
 

 
 
 
 
 
 
 
 

ABSTRACT 
 

Evaluating Impulse C and Multiple Parallelism Partitions 
for a Low-Cost Reconfigurable Computing System 

 
Carmen C. Li Shen, M.S. Electrical and Computer Engineering 

Advisor: Russell W. Duren, Ph.D. 
 
 

Impulse C is a C-to-HDL compiler from Impulse Accelerated Technology that 

facilitates the introduction of software programmers, mathematicians, and scientists, into 

the realm of FPGA-based algorithm development for high-speed numerical computation.  

This thesis evaluates the Impulse C programming language and explores differing levels 

of parallelism across multiple, homogeneous, FPGA development platforms using the 

Aurora serial communication scheme.  Impulse C and Xilinx IP cores are employed in 

the numerical computation of a neural network consisting of 27 inputs and 1200 outputs.  

The artificial neural network is capable of emulating an underwater acoustic environment 

and has been used to determine characteristic parameters of reflections from the ocean 

floor.  Timing, logic utilization and ease-of-use are metrics used to evaluate Impulse C in 

the automatic generation of VHDL code for the network test application.  

Implementations with parallelism at the system level and at the intermediate (loop) level 

are explored as part of this study. 
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CHAPTER ONE 
 

Introduction 
 
 

Neural networks are mathematical models trained to make decisions based on 

patterns imitating biological neurons in behavior.  These models have been used in 

diverse applications, including remote sensing and identification, adaptive control, 

optimization, signal filtering, complex mapping, to mention a few.  One particular area of 

interest is exploring the feasibility of implementing a neural network-based application 

for sonar acoustic model emulation.  The sonar acoustic model is a very reliable yet 

complicated algorithm requiring a large amount of computation, which makes it difficult 

to produce real-time results.  For this reason, a neural network model was created that 

emulates the behavior of an acoustic system which greatly reduces computation levels.  

Even with the significant improvement generated by the neural network model, the 

computation level still prevents a successful real-time implementation when using 

traditional processor-based computing environments [1].  Neural networks are 

characterized by the presence of highly parallelizable computations, which require 

hardware architectures with the capability to exploit this parallelism.  Therefore, as an 

alternative solution, FPGA-based hardware assist was considered for the neural network 

implementation.  These reprogrammable devices (FPGAs) provide great flexibility and 

potential for speedup inherent in hardware oriented parallelism.  In previous work, an 

acoustic model emulator, which consisted of multiple feed-forward neural network 

passes, was implemented on a FPGA-based platform.  The results of the study by 

Reynolds, et al. [1] indicate the feasibility of a real-time implementation after extensive 
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hand-coding optimization techniques were applied to a VHDL model.  The outcome of 

the implementation was encouraging, but the level of hardware description language 

knowledge needed to develop the optimized algorithm represents an obstacle for those 

that do not specialize in the hardware design arena.  Designers, scientists and general 

engineers that could benefit from the computational advantages and speed of FPGAs are 

reluctant to utilize them for this reason.  Recent development of C-to-HDL compiler 

technology has eased the gap between software developer’s experience-level and the 

expertise needed to produce hardware implemented algorithms.  Impulse C is a C 

language-based compiler that facilitates the co-design of mixed HW/SW applications by 

automatically generating HDL code in the form of VHDL.   

Since neural network implementations in FPGAs, with low-level language 

optimization, can provide real-time results, our aim was to assess the feasibility of 

implementing (on FPGA-based platforms) a neural network application designed in a 

high-level language environment and to obtain comparable real-time results.  For this 

purpose, Impulse C was employed for the hardware implementation of a neural network 

application.  

The focus of this thesis is to evaluate the Impulse C programming language and 

explore differing levels of parallelism across multiple, homogeneous, FPGA 

development platforms using the Aurora serial communication scheme.  The particular 

application studied is a neural network algorithm for a sonar acoustic problem.  Serial 

and parallel versions of the algorithm for the neural network computations are created 

and simulated with Impulse C.  The VHDL code automatically generated is then 

synthesized using platform-specific tools and the resulting bit files are used to reprogram 

the FPGA.  The floating-point based implementation of the neural network does not fit 
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into a single XUP platform, requiring multiple XUP boards to provide sufficient logic for 

the complete application.  These platforms can communicate with each other through 

various serial and parallel protocols, for our case they are connected via SATA ports 

using the Aurora communication scheme.  The objective is to partition the computations 

into hardware leaving the communication at the software level.  

A secondary emphasis of this research is the comparison of the timing results of 

the neural network computations achieved by the different neural network 

implementations.  The results from this current research will be compared to previous 

(fixed-point based) work that emphasized hardware/software co-design using the SRC-

Carte and VHDL languages on SRC-6e or multiple XUP Virtex II Pro hardware 

development platforms.  Therefore, some basic understanding of the platform and the 

languages is necessary.  Having this in mind, chapter two provides some background 

information on reconfigurable computing and a description of the different FPGA 

computing platforms.  Chapter three will serve as a description and comparison of the 

Impulse C and VHDL program development environments.  Impulse C and VHDL are 

contrasted with high-level languages and the main characteristics of Impulse C are 

explored.  Chapter four describes the neural network application being implemented and 

related research on the realization and use of neural networks.  Chapter five explains the 

different Impulse C design and implementation techniques and the hardware/software 

partition algorithms tested.  Timing results obtained via the Impulse C cycle-accurate 

debugger and the OPB timer are then discussed and compared to previous work results in 

chapter six.  Chapter seven summarizes the object lessons learned and possible future 

research implications.  
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CHAPTER TWO 
 

Background Information 
 
 

Reconfigurable Computing 
 

Although reconfigurable computing, as a concept, dates back to the 60’s, it was 

not until the advent of the Field Programmable Gate Array (FPGA) in the 80’s, that 

reconfigurable computing came of age.  Advancements in device technology and 

manufacturing techniques have created larger and less expensive FPGAs, which have 

spurred their use where fast computation or complex applications require a significant 

degree of flexibility.   

Reconfigurable computing is the process of re-tasking or reprogramming the logic 

blocks that compose the internal organization of a computing system; many of which are 

populated with FPGA components.  Reconfiguration increases the inherent functionality 

in these computing systems.  In addition, because FPGAs are prefabricated, their cost is 

greatly reduced over custom, application-specific designs.  Although FPGA-based 

designs may provide sub-optimal computation power over application-specific designs 

they are typically more flexible and ultimately cheaper because they are reprogrammable.  

Even though FPGAs may not achieve the clock frequency of von Neumann processors 

(compare 100 MHz to 3 GHz), they can still provide significant speedup when the 

resources of the FPGA are optimally used and an appropriate programming methodology 

is applied.  In comparison to the software programs executing on traditional von 

Neumann architecture computing machines, FPGAs provide flexibility and occasionally 

greater efficiency because the FPGA’s internal structures are actually being modified to 
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change its functionally.  Figure 1 shows the basic internal structure in a FPGA, which 

may possess one or more microprocessors, random-access memory, input/output devices 

and a large block of reconfigurable logic. 

 

Custom 
Circuitry

μProc

RAM

I/O

 
 

Figure 1: Components of a Typical FPGA 
 
 

In the early stages of FPGA application development, designers hand picked 

[logic resources] gates and interconnecting circuitry.  As the logic cell density of these 

devices increased, so did their complexity, calling for the use of Hardware Description 

Languages (HDLs) and Electronic Design Automation (EDA) applications capable of  

synthesizing the hardware description code and creating a physical design in terms of 

FPGA’s resources.  Advances in technology brought the FGPA onto Moore’s Law curve, 

i.e. device density doubling every 18 months, but leaving application development on a 

decidedly non-Moore path.  

Application development in the FPGAs field typically starts with the design’s 

functionally being captured by a hardware description language such as Verilog or 

VHDL (VSHIC Hardware Description Language).  However, the majority of software 
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developers are accustomed to application development in the High Level Languages 

(HLLs), particularly ANSI C, C++ and Java.  Software developers also suffer from 

limited experience with the details and intricacies of hardware development thereby 

limiting their ability to develop applications for FGPAs.  Similar experience constraints 

also discourage other scientists and mathematicians from taking advantage of the FPGA 

solution space [2, 3]. 

HDLs are effective at describing hardware functionality, but a level of hardware 

expertise is required to utilize HDL effectively.  To leverage the skills of software 

developers and reduce the impact of the hardware learning curve, EDA developers have 

produced tools suites that utilize ANSI C, C++, or Java-based programming languages 

such as Impulse C [4], System C [5], Join Java [6], among others.  These programming 

languages make the translation from a high-level language to a low-level HDL essentially 

a black box for the programmer.  These tool suits provide development and debugging 

capabilities that are very similar to software development environments.  It is important 

to note that intimate knowledge of the target hardware on the developer’s part can lead to 

highly efficient applications, however, the higher efficiency comes at the expense of 

increased development time and the additional expertise required. 

 
Computing Systems 

 
In Patel, et al. [7] reconfigurable architectures are classified as Class 1 Machines, 

Class 2 Machines and Class 3 Machines.  Until recently, the trend in computer systems 

design has been to increase the system clock rate and exploit parallelism with multiple 

von Neumann processors (Class 1), but it has reached the point that doing so produces 

diminishing returns [8].  This bottle-neck has spurred the exploration of new computing 



 

7 

architectures; one of which combines the serial processor and a FPGA (Class 2).  The 

FPGA in this case was used as an external component to help speedup complex hardware 

calculations.  Now, because reconfigurable devices are more accessible, FPGAs are used 

as standalone products; many of which include one or more embedded microprocessors 

(Class 3).  The Patel article explains further the pros and cons of each category with 

examples and explanations of their different uses.  Our study examines a “Class 3 

Machine,” employing a combination of FPGA platforms, each with two on-chip 

processors.  The neural network application will be implemented in this system and its 

performance will be contrasted with the outcome obtained in implementations on the 

SRC-6e reconfigurable computer.  An understanding of the hardware resources available 

in each system puts into better perspective the resource utilization and the hardware 

impact in the execution of an algorithm.  These two platforms are described in more 

detail in the next subsection.  

 
SRC-6e 

The SRC-6eTPF

1
FPT reconfigurable computer consists of two reconfigurable Xilinx 

XC2V6000 FPGAs that are programmed with a SRC system-specific language, two 

Pentium 3 microprocessors running at one hundred megahertz, and six 4 megabyte 

memory blocks.  Each FPGA contains approximately six million logic gates, 144 

eighteen-bit multiplier blocks and 144 eighteen-kilobit random-access memory blocks.  

Off-chip communication is done via three 64-bit bidirectional ports [1].  A diagram of the 

SRC-6e hardware architecture is shown in Figure 2.  The SRC-6e system is a two-board 

                                                 
 TP

1
PT Newer versions of the SRC-6e utilize faster Pentium microprocessors and faster interconnecting 

buses.  They also come with a higher price tag. 



 

8 

unit, the first is the microprocessor board and the second contains all the reconfigurable 

resources of the system. 

 

 

Figure 2: SRC-6e Hardware Architecture [1] 
 
 

The SRC-6e system is expensive since it is targeted toward their proprietary 

computing platforms (SRC systems).  The approximate cost for the prototype hardware 

and development system is $300,000.  It has a C to VHDL compiler, Carte C, which is 

characterized for its ease-of-use, but the high price makes it a less attractive option.  

SRC-6e also incorporates user HDL code and IP cores if necessary.  

 
XUP Virtex II Pro 

The XUP Virtex II Pro is the platform board used for this evaluation.  More 

precisely, a group of multiple XUP boards are used as the target platform with the aim to 

migrate the application to the Baylor University Reconfigurable Computing Cluster.  

This cluster is composed of sixteen XUP boards each of which is booted with a QNX OS 
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image and maintains communications with all boards via an Ethernet stack and port.  A 

QNX OS system running on an X-86 system provides “master” access to each XUP 

board in the cluster.  The physical connection between boards is via an Ethernet port 

connected to a high-speed switch/router.  Currently, a 16-node XUP system is in the final 

stages of testing.  

The individual features of a XUP board is the following: one XC2VP30 FGPA 

with roughly three million logic gates, 136 eighteen-bit multipliers and 136 block RAMs, 

two hard core processors (IBM PowerPCs), and 256 MB of DDR SDRAM (for our 

implementation, but with a capability of up to two gigabytes of DDR SDRAM).  The 

board is also populated with multi-gigabit transceivers, three of which are employed as 

SATA interface.  It also contains multiple ports: JTAG, USB, RS232, PS2 for keyboard, 

and mouse, Ethernet and video and has capability for serial communication and audio 

interface.  All the component and features of the XUP Virtex II Pro board are shown in 

Figure 3. 

Synthesis and mapping to the XUP board requires a Xilinx synthesizer and other 

tools proprietary to this vendor.  Tools such as Core Generator from Xilinx facilitate the 

implementation of cores for floating-point hardware, memories and FIFOs, serial 

communication protocols, as well as other intellectual property (IP) code as an aid for the 

system developer.  These cores are customizable and have been optimized to obtain the 

best performance and board resource utilization [9]. 
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Figure 3: XUP Virtex II Board [9] 
 
 

To communicate between boards the Aurora IP is employed.  Aurora is a 

lightweight protocol for MGT (Multi-Gigabit Transceivers) links.  In Figure 4, each lane 

used to communicate between Aurora interfaces represents a high-speed serial 

connection between MGTs.  A group of these connections form an Aurora channel 

through which data can be sent.  When the Aurora channel is not transmitting actual data, 

idle characters are transmitted to maintain channel timing, similar to the XAUI protocol 

[10].  
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Figure 4: Aurora Communication [10] 
 
 

Aurora provides two modes for communication: streaming and framing.  

Streaming is more or less like a pipe where the bare data is send by the transmitter to the 

receiver.  It can also be considered to be one continuous frame.  The streaming mode is 

easy to implement, but the user does not have much control.  Framing on the other hand 

can be combined with flow control and data is sent in fixed length frames. 
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CHAPTER THREE 
 

Programming Languages 
 
 

Hardware Description Languages (HDLs) 
 

A hardware description language provides a formal expression for the hardware 

(physical) component of an electronic system.  HDLs, in contrast to high-level languages, 

indicate explicitly the timing behavior and concurrent connectivity between the logic 

blocks in a device.  However, this form of description represents a lower degree of 

abstraction in comparison to the typical software languages.  The two most representative 

HDLs are Verilog and VHDL [11].  VHDL will be explored further, but additional 

information about Verilog can be found at [12]. 

Very-High-Speed Integrated Circuits Hardware HDL (VHSIC HDL) was created 

as a request from the US Department of Defense to serve as a mean for documentation 

and reference of the ASICs’ structure and functionality found in many of the devices the 

department acquired [11].  VHDL is useful for extracting the parallelism inherent in 

FPGAs.  However, experience with the language and hardware is necessary due to its 

low-level abstraction.  Another benefit of VHDL that attracts hardware developers is its 

standardization.  It is applicable as a general-purpose language that allows the user to 

target a wide range of hardware configurations unlike some of the C-to-HDL compilers 

that are developed for a specific system.  A big disadvantage of programming with 

VHDL is the time required to create test benches and obtain simulation results. 
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High Level Languages (HLLs) 

High level languages are programming languages with higher levels of 

abstraction, portability (in most cases) and ease-of-use than their hardware description 

languages counterparts.  They do not, however, guarantee as optimal a solution as HDLs. 

A key distinction between HLL and HDL is the lack of timing in HLLs.  A HDL 

programmer using lower-level language constructs has more control over algorithmic 

development because timing constraints are taken into consideration.  The lower-level 

languages offer direct manipulation and mapping of the hardware resources.  On the 

other hand, someone programming with higher-level languages can focus on the 

algorithm without stressing on timing and hardware architecture.  The tradeoff in the 

design of a product is between the performance (many times with metrics of speedup and 

logic area) and productivity (designer expertise and time of development). 

HLLs facilitate mathematical computations with a range of data types, like the 

summation of an integer and a floating point type using implicit type casting.  Casting 

operations are not so readily done with strongly typed HDLs.  Another incentive for HLL 

usage is their fast prototyping capabilities which frees up time for the designer to explore 

different algorithms and techniques. 

 Until recently, floating-point implementations in FPGA hardware have not been 

practical due to the large consumption of chip resources.  For this reason, fixed-point and 

integer representations dominate FPGA-based application.  The most significant 

drawback of these representations is their inability to provide a large dynamic range for 

applications such as pattern recognition, robotics and target acquisition applications, 

which are traditionally floating-point-based, but FPGA resource constraints are such that 

fixed-point implementations have been the only practical engineering solution.  Fixed-
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point is a very efficient solution; however, for certain algorithms, the precision may not 

be sufficient.  As device density increases in advanced FPGA devices (e.g. Virtex 5, 

which provides 25 bit by 18 bit multipliers), floating-point data representation and 

operations are becoming easier to implement [13].  

 Commonly used HLL’s include Ada, Prolog, C, C++ and Java.  Of these 

languages, the majority of programmers are familiar with ANSI C, which is the reason 

behind the multiple attempts to create efficient compilers that will translate code written 

in C to a HDL representation that will target hardware devices. 

C-to-Register Transfer Level (RTL) Overview 

FPGAs and their in-circuit reconfiguration capabilities have stimulated interest in 

reconfigurable computing due to the potential for significant performance improvements 

in many applications, but the tools used to program and analyze these devices also play 

an important role.  The development and “maturity” of automated tools, first proprietary 

EDA and now C-to-RTL or C-to-HDL compilers, have encouraged a more general 

audience, not just hardware developers, to move towards application development using 

FPGA-based hardware.  EDA tools have been around for a long time, but C-to-RTL 

compilers are a new development. 

The concept of parallel C can be counter-intuitive since ANSI C is an intrinsically 

sequential programming language that does not readily support parallelism.  It is 

necessary to expand the coverage by additional libraries and code that permit standard C 

to be used for designing parallel (multi-processor) applications.  For example, the POSIX 

library provides support of multi-processor threads [4, 14].  An alternative to explicit 

thread-based parallelism is to create a compiler with the specific purpose of squeezing 
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low-level parallelism from code generated with C software.  This alternative is the heart 

of most C-to-RTL compilers. 

C-to-RTL generators take sequential code and combine it with special constructs 

and extensions to identify and generate parallel processes.  These tools allow control over 

the hardware design down to the wire and register level.  The extensions that provide the 

full performance of the hardware are not runnable in the normal development 

environment since the typical microprocessor does not support functional parallelism 

[15].  The additional constructs could be wrapped in #ifdef statements that will make 

them invalid for desktop simulation. 

Currently available C-to-HDL compilers, covering open source and commercially 

licensed, include: Nallatech’s DIME-C [2], Impulse Accelerated Technology’s Impulse C 

[4], National Semiconductor’s NAPA C [16], Mitrionics’ Mitrion-C, SRC’s Carte, 

Mentor Graphics’s Catapult-C, Celoxica’s Handel-C, Los Alamos’s Trident compiler [2, 

3, 12, 17].  The C-to-HDL tools that target FPGAs do not conform to ANSI C standards. 

Each of these tools uses a version of the C that differs from the ANSI standard, some 

vary considerably more than others.  DIME-C, for example, represents a subset of C, 

while Impulse C and Handle C are supersets of C with proprietary additions.  Others, like 

Mitrion-C, diverge significantly from the typical C programming format.  

Regardless of the compiler used, it is never as simple as creating a typical ANSI 

C program.  In order to obtain optimal performance some thought must be given to 

specific algorithmic development techniques that support parallelism [2, 4].  A C-to-RTL 

compiler generates an intermediate code (HDL) that will then pass through a second 

compilation that produces the synthesis files to be mapped and routed onto the FPGA 
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logic fabric.  Both the initial and second compilation processes have been automated over 

the years.  

FPGA-based solutions can exploit an application’s inherent parallelism; with the 

added benefit that hardware acceleration mechanisms, such as pipelines and special 

purpose computational hardware, can be generated for increased throughput.  Therefore, 

designing an algorithm for maximum parallelism should lead to a near-optimal outcome 

since performance is greatly impacted by available resources and the parallelizability of 

the application.   

Even though most compilers do some kind of automatic optimization, the 

programmer needs to provide adequate structures to maximize parallelism.  To achieve a 

hardware acceleration of significant magnitude certain C programming techniques need 

to be applied that take into consideration the fundamental differences between a 

microprocessor and a FPGA [2, 18].  For example, if multiple accesses to memory, for 

reading/writing data from/to a block array, are performed in the original C code, then 

constraining the number of accesses to memory can significantly improve speedup 

because only one value can be read or written to memory in a single cycle.  Alternatively, 

the array can be partitioned into multiple smaller arrays which will be implemented as 

separate physical memory structures within the FPGA, allowing parallel memory 

accesses.  Also depending on the algorithm and the resources available a loop might 

prove more efficient than repeated macros [18].  In hardware, calling macros multiple 

times corresponds to duplicating the macro resources numerous times, which greatly 

increases the risk of exhausting limited logic resources. 
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Impulse C Programming Environment 

 Impulse C is a C-to-HDL compiler from Impulse Accelerated Technology (IAT), 

which was founded in 2002.  The origins of this compiler can be traced back to the 

development of the Streams-C compiler research project at Los Alamos National 

Laboratories.  However, a major difference between IAT’s compiler and Stream-C is its 

compliance with ANSI C standards.  Impulse C code can be written and debugged in any 

ANSI standard C environment, including Microsoft Visual StudioTM and GCC-based 

tools.  This is consistent with Impulse-C’s aim to bridge the hardware domain gap for 

software programmers.  The Impulse C programming language is part of the 

CoDeveloper tools that facilitate the creation of mixed software/hardware programs.  The 

Impulse C IDE comes with tutorials that help the developer explore the compiler features 

and support levels available for various hardware targets.   

Impulse C can be used for FPGA-accelerated computing with an embedded or 

external CPU host or to simply generate HDL modules.  In our case, the interest is on 

hardware acceleration for an embedded processor.  Impulse C contains API function 

libraries for parallel programming that fit into the standard C syntax.  It can be used for 

system-level parallelism by taking advantage of the CSP programming model that 

underlies its parallelism identification capabilities.  This tool provides the easy 

development of independent processes that can be interconnected to exploit the parallel 

execution of code as independent hardware blocks [14].  Applications and research areas 

where Impulse C have been used by software programmers include: lithographic aerial 

image simulation [19], boxcar filter and matrix-vector product [20], high-performance 

radix-2 FFT [21], image processing, digital signal processing, encryption algorithms, 

financial computing, and other arenas [4]. 
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The essentials of an Impulse C program are processes and streams.  Processes 

represent synchronized and independent sections of code that run concurrently, and 

streams provide the communication pathways between processes.  These streams are 

executed as dual-clock FIFO interfaces in hardware and allow the parallelizability of 

code without having to resort to lower-level abstraction, or cycle-by-cycle 

synchronization.  Impulse C also offers alternative programming modes such as shared 

memories and signals [4, 14].  The benefits of one mode over another are application 

specific.  For example, programs that require multiple transmissions of fixed-size data 

packets, minimum signal synchronization, and no inter-processing dependencies are ideal 

for stream-based data exchanges between processes.  Streams are always the choice when 

the data are being consumed as fast as it is produced or sent in a “sequential” format 

between hardware modules.  However, shared memory is preferred for arbitrary accesses 

of data from one hardware process to the other [4].   

Figure 5 shows Impulse C’s design flow chart, indicating the steps from initial 

design to final implementation of an algorithm. For Impulse C and similarly for other C-

to-HDL compilers, it is necessary to write and structure the program with parallelism in 

mind to obtain optimal performance.  Once the design phase is completed, the stages of 

partition and simulation follow.  For the partition phase, the source code is usually 

divided into a software component and a hardware component, where the software is in 

charge of input and output interfacing and the hardware portion is designated for the 

complex calculations.  The software and hardware components consist of one or more 

processes that execute concurrently.  In the stage labeled (desktop) simulation, the source 

code is debugged using standard C IDEs (Visual StudioTM, CodeWarriorTM, GCC, etc,) 

or with the Impulse C IDE.  Upon finishing partition and simulation, the C-to-HDL 
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compiler is called to automatically generate optimized VHDL code corresponding to the 

HW process and the appropriate interfaces for both the software and hardware 

components.  The developer then uses platform-specific tools to synthesize the VHDL 

code.  After synthesis, constraints and logic are mapped onto the target resources and a 

configuration bit stream is generated.  In our case, the Studio Design Kit (EDK) from 

Xilinx generates the netlist and bit stream file to reconfigure the FPGA on the XUP 

Virtex II pro board.  The user needs to specify certain synthesis tool configuration 

parameters such as bus sizes, port widths, and memory addresses that are applicable to 

the target platform. 

 

 

Figure 5: Impulse C Design Flow Chart 
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This C-to-HDL compiler provides a unified language to describe both software 

and hardware, which speeds up the development and verification of intellectual property 

or IP blocks and creates a design flow that enables embedded software engineers to 

develop complicated hardware components.  Impulse C also supports, with some 

restrictions, the integration of lower-level code through the use of the pragma CO 

IMPLEMENTATION.  The attached hardware code must be for internal computation 

only, i.e. the generated hardware cannot access external ports defined in the top level 

module.  Contrary to typical software processes that permit only a single memory data 

access per transaction, hardware allows multiple reads and writes to memory within one 

cycle.  In Impulse C, this advantage is exploited by performing array splitting.  For this, 

the Impulse C tools can create separate memory blocks, each connected for local reads 

and writes by local hardware.  This is useful for simultaneous computing or parallel 

processing. 

Impulse C also supports the IEEE standard floating-point data types that are 

appropriate for applications with a wide range of data magnitudes and incumbent 

accuracy requirements.  Our neural network application benefits from this support 

because the inputs, weights and outputs are of continuous real data.  With Impulse C, 

single and double precision floating-point data types are available by simply selecting a 

configuration option in the IDE Project menu.  The Impulse C CoDeveloper tool creates 

the automatic link to the Xilinx CoreGen floating-point libraries necessary for the 

floating-point operations [22].  In the code itself the user simply needs to instantiate a 

float or a double type.  However, it is important to make sure that the synthesis tool 
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supports floating-point hardware inclusion.  For example, only Xilinx EDK versions 9.1 

and higher fully support floating-point inclusion.  

The programming model based on streams fits very well to the development of 

algorithms in a FPGA-based platform that includes a dedicated coprocessor.  In the 

Virtex II Pro, two hard core processors, PowerPCs, are embedded in the FPGA chip.  The 

Impulse C compiler extracts low-level parallelism from each of the application’s 

identified parallel processes and then automatically creates the inter-process 

communication interfaces that are necessary for the development of a joint 

hardware/software system.  All this processing is transparent to the programmer’s 

viewpoint.  However, Impulse C’s automatic C-to-VHDL code generation has limitations 

that become visible when external hardware resources are interfaced with the FPGA.  

The CoDeveloper tool has the capability to manage the external resources, but not 

necessarily with optimal performance, such as access to the DDR SDRAM.  Fast on-chip 

Block RAM (BRAM) is a limited resource.  Many applications will not fit into the 

available BRAM.  A typical solution is to use the BRAM for booting the PowerPC 

processor prior to executing the application program stored in DDR RAM.  Usually the 

external DDR memory is connected to the PowerPC via the main bus, PLB, because that 

it provides fast memory access.  Impulse C currently does not support PLB access to the 

DDR SDRAM.  This external memory resource must be accessed via the slower OPB 

bus which connects to the main bus using a plb2opb bridge core.   

In addition to the Impulse C compiler, CoDeveloper tools’ include CoMonitor 

Application Monitor for graphic visualization of interaction between processes as well as 

the Stage Master Debugger (SMD) that provides hardware simulation in a cycle-by-cycle 

format.  The Stage Master optimizer provides information about pipelines performance in 
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terms of the number of instruction stages, pipeline latency (in clock cycles) and the clock 

rate (in clock cycles).  Impulse C groups code into operational segments to form a stage 

that executes in a single clock cycle.  

Cycle Accurate Hardware Simulation in Impulse C can be realized in three ways: 

first, by using the hardware generated code, to create a VHDL test bench simulation; 

second, use the Stage Master Debugger tool to view a cycle-accurate C-language HDL 

representation; and third, run the synthesis tool and perform netlist simulations [4].  

The Stage Master Debugger allows the user to step through each stage or cycle as 

in any common debugging environment, with the difference being that the designer can 

not step into a stage to process a single instruction separately.  Figure 6 shows the main 

display of the Stage Master Debugger tool. 

 

 

Figure 6: Cycle Accurate C Representation of HDL Code (3-process Neural Network) 
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The Stage Master Explorer (SME) generates a dataflow diagram that includes all 

hardware required elements.  This tool also provides information about code segments 

and execution times in clock cycles.  At the left side of Figure 7 is the C representation of 

the VHDL code generated by the compiler and at the right side is the C source code.  

Figure 8 shows a dataflow view of the code described in Figure 7.  This graphical tool 

facilitates the analysis of each hardware process in the application by demonstrating the 

effectiveness of the compiler in parallelizing the original C source code. 

 

 
 

Figure 7: C representation of HDL code and Impulse C Compared 
 

 

Figure 8: Stage Master Dataflow Graph for Neural Network Node 2 
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To obtain execution times for the neural network and compare with those 

obtained by the SMD tool, an OPB timer core, available for the XUP Virtex II Pro 

platform, can be used.  The implementation of the timer is simple once the module is 

initialized.  The timer can be reset before starting computations and then read via the 

get_value function at completion.  The timer tick rate is linked to the OPB_Clk.  Even 

though it might not be significant, calling the function to read the timer/counter also takes 

a small amount of time that will be included in the value returned from the counter.  

Therefore, it is important to first determine what value is obtained by resetting the timer 

and then immediately reading the timer.  An accurate time can then be obtained by 

subtracting this time from the value read. 

 
Comparison between C-to-HDL Compilers 

 Multiple C-to-HDL compilers have been developed, but all of them have a 

distinctive optimization technique.  In the case of Handel-C, parallelism is achieved by 

explicitly sectioning the code and using extensions that tell the compiler to generate 

parallel hardware, while Dime-C and Trident do not require an open notification for code 

optimization but proceed to identify occasions for parallelism and pipelining 

automatically [2, 13].  Impulse C represents a “middle ground”, the compiler generates 

code with a certain degree of automated optimization, but also uses pragmas to explicitly 

convey pipelining and loop unrolling.  There is no need to insert “par” or other RTL-

equivalent statements to produce parallel logic.  The CoDeveloper tool can extract some 

level of parallelism by grouping (staging) data independent code into blocks that can be 

executed simultaneously in a single clock cycle, keeping in mind that this can greatly 

increase the amount of hardware required as the block size increases in length. 
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In El-Araby, et al. [17] we see Impulse C compared to Mitrion C and DSP Logic 

in the Cray XD1 environment.  In four different applications, the Impulse C 

implementation was not the most efficient, but the learning curve was not as steep as the 

other C to HDL tool, keeping Impulse C competitive for rapid prototyping.  The cost for 

the Impulse C tools and hardware platform is much cheaper than the competition, some 

of which are as much as 15 times greater. 

Another difference among C-to-HDL generators is their support for floating-point 

data types.  Not all C-to-HDL tools accept floating-point data, although most provide 

some support.  Handel-C and Impulse C can provide floating-point support based on the 

presence of specific hardware modules on the target platform, while other tools such as 

Trident, Dime-C and Carte C provide floating-point support based on libraries which 

implement specific floating-point operations independent of target hardware [2, 4]. 
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CHAPTER FOUR 

Neural Network 
 
 

Concept, Structure, and Applications 

A computation intensive application is chosen to investigate the efficiency of 

Impulse C and the FPGA’s potential for reconfigurable computing and intrinsic 

parallelism.  A trained artificial neural network is determined to be a good fit for the 

evaluation, especially since there are some prior results available to facilitate the 

comparison.  Artificial Neural Networks (ANNs) are based on concepts derived from the 

structure and activity of biological neurons.  Figure 9 shows an example of a simple 

neural network with 3 hidden layers.  

 

 
 

Figure 9: Neural Network Structure  
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The network can “recognize” patterns and relationships between a set inputs and 

parameters derived from training.  Once trained with old data, the network can make a 

conjecture of the outcomes of new inputs.  In order to predict the outputs, the inputs (iB0 B, 

i B1, BiB2 B, … i BnB) are multiplied by a set of weights which are then summed and passed through 

a non-linear ‘squashing function’ (fBs B) at which point one node (o Bj B) of that hidden layer is 

formed as seen in Figure 10.  This procedure is followed for all nodes of a particular 

layer.  Once a layer’s computation is finished, its nodes’ outputs become the inputs for 

the calculations of the next layer.  The process continues until reaching the layer prior to 

the outputs, in which the squashing step is omitted in the sonar application.  The 

squashing function is a key part of the process since it accounts for non-linear 

relationships.  For additional explanations on the nature and mathematical background 

see [23]. 

 

 
 

Figure 10: Single Node Computation  
 

Some of the areas where neural networks are used include: pattern recognition in 

power systems [24], image processing, medical diagnosis [25], financial predictions, data 

mining, sequence recognition, gaming, system identification and control [26]. 
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Previous Work Related to FPGA Implementation of ANNs 

ANNs can be characterized computationally as parallel, modular and dynamically 

adaptive models.  The calculations for each node in the same layer are independent; 

therefore, ideally all nodes of one layer can be computed in parallel.  These 

characteristics make them good candidates for FPGA implementation.  The only 

challenge being the limited hardware resources available in one platform to exploit the 

inherent parallelism in FPGAs for networks composed of a large number of neurons.  

Even though the multiplications (inputs times weights) that go into the formation of one 

node are independent, if the reprogrammable hardware does not contain enough 

resources (e.g. sufficient number of multipliers) to perform those computations 

simultaneously, maximum performance can not be achieved.  Nevertheless, significant 

optimization is possible with FPGAs and as technology advances these devices should 

achieve even greater gate densities making them more suitable for such computationally 

intensive applications.  A successful application of an ANN implemented in a FPGA is 

the hand tracking system of Krips, et al. [27].  Real-time performance was achieved by 

limiting the number of inputs, using 16-bits fixed-point data values, and generating 

weights (training coefficients) with a Matlab simulation [27], 

The weights of ANNs traditionally have floating-point data precision, but the 

limitations imposed by the hardware resources have forced engineers to trade precision 

for logic area at the time of implementation.  Nichols, et al. [28] studied the feasibility of 

floating-point arithmetic in FPGA based artificial neural networks using a single FPGA 

and concluded that such implementation is still not feasible and the 16-bit precision, 

which is considered the “minimum allowable precision” to maintain the learning 

capability of the network, provides the optimal solution.  For this reason, ANNs are 
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typically implemented in FPGA employing 16-bit fixed-point precision data 

representation.   

  
Previous Work Related to FPGA Implementation of an ANN Trained to Emulated an 

Acoustic Model 
 
To obtain an accurate comparison, our goal is to implement a neural network 

employed for acoustic undersea identification that was used previously in published 

research at Baylor University, but in this occasion employing Impulse C and XUP Virtex 

II Pro platforms.  This network calculates the signal-to-noise ratio for a sonar system and 

consists of 27 inputs, 1,200 outputs and three inner (hidden) layers with 40, 50, and 70 

nodes correspondingly.  One additional node is added to each layer (input and hidden) to 

provide a bias term that improves the probability of discrimination flexibility.  For 

example, the inputs for the second hidden layer (50 nodes) are the first hidden layer (40 

nodes) plus one additional node, with the value of one, representing the bias term for a 

total of 41 nodes.  All together the total number of multiplications reaches 91940 and 160 

‘squashing’ or activation functions.  It is safe to say that this problem represent a large 

amount of calculation requiring significant computational power.  

This neural network application has been implemented previously in two 

hardware architecture as well as in two programming languages.  The first 

implementation done by Burton Ottewell at Baylor University utilizes the SRC-6e 

platform and the Carte C programming language.  The result was disappointing as the 

implementation ran slower than the equivalent software-only solutions running on a 

Pentium IV processor.  Then, Paul Reynolds, as seen in [1], was able to create a 

significant speedup to the neural network computation using the same platform but using 

VHDL in a parallel implementation.  To further explore the hardware implementation, 
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Stephen Dark employed multiple XUP Virtex II Pro boards and VHDL to implement the 

same neural net.  Through careful VHDL coding and combining three XUP board, 

further performance improvements were obtained by Dark.  The aim of the present study 

is to evaluate Impulse C by implementing the same neural network and platform target as 

Dark and comparing the outcome to the three previous results from Burton, Reynolds and 

Dark.  The results for the previous and current work will be discussed and summarized in 

a later chapter after the implementation and coding techniques are presented.  
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CHAPTER FIVE 
 

Design and Implementation 
 
 

Design and Verification Strategies 
 

Until recently, the implementation of multiple independent floating-point 

operations in FPGA-based hardware was impractical because of the large number of 

gates required.  But advances in logic density and the development of high-level 

development tools have facilitated the use of floating-point data types in FPGAs.  In 

previous implementations of the target neural network application, fixed-point operations 

were utilized to reduce the number of required gates.  However, to evaluate the 

applicability and the ease-of-use of Impulse C the weights were maintained and all 

calculations were performed in floating-point format rather than fixed-point.  The fixed 

point implementation is the benchmark for comparison purposes.  It is important to keep 

in mind that floating-point data representation will require more logic, but the objective is 

to determine the feasibility of the implementation given the availability of the resources 

in a Xilinx Virtex II device. 

To investigate the feasibility of implementing a neural network application of 

twenty seven inputs and one thousand twelve hundred outputs, we started with a small 

network of two inputs and three outputs as seen in Figure 11.  The first step was to divide 

the solution into two processes, a software process and a hardware process.  The software 

process was implemented in the embedded PowerPC and is designated to send inputs to 

and receive the outputs from the neural network.  The hardware process is in charge of 

the computations for the hidden layer nodes and the outputs of the neural network. 
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Figure 11: Small Neural Net 
 

 The hardware process was translated into VHDL code by the compiler.  In this 

process, the inputs received from the software process via shared memory were 

multiplied by the appropriate set of weights.  These products were then summed and 

passed through a squash function, which for our purpose is the logistic function defined 

in Equation 1 and as seen in Figure 12.  
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Figure 12: Logistic curve  
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Impulse C does not implement every transcendental function in the math.h 

library, e.g. the exponential function in Equation 1, but it does provide a pragma structure 

which allows the user to create functions such as power, factorial and absolute value.  

CoDeveloper tools allow you to use the exponential function as defined by the math.h 

library in desktop simulation mode, but during the generation of hardware an error 

message is generated indicating that it does not recognize the function.  With this in 

mind, a Maclaurin series (Taylor series in the case that a = 0) expansion of the 

exponential function as described in Equation 2 was used.  

 

....
!2!1

21
++=

xxe x  Equation 2 

 
Four functions, factorial(), power(), doNothing(), and expo() were created to 

implement  the squashing process’s exponential function.  This method proved to be very 

inefficient, especially in the consumption of logic resources since these functions are 

used more than 150 times in the neural network computation.  The creation of these four 

primitive functions represented a useful exercise to explore the CO primitive pragma.  

The hardware implementation of these functions resulted in extensive use of FPGA slices 

and in slow performance.  The C code used by the hardware compiler for these functions 

is given below. 

double power(float num, int pw) // Power function 
{  
 #pragma CO primitive 
 int counter      = 0;  
 double results = 1; 
 for(counter = 0 ; counter < pw ; counter++) 
  results = results * num; 
 return(results); 
} 

 
float factorial(float num) // Factorial function 
{ 
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#pragma CO primitive   //define function as a primitive 
int counter   = 0;  
float results = 1; 
float max    = num; 
for(counter = 0; counter < max ; counter++) 
{ 
 results = results * num; 
 num--; 
} 
return(results); 

 } 
 

float expo(float num)  //Exponential function  
{   
 #pragma CO primitive 
 int counter   = 0;  
 float results = 1; 
 int max       = 140; 
 for(counter = 1 ; counter < max ; counter++) 

results = doNothing(results)+power(num,counter)/ 
(factorial(counter)); 

 return(results); 
} 
 
float doNothing(float results)  //Do nothing function 
{  
 #pragma CO primitive 
 return(results); 
} 

 
Alternative algorithmic methods such as Lookup Tables, Shift-add, CORDIC, and 

Taylor Segments Approximation (TSA) implementations, were explored by Paul 

Reynolds [1].  Reynolds found that the method with the best tradeoff balance between 

accuracy and logic and memory utilization was the Taylor Segments Approximation.  

This approximation was based on the second-order elements of the Taylor series 

expansion about specific points as indicated by equation 3 [1]. 

 
 000

2
00 )(')(")( yxxyxxyxy +−∗+−∗−=  Equation 3 

 

The coefficients xB0 B, yB0B, yB0 B’, and yB0 B’’ for the TSA with six segments are presented 

in Table 1.  Greater accuracy can be obtained using additional terms. 
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Table 1: Taylor Series Segments and Coefficients [1] 
 

Lower Bound  x0 y0” y0’ y0 
7.293 0.0 0.0 0.0 1.00000000000
4.771 6 0.001220703125 0.00244140625000 0.99755859375
3.317 4 0.008544921875 0.01757812500000 0.98205566406
2.482 2.75 0.045288085938 0.19653320312500 0.93994140625
0.425 1 0.045288085938 0.19653320312500 0.73107910156
0.0 0 -- 0.25000000000000 0.50000000000

 
 

Once a functional model of the small neural network was implemented, the next 

step was to scale to the full-size neural network.  The outputs were read and verified via a 

serial interface connected to an external HyperTerminal application and by reading from 

DDR memory via the XMD window.  When developing the non-optimized neural 

network algorithm, the same double for-loop form was used to compute the hidden layers 

and the output nodes, with the omission of the squashing step for the outputs, as shown 

below. 

   // Compute nodes for the first hidden layer of the small neural net 
   for(k = 0 ; k < 3 ; k++)   
   { 
 for(m = 0 ; m < 2 ; m++) 
 { 
  node1[k]+=INP[m]*weights1[count]; 
  count++; 
 } 
 node1[k]=1/(1+expo(-(node1[k])));  // squashing 
   } 

 
 The neural network calculations were verified during desktop simulation and the 

VHDL code was generated by the compiler.  The first problem encountered when 

synthesizing the VHDL code was resource (logic gates) utilization.  Even though the 

program was functional, it did not fit into the available hardware resources, thus causing 

an overmapping error.  To address the lack of resources, the application was partitioned 

across multiple XUP boards, which was originally considered as an alternative for 
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expanding the resources needed for parallelism.  The computations for the neural 

network were distributed over three boards; one XUP board computed three hidden 

layers nodes and two hundred output nodes and the remaining two boards computed 500 

output layer nodes each.  

 
Communication and Partition between Boards 

 
By taking advantage of the increasing logic density of FPGAs and advances in C-

to-HDL compiler technology, it is our aim to raise the implementation efficiency and 

productivity of computationally intensive algorithms that require significant computing 

power.  One consideration that must be addressed when using clustered FPGA-based 

platforms is the communication overhead created by cluster linkages.  In the case of the 

C-to-HDL tools, most of these compilers facilitate design and prototyping when the 

algorithm fits into one board and the communication protocols are appropriate for single-

board applications.  The process of C to HDL translation in these cases is straight-

forward and well-defined.  The problem arises when the program surpasses the resources 

of one platform requiring additional external resources and interfacing.  

Extensive computational requirements, floating-point data representation, non-

standard communication modules, among other reasons, obligates the designer to deal 

with low-level hardware descriptions to meet the performance constraints of high 

performance computations applications.  Our neural network application shares many of 

these characteristics.  For example, it is implemented with floating-point data, and as 

expected, when implemented in the development platform, the neural net required more 

resources than was available in one XUP Virtex II Pro platform.  In addition, the Aurora 

serial communication protocol was not readily supported by Impulse C, which required 
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HDL coding to generate and customize peripheral hardware to handle data transfers.  The 

data between boards will be sent and received via SATA ports using the Aurora 

Communication Protocol as illustrated in Figures 13, 14 and 15. 

 

 
 

   

 
    Figure 13: Three-Board Partition Version1 

 
 

 
 

Figure 14: Four-Board Partition 
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Figure 15: Three-Board Partition Version 2 
 

 
Our present study used Xilinx IP cores and their corresponding XUP Virtex II Pro 

platform API drivers which can be readily combined with their Impulse C generated 

counterparts.  The Aurora peripherals utilized in this study were modified versions of the 

single platform loop-back Aurora peripheral documented in [29].  The overall interaction 

between the platform boards and the Impulse Core can be seen in Figure 16.  Each 

platform board contains a software process that distributes inputs to the hardware 

processes and an Aurora hardware IP core (light gray boxes) that provides 

communication between the software processes on each board. 

Getting the first two boards communicating correctly represented a significant 

amount of work.  Once a standard transmit/receive protocol was established, mirroring 

the process on the other boards consisted of creating an additional peripheral and 

initiating the communication process.  Currently, serial-based communication processes 

between platforms is handled in software using a master/slave protocol, but it has the 

potential of expanded throughput using threads and multiple processors in a peer-to-peer 

protocol or by moving the protocol in its entirety to hardware.  Communication processes 
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are generally limited only by the hardware constraints of the platform (e.g. number of 

SATA ports or number of transceivers available). 

 

 
 

Figure 16: Neural Network Implementation using Impulse C and Aurora Communication 
 
 

 The communications model chosen for this study was a streaming interface; any 

data written into the transmitter buffer will be transported to the receiver buffer after 

some latency.  A diagram of the AURORA streaming mode indicating the transmitting 

and receiving ports is illustrated in Figure 17.  As soon as the communication channel is 

initialized, it is ready to send and receive data.  When there is no data to send, idle 

characters are transmitted to keep channel open.  

 

 
 

Figure 17: Aurora Core Streaming User Interface [18] 
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 The aurora_link peripheral was generated by the EDK peripheral wizard, which 

creates a generic peripheral with the required wrapper for OPB or PLB bus interfaces and 

the corresponding drivers (written in C).  HDL knowledge is necessary to customize the 

peripheral.  The designer describes with VHDL or Verilog the behavior of the peripheral 

(e.g. defines how ports and signals of the different sub-components interact).  The Xilinx 

Core Generator tool was used to create the aurora_link peripheral which includes two IP 

cores (modules), aurora_stream and fifo_generator_v3_4096 plus user logic to establish 

the communication stream.  Figure 18 shows the top-level structure of the peripheral with 

its specified input and output ports.  

 

 

Figure 18: Aurora_Link Peripheral 
 
 

As seen in Figure 16, the SATA communication system’s structure can be 

characterized as a full-duplex (simultaneous bidirectional), master/slave channel.  Since 
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protocol is needed to synchronize the exchange of data.  The handshake needed to 
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unsigned message signifying ready-to-send, ((Xuint32)0x1234) and waits for a thirty-two 

bit unsigned message indicating ready-to-receive, ((Xuint32)0xABCD) before writing 

data to the outgoing FIFO.  The slave receiver, on the other hand, waits for a ready-to-

send message before it sends the ready-to-receive acknowledgement and begins polling 

the receive FIFO for incoming data.  In the case of slave-master connection, the ready-to-

send message is ((Xuint32)0x9876) and the ready-to-receive code is ((Xuint32)0xFEDC). 

 An alternative method of synchronization uses hardware interrupts.  Each aurora 

peripheral possesses interrupt capability, which can be used to indicate when it is ready 

to receive and when it is ready to transmit.  All of these interrupts are handled by the 

OPB interrupt controller (OPB_INTR) core generated by EDK.  The generated C code is 

added to the Impulse C code and combined by the linker-generator to register the 

program’s exceptions and interrupts 

Communicating via streams is easy and straight-forward except for the occasions 

when synchronization is necessary. Data arriving at the receiver can be over-written if 

not read immediately unless the receiver is equipped with a buffer (FIFO) to cache the 

arriving data.  In our implementation, the algorithm sends 32-bit floating-point data 

across AURORA channels via SATA ports.  Each Aurora peripheral has a FIFO attached 

to the receiver and transmitter.  The optimal transfer size for the protocol is 16-bit 

packets, so 32-bit data values are broken into two halves for transmission and 

recombined as 32-bit value upon reception.   

The handshake scheme is straight-forward, the slave board polls for data available 

at the receiving FIFO and check for a ready-to-send message.  If such message is found, 

a ready-to-receive message is sent as an acknowledgment.  After a connection is 

established, the transmitter will send the data accompanied with a ready-to-send code.  
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The receiver will check for the ready-to-send code that validates the data and begins 

accepting data as soon as it is available for as long a data is available in the receive FIFO.  

This handshake protocol fails when a ready-to-send signal is not received or lost, creating 

a block at the receiver.  A similar problem occurs when both the transmitter and receiver 

functions are implemented with a loop that runs for a fixed number of iterations based on 

the number of values to be communicated.  When an unexpected halt in the receiver 

occur, the result is non-terminating loop.  Extracts of C code are shown below: 

/*****************************TRANSMITTING***************************/ 
  AURORA_MGT_mResetWriteFIFO(aurora_mgt_0_baseaddr); 
  AURORA_MGT_mResetReadFIFO(aurora_mgt_0_baseaddr); 
  xil_printf("XUP1 --> XUP2: Writing data: \r\n"); 
  do { 
 AURORA_MGT_mWriteToFIFO(aurora_mgt_0_baseaddr, RdySend); 

AURORA_MGT_mWriteToFIFO(aurora_mgt_0_baseaddr, RdySend); 
  

while(AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr)) 
  {  } 
 temp2 = AURORA_MGT_mReadFromFIFO(aurora_mgt_0_baseaddr); 
    } while (temp2 != RdyRec); 
 
  // Acknowledgement received, start sending data  
  for(i = 0; i < 100; i++) { 
      AURORA_MGT_mWriteToFIFO(aurora_mgt_0_baseaddr, testing); 
      AURORA_MGT_mWriteToFIFO(aurora_mgt_0_baseaddr, (     
         (short*)&floatArray[i])[0]); 
 AURORA_MGT_mWriteToFIFO(aurora_mgt_0_baseaddr, (     
         (short*)&floatArray[i])[1]); 
  } 
  
/***************************** RECEIVING *****************************/ 
  xil_printf("  Receive data in the AURORA_MGT_0 peripheral: \r\n"); 
  do{ 
     AURORA_MGT_mResetWriteFIFO(aurora_mgt_0_baseaddr); 
     AURORA_MGT_mResetReadFIFO(aurora_mgt_0_baseaddr); 
     i = 0; 
     do{ 
    while(AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr)) 
      {   } 
    temp = AURORA_MGT_mReadFromFIFO(aurora_mgt_0_baseaddr); 
  } while (temp != RdySend); 
   
     if (temp == RdySend) //RdySend received, send acknowledgement  
   AURORA_MGT_mWriteToFIFO(aurora_mgt_0_baseaddr, RdyRec); 
    
     while(AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr)) {  } 
     if(!AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr)) 
       receiving = AURORA_MGT_mReadFromFIFO(aurora_mgt_0_baseaddr); 
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     while (i < 100 ) {  //Read until reached # of expected inputs 
   while(AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr)) {  } 
      if(!AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr)) 
      receiving = AURORA_MGT_mReadFromFIFO(aurora_mgt_0_baseaddr); 
   if(receiving == testing){ 
      if(!AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr)) 
    ((short*)&floatArray[i])[0] =  
          AURORA_MGT_mReadFromFIFO(aurora_mgt_0_baseaddr); 
  if(!AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr)) 
      ((short*)&floatArray[i])[1] =  

  AURORA_MGT_mReadFromFIFO(aurora_mgt_0_baseaddr); 
  i++; 
   } 
     } 
 } 
 

The difficulty with a polling mechanism is that an end-of-stream (eos) is required 

to indicate the end of the data sequence transmission and to ensure a complete transfer at 

the receiver.  In the alternate implementation, an eos message was sent after the last valid 

data value.  The result was that all available data was read, but not all the information 

was correct.  Upon missing the ready-to-send message the data that follows is not read 

until there is a new ready-to-send flag.  The eos method provided a way to check which 

sent data value was not received, but it does not stop the transmission; the net result 

being loss of data on the channel.  Below is the code for transmitting and receiving with 

an eos message: 

  // handshaking messages 
  RdySend   = (Xuint32) 0x1234; 
  RdyRec   = (Xuint32) 0xABCD; 
  eos_sig    = (Xuint32) 0x3399; 
 
  /***************************TRANSMITTING****************************/ 
  printf("XUP1 ->XUP2: Writing data:\r\n"); 
  do { 
        AURORA_MGT_mWriteToFIFO(aurora_mgt_0_baseaddr, RdySend); 
   while(AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr)) 

{  } 
   temp2 = AURORA_MGT_mReadFromFIFO(aurora_mgt_0_baseaddr); 
  } while (temp2 != RdyRec); 
  
  // Once the RdyRec acknowledgment is received, send data 
  for(i = 0; i < 500; i++) { 
  AURORA_MGT_mWriteToFIFO(aurora_mgt_0_baseaddr, RdySend); 
  AURORA_MGT_mWriteToFIFO(aurora_mgt_0_baseaddr,  

((short*)&floatArray[i])[0]); 
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  AURORA_MGT_mWriteToFIFO(aurora_mgt_0_baseaddr,  
((short*)&floatArray[i])[1]); 

  } 
 
  /*****************************RECEIVING*****************************/ 
  printf("  XUP2 <- XUP1: Reading data: \r\n"); 
  do { 
   while(AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr)) 
   {   } 
   temp = AURORA_MGT_mReadFromFIFO(aurora_mgt_0_baseaddr); 
  } while (temp != RdySend); 
  
  // RdySend received, send acknowledgement, RdyRec 
  if (temp == RdySend) 
 AURORA_MGT_mWriteToFIFO(aurora_mgt_0_baseaddr, RdyRec); 
   
   while (index < 501 && (temp != eos_sig)) { //Read until eos received 
  index++; 
 
 // read accompanying data only if a RdySend is read first 
      if(temp == RdySend){ 
    if(!AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr)) 
  ((short*)&floatArray[i])[0] =  
    AURORA_MGT_mReadFromFIFO(aurora_mgt_0_baseaddr); 
    if(!AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr)) {}; 
  ((short*)&floatArray[i])[1] =  
                  AURORA_MGT_mReadFromFIFO(aurora_mgt_0_baseaddr); 
    i++; 
      } 
 else {  
    // mark all the locations where a RdySend was not read 
    missSpot[countermiss] = index; 
    countermiss++; 
 } 
 
 // read FIFO, reading will be check against RdySend message 
 while(AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr)) 
 {  } 
 if(!AURORA_MGT_mReadFIFOEmpty(aurora_mgt_0_baseaddr)) 
    temp = AURORA_MGT_mReadFromFIFO(aurora_mgt_0_baseaddr);  
  } 
 

The fundamental cause for the data loss can be attributed to delays and 

synchronization mismatches caused by automatic clock compensation.   The Aurora 

protocol generates synchronization messages to prevent timing mismatches between the 

receiver and transmitter clocks.  These clock compensation messages have the highest 

priority in the communication and can interrupt the flow of data.  To verify the effect of 

clock compensation signals, a loop back test between transmit and receive ports on the 

same board was performed.  The test showed that the data values could be lost, especially 
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in the transmission of long sequences.  A second test was performed with no clock 

compensation module, which resulted in a successful transmission and reception of data.  

Clock compensation is provided to ensure clock synchronization between boards at the 

time of transmission.  Removing this module for the multi-board system is not a 

recommended option, because the clock rate of a particular board might vary enough to 

adversely affect communications between boards.  For the large quantity of data being 

sent, for example 500 floating point values, it is reasonable to believe that receiver and 

transmitter clocks may vary significantly during the entire transmission duration.  We 

were able to eliminate the clock compensation module for the loop back case for two 

reasons, first because we made sure that all data was being read until reaching an eos 

(end-of-stream) and second by counting the data received.  An alternative is to modify 

the low-level clock compensation module to eliminate the conflict between the clock 

compensation messages and the data transfers.  

 The initial non-optimized serial communication protocol was very conservative 

and redundant.  The slow communication rate resulting from the Aurora peripheral 

interface and the PowerPC through the OPB only added to its inefficiency.  A RdySend 

message preceded each 32-bit value transmitted to ensure correct data recombination.  

This choice was safe, but increased the execution time of the application.  Instead, a new 

strategy was implemented to mark the start of the transmission stream (sos), which would 

be sufficient to maintain the correct order for data recombination.  Table 2 show the cycle 

clocks saved when switching from the RdySend transmission strategy to a single sos 

message option for communication synchronization. 
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Table 2: Timing Results Comparing Different Synchronization Schemes 
 

RDY_SEND EOS_SOS Difference 
Section 

Clock Cycles Clock Cycles Clock Cycles

200 Outputs received 461,215 461,346 -131 

Transmit 71 nodes to XUP 1 532,896 512,171 20,725 

Transmit 71 nodes to XUP 2 600,832 562,818 38,014 

1 HS after Out ready 1,421,838 1,446,855 -25,017 

500 outputs received 2,647,288 2,275,368 371,920 

Next 500 outputs received 4,110,796 T3,552,830T T557,966TTT 

 

Below is the code for transmitting and receiving data between boards using a sos, 

RdySend/RdyRec handshake and eos messages. 

/************** TRANSMITTING to SLAVE BOARD 70 NODES **************/ 
do { 
   //Send Rdy to Send message and wait for responses 
   AURORA_LINK_mWriteToFIFO(aurora_link_0_baseaddr, RdySend); 
 while(AURORA_LINK_mReadFIFOEmpty(aurora_link_0_baseaddr)) 

{  } 
temp2 = AURORA_LINK_mReadFromFIFO(aurora_link_0_baseaddr); 

} while ((temp2 != RdyRec) ); 
 

// Acknowledgement received, start sending data, send sos sig first 
AURORA_LINK_mWriteToFIFO(aurora_link_0_baseaddr,sos_sig); 
 
for(index = 0; index < 71; index++) { 

  AURORA_LINK_mWriteToFIFO(aurora_link_0_baseaddr,  
((short*)&tmp3[index])[0]); 

  AURORA_LINK_mWriteToFIFO(aurora_link_0_baseaddr, 
((short*)&tmp3[index])[1]); 

} 
 

// Send end of stream (EOS) 
AURORA_LINK_mWriteToFIFO(aurora_link_0_baseaddr, eos_sig); 

 
  /*************** RECEIVING from SLAVE BOARD 500 NODES **************/ 
  do { 
   while(AURORA_LINK_mReadFIFOEmpty(aurora_link_0_baseaddr)) 
   {   } 
   tempSlv = AURORA_LINK_mReadFromFIFO(aurora_link_0_baseaddr); 
   } while (tempSlv != RdySendSlv); 
  

  // Acknowledgement received, start sending data  
  if (tempSlv == RdySendSlv) { 
   AURORA_LINK_mWriteToFIFO(aurora_link_0_baseaddr, RdyRecSlv); 
  } 

  // start reading one SOS received 
  while (tempSlv != sos_sigSlv){ 
   while(AURORA_LINK_mReadFIFOEmpty(aurora_link_0_baseaddr)) 



 

47 

   {  } 
   tempSlv = AURORA_LINK_mReadFromFIFO(aurora_link_0_baseaddr); 
  } 
  // Read FIFO until EOS 
  while ((tempSlv != eos_sigSlv)) { 
     while(AURORA_LINK_mReadFIFOEmpty(aurora_link_0_baseaddr)) 

  {  } 
   // Floating point data need to split into 2 half 
   if(!AURORA_LINK_mReadFIFOEmpty(aurora_link_0_baseaddr)) 
           tempSlv = AURORA_LINK_mReadFromFIFO(aurora_link_0_baseaddr); 

  ((short*)&inputsSlv[iSlv])[0] = tempSlv; 
   if(!AURORA_LINK_mReadFIFOEmpty(aurora_link_0_baseaddr))  
      tempSlv = AURORA_LINK_mReadFromFIFO(aurora_link_0_baseaddr); 
       ((short*)&inputsSlv[iSlv])[1] = tempSlv; 
       iSlv++; 
  } 
 
 

Neural Network Serial Implementation 
 

Except for the partition of source code into hardware and software processes, the 

initial benchmark test was the execution time and logic resources used for the neural 

network forward computations with no optimization or parallel-like code enhancements.  

The first step was to write a program in ANSI C that computed each of the hidden layers 

and the corresponding outputs.  For the example seen in Figure 16, the inputs A and B 

are employed to compute the first hidden layer nodes, C, D and E.  In a serial 

implementation, one computation is performed at a time.  First, input A is multiplied by a 

weight; second, the product is added to a temporary value, third input B is multiplied by a 

second weigh, and then that product is accumulated to the previous value.  If there were 

other inputs, these would be multiplied by the associated weights and accumulated.  At 

this point, the accumulated value is squashed to form the output at node C.  This 

sequence of steps corresponds to the numerical order displayed in Figure 19.  The same 

procedure is followed for the other nodes.  The point of this illustration is to show that, 

serially, one computation is performed at a time and no parallelism is present.  In C code 

these calculations are realized using a double for-loop.   
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Figure 19: First Hidden Layer Computation – Serial Implementation 
 
 

The inner loop generates the multiply and accumulate operations for each node (2 

per node).  The outer loop moves from node to node (C to D to E) and generates the 

squashed output for each node. 

 
CO PIPELINE, CO UNROLL Pragma Directives for Parallelization 

 
Pipelining is applicable when an algorithm within a loop executes in two or more 

cycles per iteration.  For the above example, where a sum and a multiplication operation 

are required to compute the output a node, a pipelined implementation allows the two 

independent computations to be realized concurrently.  After a pipeline latency of 2, the 

multiply and accumulate can calculated in the same clock cycle.  Figure 20 shows the 

pipelined version completing the three node’s calculations five steps earlier.  To generate 

this pipelining behavior in Impulse C, it suffices to insert the CO PIPELINE pragma into 

the main loop of the algorithm.  As simple as it sound, there are also restrictions and 

guidelines for optimal results.  Pipelining applies to an inner loop and CO PIPELINE is 

prohibited for nested loops.  It is also recommended that the pragma be inserted at the top 

of the code block instead of inside the code in which case it will require additional logic 

resource for parallelism, but will not result in significant optimization. 
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Figure 20: First Hidden Layer Computation – Pipelined Implementation 
 

Parallelism can also be exploited at the loop-level by duplicating an operation 

over the span of loop iterations or what is known as hardware-based loop unrolling.  The 

unrolled version of the small neural network example is seen in Figure 21.  In this 

version the multiply and accumulate (MAC) resources were duplicated allowing parallel 

MAC computations.  Instead of computing one product at a time, provided the 

availability of logic (gate) resources and non-data dependencies, multiple multiplications 

can be performed in one cycle.  Similar to the CO PIPELINE pragma, Impulse C has a 

CO UNROLL pragma that automates the unfolding and hardware duplication of the 

targeted loop.  

 

 

Figure 21: First Hidden Layer Computation – Unrolled Implementation 
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If pipelining and loop unrolling increases the performance of the algorithm, 

combining these two strategies creates even higher optimization.  Figure 22 correspond 

to the small neural network implementation with both pipelining and loop unrolling.  In 

this version after a pipeline latency of 1, multiple MACs can be executed simultaneously. 

 

 

Figure 22: First Hidden Layer Computation – Pipelined & Unrolled Implementation 
 

Pipelining and loop unrolling are two typical schemes to obtain parallelism.  

However, there are cases where the optimization is not so readily achieved or when it 

becomes contra-productive due to the excessive resources required or stalls in the 

pipeline flow. 

A neural network application is a good candidate for investigating implementations with 

different levels of parallelism since these compute intensive applications are 

characterized by multiple non-data dependent calculations.  Once the serial 

implementation was completed, the next step was to parallelize each of the double for-

loops structures by inserting the CO PRIMITIVE pragma.  Below is a source code 

fragment for the pipelined hidden layer and output computations (part 1) of the neural 

network. 

   // Pipeline each of the four loops that computes the NN nodes 
 #pragma CO NONRECURSIVE node1 
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 #pragma CO NONRECURSIVE node2 
 #pragma CO NONRECURSIVE node3 
 #pragma CO NONRECURSIVE outputs 
 
 do{ 

co_signal_wait(start,&res); 
co_memory_readblock(memblk,0,INP,27*sizeof(float));  
 
for(k = 0 ; k < 40 ; k++) { 
 for(m = 0 ; m < 28 ; m++) { 

   #pragma CO PIPELINE 
  node1[k] += INP[m]*weights1[count]; 
  count++; 
 } 
 node1[k] = sigmoid(node1[k]);  
} 
 
for(k = 0 ; k < 50 ; k++) { 
 for(m = 0 ; m < 41 ; m++) { 

#pragma CO PIPELINE 
  node2[k] += node1[m]*weights2[count2]; 
  count2++; 
 } 
 node2[k] = sigmoid(node2[k]);  
}  
 
for(k = 0 ; k < 70 ; k++) { 
 for(m = 0 ; m < 51 ; m++) { 

#pragma CO PIPELINE 
  node3[k] += node2[m]*weights3[count3]; 
  count3++; 
 } 
 node3[k] = sigmoid(node3[k]);  
} 
 
 
for(k = 0 ; k < 200 ; k++) { 
 for(m = 0 ; m < 71 ; m++) { 

#pragma CO PIPELINE 
  outputs[k] += node3[m]*weights4[count4]; 
  count4++; 
 } 
} 

 
Ideally, the algorithm for the neural network computations would be realized by 

the code shown above; however, as mentioned earlier, some considerations are necessary 

when parallelizing an application.  The parallelized algorithm was compiled and 

simulated (desktop simulation) and appeared to provide correct results.  However, when 

implemented into the hardware platform, the results were not correct.  When using the 

Stage Master Debuggers (SMD) for a cycle-accurate debugging, it showed erroneous 
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results.  The SMD provided additional information regarding to the source of errors.  It 

showed that data was being read from multiple arrays in the wrong order.  This tool was 

helpful in locating the problem.  One solution for was to explicitly initialize all indexes 

before going into the pipelined loop, for example updating the counter variable in the 

outer loop.  The approach worked for the SMD tool, but when implemented in the XUP 

board, the results were still incorrect.  This highlighted the fact that hardware compiled in 

the cycle accurate debugger is sometimes different than the one synthesized and mapped 

onto the board.  In EDK, although hardware routing was achieved, the complexity of the 

routing and the amount of logic resources required caused timing issues.  To deal with 

these timing issues, the bus clock was reduced from 100 MHz to 50 MHz.  

Different optimization schemes (“test cases”) were explored as part of the 

iterative approach taken to evaluate Impulse C and implement the neural network 

application.  In the first case, mentioned above, there was only a single hardware process 

and one primitive function that computed the hidden layer values and outputs.  Figure 23 

and Figure 24 show the first pipeline case with one hardware process. 

 

 

Figure 23: Case 1 – Two Software Processes and One Hardware Process 

 
In case 1, the multiple array accesses in the computation of each node’s value and the use 

the of high-latency option floating-point pipeline produced a result every 19 clock-cycles.  

 

 
 

Inputs 
(Prod SW) 

H1 – H3 
200 Outputs 

(HW )

Sigmoid 
Function

 
 

Outputs 
(Cons SW) 



 

53 

 

Figure 24: Case 1 – One Software Processes and One Hardware Process 

 
Case 2 exploited Impulse C’s CSP programming methodology.  A different 

hardware process was created for each hidden layer, the sigmoid function and the output 

layer nodes as seen in Figure 25.  

 

 

Figure 25: Case 2a – Two Software Processes and Four Hardware Processes 

 
In case 2a the inter-process hardware communication is via Impulse C streams. 

Case 2a works in simulation, but co_streams are restricted to unidirectional point-to-point 

data flow between processes, which makes case 2a impossible to implement in hardware.  

A desktop software simulation can display proper behavior but fail to enforce the 

required hardware characteristics of Impulse C stream.  To communicate across multiple 

processes, multiple streams are required in a point-to-point schema or additional 

hardware processes are needed as seen case 2b, see Figure 26 below. 
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Figure 26: Case 2b – Two Software Processes and Seven Hardware Processes 

 
 Two main changes took place for case 2b: first, the low-latency option for 

floating-point implementation was set, which reduces the latency from nineteen to eight 

clock cycles, and the second, multiple concurrent hardware processes were used.  These 

changes take advantage of the CSP structure that allows multiple hardware processes to 

execute at the same time.  By employing these changes the total number of clock cycles 

in the pipeline application (CO PIPELINE pragma) was reduced to ~80,000 compared to 

~170,000 required for the non-pipelined implementation on the master platform.  In the 

pipelined version, reducing the output rate to half (8 cycles to 4 cycles) caused twice the 

speedup.  It is important to note that if there are data accesses/updates of array elements 

in the pipeline, a slower clock must be utilized to meet timing requirements.  For efficient 

usage of the pipeline pragma it is important to minimize the data access or pay the price 

by reducing clock frequency which diminishes the benefit of pipelining. 

 The CO UNROLL pragma further improves the design, but is constrained by the 

logic resources of the platform.  Case 3 shows the use of the pragma in the 

implementation of the output layer values.  Figure 27 and 28 illustrates loop unrolling 

process.   
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Figure 27: Case 3 – One Software Process and One Hardware Process Manually Unrolled 

 

 
 

Figure 28: Case 3 – 500 Loop Unrolled into Five Nodes Computed at Once  

 
The loop unrolling feasibility depends on the available resources of the target 

platform.  The more operators that are duplicated, the more hardware resources are 

required for the implementation.  Below is the C source code for the hardware process 

with the pipelining and loop unrolling implementation. 

    // Code to compute NN 500 outputs for slave board XUP2  
  // Exploring CO PIPELINE & CO UNROLL 
 
  #pragma CO NONRECURSIVE output2 
  #pragma CO NONRECURSIVE output3 
  #pragma CO NONRECURSIVE output4 
  #pragma CO NONRECURSIVE output4 
  #pragma CO NONRECURSIVE output 
 
  co_signal_wait(start,&res); 
 
  co_memory_readblock(memblk,35500*sizeof(float),INP,70*sizeof(float)); 
 
 for(k = 0 ; k < 7100; k++) 
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 { 
 #pragma CO PIPELINE 
  test_inp = INP[m]; 
  wei4 = weights4[w]; 
  wei3 = weights3[w]; 
  wei  = weights[w]; 
  wei1 = weights1[w]; 
  wei2 = weights2[w]; 
 
    // Compute 5 output nodes in parallel 
  test2 += test_inp*wei2; 
  test3 += test_inp*wei3; 
  test  += test_inp*wei; 
  test1 += test_inp*wei1; 
  test4 += test_inp*wei4; 
  w++; 
  m++; 
 
      // One node formed 
  if ( m > 70){ 
   output3[count] = test3; 
   output4[count] = test4; 
   output[count] = test; 
   output1[count] = test1; 
   output2[count] = test2; 
   count++; 
   m = 0; 
   test3 = 0; 
   test4 = 0; 
   test = 0; 
   test1 = 0; 
   test2 = 0; 
  } 
 } 
  // write outputs to shared memory for SW process 
  co_memory_writeblock(memblk,400*sizeof(float),output4,100*sizeof(float)); 
  co_memory_writeblock(memblk,0*sizeof(float),output,100*sizeof(float)); 
  co_memory_writeblock(memblk,100*sizeof(float),output1,100*sizeof(float)); 
  co_memory_writeblock(memblk,200*sizeof(float),output2,100*sizeof(float)); 
  co_memory_writeblock(memblk,300*sizeof(float),output3,100*sizeof(float)); 
  co_signal_post(done,count+count2+count3+count4); 
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CHAPTER SIX 
 

Results 
 
 

 In the first serial implementation, with higher latencies and a fast clock option, 

the computation for each node in the first hidden layer requires 607 clock cycles.  Each 

multiply and accumulate (MAC) stage takes nineteen clock cycles while a call to the 

sigmoid function costs seventy-four cycles.  The computation for each node in the second 

hidden layer requires 854 clock cycles and 1044 clock cycles for each node in the third 

hidden layer.  The output layer requires 1350 clock cycles.  These values are greatly 

reduced when choosing the lower latency, slower clock implementation of floating-point 

operations.  The latency is reduced to eight for each MAC operation in the main loop 

bringing the total time for one node for the first hidden layer to 269 clock cycles.   

In the parallelized implementation with pipelining, the computation for each node 

in first hidden layer requires 112 clock cycles due to the rate of four in a pipeline with a 

latency of eight.  The time required for a node to pass through the squashing step (latency 

24, rate 1) can be absorbed in the following node’s computation if a separate concurrent 

process is created.  For the nodes in the output layers, the computations are the same as 

for the nodes of the other layers except for the squashing step, therefore, the timing is 

equivalent as well.  

For the parallelized implementation with unrolling and pipeline implementation 

(feasible only for the output layer computations in our case 3) the timing per node 

computation is similar, but five nodes were computed simultaneously.  However, in order 

to meet timing constraints the bus clock frequency was reduced 50 MHz to achieve the 
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rate of four in the pipeline.  If the 100 MHz frequency is desired, the pipeline rate must 

be eight, in which case the benefit of pipelining vanishes, but the benefit of loop 

unrolling is maintained.  Table 3 summarizes the timing for each node in the various 

layers of the neural network.  The table also includes the ideal timing value for the 

optimally parallelized case. 

 
Table 3: Timing Comparison for One Node Computation 

 

Neural Net 
Layer Operation 

Ideal 
 

(cycles)

Serial 
HL 

(cycles) 

Serial 
LL 

(cycles)

Pipeline 
Rate 4 

(cycles) 

Pipeline& 
Unrolling 
(cycles) 

 

MAC 28 533 225 112 
 

Node in 
Layer 1 

 
Sigmoid 1 74 44 1 

MAC 41 780 329 164 
 

Node in 
Layer 2 

 

Sigmoid 1 74 44 1 

MAC 50 970 109 204 
 

Node in 
Layer 3 

 

Sigmoid 1 74 44 1 

NA 

569 (100 Mhz) Node in 
Output Layer MAC  71 1350 569 284 (50  Mhz) 284/5 = 57 

 
 
A rate of four was the best optimization possible using the current version of the 

Impulse C compiler because of how the algorithm is structured from basic components 

(e.g. summation and multiplication).  The variable, temp, is and accumulator (e.g. it adds 

its previous value to the new product, which for the case of floating-point multiplication 

takes three cycles, and the conditional (e.g. if statement) in the main loop requires one 

cycle; thus resulting in a combined rate of four.  In the Impulse C environment, a new 

execution stage is created for switch-case, conditional statements, and loop access (read 

or write) to memory.  The conditional statement could be avoided if enough logic is 

available to compute one value per clock cycle (e.g. 71 floating-point multipliers for the 

worst case for a maximum of 71 inputs).   
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Table 4 shows the cumulative clock cycles parsed for the different stages of the 

neural network calculations.  The timing results were obtained by reading the OPB timer 

register.  These results points to the communication between boards as the main 

bottleneck.  The Impulse C-implemented algorithm was executed in 64,207 and 34,113 

cycles for the pipelined version with rate eight and four respectively.  The average time 

to send 71 nodes was 54,561 cycles and the average time to send 500 nodes was 858,161 

cycles.  It took more time to send values from one board to another than to actually 

execute the algorithm.  The overall timing for the neural network computation were 

2,305,805 and 2,212,257 clock cycles for the pipelined implementations with rate eight 

and rate four.  The timing improvements from one implementation to the other appear 

insignificant when comparing the overall application execution.  Future improvements to 

the Aurora communications peripheral would better highlight the improvements achieved 

by a parallelized implementation. 

In addition to the significant time required for communication between boards, 

the timing for the internal (same board) shared-memory communication between 

hardware and software processes is also very extensive for memory read and write 

operations.  Currently external memory accesses to the DDR-SDRAM via the slower 

OPB processor bus create considerable overhead.  In Table 4, the timing difference 

between values given in rows 13 through 17 shows the overhead associated with reading 

100 values from shared memory: about 20,073 clock cycles.  
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Table 4: Cumulative Timing Results per Sections in Neural Network Computations 
 

Row EDK - OPB Timer 
Pipeline Rate 

of 8 
(clock cycles) 

Pipeline Rate 
of 4 

(clock cycles) 
1 
 

Impulse C Algorithm Completed (Done signal) 
71 hidden layer nodes (outputs) 64,207 34,113 

2 Receive 71 inputs 74,454 44,461 
3 1st ack to receive (from SLV1) 77,188 47,138 
4 Finished transmitting 71  values 131,276 108,699 
5 1st ack to receive (from SLV1) 133,129 110,942 
6 Finished transmitting 71  values 176,633 170,032 

7 Impulse C Algorithm Completed (Done2 signal) 
200 output layer nodes (outputs) 177,377 NA 

8 Read 200 output from Mem 204,143 NA 
9 XUP 2 receive 71 inputs 329,424 NA 
10 write 71 inputs to share mem 341,526 NA 
11 Send start signal from SW to HW (Impulse C) 393,239 NA 

12 Impulse C Algorithm Completed (Done signal) 
500 output layer nodes (outputs) 442,816 NA 

13 Read 100 output from DDR 466,244 NA 
14 Read 200 output from DDR 490,441 NA 
15 Read 300 output from DDR 514,832 NA 
16 Read 400 output from DDR 539,761 NA 
17 Read 500 output from DDR 563,182 562,650 
18 Receive 500 outputs from XUP 2 1,425,053 1,376,978 
19 Receive 500 outputs from XUP 3 2,305,805 2,212,547 

 

Floating-point data representation and operations are resource hungry, but provide 

a wider range of precision and facilitate the implementation of algorithm by avoiding the 

data type conversion to fixed-point.  As mentioned previously, Impulse CoDeveloper 

automatically generates references to Xilinx COREGen floating-point libraries from C 

language statements and standard float and double data types.  For low-latency floating-

point implementation, the multiplication and addition operators are generated with 

latencies of 3.  For high-latency floating-point implementations, the multiplication and 

addition operators, are generated with latencies of 6 and 11, respectively.  Table 5 shows 
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the XUP Virtex II Pro logic resources required for the implementation of single-precision 

(32-bit) floating-point multipliers and adders with various latencies.  

 
Table 5: Logic Resources Used in the Implementation of Floating-Point Operators 

 
Virtex-II PRO FPGA Resources FPGA Fabric 

Operator Latency Resource Number LUTs FFs Slices 
Multiplier  8 (Max) Logic(no usage) 0 621 687 424 
Multiplier 4 Logic(no usage) 0 589 423 341 
Multiplier 4 MULT18x18 4 177 211 160 
Multiplier 3 Logic(no usage) 0 711 238 374 
Multiplier 3 MULT18x18 4 166 159 129 
Add/Subtractor  13 (Max) Logic 0 560 576 458 
Add/Subtractor  4 Logic 0 521 167 277 
Add/Subtractor  3 Logic 0 511 140 270 

 
 

Our neural network application is a low-latency floating-point implementation.  

Based on the device utilization summary produced by EDK, the logic implementation for 

the VHDL code (generated from C by the Impulse C compiler) that targeted the master 

board (hidden layer and 200 outputs) required 74 multipliers.  From the Impulse C 

compiler tool, the seven hardware processes corresponding to the calculations for the 

master board used 17 floating-point multipliers (32-bit) and 29 floating-point adders (32-

bit).  See Appendix A for more details.  This logic resource report implies that 

MULT18x18 logic blocks were used to implement the floating-point multiplications.  

Multiplying 17 times 4, results in 68 MULT18x18 devices, which added to 6 integer-

based multipliers sums to 74.  Other logic resources, including flip flops (FFs) and look-

up tables (LUTs) are also employed. 

The Virtex II FPGA resources are limited to 34 floating-point multipliers and 

adders if the device resources are not used for other purposes.  For example, FFs and 

LUTs can also be used to implement memory if BRAMs are not available.  Neural 



 

62 

network applications which require large amounts of data storage, preferably in BRAM 

storage for fast access, face a limiting factor when data arrays are implemented using 

LUTs.  The use of LUTs for storage reduces the resources need to implementing floating-

point operators. 

Table 6 summarizes the timing results for the neural network computation using 

different platform architectures and programming languages.  The lowest run-time for a 

Impulse C generated neural network application was 22,125 µs.  Comparisons with the 

timing results obtained from previous implementations were not encouraging.  All but 

one (Pentium 4 floating-point implementation) were implemented using 16-bit fixed-

point computations.  However, factoring out the timing for communication, an execution 

time of approximately 800 µs is a closer match to the other results.  It is also important to 

notice that the floating-point operators are implemented with a latency of three by the 

compiler, which could be reduced further to attain a higher throughput for the pipeline 

and a faster overall execution time.   

 
Table 6: Timing Results for One Pass Forward Neural Network Calculations 

 
Architecture Language Execution Time 

PC – Pentium 4 (1.8 GHz) C      250 µs 
SRC-6E SRC Carte P

TM 
P(parallel)      572.55 µs 

SRC-6E VHDL (serial)      1000 µs 
SRC-6E VHDL (parallel node)      250 µs 
SRC-6E VHDL (parallel input)      15 µs 
XUP Virtex II Pro VHDL (1 board)      15 µs 
XUP Virtex II Pro VHDL (3 boards)      6.7 µs 
XUP Virtex II Pro (Float) Impulse C (3 boards)      22,125 µs 
XUP Virtex II Pro (Float -Ideal) Impulse C (3 boards)      800 µs ** 
XUP Virtex II Pro (Int - Ideal) Impulse C (1 board)      14.1 µs*** 
** 1200 floating-point nodes computed, time does not account for Aurora transmission 
*** 1260 integer nodes computed without squashing function 
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For comparison-purposes, a 16-bit integer implementation with MAC operations 

only (no squashing processing) was implemented using Impulse C with a result of 14.1 

µs.  This result showed that fast implementation of computation intensive applications 

are feasible with Impulse C although limited by the target platform hardware resources as 

well as the application data-representation nature. 

 The floating-point implementations developed in this work showed limited 

usefulness primarily because of the limited XUP Virtex II Pro board resources.  

However, advances in FPGA technology promise higher gate densities in the future that 

will increase their usability for neural net applications or other applications that benefit 

from the larger dynamic range of floating-point computations.  The fixed-point 

alternative was also explored in Impulse C by using macros defined in the compiler’s 

math.h library.  Even though the fixed-point implementation required fewer resources, 

the time spent to develop and simulate the results was considerable.  The conversion 

from floating-point to fixed-point data and operations was not a trivial task, as factors 

such as integer bit-width, faction bit-width, overflow and saturation must be considered 

to obtain useful results.  As an example, a code fragment for the floating-point version of 

the squashing function required one line of code while the fixed-point version required 

seven lines of codes, multiple macros and temporary variables and a more in-depth 

verification for correct results.  Below are the code fragments for each version, floating-

point and fix-point, respectively. 

 // Floating-Point Implementation 
 Node = -y000*((Node-x0)*( Node-x0)) + y00*(Node-x0) + y0;   
 
 // Fixed-Point Implementation 
 subtemp   = FXSUB16(Node,x0,5); 
   mult1temp = FXMUL16(subtemp,subtemp,5); 
 mult2temp = FXMULTS16(y000,mult1temp,12,5,8); 
 mult3temp = FXMULTS16(y00,subtemp,12,5,8); 
 mult4temp = FXMUL16(mult2temp,isnegval2,8); 
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 addtemp   = FXADD16(mult3temp,y0,8); 
 addtemp2  = FXADD16(addtemp,mult4temp,8); 
 
 In the fixed-point implementation, the fixed-width bit field is divided into three 

parts, sign, integer and fraction.  Typically, the sign bit is the most significant bit (MSB), 

followed by the number of bits that represent the integer part of the floating-point number 

and the last portion correspond to the fractional bits.  Because some numbers require 

greater fraction accuracy while others require greater magnitude multiple16-bit fixed-

point formats must be used.  The weights had the form 1s7.8, which correspond to one 

sign bit, seven bits for the integer part and eight for the fractional portion.  The format for 

the hidden layers computations (products and sums) was 1s10.5 while for the output layer 

computations were 1s7.8.  For the sigmoid process, each segment of the TSA had the 

format of 1s3.12.  More details of the implementation are shown in Appendix C. 
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CHAPTER SEVEN 
 

Conclusions and Final Recommendations 
 

Impulse C facilitates the exploration of partitioning an algorithm across multiple 

FPGA-based platforms.  By automatically generating the VHDL code and allowing 

mixed SW-HW codesign and debugging, rapid-prototype-based designs can be quickly 

developed and compared.  Even though the current floating-point implementation results 

were not desirable, increasing the number of platforms from three to fourteen such that 

all 71 floating-point computations could be performed in parallel would reduce the 

overall computation time to approximately 60,000 clocks (4 cycle per FP operation times 

1500 computations) to provide greatly improved performance.  Because each board is 

limited to five floating-point multipliers, fourteen boards would be required for a 71 

multiplier implementation.  Even with a cluster of fourteen boards, the cost of the 

reconfigurable computing machine would be well under $50,000.  However, the 

communication overheard between boards would need to be significantly reduced. 

Impulse C reduced considerably the prototype development time for the neural 

network application, but currently it does not include board-to-board stream libraries for 

communication at the hardware level (e.g. via parallel or serial interfaces).  By extending 

the existing stream libraries with support for board-to-board communication at the 

hardware level, Impulse C  would be a much more valuable tool for a broader range of 

targets and applications because the communication time could be made negligible.  This 

type of support is provided by the SRC-6e/Carte C environment.   
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Even though EDK provides many wizards for peripherals and IP core utilization, 

hardware knowledge is required for the customization of most FPGA generic peripherals.  

Understanding of the functionality and capabilities of the programming environment and 

target platform had a significant impact on each of the design and implementations in this 

study. 

 Impulse C’s iterative approach to optimization and its graphics tools provided a 

convenient way to explore and exploit parallelism.  This C-to-HDL compiler enhances 

design productivity by providing fast HDL code development and easy implementation 

of common applications on widely used standard platforms.  However, the compilers use 

of pipelining can be considered a high-level system optimization rather than a low-level 

one.  Even though pipelining is available, many floating-point pipeline operations 

execute in more that one clock cycle.  One potential improvement to the multi-cycle 

latency of floating-point operations is for Impulse C to allow more control to the designer 

to specify a numeric value latency (e.g. 1, 3, 4, etc) instead of the pre-defined low- and 

high- latency settings. 

For VHDL code generation, a couple of hundreds of lines of C code generated 

multiple pages of VHDL code.  The VHDL code generated is readable and maintains 

most of the variable names, so it is easy to trace back to the original C source code.  

Overall the Impulse C programming environment has the potential to fill the conceptual 

gap between software developers and hardware codesign prototyping.  

The Aurora communication protocol represented the main bottleneck in the 

distributed neural network implementation.  For future optimization a direct Impulse C – 

AURORA compatible interface should be designed and implemented.  This would 

require a more thorough understanding of the hardware platform and the XML language 
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needed to define the platform’s components in a manner such that the Impulse C 

compiler correctly generate the needed code.   A direct hardware communication would 

more than likely speedup the communication between platforms.  
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APPENDIX A 
 

Logic Resources 
 

 
Table A.1: Logic Utilization for Sigmoid Function/Process 

 Sigmoid 1             
(multiple functions) 

Sigmoid 2 (TSA as 
primitive function) 

Sigmoid 3 (TSA as 
hardware process) 

Total Stages 68 90 27 
Operators 2 comparators (32 bit) 1 comparator (2 bit) 2 comparator (2 bit) 

 3 adder/sub (32 bit) 8 comparators (32 bit) 6 comparators (32 bit) 
 1 FP Adders/Sub (32 bit) 3 adder/sub (32 bit) 1 adder/sub (32 bit) 
 1 FP Multiplier (32 bit) 8 FP Adders/Sub (32 bit) 8 FP Adders/Sub(32 bit) 
 1 FP Adders/Sub (64 bit) 3 FP Multiplier (32 bit) 4 FP Multiplier(32 bit) 
 1 FP Multiplier (64 bit)   
 1 FP Divider (64 bit)   

 
 

Table A.2: Logic Utilization for Hidden Layer Nodes Computations 

 NN small NN large (H1–H3) & 200 O 
Total Stages: 105 267 
Operators: 6 comparators (32 bit) 8 comparators (32 bit) 
 14 Adder/sub(32 bit) 17 adder/sub(32 bit) 
 3 Adder/sub(2 bit) 1 FP Adders/Sub(32 bit) 
 7 FP Adders/Sub(64 bit) 4 FP Adders/Sub(64 bit) 
 3 FP Multiplier(64 bit) 4 FP Multiplier(64 bit) 
 2 FP Divider(64 bit) 2 Adder/Sub (6bit) 
  1 Adder/Sub (7 bit) 
  1 Adder/Sub (8 bit) 

 
 

Table A.3: Logic Utilization for Output Layer Nodes Computations 

 NN large 500 Out1 NN large 500 Out2 
Total Stages: 267 267 
Operators: 2 comparators (32 bit) 2 comparators (32 bit) 
 5 adder/sub(32 bit) 5 adder/sub(32 bit) 
 1 FP Adders/Sub(32 bit) 1 FP Adders/Sub(32 bit) 
 1 FP Adders/Sub(64 bit) 1 FP Adders/Sub(64 bit) 
 1 Adder/Sub (9 bit) 1 Adder/Sub (9 bit) 
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APPENDIX B 
 

Software C Source Code for PowerPC 
 
 

Slave XUP - Receiving  
 

// Poll until a ready-to-send message is received from transmitter 
do { 
 while(AURORA_LINK_mReadFIFOEmpty(aurora_link_0_baseaddr)) {  } 
 temp = AURORA_LINK_mReadFromFIFO(aurora_link_0_baseaddr); 
} while (temp != RdySend); 
 
// Acknowledgement received, start sending data  
if (temp == RdySend) { 
 AURORA_LINK_mWriteToFIFO(aurora_link_0_baseaddr, RdyRec);   
} 
// Wait for the start of stream message before receiving data 
while (temp != sos_sig) { 
     while(AURORA_LINK_mReadFIFOEmpty(aurora_link_0_baseaddr)) {  } 
 temp = AURORA_LINK_mReadFromFIFO(aurora_link_0_baseaddr); 
} 
// Read from FIFO while the end of stream message has not been received 
while ((temp != eos_sig)) { 
 while(AURORA_LINK_mReadFIFOEmpty(aurora_link_0_baseaddr)) {  } 
 if(!AURORA_LINK_mReadFIFOEmpty(aurora_link_0_baseaddr)) 
  temp = AURORA_LINK_mReadFromFIFO(aurora_link_0_baseaddr); 
 ((short*)&inputs[i])[0] = temp; 
 if(!AURORA_LINK_mReadFIFOEmpty(aurora_link_0_baseaddr))  
  temp = AURORA_LINK_mReadFromFIFO(aurora_link_0_baseaddr); 
 ((short*)&inputs[i])[1] = temp; 

i++; 
} 
// Data shift scheme to balance the lack of clock compensation module 
// If expected amount of data received, send it to shared memory for NN  
if (i == 71) { 

co_memory_writeblock(memblk, 35500*sizeof(float), inputs, 
70*sizeof(float)); 

} 
else { 
 // If not all data is received, signal an error message 
 if(i < 71) 
 { printf("ERROR \r\n"); } 
 // If additional data (0’s) is received, discard initial data 

else { 
  for (index = 0; index < 70; index++)  
  { input[index] = inputs[i-(72-index)];  } 
 co_memory_writeblock(memblk, 35500*sizeof(float), input, 

70*sizeof(float)); 
 } 
} 
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Slave XUP - Transmitting 
 
// When ready to transmit send ready-to-send until acknowledge receive 
do { 

AURORA_LINK_mWriteToFIFO(aurora_link_0_baseaddr, RdySendSlv); 
 while(AURORA_LINK_mReadFIFOEmpty(aurora_link_0_baseaddr)) 
  {  } 
 temp3 = AURORA_LINK_mReadFromFIFO(aurora_link_0_baseaddr); 
} while ( (temp3 != RdyRecSlv)); 
  
// Send start of stream message (sos_sigSlv)  
AURORA_LINK_mWriteToFIFO(aurora_link_0_baseaddr, sos_sigSlv); 
 
// Send data 
for(indexSlv = 0; indexSlv < 500; indexSlv++) 
{ 

AURORA_LINK_mWriteToFIFO(aurora_link_0_baseaddr, 
((short*)&outpu[indexSlv])[0]); 

AURORA_LINK_mWriteToFIFO(aurora_link_0_baseaddr, 
((short*)&outpu[indexSlv])[1]); 

} 
 
// Send end of stream (eos_sig_Slv) 
AURORA_LINK_mWriteToFIFO(aurora_link_0_baseaddr, eos_sigSlv); 
AURORA_LINK_mWriteToFIFO(aurora_link_0_baseaddr, eos_sigSlv); 
 
/*********************** HANDSHAKING MESSAGES ********************/ 
 
RdySend    = (Xuint32) 0x1234; 
RdyRec     = (Xuint32) 0xABCD; 
RdySendSlv = (Xuint32) 0x9876; 
RdyRecSlv  = (Xuint32) 0xFEDC; 
eos_sig    = (Xuint32) 0x3399; 
eos_sigSlv = (Xuint32) 0x88CC; 
sos_sig    = (Xuint32) 0x259D; 
sos_sigSlv = (Xuint32) 0x43AB; 
 
/*********************** AURORA COMMUNICATION ********************/ 
 
// Outside of process, global pointer and variable 
Xuint32 *aurora_link_0_baseaddr_p = (Xuint32 *) 
XPAR_AURORA_LINK_0_BASEADDR; 
Xuint32 aurora_link_0_baseaddr; 
 
// Check that the Aurora peripherals exist 
XASSERT_NONVOID(aurora_link_0_baseaddr_p != XNULL); 
aurora_link_0_baseaddr = (Xuint32) aurora_link_0_baseaddr_p; 
 
// Reset read and write FIFOs to initial state 
AURORA_LINK_mResetWriteFIFO(aurora_link_0_baseaddr); 
AURORA_LINK_mResetReadFIFO(aurora_link_0_baseaddr); 
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APPENDIX C 
 

Hardware Process C Source Code for the Compiler to Generate VHDL code 
 
 

Hidden Node Formation 
 

void net_run(co_signal start, co_memory memblk, co_stream input_one, 
co_stream output_one, co_signal done) 
{ 
   // variable declarations omitted 
 
   // weights 
   co_int16 Inwei0[40]  = {   0xFD43, 0x0047, 0x0053,
 0x009A, 0x00BE, 0x0140, 0xFFA6, 0x0029,
 0x01DD, 0x0022, 0xFFEF, 0x002D, 0x01ED,
 0x0273, 0x0119, 0x03E7, 0xFF96, 0xFED8,
 0x000E, 0x0055, 0xFF53, 0x00B8, 0x007D,
 0xFFEF, 0x0007, 0x0049, 0xFFC6, 0x0026,
 0xFF3C, 0xFFD6, 0xFF8B, 0x000F, 0x0178,
 0xFF1A, 0xFED1, 0x0205, 0x0012, 0x0076,
 0xFE5F, 0xFDF0}; 

   . 
 . 
 . 

   co_int16 Inwei27[40] = {   0x0DDF, 0xFD62, 0x0C49,
 0xFF67, 0xFDCB, 0xF167, 0x002B, 0xEEC0,
 0xFADF, 0x0032, 0xFF18, 0xF0CD, 0x05BB,
 0xF2E8, 0xF58E, 0xEB76, 0xFFA7, 0xEF26,
 0xFB3B, 0x00A6, 0xF1AC, 0xFD22, 0xF207,
 0x0087, 0xFFE7, 0xF36B, 0xF9B8, 0xFC95,
 0xFF77, 0x00C6, 0xF4F0, 0xF532, 0xF519,
 0xFC3A, 0xEF0B, 0xEFA3, 0xF3D0, 0x0107,
 0xFBEA, 0xF931}; 
 
 co_signal_wait(start,&res); 
 
 co_memory_readblock(memblk,35500*sizeof(int16),INP,27*sizeof(int16))
; 
 
 inp_rec = 0x0000; 
 count   = 28; 
 inp0  = INP[0]; 

   . 
 . 
 . 

 inp27 = INP[27]; 
  
 sum0 = 0; 

   . 
 . 
 . 

 sum27 = 0; 
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   inp_rec = 0; 
   counter = 0; 
 
 co_stream_open(output_one, O_WRONLY, INT_TYPE(16)); 
 
 for (k = 0; k <40; k++) { 
 wei0  = Inwei0[k]; 

   . 
 . 
 . 

 wei27 = Inwei27[k]; 
 
 
 test0  = FXMULT16(inp0, wei0, 8, 5); 

   . 
 . 
 . 

 test27 = FXMULT16(inp27, wei27, 8, 5); 
 
 sum0  = FXADD16(test0,test1,5); 

   . 
 . 
 . 

 sum13 = FXADD16(test26,test27,5); 
 sum14 = FXADD16(sum0,sum1,5); 
 sum15 = FXADD16(sum2,sum3,5); 
 sum16 = FXADD16(sum4,sum5,5); 
 sum17 = FXADD16(sum6,sum7,5); 
 sum18 = FXADD16(sum8,sum9,5); 
 sum19 = FXADD16(sum10,sum11,5); 
 sum20 = FXADD16(sum12,sum13,5); 
 sum21 = FXADD16(sum14,sum15,5); 
 sum22 = FXADD16(sum16,sum17,5); 
 sum23 = FXADD16(sum18,sum19,5); 
 sum24 = FXADD16(sum20,sum21,5); 
 sum25 = FXADD16(sum22,sum23,5); 
 sum26 = FXADD16(sum24,sum25,5); 
 
 // send unsquashed node to sigmoid process 
 co_stream_write(output_one,&sum26,sizeof(int16)); 
  
 noSquash[counter] = sum26; // nosquash value S10.5 
 sum0 = 0; 

   . 
 . 
 . 

 sum27 = 0; 
 
 test0 = 0; 

   . 
 . 
 . 

 test27 = 0; 
 counter++; 

} 
co_stream_close(output_one); 



 

75 

Sigmoid (Hardware Process) 
 

void sig_run(co_stream input_one, co_stream output_one) 
{ 
 do{ 
 float f =0; 
 int isneg  = 0; 
 co_int16 x0   = 0; 
 co_int16 y000 = 0; 
 co_int16 y00  = 0; 
 co_int16 y0   = 0; 
 co_int16 tempNode = 0x0000; 
 co_int16 numNode  = 0x0000; 
      co_int16 subtemp  = 0x0000; 
 co_int16 addtemp  = 0x0000; 
 co_int16 addtemp2 = 0x0000; 
     co_int16 mult1temp= 0x0000;  
     co_int16 mult2temp= 0x0000;  
     co_int16 mult3temp= 0x0000;  
     co_int16 mult4temp= 0x0000; 
 

// Dummy variable represent -1 to temporary change negative  
// inputs to take advantage of odd property of sigmoid function 

 int16 isnegval  = 0xFFE0; // -1.0 in fixed format S10.5 
 int16 isnegval2 = 0xFF00; // -1.0 in fixed format S7.8 
 int16 isnegval3 = 0x0100; //  1.0 in fixed format S7.8 
 

//x0 granularity S10.5 in order to match input for subtraction 
//y0, y00, y000 fixed point format S3.12 nature of coefficients 

 
 co_stream_open(output_one, O_RDONLY, INT_TYPE(16)); 
 co_stream_open(input_one, O_WRONLY, INT_TYPE(16)); 
  

while (co_stream_read(output_one, &tempNode, sizeof(int16)) == 
co_err_none) 

 { 
#pragma CO FLATTEN 

  numNode = tempNode; 
  if ( tempNode < 0) { 
   tempNode = FXMUL16(tempNode, isnegval, 5); 
   numNode = tempNode; 
   isneg = 1; 
  } 
 
  // segment ranges S10.5 
  if(tempNode  < 0x006A) { 
   if(tempNode < 0x004F) { 
    if (tempNode < 0x000E) { 
     y000 = 0x0000; //0 in S3.12; 
     y00  = 0x0400; //0.25 in S3.12; 
     y0   = 0x0080; //0.5 in S7.8; 
     x0   = 0x0000; //0 in S10.5; 
    } 
    else { 
     x0   = 0x0020; //1 in S10.5; 
     y000 = 0x00BA; //0.045288085938 in S3.12; 
     y00  = 0x0325; //0.196533203125 in S3.12;
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     y0   = 0x00BB; //0.731079101563 in S7.8;
    } 
   } 
   else { 
    x0   = 0x0059; //2.75 in S10.5; 
    y000 = 0x0066; //0.024780273438 in S3.12; 
    y00  = 0x00E7; //0.056396484375 in S3.12; 
    y0   = 0x00F0; //0.939941406250 in S7.8; 
   } 
  } 
 
  else {  
   if(tempNode < 0x00E9) { 
    if(tempNode < 0x0099) { 
     x0   = 0x0080; //4 in S10.5; 
     y000 = 0x0023; //0.008544921875 in S3.12;  
     y00  = 0x0048; //0.017578125000 in S3.12; 
     y0   = 0x00FB; //0.982055664063 in S7.8; 
    } 
    else { 
     x0   = 0x00C0; //6 in S10.5; 
     y000 = 0x0005; //0.001220703125 in S3.12; 
     y00  = 0x000A; //0.002441406250 in S3.12; 
     y0   = 0x00FF; //0.997558593750 in S7.8; 
    } 
   } 
   else { 
    x0   = 0x0000; //0 in S10.5; 
    y0   = 0x0100; //1 in S7.8; 
    y00  = 0x0000; //0 in S3.12; 
    y000 = 0x0000; //0 in S3.12; 
   } 
  } 
 
  //sum26=-y000*((sum26-x0)*(sum26-x0))+y00*(sum26-x0)+y0; 
   

subtemp   = FXSUB16(numNode,x0,5); 
        mult1temp = FXMUL16(subtemp,subtemp,5); 
  mult2temp = FXMULTS16(y000,mult1temp,12,5,8); 
  mult3temp = FXMULTS16(y00,subtemp,12,5,8); 
  mult4temp = FXMUL16(mult2temp,isnegval2,8); 
  addtemp   = FXADD16(mult3temp,y0,8); 
  addtemp2  = FXADD16(addtemp,mult4temp,8); 
  if (isneg) 
  {  
   addtemp2 = FXSUB16(isnegval3,addtemp2,8); 
   isneg = 0; 
  } 
  co_stream_write(input_one,&addtemp2,sizeof(int16)); 
 } 
 co_stream_close(output_one); 
 co_stream_close(input_one); 
 } while(1); 
} 
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