finally, Proposition 3.4 gives

l1i =

[(
F+ΣiF+′ − F+ΣiC′ (CΣ1C′)+ CΣiF+′

) 1
2

]+ (
F+γi − F+ΣiC′ (CΣ1C′)+ Cγ1

)
√

1− ki
,

which, because F+ΣiC
′ = 0, simplifies to

l1i =

[
(F+ΣiF

+′)
1
2

]+
(F+γi)

√
1− ki

.
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Remark 3.1. We note that the conditional density function in (3.13) is not a

MSSN density function as defined in (3.5).

Lemma 3.8. Define the random vector x ∼ SSNp (µi,Σi, δ0,γi) for class Πi, where

i ∈ {1, 2, ...,m}, and let H be the full-rank matrix H ≡
[

F+′
C′

]′
and F and C

are defined previously. Then, Cx ∼ SSNp−q (Cµ1,CΣ1C
′, δ0,Cγ1), where

f (Cx|Πi) =
1

Φ (δ0)
ϕS

p−q

(
Cx;Cµ1,CΣ1C′)Φ

δ0 + (Cγ1)
′ (CΣ1C′)+ (Cx−Cµ1)√

1− (Cγ1)
′ (CΣ1C′)+ (Cγ1)


for i ∈ {1, ...,m}.

Proof : The proof of the lemma follows from (ii) of Proposition 3.3.

Lemma 3.9. Let x ∼ SSNp (µ,Σ, δ0,γ), where H ∈ Rp×p with rank (H) = p.

Then, p (Hx|θ) = p (x|θ), where p (·|θ) is the p-dimensionalMSSN density function

with parameters θ = {µ,Σ, δ0,γ}.

Proof : We have that

p (Hx|θ) =
1

Φ (δ0)
ϕS

p

(
Hx;Hµ,HΣH′)Φ

δ0 + γ ′H′ (HΣH′)+ (Hx−Hµ)√
1− γ ′H′ (HΣH′)+ Hγ


=

1
Φ (δ0)

1

(2π)n/2 |HΣH′|1/2
exp

{
−1

2
(Hx−Hµ)′

(
HΣH′)+ (Hx−Hµ)

}
×

Φ

(
δ0 + γ ′H′H′−1Σ+H−1H (x− µ)√

1− γ ′H′H′−1Σ+H−1Hγ

)

=
1

Φ (δ0)
1

(2π)n/2 |Σ|1/2
exp

{
−1

2
(x− µ)′ H′H′−1Σ+H−1H (x− µ)

}
×

Φ

(
δ0 + γ ′Σ+ (x− µ)√

1− γ ′Σ+γ

)

=
1

Φ (δ0)
ϕS

p (x;µ,Σ) Φ

(
δ0 + γ ′Σ+ (x− µ)√

1− γ ′Σ+γ

)

= p (x|θ) .

Theorems 2.2 through 2.5 are important in that if their conditions hold, we

obtain a linear dimension-compression matrix for the reduced q-dimensional sub-

space such that the BPMC in the q-dimensional space is equal to the BPMC for
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the original p-dimensional feature space. In other words, provided the conditions

of Theorems 2.2 through 2.5 hold, we have that the linear feature-reduction matrix

F+ ∈ Rq×p exists such that BPMC(p) = BPMC(q), where rank(M) = q < p.

In the next theorem, we determine the conditions for the existence of a linear

data-compression matrix when the populations are MSSN with certain conditions

on the dispersion parameters.

Theorem 3.3. Let Πi have a priori probability αi > 0 and be represented by

distribution SSNp (µi,Σ, δ0,γ) with location parameter µi such that µ1 6= µk for

some k ∈ {2, ...,m}, dispersion parameter Σ with rank (Σ) = k < p such that

(µi − µ1) ∈ C (Σ), skew parameter γi = γ, where γ ∈ N (C), and scalar δ0i = δ0,

i = 1, 2, ...,m. Also, let

MS ≡
[
Σ+ (µ2 − µ1) |Σ+ (µ3 − µ1) |...|Σ+ (µm − µ1)

]
,

where MS = FG is a full-rank decomposition of MS with rank (MS) = q < p.

Then, the p-variate Bayes classifier assigns the unlabeled observation vector x to Πk

if and only if the q-variate Bayes classifier assigns F+x to Πk for k ∈ {1, 2, ...,m}.

Proof : Let

w =

 y

u

 =

 F+
q×p

C(p−q)×p

x,

where x ∼ SSNp (µi,Σ, δ0,γ), i = 1, 2, ...,m. Let H be the full-rank matrix H ≡[
F+′ C′

]′
with C = R

(
I− FF+

)
, where R ∈ R(p−q)×p such that rank (R) =

p− q. Then, w ∼ SSNp (Hµi,HΣH′, δ0,Hγ) such that

Hµi =

 F+µi

Cµi

 and HΣH′ =

 F+ΣF+ 0

0 CΣC′

 for i ∈ {1, 2, ...,m}.

By Lemma 3.4,

g (u|y) =
1

Φ (δ0)
ϕS

q

(
F+x;F+µi,F

+ΣF+′)Φ
(
δ0 + l′1

[(
F+ΣF+′) 1

2

]+ (
F+x− F+µi

))
,
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where

l1 =

[(
F+ΣF+′) 1

2

]+
F+γ√

1− γ ′F+′
(
F+ΣF+′)+ F+γ

.

Also, by Proposition 3.2, the marginal density of y is the MSSN density

h (y) = ϕS
p−q (Cx;Cµ1,CΣC′) Φ

δ0 + (Cγ)′ (CΣC′)+ (Cx−Cµ1)√
1− (Cγ)′ (CΣC′)+ (Cγ)

 .

The p-variate Bayes classification procedure assigns x to Πj if and only if

αj
1

Φ (δ0)
ϕS

p

(
x; µj,Σ

)
Φ

(
δ0 + γ ′Σ+

(
x− µj

)√
1− γ ′Σ+γ

)
>

αj
1

Φ (δ0)
ϕS

p (x; µi,Σ) Φ

(
δ0 + γ ′Σ+ (x− µi)√

1− γ ′Σ+γ

)
,

i = 1, 2, ...,m, which is equivalent to

αj
1

Φ (δ0)
ϕS

p

(
Hx;Hµj,HΣH′)Φ

δ0 + γ ′H′ (HΣH′)+ (Hx−Hµj

)√
γ ′H′ (HΣH′)+ Hγ

 >

αi
1

Φ (δ0)
ϕS

p (Hx;Hµi,HΣH′) Φ

δ0 + γ ′H′ (HΣH′)+ (Hx−Hµi)√
γ ′H′ (HΣH′)+ Hγ


or

αj
1

Φ (δ0)
ϕS

q

(
F+x;F+µj,F

+ΣF+′)Φ

(
l0 + l′1

[(
F+ΣF+′) 1

2

]+ (
F+x− F+µj

))
×

ϕS
p−q (Cx;Cµ1,CΣC′) Φ

δ0 + (Cγ)′ (CΣC′)+ (Cx−Cµ1)√
1− (Cγ)′ (CΣC′)+ (Cγ)

 >

αi
1

Φ (δ0)
ϕS

q

(
F+x;F+µi,F

+ΣF+′)Φ

(
l0 + l′1

[(
F+ΣF+′) 1

2

]+ (
F+x− F+µi

))
×

ϕS
p−q (Cx;Cµ1,CΣC′) Φ

δ0 + (Cγ)′ (CΣC′)+ (Cx−Cµ1)√
1− (Cγ)′ (CΣC′)+ (Cγ)


by Lemma 3.7. Because the marginal density

ϕS
p−q (Cx;Cµ1,CΣC′) Φ

δ0 + (Cγ)′ (CΣC′)+ (Cx−Cµ1)√
1− (Cγ)′ (CΣC′)+ (Cγ)


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does not depend on k for k = 2, ...,m, we have that

αj
1

Φ (δ0)
ϕS

q

(
F+x;F+µj,F

+ΣF+′)Φ

(
l0 + l′1

[(
F+ΣF+′) 1

2

]+ (
F+x− F+µj

))
>

αi
1

Φ (δ0)
ϕS

q

(
F+x;F+µi,F

+ΣF+′)Φ

(
l0 + l′1

[(
F+ΣF+′) 1

2

]+ (
F+x− F+µi

))
.

Hence, if the Bayes classifier classifies x into Πj, then F+x is classified into Πj. The

preceding arguments are reversible, thus completing the proof of the equivalence

of the original p-variate Bayes classification and the transformed q-variate Bayes

classification procedure.

Theorem 3.4. Let Πi have a priori probability αi > 0 and be represented by

distribution SSNp (µi,Σi, δ0,γi) with location parameter µi such that µ1 6= µk,

dispersion parameter Σi with rank (Σi) = k < p such that Σ1 6= Σk and (µi − µ1) ∈

C (Σi), skew parameter γi such that γ1 6= γk, and scalar δ0 for i ∈ {1, 2, ...,m}. Next,

let

MS ≡
[
Σ+

2 (µ2 − µ1) |...|Σ+
m (µm − µ1) |Σ2 −Σ1|...|Σm −Σ1|γ2 − γ1|...|γm − γ1

]
,

where M = FG is a full-rank decomposition of MS with rank (MS) = q < p, and

let γ1 ∈ N (C). Then, the p-variate Bayes classification procedure assigns the unla-

beled observation vector x to Πk if and only if the q-dimensional Bayes classification

procedure assigns F+x to Πk for k ∈ {1, 2, ...,m}.

Proof : Let w =

 y

u

 =

 F+
q×p

C(p−q)×p

x, where x ∼ SSNp (µi,Σi, δ0,γi), i =

1, 2, ...,m. Let H be a full-rank p × p matrix defined by H =

[
F+′ C′

]′
with

C = R
(
I− FF+

)
, where R ∈ R(p−q)×p such that rank (R) = p − q. Then,

w ∼ SSNp (Hµi,HΣiH
′, δ0,Hγi) such that

Hµi =

 F+µi

Cµi

 and HΣiH
′ =

 F+ΣiF
+′ 0

0 CΣ1C
′

 for i = 1, 2, ...,m.
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By Lemma 3.4,

p (u|y) =
1

Φ (l0i)
ϕS

q

(
F+x;F+µi,F

+ΣiF+′)Φ
(
l0i + l′1i

[(
F+ΣiF+′) 1

2

]+ (
F+x− F+µi

))
,

where

l1i =

(
(F+ΣiF

+′)
1
2

)+

F+γi√
1− γ ′

iF
+′
(
F′Σ+

i F
)+

F+γi

and

l0i =
δ0i√

1− γ ′
iF

+′
(
F′Σ+

i F
)+

F+γi

.

Also, because γ1 ∈ N (C), the marginal density of y is

h (u) = ϕS
p−q (Cx;Cµ1,CΣ1C

′) .

Let p(·|Πi) denote the p-dimensional MSSN density corresponding to pop-

ulation Πi, i = 1, 2, ...,m. Recall that the p-variate Bayes classification procedure

assigns x to Πj if and only if

αj
1

Φ (δ0j)
ϕS

p

(
x; µj,Σj

)
Φ

δ0j + γ ′
j Σ+

j

(
x− µj

)√
1− γ ′

j Σ+
j γj

 >

αi
1

Φ (δ0i)
ϕS

p (x; µi,Σi) Φ

(
δ0i + γ ′

i Σ+
i (x− µi)√

1− γ ′
i Σ

+
i γi

)
,

i = 1, 2, ...,m, i 6= j, which is equivalent to

αj
1

Φ (δ0j)
ϕS

p

(
Hx;Hµj,HΣjH

′)Φ

δ0j + γ ′
jH

′ (HΣjH
′)+ (Hx−Hµj

)√
1− γ ′

jH
′ (HΣjH′)+ Hγj

 >

αi
1

Φ (δ0i)
ϕS

p (Hx;Hµi,HΣiH
′) Φ

δ0i + γ ′
iH

′ (HΣiH
′)+ (Hx−Hµi)√

1− γ ′
iH

′ (HΣiH′)+ Hγi

 .

Therefore,

αj
1

Φ (l0j)
ϕS

q

(
F+x;F+µj,F

+ΣjF
+′)Φ

(
l0j + l′1j

[(
F+ΣjF

+′) 1
2

]+ (
F+x− F+µj

))
×

ϕS
p−q (Cx;Cµ1,CΣ1C

′) >
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αi
1

Φ (l0i)
ϕS

q

(
F+x;F+µi,F

+ΣiF
+′)Φ

(
l0i + l′1i

[(
F+ΣiF

+′) 1
2

]+ (
F+x− F+µi

))
×

ϕS
p−q (Cx;Cµ1,CΣ1C

′)

by Lemma 3.7. Hence,

αj
1

Φ (l0j)
ϕS

q

(
F+x;F+µj,F

+ΣjF
+′)Φ

(
l0j + l′1j

[(
F+ΣjF

+′) 1
2

]+ (
F+x− F+µj

))
>

αi
1

Φ (l0i)
ϕS

q

(
F+x;F+µi,F

+ΣiF
+′)Φ

(
l0i + l′1i

[(
F+ΣiF

+′) 1
2

]+ (
F+x− F+µi

))
because

ϕS
p−q (Cx;Cµ1,CΣ1C

′)

does not depend on k for k = 2, ...,m and γ1 ∈ N (C). Thus, if the p-dimensional

Bayes classifier classifies x into Πj, then the reduced q-dimensional Bayes classifier

classifies F+x into Πj. The preceding arguments are reversible, therefore completing

the proof of the equivalence of the original p-variate Bayes classification and the

transformed q-variate Bayes classification procedure.

Corollary 3.1. Let Πi have a priori probability αi > 0 and be represented by

distribution SSNp (µi,Σi, δ0,γi) with location parameter µi such that µ1 6= µk,

dispersion parameter Σi with rank (Σi) = k < p, where (µ2 − µ1) ∈ C (Σi) for

some k ∈ {2, 3, ...,m} and Σ1 6= Σk, skew parameter γi such that γ1 6= γk for some

k ∈ {2, ...,m}, and scalar δ0 for i ∈ {1, 2, ...,m}. In addition, let Π1 be represented

by the singular normal distribution SNp (µ1,Σ1), where rank (Σ1) = k < p. Next,

let

MS ≡
[
Σ+

2 (µ2 − µ1) |...|Σ+
m (µm − µ1) |Σ2 −Σ1|...|Σm −Σ1|γ2|...|γm

]
,

where MS = FG is a full-rank decomposition of MS with rank (MS) = q < p, and

let γ1 ∈ N (C), where C = R
(
I− FF+

)
and R ∈ R(p−q)×p. Also, let x ∈ Rp×1

be an unlabeled observation vector belonging to Πj for j ∈ {1, 2, ...,m}. Then, the
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p-variate Bayes classifier assigns x to Πk for k ∈ {1, 2, ...,m} if and only if the q-

dimensional Bayes classifier assigns F+x to Πk.

Proof : The proof follows immediately from Theorem 3.4 because γ1 = 0.

3.3 Examples

Example 3.1. In the first example, we demonstrate a low-dimensional represen-

tation for two MSSN populations having unequal location, dispersion, and skew

parameters but equal scalar parameters. Consider the two seven-dimensional popu-

lations SSN7 (µ1,Σ1, δ0,γ1) and SSN7 (µ2,Σ2, δ0,γ2), where

Π1 : µ1 =



0

0

0

0

0

0

0



,Σ1 =



3.14 .25 .25 .25 .25 .25 .25

.25 3.14 .25 .25 .25 .25 .25

.25 .25 3.14 .25 .25 .25 .25

.25 .25 .25 3.14 .25 .25 .25

.25 .25 .25 .25 3.14 .25 .25

.25 .25 .25 .25 .25 .25 .25

.25 .25 .25 .25 .25 .25 .25



,γ1 =



.354

.364

.374

.384

.394

.409

.409



Π2 : µ2 =



2

2

2

2

2

2

2



,Σ2 =



3 .11 .11 .11 .11 .11 .11

.11 3 .11 .11 .11 .11 .11

.11 .11 3 .11 .11 .11 .11

.11 .11 .11 3 .11 .11 .11

.11 .11 .11 .11 3 .11 .11

.11 .11 .11 .11 .11 .11 .11

.11 .11 .11 .11 .11 .11 .11



,γ2 =



.264

.274

.284

.294

.304

.319

.320



with δ0i = 0, i = 1, 2. Using Theorem 3.4 to formulate a dimension-reduction ma-

trix, we obtain
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MS =



−2.08 −.14 −.14 −.14 −.14 −.14 −.14 −.14 −.09

−1.73 −.14 −.14 −.14 −.14 −.14 −.14 −.14 −.09

−.69 −.14 −.14 −.14 −.14 −.14 −.14 −.14 −.09

0 −.14 −.14 −.14 −.14 −.14 −.14 −.14 −.09

−1.04 −.14 −.14 −.14 −.14 −.14 −.14 −.14 −.09

39.13 −.14 −.14 −.14 −.14 −.14 −.14 −.14 −.09

39.13 −.14 −.14 −.14 −.14 −.14 −.14 −.14 −.09



,

where rank (MS) = 2. Therefore, by Theorem 3.4, the original seven-dimensional

density functions can be transformed to the reduced dimension q = 2 without in-

creasing the probability of misclassification under the Bayes assignment. An optimal

two-dimensional representation space is the column space of F, where

F′ =

 .445 .445 .445 .445 .445 .075 .075

.549 .546 −.374 −.326 −.394 0 0


′

.

We now have the reduced parameters

Π1 : µ1R =

 0

0

 ,Σ1R =

 4.27 0

0 2.89

 ,γ1R =

 .892

−.027

 , and

Π2 : µ2R =

 4.75

0

 ,Σ2R =

 3.48 0

0 2.89

 ,γ2R =

 .679

−.027

 .

Immediately above, we portray a two-dimensional representation of the original

seven-dimensional MSSN populations. By using the SVD, we can obtain a one-

dimensional representation of both populations; however, we lose some discrimina-

tory information by applying this procedure. For the first population, we obtain the

parameters

Π1 : µ1 = 0, σ1 = 4.27, and γ1 = .892.
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Figure 3.1: The optimal two-dimensional representation for both seven-dimensional sin-
gular skew-normal populations in Example 3.1.
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Figure 3.2: A one-dimensional approximate representation for both seven-dimensional
singular skew-normal populations in Example 3.1.
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For the second population, we have parameters

Π2 : µ2 = 11.87, σ2 = 3.48, and γ2 = .679.

Example 3.2. In the second example, we demonstrate a low-dimensional represen-

tation for three MSSN populations having unequal location, dispersion, and skew

parameters. Consider the three six-dimensional populations SSN6 (µ1,Σ1, δ01,γ1),

SSN6 (µ2,Σ2, δ02,γ2), and SSN6 (µ3,Σ3, δ03,γ3), with

Π1 : µ1 =



1

1

1

1

1

1


,Σ1 =



2 .7 .7 .7 .7 .7

.7 2 .7 .7 .7 .7

.7 .7 2 .7 .7 .7

.7 .7 .7 2 .7 .7

.7 .7 .7 .7 .7 .7

.7 .7 .7 .7 .7 .7


,γ1 =



.763

.698

.698

.821

.829

.745


,

Π2 : µ2 =



3

4

4

2

2

3


,Σ2 =



2.3 1 1 1 1 1

1 2.3 1 1 1 1

1 1 2.3 1 1 1

1 1 1 2.3 1 1

1 1 1 1 1 1

1 1 1 1 1 1


,γ2 =



.963

.898

.898

1.021

1.029

.945


, and

Π3 : µ3 =



−1.69

−1.69

−1.69

−1.69

−1.16

−1.16


,Σ3 =



2.5 1.2 1.2 1.2 1.2 1.2

1.2 2.5 1.2 1.2 1.2 1.2

1.2 1.2 2.5 1.2 1.2 1.2

1.2 1.2 1.2 2.5 1.2 1.2

1.2 1.2 1.2 1.2 1.4 1.2

1.2 1.2 1.2 1.2 1.2 1.2


,γ3 =



1.063

.998

.998

1.121

1.129

1.045


with δ0i = 0, i = 1, 2, 3. As an aside we remark that γ1 ∈ N (C). Using Theorem

2.5 to formulate a dimension reduction matrix, we obtain
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M =



.385 −.4 .3 .3 .3 .3 .3 .3 .5 .5 .5 .5 .5 .5 .2 .3

1.154 −.4 .3 .3 .3 .3 .3 .3 .5 .5 .5 .5 .5 .5 .2 .3

1.154 −.4 .3 .3 .3 .3 .3 .3 .5 .5 .5 .5 .5 .5 .2 .3

−.385 −.4 .3 .3 .3 .3 .3 .3 .5 .5 .5 .5 .5 .5 .2 .3

−.618 −.4 .3 .3 .3 .3 .3 .3 .5 .5 .5 .5 .5 .5 .2 .3

−.618 −.4 .3 .3 .3 .3 .3 .3 .5 .5 .5 .5 .5 .5 .2 .3


,

where rank (M) = 2. Therefore, by Theorem 3.4, the original six-dimensional singu-

lar skew-normal density functions can be transformed into two-dimensional density

functions without increasing the probability of misclassification under the Bayes

classification assignments. Because C (F+) = C (F′), an optimal two-dimensional

representation space is C (F), where

F′ =

 .415 .447 .447 .384 .375 .375

.078 .486 .486 −.330 −.454 −.454

 .
For Π1, we now have the reduced parameters

µ1R =

 2.44

−.19

 ,Σ1R =

 5.11 .12

.12 .79

 , and γ1R =

 1.84

−.25

 .
For Π2, the reduced parameters are

µ2R =

 7.46

1.19

 ,Σ2R =

 6.90 −.02

−.02 .80

 , and γ2R =

 2.33

−.28

 .
The reduced parameters for Π3 are

µ3R =

 −3.73

−.16

 ,Σ3R =

 8.09 −.11

−.11 .815

 , and γ3R =

 2.58

−.30

 .
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Figure 3.3: The optimal two-dimensional representation for the three six-dimensional sin-
gular skew-normal populations given in Example 3.2.

Immediately above, we portray a two-dimensional representation of the original

seven-dimensional SSN populations. By using the SVD, we can obtain a one-

dimensional representation of both populations; however, we lose some discrimi-

natory information by applying this procedure. For the first population, we obtain

parameters

Π1 : µ1R = 2.44, σ1R = 5.11, and γ1R = 1.84.

Also, for the second population, we obtain parameters

Π2 : µ2R = 7.46, σ2R = 6.90, and γ2R = 2.33.

Finally, for the third population, we obtain parameters

Π3 : µ3R = −3.73, σ3R = 8.09, and γ3R = 2.58.
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Figure 3.4: A one-dimensional approximate representation for the three six-dimensional
singular skew-normal populations in Example 3.2.

3.4 Conclusion

Theorems 3.3 and 3.4 extend the results given in Theorems 2.2 through 2.5

from the nonsingular to the singular case for the dispersion parameters Σi, i =

1, 2, ...,m. If the conditions of the theorem hold, linear dimension reduction from

p dimensions to q dimensions, where 1 ≤ q < p is possible without diminishing

the BPMC even though the assumed dispersion parameters Σi, i = 1, 2, ...,m are

singular and the necessary restrictions on the other MSSN parameters hold.
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CHAPTER FOUR

A Comparison of Two Methods for Linear Discriminant Analysis Using Monotone
Missing Training Data

4.1 Introduction

In this chapter, we consider the problem of classifying an unlabeled observa-

tion x ∼ Np(µi,Σ) into one of two distinct populations, Πi : Np (µi,Σ), i = 1, 2.

The most well-known statistical procedure for classifying a complete observation

vector, assuming the unlabeled observation comes from one of the two multivariate

populations with equal covariance matrices, is Fisher’s linear discriminant function

derived by R. A. Fisher (1936). For the case of unknown parameters, Anderson’s

linear discriminant function (ALDF ) (Anderson (1951)) is

W =

[
x− 1

2
(x̄1 + x̄2)

]′
S−1 (x̄1 − x̄2) , (4.1)

where x̄i and S are estimators of µi and Σ, respectively, such that

x̄i =
1

ni

ni∑
i=1

xij

for i = 1, 2, and

Sx =

(
2∑

i=1

ni∑
j=1

(xij − x̄i) (xij − x̄i)
′

)
/νx, νx = n1 + n2 − 2.

Using (4.1), we classify the unlabeled observation vector x into class Π1 if

(x̄2 − x̄1)
′ S−1x ≤ 1

2
(x̄2 − x̄1)

′ S−1 (x̄2 + x̄1)

and classify x into class Π2 if (4.2)

(x̄2 − x̄1)
′ S−1x >

1

2
(x̄2 − x̄1)

′ S−1 (x̄2 + x̄1) .

78



The conditional probability of misclassification for classifying an observation from

Πi into Π3−i by W is

CERi,3−i (ALDF ) = Φ

(−1)3−i · 1
2 (x̄1 + x̄2)

′ S−1 (x̄1 − x̄2) + (−1)i µ′
iS

−1 (x̄1 − x̄2)√
(x̄1 − x̄2)

′ S−1 (x̄1 − x̄2)


(4.3)

for i = 1, 2, where Φ (·) denotes the cumulative distribution function of the univari-

ate standard normal distribution. Thus, assuming equal a priori class membership

probabilities, the conditional error rate for ALDF is

CER (ALDF ) =
1
2

[CER12 (ALDF ) + CER21 (ALDF )] .

The expected error rate (EER) for ALDF given in (4.2) is

EER (ALDF ) =
1
2

[P (W < 0|x ∈ Π1) + P (W ≥ 0|x ∈ Π2)] . (4.4)

An expression for EER (ALDF ) has been developed by John (1961) but is in the

form of an infinite sum.

Jackson (1968) has considered the problem of missing values in a discriminant

function analysis where the numbers of both variables and individuals are very large.

Estimation of missing values using mean substitution and estimation by an iterative

regression technique are assayed and the results compared. She concludes that the

far simpler method of mean substitution and the iterative regression technique give

similar results. Additionally, Chan and Dunn (1972) have examined the probability

of correct classification under the most popular methods of handling data values that

are missing at random. The EER is used as a criterion to weigh the relative quality

of supervised classification methods. Moreover, Chan, Gilman, and Dunn (1976)

have handled missing observations in discrimination for a variety of population co-

variance matrices using a regression technique and a modified technique contingent

on the first principal component. Furthermore, Titterington and Jiang (1983) have

applied recursive methods for handling incomplete data and have verified asymptotic

properties for the recursive methods.
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The missing data pattern we address in this paper is monotone missing data.

Monotone missing data occurs for data vector xj in the case that if xji is missing,

then xjk is missing for all k > i. Chung and Han (2000) have performed a Monte

Carlo simulation in which their classifier performs better than an MLE classifier

formulated by Bohannon and Smith (1975) in terms of the expected error rate in

all situations despite the fact that the MLE classifier incorporates the correlation

among the variables with missing and non-missing observations. We demonstrate

that the MLE classifier can considerably outperform the C-H classifier in terms of

their respective EERs for certain covariance matrix configurations, especially co-

variance matrices with moderate to high correlation among the features with no

missing data and the features with monotone missing data.

We have organized this chapter as follows. In Section 2, we describe the C-H

classifier, a linear combination discriminant analysis procedure from Chung and Han

(2000) when the training data from both classes contain identical monotone miss-

ing data patterns. Also, we describe the MLE-based linear discriminant procedure

from Batsidis, Zografos, and Loukas (2006) when the training sets from both classes

contain identical monotone missing data patterns. We also derive the MLEs for the

two means and common covariance matrix of two p-dimensional normal distributions

with identical monotone missing data patterns. In Section 3, we perform two Monte

Carlo simulations to examine the differences in the estimated EERs of the C-H and

MLE linear classifiers for various parameter configurations, training-sample sizes,

and missing data sizes and summarize our simulation results graphically. In Sec-

tion 4, we compare the C-H and MLE linear classifiers using parametric bootstrap

EER estimators on two actual data sets. Finally, we summarize the results of the

two simulation and two real-data comparisons of the C-H and MLE classifiers in

Section 5.
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4.2 Two Competing Classifiers for Monotone Missing Training Data

4.2.1 The C-H Classifier for Monotone Missing Data

Suppose we have two p×Ni training observation matrices in the form Yi1 Yi2

Zi ·

 , (4.5)

where

Ui =
[
Y′

i1 , Z
′
i

]′ ∈ Rk×ni
(4.6)

denotes the ni complete-observation matrix, and Yi2 ∈ Rk×(Ni−ni) is the partial

observation matrix whose first k measurements are non-missing, where Ni > ni, for

i = 1, 2.

Chung and Han (2000) have derived a linear combination of a discriminant

function composed from complete data and a discriminant function determined from

incomplete data in the form of monotone missing data. We denote the complete data

by uij =
[
y′

i1j, z
′
ij

]′
, where yi1j ∈ Rk×1 and zij ∈ R(p−k)×1 such that

uij ∼ Np (µi,Σ) ≡ Np


 µYi1

µZi

 ,
 Σ11 Σ12

Σ21 Σ22


 , (4.7)

where µYi1
∈ Rk×1, µZi

∈ R(p−k)×1, Σ11 ∈ R>
k×k, Σ12 ∈ Rk×(p−k), and Σ22 ∈

R>
(p−k)×(p−k) with i = 1, 2; j = 1, 2, ..., ni. Also, random samples of sizes Ni − ni

are taken from distributions of the form Nk

(
µYi2

,Σyy

)
, where µYi2

∈ Rk×1 and

Σyy ∈ R>
k×k. Anderson’s discriminant function of the subset of complete data Ui,

i = 1, 2, given in (4.6), is

Wu ≡ (ū1 − ū2)
′ S−1

u

[
u− 1

2
(ū1 + ū2)

]
, (4.8)

such that

Su =

(
2∑

i=1

ni∑
j=1

(uij − ūi) (uij − ūi)
′

)
/νu, νu = n1 + n2 − 2,
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where ūi = 1
ni

ni∑
j=1

uij is the complete-data sample mean and Su is the complete-data

sample covariance matrix. Anderson’s discriminant function for the data

[Yi1 : Yi2] , (4.9)

i = 1, 2, the k-dimensional features with N1 +N2 training observations, is

Wy ≡ (ȳ1 − ȳ2)
′ S−1

y

[
y − 1

2
(ȳ1 + ȳ2)

]
(4.10)

with

ȳi =
1

Ni

[niȳi1 + (Ni − ni) ȳi2] , (4.11)

where

ȳi1 =
1

ni

ni∑
j=1

yi1j (4.12)

denotes the sample mean for the first ni observations and the first k features in (4.5),

ȳi2 =
1

Ni − ni

Ni∑
j=ni+1

yi2j (4.13)

denotes the sample mean for the first k features of the latter Ni−ni observations in

Yi2, and

Sy =

(
2∑

i=1

2∑
k=1

Ni∑
j=1

(yikj − ȳi) (yikj − ȳi)
′

)
/νy, νy = N1 +N2 − 2,

is the pooled sample covariance matrix for the incomplete training data (4.9), where

i = 1, 2.

Chung and Han (2000) have proposed the linear combination classification

statistic

Wc ≡ cWu + (1− c)Wy, (4.14)

where c ∈ [0, 1]. We classify the unlabeled observation vector x ∈ Rp×1 into Π1 if

Wc ≥ 0 (4.15)
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and into Π2, otherwise. The conditional error rate (CER) for classifying an unla-

beled vector x from Π1 into Π2 using Wc is

CER12 (Wc) = P (Wc < 0|ū1, ū2,Su, ȳ1, ȳ2,Sy;u,y ∈ Π1)

= Φ

(
−h′µ1 − f√

h′Σh

)
, (4.16)

where

f ≡ cb+ (1− c) e (4.17)

with

b ≡ −1

2
(ū1 − ū2)

′ S−1
u (ū1 + ū2) ,

e ≡ −1

2
(ȳ1 − ȳ2)

′ S−1
y (ȳ1 + ȳ2) ,

and

h ≡

 a

b

 , (4.18)

where a ∈ Rk×1 and b ∈ R(p−k)×1 such that

a ≡ ca1 + (1− c)d,

b ≡ ca2,

d′ ≡ (ȳ1 − ȳ2)
′ S−1

y ,

a′ ≡ (ū1 − ū2)
′ S−1

u =

 a1

a2

 ,
where a1 ∈ Rk×1 and a2 ∈ R(p−k)×1. Similarly,

CER21 (Wc) = P (Wc ≥ 0|ū1, ū2,Su, ȳ1, ȳ2,Sy;u,y ∈ Π2)

= Φ

(
h′µ2 + f√

h′Σh

)
. (4.19)

Thus, assuming equal prior probability, the CER for the C-H classifier (4.14) is

defined to be

CER (Wc) =
1

2
[CER12 (Wc) + CER21 (Wc)] . (4.20)
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If

θ̃ ≡ [ȳ1, ȳ2,Sy,Su, ū1, ū2]
′ ,

then, for the classifier (4.15), the EER of misclassifying an unlabeled observation

vector x from Π1 into Π2 is

EER (Wc)12 = Eθ̃

[
Φ

(
−h′µ1 − f√

h′Σh

)]
,

and, similarly, the EER of misclassifying x from Π2 into Π1 is

EER (Wc)21 = Eθ̃

[
Φ

(
h′µ2 + f√

h′Σh

)]
.

Thus, assuming equal prior probabilities, the EER for (4.15) is

EER (Wc) =
1

2
[EER12 (Wc) + EER21 (Wc)] . (4.21)

In choosing c in (4.14), Chung and Han (2000) have utilized the fact that

the CER and EER will depend on the Mahalanobis distance for the complete and

partial training observations and the corresponding training-sample sizes, Ni and

ni, i = 1, 2. Usually, when one deals with small CERs, the sample Mahalanobis

distance D2
k, k = u, y for either the difference between the ui’s or zi’s for i = 1, 2,

will be large or the training sample sizes will be large. While ni and D2
u determine

the performance of Wu, the quantities Ni and D2
y dictate the performance of Wy.

Hence, Chung and Han (2000) have chosen c in relation to the training-sample sizes

and the Mahalanobis distances for the complete and incomplete training-data sets.

The implication for times when D2
u is larger than D2

y is that the information in the

data-matrix component Zi, i = 1, 2, in (4.5) contributes largely to the discriminatory

information. Hence, Chung and Han (2000) use

c∗ =

(
1
n1

+ 1
n2

)−1

D2
u(

1
n1

+ 1
n2

)−1

D2
u +

(
1

N1
+ 1

N2

)−1

D2
y

, (4.22)

where

D2
y = (ȳ1 − ȳ2)

′ S−1
y (ȳ1 − ȳ2) (4.23)
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and

D2
u = (ū1 − ū2)

′ S−1
u (ū1 − ū2) , (4.24)

to determine the linear combination classifier (4.14).

4.2.2 The Maximum Likelihood Classifier for Monotone Missing Training Data

Anderson (1957) has examined maximum likelihood estimators (MLEs) for

the parameter of a multivariate normal distribution for special patterns of missing

observations in the training samples. Also, Hocking and Smith (1968) have derived

an MLE method for estimating parameters in a multivariate normal distribution

with monotone missing data. Once computed, the MLEs are substituted for the

parameters in the optimal Bayes classifier. However, the estimator of Σ in the

Hocking and Smith (1968) MLE classifier is a pooled estimator of the two individual

MLE estimators of Σ.

Below, we state and derive theMLEs for two multivariate normal distributions

having unequal means and a common covariance matrix using identical monotone

missing-data patterns in both training samples. We give a matrix-calculus-based

proof of the following theorem in Appendix C.

Theorem 4.1. Let Πi be modeled with the multivariate normal densities Np (µi,Σ)

for i = 1, 2, with

µi =

 µi1

µi2

 (4.25)

and

Σ =

 Σ11 Σ21

Σ12 Σ22

 , (4.26)

and let

A11,Ni,i =

Ni∑
j=1

(yij − ȳi) (yij − ȳi)
′ , (4.27)

A11,ni,i =

ni∑
j=1

(yij − ȳi) (yij − ȳi)
′ , (4.28)
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A12,ni,i =

ni∑
j=1

(yij − ȳi) (zij − z̄i)
′, (4.29)

and

A22,ni,i =

ni∑
j=1

(zij − z̄i) (zij − z̄i)
′, (4.30)

where yij ∈ [Yi1 : Yi2], and zij ∈ Zi with Yi1, Yi2, and Zi given in (4.5). Then, on

the basis of two-step monotone training samples from populations Πi : Np (µi,Σ) , i =

1, 2, the MLEs of (4.25) and (4.26) are

µ̂i =

 µ̂i1

µ̂i2

 and Σ̂ =

 Σ̂11 Σ̂12

Σ̂21 Σ̂22

 , (4.31)

respectively, where

Σ̂11 =

2∑
i=1

A11,Ni,i

2∑
i=1

Ni

, (4.32)

Σ̂12 =
1(

2∑
i=1

Ni

) [ 2∑
i=1

A11,Ni,i

][
2∑

i=1

A11,ni,i

]−1 [ 2∑
i=1

A12,ni,i

]
, (4.33)

and

Σ̂22 =
1

2∑
i=1

ni

2∑
i=1

A22·1,ni,i +
1

2∑
i=1

Ni

[
2∑

i=1

A21,ni,i

][
2∑

i=1

A11,ni,i

]−1 [ 2∑
i=1

A11,Ni,i

]
×

[
2∑

i=1

A11,ni,i

]−1 [ 2∑
i=1

A12,ni,i

]
, (4.34)

and µ̂i1 = ȳi with ȳi defined in (4.11),

µ̂i2 = z̄i −
[
Σ̂12Σ̂

−1
22

]
(ȳi1 − ȳi2) ,

where

z̄i =
1

ni

ni∑
j=1

zij,
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and Σ̂12, Σ̂22, ȳi1, and ȳi2 are defined in (4.33), (4.34), (4.11), and (4.12), respec-

tively, for i = 1, 2.

Proof : The proof is given in Appendix C.

The MLE classification statistic is

WMLE ≡ (µ̂2 − µ̂1)
′ Σ̂−1

[
x− 1

2
(µ̂2 + µ̂1)

]
, (4.35)

where µ̂1, µ̂2, and Σ̂ are the MLE s defined in (4.31), and x ∈ Rp×1 is an unla-

beled observation vector belonging to either Π1 or Π2. We classify the unlabeled

observation vector x ∈ Rp×1 into class Π1 if

WMLE ≤ 0 (4.36)

and into Π2, otherwise. Hence, from (4.31) and (4.2) and conditioning on µ̂ij,

i = 1, 2, and Σ̂, we have

CER12

(
µ̂1, µ̂2, Σ̂

)
≡ P

[
WMLE > 0|µ̂1, µ̂2, Σ̂,x ∈ Π1

]
, (4.37)

where x is a complete unlabeled observation. Given x ∈ Π1 and δ̂ ≡ µ̂1 − µ̂2, we

have

δ̂′Σ̂−1 (x− µ1) ∼ N
(
0, δ̂′Σ̂−1ΣΣ̂−1δ̂

)
,

which implies

CER12

(
µ̂1, µ̂2, Σ̂

)
= 1− Φ (w1) ,

where

w1 =
[
δ̂′Σ̂−1ΣΣ̂

−1
δ̂
]−1/2

{
δ̂′Σ̂−1

(
1

2
(µ̂2 + µ̂1)− µ1

)}
.

Similarly, given x ∈ Π2,

δ̂′Σ̂−1 (x− µ2) ∼ N
(
0, (µ̂2 − µ̂1)

′ Σ̂−1ΣΣ̂
−1

(µ̂2 − µ̂1)
)
,

which implies

CER21

(
µ̂1, µ̂2, Σ̂

)
= Φ (w2) ,
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where

w2 =
[
δ̂′Σ̂−1ΣΣ̂

−1
δ̂
]−1/2

{
δ̂′Σ̂−1

(
1

2
(µ̂2 + µ̂1)− µ2

)}
.

Thus, assuming equal a priori probabilities of belonging to Πi, i = 1, 2, for an

unlabeled observation, we have

CER
(
µ̂1, µ̂2, Σ̂

)
=

1

2

[
CER12

(
µ̂1, µ̂2, Σ̂

)
+ CER21

(
µ̂1, µ̂2, Σ̂

)]
. (4.38)

In addition, the expected error rate for x ∈ Π1 is

EER12

(
µ̂1, µ̂2, Σ̂

)
= 1− Eθ̃ (Φ (w1)) ,

and the expected error rate for x ∈ Π2 is

EER21

(
µ̂1, µ̂2, Σ̂

)
= Eθ̃ (Φ (w2)) .

Hence, the overall expected error rate is

EER
(
µ̂1, µ̂2, Σ̂

)
=

1

2

[
EER12

(
µ̂1, µ̂2, Σ̂

)
+ EER21

(
µ̂1, µ̂2, Σ̂

)]
.

4.3 Two Monte Carlo Simulations

In this section, we present a description and the results of two Monte Carlo

simulations we have performed to analyze the difference in the estimated expected

error rates
(
ÊERs

)
of the MLE and C-H classifiers for two multivariate normal

configurations, where Πi : Np (µi,Σ), i = 1, 2, using various training-sample sizes

and two missing-data proportions. For the simulations, we define p to be the total

number of feature dimensions and r to be the number of missing features so that

r < p. Also, Ni denotes the total training sample size from population Πi, i = 1, 2,

and

Σ ≡



1 ρ . . . ρ

ρ 1 . . . ρ

...
...

. . .
...

ρ ρ . . . 1


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is the intraclass covariance matrix where ρ denotes the population common covari-

ance matrix among the features in the intraclass covariance matrix.

The two simulations have been performed in SAS 9.2 using the RANDNOR-

MAL command in PROC IML to generate 10,000 training sample sets of size Ni,

i = 1, 2, for each parameter configuration. Next, the MLE and C-H classifiers have

been computed, and their CERs have been calculated for each training sample set.

Then, the differences between the CERs for the classifiers have been averaged over

the 10,000 CER differences for the two classifiers for each parameter configuration

involving Ni, p, r, Σ, µi and the percent of observations with missing data (POMD)

for the r features with monotone missing data, where i = 1, 2. Thus, the estimated

expected error rate difference for the C-H and MLE classifiers is

ÊERD = ÊERC-H − ÊERMLE, (4.39)

where

ÊERC-H =
1

k

k∑
j=1

CERj (Wc)

is the estimated expected error rate for the C-H classifier and

ÊERMLE =
1

k

k∑
j=1

CERj

(
µ̂1, µ̂2, Σ̂

)
is the estimated expected error rate for the MLE classifier. Also, CER (Wc) is

defined in (4.20), CER
(
µ̂1, µ̂2, Σ̂

)
is given in (4.38), k is the total number of

simulated training-data sets, and j denotes the jth simulated training-data set where

j ∈ {1, 2, ..., k}. We display the results of our two Monte Carlo simulations by

graphing ÊERD against various values of ρ for fixed values of p, r, Ni, d, and

POMD for the r features with monotone missing data.

The relationship between p and r has been fixed at r = .2p and r = .8p. We

have chosen these specific values of p and r to evaluate the ÊERD when small and

large proportions of variables with missing data exist relative to p, the dimension
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of the training sample. Hence, for p = 10, we have used r = 2, 8; for p = 20, we

have used r = 4, 16; and for p = 40, we have used r = 8, 32. Additionally, we have

used sample sizes of Ni = 20, 50, 100 when p = 10; Ni = 25, 50, 100 when p = 20;

and Ni = 50, 100, 200 when p = 40, i = 1, 2. The total sample sizes Ni represent

small, medium, and large sample sizes relative to the specified dimension p. Lastly,

we mention that for this simulation, we have chosen µ1 ∈ Rp×1 such that

µ1 = [0, 0, ..., 0]′ (4.40)

and µ2 ∈ Rp×1 such that

µ2 = [dj, 0, 0, ..., 0, dj, 0, ...0]′ , (4.41)

with d1 = .5 and d2 = 3 to assess ÊERD for both small and large between-classes

separation, where 0.20 of the values in µ2 are non-zero. As in Chung and Han (2000),

we have chosen Ni > p to avoid singularity of the covariance matrices. Furthermore,

we have contrasted the two classifiers (4.15) and (4.36) with the POMD = .5, .8

for the r variables with monotone missing data. The comparison criterion ÊERD

is plotted against ρ for various combinations of p, r, d, Ni, and POMD in Figures

4.1 - 4.3. For each combination of the parameters mentioned immediately above,

we graph ÊERD versus the intraclass covariance values ρ = .1, .3, .5, .7, .9. These

values for µi, i = 1, 2, defined in (4.40) and (4.41), are similar to the population

means used in the simulation in Chung and Han (2000).

Figures 4.1 - 4.3 illustrate that the ÊERD is consistently positive for the values

of p, r, Ni, ρ, and POMD examined here. Thus, the ÊERMLE < ÊERC-H for the

parameter configurations. Moreover, Figures 4.1 - 4.3 indicate that the primary

parameter values that verify the dominance of the MLE classifier are ρ and d. For

all three values of p = 10, 20, and 40, the C-H and MLE classifiers are competitive

for ρ = .1; however, the ÊERD > 0, indicating a slightly smaller ÊERMLE. More

importantly, as ρ approaches 1, the MLE classifier performs increasingly better than
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the C-H classifier. The most noteworthy increase in the ÊERD is for .7 ≤ ρ ≤ .9

when d = .5, where the ÊERD increases by about .10. This increase occurs for

all specified values of p, r, Ni, and POMD, and, thus, ascertains the superiority of

the MLE classifier in terms of the ÊERD for these configurations. Additionally,

we note that ÊERD = .20 when ρ = .9 for most parameter configurations when

d = .5. These results imply that the MLE classifier is increasingly superior to the

C-H classifier when strong correlation exists.

The MLE classifier especially outperforms the C-H classifier when d1 = .5 for

all ρ > .1 considered here, as compared to when d2 = 3. The smaller difference in

the ÊERD when d2 = 3 can be attributed to the fact that for a large Mahalanobis

distance such as when d2 = 3 and ρ = .1, the EERs for both techniques are small,

thus providing a smaller ÊERD. When little class separation exists, such as when

d1 = .5, then ÊERMLE < ÊERC-H , but only slightly. TheMLE classifier is superior

to the C-H classifier when ρ ≥ .1 for all the population and sample sizes considered

here because the MLE classifier incorporates the correlation in the training data

between the variables with no missing data and the variables with missing data to

effectively estimate the multivariate normal parameters whereas the C-H classifier

discards this information.

As Figures 4.1 - 4.3 indicate, the contrasting values of p, r, Ni, and POMD

contribute marginally, if at all, to ÊERD. Regardless of the combination of values

for each of the previously mentioned parameters considered here, the MLE classifier

dominates the C-H classifier in terms of ÊERD.

The notation in the second simulation is identical to that of the first simulation.

Also, µ1 is defined as in (4.40) for the second simulation, and we use two different

vectors for µ2. We use

µ2 = [dj, dj, ..., 0, dj, dj, ..., 0]′ , j = 1, 2,
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Figure 4.1: Graphs of the ÊERD versus ρ for fixed values of Ni, r, dj , POMD, and
p = 10.
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Figure 4.2: Graphs of the ÊERD versus ρ for fixed values of Ni, r, dj , POMD, and
p = 20.
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Figure 4.3: Graphs of the ÊERD versus ρ for fixed values of Ni, r, dj , POMD, and
p = 40.
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such that d1 = .125 and d2 = .75, where 80% of the elements are non-zero. We

emphasize that the nonzero elements of µ2 in the second simulation are different

from the nonzero values for µ2 in the first simulation. This choice of values for

dj, j = 1, 2, has been made to maintain that the sum of the elements in µ2 from

the second simulation equals the sum of the elements in µ2 from (4.41) in the first

simulation. The only difference in the sample sizes between the two simulations is

the value of Ni for p = 10, which has been set to be 25 instead of 20. Consequently,

we obtain somewhat different results for the ÊERD plotted against ρ from the first

simulation. One can view the simulation results in Figures 4.4 - 4.6.

In the second simulation, the results suggest that when ρ exceeds .5, the MLE

classifier is superior to the C-H classifier in terms of the ÊERD. Conclusively, as

ρ approaches 1, the MLE classifier becomes increasingly superior in terms of the

ÊERD. Here, the level of superiority between the two classifiers also relies on the

value of dj. For d2 = .75 and for ρ ≤ .3, ÊERD < 0, which implies that the C-H

classifier performs better on average. However, for ρ ≥ .5 when d2 = .75, the MLE

classifier becomes increasingly superior in terms of the ÊERD as ρ approaches 1,

compared to the case when d1 = .125. The fact that for ρ ≥ .5, ÊERMLE < ÊERC-H

for all parameter configurations suggests that for a moderate to large degree of

correlation between the features with no missing data and the features with missing

data, the MLE classifier is preferred to the C-H classifier. Additionally, we note

that ÊERMLE � ÊERC-H for certain parameter configurations. In particular,

ÊERD ≈ .20 when ρ = .9 for most parameter configurations with d = .125. This

result implies that the MLE classifier is much more superior when strong correlation

exists between the variables without missing data and those with missing data. We

remark that neither the training sample sizes, Ni, i = 1, 2, nor the POMD appear

to fundamentally affect the relative performance of the two competing classifiers for

the parameter configurations considered here.

95



4.4 Two Real Data Examples

4.4.1 Bootstrap Expected Error Rate Estimators for the C-H and MLE Classifiers

In this section, we compare a parametric bootstrap estimated EER of the C-H

and MLE classifiers for two real data sets each having two populations with different

population means and equal covariance matrices. First, we define the bootstrap

expected error rate estimator for the C-H classifier, ÊERBoot(C-H ). Let µ̂1, µ̂2, and

Σ̂ be the MLEs of µ1, µ2, and Σ defined in Theorem 4.1, respectively. Also, let

µ̂∗
1, µ̂∗

2, and Σ̂∗ be the bootstrap estimates of µ̂1, µ̂2, and Σ̂, respectively, calculated

using the bootstrap training-sample data sets Y∗
i1 Y∗

i2

Z∗
i ·

 , (4.42)

generated from Np

(
µ̂i, Σ̂

)
, i = 1, 2. Then, conditioning on µ̂∗

i , i = 1, 2, and Σ̂∗,

the bootstrap CERs for the C-H classifier are

CER∗
12 (W ∗

c ) = Φ

(
−h∗′µ̂1 − f ∗√

h∗′Σ̂h∗

)

and

CER∗
21 (W ∗

c ) = Φ

(
h∗′µ̂2 + f ∗√

h∗′Σ̂h∗

)
,

where W ∗
c , h∗, and f ∗ are similar in definition to Wc, h and f in (4.15), (4.18),

and (4.17), respectively, except that we use the bootstrap multivariate normal data

in (4.42). Thus, assuming equal prior probability, the bootstrap CER for the C-H

classifier is

CER∗ (W ∗
c ) =

1

2
[CER∗

12 (W ∗
c ) + CER∗

21 (W ∗
c )] . (4.43)

Then, the estimated bootstrap expected error rate for the C-H classifier is

ÊERBoot(C-H ) =
1

k

k∑
j=1

CER∗
j (W ∗

c ),
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Figure 4.4: Graphs of the ÊERD versus ρ for fixed values of Ni, r, dj , POMD, and
p = 10.

97



0.2 0.4 0.6 0.8

−
0.

05
0.

05
0.

15
0.

25

ρ

D
iff

er
en

ce
 in

 A
ve

ra
ge

 E
rr

or
 R

at
e Ni =25, d=.125

Ni =25, d=.75
Ni =50, d=.125
Ni =50, d=.75
Ni =100, d=.125
Ni =100, d=.75

p = 20, r = 4, POMD = .5

0.2 0.4 0.6 0.8

−
0.

05
0.

05
0.

15
0.

25

ρ

D
iff

er
en

ce
 in

 A
ve

ra
ge

 E
rr

or
 R

at
e Ni =25, d=.125

Ni =25, d=.75
Ni =50, d=.125
Ni =50, d=.75
Ni =100, d=.125
Ni =100, d=.75

p = 20, r = 4, POMD = .8

0.2 0.4 0.6 0.8

0.
00

0.
10

0.
20

ρ
D

iff
er

en
ce

 in
 A

ve
ra

ge
 E

rr
or

 R
at

e Ni =25, d=.125
Ni =25, d=.75
Ni =50, d=.125
Ni =50, d=.75
Ni =100, d=.125
Ni=100, d=.75

p = 20, r = 16, POMD = .5

0.2 0.4 0.6 0.8

0.
00

0.
10

0.
20

ρ

D
iff

er
en

ce
 in

 A
ve

ra
ge

 E
rr

or
 R

at
e Ni =25, d=.125

Ni =25, d=.75
Ni =50 d=.125
Ni =50, d=.75
Ni =100, d=.125
Ni =100, d=.75

p = 20, r = 16, POMD = .8

Figure 4.5: Graphs of the ÊERD versus ρ for fixed values of Ni, r, dj , POMD, and
p = 20.
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Figure 4.6: Graphs of the ÊERD versus ρ for fixed values of Ni, r, dj , POMD, and
p = 40.
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where CER∗ (W ∗
c ) is defined in (4.43). Also, conditioning on µ̂∗

i , i = 1, 2, and Σ̂∗,

the bootstrap CERs for the MLE classifier are

CER∗
12

(
µ̂∗

1, µ̂
∗
2, Σ̂

∗
)
≡ P

[
W ∗

MLE > 0|µ̂∗
1, µ̂

∗
2, Σ̂

∗,x ∈ Π1

]
,

where x is a complete unlabeled observation and W ∗
MLE is similar in definition to

WMLE in (4.36). Given x ∈ Π1 and δ̂ ≡ µ̂∗
1 − µ̂∗

2, we have

CER∗
12

(
µ̂∗

1, µ̂
∗
2, Σ̂

∗
)

= 1− Φ (w∗
1) ,

and given x ∈ Π2, we have

CER∗
21

(
µ̂∗

1, µ̂
∗
2, Σ̂

∗
)

= Φ (w∗
2) ,

where

w∗
i =

[
δ̂∗′Σ̂∗−1Σ̂Σ̂∗−1δ̂∗

]−1/2
{
δ̂∗′Σ̂∗−1

(
1

2
(µ̂∗

2 + µ̂∗
1)− µ̂i

)}
.

Thus, assuming equal a priori probabilities of belonging to Πi, i = 1, 2, for an

unlabeled observation,

CER∗
(
µ̂∗

1, µ̂
∗
2, Σ̂

∗
)

=
1

2

[
CER∗

12

(
µ̂∗

1, µ̂
∗
2, Σ̂

∗
)

+ CER∗
21

(
µ̂∗

1, µ̂
∗
2, Σ̂

∗
)]
. (4.44)

Then, the estimated bootstrap expected error rate for the MLE classifier is

ÊERBoot(MLE) =
1

k

k∑
j=1

CER∗
j

(
µ̂∗

1, µ̂
∗
2, Σ̂

∗
)
,

where

CER∗
(
µ̂∗

1, µ̂
∗
2, Σ̂

∗
)

is given in (4.44), k is the total number of simulated training-data sets, and j denotes

the jth simulated training-data set where j ∈ {1, 2, ..., k}. Therefore, the estimated

parametric bootstrap expected error rate difference for the C-H and MLE classifiers

is

ÊERDBoot = ÊERBoot(C-H ) − ÊERBoot(MLE), (4.45)

which we use to compare the C-H and MLE classifiers for two real data sets in the

following subsections.
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4.4.2 A Comparison of the C-H and MLE Classifiers For UTA Admissions Data

The first data set was supplied by the Admissions Office at the University

of Texas at Arlington and implemented as an example in Chung and Han (2000).

The two populations for the UTA data are the Success Group for the students

who receive their master’s degrees (Π1) and the Failure Group for students who do

not complete their master’s degrees (Π2). Each training sample is composed of ten

foreign students and ten United States students. Each foreign student had 5 variables

associated with him or her. The variables are X1=undergraduate GPA, X2=GRE

verbal, X3= GRE quantitative, X4=GRE analytic, and X5=TOEFL score. For each

United States student, variables X1, X2, X3, and X4 are given; however, X5 contains

monotone missing data.

Table 4.1. UTA Admissions Office
Π1: Success Π2: Failure

x1 x2 x3 x4 x5 x1 x2 x3 x4 x5

2.97 420 800 600 497 3.75 250 730 460 513
3.80 330 710 380 563 3.11 320 760 610 560
2.50 270 700 340 510 3.00 360 720 525 540
2.50 400 710 600 563 2.60 370 780 500 500
3.30 280 800 450 543 3.50 300 630 380 507
2.60 310 660 425 507 3.50 390 580 370 587
2.70 360 620 590 537 3.10 380 770 500 520
3.10 220 530 340 543 2.30 370 640 200 520
2.60 350 770 560 580 2.85 340 800 540 517
3.20 360 750 440 577 3.50 460 750 560 597
3.65 440 700 630 3.15 630 540 600
3.56 640 520 610 2.93 350 690 620
3.00 480 550 560 3.20 480 610 480
3.18 550 630 630 2.76 630 410 530
3.84 450 660 630 3.00 550 450 500
3.18 410 410 340 3.28 510 690 730
3.43 460 610 560 3.11 640 720 520
3.52 580 580 610 3.42 440 580 620
3.09 450 540 570 3.00 350 430 480
3.70 420 630 660 2.67 480 700 670
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Also, the common estimated correlation matrix for the UTA data is

ĈUTA =



1 0.145 −0.066 0.199 0.373

0.145 1 −0.404 0.494 0.767

−0.066 −0.404 1 0.129 −0.493

0.199 0.494 0.129 1 0.392

0.373 0.767 −0.493 0.392 1


. (4.46)

We remark that only one sample correlation coefficient in (4.46) has a magnitude

exceeding 0.50, which reflects relatively low correlation among the features.

First, we verify that we can reasonably assume the data to come from two

multivariate normal distributions of the form of (4.7). Tan, Fang, Tian, and Wei

(2005) have developed a method for testing the assumption of multivariate normal-

ity with small sample sizes using multiple imputations. We use a similar concept

based on the Tan et al. (2005) multiple imputation method using Mardia’s tests for

multivariate skewness and kurtosis.

Specifically, we compute 30 imputations for the missing data and substitute

them into the original dataset, resulting in 30 datasets. Next, for each data set we

determine p-values for Mardia’s tests for multivariate skewness and kurtosis. We

then determine the quantiles for the p-values that are summarized in Table 4.2.

From Table 4.2, we see that the median p-values for the multivariate skewness and

kurtosis test statistics for the data from both Π1 and Π2 give no evidence contra-

dicting the assumption that the data for each group follows a multivariate normal

distribution. Thus, we assume multivariate normality for both training-data sets

given in Table 4.1.

To estimate the EERD for the C-H classifier (4.15) and the MLE classifier

(4.36) for the UTA Admissions data, we determine the ÊERDBoot given in (4.45)

for the classifiers (4.15) and (4.36) using 10,000 bootstrap simulation iterations, with

p = 5, r = 1, Ni = 20, and ni = 10 for i = 1, 2. Additionally, the bootstrap mul-
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Table 4.2. Quantiles of p-values for Mardia’s Tests: UTA Admissions
Π1: Success Π2: Failure

Quantile Skewness Kurtosis Skewness Kurtosis

100 % Max .903 .393 .794 .990
99 % .903 .393 .794 .990
95 % .898 .390 .790 .924
90 % .850 .311 .779 .964
75 % Q3 .820 .200 .621 .855
50 % Median .713 .148 .331 .645
25 % Q1 .545 .103 .102 .500
10 % .497 .090 .036 .412
5 % .412 .081 .021 .392
1 % .366 .055 .007 .299
0 % Min .366 .055 .007 .299

tivariate normal distribution parameters, which are the MLEs for the multivariate

normal population parameters given in Theorem 4.1, are

µ̂1 = [3.171, 409, 644, 526.25, 577.01]′

and

µ̂2 = [3.087, 430, 649, 519.75, 562.66]′

for the means of Π1 and Π2, respectively, with common covariance matrix

Σ̂ =



0.150 6.020 −2.760 8.540 6.510

6.020 11504.500 −4683 5859.375 3711.097

−2.760 −4683 11701.500 1518.625 −2406.740

8.540 5859.375 1518.625 12229.187 1953.163

6.510 3711.097 −2406.74 1953.163 2034.414


.

Subsequent to deriving the ÊERDBoot, we obtain ÊERDBoot = −0.027 with the esti-

mated standard error ̂(EERD)Boot = 0.001, which indicates that the C-H procedure

yields slightly better discriminatory performance compared to the MLE classifier

for the UTA data. The fact that the C-H procedure slightly outperforms the MLE

for the UTA data set in terms of ÊERDBoot is not surprising. In the UTA dataset,
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relatively little correlation exists among the features, and the C-H method does not

require or use information in the correlation between the features with no missing

data and those with missing data. However, the MLE classifier does require at least

a moderate degree of correlation to estimate the population parameters effectively.

4.4.3 A Comparison of the C-H and MLE Classifiers on the Partial Iris Data

The second real data set on which we compare the C-H and MLE classifiers is

a subset of the well-known Iris data, which is one of the most popular datasets ap-

plied in pattern recognition literature and was first analyzed by R. A. Fisher (1936).

The data used here is given in Table 4.3. The University of Irvine Machine Learning

Table 4.3. Partial Iris Data
Π1: Setosa Π2: Versicolor

x1 x2 x3 x4 x1 x2 x3 x4

5.1 3.5 1.4 0.2 7.0 3.2 4.7 1.4
4.9 3.0 1.4 0.2 6.4 3.2 4.5 1.5
4.7 3.2 1.3 0.2 6.9 3.1 4.9 1.5
4.6 3.1 1.5 0.2 5.5 2.3 4.0 1.3
5.0 3.6 1.4 0.2 6.5 2.8 4.6 1.5
5.4 3.9 1.7 0.4 5.7 2.8 4.5 1.3
4.6 3.4 1.4 0.3 6.3 3.3 4.7 1.6
5.0 3.4 1.5 0.2 4.9 2.4 3.3 1.0
4.4 2.9 1.4 0.2 6.6 2.9 4.6 1.3
4.9 3.1 1.5 0.1 5.2 2.7 3.9 1.6
5.4 3.7 1.5 5.0 2.0 3.5
4.8 3.4 1.6 5.9 3.0 4.2
4.8 3.0 1.4 6.0 2.2 4.0
4.3 3.0 1.1 6.1 2.9 4.7
5.8 4.0 1.2 5.6 2.9 3.6
5.7 4.4 1.5 6.7 3.1 4.4
5.4 3.9 1.3 5.6 3.0 4.5
5.1 3.5 1.4 5.8 2.7 4.1
5.7 3.8 1.7 6.2 2.2 4.5
5.1 3.8 1.5 5.6 2.5 3.9

Repository website provides the original dataset, which contains 150 observations

(50 in each class) with four variables: X1 = sepal length (cm), X2 = sepal width
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(cm), X3 = petal length (cm), and X4 = petal width (cm). This data set has three

classes: Iris-setosa (Π1), Iris-versicolor (Π2), and Iris-virginica (Π3). We have used

a subset of the original Iris dataset by taking only the first 20 observations from Π1

and Π2 and omitting the Iris-virginica group (Π3). We emphasize that the variables

in the partial Iris data are much more highly correlated than the variables in the

UTA data. The common estimated correlation matrix is

ĈIris =



1 0.716 0.708 0.549

0.716 1 0.473 0.651

0.708 0.473 1 0.677

0.549 0.651 0.677 1


. (4.47)

In (4.47), only one estimated correlation coefficient with magnitude is less than 0.50,

which reflects a moderate degree of correlation among the features.

Again, we have utilized Mardia’s tests for multivariate skewness and kurtosis

to test that we can reasonably assume the data comes from multivariate normal dis-

tributions resembling (4.7). We have generated 30 imputation sets for the partial Iris

dataset using regression imputation and p-values for Mardia’s multivariate skewness

and kurtosis test statistics which are given with the corresponding quantiles in Table

4.4. Clearly, the median p-values for Mardia’s multivariate skewness and kurtosis

statistics for both Π1 and Π2 give no statistical evidence contradicting the assump-

tion that the data for each group follows a multivariate normal distribution.

As in the bootstrap estimated EER comparison for the UTA data, we have

used 10,000 bootstrap simulation iterations for calculating the ÊERDBoot for the

Iris subset data. Here, for the Iris data given in Table 4.3, r = 1, Ni = 20, and

ni = 10 for i = 1, 2, and p = 4. The bootstrap parameters corresponding to Π1 and

Π2 are

µ̂1 = [5.035, 3.48, 1.435, .235]′
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Table 4.4. Quantiles of p-values for Mardia’s Tests: Partial Iris Data
Π1: Setosa Π2: Versicolor

Quantile Skewness Kurtosis Skewness Kurtosis

100 % Max .987 .981 .914 .828
99 % .987 .981 .914 .828
95 % .912 .956 .884 .638
90 % .886 .921 .840 .546
75 % Q3 .822 .848 .785 .401
50 % Median .575 .752 .638 .247
25 % Q1 .334 .573 .522 .192
10 % .088 .433 .285 .134
5 % .060 .369 .035 .123
1 % .032 .290 .001 .108
0 % Min .032 .290 .001 .108

and

µ̂2 = [5.975, 2.76, 4.255, 1.325]′ ,

respectively, with common covariance matrix

Σ̂ =



0.273 0.147 0.124 0.045

0.147 0.154 0.062 0.040

0.124 0.062 0.111 0.035

0.045 0.040 0.035 0.024


.

Comparing our parametric bootstrap estimates for the C-H and MLE classi-

fiers applied to the subset of the Iris dataset, we obtain ÊERDBoot = 0.11 with an

estimated standard error ÊERDBoot = 0.001, which indicates that ÊERBoot(MLE) �

ÊERBoot(C-H ). In (4.47), we see that the sample correlation coefficients r14, r24, and

r34 are all at least moderately large, which demonstrates moderately high correla-

tion for X1, X2, and X3 in the partial Iris data with X4, the feature that contains

observations with monotone missing elements. Consequently, the MLE classifier

convincingly outperforms the C-H classifier in terms of the bootstrap ÊERDBoot.

Thus, comparing C-H and MLE classifiers on real data, we have provided

additional evidence that, indeed, the MLE classifier incorporates more information
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into the discriminatory function by effectively utilizing the correlation among the

variables with missing and non-missing observations provided a sufficient degree of

correlation exists. Hence, from our two Monte Carlo simulation studies and our

estimates of ÊERDBoot for two real data sets, we see that for the Monte Carlo

simulation parameter configurations, sample sizes, and the real-data sets considered

here, the MLE classifier is preferred to the C-H classifier for monotone missing

data with equal covariance matrices where the correlation between features with no

missing data with features having monotone missing data is moderate to large. This

evidence essentially contradicts the simulation results in Chung and Han (2000) that

the C-H classifier is superior to the MLE classifier of Hocking and Smith (1968).

4.5 Conclusion

In this chapter, we have considered the problem of supervised classification

using training data with identical monotone missing data patterns for two classes.

Subsequently, we have introduced the C-H classifier for monotone missing data from

Chung and Han (2000), which has yielded a classifier composed of a linear combina-

tion of the complete and incomplete data. Moreover, we have specified the overall

CERs and EERs for the C-H classifier and have derived the MLEs for the par-

titioned population class means and the common covariance matrix. Furthermore,

we have derived an expression for the MLE linear classifier when monotone missing

training data is present in both training-data sets. Also, we have stated the cor-

responding overall CERs and EERs for the MLE classifier. We have then used

two Monte Carlo simulations to demonstrate that for the various parameter con-

figurations considered here, ρ and d have the greatest impact on ÊERD. We also

have concluded that if ρ ≥ .5, the MLE classifier becomes an increasingly superior

statistical classification procedure as ρ approaches 1. This conclusion essentially

contradicts the simulation results of Chung and Han (2000).
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We also have compared the MLE and C-H classifiers on two real training-

data sets using ÊERDBoot defined in (4.45). From the data set from Chung and

Han (2000), we have demonstrated that when the correlation among features with-

out missing data and the feature with missing data is small, the C-H classifier is

slightly better than the MLE classifier (ÊERDBoot = −0027). Finally, we have used

a subset of the prominent Iris data set from Fisher (1936) to illustrate that when

correlation among features without missing data and features with missing data is

moderate to large, the MLE classifier is conclusively better than the C-H classifier

(ÊERDBoot = 0.11).
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APPENDIX A

Chapter Four

Lemma. Let

Wi = Bi1 + Bi2, (A.1)

with

Bi1 =

Ni∑
j=ni+1

(yij − ȳi2) (yij − ȳi2)
′

and

Bi2 =
ni (Ni − ni)

Ni

(ȳi1 − ȳi2) (ȳi1 − ȳi2)
′ ,

where ȳi, ȳi1, and ȳi2 are defined in (4.11), (4.12), and (4.13), respectively. Also,

let A11,ni,i and A11,Ni,i be defined as in (4.28) and (4.27), respectively. Then

Wi = A11,Ni,i −A11,ni,i. (A.2)

Proof : First, note that ȳi = ni

Ni
ȳi1 + (Ni−ni)

Ni
ȳi2, ȳi1 − ȳi = (Ni−ni)

Ni
(ȳi1 − ȳi2), and

ȳi2 − ȳi = − ni

Ni
(ȳi1 − ȳi2). Hence,

Bi2 =
ni (Ni − ni)

Ni

(ȳi1 − ȳi + ȳi − ȳi2) (ȳi1 − ȳi + ȳi − ȳi2)
′

= ni (ȳi1 − ȳi) (ȳi1 − ȳi)
′ + (Ni − ni) (ȳi2 − ȳi) (ȳi2 − ȳi)

′

=

ni∑
j=1

(ȳi1 − ȳi) (ȳi1 − ȳi)
′ +

Ni∑
j=ni+1

(ȳi2 − ȳi) (ȳi2 − ȳi)
′.
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Next,

A11,ni
+ Bi1 + Bi2

=

ni∑
j=1

(yij − ȳi1) (yij − ȳi1)
′ +

Ni∑
j=ni+1

(yij − ȳi2) (yij − ȳi2)
′

+

ni∑
j=1

(yi1 − ȳi) (yi1 − ȳi)
′ +

Ni∑
j=ni+1

(yi2 − ȳi) (yi2 − ȳi)
′

=

ni∑
j=1

[
(yij − ȳi1) (yij − ȳi1)

′ + (yi1 − ȳi) (yij − ȳi1)
′ + (ȳi1 − ȳi) (ȳi1 − ȳi)

′

+ (yij − ȳi1) (yi1 − ȳi)
′]

+

Ni∑
j=ni+1

[
(yij − ȳi2) (yij − ȳi2)

′ + (yi2 − ȳi) (yij − ȳi2)
′

+(ȳi2 − ȳi) (ȳi2 − ȳi)
′ + (yij − ȳi2) (yi2 − ȳi)

′]
=

ni∑
j=1

(yij − ȳi) (yij − ȳi)
′ +

Ni∑
j=ni+1

(yij − ȳi) (yij − ȳi)
′

= A11,Ni,i.

Therefore, (A.2) holds.

Proof of Theorem 4.1

Proof : Let

Ai ≡

 A11,ni,i A12,ni,i

A21,ni,i A22,ni,i

 , (A.3)

where A11,ni,i, A12,ni,i, and A22,ni,i are defined in (4.28), (4.29), and (4.30), respec-

tively, and recall that Ai ∈ Rp×p. Also, let Wi ∈ Rk×k be defined in (A.1), and

let Σ ∈ R>
p×p be defined as in (4.26). Following Anderson and Olkin (1985), the
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concentrated log likelihood for Σ is

lnL (Σ|all data) =
2∑

i=1

[
−
(
Ni − ni

2

)
|Σ11| −

(ni

2

)
|Σ| 1

2
tr
(
Σ−1Ai

)
+

1

2
tr
(
Σ−1

11 WiΣ
−1
11

)]
.

Therefore,

∂ lnL

∂Σ
=

2∑
i=1

−(ni

2

)
Σ−1 +

1

2

(
Σ−1AiΣ

−1
)
−
(
Ni − ni

2

) Σ−1
11 0

0 0


+

1

2

 Σ−1
11 WiΣ

−1
11 0

0 0


 . (A.4)

Setting (A.4) to zero and multiplying both sides of (A.4) by Σ and 2 implies

2∑
i=1

−ni

 Σ11 Σ12

Σ21 Σ22

− (Ni − ni)

 Σ11 Σ12

Σ21 Σ21Σ
−1
11 Σ12

+

 A11,ni,i A12,ni,i

A21,ni,i A22,ni,i

+

 Wi WiΣ
−1
11 Σ12

WiΣ
−1
11 Σ21 Σ21Σ

−1
11 WiΣ

−1
11 Σ12


 = 0.

Hence, we obtain the three estimating equations

2∑
i=1

[−niΣ11 + A11,ni,i − (Ni − ni)Σ11 + Wi] = 0, (A.5)

2∑
i=1

[
− (Ni − ni)Σ21Σ

−1
11 Σ12 + Σ21Σ

−1
11 WiΣ

−1
11 Σ12 − niΣ22 + A22,ni,i

]
= 0, (A.6)

and

2∑
i=1

[
− (Ni − ni)Σ21Σ

−1
11 Σ12 + Σ21Σ

−1
11 WiΣ

−1
11 Σ12 − niΣ22 + A22,ni,i

]
= 0. (A.7)
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Solving (A.5) for Σ11, we get

2∑
i=1

[−niΣ11 + A11,ni,i − (Ni − ni)Σ11 + Wi] = 0

⇒

(
2∑

i=1

Ni

)
Σ11 =

2∑
i=1

A11,ni,i +
2∑

i=1

[A11,Ni,i −A11,ni,i]

⇒ Σ̂11 =

2∑
i=1

A11,Ni,i

2∑
i=1

Ni

.

Next, solving (A.6) for Σ12, we get

2∑
i=1

[
−NiΣ12 + A12,ni,i − (Ni − ni)Σ12 + [A11,Ni,i −A11,ni,i]Σ

−1
11 Σ12

]
= 0

⇒
2∑

i=1

A12,ni,i =

(
2∑

i=1

Ni

)
Σ12 −

(
2∑

i=1

Ni

)[
2∑

i=1

[A11,Ni,i −A11,ni,i]

]
×[

2∑
i=1

A11,Ni,i

]−1

Σ12

⇒
2∑

i=1

A12,ni,i =

(
2∑

i=1

Ni

)I− [ 2∑
i=1

[A11,Ni,i −A11,ni,i]

][
2∑

i=1

A11,Ni,i

]−1
Σ12

⇒
2∑

i=1

A12,ni,i =

(
2∑

i=1

Ni

)([
2∑

i=1

A11,Ni,i −
2∑

i=1

[A11,Ni,i −A11,ni,i]

]
[

2∑
i=1

A11,Ni,i

]−1
Σ12

⇒
2∑

i=1

A12,ni,i =

(
2∑

i=1

Ni

)[
2∑

i=1

A11,ni,i

][
2∑

i=1

A11,Ni,i

]−1

Σ12

⇒ Σ̂12 =
1(

2∑
i=1

Ni

) [ 2∑
i=1

A11,Ni,i

][
2∑

i=1

A11,ni,i

]−1 [ 2∑
i=1

A12,ni,i

]
.

Finally, solving (A) for Σ22, we get

2∑
i=1

[
− (Ni − ni)Σ21Σ

−1
11 Σ12 + Σ21Σ

−1
11 A11,N−n,iΣ

−1
11 Σ12 − niΣ22 + A22,n,i

]
= 0,
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which implies

(
2∑

i=1

ni

)
Σ22 =

2∑
i=1

A22,ni,i −

2∑
i=1

(Ni − ni)

2∑
i=1

Ni

[
2∑

i=1

A21,ni,i

][
2∑

i=1

A11,ni,i

]−1

×

[
2∑

i=1

A11,Ni,i

][
2∑

i=1

A11,Ni,i

]−1( 2∑
i=1

Ni

)
1(

2∑
i=1

Ni

) [ 2∑
i=1

A11,Ni,i

]
×

[
2∑

i=1

A11,ni,i

]−1 [ 2∑
i=1

A12,ni,i

]
+

1(
2∑

i=1

Ni

) [ 2∑
i=1

A21,ni,i

]
×

[
2∑

i=1

A11,ni,i

]−1 [ 2∑
i=1

A11,Ni,i

](
2∑

i=1

Ni

)[
2∑

i=1

A11,Ni,i

]−1

×[
2∑

i=1

A11,Ni,i −
2∑

i=1

A11,ni,i

](
2∑

i=1

Ni

)[
2∑

i=1

A11,Ni,i

]−1

×

1(
2∑

i=1

Ni

) [ 2∑
i=1

A11,Ni,i

][
2∑

i=1

A11,ni,i

]−1 [ 2∑
i=1

A12,ni,i

]

=
2∑

i=1

A22,ni,i −

2∑
i=1

(Ni − ni)

2∑
i=1

Ni

[
2∑

i=1

A21,ni,i

][
2∑

i=1

A11,ni,i

]−1

×

[
2∑

i=1

A11,Ni,i

][
2∑

i=1

A11,ni,i

]−1 [ 2∑
i=1

A12,ni,i

]
+

[
2∑

i=1

A21,ni,i

]
×[

2∑
i=1

A11,ni,i

]−1 [ 2∑
i=1

A11,Ni,i −
2∑

i=1

A11,ni,i

][
2∑

i=1

A11,ni,i

]−1

×[
2∑

i=1

A12,ni,i

]
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=
2∑

i=1

A22,ni,i +

[
2∑

i=1

A21,ni,i

][
2∑

i=1

A11,ni,i

]−1

×
2∑

i=1
Ni

2∑
i=1

Ni

2∑
i=1

A11,Ni,i −
2∑

i=1

A11,ni,i −

2∑
i=1

(Ni − ni)

2∑
i=1

Ni

2∑
i=1

A11,Ni,i

×
[

2∑
i=1

A11,ni,i

]−1 [ 2∑
i=1

A12,ni,i

]

=
2∑

i=1

A22,ni,i −

[
2∑

i=1

A21,ni,i

][
2∑

i=1

A11,ni,i

]−1 [ 2∑
i=1

A11,ni,i

]
×

[
2∑

i=1

A11,ni,i

]−1 [ 2∑
i=1

A12,ni,i

]
2∑

i=1
ni

2∑
i=1

Ni


[

2∑
i=1

A21,ni,i

]
×

[
2∑

i=1

A11,ni,i

]−1 [ 2∑
i=1

A11,Ni,i

][
2∑

i=1

A11,ni,i

]−1 [ 2∑
i=1

A12,ni,i

]

=
2∑

i=1

A22,ni,i −

[
2∑

i=1

A21,ni,i

][
2∑

i=1

A11,ni,i

]−1 [ 2∑
i=1

A12,ni,i

]

+


2∑

i=1
ni

2∑
i=1

Ni


[

2∑
i=1

A21,ni,i

][
2∑

i=1

A11,ni,i

]−1 [ 2∑
i=1

A11,Ni,i

]
×

[
2∑

i=1

A11,ni,i

]−1 [ 2∑
i=1

A12,ni,i

]

⇒ Σ̂22 =
1

2∑
i=1

ni

2∑
i=1

A22·1,ni,i +
1

2∑
i=1

Ni

[
2∑

i=1

A21,ni,i

][
2∑

i=1

A11,ni,i

]−1 [ 2∑
i=1

A11,Ni,i

]
×

[
2∑

i=1

A11,ni,i

]−1 [ 2∑
i=1

A12,ni,i

]
,

where

2∑
i=1

A22·1,ni,i =
2∑

i=1

A22,ni,i −

[
2∑

i=1

A21,ni,i

][
2∑

i=1

A11,ni,i

]−1 [ 2∑
i=1

A12,ni,i

]
.
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The derivation of the MLE s for µi1 and µi2, i = 1, 2, for two multivariate normal

populations using identical monotone missing data patterns for both samples is

similar to the derivation of the MLE of

µ =

 µ1

µ2


for a single multivariate normal population with monotone missing data given in

Anderson (1957).
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