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Dense Thin Film Carbon Nanotube Networks

Nikhil A. Ashtekar, M.S.

Committee Chairperson: David A. Jack, Ph.D.

Thin films composed of single-walled carbon nanotubes, enjoy very high ther-

mal and electrical conductivities, well beyond that of polymer matrix composites,

and are very light in weight. Before these materials can experience industrial accep-

tance the underlying mechanisms dictating their performance must be understood.

This research project intends to characterize using a physics based model the bulk

thermal and electrical behavior of a neat carbon nanotube network conditions involv-

ing stochastic distributions of length, diameter, chirality, orientation obtained from

the literature along with theoretical values of the inter-tube distance distribution ob-

tained from in-house studies obtained through MD simulations. The work presents

step by step development of the fully three dimensional model for linear, steady state

loadings. Case studies using models are presented to better understand the depen-

dence of the bulk thermal and electrical conductivity on the nanoscale parameters,

such as bundle length, bundle diameter, orientation, volume fraction. The model is

also used to investigate the sensitivity of the thermal and electrical conductivity on

select stochastic parameters.
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CHAPTER ONE

Introduction

Carbon and Carbon allotropes have attracted a great deal of interest in recent

years due to their unique structure and topology that creates a host of properties in

these allotropes that are unparalleled by most known materials. Carbon nanotubes

are one such allotrope that has caught the attention of researches for about two

decades now. Studies have shown that these tiny quasi-one dimensional structures

have promising properties that have the potential to revolutionize electronics, aviation

and automobile industries. Figure 1.1 shows the thermal transfer between two carbon

nanotubes. Chapters Three to Chapter Six explores the phenomenal properties of

thin film networks composed of these single walled carbon nanotubes. These are

being considered as the building material for the future.

One of the possible areas of application for which these allotropes has been

investigated is the area of electrical and thermal management. Aircraft and satel-

lites often encounter a situation when they have to make a compromise on thermal

or electrical management on account of weight or vice versa. For instance, consider

a case of a satellite revolving around a planet, during its course around the earth,

it undergoes huge temperature fluctuations. When its position is behind the earth,
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HEAT 

FLOW

OVERLAP 

AREA

HEAT 

FLOW
GAP 

SPACE

Figure 1.1: Thermal transport between two carbon nanotubes.
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w.r.t sun, it is subjected to a very low temperature, as earth shields it from the hot

infrared rays emitted from the sun. On the other hand, when it is directly facing the

sun, the temperature raises considerably. This poses a thermal management issue,

for the satellite design engineer. Consider another scenario, where the aviation indus-

try is considering composite materials as an alternative over metallic components for

building the structure of an aircraft, as described in Figure 1.2 due to their superior

properties (high strength and low weight). A major concern with these composite

structure is when the plane is struck by a lightning. The electric charge must be

dissipated as soon as possible before it damages the plane. Carbon nanotube thin

films (also referred to as a nanomembranes), are an excellent option for such a situa-

tions as they enjoy very high thermal and electrical conductivity, well beyond classical

composite products and are very light in weight. Hence, researchers have proposed

coating the surface of the plane with these thin films to protect the inner body of

the plane. Lack of a systematic methodology to determine the nanostructures bulk

Figure 1.2: Layer of thin film CNTs on an airplane made of composite material.
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thermal and electrical response makes employing carbon nanotube networks difficult

for commercial applications, performance predictions and aircraft certification. Ex-

perimentation for various combinations of parameters is expensive, hence a guiding

tool is needed to narrow down the experimental efforts. This research seeks to de-

velop computational simulations to model the thermal and the electrical conductivity

from a steady-state current loading of a macro-scale network of neat carbon nan-

otubes (CNT), and to capture, in a concise numerical model; the dependency bulk

conductivity has on stochastic nanoscale effects.

Through this research endeavor a comprehensive physics based modeling effort

for the thermal and the electrical characteristics of neat CNT thin films is presented

using a 3D approach based off the finite element method. Knowledge of the depen-

dence of bulk conductivity on individual nanostructured parameters will be beneficial

for design, particularly considering the difficulty and expense of nanomembrane fab-

rication. Parameter variability as expected from inconsistencies caused by the man-

ufacturing processes has been incorporated into the physics based model formulation,

and includes; length, diameter, chirality ratios, and orientation of CNTs obtained

from the literature, along with the inter-tube distance distribution obtained from

in-house studies obtained through MD simulations.

The bulk conductivity of a nanotube network is a function of several phe-

nomena of individual SWNT’s such as length, diameter, chirality and deformations

(vacancies and defects etc.) along with their interactions within the network, viz reg-

istry, tube contact angle, area of contact, length tubes in contact, and the orientation

of tubes in a network etc. Figure 1.3 presents a brief overview of the inputs and the

outputs of the model. Studies incorporating these phenomena are available in litera-

ture, but we have yet to find a single study incorporating all of them into a single full
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Figure 1.3: Overview of the model.

scale stochastic simulation based on the experimental simulation characterizations of

the CNT network nanostructures and, in particular, for concentrations well above the

percolation threshold.

1.1 Road Map

The motivation for this work comes from the need for a model to guide in man-

ufacturing as well as the design of equipment with the thin film, and the inability of

current models to accurately describe the conductivity behavior in different circum-

stances. The approach adopted to develop this model is documented in this thesis

as discussed below.

The thesis begins in Chapter Two with a discussion on the history and the

state of the art developments in the field of carbon nanotubes, with a focus on thermal

and electrical conductivity. Chapter Three explains a step by step development of

the 2 dimensional model and the assorted assumptions. The chapter also presents, in
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detail, the physics involved along with the logic and math involved in programming

the numerical model. Once the model is constructed we validated it with a two step

approach, first for accurately implementing the logic and then against experimental

results. The chapter concludes with the limitations of our 2D model and the need of

the advanced, more realistic, three dimensional model. Chapter Four discusses the

development of our 3D model, with the modifications on the boundary conditions and

the validation procedures. The 3D model produces results that were very close to the

real world experimental results. Chapter Five comprises of case studies conducted,

once we were confident of the results generated by the model. The chapter begins

with the determination of the appropriate dimensions for the representative element.

This chapter also includes case studies on the length, the diameter and the orientation

dependence on both the thermal and the electrical conductivities. The case studies

presented will be beneficial to a design engineer or a manufacturing engineer dealing

with high volume thin film carbon nanotubes. Chapter Six presents two sensitivity

studies. The first one is the sensitivity of electrical conductivity to the dimensions

of the representative element, and the second with the sensitivity of the thermal and

the electrical conductivity to the variations in the weibull distribution parameters for

diameter and length provided by Yeh [1] from her experimental SEM studies. Finally,

in Chapter Seven we conclude with recommendations for further improvements on the

model to improve the accuracy in the predicted results.
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CHAPTER TWO

Carbon Nanotubes: A Brief Overview

Discovery of carbon nanotubes by Sumio Iijima [2] laid the foundations for the

research of this novel material, which is predicted to be a material for the future.

Since Iijima’s discovery a lot of research has gone into investigating its outstanding

structural, electrical and thermal properties. Even two decades since the discovery

CNTs, they are still not used extensively on a commercial scale. The reason being the

difficulty in the characterization on such a small scale, and predicting their behavior

on a macro scale. Also, the unavailability of a cheaper manufacturing alternative

discourages large scale production and application. This chapter presents a brief

account on the history of carbon nanotubes and the current state of the art of these

nano materials.

2.1 History

Sumio Iijima [2], in the year 1991, observed multi walled nanotubes formed in

a carbon arc discharge. Since then, there has been extensive work in studying their

unique self-bonding properties and the resulting structural, electrical, and thermal

behavior. There have been considerable efforts to utilize their exceptional mechanical

properties [3], structural properties [4, 5], electrical conductivity [1, 6–12] and their

thermal conductivity [13–18]. Many researchers claim the carbon nanotube can be

the building material of next generation engineering materials due to their exceptional

behavior at the nanoscale. Unfortunately, to date, applications with nanotubes have

been quite limited, due in large part to the inability to predict with any certainty the

macroscopic response of industrial quality and scale products.
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2.2 Structure of Single Walled Carbon Nanotubes and Thin Films

The SWNTs tend to form a bundle of parallel nanotubes [19], though isolated

individual nanotubes [20] have also been reported. They are covered with soot on

both the outer and inner surface. SWNTs are highly flexible, and can bend into

a curved arc with a radii of curvature as small as 20nm. This flexibility indicates

superior mechanical properties, and is consistent with the high tensile strength and

bulk modulus of commercial and research grade vapor grown carbon fibers.

Studies have shown that the properties of SWNTs are strongly dependent on

tubule diameter, making the diameter distribution of great interest to the researchers.

Due to the difficulty in measuring physical measurements on SWNT, studies have

been made on bundles of SWNTs. Early results on the diameter distribution of Fe-

catalyzed single-wall nanotubes, indicates a range between 7Å and 16Å, with 10.5Å

being the largest and 8.5Å being the smallest peak in the distribution. For a co-

catalyzed process, the peak in the distribution was found to be about 13Å.

A carbon nanotube (CNT) network depicted in Figure 3.7 is held together

exclusively by van deer Waals forces between nanotubes. These networks are free-

standing structures composed exclusively of CNTs aligned in a plane and have a

unique combination of mechanical, electrical, and thermal properties as will be dis-

cussed in the next sections. Carbon nanotube networks have been fabricated within

a magnetic field causing a preferred direction of alignment and studies have shown

that these networks may have desirable conductive behaviors.

Hone and his group [21] produced, dense thin films of single wall carbon

nanotubes and nanotube ropes using filtration/deposition from a CNT suspension

in strong magnetic fields. They studied the electrical and thermal transport proper-

ties of these magnetically aligned single wall carbon nanotube films. They reported
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Figure 2.1: Carbon nanotube network schematic.

that the anisotropic morphology of magnetically aligned SWNTs leads to anisotropic

electrical and thermal transport properties. Also, alignment results in increasing the

parallel components of both the electrical and thermal conductivity w.r.t the unori-

ented material.

Gonnet [22] and his coworkers from Florida presented a technique to produce

highly loaded and aligned single walled carbon nanotube nanocomposites by infil-

trating SWNT mats with a low viscosity resin solution. They attained the in plane

alignment by aligning the nanotubes in the buckypaper (high density CNT thin film)

under a high magnetic field prior to the composite loading. They measured and re-

ported the thermal conductivity for the buckypapers as well as their composites,

and we will use their results to validate our thermal model. The conductivity trends

and the value of conductivity was fairly in agreement with those of Gonnet’s. The

discrepancies what so ever was due to unavailability of complete data regarding the
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length and diameter distribution etc, in their work. As will be shown in this work,

knowing the length and diameter is essential for accurate predictions.

Ming Hu [23] and his fellow companions studied the phenomenon of ther-

mal energy exchange between a carbon nanotube and the air. In their work

the authors estimated that nanotube-air interfacial thermal conductance is about

0.1MW/m2K,(which is equivalent to the resistance of a 250nm thick layer of air).

Hu et al. conducted an MD simulation imposing a heat flux between the SWNT and

air to study thermal interfacial conductance. The simulation was conducted on a

(10, 10) SWNT with diameter 1.34nm and 12.3nm long. The authors also concluded

that the interfacial resistance strongly depends on the interaction parameters between

air atoms (which in this case were Oxygen 22% and Nitrogen atoms 78%) and the

carbon nanotube. Therefore, in their opinion, a further study of the interactions

between the nanotube and the oxygen and nitrogen molecules is required in order

to predict the interfacial thermal resistance accurately. Currently all of our models

(Thermal 2D and 3D, Electrical 2D and 3D) consider a neat thinfilm carbon nan-

otube network, i.e. a network without any matrix surrounding it. In other words,

the network is surrounded by air. Hence, we used the results from this work to cal-

culate and compare the resistance for our thermal model, i.e. resistance between a

nanotube and air, with its intrinsic resistance and intercontact resistance.

2.3 State of the Art Information on Thermal Properties of CNTs

J.Che et al. [24] studied the thermal conductivity of carbon nanotube and its de-

pendence on defects and vacancies, using equilibrium MD simulations. They derived

the Green Kubo relation from linear response theory which was then used to ex-

tract the thermal conductivity from heat current correlation. They found that once

the system is large enough the theoretical value of thermal conductivity converges
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to a constant. For a defect free (10, 10) SWNT, they reported the theoretical value

to be 29.8W/mK along the tube axis. From their study, they also found that the

thermal conductivity decreases as the vacancy concentration increases. The same

effect was observed with conformational defect. Chico et al. [7] studied the effect

of pentagon-heptagon defects into the hexagon network of SWNT. They used the

tight binding method and calculated the electronic structure of such systems. They

reported that such systems behave as a nanoscale metal/semiconductor or semicon-

ductor/semiconductor junctions.

Yang et al. [18] studied the thermal conductivity of multiwalled carbon nan-

otubes, prepared by using a microwave plasma chemical vapor deposition. The group

employed the pulsed photothermal reflectance technique, and found that the aver-

age thermal conductivity of carbon nanotube thinfilms, with thickness 10− 50μm is

around 15 W/m-K at room temperature independent of the tube length. From their

study they also suggested that the heat transport in the MWNT’s is dominated by

phonons. Our model currently assumes all the tubes to be single walled. Multiwalled

nanotubes being cheaper, can be studied and incorporated in the model.

Zhang et al. [25] studied the chirality dependence of the thermal conductivity

of carbon nanotubes. The group studied three types of SWCNTs (armchair, chiral

and zigzag) using the homogeneous non-equilibrium Green-Kubo method based on

the Brenner potential. From their simulations they concluded that the thermal con-

ductivities of all three types of nanotube had similar temperature dependence, and

the chiral nanotube had the lowest thermal conductivity.

K. Bi et al. [26] studied the thermal conductivity of SWNTs using both

the equilibrium molecular dynamic (EMD) and non-equilibrium molecular dynamic

(NEMD) techniques. From their study of length dependence on thermal conductivity
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of CNT using both the techniques they found that, the results obtained from EMD

technique is reasonably larger than that from the other. They reported the range of

thermal conductivity for SWNT’s ranged from 400W/mK to 600W/mK. This was

far less from the one reported by Che et al. [24], which was 2980 W/mK. Bi et al.

attributed this ambiguity to the difference in the way the cross sectional area was de-

fined in both the papers and also to the fact that their work neglects nonbond order

interaction, whereas Che considered the non bond order interaction in the Brenner-

type potential. The group also found that the thermal conductivity increased with

increasing tube length as opposed to the convergence reported by Che. According

to them this may be attributed to the difference in the integaration methods of the

HCACF adopted by the two groups. Bi et al. [26] also investigated the temperature

dependence of three different type of CNTs, one perfect tube and two tubes with

defects containing isotropic atoms and vacancies. For all the three tubes they found

that the thermal conductivity dropped as the temperature increased. Also, with in-

crease in temperature, the difference in the conductivity of the vacancy adulterated

tube and the other two tubes became less.

Hone and his group [27] at University of California at Berkley, also studied

the temperature dependence of crystalline ropes of single walled carbon nanotubes

for temperatures ranging from 8K to 350K. They found that the thermal conductivity

decreases linearly with decreasing temperature; also it displays linear temperature de-

pendence below 30K. They also concluded that the thermal conductivity is dominated

by the phonons at all the temperatures. Osman and Srivastava [17] in their study on

temperature dependence of the thermal conductivity of single-wall carbon nanotubes

concluded that for all the cases the thermal conductivities show a peaking behavior

before falling off at higher temperatures. They also reported that the peak position
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shifts to higher temperatures for nanotubes with larger diameters. In their molecular

dynamics simulations with the Tersoff-Brenner potential for C-C interactions, over

a temperature range of 100 − 500K, they found no significant chirality dependence

on thermal conductivity. Philip Kim and his group [28] studied the mesoscopic ther-

mal transport and energy dissipation in carbon nanotubes. In their experiment they

used a microfabricated suspended device to measure the thermal conductivity of an

individual multiwalled carbon nanotube. They found that at room temperatures the

observed thermal conductivity is more than 3000 W/m-K.

Motoo Fujii [29] and his group from Japan, experimentally measured the ther-

mal conductivity of a single carbon nanotube using a suspended sample attached

T-type nanosensor. They found that the thermal conductivity of a carbon nanotube

increases as the diameter decreases. For a nanotube of diameter 9.8nm, they found

the thermal conductivity to exceed 2000 W/mK. They also conducted a study on

the temperature dependence of the carbon nanotubes with a diameter of 16.1nm

and found that it has an asymptote near 320K. In our model we deal with the bulk

conductivity of thin films in general. We conducted a case study on diameter de-

pendence and found that the bulk thermal conductivity as well as the bulk electrical

conductivity decreased with an increase in tube diameter.

Zhong and Lukes [16] studied the interfacial thermal transport between offset

parallel (10, 10) single-wall carbon nanotubes using molecular dynamic simulations

and analytical thermal modeling as a function of nanotube spacing, overlap, and

length. From their studies they reported that the thermal resistance decreases with

an increasing area of overlap. They also presented their results in the form of a plot

for increasing thermal resistance with increasing spacing between the tubes. Our
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thermal models currently uses the values from their plot to determine the intercontact

thermal resistance, as a function of the separation distance between the tubes.

Satish Kumar et al. [13] from Purdue, developed a computational thermal

model for nanotube based electronic display. The group predicted the temperature

rise in the tube network and substrate, along with the effect of tube-tube contact

conductance, tube-substrate contact conductance and substrate-tube conductivity

ratio on the temperature rise. They studied the effect of convective cooling on the

temperature rise for a range of heat transfer coefficients between the display surface

and the ambient air. From their study they reported that the tube-substrate contact

resistance is a dominant resistive component for the tube temperature rise, but was

found to be insignificant for the substrate temperature rise. The group also concluded

that the tube conductivity and tube-tube contact conductance are found to have only

a minor effect on lateral heat spreading as the dominant resistance to heat removal

lies on the substrate and the air side for the range of parameters investigated.

Sayed Hasan et al. [14] studied the effect of hot phonon scattering on CNT

FET. From their hot-phonon simulation of CNT MOSFET they reported that for a

single tube, heating does not seem to be a problem. They also reported that, at high

gate bias, the hot-phonon effect can reduce the ballistic current by 33% and the unit

gain cutoff frequency by 56%.

Shiren Wang et al. [30], studied the dispersion and the thermal conductiv-

ity of carbon nanotube composites. In this work they proposed an effective way to

improve dispersion of CNTs into polymer matrices that also retained the perfect elec-

tronic structure of CNTs. The group was able to shorten single walled nanotubes and

use this in polymer composites. Using AFM and SEM techniques, they were able to

conclude that shortening of the nanotubes significantly improved the CNT dispersion
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awhich in turn effectively improved the percolation. Also, the thermal conductiv-

ity of composites containing short CNTs were found to be much better than those

containing pristine CNTs.

Salvin et al. [31] numerically studied the thermal conductivity of single walled

carbon nanotubes for two cases. First for an isolated carbon nanotube and second for

a nanotube interacting with a substrate. In their study they found that irrespective

of the potential and the numerical method employed the character of the thermal

conductivity depends crucially on the interaction between a nanotube and a substrate,

whereas an isolated infinite ideal single-walled carbon nanotube which is not fixed on

a substrate demonstrates anomalous thermal conductivity. From their studies on the

dependence of the thermal conductivity coefficient on temperature, they found that

the carbon nanotube demonstrates similar anomalous thermal conductivity for all

temperatures in the range T ≤ 500 K.

2.4 State of the Art Information on Electrical Properties of CNTs

J. Tersoff [32] while studying the contact resistance of carbon nanotubes

pinpointed two basic reasons for high contact resistance of CNT and also has given

suggestions to reduce it.

Hecht et al. [33] studied the dc conductivity dependence of single walled carbon

nanotubes networks on average bundle length and diameter. They found that σdc

varied as σdc ∼ L1.46
av for the bundles with a fixed diameter, L1.46

av is the average

bundle length. From their study they also reported that the exponent of L, would be

between 0 and 2.48, with the former being a network dominated by ballistic resistance

(which is assumed zero in our simulations) and the later value for an isotropic network

dominated by intercontact resistance. The exponent of 1.9 ∼ 2 in our study is within

the range proposed by Hecht et al.’s results, but is not equal to the upper limit as
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expected for a network dominated by inter-contact resistance. The discrepancy is

attributed to the differences in how we handle multiple contacts for a given tube.

They assume perfectly rigid bundles with each tube having a single point of contact,

whereas in our situation with the nanotubes filling 60% of the volume for the 3.0μm

long tubes, each individual nanotube will average 80 contact points, and there will

exist a significant percentage of tubes with over 100 points of contact. Similarly for

diameter dependence they noted that the exponent would be ∼ −2 for perfectly

rigid bundles. But from the case study we conducted using our model we found the

exponent to be −2.94 to −3. This discrepancy is again attributed to the fact that

Hecht et al. assumed that each tube would have a single point of contact, whereas in

our situation with the 5nm diameter nanotubes an individual nanotube will average

just less than 80 contact points.

Reto Haggenmueller et al. [34], in their study of thermal and electrical con-

ductivity of single wall carbon nanotube/polyethylene nanocomposites, studied the

thermal and electrical conductivities of the nanocomposite in terms of SWNT loading,

the degree of polyethylene (PE) crystallinity, and the PE alignment. They found out

SWNT/PE composites made with high density PE (78% crystalline) exhibit higher

thermal conductivity than composites made with low density PE (33% crystalline).

From this result they concluded that the higher crystalline matrix reduces the interfa-

cial thermal resistance by providing more crystalline- PE bridges between nanotubes.

The experiments also showed that melt fiber spinning of SWNT/HDPE nanocom-

posites with low loadings produces composites in highly aligned SWNT and oriented

polyethylene crystallites. The thermal conductivity along the alignment direction in-

creases with PE alignment regardless of the SWNT loading, while the electrical con-

ductivity along the fiber decreases. Finally the authors concluded that the SWNT
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filler dominates the electrical conductivity of the SWNT/polymer composites, while

the thermal conductivity depends on both the SWNT filler and the semicrystalline

PE matrix.

Giang Pham et al. [35] studied the mechanical and electrical properties of poly-

carbonate nanotube thin film (”buckypapers”) composite sheets, that were produced

by infiltrating SWNT films with a polycarbonate solution. The group observed that

the stiffness and toughness of these sheets increased with the addition of polycar-

bonate, but the electrical conductivity decreased. Also, polycarbonate/buckypaper

composite sheets showed higher resistance to handling and processing damages. The

group also presented a bulk resistance value of 0.0049 Ω/cm for a buckypaper.

Park et al. [36] studied the high current-carrying capacity of various carbon

nanotube-based thin films. They exposed the buckypapers to high electrical cur-

rent densities under different environments. From their study they concluded that

SWCNT thin films breakdown near 430oC in ambient conditions, with a flash of light.

Also, mixed composite films of SWCNTs and MWCNTs showed higher ignition tem-

peratures of over 500oC.

Wang et al. studied the processing and property of the single-walled carbon

nanotube (SWNT) thin film/epoxy resin matrix nanocomposites. With the technique

developed in their work, the storage moduli is demonstrated to be as high as 15

GPa. The research results also indicated that the proposed infiltration technique

was capable of fabricating nanocomposites with a controllable nanostructure and

high SWNT loading.

Tian et al. [37] studied the fabrication of single-walled carbon nan-

otube/polyelectrolyte multilayer composites by layer-by-layer assembly and magnetic

field assisted alignment. In their study they combined the layer-by layer assembly
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technique with magnectic force-induced alignment to fabricate SWNT/PEI multilayer

composites. From their study the group concluded that the LBL/magnetic alignment

approach has the potential for fabricating nanotube composites with highly ordered

nanostructures for multifunctional materials and device applications.

Qunfeng Cheng et al. [38], studied multi-walled carbon nanotube

sheet/bismaleimide nanocomposites. In their study they achieved tensile strength

of over 2 GPa, with a Young’s modulus of 169 GPa. They reported the electrical

conductivity of this nanocomposites to be 5500 S/cm along the alignment direction.

The reason for these better mechanical properties were attributed to the coupling ef-

fects of millimeter-long MWNTs, mechanical stretching, and prepregging under high

pressures, which led to higher loading, better alignment and enhanced load trans-

fer. Also, better dispersion of the nanotube ropes into spread-out extra-thin films

led to better contacts among MWNTs, giving rise to the effective load transfer and

enhanced electrical conductivity.

Jin Gyu Park et al. [39] studied the electromagnetic interference shielding prop-

erties of carbon nanotube buckypaper composites. For their study they used different

nanocomposite laminates consisting of various proportions of single-walled and multi-

walled carbon nanotubes, having different conductivities, and with different stacking

structures. From their study, they concluded that, the shielding effectiveness of the

CNT thinfilm composites mainly depended on the conductivity and thickness of the

layers. Further, SWCNTs or long-MWCNT thin films, provide better EMI shielding

due to their high electrical conductivity. But, they also found that increasing the

number of layers by adding on to the composite surface showed some limitations to-

ward realizing high EMI shielding performance due to a lack of multiple reflections.

Jin Gyu Park [40] also produced carbon/carbon composites consisting of single-walled
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carbon nanotube (SWCNT) thinfilm and mesophase pitch resin through impregnation

of BP with pitch using toluene as a solvent. In their study they filled in the voids in

the carbon/carbon composite sample, by repeating a cycle of drying, stabilization and

carbonization processes. They found that the electrical conductivity and the density

of the composites increased with carbonization, by 2 to 3 times. The electrical con-

ductivity rose from 200 S/cm to more than 400 S/cm at room temperature. From

their study they concluded that the discontinuity and intertube contact barriers of

SWCNTs may be partially overcome by the carbonization process of pitch.
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CHAPTER THREE

2D Thermal and Electrical Conductivity Models

This chapter presents the initial approach adapted to determine the bulk thermal

and electrical behavior of thin films employing 2 dimensional models with emphasis

on the thermal model. The chapter begins with the discussion on CNT thin films and

basic assumptions made by us for our models. Especially noteworthy is the volume

assumption, which loosely states that, the thickness of a representative element can

not influence the bulk conductivity. A case study is conducted to demonstrate the

flaw in this assumption as was presented in [41].

3.1 Model Development

The model uses the stochastic parameters, bundle length li, bundle diameter

di, chirality of the tubes and the orientation. The model restricts the orientation and

placement of the tubes to a single plane (x1-x2 plane), and allows the center of mass of

the tubes to move within the plane. The tubes are assumed to be longitudinally rigid,

with a small local deformation occurring in the transverse direction, due to the van

der Waals forces between the tubes. A unit cell is selected, as shown in Figure 3.1,

of dimensions L1, L2 and L3, along respectively the x1, x2 and x3 directions. Values

of θi (planar orientation angle), li (bundle length), di (bundle diameter), ci (bundle

chirality), xi (bundle spatial position, where xi ∈ R
2) are selected for a set of bundles

with i ∈ (1, 2, ..., Nt). The number of tubes Nt within the cell is selected to satisfy

the desired volume fraction of CNTs, VCNT through the following relationship:

VCNT =
π

4

∑Nf

i=1 lid
2
i

L1L2L3

(3.1)
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Figure 3.1: Carbon nanotube network schematic.

Notice, if the tubes are not all of identical lengths and diameters, one cannot, in

general, replace the relationship in Equation (3.1) with:

VCNT =
πNfμlμ

2
d

L1L2L3

(3.2)

where μl is the mean value of the length distribution and μd is the mean value of the

diameter distribution. For instance, consider 5 CNTs of lengths 2μm, 2.5μm, 2.8μm,

2.6μm and 2.5μm and diameters 20nm, 25nm, 19nm, 22nm and 26nm respectively,

in a cell of dimensions 1× 10−5, 1× 10−5 and 1× 10−7. Equation 5.6 would provide

4.8× 10−4 as the volume fraction whereas the volume fraction predicted by Equation

3.1 is 4.96× 10−4.

3.1.1 2 D Thickness Assumption

It is necessary to quantify appropriate cell thickness L3 or cell height even for

evaluating the 2D planar network. Yeh [1] selected the cell height to correspond to

the maximum nanotube diameter sampled from the weibull distribution, and a similar

assumption was made in [8]. This was (see e.g. [1,8]), made with the assumption that

the choice of the cell width should have no bearing on the resulting conductivity of
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the network. The approach adopted to reduce the 3D model to 2D was incorrect as

shown in [41].

3.1.2 Periodicity

At the macroscopic level a thin film contains many nanotubes to form the net-

work. It is computationally infeasible to consider each tube forming the network for

computation of thermal or electrical conductivity. Hence, we desire a representative

area of appropriate dimensions that will be small enough to be calculated on a work

station, while reasonably representing the bulk conductivities of the macroscopic net-

work. The representative element must satisfy the following two considerations:

1. The representative element must be periodic, i.e., adjacent elements must be

continuous, thus imposing a geometric continuity of adjacent sides within the

element.

2. The element must be large enough to capture the stochastic nature of all chiral,

spatial and geometric effects, but it is desired it will be small enough to be

calculated on a work station.

To ensure continuity, the model constrains a tube exiting one edge to enter the con-

verse element edge. Figure 3.2 is presented to visualize these boundary conditions.

Observe the red tube in Figure 3.2(a), prior to the application of periodicity, sticking

out of the −x2 face, and after the application of the periodic boundary conditions,

seen in Figure 3.2(b), the portion of the tube sticking out of the −x2 face reenters

from the +x2 face. The same holds true for the remaining tubes sticking out of the

representative element.

Along with geometric periodicity, flow continuity must also be considered.

Figure 3.3 it is desired that the macroscopic bulk flow is constrained from −x1 to
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Figure 3.2: Representative element tube configuration (a) Prior to periodic boundary
conditions (b) After application of periodic boundary conditions.

x1, but on the nanoscale the thermal current can flow along the tubes. Hence, the

current path is effectively 2D. To ensure that the representative element satisfies

the desired macroscopic flow behavior, the bulk thermal current passing through the

x2 = ±L2/2 edge is mapped through the x2 = ∓L2/2 edge with no energy loss. The

tubes passing through the x1 = L1/2 face are all of the same temperature T+ and the

tubes passing through the x1 = −L1/2 face are all of the same temperature T−.

To determine the bulk conductivity, a small representative element is selected

from the ith layer, i ∈ {1, 2, ..., NL}, where NL is the total number of layers. The

sample selected is sufficiently large enough such that all geometric effects of consid-

eration are periodic in nature on all opposing surfaces and all local effects are small

in comparison to the elemental size. To ensure this, a case study is presented in

the results section to determine the appropriate cell size. The sampling process of

each variable is performed using a Mote-Carlo sampling technique of Nf samples (see

e.g., [42] for a discussion of the M-C technique), where Nf is chosen as the smallest
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Figure 3.3: Schematic depicting 2D nanoscale thermal flow, whereas the macroscopic
flow remains 1D.

integer number to satisfy

VCNT ≤ π

4VRE

Nf∑
i=1

d2i li (3.3)

where VRE is the volume of the representative element and VCNT is the desired volume

fraction of CNTs using the classical definition of volume fraction of a composite

inclusion where in this case the matrix is air.

3.1.3 Development of Thermal 2D Model

The model is based on the idea that the overall thermal resistivity of a thin film

network, can be divided into the following three components:

1. Thermal resistivity along a nanotube [24].

2. Thermal resistivity between individual nanotubes [16].

3. Thermal resistivity between the thin film network and surrounding media, where

in the present context the media is air [23].
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The model assumes the dominating factor within the network is the inter-

contact resistance, and thus the intrinsic resistance is neglected. This assumption

is based off the fact that a typical intercontact resistance value is in the range

2 × 10−5 − 1.6 × 10−4m2-K/W (see e.g. Lukes and Zhong [16]). For a tube of say,

diameter 16.1nm as studied by Fuijii [29] using the relation:

Ae =
D1 ×D2

sinγ
(3.4)

Where D1 and D2 are the diameters of the overlapping tubes and γ is the angle

between them, the area of overlap is about 2.6×10−16m2, thus the thermal resistance

is in the range 7.72 × 1010 − 6.17 × 1011 K/W. Now, the intrinsic resistance for the

same nanotube of diameter 16.1nm as described by Fuijii [29] at 320K, having aspect

ratio of say 200 can be computed using the relation le/(Ae × ke) ≈ 9.89× 106 K/W.

Comparing the magnitudes of thermal conductance, it seems reasonable to neglect

the intrinsic conductance of the tube. Thus for the present model we assume that

the thermal resistance along the nanotubes is negligible relative to the resistance at

the junction. The thin film is neat, i.e., has no matrix, thus all tubes are surrounded

by air, which acts as an insulator [43, 44]. In other words, we will assume there is

negligible amount of thermal current flow from the network to the surroundings. We

also assume for the present study that Fourier’s law for heat transfer in the linear

regime is valid for small thermal loadings. Also, there is continuity of heat flow

without any system leakage, and discontinuity occurs only at the points of contact

between the tubes. In other words, if s is the direction of flow of thermal current

along the tube, then:

dQ

ds
= 0 (3.5)
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where Q represents the heat flow. Hence, the thermal potential function ψ between

the tubes is the only consideration and is governed by the constitutive equation:

∂2ψ

∂x̂2
= αij

(
T̃i − T̃j

)
(3.6)

where x̂2 is a point in space between the ith and jth tubes, respectively, and αij is

expressed in terms of the effective thermal conductivity between the tubes. Using

a finite element approach with 1D elements between nanotubes, as depicted in Fig-

ure 3.5 for the overlapping regions in yellow, Equation (3.6) can be recast as (see e.g.

Reddy [45] for a complete description)

Aeke
he

[
1 −1
−1 1

]{
T e
1

T e
2

}
=

{
Qe

1

Qe
2

}
(3.7)

where the term Aeke
he

represents the thermal conductance, Ae is the cross sectional

area of contact, he is the separation distance, ke is the thermal conductivity of the

element, T e
i is the temperature of the ith tube and Qe

i is the heat flow passing either

out of the 1st tube or into the 2nd tube, which will be the same in this case.

3.1.3.1 Determination of Area of Overlap

In order to determine the area of overlap Ae) between the tubes consider Fig-

ure 3.4, which depicts two overlapping tubes with diameters D1 and D2 at an angle

γ. In ΔABM

AB =
D1

sin γ
(3.8)

Similarly, in ΔADN

AD =
D2

sin γ
(3.9)
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Figure 3.4: Area of overlap between two nanotubes.

Now, The area of parallelogram ABCD can be determined as:

�ABCD = AB × AD

�ABCD =
D1D2

sin2 γ
sin γ

�ABCD =
D1D2

sin γ

The above relation holds true for large value of γ. If γ ≈ 0 then, the area of

overlap is given by:

�ABCD = min(D1, D2)× L (3.10)

where, L is the length of ovaerlap.

3.1.4 Determination of Separation Distance Between the Tubes

Nanotubes can be broadly classified either as metallic or semiconducting. It

has been shown by [44] that the electrical conductivity of the network alters con-

siderably with the change in the ratio of metallic to semiconducting tubes in the
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network. Though the direct impact of this ratio on bulk thermal conductivity is still

unclear, chirality is considered only through the separation distance function of Equa-

tion (3.12). We assume the metallic tubes to compose 1/3rd of the overall population

and the remaining 2/3rds of the tubes are semiconducting [46]. Thermal resistance

between the tubes depend on the separation distance as can be noted from Equa-

tion (3.7). For the study of separation distance between the tubes, we considered a

(5, 0) to represent the metallic tube and a (5, 5) tube to represent a semiconducting

tube. This separation distance was studied, using molecular dynamic simulations as

a function of angle between the intersecting tubes (δ), rotation of one tube about

its own axis (ξ) and position (sliding) effect (�) as shown in Figure 3.6. In order

to study these effects, two CNTs were held perpendicular to each other in the same

plane. One of the tubes was fixed at both the ends and the angle between the tubes

(δ) was varied by rotating the opposing tube, with a step size of 5o. The results

obtained were tabulated for angles between 0o to 90o. Similar runs were made by ro-

tating one CNT about its own axis (β). Additional simulations were made by sliding

one tube along the second and rotating it about the longitudinal axis (γ). Based on

all of our simulations, it was observed that the results were reasonably fit by a normal

distribution with mean and variance expressed as,

N(x, μ, σ) =
1

σ
√
(2π)

e−(x−μ)
2/(2σ2) (3.11)

The distributions employed in the present study for he are given as:

he = μMM + σ2x− d(5, 0)

he = μMS + σ2x− d(5, 0) + d(5, 5)

2

he = μSS + σ2x− d(5, 5) (3.12)
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here, μMM , μMS and μSS are respectively, the mean separation distances between the

metallic-metallic, metallic-semiconducting and semiconducting-semiconducting nan-

otubes and d(5, 0) and d(5, 5) are there respective diameters of the metallic ((5, 0))

and the semiconducting ((5, 5)) tubes. The separation distance obtained from the

MD simulations was measured between the centroids of the tubes, hence the diame-

ters are subtracted in order to get the separation distance between the surfaces. The

values for μMM , μMS and μSS is obtained from the following distribution:

where,

⎧⎨
⎩

μMM = 9.3× 10−10, σ2
MM = 0.27× 10−10 × U − 6.78× 10−10

μMS = 7.9× 10−10, σ2
MS = 0.1× 10−10 × U − 5.345× 10−10

μSS = 6.4× 10−10, σ2
SS = 0.17× 10−10 × U − 3.91× 10−10

(3.13)

U(x) =
1

σ
√
2π
e−(x−μ)

2/(2σ2) (3.14)

These distributions were obtained by MD simulations on a pair of metallic(M), and

a semiconducting(S) tubes for a function of angle between the intersecting tubes (δ),

rotation of one tube about its own axis (ξ) and the relative position of one tube over

the other (sliding effect) (�) as shown in Figure 3.6 and discussed in the preceding

section.

3.1.5 Determination of Thermal Conductivity

Zhong and Lukes [16] studied the thermal resistance between overlapping (10, 10)

tubes using molecular dynamic simulations and provided graphical results for the

inter-contact thermal resistance as a functions of both, cross-sectional area and the

separation distance. A rudimentary curve fit was made to their data, and the result-

ing linear fit to their results for thermal conductivity between tubes is:

Ke = −5× 10−15he + 1× 107
(

W

m2K

)
(3.15)
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where he is the separation distance given in units of meters. As the study was for

only one single tube type, this is not the desired equation for commercial applica-

tions. In future, it is desired to have reasonable analytical representations of the true

inter-contact thermal conductivity as a function of separation distance, tube type,

temperature and defects etc.

3.1.6 Thermal Model Implementation

A random value for length, diameter, chirality, orientation, and spatial loca-

tion is sampled from their respective distributions. This process is repeated until

the representative element is filled to the desired volume fraction in accordance with

the Equation (3.3). Then appropriate periodic boundary conditions are applied to

the representative element. From the planar assumption it is assumed that no heat

flows through the top or the bottom surfaces, thus a parallel network of planar lay-

ers of nanotubes compose the entire cnt thin film. Each parallel layer is considered

identical, with the thermal transport constrained within each plane, thus the conduc-

tivity of a single layer is equivalent to the conductivity of the entire network. For the

periodic boundary conditions defined, the conductivity of the layer is equivalent to

the conductivity of the representative element (see e.g., [8, 47] for a discussion of the

mathematically identical electrical network). Thus, the effective thermal conductiv-

ity of the representative element, and by extension the entire network, can readily be

obtained from the classical definition for conductivity [44] as follows.

To compute the effective thermal conductivity the model selects the represen-

tative element as discussed, and applies a thermal potential ΔT between the x1 = −h1
and x1 = h1 edges of the representative cell and the temperature drop is given as

ΔT = T2 − T1 (3.16)
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The representative element’s thermal resistance as given by :

RRE =
2h1

2h2 t κRE

(3.17)

The effective conductivity of the representative element κRE is given by:

κRE =
2h1

2h2 t RRE

(3.18)

where 2h1, 2h2 and t are, respectively, the longitudinal length of current travel, the

length perpendicular to current travel and the thickness of the representative element.

For an individual layer the resistance, RΩi
, is given as:

RΩi
=

L1

κRE t L2

= RRE
2h2 t L1

2h1 t L2

= RRE
h2 L1

h1 L2

(3.19)

where where L1 and L2 are, respectively, the width and the depth of the representative

element, L3 is the thickness of the sample shown in Figure 3.7. The model assumes

the current flow to be planar, hence the effective resistance of the network RN is

simply that of parallel resistors as depicted in Figure 3.7 and is given as:

RN =

(
NL∑
i=1

1

RΩi

)−1
=

(
NL∑
i=1

1

RΩ

)−1
=

1

RΩi

(
NL∑
i=1

1

)−1
=
RΩ

NL

(3.20)

Assuming the resistance of each layer is constant we have

RΩ = RΩi
, ∀ i ∈ {1, 2, ..., NL} (3.21)

Combining Equations 3.17-Equations 3.21 we get the effective conductivity of the

entire network κN as:

κN =
L1

RN L2 NL t
=

NL L1

RΩ L2 NL t
=

2h1 L1 L2

RRE 2h2 L2 L1 t
=

2h1
RRE2h2 t

= κRE (3.22)

It can be clearly seen that the conductivity of the entire sample is equivalent to the

conductivity of the representative element given in Equation (3.18).

κ = κRE =
L1

L2 L3

1

RRE

=
L1

L2 L3

2h2 tκRE

2h1
(3.23)
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Figure 3.5: Typical thermal element between two nanotubes.

where L1 and L2 are, respectively, the width and the depth of the representative

element, L3 is the thickness, The steps in performing the analysis can be summarized

through the following algorithm:

1. Construct a representative element with each planar dimension sufficiently

larger than the largest geometric feature in consideration.

2. Fill the representative element with nanotube bundles sampled from their re-

spective stochastic distributions for bundle length, bundle diameter, spatial

position chirality, spatial orientation, and for tubes that geometrically overlap

the separation distance.

3. Impose the geometric periodic boundary conditions.

4. Retain the points of inter contact, and sample the inter-contact resistance.

5. Calculate the elemental conductance K matrix based on the information above.

(Detailed discussion in Chapter Four.)

6. Apply a thermal load in the x1 direction, measure the temperature drop, and

compute the bulk thermal conductivity in the direction of flow of heat.
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Figure 3.7: CNT Thin Film Network.

3.1.7 Model Validation

It is desired to validate our model against available experimental data from the

literature. Unfortunately, the availability of a single inclusive study with reasonable

knowledge of the input distributions is yet to be found. Observations have been

made from SEM imaging of nanotube bundle diameters and lengths, and it was

concluded that they could be reasonably represented through a two parameter Weibull

distribution (see e.g., [1]) with α ∈ (0,∞) and β ∈ (0,∞), with the independent
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variable x ∈ (0,∞) as

W (x, α, β) = βα−βxβ−1e−(
x
α)

β

(3.24)

where the parameter α has the same units as the independent variable x. The best

fit values for the Weibull distribution from Yeh [1] for the length and diameter distri-

butions are di ∈ W (x, 13.52nm, 2.84) and Li ∈ W (x, 2.03μm, 1.91). Unfortunately,

these numbers are valid only for her unique samples, but as we will be comparing our

results to the thermal results available from the same research group it is anticipated

the fabricated samples may have similar length and diameter distributions. The re-

sults from Yeh for length and diameter occur several years after the work of Gonnet et

al. [22] thus we anticipate that her results will overpredict the nanostructural makeup

of the network, and we will over predict the bulk conductivity.

Gonnet et al. [22] performed a study of the thermal conductivity of planar

carbon nanotube networks as a function of temperature, and loosely, the orientation.

Their results do not provide any discussion of the nanostructure characteristics, such

as nanotube length, diameter, orientation distribution function, nanotube types, etc.

We will assume a volume fraction of 60% as alluded to in Gonnet et al. [22]. The

presented model is exercised with a unit cell thickness of 5nm μd/3 and a cell width

and depth of 10× μl. The resulting thermal conductivity from over 200 simulations

is 37.4 ± 1.4W/(mK). This is quite close to the measured value of 20 W/(mK) by

Gonnetet al. [22]. The biggest contributor to the discrepancy is attributed to the

uncertainty in the length and diameter values between those used in the model sim-

ulation and the actual experimental system. The model dependence on length and

diameter distribution has been shown using case studies in chapter Five.
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Figure 3.8: Electrical conductivity as a function of cell thickness.

3.2 Limitations of 2D Model

The thermal model was based on the electrical model presented in [44] as

discussed for thermal model, electrical model also constraints the orientation of each

tube to lie within a single plane but the center of mass of the tubes to vary in any

direction. The tubes are also assumed to be longitudinally rigid, with small local

deformation occurring in the transverse direction. The network for electrical model

is also exposed to air which is an insulator compared to the tube intrinsic resistance.

The model assumes that Kirchhoff’s law for carrier transport in the linear regime is

valid and there is continuity of current without any system leakage. In other words,

if s is the direction of flow of thermal current along the tube, then:

dI

ds
= 0 (3.25)

I represents the current. Hence, the electrical potential function φ between the tubes

is the only consideration and is governed by the constitutive equation:

∂2φ

∂x̂2
= βij

(
Ĩi − Ĩj

)
(3.26)
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where x̂2 is a point in space between the ith and jth tubes, respectively, and βij is

the charge transfer coefficient between the tubes. The electrical conductivity of the

representative element for electrical model is given by:

σRE =
L1

RREL2t
(3.27)

The electrical model uses a similar approach as discussed for the thermal model to

predict the electrical conductivity (see [44] for detailed discussion).

A true 2D model assumes zero or negligible cell thickness, which is not the case

in real world. It is therefore necessary to quantify appropriate cell thickness L3 or cell

height even for evaluating the 2D planar network. Yeh [1] selected the cell height to

correspond to the maximum nanotube diameter sampled from the weibull distribution

and a similar assumption was made in [8]. This was based on the assumption that

the plane of tubes in a sheet somehow correspond to the proper accounting of tubes

within the 2D volume(see e.g. [1,8])which was never validated. This assumption was

made with the recognition that the choice of the cell width should have no bearing

on the resulting conductivity of the network.

To investigate the validity of this assumption, a study was presented in [41],

samples were generated within the representative area element of width L1 ≥ 10×μl

and L2 ≥ 10× μl and the height

1

2
t′ ≤ L3 ≤ 3

2
t′ (3.28)

where t′ = μd or t′ = max1,2,...,Nf
di. This is equivalent to placing in R

2 rods of

a given length li within the element, and continuing to pile them on top of each

other until a sufficient quantity has been placed in the sample area element to satisfy

the volume fraction requirement of Equation (3.1). If the cell height does not alter
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the resulting conductivity, the results should be independent of L3. Using the algo-

rithm for electrical conductivity discussed above and in [8] the representative area

elements are constructed for varying thicknesses for both a pure metallic network and

a metallic/semi-conductive network. As observed in Figure 3.8 the conductivity for

both networks increases with increasing element thickness, thus for a pure 2D network

the conductivity is a function of the cell thickness, which violates the 2D assumption.

The failure of this volume argument is due to the fact that as the thickness of

the sample is increased, more tubes are placed on the existing tubes in the network,

thereby increasing the number of contacts along a single tube. Eventually, as the

thickness increases to infinity, the number of contacts of a single tube will increase to

infinity as well, which is in direct contradiction to the physical system. The number

of tubes was tabulated for each value of thickness for the above example. It was

found that for t = μd

2
there were 23 ± 8 contacts along each tube and in the case of

t = 3μd

2
there were 59±18 point of contacts along each tube. This increasing number

of contacts along an individual tube is not only without physical reason, but will

drastically alter the actual conductivity.

3.2.1 Modification of 2D Model

It is therefore necessary to reinvestigate the implementation approach of the

original planar assumption whereby all the tubes are assumed to lie in the same

plane. The alternative proposed in [41], is to assume tubes have an orientation

that is constrained to lie in the plane, but their spatial location can be fully three

dimensional. This is equivalent to laying a sheet of nanotubes within a plane, and

then laying each sheet on each other in parallel. Each sheet is constructed such that

the number of tubes within the element will be equivalent to the desired volume
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Figure 3.9: Histogram of contacts for the network from the table with m = 10, and
n = 100.

fraction, but there is no requirement that the diameter of a given tube must be

fully contained within its selected sheet. In other words, a nanotube’s central axis

is constrained to be in the representative element, but the entire volume of the tube

itself is not necessarily contained within the representative element.

As an initial trial for the method for relating the number of contacts from

the three dimensional network to an effective two dimensional planar network, the

representative volume element’s thickness is reduced until there is a similar number

of average contacts per bundle in the two dimensional network as there is in the three

dimensional network. As a preliminary study, a two dimensional isotropic network

is constructed with a thickness of L3 = 0.35μd and was found to have 16± 6 contacts

with the frequency histogram presented in Figure 3.9.

The mean number of contacts from the new simulation is similar to the mean of

the planar distribution with n = 100, but there is a significant difference in the nature

of the contact distribution’s spread as observed in Figure 3.10. The results from the

2.5D simulation using the current generation of the in-house developed software for
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Figure 3.10: Histogram of contacts from the equivalent 2D network and compared
to the network from the table with m = 0, and n = 100.

L3 = 0.35μd yields a conductivity of 9.8× 103 S/cm for a pure metallic network and

4.7 × 103 S/cm for a metallic/semi-conductive network, respectively, factors of 2/7

and 3/11 that of the previous version where the thickness was set equal to the mean

diameter.

These final numbers are much closer to the desired conductivity values ob-

served experimentally but new issues have been uncovered. It would be more ap-

propriate to develop a 3 dimensional network, hence we abandoned the two dimen-

sional approximation and start focusing on developing a fully three-dimensional net-

work thus avoiding the planar approximation entirely. Next chapter discusses the

3D model, but as demonstrated in [47] the computational requirements will increase

exponentially.
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CHAPTER FOUR

3D Model

The 3D model is a modification of the 2D model presented in the previous

chapter. As demonstrated in chapter 3, the 2D model has the inherent issue of how

to choose the appropriate cell thickness, as well as losing the stochastic nature of the

frequency of contacts, which prepares ground for the development of fully developed

3D model. The 3D model, as was the 2D model, is based on the idea that, the overall

resistivity of a thin film network can be divided into three parts:

1. Resistivity along a nanotube.

2. Resistivity between individual nanotubes.

3. Resistivity between the thin film network and surrounding media, where in the

present context this is air.

As shown in [48] and discussed in Chapter Three, the overall resistance is domi-

nated by the intercontact resistance. Hence, we neglect the other two parameters for

resistance calculation.

4.1 3D Model Development

The 3D model uses independent stochastic parameters for the length of a

nanotube li, diameter di, chirality (metallic or semiconducting), and orientation. It

also uses stochastic distributions for the intercontact resistance and the tube-tube

separation distance from the MD simulation results. As shown in Figure 4.1, a 3D

sample, consists of layers of thin films. For the current study, we have constrained

the orientation of each tube to lie within a single plane, but the center of mass of the
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tubes can vary in any of the three directions [44]. The matrix around the network is

air, which effectively is an insulator compared to the intrinsic resistance of the tube.

The intrinsic resistance of the individual tubes is several orders of magnitude less

than the inter-contact resistance between tubes as shown in [48]. Hence, for this

model also we will neglect this resistance. Another assumption for the model is the

continuity of flow (flow meaning thermal heat flow for the thermal model and electric

current for electrical model), with the only discontinuity occurring at the point of

contact. Defining s as the direction along the tube, this assumption is equivalent to

stating:

dQ

ds
= 0 (4.1)

and

dI

ds
= 0 (4.2)

along each tube. Here Q and I represent the thermal and the electrical flow respec-

tively. Hence, the potential function between the tubes is the only consideration.

For the thermal system, the potential function is ψ = T − To where, To is reference

temperature, and for the electrical system Φ = V − Vo where the reference temper-

ature Vo is typically taken as ground. This potential function is governed by the

constitutive equation [49]

d2ψ

dx̃2
= αij (ψi − ψj) (4.3)

d2Φ

dx̃2
= βij (Φi − Φj) (4.4)

where ψ and Φ are the potentials at a given point in space x̃ between the ith and

the jth tubes for thermal and electrical systems, respectively. ψi, ψj and Φi, Φj are
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Figure 4.1: Carbon nanotube network schematic.

respectively the potentials at ith and jth tubes for thermal and electrical systems,

respectively. αij and βij are the coefficients of transfer for the thermal and electrical

current respectively, which are related to the contact resistance [43, 44].

For the second order, one dimensional, partial differential equation for tem-

perature with constant coefficients Equation (4.3) reduces to (3.7) (Fourier’s Law)

as presented in [45] in previous chapter. Similarly Equation (4.4) for for the voltage

with a constant coefficient βij may be represented by [45] (Ohm’s Law)

1

Re

[
1 −1
−1 1

]{
V e
1

V e
2

}
=

{
Ie1
Ie2

}
(4.5)

where, 1/Re is electrical conductance, V e
i is the voltage of the ith tube and Iei is the

current flow passing either out of the 1st tube or into the 2nd tube.

The intercontact resistance (Aeke
he

for the thermal system and Re for the elec-

trical system) depends on several parameters such as the bundle length L and bundle

diameter d, the relative orientation of the tubes, and thus the global orientation of the

tubes θ (orientation w.r.t. x3 axis), for the current studies we assume θ = π
2
, (i.e. we

restrict all the nanotubes to lie in x1− x2 plane) and φ (orientation of the projection
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of the tube in x1−x2 plane measured from the x1 axis), tube chirality C (metallic or

semiconducting) and the registry ζ between the tubes [44, 50]. Hence, the complete

contact resistance can be thought of as a probability distribution function f as:

Ric = f(L,D, θ, φ, C, ζ, he) (4.6)

where each parameter belongs to their respective stochastic functions and can be

sampled using Monte Carlo simulation technique [44, 49, 50]. It is computationally

incomprehensible to consider every single tube within the network for conductivity

calculations. Hence, we construct a representative element of dimensions 2h1×2h2×

2h3 (see Figure 4.1) such that the following two conditions are satisfied:

1. There is continuity between adjacent elements, implying geometric continuity

of the adjacent sides of a given element. In other words a tube exiting one side

of the representative element enters the converse edge.

2. The element is large enough to capture the stochastic nature of all geometric

and chirality effects, but small enough to be solved on a small scale work station.

Additionally, on a macroscopic scale, the flow (both thermal and electrical) is unidi-

rectional (from source to sink), but within a network on a nanoscale, the flow is along

the tubes which are aligned in any direction. Hence, globally the current may be

unidirectional, but the local current flows in three dimensions. In order to make sure

the representative element satisfies this condition, the bulk flow I(x) for electrical and

Q(x) for thermal is constrained to travel from the −x2 direction to the +x2 direction,

and the x1 = ±h1 and x3 = ±h3 edges are boundaries of symmetry, i.e. current

passing through the x1 = ±h1 edge is mapped to pass through x1 = ∓h1 boundary

with no energy loss and current passing through the x3 = ±h3 edge is mapped to
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pass through x3 = ∓h3 boundary with no energy loss. Thus, the electrical current

boundary conditions can be expressed as:

I(h1, x2, x3) = I(−h1, x2, x3), x2 ∈ (−h2, h2), x3 ∈ (−h3, h3) (4.7)

I(x1, x2, h3) = I(x1, x2,−h3), x2 ∈ (−h2, h2), x1 ∈ (−h1, h1) (4.8)

Similar expressions hold for the thermal current Q from the related thermal network,

as:

Q(h1, x2, x3) = Q(−h1, x2, x3), x2 ∈ (−h2, h2), x3 ∈ (−h3, h3) (4.9)

Q(x1, x2, h3) = Q(x1, x2,−h3), x2 ∈ (−h2, h2), x1 ∈ (−h1, h1) (4.10)

The boundary condition x2 = ±h2 is quite different as it represents the source and

sink. The geometric symmetry is still followed but all the tubes touching the x2 =

−h2 side of the element are considered to be at the same potential, Φ1 for the electrical

system and ψ1 for the thermal system, and all the tubes touching the x2 = +h2 are

considered to be at the same electrical potential Φ2 or thermal potential ψ2. For the

electrical system the above condition creates a potential drop

ΔΦ = Φ2 − Φ1 (4.11)

occurring between the boundaries, mathematically represented as:

Φ(h1, x2, x3) = Φ1, x1 ∈ (−h1, h1), x3 ∈ (−h3, h3) (4.12)

Φ(x1, x2, h3) = Φ1, x1 ∈ (−h1, h1), x3 ∈ (−h3, h3) (4.13)

Similarly for thermal system, the boundary condition implies a change in the thermal

potential

Δψ = ψ2 − ψ1 (4.14)
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occurring between the boundaries:

Ψ(h1, x2, x3) = ψ1, x1 ∈ (−h1, h1), x3 ∈ (−h3, h3) (4.15)

Ψ(x1, x2, h3) = ψ1, x1 ∈ (−h1, h1), x3 ∈ (−h3, h3) (4.16)

In order to compute the effective network resistance in the electrical system, an elec-

trical current I is applied at x2 = −h2 edge of the representative element and the

voltage drop, ΔΦ = Φ2 − Φ1, between x2 = −h2 and x2 = +h2 boundaries is cal-

culated with our in-house parallelized finite element solver with the aforementioned

boundary conditions. The electrical resistance of the representative element RRE can

be calculated as:

RRE =
ΔΦ

I
(4.17)

and the effective conductivity of the representative element is simply expressed

σRE =
h1

2h2h3

1

RRE

(4.18)

It has been shown in [44] that the effective electrical conductivity of the entire

sample σN for a 2D system is given mathematically by:

σN = σRE (4.19)

and as discussed in Chapter Three Equation 3.22

κN = κRE (4.20)

and it will be assumed, this relationship holds for the 3D networks as well.

4.2 3D Model Validation

The code for the model is written in two programming languages, MATLAB and

FORTRAIN 90. The MATLAB code is used to read the simulation inputs defining
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Figure 4.2: Configuration of the CNT Network (a)Before periodicity and (b)After
periodicity.

the geometric and the chiral parameters, such as length, diameter, chirality, orienta-

tion etc. Based on the inputs, MATLAB generates the initial configuration within

the representative element, and applies the periodic boundary conditions to it. The

MATLAB code then calls the FORTRAN solver, which in turn assigns nodal resis-

tances, based on chirality of the tubes and computes the overall resistance of the

network. The FORTRAN software suite computes the global resistance matrix from

the nodal resistances, and uses a sparse PARDISO solver to solve the resulting system

of equations. The solution is then returned to MATLAB for post processing, such as

generating plots and computing the bulk conductivity from the nodal solutions.

In order to validate the results predicted by the model, we conduct the follow-

ing validation test. Eleven tubes are placed into the representative cell, of dimensions

h1, h2 and h3 as shown in Figure 4.2(a). The tubes were positioned such that each

wall of the representative cell was penetrated by at least one tube. Also, some tubes

were allowed to pass through multiple wall planes to further ensure proper period-

icity. Once the initial configuration was formed, periodic boundary conditions were

45



applied starting with the x1 direction, i.e. a tube exiting the +x1 face, reenters on

the −x1 face and so on. For instance consider the red tube sticking out of +x2 face

in Figure 4.2(a), after application of the periodic boundary conditions, the portion

of tube sticking out of +x2 face reenters from −x2 face. Figure 4.2(b) shows the

final configuration of the network after applying periodicity on all the sides and by

removing all tubes that are not participating in the network current path.

Figure 4.3 presents the step by step application of periodic boundary condi-

tions. As can be seen from Figure 4.3(a), periodicity is first applied at the +x1 edge of

the representative element. After proper application of the periodicity on +x1 edge,

its converse edge i.e. −x1 edge comes next as shown in Figure 4.3(b). The process is

then repeated on +x2, −x2, +x3 and −x3 edges as depicted in the figure. The proper

application of periodicity was confirmed by manually constructing the network, and

comparing the known results with that of Figure 4.2(b).

In order to calculate the network resistance, only the tubes participating in

the network formation are considered, the rest are discarded. Once the final network

is formed, (as shown in Figure 4.4(a) and (b)) electrical potential is applied across

the network along the x2 direction. The potential drop is then recorded across the

network and electrical resistivity is calculated using the developed software suite and

also by hand for the equivalent network shown in Figure 4.5.

The model assigns the intercontact resistance to the nodes based on the input

information like the chirality and the intercontact distance of the overlapping tubes

as seen from Figure 4.4(a)and (b). The location and the magnitude of the resistances

were obtained from the output files. An equivalent circuit diagram was constructed

based on this information. For example in Figure 4.4(b), consider resistance 14 (R14),

in the top left corner, located between nodes 1 and 9. Correspondingly, in Figure 4.5,
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Figure 4.3: Representative element after application of periodic boundary conditions
on (a)+x1 edge, (b)−x1 edge, (c)+x2 edge, (d)−x2 edge, (e)+x3 edge and (f)−x3
edge.
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Figure 4.4: Final network after removal of tubes not participating in the network
formation (a)Front view and (b)Top view.

resistance R14 is the positioned between nodes 1 and 9. This electrical circuit was

then solved using the approach discussed below to determine the bulk resistance.

In order to test the validity of this result, the equivalent circuit model for the

final network was hand drawn and solved as shown in Figure 4.5. A 1D electrical

form of Ohm’s Law can be described by the Equation (4.4). For the entire network,

it can be represented in its general form as [45]

KV = I (4.21)

Where K represents the nodal conductance matrix, V represents the nodal voltage

vector and I represents the nodal current vector. For a network with n nodes, K is an

n×n matrix, whereas V and I are n× 1 vectors. Matrix K is formed such that each

cell contains its respective nodal conductance, entries are made as the reciprocal of

the resistance from the circuit shown in Figure 4.5. For example consider R14 again,

its location is between nodes 1 and 9 as seen in Figure 4.4(b), its position in the

matrix K (4.23) is at the intersection of 1st row and the 9th column. The matrix K

4.22, 4.23, 4.24 was constructed in a similar way using all the resistances.
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Figure 4.5: Equivalent circuit representation of the CNT network.

K(:, 1− 3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
R1

+ 1
R2

+ 1
R14

− 1
R1

0

− 1
R1

1
R3

+ 1
R4

+ 1
R5

+ 1
R6

− 1
R3

0 − 1
R3

1
R3

+ 1
R7

+ 1
R8

+ 1
R9− 1

R2
− 1

R5
− 1

R7

0 0 − 1
R8

0 0 0
0 − 1

R4
− 1

R9

0 0 0
− 1

R14
− 1

R6
0

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.22)

K(:, 4− 5) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
R2

0

− 1
R5

0

− 1
R7

− 1
R8

1
R2

+ 1
R5

+ 1
R7

+ 1
R10

+ 1
R13

− 1
R10
− 1

R13− 1
R10
− 1

R13

1
R8

+ 1
R10

+ 1
R12

+ 1
R13

+ 1
R16

+ 1
R17

0 − 1
R12
− 1

R13

0 0
0 − 1

R16

0 0
0 − 1

R17

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.23)
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K(:, 6− 10) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 − 1
R14

0

0 − 1
R4

0 − 1
R6

0

0 − 1
R9

0 0 0

0 0 0 0 0
− 1

R12
− 1

R13
0 − 1

R16
0 − 1

R17
1

R10
+ 1

R13
0 0 0 0

0 1
R4

+ 1
R9

+ 1
R15

− 1
R15

0 0

0 − 1
R15

1
R15

+ 1
R16

0 0

0 0 0 1
R6

+ 1
R14

0

0 0 0 0 1
R17

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.24)

For the voltage vector V , initially, all the cells except the 1st which represents

the high and 4th which corresponds to the ground are set to 0V. For computational

convenience, the low voltage is also set to 0V. Similarly, for the current vector I,

though the choice of current is immaterial, for the ease of computation, we assume that

the corresponding voltage drop, at the nodes 1 and 4 causes a current of magnitude

1 Amps to flow between the nodes. Hence, as seen in vector I, we have 1 Amps

and −1 Amps at the first and fourth rows, respectively. With this initial setup,

Equation (4.21) was then solved for unknown source voltage (high) as:

V = K−1I (4.25)

This unknown voltage also represents the change in voltage ΔV across the network

(low being 0V). With I being the electric current, the overall resistance of the network

is calculated as:

RRE =
ΔV

I
(4.26)

For this network the resistance value calculated was 1.18× 10−6, which was the same

as computed from the developed software thus providing confidence in the proper

software implementation of the theory.
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V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V1 = High
V2
V3

V4 = Low
V5
V6
V7
V8
V9
V10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.27)

I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I1 = 1A
0
0

I4 = −1A
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.28)

Thus the implementation of the model was confirmed and and the model

assumptions will be validated in Chapter Five. In the next chapter few case studies,

especially targeted on the bulk conductivity (both thermal and electrical) dependence

on the stochastic nature of the nanostructures are presented.
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CHAPTER FIVE

Case Studies

To a design engineer employing CNT thin films for various thermal applica-

tions, one of the major concern is the parametric effect of the nanotubes on the bulk

thermal and electrical conductivities. Here we present a few parameters which alter

the conductivity and which can be controlled by employing proper manufacturing or

processing techniques. For example, bundle length and diameter can be altered by

sonication etc. Researchers have also been able to successfully orient the nanotubes

to a certain extent in a thin film network, using high intensity magnetic field [22]. We

first begin with the determination of appropriate dimensions for the representative

element.

5.1 Representative Cell Dimensions

Macroscopically a thin film contains millions of nanotubes forming a network.

Due to computational capacity constrain, we need to find the RAE (Representative

Area Element) or the RVE (Representative Volume Element) of appropriate dimen-

sions that will be small enough so that it can be solved on a small work station

while reasonably representing the macroscopic network characteristics. If the repre-

sentative element dimensions are small relative to the largest geometric feature, the

results are suspect. The determination of appropriate cell dimensions for the repre-

sentative element is crucial for bulk property predictions. In this chapter we present

the approach used to determine appropriate cell dimensions for both, 2D and 3D

models.
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5.1.1 Representative Cell Dimension for 2D Model

Increased element size squares the computational memory requirements, thus

reducing the cell size is of significant interest. Simulations were run for various aspect

ratios Ar where,

Ar =
μl

μd

(5.1)

Here μl and μd are the mean bundle length and the mean bundle diameter respectively,

and Cell width ratio Cw where,

Cw =
L1

μl

(5.2)

L1 being the width of the cell and we constrain L2 = L1.

Figure 5.1 shows the plot of thermal conductivity with increasing cell width

ratio. It can be clearly seen from the figure, that as the cell width ratio increases the

conductivity converges to a constant, that is independent of the cell size. Figure 5.2

shows the plot of relative error as a function of cell width ratio where the error is

defined as:

err =

∣∣∣∣κmaxCw − κCw

κ̃maxCw

∣∣∣∣× 100% (5.3)

Here, κmaxCw is the thermal conductivity from the representative element with the cell

width ratio of Cw and κCw is the best approximation of conductivity taken from the

largest available cell size obtained before the computational resources were exceeded.

From the plot we can safely conclude that as the cell width ratio approaches 10−13,

the relative error in computing the thermal conductivity is less than 5%. For all the

simulations with 2D model we used a cell width ratio of 10.
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Figure 5.1: Thermal conductivity κ in units of W/(mK) as a function of cell width
ratio using 2D Model.

5.1.2 Representative Cell Dimension For 3D Model

To determine the appropriate cell dimensions for the 3D model, we defined the

cell width ratio Cw as

Cw,h1 =
L1

μl

, Cw,h2 =
L2

μl

, Cw,h3 =
L3

μd

, (5.4)

where μl is the mean length of the nanotubes and μd is the mean diameter. The

constraint of the terms h1/μl and h2/μL is made since all tubes are required to lay

flat in the x1 − x2 plane and thus the largest geometric dimension of consideration

would be the length. Conversely, the thickness in the x3 direction h3/μd is chosen

to define the cell width ratio as the diameter is the largest geometric parameter of

consideration along the x3 axis.

For various aspect ratios, the thermal conductivity is calculated for a planar

isotropic network and the results are shown in Figure 5.3 for various nanotube aspect

ratios Ar, where Ar = L/d. For each case in the figure, the nanotube diameter is

deterministic with a value of 12 nm. The length is then computed from the desired
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Figure 5.2: Relative error in thermal conductivity as a function of cell width ratio
using 2D Model.

aspect ratio and is also constrained to be deterministic. The results in Figure 5.3

are the results for the mean and the standard deviation (designated by the error

bars, which are indistinguishable) from at least 500 unique simulations. As can be

observed from Figure 5.3 when the cell dimensions used for simulations are too small,

the conductivity tends to be overestimated for the 3D model. From the figure it is

unclear at what cell width ratio the cell is big enough to accurately capture the bulk

conductivity. For the low aspect ratio network this point appears at a much larger

cell width ratio than for the larger aspect ratio network. Figure 5.4 shows the plot

of relative error as a function of the cell width ratio for the 3D network, here the error

is defined as (5.3).

From Figure 5.4 it is observed for the higher aspect ratio nanotubes, the

relative error percentage drops below 1% quite quickly and for the case of the aspect

ratio of 80 this point occurs around a cell width ratio of 10.
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Figure 5.3: Thermal conductivity κ in units of W/(mK) as a function of cell width
ratio using 3D Model.

5.1.3 Representative Cell Construction Summary

The following algorithm summarizes the element construction and the ensuing

conductivity prediction:

1. Construct a representative element with each planar dimension sufficiently

larger than the largest geometric feature in consideration.

2. Fill the representative element with nanotube bundles sampled from their re-

spective stochastic distributions for bundle length, bundle diameter, spatial

position chirality, spatial orientation, and for tubes that geometrically overlap

the separation distance.

3. Impose the geometric periodic boundary condition.

4. Retain the points of inter contact, and sample the inter-contact resistance.

5. Compute the bulk thermal conductivity in the direction of the flow.

56



Figure 5.4: Relative error in thermal conductivity as a function of cell width ratio
using 3D Model.

5.2 Length Dependence of Conductivity

Bundle length is one of the inputs for the model. This case study investigates the

dependence of conductivity on the bundle length and compares the solution with those

available in the literature for a similar study [33]. Simulations were performed for

both thermal conductivity and electrical conductivity using our 2D and 3D models.

For the 2-D study, tubes are placed in a 2-D spatially homogeneous configuration

within the sample element and the orientation of each tube is sampled from the 2D

planar isotropic distribution,

ψ(φ) =
1

2π
(5.5)

which means no θ dependence, i.e.

ψ(θ, φ) =
1

2π
δ
(
θ − π

2

)
(5.6)

where δ(θ − π
2
) is the Dirac delta function that equals zero everywhere except when

its argument is zero.
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Figure 5.5: Figure depicting the network formation with (a) Shorter naotubes, and
(b) Longer nanotubes.

For the 3D study, tubes are placed in a 3-D spatially homogeneous configu-

ration within the sample element and the orientation of each tube is sampled from

a 2-D planar isotropic distribution. With increase in bundle length we expect the

conductivities (both thermal and electrical) to increase. This is because, with larger

tubes, one needs a few tubes to complete the path, i.e., which results in lowering the

number of contacts, as shown in Figure 5.5. This results in low resistance.

Results from the simulation were found in agreement with this fact and are

discussed in the following subsections.

5.2.1 Thermal Conductivity Dependence on Bundle Length

The dependence of bundle length on the thermal conductivity of a thin film

network with a fixed volume fraction is shown using our 2D model in Figure 5.6.

These results are for bundles of planar isotropic orientation and bundle lengths varying

from 0.3μm to 3μm with a fixed bundle diameter of 10nm. The volume fraction was

60% percent (constant) for all the cases and the the chirality ratio was 1 : 2 for
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metallic to semiconducting. Each data point is the mean of 100 runs. It is clear

from the figure, that there is considerable increase in the thermal conductivity, with

increase in bundle length. Single order of increase in the magnitude of bundle length

could lead to two orders of increase in the bulk thermal conductivity.

κ(L) = 6.74× 1013L2.16 (5.7)

κ(L) = 8× 1012L1.868 (5.8)

Similar study was done using the 3D model, by fixing the bundle diameter to 10nm

and the results are plotted in Figure 5.7. Equations (5.7) and Equation (5.8) are

curve fits to the data obtained for the 2D and 3D case. These analytical equations

are in S.I. units. From the plot it is clear that conductivity is a direct function

of bundle length. Also, for the 3D model we considered two cases, one with the

network consisting of entirely metallic nanotubes and other with the mixed chirality

i.e. metallic to semiconducting ratio being 1 : 2. From the plot, it is clear that, the

chirality does not have any impact on the bulk thermal conductivity of the network,

but it does affect the bulk electrical conductivity, as will be seen in Figure 5.9

5.2.2 Electrical Conductivity Dependence on Bundle Length

The results for the electrical conductivity are plotted in Figure 5.8 for the 2D

model which demonstrate a steady increase in conductivity as a function of increas-

ing bundle length, with a best fit power curve given in the figure where L is given

in units of micrometers (μm). The study was conducted for a network consisting

entirely of metallic tubes and semiconducting tubes. Results show that unlike, ther-

mal conductivity, electrical conductivity depends on the chirality of the nanotubes in

the network. Equation (5.9) and Equation (5.10) represent the curve fir for metallic
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Figure 5.6: Thermal conductivity κ as a function of bundle length using 2D model.

network and a network with mixed nanotubes for 2D case.

σ(L) = 6.3× 1015L1.9S/m (5.9)

σ(L) = 2.3× 1016L2S/m (5.10)

Figure 5.9 presents the plots for same study from our 3D model. Chirality de-

pendence similar to the 2D model was observed. Equation (5.11) and Equation (5.12)

represent the curve fit for metallic network and a network with mixed nanotubes for

3D case.

σ(L) = 2.76× 1016L1.9S/m (5.11)

σ(L) = 2.66× 1016L1.94S/m (5.12)

These analytical equations are in S.I. units. From these plots we could safely conclude

that increasing the percentage of metallic carbon nanotubes would improve electrical

conductivity. Hence, the manufacturing process should be directed in this direction.
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Figure 5.7: Thermal conductivity κ as a function of bundle length using 3D model.

5.3 Diameter Dependence of Conductivity

There have been many attempts to study the dependence of conductivity on

diameter. Diameter also being one of the input factors for our model, we here present

a case study for conductivity predictions as a function of nanotube bundle diameters

ranging from 5nm to 25nm with the same assumptions on orientation, spatial homo-

geneity, and volume fraction as in the previously discussed conductivity dependence

on length study. For all the simulations we selected the length of each nanotube to

be 2μm with a volume fraction of nanotubes being 60%. It is clear from all the plots

that there exists a nice inverse relationship between the bundle diameter and bulk

conductivity. This trend is expected as for a fixed volume fraction, orientation and

bundle length, the decrease in the bundle diameter will result in increase in the num-

ber of tubes. More tubes provide better alternative paths with least resistance for the

flow, as shown in Figure 5.10 hence with the decrease in diameter (or increase in the

number of tubes) the resistance decreases thereby increasing the bulk conductivity.
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Figure 5.8: Electrical conductivity σ as a function of bundle length using 2D model.

5.3.1 Electrical Conductivity Dependence on Bundle Diameter

In the 2D model scenario depicted in Figure 5.11, the final number of discrete

tubes after imposing the geometric boundary conditions was just over 9, 600 for the

5nm samples and ∼ 1, 900 for the 25nm sample, with the former requiring nearly 900

seconds per computational simulation. It is quite clear from Figure 5.11 that there

exist a little spread in the predicted results for the metallic network, whereas for the

metallic/semi-conductive network there exist a considerable amount of spread. The

3D model results shown in Figure 5.9 demonstrate a similar trend for the exponent

of the best fit function as observed in the 2D model, with the primary difference

occurring in the pre-multiplying coefficient. As in the previously discussed length

dependence study, the error bars are not presented in the 3D case as they would be

nearly indistinguishable from the line itself. The final number of discrete tubes for

the 3D study after imposing the geometric boundary conditions was just over 29, 000

for the 12nm samples and ∼ 5, 800 for the 60nm sample, with the former requiring

nearly 200 seconds per computational simulation. For a network made entirely of
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Figure 5.9: Electrical conductivity σ as a function of bundle length using 3D model.

pure metallic carbon nanotubes the electrical conductivity is better, which is inline

with the results obtained from length dependent study, discussed earlier. Equation

(5.13) and Equation (5.14) represent the curve fir for metallic network and a network

with mixed nanotubes for 2D case.

σ(L) = 2.2× 10−19L−3S/m (5.13)

σ(L) = 9.1× 10−20L−3S/m (5.14)

Equation (5.15) and Equation (5.16) represent the curve fir for metallic network and

a network with mixed nanotubes for 3D case. All the analytical solutions are in S.I.

units. It is also worthwhile to note that the trends in Figure 5.8 and Figure 5.9,

in particular the exponents from the best-fit power law relationship, are similar to

the results discussed in Hecht et al. [33] where they noted that the exponent would

be ∼ −2 for perfectly rigid bundles. The discrepancy is attributed to the fact that

Hecht et al. assumed that each tube would have a single point of contact, whereas in

our situation with the 5nm diameter nanotubes an individual nanotube will average
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Figure 5.10: Plot depicting two system for same volume fraction, having (a) Thin
cabonnanotubes, and (b) Thick carbonnanotubes. It is noteworthy, for a smaller
diameter the number of alternative paths across the network are more.

just less than 80 contact points. As in the previous case, there is a considerable gain

in conductivity by fabricating a network of purely metallic tubes.

σ(L) = 3.3× 10−18L−2.90S/m (5.15)

σ(L) = 2.0× 10−18L−2.94S/m (5.16)

5.3.2 Thermal Conductivity Dependence on Bundle Diameter

For a 2D model as depicted by the best fit curve in Figure 5.13, there is a

near inverse dependence between conductivity and diameter. Thus an increase in the

diameter by a factor of two will result in a decrease in conductivity by a factor of two.

Figure 5.14 shows the similar results for the 3D. Equation (5.17) and Equation (5.18)

represent the curve fir for the 2D network and the 3D network respectively. It should

be noted that chirality does not affect the bulk thermal conductivity of the network.

κ(d) = 2.6× 10−7d−1W/m−K (5.17)
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Figure 5.11: Electrical Conductivity as a function of increasing diameter using 2D
model.

κ(d) = 2× 10−5d−0.869W/m−K (5.18)

5.3.3 Comparison of Thermal Conductivity Dependence with the Electrical Conduc-
tivity Dependence on Bundle Diameter

Now let’s compare the numerical solutions for the electrical and the thermal

conductivity dependence on diameter. From Figure 5.12 above, we can see that the

electrical conductivity for a pure network is a function of d−2.9, for thermal conductiv-

ity however it is function of d−0.869 as depicted in Figure 5.14. Here is an explanation

for this difference. Thermal conductance is given by Aeke
he

as shown in Equation 3.17

where Ae is the cross sectional area of contact, he is the separation distance, ke is the

thermal conductivity of the element. The cross sectional area of contact Ae as shown

in Equation 5.20:

Ae =
D1 ×D2

sinγ
(5.19)

Where D1 and D2 are the diameters of the overlapping tubes and γ is the angle

between them. It can be seen from the above relation that for a system with a

constant diameter, the area of overlap is directly proportional to the square of the
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Figure 5.12: Electrical Conductivity as a function of increasing diameter using 3D
model.

diameters of the tubes. Hence, the thermal conductivity:

κ ∝ (d−2.9)(d2) = d−0.9 (5.20)

The above relation explains the discrepancy in the power law for thermal and electrical

conductivities.

5.4 Conductivity Dependence on Volume Fraction

The model uses Finite Element approach to calculate the bulk conductivity. A

problem with finite element solutions is that, when there is an incomplete network

the resulting stiffness matrix will be singular and hence not invertible. In our case

an incomplete network occurs below percolation. Hence, the developed algorithm

experiences the same limitations, below percolation, but it can still be used for systems

just above the percolation threshold. It can be clearly seen from Figure 5.15 that

as the network is filled with the tubes just below percolation, the system matrix is

invertible and no solution is returned, but once the volume fraction is increased above

the percolation threshold a solution for the conductivity is returned.
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Figure 5.13: Thermal conductivity κ as a function of bundle diameter for 2D model.
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Figure 5.14: Thermal conductivity κ as a function of bundle diameter using 3D
model.

A case study is conducted to study the dependence of electrical conductivity

on volume fraction. Two different scenarios are considered, for the first setup as can

be seen in Figure 5.15 a planar network composed of tubes with a constant length

and diameter was considered. It can be seen that for a tube aspect ratio of 40,

the percolation threshold occurs for a volume fraction less than 4%, whereas for the

aspect ratios of 60 and 80 this occurs for a volume fraction less than 2%. Secondly,

the length and diameter were selected from the weibull distribution (3.24) suggested
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by Yeh [1]. Figure 5.16 depicts the results obtained for this case. It can be observed

from the figure that the percolation volume fraction for the network with stochastic

lengths and diameters from the Weibull distribution is observed to occur between

0.5% and 1%.

Figure 5.15: Conductivity prediction as a function of bundle volume fraction for fixed
length and diameter.

Figure 5.16: Conductivity prediction as a function of bundle volume fraction for
length and diameter sampled from the Weibull distribution of Equation (3.24).

It can be seen from the Figure 5.16 that the conductivity increases with in-

creasing volume fraction, with the quickest increases occurring just after the perco-

lation threshold. For the Weibull length and diameter network, the largest volume
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fraction studied was 65% and the observed conductivity was 2, 030S/cm. simulating

a network with a volume fraction greater than 65%, but this is non-physical as the

geometric limitations stating that two tubes must not occupy the same space will

prevent a greater packing density for a planar isotropic network. Once the model

was validated for proper implementation of the intended logic, we validate the model

against the experimental results. Though precise validation of this model is not pos-

sible, due to unavailability of accurate information regarding the stochastic input

parameters like the bundle length, bundle diameter, chirality ratio and the degree of

alignment of the tubes in the network. This is difficult to determine and no research

group so far has reported the conductivity values of the thin films along with the

information on these parameters. Here we make an attempt to compare the values

of the electrical conductivity with that reported in the literature.

To begin with, Park et al. [39] who studied the electromagnetic interference

shielding properties of carbon nanotube buckypaper composites using carbon nan-

otube thin films about 10 − 20μm thick, reported that the electrical conductivity of

thinfilm of this thickness composed of HiPco SWCNT is 200 S/cm (20, 000 S/m). In

the same work they also presented the electrical conductivity of thin film (thickness

20 − 60μm) consisting of long MWCNT to vary in the range of 400 − 1000 S/cm

(4 × 104 − 105 S/m). The group further studied the Single-walled carbon nanotube

buckypaper and mesophase pitch carbon/carbon composites [40]. In this study they

filled in the voids in the thinfilm (thickness 11μ m), consisting of purified HiPco

SWCNT by impregnation of pith. They reported that as the voids in the thinfilms

decreased due to repeated impregnation cycles, the electrical conductivity rose from

200 S/cm (2×104 S/m) to more than 400 s/cm (4×104 S/m). The group in another
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study on multi-walled carbon nanotube sheet/bismaleimide nanocomposites [38] re-

ported that with increased alignment due to stretching, the electrical conductivity of

this thinfilm improves in the alignment direction. They gave the values to vary from

420 S/cm (4.2 × 104 S/m) to 600 S/cm (6 × 104 S/m). The group also reports in

their work on mechanical and electrical properties of polycarbonate nanotube buck-

ypaper composite sheets [35] that the average resistivity of a neat thinfilm is about

4.9× 10−3Ωm which is about same as 200 S/cm (2× 104 S/m) reported by the group

earlier. We basically, rely on the work of this particular group from HPMI, Florida

State University, (Fl) for validating our model because; we applied the values re-

ported by Yeh [1] for the length and diameter distributions using high resolution

SEM imaging and Gonnet [22]et al.’s work provided the information regarding the

volume fraction of these thinfilms (about 60%). As, they all came from the same

research group; we assume that all the test samples from this group will have the

same nanostructure characteristics. Employing the Weibull distribution parameters

reported by Yeh [1], for the length and diameter distributions, keeping the volume

fraction fixed to 60%, chirality ratio 1 : 3 for metallic:semiconducting, with random

alignment the electrical conductivity predicted by the model is 174300 S/m (mean

of 20, 000 runs). The values seems high compared to that given by the group, be-

cause the model presents an idealized case, with tubes being defect and void free. As

discussed above, reduction in voids considerably improves the electrical conductivity.

The biggest contributor to the discrepancy is attributed to the difference in the length

and diameter values between those used in the model simulation and the actual ex-

perimental system. As shown in Chapter Six table 6.6, even a slight change (about

1%) in these weibull parameters, alters the predicted electrical conductivity. Also,

the conductivity is also a function of chirality ratio, degree of alignment and volume
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fraction. Hence, in order to accurately predict the conductivity, precise information

regarding these input parameters is desired.

5.5 Conductivity Dependence on the Degree of Alignment of Tubes

Conductivity of the thin film network is dependent on the relative alignment of

the tubes in a network, i.e. it depends on degree of planar orientation of the tubes.

It is expected that the more the tubes are aligned along the direction of the flow; the

better will be the conductivity. Researchers have been successful in aligning the tubes

to a certain extent using high intensity magnetic field [22]. It has been shown by Jack

et al. [8] that, the increase in conductivity is shown by the network to a certain degree

of orientation, and then the conductivity decreases. In order to study this effect, a

case study was conducted with a thin film having a volume fraction of 60%. Three

different distributions were selected for length and diameter, namely Weibull, Normal

and by keeping the length and diameter constant. The idea behind selecting three

different distributions for length and diameter was to test the sensitivity of the model,

to the type of distribution selected for the input parameters. The study was done for

two scenarios, first the tubes were aligned along the direction of the flow and second

the tubes were aligned perpendicular to the direction of the flow.

Simulations to compute the bulk anisotropic conductivity were performed by

aligning the tubes along the direction of the current flow through the function

ψ(θ, φ) = kδ(θ − π

2
)cos2n(φ+ α) (5.21)

where the coefficient k is selected to satisfy the normalization condition, δ(θ − π
2
)

is the Dirac delta function that equals zero everywhere except when its argument is

zero, and α is a parameter that defines the principal direction of alignment.
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Table 5.1: Data used for various distributions.

Normal Weibull
Parameters Constant Distribution Distribution

Mean Std Dev. Mean Std Dev.
Length 2.2μm 1.8μm 0.78μm 1.8μm 1.8μm
Diameter 12nm 12nm 4.5nm 12nm 4.5nm

Aspect Ratio 185 184 184
Thickness Ratio 0.45 0.45 0.45
Cell Width Ratio 15.4 15.4 15.4

To provide a fair comparison between the various stochastic distributions, the

mean and the standard deviation was chosen to be the same. Since the comparison

uses the Weibull distribution parameters as given in Equation (3.24) the mean value

of the aspect ratio was constrained to be 184 and the mean value of the diameter was

12nm. For each of the three distributions; the mean aspect ratio is the same, as is

the standard deviation. Table 5.1 shows the data used for various distributions and

the test was conducted on both 2D and 3D models. 50 runs were run for each data

point in order to reduce the standard deviation in the data.

5.5.1 Electrical Conductivity Dependence on Orientation

Figure 5.17 shows the conductivity as a function of alignment for various nan-

otube geometrical distributions for the 3D network. It can be clearly seen from the

plot that, the choice of the distribution function will drastically alter the predicted

electrical response. Also, it is interesting to note that, the electrical conductivity in-

creases initially with the alignment, and then it drops off with increasing alignment.
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Figure 5.17: Electrical conductivity for select alignment states, as a function of ori-
entation for 3D model.

Figure 5.18: Thermal conductivity for select alignment states as a function of orien-
tation for 3D model.

5.5.2 Thermal Conductivity Dependence on Orientation

Similar study was conducted for thermal system. Figure 5.18 shows the con-

ductivity as a function of alignment for various nanotube geometrical distributions

for the 3D network. It can be from the figure that there are three distinct plots for

three different distributions. Also, the thermal conductivity does not decrease with

increase in alignment as is the case with the electrical conductivity.
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Figure 5.19: Reduced options for networking for individual tubes with increasing
alignment.

5.5.3 Difference in the Trends for Thermal and Electrical Conductivities with Increas-
ing Orientation

As can be seen from Figure 5.17 and Figure 5.18 the electrical and the thermal

systems behave differently with increasing alignment. Electrical conductivity initially

shows an increase, but it then decreases. The rate at which the network conductivity

decreases with increasing alignment is expected due to the diminishing networking

options for aligned tubes, thus increasing the probability of any given path having as

the only option a metallic/semi-conducting intercontact as shown in Figure 5.19.

For a metallic semiconducting contact, the intercontact resistance nearly

2 orders of magnitude greater than a metallic/metallic contact and the semi-

conductive/semi-conductive contact. Thermal conductivity on the other hand, shows

a gradual increase with alignment, due to the fact, that thermal conductivity is di-

rectly proportional to the area of overlap from the relation (3.7). As the tubes get

aligned, the area of overlap increases, thereby increasing the thermal conductivity.
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CHAPTER SIX

Sensitivity Analysis

Previous chapter discussed the approach used to determine the appropriate

dimensions for the representative element. For all the models it was clearly obtained

that the conductivity approached to a constant once critical value for the cell width

ratio was reached (which was about 10 ∼ 13 for 2D and about 5 ∼ 7 for 3D). This

chapter presents two targeted case studies, the first study deals with the dimensional

sensitivity of the representative element, while the second study investigates the sen-

sitivity of the thermal and electrical conductivity on the weibull parameters (3.24)

of the length and the diameter proposed by yeh [1].

6.1 Representative Element Dimensional Sensitivity Analysis

Unfortunately, due to the rather large computational requirements of a 3D

network being nearly two orders of magnitude greater than that of the 2D model, cell

dimensions could not be arbitrarily increased as in the 2D case. A study is performed

for a network of tubes of an aspect ratio of 60 at a volume fraction of 10% for various

values of CW,L1 , CW,L2 , and CW,L3 . As the conductivity response surface will be a

function of each of the cell width ratios, the response surface is studied for a fixed

value of one of the cell width ratios and allowing the other two to vary. Figure 6.1

presents the conductivity surface for fixed values of CW,L1 = 5, 7, 9, 11, 13, 15. Observe

the gradient of the response surface approaches zero as CW,L2 → 15 and CW,L3 → 15.

This can be observed in Figure 6.2 where the quivers represent the direction of

the gradient of the conductivity surface where the length represents the magnitude

of the gradient. It is interesting to note that as CW,L2 is increased the predicted
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conductivity decreases asymptotically, whereas for increasing CW,L3 the conductivity

increases asymptotically with neither independent variable showing a clear dominance

over the other. In Figure 6.3 the response surface of conductivity is shown for fixed

values of CW,L2 = 5, 7, 9, 11, 13, 15. It is interesting to note that as CW,L3 → 15 the

conductivity asymptotically increases, but there is no clear dependence on CW,L1 .

This is clearly seen in the quiver plot of Figure 6.4 where the gradient is almost

exclusively aligned in the CW,L3 direction, thus CW,L3 is the dominating variable in

relation to CW,L1 . In Figure 6.5 the response surface of conductivity is shown for fixed

values of CW,L3 = 5, 7, 9, 11, 13, 15. It is interesting to note that as CW,L2 → 15 the

conductivity asymptotically decreases, but as in Figure 6.3 where the response surface

was for a fixed CW,L2 there is no clear dependence on CW,L1 as can be seen in the quiver

plot of Figure 6.6 where the gradient is almost exclusively aligned along the CW,L2

axis. Thus CW,L2 is the dominating variable in relation to CW,L1 . One can infer from

Figure 6.1-Figure 6.5 that the dominating variables are the cell dimensions in the

direction of current flow x2 and, somewhat surprisingly, the thickness of the direction

perpendicular to the plane in which the tubes are oriented. This observation has

consequences when there are computational limitations for solving the network. For

example, in the later studies using the nanotube lengths and diameters sampled from

the Weibull distributions published in [1], a network for CW,L1 = CW,L2 = CW,L3 = 6

had over 2, 000, 000 contacts and 35, 000 tubes.
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Figure 6.1: Response surface as a function of varying CW,h2 and CW,h3 predicted
network conductivity for select cell width ratios in the x1 direction, CW,h1 .

Figure 6.2: Quiver plot of response surface slope vector for predicted network con-
ductivity for select cell width ratios in the x1 direction, CW,h1 .
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Figure 6.3: Response surface as a function of varying CW,h1 and CW,h3 predicted
network conductivity for select cell width ratios in the x2 direction, CW,h2 .

Figure 6.4: Quiver plot of response surface slope vector for predicted network con-
ductivity for select cell width ratios in the x2 direction, CW,h2 .
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Figure 6.5: Response surface as a function of varying CW,h1 and CW,h2 predicted
network conductivity for select cell width ratios in the x3 direction, CW,h3 .

Figure 6.6: Quiver plot of response surface slope vector for predicted network con-
ductivity for select cell width ratios in the x3 direction, CW,h3 .
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6.2 Parametric Sensitivity Analysis

A numerical experiment is performed to quantify the effect of various stochastic

inputs on the output response of the system. The goal of this case study is to de-

termine the influence of each of the parameters and more importantly to determine

those for which the output is most sensitive. There are several strategies to conduct

this sensitivity analysis, and these will depend on the type of parameters and the

experimental constraints. In order to extract appropriate and relevant information

from any experiment, the scientific approach to planning the experiment should be

employed. There are two common methods to quantify the relative importance of the

design parameters within the experiment (a) Design of Experiment, and (b) Statis-

tical analysis of the data obtained. These two methods each have their strong suits,

but in the present scope the method of the full stochastic analysis is chosen due to

its ability to handle the stochastic nature of the conductivity from our 3D network

conductivity model. Here we present the approach we adapted to test the sensitivity

of electrical and thermal conductivities from our model, on the input parameters.

6.2.1 Selection of Parameters

The conductivity behavior of a thin film network is influenced by several pa-

rameters of individual CNTs like length distribution, diameter distribution, chirality

distribution, orientation distribution, etc. Yeh [1] from her experimental observa-

tions using SEM imaging reported that the length and the diameter follow a Weibull

distribution given by the Equation (3.24). For a weibull distribution a change in the

scale parameter α has the same effect on the distribution as the change of the abscissa

scale. Increasing the value of α while holding β constant has the effect of stretching

out the pdf. Since the area under a pdf curve is a constant value of one, the peak
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of the pdf curve will also decrease with the increase of α. The Weibull shape pa-

rameter, β, is also known as the slope, as the value of β is equal to the slope of the

regressed line in a probability plot. Different values of the shape parameter can have

marked effects on the behavior of the distribution. It is of interest to determine the

sensitivity of the bulk conductivity to the variables α and β, and what the error in

the bulk conductivity will be due to experimental error from the input parameters.

In other words, is there a chance that the inappropriate selection of the parameters α

and β for the length and the diameter will drastically result in a significant alteration

in the prediction of the conductivity. If yes, how drastic is the effect? Hence, the

parameters α and β for the length and the diameter distributions will constitute the

parameters for our study.

The sensitivity can be quantified as the product of the mean value of the

design parameter multiplied by the gradient of the result variable (in this case the

conductivity) in the direction of the design parameter. Due to the stochastic nature

of the network conductivity, it is difficult to compute these partial derivatives for

the gradient. To numerically approximate a derivative, a simple approach, such as

a forward difference method, will increase in accuracy as the step size decreases.

Mathematically,

μP
∂σ

∂P
≈
(
P0 + P1

2

)(
σ0 − σ1
P0 − P1

)
(6.1)

where, μP is the average of the default value of the parameter and the changed

parameter, ∂σ represents the change in the conductivity (applies to both electrical

and thermal conductivities. ∂P the change in the parameter, Subscripts 0 and 1

are the respective values for the default system and the system with the changed

parameter.
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6.2.2 Determination of Sample Size

In order to reasonably predict the conductivity, appropriate sample size should

be determined. Statistically, larger sample size leads to increased precision in esti-

mating properties regarding a population using Monte Carlo simulations. But due to

computational and time constraint, we need to restrict our sample size big enough to

fairly predict the property. In order to determine the appropriate sample size for this

study we ran 341067 runs for our analytical solution of fixed diameter case for thermal

conductivity Figure 5.7. From these data points we randomly selected 10 points and

calculated its mean. We repeated this step for 2000 times and for each time we com-

pared the mean with the total population mean to get the error. We then calculated

the mean of these 2000 error values and tabulated it in Table 6.1. Similar procedure

was adapted for the sample size of 100, 1000, 10, 000, 15, 000, 20, 000, 30, 000, 50, 000

and 100, 000. Figure 6.7 shows the plot of maximum error in calculating the mean

for a sample size to the sample size. From the plot it can be seen that as the sample

size increases, the accuracy in predicting the conductivity increases. We found the

sample size of 20, 000 fairly large enough, to predict the conductivity behavior using

this model. Hence, for all the studies our sample size will be 20, 000.

6.2.3 Determination of Appropriate Perturbation Size

Unfortunately, due to the uncertainty in the value of the function due to the

stochastic nature of the simulations, it is required to increase the step size as large

as possible, but as the error associated with approximating the partial derivative

employing the forward difference method is directly related to the step size, hence,

we need to keep it as small as possible. Thus there are two conflicting requirements.

In order to get an idea of the appropriate step size, we perform our study for a
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Table 6.1: Table of sample size and mean error.

Sample Mean
Size Error (W/m-K)
10 0.3068
100 0.0949
1000 0.0303
10000 0.0090
15000 0.0074
20000 0.0062
30000 0.0048
50000 0.0032
100000 0.0013

function where the solution is already known. Using the study depicted in Figure 5.9,

where the diameter and chirality ratio is fixed and are both constants. The length

is sampled from a constant function and samples are performed at various values of

the length. Figure 5.9, shows the plot for increasing length and the resulting power

law curve fit function (with R2 = 0.998). To obtain the value of the gradient of

the conductivity as a function of the change in length, we choose to run simulations

with step sizes of 0.1%, 1% and 5% from the base length of 0.4μm. We ran 20, 000

runs for each simulation and present the histograms for each step size. Figure 6.8

shows the histograms for increasing bundle length. Histogram in red depicts the

distribution of the electrical conductivity with the bundle length of 0.4μm. The mean

conductivity for this bundle length is 1032900 S/m. In the same figure, the histogram

in green represents the distribution of electrical conductivity for bundle length of

0.4004μm, which is 0.1% increase in the base length. The histogram in blue presents

the distribution of electrical conductivity for bundle length of 0.404μm, which is 1%

increase to the base length. The mean conductivity for this length is 1052700S/m.

Finally, the histogram in black, shows the distribution of electrical conductivity for
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Figure 6.7: Decreasing error in approximating the population mean with increasing
sample size.

Table 6.2: Sensitivity results for electrical conductivity for increasing length.

Length μL0
dσ
dL

μL0
dσ
dL

(μm) %Change (Analytical) (M-C)
0.4 0 1.999× 104

0.4004 0.1 2.04× 104

0.404 1.0 1.98× 104

0.42 5.0 2.06× 104

the bundle length of 0.42μm, a 5% increase in the base length. There is significant

increase in the electrical conductivity as we notice the shift in the abscissa. The

mean electrical conductivity for this length is 1133600S/m. Table 6.2, shows the

comparison for the analytical values with the one obtained from the simulations.

The analytical solution for electrical system was obtained from the Equation 5.12.

From Table 6.2, comparing the values in column(4), with column(3) we can see

that, the Monte-Carlo simulation results for 1% increase produces result close to the

one predicted analytically (i.e. column(3)). A smaller step size is preferred in order
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Figure 6.8: Histograms showing the frequency distribution of electrical conductivity
for increasing bundle length.

to get better results from finite difference methods. Hence, we will select the step

size of 1% for the bundle length for electrical conductivity sensitivity analysis. From

Table 6.2, a comparison for the values of the change in conductivity per unit length

obtained numerically using Monte-Carlo simulations (column 4) are contrasted with

the change in conductivity per unit length obtained analytically (column 3). It is

not surprising that the small step of 0.1% has the largest error due to the significant

overlap of the obtained distributions for conductivity, and thus a small error in the

conductivity expectation will result in a large error in the conductivity sensitivity.

On the other hand, since the error in a forward difference method is on the order of

the step size raised to the first power, it is anticipated that the error will increase

with increasing step size. Thus, from our results it is not surprising that 1% provides

a reasonable approximation of the derivative, and the future studies will rely on this

step size.
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Table 6.3: Sensitivity results for thermal conductivity for increasing length.

Length μL0
dκ
dL

μL0
dκ
dL

(μm) %Change (Analytical) (M-C)
0.5 0 24.96
0.5005 0.1 35.1
0.505 1.0 24.1
0.525 5.0 25.3

Similarly, Figure 5.7 shows the trends of changing thermal conductivity with

increasing length. The base bundle length of 0.5μm was chosen for this study. We

ran 20, 000 runs for each simulation and chose the same step sizes of 0.1%, 1% and 5%

from the base length. Figure 6.9 shows the histograms for changing thermal conduc-

tivity with increasing bundle length. Histogram in the red depicts the distribution

of electrical conductivity with the bundle length of 0.5μm. The mean thermal con-

ductivity for this bundle length was 13.22 W/mK. Histogram in green presents the

histogram for bundle length of 0.5005μm, which is 0.1% increase in the base length.

The mean thermal conductivity for this length is 13.26 W/mK. Similarly, the his-

togram in blue presents the thermal conductivity distribution for bundle length of

0.505μm, which is 1% increase to the base length. The mean conductivity for this

length is 13.46W/mK. Histogram in black, presents the thermal conductivity distri-

bution for bundle length of 0.525μm, a 5% increase in the base length. The mean

thermal conductivity for this length is 14.45W/mK. Table 6.3, shows the compari-

son for analytical values with the one obtained from the simulations. The analytical

solution for electrical system was obtained from the Equation 5.8

For the thermal system the results are tabulated in Table 6.3. It can seen

from the column 3 and column 4, that both the step size of 1% provides result close
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Figure 6.9: Histograms showing the frequency distribution of thermal conductivity
for increasing bundle length.

to the analytical solution. Hence, for the thermal length parameter our step size will

be 1%.

Next, we tested the diameter dependence on the electrical and thermal con-

ductivity. As can be seen from Figure 5.12, the electrical conductivities decrease with

increasing diameter. In order to test the sensitivity of the weibull parameters for di-

ameter, similar procedure was adopted as discussed above for length. For a mixed

network of carbon nanotubes, the electrical conductivity is related to the bundle

diameter as given in Equation 5.16

Figure 5.14 shows the trends of changing thermal conductivity with increas-

ing length. For this study, the bundle length is fixed to 20μm and the base bundle

diameter was chosen to be 20nm. We ran 20, 000 runs for each simulation and chose

the same step sizes of 0.1%, 1% and 5% from the base length. Figure 6.10 shows

the histograms for decreasing electrical conductivity with the increasing bundle di-

ameters. To begin with, the histogram in red depicts the distribution of electrical
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Figure 6.10: Histograms showing the frequency distribution of electrical conductivity
for increasing bundle diameter.

conductivity for the bundle diameter of 20nm. The mean electrical conductivity for

this bundle diameter is 3026000 S/m. Green histogram presents the distribution of

electrical conductivity for bundle diameter of 20.02nm, which is 0.1% increase in the

base diameter. The mean electrical conductivity for this diameter is 3017400 S/m.

Histogram in blue depicts the distribution of electrical conductivity for bundle diam-

eter of 20.20nm, which is 1% increase to the base diameter. The mean conductivity

for this diameter is 2938300 S/m. Finally, the histogram in black, presents the dis-

tribution of electrical conductivity for bundle diameter of 21nm, a 5% increase in

the base diameter. Table 6.4 tabulates the comparison for the values of the change

in electrical conductivity per unit diameter obtained numerically using Monte-Carlo

simulations (column 4) with the change in conductivity per unit diameter obtained

analytically (column 3). It is clear from the table that 1% change gives a better ap-

proximation of the derivative, and the final study for electrical conductivity will be

based on this step size.
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Table 6.4: Sensitivity results for electrical conductivity for increasing diameter.

Diameter μd0
dσ
dd

μd0
dσ
dd

(nm) %Change (Analytical) (M-C)
20.00 0 −8.922× 104

20.02 0.1 −8.59× 104

20.20 1.0 −8.82× 104

21.00 5.0 −8.32× 104

Figure 6.11: Histograms showing the frequency distribution of thermal conductivity
for increasing bundle diameter.

A similar study on the diameter for the thermal conductivity is also performed.

From Figure 5.14, we see that the thermal conductivity is related to the bundle

diameter as given in the Equation 5.18. For this study, the bundle length is fixed

to 20μm and the base bundle diameter is chosen to be 20nm. We ran 20, 000 runs

for each simulation and chose the same step sizes of 0.1%, 1% and 5% from the

base diameter. Figure 6.11 shows the histograms for decreasing thermal conductivity

with increasing diameter. The red histogram represents the distribution of electrical

conductivity for bundle diameter of 20nm. The mean thermal conductivity for this
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Table 6.5: Sensitivity results for thermal conductivity for increasing diameter.

Diameter μd0
dκ
dd

μd0
dκ
dd

(nm) %Change (Analytical) (M-C)
20 0 -85.49
20.02 0.1 -92.08
20.20 1.0 -85.23
21.00 5.0 -84.31

bundle diameter is 96.57 W/mK. The green histogram on the other hand presents the

distribution of the thermal conductivity for the bundle diameter of 20.02nm, which is

0.1% increase in the base diameter. The mean thermal conductivity for this diameter

is 96.47 W/mK. Similarly, the blue histogram presents the distribution of the thermal

conductivity for the bundle diameter of 20.20nm, which is 1% increase to the base

diameter. The mean conductivity for this diameter is 95.7 W/mK. Finally, the black

histogram presents the distribution of the thermal conductivity histogram for the

bundle diameter of 21nm, a 5% increase in the base diameter. The mean conductivity

for this diameter is 92.45 W/mK. Table 6.5 tabulates the comparison for the values

of the change in thermal conductivity per unit diameter obtained numerically using

Monte-Carlo simulations (column 7) with the change in conductivity per unit diameter

obtained analytically (column 6). It is clear from the table that 1% change gives a

better approximation of the derivative, and the final study for thermal conductivity

will be based on this step size.

6.2.4 Results

Based on the studies discussed in the previous section, we concluded that the

step size of 1% was appropriate for all of our parameters. We then ran 5 different tests

in order to determine the sensitivity of the model on the α and the β parameters of
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Table 6.6: Relative sensitivity of the electrical conductivity to the weibull parameters.

Testing Mean Final Relative
Parameter Conductivity Sensitivity sensitivity
Default 174300
Diameter (α) 175230 93500 0.28
Diameter (β) 172420 189000 0.57
Length (α) 177600 332000 1.00
Length (β) 172430 188000 0.57

Table 6.7: Relative sensitivity of the thermal conductivity to the weibull parameters.

Testing Mean Final Relative
Parameter Conductivity Sensitivity sensitivity
Default 226.02
Diameter (α) 223.55 247.93 0.89
Diameter (β) 226.18 15.33 0.06
Length (α) 227.01 99.41 0.36
Length (β) 223.25 278.57 1.00

the length and the diameter. The results for the electrical conductivity are tabulated

in Table 6.6. From the Table, it is clear that, amongst the parameters under study,

electrical model is most sensitive to the α parameter of the weibull distribution for

length. Another interesting, fact worth noting is that, increase in the α) parameter of

length and diameter by 1% over predicts the electrical conductivity, whereas increase

in the β parameter by the 1% under predicts it by the same amount for length and

diameter.

Table 6.7, tabulates the sensitivity results for the thermal model. From the

table, we can conclude that, the thermal conductivity is most sensitive to the β

parameter of the length and to an extent, on the α parameter of the diameter.
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This case study also demonstrates the effectiveness of the approach used. This

approach is very general and can be used to test the sensitivity of the output at-

tributed to any variation in the input parameters. The results obtained from the

Monte Carlo simulations are in agreement with those obtained from the analytical

solution for the simple system with an available analytic solution thus validating the

approach, but the approach is more applicable for systems where the derivatives may

not be evaluated analytically.
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CHAPTER SEVEN

Conclusions, Limitations and Recommendations

This chapter discusses the conclusions drawn and certain shortcomings of the

models. Accuracy of the model can be increased by incorporating additional infor-

mation to the model. I have listed a few areas to look into it.

7.1 Conclusions

The objective of this project was to provide an insight into the thermal and

electrical behavior of thin film carbon nanomembranes, a macro-scale network of neat

single-walled carbon nanotubes (CNT), by developing computational simulations that

stochastically incorporate the network nanostructure to understand the membrane’s

response to thermal and electrical loadings. In other words, we desired to establish

a link between the stochastic nature of the nanostructure (like the bundle length,

bundle diameter, chirality etc.) and the bulk response of the network. Originally, we

started with a 2D model which provided us the feel for the complexity of the problem

and the potential computational requirements. Soon we realized the flaw associated

with what we termed our 2.5D assumption in Chapter Three. These inadequacies

led to the need for a fully developed 3D model. In this work we present the required

modification in the boundary conditions for the fully functional 3D model. The model

depicted real 3D nanoscale thermal and electrical flow conditions, and the results were

close to the experimental values reported in the literature with the consequence of

drastically measured computational requirements.

With the validated model, several case studies were undertaken to quantify

and comprehend the effect of stochastic nature of the nanostructure on the bulk
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conductivity response. Determination of appropriate cell dimensions for the repre-

sentative element is crucial. Hence, we started with the determination of the cell

dimensions for the representative element. Based on the results from these simula-

tions we selected to go with the cell width ratio of 10 for our 2D model, and 5 or 6

for our 3D model. We then started considering the input parameters for our study.

From our case study on bundle length, we found that both the thermal and the

electrical conductivity increases with the increasing bundle length. Also, a network

consisting entirely of metallic tubes proved to have a better electrical conductivity

as compared to a mixed network consisting of metallic and semiconducting tubes in

ratio of 1 : 3 but the improvement was only by a factor of 1.8 ∼ 2. The next study

was performed on the diameter and unlike to the bundle length, both the electrical

and the thermal conductivities decreased with the increasing bundle diameter. The

network consisting entirely of metallic tubes proved to be a better option and the

improvement in this case was on the order of a factor of 2. The present model can be

used only for conditions above percolation, which occurs at very low volume fractions.

The model was used to study the variation in the electrical conductivity for various

volume fractions ranging from 0.5% to 70%. Apart from the factors mentioned, the

conductivities also depend upon the orientation of tubes in a network. Interestingly,

thermal and electrical conductivities show different trends for increasing orientation

along the direction of the flow. This anomaly is also addressed in Chapter 5.

Apart from the case studies mentioned above we also present, a sensitivity

analysis of the various nanostructure parameters using our 3D models. The first case

study deals with the determination of the sensitivity of the dimensions of the rep-

resentative elements. From the simulations it is clear that the dominating variables

94



are the cell dimensions along the direction of the flow and the cell dimensions per-

pendicular to the direction in which the tubes are aligned. But these parameters

are due to the method used to construct the model. As long as the cell dimensions

are sufficiently large this will not affect the model predictions. In another study we

employed the models to investigate the sensitivity of the thermal and the electrical

conductivity on the select stochastic parameters. In particular, we investigated the

sensitivity of the network to errors in knowing the experimentally obtained Weibull

probability distribution for length and diameter. The sensitivity results indicate that

for the electrical conductivity response, the network is most sensitive to the length’s

Weibull distribution scale parameter. Conversely, for the thermal response it is ac-

tually the shape parameter of the length that causes the most significant change in

the network conductivity.

7.2 Limitations of the Model

The models take in stochastic inputs such as the length, diameter, orientation

distribution, chirality and as such will be limited in the predicted accuracy based on

the confidence one has in these inputs. The models still can be used as a design tool,

for a design engineer or a manufacturing engineer as it can provide trends thus helping

them to focus their efforts on the parameters that will have the greatest impact on

the final part performance. The models are sensitive to the intercontact distribution

means,and the type of input probability distributions, hence a better understanding

of this will greatly enhance the confidence in the accuracy of the model’s results.

Another issue to be addressed is that of the computational limitation. As it

presently stands, for the aspect ratio of tubes of 184 (this number comes from a

related experimental studies) used frequently in this study, the cell width ratio was

limited to 5 or 6 for the full 3D model. It was shown that this ratio needed to be at
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least 10 for the tube of aspect ratio 30, to obtain an answer within 5% of an infinite

cell. It is unclear how much the error is for the presented results, but this issue must

be addressed in future studies.

The model only takes into account the intercontact resistance for the conduc-

tivity calculations and assumes the tubes to be resistanceless. In the physical system

there should be some potential drop along the tube, and it has never been addressed

how much this assumption may affect the final model results. Moreover, the tubes

are also assumed to be defect free, but [24] showed that defects and vacancies does

decrease the thermal conductivity along the nanotube. As the probability of a defect

occurring at the point of contact is very low, hence this effect was not taken into

account, but in future it may be worthwhile to study this issue and include it along

with the tubes intrinsic resistance.

7.3 Scope for Future Work

There are some areas that may be studied in order to improve the accuracy

of the predicted results. In this section we list a few of them. To begin with, we

recognize that the contact resistance between the two tubes is a function of each

tube’s chirality and their relative rotation. There are two relevant rotations that

can be considered; the rotation about the longitudinal axis (a parameter indirectly

incorporated in our model), and the transverse axis rotation (the angle defined as θ in

our model). For our thermal system, we have incorporated the results for the same

from our MD simulation study. The study was done using a semiconducting (5, 5)

and a metallic (5, 0) CNT. Unfortunately, these results are for just one set of carbon

nanotubes and there is no rule of thumb that could be used to make these results

general. The electrical model does not incorporate any of these results. As such, it
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is constrained to assume that all the contacts are sampled from a uniform random

distribution of contact resistances.

The second limitation is attributed to the out of plane angular rotation for each

tube within the CNT networks, thus limiting the reasonableness of our parallel circuit

assumption. Future work is suggested to form reasonable out-of-plane orientations

and the resulting 3D symmetry conditions, thus forming a fully three-dimensional

representative volume element. This will add to the computational complexity and

contribute significantly to the solution resource requirements as the number of point

of contacts would increase with the out of plane orientation.

The third area of suggested improvement is to account for the intrinsic resis-

tance of each SWNT. It is anticipated that, there may be some potential drop along

the tubes. The present model neglects intrinsic resistance by an order of magnitude

argument, but this argument may be too constraining and may play a significant role

in the physical characteristics of the CNT network.

Another area to look into would be chirality and temperature dependence of

thermal and electrical conductivity. Suggested approach would be first dividing the

nanotubes as armchair, zigzag and chiral based on their configuration (n,m), where

n and m are the chiral vectors. The next step would be studying the thermal and

electrical transport based of this (n,m) configuration. This would require a through

understanding of thermal and electronic transport as well as molecular dynamics

simulation techniques. Also, eventually it will require investments in Software pack-

age(s) like Accelrys Materials Studio(Discover module). Temperature dependence of

the thermal and the electrical conductivity should also be incorporated based of the

above studies and references like [17, 27, 28].
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There may be other areas worth looking into for improvement. Using the

sine/cosine 3D distribution is not physically possible for rod-like orientation distri-

butions as there is a possibility of occupance of zero which is meaningless and hence

the 3D distribution should be modeled by a physically meaningful orientation dis-

tribution, such as the Bingham distribution. Multi-walled nanotubes, may be worth

studying as they are a cheaper alternative to SWNTs and will help to reduce the cost

of component being manufactured or designed.

The model currently ignores the heat transfer between the thin film network

and surrounding media, assuming the media to be air. It would be more meaning-

ful if the interaction with the substrate/matrix surrounding the network were also

considered while simulating the bulk conductivity. This may require understanding

the mechanism of electron and phonon interaction with the substrate. This might

me accomplished by dividing the overall resistivity of the system into three parts

(1) Resistivity along the tube, (2) Resistivity between the tubes and surrounding

matrix/resin and (3) Resistivity of the matrix/resin itself. Use of appropriate MD

simulation software package is highly recommended to accomplish this task.

All the improvements suggested above would be demanding, especially in terms

of computational requirements, it is highly desirirable to develop a parallelized version

of the computations to solve Equation (4.21) as is is found that about 87% of the

time is spent for solving it.

Finally, I would like to conclude with a vision that, in future, given a set

of operating conditions for a component, the software suite would be able to opti-

mize the cost of production, by giving out information regarding the fiber/bundle

length, fiber/bundle diameter, chirality ratio, orientation and volume fraction of

CNTs. These are the parameters that alter the thermal and electrical behavior of the
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thin films. For instance, as we showed using case studies that pure metallic nanotubes

are better when it comes to improving the electrical conductivity, but manufacturing

pure metallic tubes incurs additional cost. Hence, knowledge of appropriate chiral-

ity ratio for a network is helpful. Also, as both the thermal conductivity as well as

electrical conductivity vary with the length and the diameter of the individual nan-

otube hence, knowing appropriate dimensions of the nanotube would also help. The

software suite would also be able to predict the performance of the component under

the given set of conditions and lifespan. The next generations of this model will not

be restricted to just CNTs and could be used for any fibers on any scale.
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VITA

Since his childhood, Nikhil closely observed and followed several industries in his

local community - their growth, their downfall be it service related (like seaport and

airport) or manufacturing (like the steel plant and chemical fertilizer plant). He was

always fascinated with machines and their applications. He recognized that no matter

which industry you take or whichever machine you use, there is abundant supply of

engineering that must be put into application. This aroused his curiosity as well as

planted the seed of passion towards engineering and shaped his choice of profession

(as an engineer) at an early age.

He elected to pursue his engineering dreams at ’Shri Ramdeobaba Kamla

Nehru Engineering College’ (R.T.M. Nagpur University) and successfully completed

the requirements of the Bachelor of Industrial Engineering program providing him

with the tools to understand the human aspect of engineering problems.

He has worked as an intern at Grasim Industries Ltd., where he was underwent

training in various aspects of machine, both technical (machining, maintenance etc)

and non technical (Cost analysis, FMEA analysis etc). During the training period

his performance was rated as Excellent.

His experience as an intern at Mahindra and Mahindra strengthened his belief

that basic industrial engineering concepts can bring tremendous benefit to companies

and personnel alike. His project was installed successfully in the facility and his

endeavor was applauded. The project also received a star ranking, and was selected

as an entry for company’s regional awards.
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In his final semester he worked on a project within the supply chain orga-

nization of India’s largest English newspaper daily - The Times of India. With his

engineering knowledge and experience obtained from the previous two employers, he

identified areas for improvement and also recommended methods to manage the sup-

ply chain of the newspaper daily more effectively in their current circulation as well

as scenarios forecast five years into the future.

He joined Florida State University, as a graduate student in Industrial and

Manufacturing Engineering, in the fall semester of 2007. At FSU He got the oppor-

tunity to work with Dr. David Jack, as his graduate Research Assistant. There after

he moved to Baylor University in the fall of 2009, with Dr. David Jack to continue

his graduate degree in Mechanical Engineering. He has showcased his research at

various international technical conferences like ASME-IMECE (2009, 2010 and 2011)

and ASME-ECTC (2010, 2011). He also has his research papers under review within

ASME journals. He also peer reviewed four conference papers for ASME-IMECE-

2010

His short term goals include gaining experience as a manufacturing engineer

and use his knowledge to improve manufacturing processes and designs. In long term

he plans to setup a manufacturing unit and help develop the villages in India, by

providing employment and education in the rural areas.
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