

ABSTRACT

Evaluating Impulse C and Multiple Parallelism Partitions
for a Low-Cost Reconfigurable Computing System

Carmen C. Li Shen, M.S. Electrical and Computer Engineering

Advisor: Russell W. Duren, Ph.D.

Impulse C is a C-to-HDL compiler from Impulse Accelerated Technology that

facilitates the introduction of software programmers, mathematicians, and scientists, into

the realm of FPGA-based algorithm development for high-speed numerical computation.

This thesis evaluates the Impulse C programming language and explores differing levels

of parallelism across multiple, homogeneous, FPGA development platforms using the

Aurora serial communication scheme. Impulse C and Xilinx IP cores are employed in

the numerical computation of a neural network consisting of 27 inputs and 1200 outputs.

The artificial neural network is capable of emulating an underwater acoustic environment

and has been used to determine characteristic parameters of reflections from the ocean

floor. Timing, logic utilization and ease-of-use are metrics used to evaluate Impulse C in

the automatic generation of VHDL code for the network test application.

Implementations with parallelism at the system level and at the intermediate (loop) level

are explored as part of this study.

Page bearing signatures is kept on file in the Graduate School.

Evaluating Impulse C and Multiple Parallelism Partitions
for a Low-Cost Reconfigurable Computing System

by

Carmen C. Li Shen, B.S.

A Thesis

Approved by the Department of Electrical and Computer Engineering

Kwang Y. Lee, Ph.D., Chairperson

Submitted to the Graduate Faculty of

Baylor University in Partial Fulfillment of the
Requirements for the Degree

of
Master of Science in Electrical and Computer Engineering

Approved by the Thesis Committee

Russell W. Duren, Ph.D.,Chairperson

Steven R. Eisenbarth, Ph.D.

David B. Sturgill, Ph.D.

Accepted by the Graduate School
December 2008

J. Larry Lyon, Ph.D., Dean

Copyright © 2008 by Carmen C. Li Shen

All rights reserved

iii

`

TABLE OF CONTENTS

LIST OF FIGURES v

LIST OF TABLES vii

ACRONYMS viii

ACKNOWLEDGMENTS x

DEDICATION xi

CHAPTER ONE
Introduction 1

CHAPTER TWO
 Background Information 4
 Reconfigurable Computing 4
 Computing Systems 6
 SRC-6e 7
 XUP Virtex II Pro 8

CHAPTER THREE

Programming Languages 12
 Hardware Description Languages (HDLs) 12
 High Level Languages 13
 C-to- Register Transfer Level RTL Compilers 14
 Impulse C Programming Environment 17
 Comparison between C-to-HDL Compilers 24

CHAPTER FOUR

Neural Network 26
 Concept, Structure and Applications 26
 Previous Work Related to FPGA Implementation of ANNs 28
 Previous Work Related to FPGA Implementation of an ANN Trained to
 Emulate an Acoustic Model 29

CHAPTER FIVE
Design and Implementation 31
 Design and Verification Strategies 31
 Communication and Partition between Boards 36
 Neural Network Serial Implementation 47
 Co PIPELINE, CO UNROLL Pragma Directives for Parallelization 48

iv

CHAPTER SIX
Findings and Discussions 58

CHAPTER SEVEN

Conclusions and Final Recommendations 66

APPENDIX A
 Logic Resources 70

APPENDIX B
 Software C Source Code for PowerPC 71
 Slave XUP - Receiving 71
 Slave XUP – Transmitting 72

APPENDIX C
 Hardware Process C Source Code for the Compiler to Generate VHDL code 73
 Hidden Node Formation 73
 Sigmoid (Hardware Process) 75

BIBLIOGRAPHY 77

v

LIST OF FIGURES

Figure 1: Components of a Typical FPGA 5

Figure 2: SRC-6e Hardware Architecture 8

Figure 3: XUP Virtex II Pro Board 10

Figure 4: Aurora Communication 11

Figure 5: Impulse C Design Flow Chart 19

Figure 6: Cycle Accurate C Representation of HDL Code (3-process Neural
Network) 22

Figure 7: C Representation of HDL Code and Impulse C Compared 23

Figure 8: Stage Master Dataflow Graph for Neural Network Node 2 23

Figure 9: Neural Network Structure 26

Figure 10: Single Node Computation 27

Figure 11: Small Neural Net 32

Figure 12: Logistic Curve 32

Figure 13: Three-Board Partition Version1 37

Figure 14: Four-Board Partition 37

Figure 15: Three-Board Partition Version 2 38

Figure 16: Neural Network Implementation using Impulse C and Aurora
Communication 39

Figure 17: Aurora Core Streaming User Interface 39

Figure 18: Aurora_Link Peripheral 40

Figure 19: First Hidden Layer Computation – Serial Implementation 48

Figure 20: First Hidden Layer Computation – Pipelined Implementation 49

vi

Figure 21: First Hidden Layer Computation – Unrolled Implementation 50

Figure 22: First Hidden Layer Computation – Pipelined & Unrolled
 Implementation 50

Figure 23: Two Software Processes and One Hardware Process 53

Figure 24: One Software Processes and One Hardware Process 53

Figure 25: Case 2a – Two Software Processes and Four Hardware Processes 53

Figure 26: Case 2b – Two Software Processes and Seven Hardware Processes 54

Figure 27: Case 3 – One Software Process and One Hardware Process Manually
Unrolled 55

Figure 28: Case 3 – 500 Loop Unrolled into Five Nodes Computed at Once 55

vii

LIST OF TABLES

Table 1: Taylor Series Segments and Coefficients 35

Table 2: Timing Results Comparing Different Synchronization Schemes 46

Table 3: Timing Comparison for One Node Computation 58

Table 4: Cumulative Timing Results per Sections in Neural Network
 Computations 60

Table 5: Logic Resources Used in the Implementation of Floating-Point
 Operators 61

Table 6: Timing Results for One Pass Forward Neural Network Calculations 62

Table A.1: Logic Utilization for Sigmoid Function/Process 70

Table A.1: Logic Utilization for Hidden Layer Nodes Computations 70

Table A.1: Logic Utilization for Output Layer Nodes Computations 70

viii

ACRONYMS

ANN - Artificial Neural Networks

ANSI - American National Standards Institute

BRAM - Block Random Access Memory

CPU - Central Processor Unit

CSP - Communicating Sequential Processes

DDR SDRAM - Double Data Rate Synchronous Dynamic Random Access Memory

FIFO - First-In First-Out

FPGA - Field Programmable Gate Array

GCC- GNU Compiler Collection

HDL - Hardware Description Language

HL- High Latency

HLL - High Level Language

IAT - Impulse Accelerated Technology

IDE - Integrated Development Environment

IEEE - Institute of Electrical and Electronics Engineers

ISA - Instruction Set Architecture

LL - Low Latency

MAC - Multiply and Accumulate

MGT - Multi-gigabit Transceiver

OPB - On-chip Peripheral Bus

PLB - Processor Local Bus

ix

SATA - Serial Advanced Technology Attachment

SMD - Stage Master Debugger

SME - Stage Master Explorer

VHDL - VHSIC Hardware Description Language

VHSIC - Very-High-Speed Integrated Circuits

XUP - Xilinx University Program

x

ACKNOWLEDGMENTS

I am grateful to God’s for His daily blessings and the strength He gives me.

 I would like to thank Dr. Duren for his guidance and encouragement throughout

the development of this thesis work. I would like to thank Dr. Eisenbarth for his help in

revising this thesis and providing me with insights in some problems. I would like to

thank Dr. Sturgill for providing me with some C coding tips and comments to improve

my thesis readability. I would also like to thank Impulse C staff for their response to my

questions on CoDeveloper tools. And lastly, thanks to Anthony Chu and friends for the

encouragement and support I received throughout the course of this work.

xi

DEDICATION

To my parents

for believing in me and their sacrifice for me to have an education

1

CHAPTER ONE

Introduction

Neural networks are mathematical models trained to make decisions based on

patterns imitating biological neurons in behavior. These models have been used in

diverse applications, including remote sensing and identification, adaptive control,

optimization, signal filtering, complex mapping, to mention a few. One particular area of

interest is exploring the feasibility of implementing a neural network-based application

for sonar acoustic model emulation. The sonar acoustic model is a very reliable yet

complicated algorithm requiring a large amount of computation, which makes it difficult

to produce real-time results. For this reason, a neural network model was created that

emulates the behavior of an acoustic system which greatly reduces computation levels.

Even with the significant improvement generated by the neural network model, the

computation level still prevents a successful real-time implementation when using

traditional processor-based computing environments [1]. Neural networks are

characterized by the presence of highly parallelizable computations, which require

hardware architectures with the capability to exploit this parallelism. Therefore, as an

alternative solution, FPGA-based hardware assist was considered for the neural network

implementation. These reprogrammable devices (FPGAs) provide great flexibility and

potential for speedup inherent in hardware oriented parallelism. In previous work, an

acoustic model emulator, which consisted of multiple feed-forward neural network

passes, was implemented on a FPGA-based platform. The results of the study by

Reynolds, et al. [1] indicate the feasibility of a real-time implementation after extensive

2

hand-coding optimization techniques were applied to a VHDL model. The outcome of

the implementation was encouraging, but the level of hardware description language

knowledge needed to develop the optimized algorithm represents an obstacle for those

that do not specialize in the hardware design arena. Designers, scientists and general

engineers that could benefit from the computational advantages and speed of FPGAs are

reluctant to utilize them for this reason. Recent development of C-to-HDL compiler

technology has eased the gap between software developer’s experience-level and the

expertise needed to produce hardware implemented algorithms. Impulse C is a C

language-based compiler that facilitates the co-design of mixed HW/SW applications by

automatically generating HDL code in the form of VHDL.

Since neural network implementations in FPGAs, with low-level language

optimization, can provide real-time results, our aim was to assess the feasibility of

implementing (on FPGA-based platforms) a neural network application designed in a

high-level language environment and to obtain comparable real-time results. For this

purpose, Impulse C was employed for the hardware implementation of a neural network

application.

The focus of this thesis is to evaluate the Impulse C programming language and

explore differing levels of parallelism across multiple, homogeneous, FPGA

development platforms using the Aurora serial communication scheme. The particular

application studied is a neural network algorithm for a sonar acoustic problem. Serial

and parallel versions of the algorithm for the neural network computations are created

and simulated with Impulse C. The VHDL code automatically generated is then

synthesized using platform-specific tools and the resulting bit files are used to reprogram

the FPGA. The floating-point based implementation of the neural network does not fit

3

into a single XUP platform, requiring multiple XUP boards to provide sufficient logic for

the complete application. These platforms can communicate with each other through

various serial and parallel protocols, for our case they are connected via SATA ports

using the Aurora communication scheme. The objective is to partition the computations

into hardware leaving the communication at the software level.

A secondary emphasis of this research is the comparison of the timing results of

the neural network computations achieved by the different neural network

implementations. The results from this current research will be compared to previous

(fixed-point based) work that emphasized hardware/software co-design using the SRC-

Carte and VHDL languages on SRC-6e or multiple XUP Virtex II Pro hardware

development platforms. Therefore, some basic understanding of the platform and the

languages is necessary. Having this in mind, chapter two provides some background

information on reconfigurable computing and a description of the different FPGA

computing platforms. Chapter three will serve as a description and comparison of the

Impulse C and VHDL program development environments. Impulse C and VHDL are

contrasted with high-level languages and the main characteristics of Impulse C are

explored. Chapter four describes the neural network application being implemented and

related research on the realization and use of neural networks. Chapter five explains the

different Impulse C design and implementation techniques and the hardware/software

partition algorithms tested. Timing results obtained via the Impulse C cycle-accurate

debugger and the OPB timer are then discussed and compared to previous work results in

chapter six. Chapter seven summarizes the object lessons learned and possible future

research implications.

4

CHAPTER TWO

Background Information

Reconfigurable Computing

Although reconfigurable computing, as a concept, dates back to the 60’s, it was

not until the advent of the Field Programmable Gate Array (FPGA) in the 80’s, that

reconfigurable computing came of age. Advancements in device technology and

manufacturing techniques have created larger and less expensive FPGAs, which have

spurred their use where fast computation or complex applications require a significant

degree of flexibility.

Reconfigurable computing is the process of re-tasking or reprogramming the logic

blocks that compose the internal organization of a computing system; many of which are

populated with FPGA components. Reconfiguration increases the inherent functionality

in these computing systems. In addition, because FPGAs are prefabricated, their cost is

greatly reduced over custom, application-specific designs. Although FPGA-based

designs may provide sub-optimal computation power over application-specific designs

they are typically more flexible and ultimately cheaper because they are reprogrammable.

Even though FPGAs may not achieve the clock frequency of von Neumann processors

(compare 100 MHz to 3 GHz), they can still provide significant speedup when the

resources of the FPGA are optimally used and an appropriate programming methodology

is applied. In comparison to the software programs executing on traditional von

Neumann architecture computing machines, FPGAs provide flexibility and occasionally

greater efficiency because the FPGA’s internal structures are actually being modified to

5

change its functionally. Figure 1 shows the basic internal structure in a FPGA, which

may possess one or more microprocessors, random-access memory, input/output devices

and a large block of reconfigurable logic.

Custom
Circuitry

μProc

RAM

I/O

Figure 1: Components of a Typical FPGA

In the early stages of FPGA application development, designers hand picked

[logic resources] gates and interconnecting circuitry. As the logic cell density of these

devices increased, so did their complexity, calling for the use of Hardware Description

Languages (HDLs) and Electronic Design Automation (EDA) applications capable of

synthesizing the hardware description code and creating a physical design in terms of

FPGA’s resources. Advances in technology brought the FGPA onto Moore’s Law curve,

i.e. device density doubling every 18 months, but leaving application development on a

decidedly non-Moore path.

Application development in the FPGAs field typically starts with the design’s

functionally being captured by a hardware description language such as Verilog or

VHDL (VSHIC Hardware Description Language). However, the majority of software

6

developers are accustomed to application development in the High Level Languages

(HLLs), particularly ANSI C, C++ and Java. Software developers also suffer from

limited experience with the details and intricacies of hardware development thereby

limiting their ability to develop applications for FGPAs. Similar experience constraints

also discourage other scientists and mathematicians from taking advantage of the FPGA

solution space [2, 3].

HDLs are effective at describing hardware functionality, but a level of hardware

expertise is required to utilize HDL effectively. To leverage the skills of software

developers and reduce the impact of the hardware learning curve, EDA developers have

produced tools suites that utilize ANSI C, C++, or Java-based programming languages

such as Impulse C [4], System C [5], Join Java [6], among others. These programming

languages make the translation from a high-level language to a low-level HDL essentially

a black box for the programmer. These tool suits provide development and debugging

capabilities that are very similar to software development environments. It is important

to note that intimate knowledge of the target hardware on the developer’s part can lead to

highly efficient applications, however, the higher efficiency comes at the expense of

increased development time and the additional expertise required.

Computing Systems

In Patel, et al. [7] reconfigurable architectures are classified as Class 1 Machines,

Class 2 Machines and Class 3 Machines. Until recently, the trend in computer systems

design has been to increase the system clock rate and exploit parallelism with multiple

von Neumann processors (Class 1), but it has reached the point that doing so produces

diminishing returns [8]. This bottle-neck has spurred the exploration of new computing

7

architectures; one of which combines the serial processor and a FPGA (Class 2). The

FPGA in this case was used as an external component to help speedup complex hardware

calculations. Now, because reconfigurable devices are more accessible, FPGAs are used

as standalone products; many of which include one or more embedded microprocessors

(Class 3). The Patel article explains further the pros and cons of each category with

examples and explanations of their different uses. Our study examines a “Class 3

Machine,” employing a combination of FPGA platforms, each with two on-chip

processors. The neural network application will be implemented in this system and its

performance will be contrasted with the outcome obtained in implementations on the

SRC-6e reconfigurable computer. An understanding of the hardware resources available

in each system puts into better perspective the resource utilization and the hardware

impact in the execution of an algorithm. These two platforms are described in more

detail in the next subsection.

SRC-6e

The SRC-6eTPF

1
FPT reconfigurable computer consists of two reconfigurable Xilinx

XC2V6000 FPGAs that are programmed with a SRC system-specific language, two

Pentium 3 microprocessors running at one hundred megahertz, and six 4 megabyte

memory blocks. Each FPGA contains approximately six million logic gates, 144

eighteen-bit multiplier blocks and 144 eighteen-kilobit random-access memory blocks.

Off-chip communication is done via three 64-bit bidirectional ports [1]. A diagram of the

SRC-6e hardware architecture is shown in Figure 2. The SRC-6e system is a two-board

 TP

1
PT Newer versions of the SRC-6e utilize faster Pentium microprocessors and faster interconnecting

buses. They also come with a higher price tag.

8

unit, the first is the microprocessor board and the second contains all the reconfigurable

resources of the system.

Figure 2: SRC-6e Hardware Architecture [1]

The SRC-6e system is expensive since it is targeted toward their proprietary

computing platforms (SRC systems). The approximate cost for the prototype hardware

and development system is $300,000. It has a C to VHDL compiler, Carte C, which is

characterized for its ease-of-use, but the high price makes it a less attractive option.

SRC-6e also incorporates user HDL code and IP cores if necessary.

XUP Virtex II Pro

The XUP Virtex II Pro is the platform board used for this evaluation. More

precisely, a group of multiple XUP boards are used as the target platform with the aim to

migrate the application to the Baylor University Reconfigurable Computing Cluster.

This cluster is composed of sixteen XUP boards each of which is booted with a QNX OS

9

image and maintains communications with all boards via an Ethernet stack and port. A

QNX OS system running on an X-86 system provides “master” access to each XUP

board in the cluster. The physical connection between boards is via an Ethernet port

connected to a high-speed switch/router. Currently, a 16-node XUP system is in the final

stages of testing.

The individual features of a XUP board is the following: one XC2VP30 FGPA

with roughly three million logic gates, 136 eighteen-bit multipliers and 136 block RAMs,

two hard core processors (IBM PowerPCs), and 256 MB of DDR SDRAM (for our

implementation, but with a capability of up to two gigabytes of DDR SDRAM). The

board is also populated with multi-gigabit transceivers, three of which are employed as

SATA interface. It also contains multiple ports: JTAG, USB, RS232, PS2 for keyboard,

and mouse, Ethernet and video and has capability for serial communication and audio

interface. All the component and features of the XUP Virtex II Pro board are shown in

Figure 3.

Synthesis and mapping to the XUP board requires a Xilinx synthesizer and other

tools proprietary to this vendor. Tools such as Core Generator from Xilinx facilitate the

implementation of cores for floating-point hardware, memories and FIFOs, serial

communication protocols, as well as other intellectual property (IP) code as an aid for the

system developer. These cores are customizable and have been optimized to obtain the

best performance and board resource utilization [9].

10

Figure 3: XUP Virtex II Board [9]

To communicate between boards the Aurora IP is employed. Aurora is a

lightweight protocol for MGT (Multi-Gigabit Transceivers) links. In Figure 4, each lane

used to communicate between Aurora interfaces represents a high-speed serial

connection between MGTs. A group of these connections form an Aurora channel

through which data can be sent. When the Aurora channel is not transmitting actual data,

idle characters are transmitted to maintain channel timing, similar to the XAUI protocol

[10].

11

Figure 4: Aurora Communication [10]

Aurora provides two modes for communication: streaming and framing.

Streaming is more or less like a pipe where the bare data is send by the transmitter to the

receiver. It can also be considered to be one continuous frame. The streaming mode is

easy to implement, but the user does not have much control. Framing on the other hand

can be combined with flow control and data is sent in fixed length frames.

12

CHAPTER THREE

Programming Languages

Hardware Description Languages (HDLs)

A hardware description language provides a formal expression for the hardware

(physical) component of an electronic system. HDLs, in contrast to high-level languages,

indicate explicitly the timing behavior and concurrent connectivity between the logic

blocks in a device. However, this form of description represents a lower degree of

abstraction in comparison to the typical software languages. The two most representative

HDLs are Verilog and VHDL [11]. VHDL will be explored further, but additional

information about Verilog can be found at [12].

Very-High-Speed Integrated Circuits Hardware HDL (VHSIC HDL) was created

as a request from the US Department of Defense to serve as a mean for documentation

and reference of the ASICs’ structure and functionality found in many of the devices the

department acquired [11]. VHDL is useful for extracting the parallelism inherent in

FPGAs. However, experience with the language and hardware is necessary due to its

low-level abstraction. Another benefit of VHDL that attracts hardware developers is its

standardization. It is applicable as a general-purpose language that allows the user to

target a wide range of hardware configurations unlike some of the C-to-HDL compilers

that are developed for a specific system. A big disadvantage of programming with

VHDL is the time required to create test benches and obtain simulation results.

13

High Level Languages (HLLs)

High level languages are programming languages with higher levels of

abstraction, portability (in most cases) and ease-of-use than their hardware description

languages counterparts. They do not, however, guarantee as optimal a solution as HDLs.

A key distinction between HLL and HDL is the lack of timing in HLLs. A HDL

programmer using lower-level language constructs has more control over algorithmic

development because timing constraints are taken into consideration. The lower-level

languages offer direct manipulation and mapping of the hardware resources. On the

other hand, someone programming with higher-level languages can focus on the

algorithm without stressing on timing and hardware architecture. The tradeoff in the

design of a product is between the performance (many times with metrics of speedup and

logic area) and productivity (designer expertise and time of development).

HLLs facilitate mathematical computations with a range of data types, like the

summation of an integer and a floating point type using implicit type casting. Casting

operations are not so readily done with strongly typed HDLs. Another incentive for HLL

usage is their fast prototyping capabilities which frees up time for the designer to explore

different algorithms and techniques.

 Until recently, floating-point implementations in FPGA hardware have not been

practical due to the large consumption of chip resources. For this reason, fixed-point and

integer representations dominate FPGA-based application. The most significant

drawback of these representations is their inability to provide a large dynamic range for

applications such as pattern recognition, robotics and target acquisition applications,

which are traditionally floating-point-based, but FPGA resource constraints are such that

fixed-point implementations have been the only practical engineering solution. Fixed-

14

point is a very efficient solution; however, for certain algorithms, the precision may not

be sufficient. As device density increases in advanced FPGA devices (e.g. Virtex 5,

which provides 25 bit by 18 bit multipliers), floating-point data representation and

operations are becoming easier to implement [13].

 Commonly used HLL’s include Ada, Prolog, C, C++ and Java. Of these

languages, the majority of programmers are familiar with ANSI C, which is the reason

behind the multiple attempts to create efficient compilers that will translate code written

in C to a HDL representation that will target hardware devices.

C-to-Register Transfer Level (RTL) Overview

FPGAs and their in-circuit reconfiguration capabilities have stimulated interest in

reconfigurable computing due to the potential for significant performance improvements

in many applications, but the tools used to program and analyze these devices also play

an important role. The development and “maturity” of automated tools, first proprietary

EDA and now C-to-RTL or C-to-HDL compilers, have encouraged a more general

audience, not just hardware developers, to move towards application development using

FPGA-based hardware. EDA tools have been around for a long time, but C-to-RTL

compilers are a new development.

The concept of parallel C can be counter-intuitive since ANSI C is an intrinsically

sequential programming language that does not readily support parallelism. It is

necessary to expand the coverage by additional libraries and code that permit standard C

to be used for designing parallel (multi-processor) applications. For example, the POSIX

library provides support of multi-processor threads [4, 14]. An alternative to explicit

thread-based parallelism is to create a compiler with the specific purpose of squeezing

15

low-level parallelism from code generated with C software. This alternative is the heart

of most C-to-RTL compilers.

C-to-RTL generators take sequential code and combine it with special constructs

and extensions to identify and generate parallel processes. These tools allow control over

the hardware design down to the wire and register level. The extensions that provide the

full performance of the hardware are not runnable in the normal development

environment since the typical microprocessor does not support functional parallelism

[15]. The additional constructs could be wrapped in #ifdef statements that will make

them invalid for desktop simulation.

Currently available C-to-HDL compilers, covering open source and commercially

licensed, include: Nallatech’s DIME-C [2], Impulse Accelerated Technology’s Impulse C

[4], National Semiconductor’s NAPA C [16], Mitrionics’ Mitrion-C, SRC’s Carte,

Mentor Graphics’s Catapult-C, Celoxica’s Handel-C, Los Alamos’s Trident compiler [2,

3, 12, 17]. The C-to-HDL tools that target FPGAs do not conform to ANSI C standards.

Each of these tools uses a version of the C that differs from the ANSI standard, some

vary considerably more than others. DIME-C, for example, represents a subset of C,

while Impulse C and Handle C are supersets of C with proprietary additions. Others, like

Mitrion-C, diverge significantly from the typical C programming format.

Regardless of the compiler used, it is never as simple as creating a typical ANSI

C program. In order to obtain optimal performance some thought must be given to

specific algorithmic development techniques that support parallelism [2, 4]. A C-to-RTL

compiler generates an intermediate code (HDL) that will then pass through a second

compilation that produces the synthesis files to be mapped and routed onto the FPGA

16

logic fabric. Both the initial and second compilation processes have been automated over

the years.

FPGA-based solutions can exploit an application’s inherent parallelism; with the

added benefit that hardware acceleration mechanisms, such as pipelines and special

purpose computational hardware, can be generated for increased throughput. Therefore,

designing an algorithm for maximum parallelism should lead to a near-optimal outcome

since performance is greatly impacted by available resources and the parallelizability of

the application.

Even though most compilers do some kind of automatic optimization, the

programmer needs to provide adequate structures to maximize parallelism. To achieve a

hardware acceleration of significant magnitude certain C programming techniques need

to be applied that take into consideration the fundamental differences between a

microprocessor and a FPGA [2, 18]. For example, if multiple accesses to memory, for

reading/writing data from/to a block array, are performed in the original C code, then

constraining the number of accesses to memory can significantly improve speedup

because only one value can be read or written to memory in a single cycle. Alternatively,

the array can be partitioned into multiple smaller arrays which will be implemented as

separate physical memory structures within the FPGA, allowing parallel memory

accesses. Also depending on the algorithm and the resources available a loop might

prove more efficient than repeated macros [18]. In hardware, calling macros multiple

times corresponds to duplicating the macro resources numerous times, which greatly

increases the risk of exhausting limited logic resources.

 17

Impulse C Programming Environment

 Impulse C is a C-to-HDL compiler from Impulse Accelerated Technology (IAT),

which was founded in 2002. The origins of this compiler can be traced back to the

development of the Streams-C compiler research project at Los Alamos National

Laboratories. However, a major difference between IAT’s compiler and Stream-C is its

compliance with ANSI C standards. Impulse C code can be written and debugged in any

ANSI standard C environment, including Microsoft Visual StudioTM and GCC-based

tools. This is consistent with Impulse-C’s aim to bridge the hardware domain gap for

software programmers. The Impulse C programming language is part of the

CoDeveloper tools that facilitate the creation of mixed software/hardware programs. The

Impulse C IDE comes with tutorials that help the developer explore the compiler features

and support levels available for various hardware targets.

Impulse C can be used for FPGA-accelerated computing with an embedded or

external CPU host or to simply generate HDL modules. In our case, the interest is on

hardware acceleration for an embedded processor. Impulse C contains API function

libraries for parallel programming that fit into the standard C syntax. It can be used for

system-level parallelism by taking advantage of the CSP programming model that

underlies its parallelism identification capabilities. This tool provides the easy

development of independent processes that can be interconnected to exploit the parallel

execution of code as independent hardware blocks [14]. Applications and research areas

where Impulse C have been used by software programmers include: lithographic aerial

image simulation [19], boxcar filter and matrix-vector product [20], high-performance

radix-2 FFT [21], image processing, digital signal processing, encryption algorithms,

financial computing, and other arenas [4].

 18

The essentials of an Impulse C program are processes and streams. Processes

represent synchronized and independent sections of code that run concurrently, and

streams provide the communication pathways between processes. These streams are

executed as dual-clock FIFO interfaces in hardware and allow the parallelizability of

code without having to resort to lower-level abstraction, or cycle-by-cycle

synchronization. Impulse C also offers alternative programming modes such as shared

memories and signals [4, 14]. The benefits of one mode over another are application

specific. For example, programs that require multiple transmissions of fixed-size data

packets, minimum signal synchronization, and no inter-processing dependencies are ideal

for stream-based data exchanges between processes. Streams are always the choice when

the data are being consumed as fast as it is produced or sent in a “sequential” format

between hardware modules. However, shared memory is preferred for arbitrary accesses

of data from one hardware process to the other [4].

Figure 5 shows Impulse C’s design flow chart, indicating the steps from initial

design to final implementation of an algorithm. For Impulse C and similarly for other C-

to-HDL compilers, it is necessary to write and structure the program with parallelism in

mind to obtain optimal performance. Once the design phase is completed, the stages of

partition and simulation follow. For the partition phase, the source code is usually

divided into a software component and a hardware component, where the software is in

charge of input and output interfacing and the hardware portion is designated for the

complex calculations. The software and hardware components consist of one or more

processes that execute concurrently. In the stage labeled (desktop) simulation, the source

code is debugged using standard C IDEs (Visual StudioTM, CodeWarriorTM, GCC, etc,)

or with the Impulse C IDE. Upon finishing partition and simulation, the C-to-HDL

 19

compiler is called to automatically generate optimized VHDL code corresponding to the

HW process and the appropriate interfaces for both the software and hardware

components. The developer then uses platform-specific tools to synthesize the VHDL

code. After synthesis, constraints and logic are mapped onto the target resources and a

configuration bit stream is generated. In our case, the Studio Design Kit (EDK) from

Xilinx generates the netlist and bit stream file to reconfigure the FPGA on the XUP

Virtex II pro board. The user needs to specify certain synthesis tool configuration

parameters such as bus sizes, port widths, and memory addresses that are applicable to

the target platform.

Figure 5: Impulse C Design Flow Chart

 20

This C-to-HDL compiler provides a unified language to describe both software

and hardware, which speeds up the development and verification of intellectual property

or IP blocks and creates a design flow that enables embedded software engineers to

develop complicated hardware components. Impulse C also supports, with some

restrictions, the integration of lower-level code through the use of the pragma CO

IMPLEMENTATION. The attached hardware code must be for internal computation

only, i.e. the generated hardware cannot access external ports defined in the top level

module. Contrary to typical software processes that permit only a single memory data

access per transaction, hardware allows multiple reads and writes to memory within one

cycle. In Impulse C, this advantage is exploited by performing array splitting. For this,

the Impulse C tools can create separate memory blocks, each connected for local reads

and writes by local hardware. This is useful for simultaneous computing or parallel

processing.

Impulse C also supports the IEEE standard floating-point data types that are

appropriate for applications with a wide range of data magnitudes and incumbent

accuracy requirements. Our neural network application benefits from this support

because the inputs, weights and outputs are of continuous real data. With Impulse C,

single and double precision floating-point data types are available by simply selecting a

configuration option in the IDE Project menu. The Impulse C CoDeveloper tool creates

the automatic link to the Xilinx CoreGen floating-point libraries necessary for the

floating-point operations [22]. In the code itself the user simply needs to instantiate a

float or a double type. However, it is important to make sure that the synthesis tool

 21

supports floating-point hardware inclusion. For example, only Xilinx EDK versions 9.1

and higher fully support floating-point inclusion.

The programming model based on streams fits very well to the development of

algorithms in a FPGA-based platform that includes a dedicated coprocessor. In the

Virtex II Pro, two hard core processors, PowerPCs, are embedded in the FPGA chip. The

Impulse C compiler extracts low-level parallelism from each of the application’s

identified parallel processes and then automatically creates the inter-process

communication interfaces that are necessary for the development of a joint

hardware/software system. All this processing is transparent to the programmer’s

viewpoint. However, Impulse C’s automatic C-to-VHDL code generation has limitations

that become visible when external hardware resources are interfaced with the FPGA.

The CoDeveloper tool has the capability to manage the external resources, but not

necessarily with optimal performance, such as access to the DDR SDRAM. Fast on-chip

Block RAM (BRAM) is a limited resource. Many applications will not fit into the

available BRAM. A typical solution is to use the BRAM for booting the PowerPC

processor prior to executing the application program stored in DDR RAM. Usually the

external DDR memory is connected to the PowerPC via the main bus, PLB, because that

it provides fast memory access. Impulse C currently does not support PLB access to the

DDR SDRAM. This external memory resource must be accessed via the slower OPB

bus which connects to the main bus using a plb2opb bridge core.

In addition to the Impulse C compiler, CoDeveloper tools’ include CoMonitor

Application Monitor for graphic visualization of interaction between processes as well as

the Stage Master Debugger (SMD) that provides hardware simulation in a cycle-by-cycle

format. The Stage Master optimizer provides information about pipelines performance in

 22

terms of the number of instruction stages, pipeline latency (in clock cycles) and the clock

rate (in clock cycles). Impulse C groups code into operational segments to form a stage

that executes in a single clock cycle.

Cycle Accurate Hardware Simulation in Impulse C can be realized in three ways:

first, by using the hardware generated code, to create a VHDL test bench simulation;

second, use the Stage Master Debugger tool to view a cycle-accurate C-language HDL

representation; and third, run the synthesis tool and perform netlist simulations [4].

The Stage Master Debugger allows the user to step through each stage or cycle as

in any common debugging environment, with the difference being that the designer can

not step into a stage to process a single instruction separately. Figure 6 shows the main

display of the Stage Master Debugger tool.

Figure 6: Cycle Accurate C Representation of HDL Code (3-process Neural Network)

 23

The Stage Master Explorer (SME) generates a dataflow diagram that includes all

hardware required elements. This tool also provides information about code segments

and execution times in clock cycles. At the left side of Figure 7 is the C representation of

the VHDL code generated by the compiler and at the right side is the C source code.

Figure 8 shows a dataflow view of the code described in Figure 7. This graphical tool

facilitates the analysis of each hardware process in the application by demonstrating the

effectiveness of the compiler in parallelizing the original C source code.

Figure 7: C representation of HDL code and Impulse C Compared

Figure 8: Stage Master Dataflow Graph for Neural Network Node 2

 24

To obtain execution times for the neural network and compare with those

obtained by the SMD tool, an OPB timer core, available for the XUP Virtex II Pro

platform, can be used. The implementation of the timer is simple once the module is

initialized. The timer can be reset before starting computations and then read via the

get_value function at completion. The timer tick rate is linked to the OPB_Clk. Even

though it might not be significant, calling the function to read the timer/counter also takes

a small amount of time that will be included in the value returned from the counter.

Therefore, it is important to first determine what value is obtained by resetting the timer

and then immediately reading the timer. An accurate time can then be obtained by

subtracting this time from the value read.

Comparison between C-to-HDL Compilers

 Multiple C-to-HDL compilers have been developed, but all of them have a

distinctive optimization technique. In the case of Handel-C, parallelism is achieved by

explicitly sectioning the code and using extensions that tell the compiler to generate

parallel hardware, while Dime-C and Trident do not require an open notification for code

optimization but proceed to identify occasions for parallelism and pipelining

automatically [2, 13]. Impulse C represents a “middle ground”, the compiler generates

code with a certain degree of automated optimization, but also uses pragmas to explicitly

convey pipelining and loop unrolling. There is no need to insert “par” or other RTL-

equivalent statements to produce parallel logic. The CoDeveloper tool can extract some

level of parallelism by grouping (staging) data independent code into blocks that can be

executed simultaneously in a single clock cycle, keeping in mind that this can greatly

increase the amount of hardware required as the block size increases in length.

 25

In El-Araby, et al. [17] we see Impulse C compared to Mitrion C and DSP Logic

in the Cray XD1 environment. In four different applications, the Impulse C

implementation was not the most efficient, but the learning curve was not as steep as the

other C to HDL tool, keeping Impulse C competitive for rapid prototyping. The cost for

the Impulse C tools and hardware platform is much cheaper than the competition, some

of which are as much as 15 times greater.

Another difference among C-to-HDL generators is their support for floating-point

data types. Not all C-to-HDL tools accept floating-point data, although most provide

some support. Handel-C and Impulse C can provide floating-point support based on the

presence of specific hardware modules on the target platform, while other tools such as

Trident, Dime-C and Carte C provide floating-point support based on libraries which

implement specific floating-point operations independent of target hardware [2, 4].

26

CHAPTER FOUR

Neural Network

Concept, Structure, and Applications

A computation intensive application is chosen to investigate the efficiency of

Impulse C and the FPGA’s potential for reconfigurable computing and intrinsic

parallelism. A trained artificial neural network is determined to be a good fit for the

evaluation, especially since there are some prior results available to facilitate the

comparison. Artificial Neural Networks (ANNs) are based on concepts derived from the

structure and activity of biological neurons. Figure 9 shows an example of a simple

neural network with 3 hidden layers.

Figure 9: Neural Network Structure

27

The network can “recognize” patterns and relationships between a set inputs and

parameters derived from training. Once trained with old data, the network can make a

conjecture of the outcomes of new inputs. In order to predict the outputs, the inputs (iB0 B,

i B1, BiB2 B, … i BnB) are multiplied by a set of weights which are then summed and passed through

a non-linear ‘squashing function’ (fBs B) at which point one node (o Bj B) of that hidden layer is

formed as seen in Figure 10. This procedure is followed for all nodes of a particular

layer. Once a layer’s computation is finished, its nodes’ outputs become the inputs for

the calculations of the next layer. The process continues until reaching the layer prior to

the outputs, in which the squashing step is omitted in the sonar application. The

squashing function is a key part of the process since it accounts for non-linear

relationships. For additional explanations on the nature and mathematical background

see [23].

Figure 10: Single Node Computation

Some of the areas where neural networks are used include: pattern recognition in

power systems [24], image processing, medical diagnosis [25], financial predictions, data

mining, sequence recognition, gaming, system identification and control [26].

Σ

iB0

iB1

iB2

iBn-1

iBnB= iBbias

oBj
tB1

fBs
wB0

wBnB

wBn-1

wB1

wB2

28

Previous Work Related to FPGA Implementation of ANNs

ANNs can be characterized computationally as parallel, modular and dynamically

adaptive models. The calculations for each node in the same layer are independent;

therefore, ideally all nodes of one layer can be computed in parallel. These

characteristics make them good candidates for FPGA implementation. The only

challenge being the limited hardware resources available in one platform to exploit the

inherent parallelism in FPGAs for networks composed of a large number of neurons.

Even though the multiplications (inputs times weights) that go into the formation of one

node are independent, if the reprogrammable hardware does not contain enough

resources (e.g. sufficient number of multipliers) to perform those computations

simultaneously, maximum performance can not be achieved. Nevertheless, significant

optimization is possible with FPGAs and as technology advances these devices should

achieve even greater gate densities making them more suitable for such computationally

intensive applications. A successful application of an ANN implemented in a FPGA is

the hand tracking system of Krips, et al. [27]. Real-time performance was achieved by

limiting the number of inputs, using 16-bits fixed-point data values, and generating

weights (training coefficients) with a Matlab simulation [27],

The weights of ANNs traditionally have floating-point data precision, but the

limitations imposed by the hardware resources have forced engineers to trade precision

for logic area at the time of implementation. Nichols, et al. [28] studied the feasibility of

floating-point arithmetic in FPGA based artificial neural networks using a single FPGA

and concluded that such implementation is still not feasible and the 16-bit precision,

which is considered the “minimum allowable precision” to maintain the learning

capability of the network, provides the optimal solution. For this reason, ANNs are

29

typically implemented in FPGA employing 16-bit fixed-point precision data

representation.

Previous Work Related to FPGA Implementation of an ANN Trained to Emulated an

Acoustic Model

To obtain an accurate comparison, our goal is to implement a neural network

employed for acoustic undersea identification that was used previously in published

research at Baylor University, but in this occasion employing Impulse C and XUP Virtex

II Pro platforms. This network calculates the signal-to-noise ratio for a sonar system and

consists of 27 inputs, 1,200 outputs and three inner (hidden) layers with 40, 50, and 70

nodes correspondingly. One additional node is added to each layer (input and hidden) to

provide a bias term that improves the probability of discrimination flexibility. For

example, the inputs for the second hidden layer (50 nodes) are the first hidden layer (40

nodes) plus one additional node, with the value of one, representing the bias term for a

total of 41 nodes. All together the total number of multiplications reaches 91940 and 160

‘squashing’ or activation functions. It is safe to say that this problem represent a large

amount of calculation requiring significant computational power.

This neural network application has been implemented previously in two

hardware architecture as well as in two programming languages. The first

implementation done by Burton Ottewell at Baylor University utilizes the SRC-6e

platform and the Carte C programming language. The result was disappointing as the

implementation ran slower than the equivalent software-only solutions running on a

Pentium IV processor. Then, Paul Reynolds, as seen in [1], was able to create a

significant speedup to the neural network computation using the same platform but using

VHDL in a parallel implementation. To further explore the hardware implementation,

30

Stephen Dark employed multiple XUP Virtex II Pro boards and VHDL to implement the

same neural net. Through careful VHDL coding and combining three XUP board,

further performance improvements were obtained by Dark. The aim of the present study

is to evaluate Impulse C by implementing the same neural network and platform target as

Dark and comparing the outcome to the three previous results from Burton, Reynolds and

Dark. The results for the previous and current work will be discussed and summarized in

a later chapter after the implementation and coding techniques are presented.

31

CHAPTER FIVE

Design and Implementation

Design and Verification Strategies

Until recently, the implementation of multiple independent floating-point

operations in FPGA-based hardware was impractical because of the large number of

gates required. But advances in logic density and the development of high-level

development tools have facilitated the use of floating-point data types in FPGAs. In

previous implementations of the target neural network application, fixed-point operations

were utilized to reduce the number of required gates. However, to evaluate the

applicability and the ease-of-use of Impulse C the weights were maintained and all

calculations were performed in floating-point format rather than fixed-point. The fixed

point implementation is the benchmark for comparison purposes. It is important to keep

in mind that floating-point data representation will require more logic, but the objective is

to determine the feasibility of the implementation given the availability of the resources

in a Xilinx Virtex II device.

To investigate the feasibility of implementing a neural network application of

twenty seven inputs and one thousand twelve hundred outputs, we started with a small

network of two inputs and three outputs as seen in Figure 11. The first step was to divide

the solution into two processes, a software process and a hardware process. The software

process was implemented in the embedded PowerPC and is designated to send inputs to

and receive the outputs from the neural network. The hardware process is in charge of

the computations for the hidden layer nodes and the outputs of the neural network.

32

Figure 11: Small Neural Net

 The hardware process was translated into VHDL code by the compiler. In this

process, the inputs received from the software process via shared memory were

multiplied by the appropriate set of weights. These products were then summed and

passed through a squash function, which for our purpose is the logistic function defined

in Equation 1 and as seen in Figure 12.

 xe
xy

−+
=

1
1)(Equation 1

-8 -6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 12: Logistic curve

Hidden Layers

Inputs Outputs

Nodes

w1
w2

w3

33

Impulse C does not implement every transcendental function in the math.h

library, e.g. the exponential function in Equation 1, but it does provide a pragma structure

which allows the user to create functions such as power, factorial and absolute value.

CoDeveloper tools allow you to use the exponential function as defined by the math.h

library in desktop simulation mode, but during the generation of hardware an error

message is generated indicating that it does not recognize the function. With this in

mind, a Maclaurin series (Taylor series in the case that a = 0) expansion of the

exponential function as described in Equation 2 was used.

....
!2!1

21
++=

xxe x Equation 2

Four functions, factorial(), power(), doNothing(), and expo() were created to

implement the squashing process’s exponential function. This method proved to be very

inefficient, especially in the consumption of logic resources since these functions are

used more than 150 times in the neural network computation. The creation of these four

primitive functions represented a useful exercise to explore the CO primitive pragma.

The hardware implementation of these functions resulted in extensive use of FPGA slices

and in slow performance. The C code used by the hardware compiler for these functions

is given below.

double power(float num, int pw) // Power function
{
 #pragma CO primitive
 int counter = 0;
 double results = 1;
 for(counter = 0 ; counter < pw ; counter++)
 results = results * num;
 return(results);
}

float factorial(float num) // Factorial function
{

34

#pragma CO primitive //define function as a primitive
int counter = 0;
float results = 1;
float max = num;
for(counter = 0; counter < max ; counter++)
{
 results = results * num;
 num--;
}
return(results);

 }

float expo(float num) //Exponential function
{
 #pragma CO primitive
 int counter = 0;
 float results = 1;
 int max = 140;
 for(counter = 1 ; counter < max ; counter++)

results = doNothing(results)+power(num,counter)/
(factorial(counter));

 return(results);
}

float doNothing(float results) //Do nothing function
{
 #pragma CO primitive
 return(results);
}

Alternative algorithmic methods such as Lookup Tables, Shift-add, CORDIC, and

Taylor Segments Approximation (TSA) implementations, were explored by Paul

Reynolds [1]. Reynolds found that the method with the best tradeoff balance between

accuracy and logic and memory utilization was the Taylor Segments Approximation.

This approximation was based on the second-order elements of the Taylor series

expansion about specific points as indicated by equation 3 [1].

 000

2
00)(')(")(yxxyxxyxy +−∗+−∗−= Equation 3

The coefficients xB0 B, yB0B, yB0 B’, and yB0 B’’ for the TSA with six segments are presented

in Table 1. Greater accuracy can be obtained using additional terms.

 35

Table 1: Taylor Series Segments and Coefficients [1]

Lower Bound x0 y0” y0’ y0
7.293 0.0 0.0 0.0 1.00000000000
4.771 6 0.001220703125 0.00244140625000 0.99755859375
3.317 4 0.008544921875 0.01757812500000 0.98205566406
2.482 2.75 0.045288085938 0.19653320312500 0.93994140625
0.425 1 0.045288085938 0.19653320312500 0.73107910156
0.0 0 -- 0.25000000000000 0.50000000000

Once a functional model of the small neural network was implemented, the next

step was to scale to the full-size neural network. The outputs were read and verified via a

serial interface connected to an external HyperTerminal application and by reading from

DDR memory via the XMD window. When developing the non-optimized neural

network algorithm, the same double for-loop form was used to compute the hidden layers

and the output nodes, with the omission of the squashing step for the outputs, as shown

below.

 // Compute nodes for the first hidden layer of the small neural net
 for(k = 0 ; k < 3 ; k++)
 {
 for(m = 0 ; m < 2 ; m++)
 {
 node1[k]+=INP[m]*weights1[count];
 count++;
 }
 node1[k]=1/(1+expo(-(node1[k]))); // squashing
 }

 The neural network calculations were verified during desktop simulation and the

VHDL code was generated by the compiler. The first problem encountered when

synthesizing the VHDL code was resource (logic gates) utilization. Even though the

program was functional, it did not fit into the available hardware resources, thus causing

an overmapping error. To address the lack of resources, the application was partitioned

across multiple XUP boards, which was originally considered as an alternative for

36

expanding the resources needed for parallelism. The computations for the neural

network were distributed over three boards; one XUP board computed three hidden

layers nodes and two hundred output nodes and the remaining two boards computed 500

output layer nodes each.

Communication and Partition between Boards

By taking advantage of the increasing logic density of FPGAs and advances in C-

to-HDL compiler technology, it is our aim to raise the implementation efficiency and

productivity of computationally intensive algorithms that require significant computing

power. One consideration that must be addressed when using clustered FPGA-based

platforms is the communication overhead created by cluster linkages. In the case of the

C-to-HDL tools, most of these compilers facilitate design and prototyping when the

algorithm fits into one board and the communication protocols are appropriate for single-

board applications. The process of C to HDL translation in these cases is straight-

forward and well-defined. The problem arises when the program surpasses the resources

of one platform requiring additional external resources and interfacing.

Extensive computational requirements, floating-point data representation, non-

standard communication modules, among other reasons, obligates the designer to deal

with low-level hardware descriptions to meet the performance constraints of high

performance computations applications. Our neural network application shares many of

these characteristics. For example, it is implemented with floating-point data, and as

expected, when implemented in the development platform, the neural net required more

resources than was available in one XUP Virtex II Pro platform. In addition, the Aurora

serial communication protocol was not readily supported by Impulse C, which required

37

HDL coding to generate and customize peripheral hardware to handle data transfers. The

data between boards will be sent and received via SATA ports using the Aurora

Communication Protocol as illustrated in Figures 13, 14 and 15.

 Figure 13: Three-Board Partition Version1

Figure 14: Four-Board Partition

H
T

H

XUP 1

H
T
H

XUP 3

H
T
H

XUP 2

H
T
H

XUP 4

200 Outputs
71 nodes &
200 outputs

500 Outputs

H1 – H3
71 nodes

H
T
H

XUP 2

600 Outputs

H
T
H

XUP 3

600 Outputs

 500 Outputs

H1 – H3
71 nodes

H
T

H

XUP 1

38

Figure 15: Three-Board Partition Version 2

Our present study used Xilinx IP cores and their corresponding XUP Virtex II Pro

platform API drivers which can be readily combined with their Impulse C generated

counterparts. The Aurora peripherals utilized in this study were modified versions of the

single platform loop-back Aurora peripheral documented in [29]. The overall interaction

between the platform boards and the Impulse Core can be seen in Figure 16. Each

platform board contains a software process that distributes inputs to the hardware

processes and an Aurora hardware IP core (light gray boxes) that provides

communication between the software processes on each board.

Getting the first two boards communicating correctly represented a significant

amount of work. Once a standard transmit/receive protocol was established, mirroring

the process on the other boards consisted of creating an additional peripheral and

initiating the communication process. Currently, serial-based communication processes

between platforms is handled in software using a master/slave protocol, but it has the

potential of expanded throughput using threads and multiple processors in a peer-to-peer

protocol or by moving the protocol in its entirety to hardware. Communication processes

H

T

H

XUP 1

H

T

H

XUP 3

H

T

H

XUP 2

500 Outputs

500 Outputs

71 nodes &
200 outputs

39

are generally limited only by the hardware constraints of the platform (e.g. number of

SATA ports or number of transceivers available).

Figure 16: Neural Network Implementation using Impulse C and Aurora Communication

 The communications model chosen for this study was a streaming interface; any

data written into the transmitter buffer will be transported to the receiver buffer after

some latency. A diagram of the AURORA streaming mode indicating the transmitting

and receiving ports is illustrated in Figure 17. As soon as the communication channel is

initialized, it is ready to send and receive data. When there is no data to send, idle

characters are transmitted to keep channel open.

Figure 17: Aurora Core Streaming User Interface [18]

40

 The aurora_link peripheral was generated by the EDK peripheral wizard, which

creates a generic peripheral with the required wrapper for OPB or PLB bus interfaces and

the corresponding drivers (written in C). HDL knowledge is necessary to customize the

peripheral. The designer describes with VHDL or Verilog the behavior of the peripheral

(e.g. defines how ports and signals of the different sub-components interact). The Xilinx

Core Generator tool was used to create the aurora_link peripheral which includes two IP

cores (modules), aurora_stream and fifo_generator_v3_4096 plus user logic to establish

the communication stream. Figure 18 shows the top-level structure of the peripheral with

its specified input and output ports.

Figure 18: Aurora_Link Peripheral

As seen in Figure 16, the SATA communication system’s structure can be

characterized as a full-duplex (simultaneous bidirectional), master/slave channel. Since

the channel’s structure is rather simple with little explicit data control, a handshake

protocol is needed to synchronize the exchange of data. The handshake needed to

communicate from the master to the slave board is the same as the one used to connect

the slave to the master platform; with the only exception being the acknowledgement

messages. For the master-slave connection, the transmitter sends a thirty-two bit

aurora
_stream

cc_module

FIFO

TOP_BREF_CLK

USER_CLK

RXP

RXN

CHANNEL_UP

LANE_UP

HARD_ERROR

TXP

TXN

SOFT_ERROR

41

unsigned message signifying ready-to-send, ((Xuint32)0x1234) and waits for a thirty-two

bit unsigned message indicating ready-to-receive, ((Xuint32)0xABCD) before writing

data to the outgoing FIFO. The slave receiver, on the other hand, waits for a ready-to-

send message before it sends the ready-to-receive acknowledgement and begins polling

the receive FIFO for incoming data. In the case of slave-master connection, the ready-to-

send message is ((Xuint32)0x9876) and the ready-to-receive code is ((Xuint32)0xFEDC).

 An alternative method of synchronization uses hardware interrupts. Each aurora

peripheral possesses interrupt capability, which can be used to indicate when it is ready

to receive and when it is ready to transmit. All of these interrupts are handled by the

OPB interrupt controller (OPB_INTR) core generated by EDK. The generated C code is

added to the Impulse C code and combined by the linker-generator to register the

program’s exceptions and interrupts

Communicating via streams is easy and straight-forward except for the occasions

when synchronization is necessary. Data arriving at the receiver can be over-written if

not read immediately unless the receiver is equipped with a buffer (FIFO) to cache the

arriving data. In our implementation, the algorithm sends 32-bit floating-point data

across AURORA channels via SATA ports. Each Aurora peripheral has a FIFO attached

to the receiver and transmitter. The optimal transfer size for the protocol is 16-bit

packets, so 32-bit data values are broken into two halves for transmission and

recombined as 32-bit value upon reception.

The handshake scheme is straight-forward, the slave board polls for data available

at the receiving FIFO and check for a ready-to-send message. If such message is found,

a ready-to-receive message is sent as an acknowledgment. After a connection is

established, the transmitter will send the data accompanied with a ready-to-send code.

42

The receiver will check for the ready-to-send code that validates the data and begins

accepting data as soon as it is available for as long a data is available in the receive FIFO.

This handshake protocol fails when a ready-to-send signal is not received or lost, creating

a block at the receiver. A similar problem occurs when both the transmitter and receiver

functions are implemented with a loop that runs for a fixed number of iterations based on

the number of values to be communicated. When an unexpected halt in the receiver

occur, the result is non-terminating loop. Extracts of C code are shown below:

/*****************************TRANSMITTING***************************/
 AURORA_MGT_mResetWriteFIFO(aurora_mgt_0_baseaddr);
 AURORA_MGT_mResetReadFIFO(aurora_mgt_0_baseaddr);
 xil_printf("XUP1 --> XUP2: Writing data: \r\n");
 do {
 AURORA_MGT_mWriteToFIFO(aurora_mgt_0_baseaddr, RdySend);

AURORA_MGT_mWriteToFIFO(aurora_mgt_0_baseaddr, RdySend);

while(AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr))
 { }
 temp2 = AURORA_MGT_mReadFromFIFO(aurora_mgt_0_baseaddr);
 } while (temp2 != RdyRec);

 // Acknowledgement received, start sending data
 for(i = 0; i < 100; i++) {
 AURORA_MGT_mWriteToFIFO(aurora_mgt_0_baseaddr, testing);
 AURORA_MGT_mWriteToFIFO(aurora_mgt_0_baseaddr, (
 (short*)&floatArray[i])[0]);
 AURORA_MGT_mWriteToFIFO(aurora_mgt_0_baseaddr, (
 (short*)&floatArray[i])[1]);
 }

/***************************** RECEIVING *****************************/
 xil_printf(" Receive data in the AURORA_MGT_0 peripheral: \r\n");
 do{
 AURORA_MGT_mResetWriteFIFO(aurora_mgt_0_baseaddr);
 AURORA_MGT_mResetReadFIFO(aurora_mgt_0_baseaddr);
 i = 0;
 do{
 while(AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr))
 { }
 temp = AURORA_MGT_mReadFromFIFO(aurora_mgt_0_baseaddr);
 } while (temp != RdySend);

 if (temp == RdySend) //RdySend received, send acknowledgement
 AURORA_MGT_mWriteToFIFO(aurora_mgt_0_baseaddr, RdyRec);

 while(AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr)) { }
 if(!AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr))
 receiving = AURORA_MGT_mReadFromFIFO(aurora_mgt_0_baseaddr);

43

 while (i < 100) { //Read until reached # of expected inputs
 while(AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr)) { }
 if(!AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr))
 receiving = AURORA_MGT_mReadFromFIFO(aurora_mgt_0_baseaddr);
 if(receiving == testing){
 if(!AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr))
 ((short*)&floatArray[i])[0] =
 AURORA_MGT_mReadFromFIFO(aurora_mgt_0_baseaddr);
 if(!AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr))
 ((short*)&floatArray[i])[1] =

 AURORA_MGT_mReadFromFIFO(aurora_mgt_0_baseaddr);
 i++;
 }
 }
 }

The difficulty with a polling mechanism is that an end-of-stream (eos) is required

to indicate the end of the data sequence transmission and to ensure a complete transfer at

the receiver. In the alternate implementation, an eos message was sent after the last valid

data value. The result was that all available data was read, but not all the information

was correct. Upon missing the ready-to-send message the data that follows is not read

until there is a new ready-to-send flag. The eos method provided a way to check which

sent data value was not received, but it does not stop the transmission; the net result

being loss of data on the channel. Below is the code for transmitting and receiving with

an eos message:

 // handshaking messages
 RdySend = (Xuint32) 0x1234;
 RdyRec = (Xuint32) 0xABCD;
 eos_sig = (Xuint32) 0x3399;

 /***************************TRANSMITTING****************************/
 printf("XUP1 ->XUP2: Writing data:\r\n");
 do {
 AURORA_MGT_mWriteToFIFO(aurora_mgt_0_baseaddr, RdySend);
 while(AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr))

{ }
 temp2 = AURORA_MGT_mReadFromFIFO(aurora_mgt_0_baseaddr);
 } while (temp2 != RdyRec);

 // Once the RdyRec acknowledgment is received, send data
 for(i = 0; i < 500; i++) {
 AURORA_MGT_mWriteToFIFO(aurora_mgt_0_baseaddr, RdySend);
 AURORA_MGT_mWriteToFIFO(aurora_mgt_0_baseaddr,

((short*)&floatArray[i])[0]);

44

 AURORA_MGT_mWriteToFIFO(aurora_mgt_0_baseaddr,
((short*)&floatArray[i])[1]);

 }

 /*****************************RECEIVING*****************************/
 printf(" XUP2 <- XUP1: Reading data: \r\n");
 do {
 while(AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr))
 { }
 temp = AURORA_MGT_mReadFromFIFO(aurora_mgt_0_baseaddr);
 } while (temp != RdySend);

 // RdySend received, send acknowledgement, RdyRec
 if (temp == RdySend)
 AURORA_MGT_mWriteToFIFO(aurora_mgt_0_baseaddr, RdyRec);

 while (index < 501 && (temp != eos_sig)) { //Read until eos received
 index++;

 // read accompanying data only if a RdySend is read first
 if(temp == RdySend){
 if(!AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr))
 ((short*)&floatArray[i])[0] =
 AURORA_MGT_mReadFromFIFO(aurora_mgt_0_baseaddr);
 if(!AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr)) {};
 ((short*)&floatArray[i])[1] =
 AURORA_MGT_mReadFromFIFO(aurora_mgt_0_baseaddr);
 i++;
 }
 else {
 // mark all the locations where a RdySend was not read
 missSpot[countermiss] = index;
 countermiss++;
 }

 // read FIFO, reading will be check against RdySend message
 while(AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr))
 { }
 if(!AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr))
 temp = AURORA_MGT_mReadFromFIFO(aurora_mgt_0_baseaddr);
 }

The fundamental cause for the data loss can be attributed to delays and

synchronization mismatches caused by automatic clock compensation. The Aurora

protocol generates synchronization messages to prevent timing mismatches between the

receiver and transmitter clocks. These clock compensation messages have the highest

priority in the communication and can interrupt the flow of data. To verify the effect of

clock compensation signals, a loop back test between transmit and receive ports on the

same board was performed. The test showed that the data values could be lost, especially

45

in the transmission of long sequences. A second test was performed with no clock

compensation module, which resulted in a successful transmission and reception of data.

Clock compensation is provided to ensure clock synchronization between boards at the

time of transmission. Removing this module for the multi-board system is not a

recommended option, because the clock rate of a particular board might vary enough to

adversely affect communications between boards. For the large quantity of data being

sent, for example 500 floating point values, it is reasonable to believe that receiver and

transmitter clocks may vary significantly during the entire transmission duration. We

were able to eliminate the clock compensation module for the loop back case for two

reasons, first because we made sure that all data was being read until reaching an eos

(end-of-stream) and second by counting the data received. An alternative is to modify

the low-level clock compensation module to eliminate the conflict between the clock

compensation messages and the data transfers.

 The initial non-optimized serial communication protocol was very conservative

and redundant. The slow communication rate resulting from the Aurora peripheral

interface and the PowerPC through the OPB only added to its inefficiency. A RdySend

message preceded each 32-bit value transmitted to ensure correct data recombination.

This choice was safe, but increased the execution time of the application. Instead, a new

strategy was implemented to mark the start of the transmission stream (sos), which would

be sufficient to maintain the correct order for data recombination. Table 2 show the cycle

clocks saved when switching from the RdySend transmission strategy to a single sos

message option for communication synchronization.

46

Table 2: Timing Results Comparing Different Synchronization Schemes

RDY_SEND EOS_SOS Difference
Section

Clock Cycles Clock Cycles Clock Cycles

200 Outputs received 461,215 461,346 -131

Transmit 71 nodes to XUP 1 532,896 512,171 20,725

Transmit 71 nodes to XUP 2 600,832 562,818 38,014

1 HS after Out ready 1,421,838 1,446,855 -25,017

500 outputs received 2,647,288 2,275,368 371,920

Next 500 outputs received 4,110,796 T3,552,830T T557,966TTT

Below is the code for transmitting and receiving data between boards using a sos,

RdySend/RdyRec handshake and eos messages.

/************** TRANSMITTING to SLAVE BOARD 70 NODES **************/
do {
 //Send Rdy to Send message and wait for responses
 AURORA_LINK_mWriteToFIFO(aurora_link_0_baseaddr, RdySend);
 while(AURORA_LINK_mReadFIFOEmpty(aurora_link_0_baseaddr))

{ }
temp2 = AURORA_LINK_mReadFromFIFO(aurora_link_0_baseaddr);

} while ((temp2 != RdyRec));

// Acknowledgement received, start sending data, send sos sig first
AURORA_LINK_mWriteToFIFO(aurora_link_0_baseaddr,sos_sig);

for(index = 0; index < 71; index++) {

 AURORA_LINK_mWriteToFIFO(aurora_link_0_baseaddr,
((short*)&tmp3[index])[0]);

 AURORA_LINK_mWriteToFIFO(aurora_link_0_baseaddr,
((short*)&tmp3[index])[1]);

}

// Send end of stream (EOS)
AURORA_LINK_mWriteToFIFO(aurora_link_0_baseaddr, eos_sig);

 /*************** RECEIVING from SLAVE BOARD 500 NODES **************/
 do {
 while(AURORA_LINK_mReadFIFOEmpty(aurora_link_0_baseaddr))
 { }
 tempSlv = AURORA_LINK_mReadFromFIFO(aurora_link_0_baseaddr);
 } while (tempSlv != RdySendSlv);

 // Acknowledgement received, start sending data
 if (tempSlv == RdySendSlv) {
 AURORA_LINK_mWriteToFIFO(aurora_link_0_baseaddr, RdyRecSlv);
 }

 // start reading one SOS received
 while (tempSlv != sos_sigSlv){
 while(AURORA_LINK_mReadFIFOEmpty(aurora_link_0_baseaddr))

47

 { }
 tempSlv = AURORA_LINK_mReadFromFIFO(aurora_link_0_baseaddr);
 }
 // Read FIFO until EOS
 while ((tempSlv != eos_sigSlv)) {
 while(AURORA_LINK_mReadFIFOEmpty(aurora_link_0_baseaddr))

 { }
 // Floating point data need to split into 2 half
 if(!AURORA_LINK_mReadFIFOEmpty(aurora_link_0_baseaddr))
 tempSlv = AURORA_LINK_mReadFromFIFO(aurora_link_0_baseaddr);

 ((short*)&inputsSlv[iSlv])[0] = tempSlv;
 if(!AURORA_LINK_mReadFIFOEmpty(aurora_link_0_baseaddr))
 tempSlv = AURORA_LINK_mReadFromFIFO(aurora_link_0_baseaddr);
 ((short*)&inputsSlv[iSlv])[1] = tempSlv;
 iSlv++;
 }

Neural Network Serial Implementation

Except for the partition of source code into hardware and software processes, the

initial benchmark test was the execution time and logic resources used for the neural

network forward computations with no optimization or parallel-like code enhancements.

The first step was to write a program in ANSI C that computed each of the hidden layers

and the corresponding outputs. For the example seen in Figure 16, the inputs A and B

are employed to compute the first hidden layer nodes, C, D and E. In a serial

implementation, one computation is performed at a time. First, input A is multiplied by a

weight; second, the product is added to a temporary value, third input B is multiplied by a

second weigh, and then that product is accumulated to the previous value. If there were

other inputs, these would be multiplied by the associated weights and accumulated. At

this point, the accumulated value is squashed to form the output at node C. This

sequence of steps corresponds to the numerical order displayed in Figure 19. The same

procedure is followed for the other nodes. The point of this illustration is to show that,

serially, one computation is performed at a time and no parallelism is present. In C code

these calculations are realized using a double for-loop.

48

Figure 19: First Hidden Layer Computation – Serial Implementation

The inner loop generates the multiply and accumulate operations for each node (2

per node). The outer loop moves from node to node (C to D to E) and generates the

squashed output for each node.

CO PIPELINE, CO UNROLL Pragma Directives for Parallelization

Pipelining is applicable when an algorithm within a loop executes in two or more

cycles per iteration. For the above example, where a sum and a multiplication operation

are required to compute the output a node, a pipelined implementation allows the two

independent computations to be realized concurrently. After a pipeline latency of 2, the

multiply and accumulate can calculated in the same clock cycle. Figure 20 shows the

pipelined version completing the three node’s calculations five steps earlier. To generate

this pipelining behavior in Impulse C, it suffices to insert the CO PIPELINE pragma into

the main loop of the algorithm. As simple as it sound, there are also restrictions and

guidelines for optimal results. Pipelining applies to an inner loop and CO PIPELINE is

prohibited for nested loops. It is also recommended that the pragma be inserted at the top

of the code block instead of inside the code in which case it will require additional logic

resource for parallelism, but will not result in significant optimization.

49

Figure 20: First Hidden Layer Computation – Pipelined Implementation

Parallelism can also be exploited at the loop-level by duplicating an operation

over the span of loop iterations or what is known as hardware-based loop unrolling. The

unrolled version of the small neural network example is seen in Figure 21. In this

version the multiply and accumulate (MAC) resources were duplicated allowing parallel

MAC computations. Instead of computing one product at a time, provided the

availability of logic (gate) resources and non-data dependencies, multiple multiplications

can be performed in one cycle. Similar to the CO PIPELINE pragma, Impulse C has a

CO UNROLL pragma that automates the unfolding and hardware duplication of the

targeted loop.

Figure 21: First Hidden Layer Computation – Unrolled Implementation

50

If pipelining and loop unrolling increases the performance of the algorithm,

combining these two strategies creates even higher optimization. Figure 22 correspond

to the small neural network implementation with both pipelining and loop unrolling. In

this version after a pipeline latency of 1, multiple MACs can be executed simultaneously.

Figure 22: First Hidden Layer Computation – Pipelined & Unrolled Implementation

Pipelining and loop unrolling are two typical schemes to obtain parallelism.

However, there are cases where the optimization is not so readily achieved or when it

becomes contra-productive due to the excessive resources required or stalls in the

pipeline flow.

A neural network application is a good candidate for investigating implementations with

different levels of parallelism since these compute intensive applications are

characterized by multiple non-data dependent calculations. Once the serial

implementation was completed, the next step was to parallelize each of the double for-

loops structures by inserting the CO PRIMITIVE pragma. Below is a source code

fragment for the pipelined hidden layer and output computations (part 1) of the neural

network.

 // Pipeline each of the four loops that computes the NN nodes
 #pragma CO NONRECURSIVE node1

51

 #pragma CO NONRECURSIVE node2
 #pragma CO NONRECURSIVE node3
 #pragma CO NONRECURSIVE outputs

 do{

co_signal_wait(start,&res);
co_memory_readblock(memblk,0,INP,27*sizeof(float));

for(k = 0 ; k < 40 ; k++) {
 for(m = 0 ; m < 28 ; m++) {

 #pragma CO PIPELINE
 node1[k] += INP[m]*weights1[count];
 count++;
 }
 node1[k] = sigmoid(node1[k]);
}

for(k = 0 ; k < 50 ; k++) {
 for(m = 0 ; m < 41 ; m++) {

#pragma CO PIPELINE
 node2[k] += node1[m]*weights2[count2];
 count2++;
 }
 node2[k] = sigmoid(node2[k]);
}

for(k = 0 ; k < 70 ; k++) {
 for(m = 0 ; m < 51 ; m++) {

#pragma CO PIPELINE
 node3[k] += node2[m]*weights3[count3];
 count3++;
 }
 node3[k] = sigmoid(node3[k]);
}

for(k = 0 ; k < 200 ; k++) {
 for(m = 0 ; m < 71 ; m++) {

#pragma CO PIPELINE
 outputs[k] += node3[m]*weights4[count4];
 count4++;
 }
}

Ideally, the algorithm for the neural network computations would be realized by

the code shown above; however, as mentioned earlier, some considerations are necessary

when parallelizing an application. The parallelized algorithm was compiled and

simulated (desktop simulation) and appeared to provide correct results. However, when

implemented into the hardware platform, the results were not correct. When using the

Stage Master Debuggers (SMD) for a cycle-accurate debugging, it showed erroneous

52

results. The SMD provided additional information regarding to the source of errors. It

showed that data was being read from multiple arrays in the wrong order. This tool was

helpful in locating the problem. One solution for was to explicitly initialize all indexes

before going into the pipelined loop, for example updating the counter variable in the

outer loop. The approach worked for the SMD tool, but when implemented in the XUP

board, the results were still incorrect. This highlighted the fact that hardware compiled in

the cycle accurate debugger is sometimes different than the one synthesized and mapped

onto the board. In EDK, although hardware routing was achieved, the complexity of the

routing and the amount of logic resources required caused timing issues. To deal with

these timing issues, the bus clock was reduced from 100 MHz to 50 MHz.

Different optimization schemes (“test cases”) were explored as part of the

iterative approach taken to evaluate Impulse C and implement the neural network

application. In the first case, mentioned above, there was only a single hardware process

and one primitive function that computed the hidden layer values and outputs. Figure 23

and Figure 24 show the first pipeline case with one hardware process.

Figure 23: Case 1 – Two Software Processes and One Hardware Process

In case 1, the multiple array accesses in the computation of each node’s value and the use

the of high-latency option floating-point pipeline produced a result every 19 clock-cycles.

Inputs
(Prod SW)

H1 – H3
200 Outputs

(HW)

Sigmoid
Function

Outputs
(Cons SW)

53

Figure 24: Case 1 – One Software Processes and One Hardware Process

Case 2 exploited Impulse C’s CSP programming methodology. A different

hardware process was created for each hidden layer, the sigmoid function and the output

layer nodes as seen in Figure 25.

Figure 25: Case 2a – Two Software Processes and Four Hardware Processes

In case 2a the inter-process hardware communication is via Impulse C streams.

Case 2a works in simulation, but co_streams are restricted to unidirectional point-to-point

data flow between processes, which makes case 2a impossible to implement in hardware.

A desktop software simulation can display proper behavior but fail to enforce the

required hardware characteristics of Impulse C stream. To communicate across multiple

processes, multiple streams are required in a point-to-point schema or additional

hardware processes are needed as seen case 2b, see Figure 26 below.

Inputs
&

Outputs
(Prod SW) H1 – H3

200 Outputs
(HW)

Sigmoid
Function

Inputs
(Prod SW)

Hidden 1
(HW 1)

Sigmoid
(HW 2)

Hidden 3
(HW 4)

Hidden 2
(HW 3)

Output
200

(HW 5)

Outputs
(Cons SW)

54

Figure 26: Case 2b – Two Software Processes and Seven Hardware Processes

 Two main changes took place for case 2b: first, the low-latency option for

floating-point implementation was set, which reduces the latency from nineteen to eight

clock cycles, and the second, multiple concurrent hardware processes were used. These

changes take advantage of the CSP structure that allows multiple hardware processes to

execute at the same time. By employing these changes the total number of clock cycles

in the pipeline application (CO PIPELINE pragma) was reduced to ~80,000 compared to

~170,000 required for the non-pipelined implementation on the master platform. In the

pipelined version, reducing the output rate to half (8 cycles to 4 cycles) caused twice the

speedup. It is important to note that if there are data accesses/updates of array elements

in the pipeline, a slower clock must be utilized to meet timing requirements. For efficient

usage of the pipeline pragma it is important to minimize the data access or pay the price

by reducing clock frequency which diminishes the benefit of pipelining.

 The CO UNROLL pragma further improves the design, but is constrained by the

logic resources of the platform. Case 3 shows the use of the pragma in the

implementation of the output layer values. Figure 27 and 28 illustrates loop unrolling

process.

Output
200

(HW7)

Hidden
1

(HW1)

Sigmoid

(HW2)

Hidden
2

(HW3)

Sigmoid

(HW4)

Hidden
3

(HW5)

Sigmoid

(HW6)

Inputs
(SW)

Outputs

(SW)

55

Figure 27: Case 3 – One Software Process and One Hardware Process Manually Unrolled

Figure 28: Case 3 – 500 Loop Unrolled into Five Nodes Computed at Once

The loop unrolling feasibility depends on the available resources of the target

platform. The more operators that are duplicated, the more hardware resources are

required for the implementation. Below is the C source code for the hardware process

with the pipelining and loop unrolling implementation.

 // Code to compute NN 500 outputs for slave board XUP2
 // Exploring CO PIPELINE & CO UNROLL

 #pragma CO NONRECURSIVE output2
 #pragma CO NONRECURSIVE output3
 #pragma CO NONRECURSIVE output4
 #pragma CO NONRECURSIVE output4
 #pragma CO NONRECURSIVE output

 co_signal_wait(start,&res);

 co_memory_readblock(memblk,35500*sizeof(float),INP,70*sizeof(float));

 for(k = 0 ; k < 7100; k++)

Inputs
&

Outputs
(Prod SW)

500
Outputs

(HW)
Pipeline
& Loop
Unroll

56

 {
 #pragma CO PIPELINE
 test_inp = INP[m];
 wei4 = weights4[w];
 wei3 = weights3[w];
 wei = weights[w];
 wei1 = weights1[w];
 wei2 = weights2[w];

 // Compute 5 output nodes in parallel
 test2 += test_inp*wei2;
 test3 += test_inp*wei3;
 test += test_inp*wei;
 test1 += test_inp*wei1;
 test4 += test_inp*wei4;
 w++;
 m++;

 // One node formed
 if (m > 70){
 output3[count] = test3;
 output4[count] = test4;
 output[count] = test;
 output1[count] = test1;
 output2[count] = test2;
 count++;
 m = 0;
 test3 = 0;
 test4 = 0;
 test = 0;
 test1 = 0;
 test2 = 0;
 }
 }
 // write outputs to shared memory for SW process
 co_memory_writeblock(memblk,400*sizeof(float),output4,100*sizeof(float));
 co_memory_writeblock(memblk,0*sizeof(float),output,100*sizeof(float));
 co_memory_writeblock(memblk,100*sizeof(float),output1,100*sizeof(float));
 co_memory_writeblock(memblk,200*sizeof(float),output2,100*sizeof(float));
 co_memory_writeblock(memblk,300*sizeof(float),output3,100*sizeof(float));
 co_signal_post(done,count+count2+count3+count4);

57

CHAPTER SIX

Results

 In the first serial implementation, with higher latencies and a fast clock option,

the computation for each node in the first hidden layer requires 607 clock cycles. Each

multiply and accumulate (MAC) stage takes nineteen clock cycles while a call to the

sigmoid function costs seventy-four cycles. The computation for each node in the second

hidden layer requires 854 clock cycles and 1044 clock cycles for each node in the third

hidden layer. The output layer requires 1350 clock cycles. These values are greatly

reduced when choosing the lower latency, slower clock implementation of floating-point

operations. The latency is reduced to eight for each MAC operation in the main loop

bringing the total time for one node for the first hidden layer to 269 clock cycles.

In the parallelized implementation with pipelining, the computation for each node

in first hidden layer requires 112 clock cycles due to the rate of four in a pipeline with a

latency of eight. The time required for a node to pass through the squashing step (latency

24, rate 1) can be absorbed in the following node’s computation if a separate concurrent

process is created. For the nodes in the output layers, the computations are the same as

for the nodes of the other layers except for the squashing step, therefore, the timing is

equivalent as well.

For the parallelized implementation with unrolling and pipeline implementation

(feasible only for the output layer computations in our case 3) the timing per node

computation is similar, but five nodes were computed simultaneously. However, in order

to meet timing constraints the bus clock frequency was reduced 50 MHz to achieve the

58

rate of four in the pipeline. If the 100 MHz frequency is desired, the pipeline rate must

be eight, in which case the benefit of pipelining vanishes, but the benefit of loop

unrolling is maintained. Table 3 summarizes the timing for each node in the various

layers of the neural network. The table also includes the ideal timing value for the

optimally parallelized case.

Table 3: Timing Comparison for One Node Computation

Neural Net
Layer Operation

Ideal

(cycles)

Serial
HL

(cycles)

Serial
LL

(cycles)

Pipeline
Rate 4

(cycles)

Pipeline&
Unrolling
(cycles)

MAC 28 533 225 112

Node in
Layer 1

Sigmoid 1 74 44 1

MAC 41 780 329 164

Node in
Layer 2

Sigmoid 1 74 44 1

MAC 50 970 109 204

Node in
Layer 3

Sigmoid 1 74 44 1

NA

569 (100 Mhz) Node in
Output Layer MAC 71 1350 569 284 (50 Mhz) 284/5 = 57

A rate of four was the best optimization possible using the current version of the

Impulse C compiler because of how the algorithm is structured from basic components

(e.g. summation and multiplication). The variable, temp, is and accumulator (e.g. it adds

its previous value to the new product, which for the case of floating-point multiplication

takes three cycles, and the conditional (e.g. if statement) in the main loop requires one

cycle; thus resulting in a combined rate of four. In the Impulse C environment, a new

execution stage is created for switch-case, conditional statements, and loop access (read

or write) to memory. The conditional statement could be avoided if enough logic is

available to compute one value per clock cycle (e.g. 71 floating-point multipliers for the

worst case for a maximum of 71 inputs).

59

Table 4 shows the cumulative clock cycles parsed for the different stages of the

neural network calculations. The timing results were obtained by reading the OPB timer

register. These results points to the communication between boards as the main

bottleneck. The Impulse C-implemented algorithm was executed in 64,207 and 34,113

cycles for the pipelined version with rate eight and four respectively. The average time

to send 71 nodes was 54,561 cycles and the average time to send 500 nodes was 858,161

cycles. It took more time to send values from one board to another than to actually

execute the algorithm. The overall timing for the neural network computation were

2,305,805 and 2,212,257 clock cycles for the pipelined implementations with rate eight

and rate four. The timing improvements from one implementation to the other appear

insignificant when comparing the overall application execution. Future improvements to

the Aurora communications peripheral would better highlight the improvements achieved

by a parallelized implementation.

In addition to the significant time required for communication between boards,

the timing for the internal (same board) shared-memory communication between

hardware and software processes is also very extensive for memory read and write

operations. Currently external memory accesses to the DDR-SDRAM via the slower

OPB processor bus create considerable overhead. In Table 4, the timing difference

between values given in rows 13 through 17 shows the overhead associated with reading

100 values from shared memory: about 20,073 clock cycles.

60

Table 4: Cumulative Timing Results per Sections in Neural Network Computations

Row EDK - OPB Timer
Pipeline Rate

of 8
(clock cycles)

Pipeline Rate
of 4

(clock cycles)
1

Impulse C Algorithm Completed (Done signal)
71 hidden layer nodes (outputs) 64,207 34,113

2 Receive 71 inputs 74,454 44,461
3 1st ack to receive (from SLV1) 77,188 47,138
4 Finished transmitting 71 values 131,276 108,699
5 1st ack to receive (from SLV1) 133,129 110,942
6 Finished transmitting 71 values 176,633 170,032

7 Impulse C Algorithm Completed (Done2 signal)
200 output layer nodes (outputs) 177,377 NA

8 Read 200 output from Mem 204,143 NA
9 XUP 2 receive 71 inputs 329,424 NA
10 write 71 inputs to share mem 341,526 NA
11 Send start signal from SW to HW (Impulse C) 393,239 NA

12 Impulse C Algorithm Completed (Done signal)
500 output layer nodes (outputs) 442,816 NA

13 Read 100 output from DDR 466,244 NA
14 Read 200 output from DDR 490,441 NA
15 Read 300 output from DDR 514,832 NA
16 Read 400 output from DDR 539,761 NA
17 Read 500 output from DDR 563,182 562,650
18 Receive 500 outputs from XUP 2 1,425,053 1,376,978
19 Receive 500 outputs from XUP 3 2,305,805 2,212,547

Floating-point data representation and operations are resource hungry, but provide

a wider range of precision and facilitate the implementation of algorithm by avoiding the

data type conversion to fixed-point. As mentioned previously, Impulse CoDeveloper

automatically generates references to Xilinx COREGen floating-point libraries from C

language statements and standard float and double data types. For low-latency floating-

point implementation, the multiplication and addition operators are generated with

latencies of 3. For high-latency floating-point implementations, the multiplication and

addition operators, are generated with latencies of 6 and 11, respectively. Table 5 shows

61

the XUP Virtex II Pro logic resources required for the implementation of single-precision

(32-bit) floating-point multipliers and adders with various latencies.

Table 5: Logic Resources Used in the Implementation of Floating-Point Operators

Virtex-II PRO FPGA Resources FPGA Fabric

Operator Latency Resource Number LUTs FFs Slices
Multiplier 8 (Max) Logic(no usage) 0 621 687 424
Multiplier 4 Logic(no usage) 0 589 423 341
Multiplier 4 MULT18x18 4 177 211 160
Multiplier 3 Logic(no usage) 0 711 238 374
Multiplier 3 MULT18x18 4 166 159 129
Add/Subtractor 13 (Max) Logic 0 560 576 458
Add/Subtractor 4 Logic 0 521 167 277
Add/Subtractor 3 Logic 0 511 140 270

Our neural network application is a low-latency floating-point implementation.

Based on the device utilization summary produced by EDK, the logic implementation for

the VHDL code (generated from C by the Impulse C compiler) that targeted the master

board (hidden layer and 200 outputs) required 74 multipliers. From the Impulse C

compiler tool, the seven hardware processes corresponding to the calculations for the

master board used 17 floating-point multipliers (32-bit) and 29 floating-point adders (32-

bit). See Appendix A for more details. This logic resource report implies that

MULT18x18 logic blocks were used to implement the floating-point multiplications.

Multiplying 17 times 4, results in 68 MULT18x18 devices, which added to 6 integer-

based multipliers sums to 74. Other logic resources, including flip flops (FFs) and look-

up tables (LUTs) are also employed.

The Virtex II FPGA resources are limited to 34 floating-point multipliers and

adders if the device resources are not used for other purposes. For example, FFs and

LUTs can also be used to implement memory if BRAMs are not available. Neural

62

network applications which require large amounts of data storage, preferably in BRAM

storage for fast access, face a limiting factor when data arrays are implemented using

LUTs. The use of LUTs for storage reduces the resources need to implementing floating-

point operators.

Table 6 summarizes the timing results for the neural network computation using

different platform architectures and programming languages. The lowest run-time for a

Impulse C generated neural network application was 22,125 µs. Comparisons with the

timing results obtained from previous implementations were not encouraging. All but

one (Pentium 4 floating-point implementation) were implemented using 16-bit fixed-

point computations. However, factoring out the timing for communication, an execution

time of approximately 800 µs is a closer match to the other results. It is also important to

notice that the floating-point operators are implemented with a latency of three by the

compiler, which could be reduced further to attain a higher throughput for the pipeline

and a faster overall execution time.

Table 6: Timing Results for One Pass Forward Neural Network Calculations

Architecture Language Execution Time

PC – Pentium 4 (1.8 GHz) C 250 µs
SRC-6E SRC Carte P

TM
P(parallel) 572.55 µs

SRC-6E VHDL (serial) 1000 µs
SRC-6E VHDL (parallel node) 250 µs
SRC-6E VHDL (parallel input) 15 µs
XUP Virtex II Pro VHDL (1 board) 15 µs
XUP Virtex II Pro VHDL (3 boards) 6.7 µs
XUP Virtex II Pro (Float) Impulse C (3 boards) 22,125 µs
XUP Virtex II Pro (Float -Ideal) Impulse C (3 boards) 800 µs **
XUP Virtex II Pro (Int - Ideal) Impulse C (1 board) 14.1 µs***
** 1200 floating-point nodes computed, time does not account for Aurora transmission
*** 1260 integer nodes computed without squashing function

63

For comparison-purposes, a 16-bit integer implementation with MAC operations

only (no squashing processing) was implemented using Impulse C with a result of 14.1

µs. This result showed that fast implementation of computation intensive applications

are feasible with Impulse C although limited by the target platform hardware resources as

well as the application data-representation nature.

 The floating-point implementations developed in this work showed limited

usefulness primarily because of the limited XUP Virtex II Pro board resources.

However, advances in FPGA technology promise higher gate densities in the future that

will increase their usability for neural net applications or other applications that benefit

from the larger dynamic range of floating-point computations. The fixed-point

alternative was also explored in Impulse C by using macros defined in the compiler’s

math.h library. Even though the fixed-point implementation required fewer resources,

the time spent to develop and simulate the results was considerable. The conversion

from floating-point to fixed-point data and operations was not a trivial task, as factors

such as integer bit-width, faction bit-width, overflow and saturation must be considered

to obtain useful results. As an example, a code fragment for the floating-point version of

the squashing function required one line of code while the fixed-point version required

seven lines of codes, multiple macros and temporary variables and a more in-depth

verification for correct results. Below are the code fragments for each version, floating-

point and fix-point, respectively.

 // Floating-Point Implementation
 Node = -y000*((Node-x0)*(Node-x0)) + y00*(Node-x0) + y0;

 // Fixed-Point Implementation
 subtemp = FXSUB16(Node,x0,5);
 mult1temp = FXMUL16(subtemp,subtemp,5);
 mult2temp = FXMULTS16(y000,mult1temp,12,5,8);
 mult3temp = FXMULTS16(y00,subtemp,12,5,8);
 mult4temp = FXMUL16(mult2temp,isnegval2,8);

64

 addtemp = FXADD16(mult3temp,y0,8);
 addtemp2 = FXADD16(addtemp,mult4temp,8);

 In the fixed-point implementation, the fixed-width bit field is divided into three

parts, sign, integer and fraction. Typically, the sign bit is the most significant bit (MSB),

followed by the number of bits that represent the integer part of the floating-point number

and the last portion correspond to the fractional bits. Because some numbers require

greater fraction accuracy while others require greater magnitude multiple16-bit fixed-

point formats must be used. The weights had the form 1s7.8, which correspond to one

sign bit, seven bits for the integer part and eight for the fractional portion. The format for

the hidden layers computations (products and sums) was 1s10.5 while for the output layer

computations were 1s7.8. For the sigmoid process, each segment of the TSA had the

format of 1s3.12. More details of the implementation are shown in Appendix C.

65

CHAPTER SEVEN

Conclusions and Final Recommendations

Impulse C facilitates the exploration of partitioning an algorithm across multiple

FPGA-based platforms. By automatically generating the VHDL code and allowing

mixed SW-HW codesign and debugging, rapid-prototype-based designs can be quickly

developed and compared. Even though the current floating-point implementation results

were not desirable, increasing the number of platforms from three to fourteen such that

all 71 floating-point computations could be performed in parallel would reduce the

overall computation time to approximately 60,000 clocks (4 cycle per FP operation times

1500 computations) to provide greatly improved performance. Because each board is

limited to five floating-point multipliers, fourteen boards would be required for a 71

multiplier implementation. Even with a cluster of fourteen boards, the cost of the

reconfigurable computing machine would be well under $50,000. However, the

communication overheard between boards would need to be significantly reduced.

Impulse C reduced considerably the prototype development time for the neural

network application, but currently it does not include board-to-board stream libraries for

communication at the hardware level (e.g. via parallel or serial interfaces). By extending

the existing stream libraries with support for board-to-board communication at the

hardware level, Impulse C would be a much more valuable tool for a broader range of

targets and applications because the communication time could be made negligible. This

type of support is provided by the SRC-6e/Carte C environment.

66

Even though EDK provides many wizards for peripherals and IP core utilization,

hardware knowledge is required for the customization of most FPGA generic peripherals.

Understanding of the functionality and capabilities of the programming environment and

target platform had a significant impact on each of the design and implementations in this

study.

 Impulse C’s iterative approach to optimization and its graphics tools provided a

convenient way to explore and exploit parallelism. This C-to-HDL compiler enhances

design productivity by providing fast HDL code development and easy implementation

of common applications on widely used standard platforms. However, the compilers use

of pipelining can be considered a high-level system optimization rather than a low-level

one. Even though pipelining is available, many floating-point pipeline operations

execute in more that one clock cycle. One potential improvement to the multi-cycle

latency of floating-point operations is for Impulse C to allow more control to the designer

to specify a numeric value latency (e.g. 1, 3, 4, etc) instead of the pre-defined low- and

high- latency settings.

For VHDL code generation, a couple of hundreds of lines of C code generated

multiple pages of VHDL code. The VHDL code generated is readable and maintains

most of the variable names, so it is easy to trace back to the original C source code.

Overall the Impulse C programming environment has the potential to fill the conceptual

gap between software developers and hardware codesign prototyping.

The Aurora communication protocol represented the main bottleneck in the

distributed neural network implementation. For future optimization a direct Impulse C –

AURORA compatible interface should be designed and implemented. This would

require a more thorough understanding of the hardware platform and the XML language

67

needed to define the platform’s components in a manner such that the Impulse C

compiler correctly generate the needed code. A direct hardware communication would

more than likely speedup the communication between platforms.

69

APPENDICES

70

APPENDIX A

Logic Resources

Table A.1: Logic Utilization for Sigmoid Function/Process

 Sigmoid 1
(multiple functions)

Sigmoid 2 (TSA as
primitive function)

Sigmoid 3 (TSA as
hardware process)

Total Stages 68 90 27
Operators 2 comparators (32 bit) 1 comparator (2 bit) 2 comparator (2 bit)

 3 adder/sub (32 bit) 8 comparators (32 bit) 6 comparators (32 bit)
 1 FP Adders/Sub (32 bit) 3 adder/sub (32 bit) 1 adder/sub (32 bit)
 1 FP Multiplier (32 bit) 8 FP Adders/Sub (32 bit) 8 FP Adders/Sub(32 bit)
 1 FP Adders/Sub (64 bit) 3 FP Multiplier (32 bit) 4 FP Multiplier(32 bit)
 1 FP Multiplier (64 bit)
 1 FP Divider (64 bit)

Table A.2: Logic Utilization for Hidden Layer Nodes Computations

 NN small NN large (H1–H3) & 200 O
Total Stages: 105 267
Operators: 6 comparators (32 bit) 8 comparators (32 bit)
 14 Adder/sub(32 bit) 17 adder/sub(32 bit)
 3 Adder/sub(2 bit) 1 FP Adders/Sub(32 bit)
 7 FP Adders/Sub(64 bit) 4 FP Adders/Sub(64 bit)
 3 FP Multiplier(64 bit) 4 FP Multiplier(64 bit)
 2 FP Divider(64 bit) 2 Adder/Sub (6bit)
 1 Adder/Sub (7 bit)
 1 Adder/Sub (8 bit)

Table A.3: Logic Utilization for Output Layer Nodes Computations

 NN large 500 Out1 NN large 500 Out2
Total Stages: 267 267
Operators: 2 comparators (32 bit) 2 comparators (32 bit)
 5 adder/sub(32 bit) 5 adder/sub(32 bit)
 1 FP Adders/Sub(32 bit) 1 FP Adders/Sub(32 bit)
 1 FP Adders/Sub(64 bit) 1 FP Adders/Sub(64 bit)
 1 Adder/Sub (9 bit) 1 Adder/Sub (9 bit)

71

APPENDIX B

Software C Source Code for PowerPC

Slave XUP - Receiving

// Poll until a ready-to-send message is received from transmitter
do {
 while(AURORA_LINK_mReadFIFOEmpty(aurora_link_0_baseaddr)) { }
 temp = AURORA_LINK_mReadFromFIFO(aurora_link_0_baseaddr);
} while (temp != RdySend);

// Acknowledgement received, start sending data
if (temp == RdySend) {
 AURORA_LINK_mWriteToFIFO(aurora_link_0_baseaddr, RdyRec);
}
// Wait for the start of stream message before receiving data
while (temp != sos_sig) {
 while(AURORA_LINK_mReadFIFOEmpty(aurora_link_0_baseaddr)) { }
 temp = AURORA_LINK_mReadFromFIFO(aurora_link_0_baseaddr);
}
// Read from FIFO while the end of stream message has not been received
while ((temp != eos_sig)) {
 while(AURORA_LINK_mReadFIFOEmpty(aurora_link_0_baseaddr)) { }
 if(!AURORA_LINK_mReadFIFOEmpty(aurora_link_0_baseaddr))
 temp = AURORA_LINK_mReadFromFIFO(aurora_link_0_baseaddr);
 ((short*)&inputs[i])[0] = temp;
 if(!AURORA_LINK_mReadFIFOEmpty(aurora_link_0_baseaddr))
 temp = AURORA_LINK_mReadFromFIFO(aurora_link_0_baseaddr);
 ((short*)&inputs[i])[1] = temp;

i++;
}
// Data shift scheme to balance the lack of clock compensation module
// If expected amount of data received, send it to shared memory for NN
if (i == 71) {

co_memory_writeblock(memblk, 35500*sizeof(float), inputs,
70*sizeof(float));

}
else {
 // If not all data is received, signal an error message
 if(i < 71)
 { printf("ERROR \r\n"); }
 // If additional data (0’s) is received, discard initial data

else {
 for (index = 0; index < 70; index++)
 { input[index] = inputs[i-(72-index)]; }
 co_memory_writeblock(memblk, 35500*sizeof(float), input,

70*sizeof(float));
 }
}

72

Slave XUP - Transmitting

// When ready to transmit send ready-to-send until acknowledge receive
do {

AURORA_LINK_mWriteToFIFO(aurora_link_0_baseaddr, RdySendSlv);
 while(AURORA_LINK_mReadFIFOEmpty(aurora_link_0_baseaddr))
 { }
 temp3 = AURORA_LINK_mReadFromFIFO(aurora_link_0_baseaddr);
} while ((temp3 != RdyRecSlv));

// Send start of stream message (sos_sigSlv)
AURORA_LINK_mWriteToFIFO(aurora_link_0_baseaddr, sos_sigSlv);

// Send data
for(indexSlv = 0; indexSlv < 500; indexSlv++)
{

AURORA_LINK_mWriteToFIFO(aurora_link_0_baseaddr,
((short*)&outpu[indexSlv])[0]);

AURORA_LINK_mWriteToFIFO(aurora_link_0_baseaddr,
((short*)&outpu[indexSlv])[1]);

}

// Send end of stream (eos_sig_Slv)
AURORA_LINK_mWriteToFIFO(aurora_link_0_baseaddr, eos_sigSlv);
AURORA_LINK_mWriteToFIFO(aurora_link_0_baseaddr, eos_sigSlv);

/*********************** HANDSHAKING MESSAGES ********************/

RdySend = (Xuint32) 0x1234;
RdyRec = (Xuint32) 0xABCD;
RdySendSlv = (Xuint32) 0x9876;
RdyRecSlv = (Xuint32) 0xFEDC;
eos_sig = (Xuint32) 0x3399;
eos_sigSlv = (Xuint32) 0x88CC;
sos_sig = (Xuint32) 0x259D;
sos_sigSlv = (Xuint32) 0x43AB;

/*********************** AURORA COMMUNICATION ********************/

// Outside of process, global pointer and variable
Xuint32 *aurora_link_0_baseaddr_p = (Xuint32 *)
XPAR_AURORA_LINK_0_BASEADDR;
Xuint32 aurora_link_0_baseaddr;

// Check that the Aurora peripherals exist
XASSERT_NONVOID(aurora_link_0_baseaddr_p != XNULL);
aurora_link_0_baseaddr = (Xuint32) aurora_link_0_baseaddr_p;

// Reset read and write FIFOs to initial state
AURORA_LINK_mResetWriteFIFO(aurora_link_0_baseaddr);
AURORA_LINK_mResetReadFIFO(aurora_link_0_baseaddr);

73

APPENDIX C

Hardware Process C Source Code for the Compiler to Generate VHDL code

Hidden Node Formation

void net_run(co_signal start, co_memory memblk, co_stream input_one,
co_stream output_one, co_signal done)
{
 // variable declarations omitted

 // weights
 co_int16 Inwei0[40] = { 0xFD43, 0x0047, 0x0053,
 0x009A, 0x00BE, 0x0140, 0xFFA6, 0x0029,
 0x01DD, 0x0022, 0xFFEF, 0x002D, 0x01ED,
 0x0273, 0x0119, 0x03E7, 0xFF96, 0xFED8,
 0x000E, 0x0055, 0xFF53, 0x00B8, 0x007D,
 0xFFEF, 0x0007, 0x0049, 0xFFC6, 0x0026,
 0xFF3C, 0xFFD6, 0xFF8B, 0x000F, 0x0178,
 0xFF1A, 0xFED1, 0x0205, 0x0012, 0x0076,
 0xFE5F, 0xFDF0};

 .
 .
 .

 co_int16 Inwei27[40] = { 0x0DDF, 0xFD62, 0x0C49,
 0xFF67, 0xFDCB, 0xF167, 0x002B, 0xEEC0,
 0xFADF, 0x0032, 0xFF18, 0xF0CD, 0x05BB,
 0xF2E8, 0xF58E, 0xEB76, 0xFFA7, 0xEF26,
 0xFB3B, 0x00A6, 0xF1AC, 0xFD22, 0xF207,
 0x0087, 0xFFE7, 0xF36B, 0xF9B8, 0xFC95,
 0xFF77, 0x00C6, 0xF4F0, 0xF532, 0xF519,
 0xFC3A, 0xEF0B, 0xEFA3, 0xF3D0, 0x0107,
 0xFBEA, 0xF931};

 co_signal_wait(start,&res);

 co_memory_readblock(memblk,35500*sizeof(int16),INP,27*sizeof(int16))
;

 inp_rec = 0x0000;
 count = 28;
 inp0 = INP[0];

 .
 .
 .

 inp27 = INP[27];

 sum0 = 0;

 .
 .
 .

 sum27 = 0;

74

 inp_rec = 0;
 counter = 0;

 co_stream_open(output_one, O_WRONLY, INT_TYPE(16));

 for (k = 0; k <40; k++) {
 wei0 = Inwei0[k];

 .
 .
 .

 wei27 = Inwei27[k];

 test0 = FXMULT16(inp0, wei0, 8, 5);

 .
 .
 .

 test27 = FXMULT16(inp27, wei27, 8, 5);

 sum0 = FXADD16(test0,test1,5);

 .
 .
 .

 sum13 = FXADD16(test26,test27,5);
 sum14 = FXADD16(sum0,sum1,5);
 sum15 = FXADD16(sum2,sum3,5);
 sum16 = FXADD16(sum4,sum5,5);
 sum17 = FXADD16(sum6,sum7,5);
 sum18 = FXADD16(sum8,sum9,5);
 sum19 = FXADD16(sum10,sum11,5);
 sum20 = FXADD16(sum12,sum13,5);
 sum21 = FXADD16(sum14,sum15,5);
 sum22 = FXADD16(sum16,sum17,5);
 sum23 = FXADD16(sum18,sum19,5);
 sum24 = FXADD16(sum20,sum21,5);
 sum25 = FXADD16(sum22,sum23,5);
 sum26 = FXADD16(sum24,sum25,5);

 // send unsquashed node to sigmoid process
 co_stream_write(output_one,&sum26,sizeof(int16));

 noSquash[counter] = sum26; // nosquash value S10.5
 sum0 = 0;

 .
 .
 .

 sum27 = 0;

 test0 = 0;

 .
 .
 .

 test27 = 0;
 counter++;

}
co_stream_close(output_one);

75

Sigmoid (Hardware Process)

void sig_run(co_stream input_one, co_stream output_one)
{
 do{
 float f =0;
 int isneg = 0;
 co_int16 x0 = 0;
 co_int16 y000 = 0;
 co_int16 y00 = 0;
 co_int16 y0 = 0;
 co_int16 tempNode = 0x0000;
 co_int16 numNode = 0x0000;
 co_int16 subtemp = 0x0000;
 co_int16 addtemp = 0x0000;
 co_int16 addtemp2 = 0x0000;
 co_int16 mult1temp= 0x0000;
 co_int16 mult2temp= 0x0000;
 co_int16 mult3temp= 0x0000;
 co_int16 mult4temp= 0x0000;

// Dummy variable represent -1 to temporary change negative
// inputs to take advantage of odd property of sigmoid function

 int16 isnegval = 0xFFE0; // -1.0 in fixed format S10.5
 int16 isnegval2 = 0xFF00; // -1.0 in fixed format S7.8
 int16 isnegval3 = 0x0100; // 1.0 in fixed format S7.8

//x0 granularity S10.5 in order to match input for subtraction
//y0, y00, y000 fixed point format S3.12 nature of coefficients

 co_stream_open(output_one, O_RDONLY, INT_TYPE(16));
 co_stream_open(input_one, O_WRONLY, INT_TYPE(16));

while (co_stream_read(output_one, &tempNode, sizeof(int16)) ==
co_err_none)

 {
#pragma CO FLATTEN

 numNode = tempNode;
 if (tempNode < 0) {
 tempNode = FXMUL16(tempNode, isnegval, 5);
 numNode = tempNode;
 isneg = 1;
 }

 // segment ranges S10.5
 if(tempNode < 0x006A) {
 if(tempNode < 0x004F) {
 if (tempNode < 0x000E) {
 y000 = 0x0000; //0 in S3.12;
 y00 = 0x0400; //0.25 in S3.12;
 y0 = 0x0080; //0.5 in S7.8;
 x0 = 0x0000; //0 in S10.5;
 }
 else {
 x0 = 0x0020; //1 in S10.5;
 y000 = 0x00BA; //0.045288085938 in S3.12;
 y00 = 0x0325; //0.196533203125 in S3.12;

76

 y0 = 0x00BB; //0.731079101563 in S7.8;
 }
 }
 else {
 x0 = 0x0059; //2.75 in S10.5;
 y000 = 0x0066; //0.024780273438 in S3.12;
 y00 = 0x00E7; //0.056396484375 in S3.12;
 y0 = 0x00F0; //0.939941406250 in S7.8;
 }
 }

 else {
 if(tempNode < 0x00E9) {
 if(tempNode < 0x0099) {
 x0 = 0x0080; //4 in S10.5;
 y000 = 0x0023; //0.008544921875 in S3.12;
 y00 = 0x0048; //0.017578125000 in S3.12;
 y0 = 0x00FB; //0.982055664063 in S7.8;
 }
 else {
 x0 = 0x00C0; //6 in S10.5;
 y000 = 0x0005; //0.001220703125 in S3.12;
 y00 = 0x000A; //0.002441406250 in S3.12;
 y0 = 0x00FF; //0.997558593750 in S7.8;
 }
 }
 else {
 x0 = 0x0000; //0 in S10.5;
 y0 = 0x0100; //1 in S7.8;
 y00 = 0x0000; //0 in S3.12;
 y000 = 0x0000; //0 in S3.12;
 }
 }

 //sum26=-y000*((sum26-x0)*(sum26-x0))+y00*(sum26-x0)+y0;

subtemp = FXSUB16(numNode,x0,5);
 mult1temp = FXMUL16(subtemp,subtemp,5);
 mult2temp = FXMULTS16(y000,mult1temp,12,5,8);
 mult3temp = FXMULTS16(y00,subtemp,12,5,8);
 mult4temp = FXMUL16(mult2temp,isnegval2,8);
 addtemp = FXADD16(mult3temp,y0,8);
 addtemp2 = FXADD16(addtemp,mult4temp,8);
 if (isneg)
 {
 addtemp2 = FXSUB16(isnegval3,addtemp2,8);
 isneg = 0;
 }
 co_stream_write(input_one,&addtemp2,sizeof(int16));
 }
 co_stream_close(output_one);
 co_stream_close(input_one);
 } while(1);
}

77

BIBLIOGRAPHY

[1] Reynolds, P. D. “Algorithm implementation in FPGAs demonstrated through neural
network inversion on the SRC-6e,” M.S. Thesis, Dept. Eng., Baylor University,
Waco, TX, May 2005.

[2] G. Genest, R. Chamberlain and R. Bruce, "Programming an FPGA-based Super

Computer Using a C-to-VHDL Compiler: DIME-C," Adaptive Hardware and
Systems, 2007. AHS 2007. Second NASA/ESA Conference on, pp. 280-286, 5-8 Aug.
2007.

[3] R. Bruce, M. Devlin and S. Marshall, "An elementary transcendental function core

library for reconfigurable computing," in Reconfigurable Systems Summer Institute
(RSSI 2007), 2007, pp. 1-9

[4] D. Pellerin and S. Thibault, Practical FPGA Programming in C. Upper Saddle

River, NJ: Prentice Hall Professional Technical Reference, 2005.

[5] System C, http://www.systemc.org/home

[6] J. Hopf, G. S. Itzstein and D. Kearney, "Hardware Join Java: a high level language

for reconfigurable hardware development," Field-Programmable Technology, 2002.
(FPT). Proceedings. 2002 IEEE International Conference on, pp. 344-347, Dec.
2002.

[7] A. Patel, C. A. Madill, M. Saldana, C. Comis, R. Pomes and P. Chow, "A Scalable

FPGA-based Multiprocessor," Field-Programmable Custom Computing Machines,
2006. FCCM '06. 14th Annual IEEE Symposium on, pp. 111-120, April 2006.

[8] R. W. Brodersen, J. Wawrzynek, V. P. Srini, A. Vladimirescu, D. Orofino, J.

Hwang, C. Chang, B. Richards, K. Camera, H. So, N. Zhou, "Reconfigurable HEC
Platform", HECRTF Workshop, Washington DC, June 2003. [Online]. Available at
HTTP: http://www.datafluxsystems.com/publications/hec_platform_hecrtf_work
shop_ june_03.pdf

[9] Mitrion C, http://www.mitrionics.com/

[10] Xilinx, Inc., “LogiCORE Aurora User Guide”; UG061 (v2.7) , May 17, 2007.

[11] C. Maxfield, The Design Warrior's Guide to FPGAs, Newnes, 2004.

[12] Verilog, http://www.verilog.com/

78

[13] J. L. Tripp, M. B. Gokhale and K. D. Peterson, "Trident: From High-Level
Language to Hardware Circuitry," Computer, vol. 40, pp. 28-37, March 2007.

[14] D. Pellerin, "Streams-Based Programming Accelerates FPGA-Based Embedded

Applications," Embedded Magazine, pp. 29-31, November 2006.

[15] J. P. Ardini, "Demand and penalty-based resource allocation for reconfigurable

systems with runtime partitioning," in Military and Aerospace Programmable Logic
Devices. 8th. Held in Washington, 2005, pp. 1-7.

[16] M. B. Gokhale and J. M. Stone, "NAPA C: compiling for a hybrid RISC/FPGA

architecture," FPGAs for Custom Computing Machines, 1998. Proceedings. IEEE
Symposium on, pp. 126-135, Apr. 1998.

[17] E. ElAraby, M. Taher, M. Abouellail, T. ElGhazawi and G. B. Newby,

"Comparative Analysis of High Level Programming for Reconfigurable Computers:
Methodology and Empirical Study," Programmable Logic, 2007. SPL '07. 2007 3rd
Southern Conference on, pp. 99-106, Feb. 2007.

[18] D. Pellerin and S. Thibault, “APP102: Optimizing Impulse C Code for

Performance,” Dec. 2005, [Online]. Available at HTTP:
http://www.impulsec.com/IATAPP102_OPT_TIPS.pdf

[19] J. Cong and Y. Zou, "Lithographic aerial image simulation with FPGA-based

hardware acceleration," in FPGA '08: Proceedings of the 16th International
ACM/SIGDA Symposium on Field Programmable Gate Arrays, 2008, pp. 67-76.

[20] P. Messmer, V. Ranjbar, D. WadeStein and P. Schoessow, "Advanced accelerator

control and instrumentation modules based on FPGA," Particle Accelerator
Conference, 2007. PAC. IEEE, pp. 506-508, 25-29 June 2007.

[21] Ardini, J.P. “A high-performance radix-2 FFT in ANSI-C for RTL generation,”

Military and Aerospace Programmable Logic Devices. 8th. Held in Washington,
DC, 09/07/2005 to 09/09/2005. Sponsored by: MAPLD. T(Draper Report no. P-
4353)T

[22] Xilinx, http://www.xilinx.com/

[23] Reed, R.D., Marks, R.J. (1999) Neural Smithing: Supervised learning in feedforward

ANN, Cambridge, MA: MIT Press.

[24] Bansilal, D. Thukaram and K. H. Kashyap, "Artificial neural network application to

power system voltage stability improvement," TENCON 2003. Conference on
Convergent Technologies for Asia-Pacific Region, vol. 1, pp. 53-57 o.1, Oct. 2003.

[25] M. Su and H. Chang., "Extracting Rules from Composite Neural Networks for

Medical Diagnostic Problems," Neural Process. Letters., vol. 8, pp. 253-263, 1998.

79

[26] Rome Laboratory, “Artificial Neural Networks Technology,” [Online document]
Aug 1992, [Online]. Available at HTTP:
https://www.dacs.dtic.mil/techs/neural/neural10.php

[27] M. Krips, T. Lammert and A. Kummert, "FPGA implementation of a neural network

for a real-time hand tracking system," Electronic Design, Test and Applications,
2002. Proceedings. the First IEEE International Workshop on, pp. 313-317, 2002.

[28] Nichols, K., M. Moussa and S. Areibi, “Feasibility of Floating-Point Arithmetic in

FPGA based Artificial Neural Networks”, CAINE, San Diego, CA.

[29] Virtex-II Pro Resource, http://virtex2pro.blogspot.com/2008/03/create-aurora-

transceiver.html.

