ABSTRACT

Influences of Nutrients and Salinity on Prymnesium parvum Elicited Sublethal Toxicity
in Two Common Fish Models

Bridgett N. Hill, M.S.

Mentor: Bryan W. Brooks, Ph.D.

The magnitude, frequency, and duration of harmful algal blooms (HABs) are
increasing worldwide primarily due to climate change and anthropogenic activities.
Prymnesium parvum is a euryhaline and eurythermal HAB forming species that has
expanded throughout North America resulting in massive fish kills. Previous
ecotoxicological work supported an understanding of conditions resulting in HABs and
fish kills; however, the primary endpoint selected for these studies was acute mortality.
Whether adverse sublethal responses to P. parvum occur in fish are largely unknown. To
begin to address this question, fish molecular and biochemical oxidative stress (OS)
responses and behavioral alterations in two common fish models were investigated.
Varying nutrient and salinity conditions influenced P. parvum related OS and fish
behavioral responses of two common fish models, and these responses were heightened
by conditions nonoptimal for P. parvum growth. Such sublethal observations present

important considerations for future assessment and management of P. parvum.
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CHAPTER ONE
Influence of Nutrients on Sublethal Toxicity of the Harmful Haptophyte, Prymnesium
parvum, to Two Common Fish Models
Introduction
The magnitude, frequency, and duration of harmful algal blooms (HABs)

are increasing globally, primarily due to anthropogenic activities including altered
hydrology, nutrient enrichment, salinization, and storm water and agriculture runoff in
addition to climate change (Granéli et al., 2008; Hallegraff, 1993; Paerl and Huisman,
2009). Many HAB forming species are opportunistic and take advantage of altered
habitat conditions leading to their proliferation, which is primarily facilitated by the
production of secondary metabolites. Altered community structures, production of taste
and odor compounds, fish kills and human health HAB-related illnesses are common
results (Paerl et al., 2001). Monitoring and managing HABs are challenging due to the
wide array of site-specific factors that can lead to these scenarios.

Prymnesium parvum, commonly referred to as golden algae or the “Texas Tide”,
is an invasive mixotrophic haptophyte capable of forming HABs oftentimes resulting in
large economic losses (estimated in millions of dollars) due to the extensive fish and
other gill-breathing organism mortality events (Roelke et al., 2015). P. parvum HABs are
most often found in marine and estuarine waters, although blooms in brackish and inland
water can also occur. P. parvum was first discovered in North America after a toxic
bloom resulted in a massive fish kill in the Pecos River, Texas, U.S.A. in 1985. Since its

first discovery P. parvum has invaded inland bodies of water throughout the southern



United States and has expanded northward where a devastating bloom occurred in
Dunkard Creek along the Pennsylvania/West Virginia border as a result of introduced
produced water (Brooks et al., 2011; Roelke et al., 2015). However, in the U.S.A., Texas
has often experienced severe, frequent, and extensive P. parvum HABs including where
threatened and endangered organisms appear susceptible (Southard et al., 2010). The
expansion of P. parvum and recurrent fish kills raises aquatic ecosystem disruption and
potential public health concerns (Brooks et al., 2011b; Brooks et al., 2016).

P. parvum related acute toxicity, and thus apparently toxin production, has been
found to occur under conditions that deviate from optimal growth conditions, leading to
potential associations with allelopathy in order to gain a competitive advantage over other
algal species and deter predation. Various environmental factors, such as salinity,
temperature, pH, and irradiance, have been shown to influence P. parvum growth and
toxicity (Baker et al., 2007; Roelke et al., 2010; Valenti et al., 2010). However, a
consensus over which specific factor(s) drives toxin production has not been determined
due to the large geographical distribution of P. parvum, a number of site-specific factors
influencing toxicity, and the inability to measure analytically associated toxins. Baker et
al. (2007) proposed 22 ppt salinity, 27 °C and 275 pumol photons m™ s™! as the optimal
growth conditions for P. parvum. Inland Texas P. parvum HABs typically occur during
winter months, with temperatures ranging from 10-15 °C and salinities less than 4 ppt,
clearly deviating from optimal conditions (Baker et al., 2007). P. parvum blooms can
grow at suboptimal conditions as long as population losses are lower than the
reproductive growth rate, which appears facilitated by toxins production (Brooks et al.,

2011).



Nutrient imbalances, involving varying concentrations or stoichiometry, also
influence P. parvum toxicity. Laboratory cultures grown under nutrient deficiency
resulted in lower cell densities and higher toxicity when compared to cultures grown
under nutrient sufficient conditions (Baker et al., 2009). Nutrient enrichment to field
enclosures led to a decrease or elimination in toxicity when grown along different
seasons (Roelke et al., 2007). Stoichiometric imbalances have also been shown to
influence toxicity, with higher toxicity occurring in cultures grown under N and P
limitation (Graneli, 2003). Eutrophication allows for the proliferation of P. parvum, often
resulting in imbalanced N:P ratios leading to stressful conditions which result in
increased toxicity (Manning and LaClaire, 2010).

Toxicity studies involving in vitro and in vivo models are commonly employed to
determine the potential behavior of P. parvum toxins in the environment and resulting
effects on organisms. Building from previous efforts (Brooks et al., 2010), I performed a
literature review and identified a total of 155 toxicity studies of P. parvum in aquatic
systems (Table 1.1). In vivo acute mortality was the most commonly studied endpoint
accounting for 59 studies, followed by in vivo sublethal (56), in vitro acute mortality (34),
and in vitro sublethal toxicity endpoints (5). Hemolysis and acute fish mortality were the
most employed and sensitive in vitro and in vivo assays, respectively. Previous sublethal
responses in in vivo fish models include equilibrium losses, changes in oxygen
consumption and respiration and immunological impairment determined by the
contraction of a virus (Table 1.1). Knowledge of sublethal responses in fish is imperative
to understanding population level effects when devastating P. parvum blooms occur. Fish

communities in Texas, including the Colorado River Basin, have exhibited declines or



altered community structures after P. parvum HABs (VanLandeghem et al., 2013).
Unfortunately, an understanding of biochemical, molecular and behavioral responses P.
parvum are lacking.

Oxidative stress (OS) is a physiological response resulting from an imbalance
between reactive oxygen species (ROS) and antioxidant capabilities to detoxify these
molecules. OS has been implicated in damage to tissues, inflammation, many disease
states including neurodegenerative diseases and carcinogenesis in fish and mammals
(Kohen and Nyska, 2002; Scandalios, 2005). The primary targets of ROS include
proteins, lipids, and nucleic acids; therefore, OS can occur in virtually all intracellular
organelles and across the entire organism (Scandalios, 2005). An increase in the use of
biochemical responses in aquatic organisms have occurred in response to poorly
understood cause and effect relationships among toxins/toxicants in conjunction with the
need for early warning signals of ensuing pathology (Di Giulio et al., 1989). Biomarkers
of OS have been studied for environmentally induced OS from exposure to xenobiotics,
radiation, and metals (Limon-Pacheco and Consebatt, 2009; Lushchak, 2011; Valavanidis
et al., 2006). The development of commercially available biochemical assays provide for
rapid OS determination. The application of behavioral and OS biomarkers and thus
contribution of OS toxicity by algae has been demonstrated (Baganz et al., 1998b;
Lasley-Rasher et al., 2016b; Lefebvre et al., 2004; Rao and Bhattacharya, 1996; Wiegand
et al., 1999).

Behavior responses, which represent an organism’s response to changes in
internal (physiological) and external (social) environments, have been shown to be rapid

and sensitive indicators of environmental exposure (Gerhardt, 2007). Behavioral



syndromes have been established to determine signs of stress that are classified based on
chemical structure and mode of toxicity (Drummond and Russom, 1990). Behavioral
ecotoxicology utilizes these syndromes for various biomonitoring efforts to determine the
extent of environmental exposure (Hellou, 2011). Further, behavioral endpoints are
utilized in biomedical and toxicological studies to determine phycotrophic effects of
pharmaceuticals, thus establishing behavioral fingerprints to easily predict and screen
pharmaceuticals that have received less attention (Rihel et al., 2010). Recent research by
my laboratory has extended these efforts to identify behavioral response profiles for
various contaminants eliciting toxicity through nonpolar narcosis, polar narcosis,
electrophilic and specifically acting modes and mechanisms of action (Steele et al 2018,
Steele et al accepted). Therefore, behavior represents a biomonitoring tool for
environmental exposures, and also may provide an early tier estimate of the mechanisms

behind P. parvum sublethal toxicity.
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The primary objective of the present study was to examine sublethal effects of P.
parvum by evaluating common biochemical biomarkers of OS and photomotor
behavioral response patterns. Sublethal responses were determined by these endpoints in
order to assess the sensitivity at two different levels of biological organization (cellular
and organismal). Sublethal responses were examined with two common fish models, the
fathead minnow (Pimephales promelas) and zebrafish (Danio rerio). To determine the
toxicological effects of varying nutrient concentrations, P. parvum cultures were grown
under nutrient sufficient and deficient conditions. Exposure to sublethal cell densities of
P. parvum would result in OS and altered behavioral responses was hypothesized due to
the influence of OS in other HAB toxicity. In addition, these responses were expected to
be heightened under nutrient limited conditions due to the previously reported increases
in acute mortality in response to stressful growth conditions. Lastly, differential toxicity
to fathead minnow and zebrafish was expected due to previously reported comparative

toxicological investigations by my laboratory (Corrales et al., 2018).

Methods

Laboratory Cultures and Experimental Design

A Texas strain of P. parvum was obtained from the University of Texas at Austin
Culture Collection of Algae (UTEX LB 2797, Austin, TX, USA). Stock cultures were
grown at Baylor University in a temperature controlled incubator at 25 °C under a 12:12
light:dark cycle at 25 ppt salinity and f/2 nutrients. Experimental cultures were inoculated
when the stock culture reached late exponential growth phase. Approximately 100

cells/mL of the above stock culture was introduced to 19 L of media. Artificial seawater
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(ASW) was prepared by dissolving Instant Ocean salt in Nanopure water (18.2 megohm
ionic purity; Barnstead, ThermoFisher, Wilmington, DE, USA,). A super stock ASW
solution of 35 ppt was first prepared, and then diluted to the target salinity of 2.4 ppt
using Nanopure water according to previously published methods by my laboratory
(Brooks et al., 2010). Water was enriched with either /2 or /8 nutrients, with full trace
metals and vitamins for all cultures (Table A1, Appendix A; Guillard, 1975). ASW and
all media stocks were autoclaved before use.

An experiment was performed at 15 °C, on a 12:12 light:dark cycle. Two replicate
experimental units with either sufficient (f/2) or deficient (1/8) nutrient treatment levels
were swirled and rotated daily. Every second day, 40 mL subsamples from each culture
was preserved using 40 pL glutaraldehyde for cell counts. Cell counts were determined
using a haemocytometer following a previously reported protocol (Southard, 2005).
Additionally, cell growth was examined using chlorophyll a fluorescence using a hand
held fluorometer (Turner Designs, San Jose, CA, USA) in order to rapidly assess
condition of experimental units. Acute fish mortality was assessed on each culture during
exponential and stationary growth phases on day 27 and 42, which were confirmed by
cell counts and chlorophyll a fluorescence. At study initiation, dissolved nitrogen
(nitrate/nitrite) and phosphorus (phosphate) concentrations were analyzed for each
nutrient condition according to standard methods using a flow-injection auto-analyzer
(Lachat QuikChem 8500 and Series 520 XYZ Autosampler; APHA (Clesceri et al. 1998).
Media N and P concentrations (pg/L) for each treatment level (£/2 or {/8) are reported in

Table A2. (Appendix A).
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Fish Cultures

Fathead minnow and zebrafish used in toxicity studies were cultured at Baylor
University. Fathead minnow (P. promelas) cultures were maintained at Baylor University
using a flow through system that introduced aged dechlorinated tap water to individual
aquaria. Cultures were maintained at 25+1 C under a 16:8 light:dark cycle. Fathead
minnow were fed brine shrimp (Artemia sp. nauplii; Pentair AES, Apopka, FL, USA)
twice daily. Embryos were collected from sexually mature adults aged to at least 120 d
before breeding (1:4-5 male to female ratio). Larvae within 24-48 h post hatch were used
for toxicity studies. Tropical 5D wild type zebrafish (D. rerio) were cultured using a z-
mod recirculating system (Marine Biotech Systems, Beverly, MA, USA). Zebrafish were
maintained at a density of <4 fish per liter in 260 ppm instant ocean with a pH of 7.0,
temperature of 27+1 °C under a 16:8 light:dark cycle. Zebrafish were fed artemia
(Artemia sp. nauplii; Pentair AES, Apopka, FL, USA) with flake food (Pentair AES,
Apopka, FL, USA) twice daily. Embryos used for this experiment were collected from
sexually mature adults, and were used for toxicity experiments at 48 h post fertilization.
All experimental procedures and fish culture protocols followed Institutional Animal

Care and Use Committee protocols approved at Baylor University.

Acute Bioassays

Due to the lack of analytical standards, acute bioassays using fathead minnow
were employed to determine toxicity of cultures throughout growth stages similar to
previous published methods in our laboratory (Valenti et al., 2010). Bioassays were
initiated when cell densities reached 10,000 cell/mL, the minimum cell density that is

considered to be toxic (Roelke et al., 2007). Acute mortality of fathead minnow was
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determined following U.S. Environmental Protection Agency (EPA) Toxicity
Identification Evaluation (TIE) (US EPA 1991). Serial dilutions following a 0.5 dilution
scheme were prepared for a total of six dilutions (e.g. 100, 50, 25, 12.5, 6.25, 3.125% of
P. parvum culture). Media (2.4 ppt with {/2 or £8) served as the dilution water and
treatment control. Five < 24 hour post hatch (hph) fathead minnow larvae were loaded
into 80 mL of each culture dilution in duplicates. The pH of each solution was
manipulated to 8.5 using 1 N hydrochloric acid or 1 N sodium hydroxide, due to the
positive relationship between pH and toxicity (Valenti et al., 2010). Bioassays were
performed in a temperature controlled incubator at 25 °C in the dark to prevent photo-
degradation (James, 2011). Acute mortality was assessed at 24 and 48 hours to estimate
the dilution to cause 50% organism lethality (LCso) which was then normalized to P.
parvum cell density. Identical acute mortality studies were performed during the P.
parvum culture stationary growth phase with fathead minnow and zebrafish larvae (48
hph fathead minnow, 48 hour post fertilization (hpf) zebrafish) to determine LCso values
and subsequent sublethal study doses (cell densities). For larval zebrafish, the bioassays

were performed in a temperature controlled incubator at 27 °C in the dark.

Sublethal Bioassays

Experimental design followed that of previous biochemical and molecular work
conducted by my laboratory (Corrales et al, 2017). Sublethal culture studies with fathead
minnow and zebrafish were performed according to standardized toxicity methods from
the US EPA Whole Effluent Toxicity (WET) testing and Organization for Economic
Cooperation and Development (OECD) Fish Embryo Toxicity Test (FET), respectively

(EPA 2002, OECD no. 236). From each experimental carboy, dilution levels (10, 50,
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100% P. parvum whole culture) were determined after a 48 h acute fish mortality
bioassays from each carboy resulted in no mortalities. Media (2.4 ppt, /2 or /8) served
as the diluent and control to derive these dilution levels. Fish were acclimated to
experimental media for approximately 2 hours in a 50:50 ratio of culture water: P.
parvum media or reconstituted hard water (RHW),which served as a negative control.
The pH of each solution was manipulated to 8.5 using 1 N hydrochloric acid or 1 N
sodium hydroxide, due to the influence of increasing pH on toxicity (Valenti et al., 2010).
Bioassays were conducted in temperature controlled chambers set to 25 or 27 °C for
fathead minnow and zebrafish, respectively, and in the dark to prevent toxin
photodegration (James et al., 2011). Briefly, 48 hph fathead minnow larvae were placed
in 200 mL of each dilution solutions. Each dilution level consisted of eight replicates of
ten fathead minnow. Fifteen zebrafish at 48 hpf were exposed to 30 mL of each dilutions.
Each dilution level consisted of twelve replicates with fifteen zebrafish each. These
volumes were chosen to ensure that the loading density did not exceed acceptable levels
for standardized guidelines. At 24 and 48 h mortalities and abnormalities were observed.
At 48 h, tissue samples were collected, frozen at -80 °C, and saved for
biochemical OS determination and fathead minnow and zebrafish behaviors were
observed. Collection of tissue and behavioral analysis were randomized per experimental
unit using random.org for each dilution of experimental replicate 20 L carboy. Five
fathead minnow were pooled per replicate for a total of three units for OS biochemical
endpoints (total glutathione, lipid peroxidation, and DNA damage). Four fathead minnow
were analyzed individually for behavior from one experimental unit for a total of three

units. Fifteen zebrafish were pooled per experimental unit for a total of three units for OS
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biochemical analyses. Six zebrafish were analyzed individually for behavior from one
experimental unit for a total of four units. If no mortalities occurred, remaining fathead
minnow and zebrafish were collected for additional DNA extractions. Each collection of
organisms per experimental unit represented a biological replicate. Therefore, a total
number of three biological replicates were statistically analyzed for all endpoints (except
for zebrafish behavior) per each dilution of experimental replicate 20 L carboy. Four
biological replicates were analyzed for zebrafish behavior from each dilution of
experimental replicate 20 L carboys (following protocol developed by Steele et al, In

press).

Biochemical Oxidative Stress Assays

Total glutathione concentration, lipid peroxidation, and oxidative DNA damage
followed previously described methods (Corrales et al., 2017). All biochemical marker
analyses consisted of three biological replicates and two technical replicates per dilutions
of experimental 15 L carboys. Each biological replicate contained five pooled individual
fathead minnow or fifteen zebrafish larvae. Briefly, total glutathione (GSH) concentration
was determined using a commercially available kit (Cayman Chemical Company, Ann
Arbor, MI, USA). Prior to conducting the assay, samples were deproteinated with 1.25 M
metaphosphoric acid and 0.2 M triethanolamine. DTNB (5,5,-dithio-bis-2-nitrobenzoic
acid) was added to deproteinated tissue supernatant initiating a reaction between the GSH
present in tissue samples and DTNB yielding TNB (5-thio-2-nitrobenzoic acid). The rate
of TNB production is directly proportional to the GSH concentration due to the recycling
of GSH by glutathione reductase present. Total glutathione concentrations were

normalized to sample protein content. Protein content was determined following the
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Bradford protein assay by which a Bio-Rad protein dye was reacted with tissue
supernatant (Sigma-Aldrich, St. Louis, MO, USA Cat. No. A7906 and 5000000).

Lipid peroxidation was determined by the concentration of malondialdehyde
(MDA) present in tissue samples. MDA is a reactive carbonyl compound that is a natural
product of lipid peroxidation. MDA concentration was quantified using a Thiobarbituric
Acid Reactive Substances assay (TBARS) (Cayman Chemical Company, Ann Arbor, MI,
USA). Thiobarbuturic acid (TBA) was added to each tissue sample, producing a MDA-
TBA adduct which was fluorometrically detected. Elevated MDA concentrations are
proportional to the MDA-TBA adducts formed. MDA concentration was also normalized
to sample protein content. Protein content was determined following the Pierce BSA
assay by which a working dye reagent was reacted with tissue supernatant (Thermo
Scientific Wilmington, DE, USA, Cat No. 23225).

DNA oxidative damage was determined by presence of the oxidatively damaged
guanine species, 8-hydroxy-2’-deoxyguanosine (8-OH-dG), measured using a
commercially available enzyme immunoassay (EIA) (Cayman Chemical Company, Ann
Arbor, M1, USA). Prior to development of EIA, DNA was extracted using DNAzol
(Molecular Research Center, Cincinnati, OH, USA) following the manufacturer’s
instructions. Extracted DNA samples were cleaned and purified using Zymo Genomic
DNA Clean and Concentrator (Zymo Research, Irvine, CA, USA) prior to DNA
quantification. DNA concentrations were quantified using a Nanodrop2000 (Thermo
Scientific, Wilmington, DE, USA), and 5 pg DNA per sample was prepared for the EIA
by diluting DNA with Cayman Ultrapure water (Cayman Chemical Company, Ann

Arbor, MI, USA ) to yield a 50 pg/mL sample. The amount of 8-OH-dG present in the
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sample competed with an added 8-OH-dG-acetylcholinesterase conjugate for binding to
an oxidative damage monoclonal antibody. This antibody was bound to seeded goat

polyclonal antimouse IgG cells. After an 18 hour incubation, each plate was washed five
times and Ellman’s reagent was added to develop the plate. The intensity of the signal is

inversely proportional to the amount of free 8-OH-dG or oxidatively damaged DNA.

Behavioral Analysis

The behavioral responses of fathead minnow and zebrafish were observed after 48
h sublethal exposures to P. parvum following previously described methods (Kristofco et
al., 2016; Steele et al., In press; Steele et al., Accepted). Twelve fathead minnows of each
dilution from each experimental carboy replicate were loaded into 24 well plates, with
each well containing two mL of treatment level solution. Twenty-four zebrafish of each
dilutions from each experimental carboy replicate were loaded into 48 well plates with
each well containing one mL of dilution level solution. All well plates were preloaded
and maintained in exposure conditions until analysis. Fish were acclimated to the well
plate for at least 30 minutes before behavioral platform loading. To minimize time of day
behavioral effects, plates were analyzed from approximately 9:00 am to 2:00 pm for
fathead minnow and 2:00-7:00 pm for zebrafish with each plate analyzed immediately
after the conclusion of previous plate (Kristofco et al., 2016).

Larval swimming patterns were observed and recorded using automated tracking
software (ViewPoint, Lyon, France) and associated platform (Zebrabox, ViewPoint,
Lyon France). This system was set in tracking mode and behavioral recordings took place
over 50 minutes with a ten minute dark acclimation period followed by two altering ten

minute light/dark cycles. Observations were recorded for total distance swam and total
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number of movements. Additionally, distance swam, number of movements, and duration
of movements were recorded for activity across three different speed thresholds. These
speeds are categorized as bursting (>20mm/s), cruising (5-20 mm/s), and freezing (<5
mm/s) to characterize stimulatory and refractory behaviors. To measure larvae swimming
responses to a sudden change in photoperiod condition, a photomotor response (PMR)
was observed following methods previously used (Beker van Woudenberg et al., 2013)
with slight modifications. PMR for each photoperiod transition (2 light and 2 dark
responses) was calculated as the change in mean distance traveled (in mm) between the

last minute of an initial photoperiod and the first minute of the following period.

Statistical Analysis

Specific growth rates of P. parvum cultures across nutrient conditions were

calculated using the equation:

r=(InNd-1In NO)/t
where 1 is the growth rate (divisions/day), Nd is the number of organisms at the
beginning of the steady growth state, NO is the number of organisms at study initiation,
and t is the time (days) to reach steady state growth. The beginning of steady state was
determined as the time at which the maximum P. parvum density was reached and
followed by a decline in cell density.

The lethal concentration to cause 50% morality (LCso) values from acute studies
were calculated for each culture using the Toxicity Relationship Analysis Program
version 1.30a (EPA). Sigma Plot (Systat Software Inc., San Jose, CA, USA) software was
used for statistical analysis of P. parvum growth, biochemical and behavioral data. Prior

to analysis, data were normalized to cell density (cells/mL) after which normality and
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equivalence of variance were analyzed. Significant differences (a=0.05) of maximal cell
densities and growth rates were identified among culture conditions using an analysis of
variance (ANOVA) if normality and equivalence of variance assumptions were met
followed by a Tukey post hoc test. Significant differences (a=0.05) in biochemical
endpoints and movement patterns (per minute) were identified among treatments using
ANOVA if normality and equivalence of variance assumptions were met. Dunnett’s post
hoc test was performed to identify dilution level differences from media controls. For

data not meeting ANOVA assumptions, an ANOVA on ranks was performed.

Results

Cell Densities and Specific Growth Rates

Throughout the duration of the study, P. parvum cell densities exceeded or met
the toxicity bloom threshold of 10,000 cell/mL after exponential growth phase began
approximately on day 20 for all experimental units (Figure 1.1). Nutrient sufficient
conditions resulted in variations among the replicate cultures. Maximum cell densities for
these cultures were of 4.5 x 10* and 2.2 x 10 cells/mL. Nutrient deficient cultures
resulted in similar maximum cell densities among the replicates, 3.0 and 3.25 x 10*
cells/mL respectively. No significant difference was determined for maximal cell
densities observed. Growth under nutrient deficiency resulted in higher variation in cell
densities observed throughout the study (Figure 1.1). The specific growth rates ranged
from 0.1618-0.1852 divisions per day and were not significantly difference among
nutrient conditions (Table 1.2). No significant differences were observed between

nutrient conditions or culture replicates.
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Figure 1.1. Prymnesium parvum represented as mean = S.D. (n=5) cell density per study
day. Two replicate carboys were grown under the following conditions: 2.4 ppt, 15 °C,
3,325 Lux, 12:12 light dark cycle with sufficient (A) or deficient (B) nutrient
concentrations. Nutrient sufficient (f/2) and deficient (/8) conditions were prepared
following Guillard 1975. 100 cells/mL were introduced to each carboy on day 0. Cell
densities were counted using a hemocytometer. Horizontal line represents the toxic
bloom threshold of 10,000 cells/mL. M=acute mortality studies, S=sublethal study
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Table 1.2. P. parvum growth rates (divisions/day) represented as mean = S.D grown at
2.4 ppt, 15 °C with a 12:12 light:dark cycle, under nutrient sufficient (f/2) and deficient
(f/8) conditions. Growth rates were determined when stationary growth phase was
reached between study days 30-34.

Nutrient sufficient  Nutrient sufficient Nutrient deficient Nutrient deficient
(rep 1) (rep 2) (rep 1) (rep 2)

0.1728 +£0.0224 0.1618 + 0.0069 0.1852 +0.0226 0.1705 +0.0212

Acute Mortality

Acute mortality was assessed on day 27 after exponential growth phase was
observed. The 48 h LCso value for cultures grown under nutrient sufficient conditions
were 71.9% and 86.7% of P. parvum culture, corresponding to 25,156 and 13,010
cells/mL, and 68.2% and 58.2% of P. parvum culture, corresponding to 16,801 and
17,376 cells/mL grown under nutrient deficiency (Table 1.3). No significant differences
were observed between the 24 and 48 h LCso values (Table 1.3). The nutrient sufficient
treatment level (f/2) resulted in significantly different acute mortality between replicate
carboys indicated by 95% confidence intervals. This nutrient treatment level elicited the
lowest and highest acute mortality responses and were not significantly different when

compared to nutrient limited culture toxicity (Table 1.3).
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Table 1.3. P. parvum 24 and 48 h LCso values (£95% CI, cells/mL) for larval fathead
minnow (P. promelas). Exposures occurred on study day 27 during exponential growth
phase to determine culture toxicity. NA=not available due to lack of partial mortalities.

Culture Condition 24 h LCso 48 h LCso

Nutrient Sufficient (rep 1) 28,820 (21,264-36,376) 25,156 (16541-33,902)
Nutrient Sufficient (rep 2) 13,010 (NA) 13,010 (NA)
Nutrient Deficient (rep 1) 21,409 (16,332-26,488) 16,801 (NA)

Nutrient Deficient (rep 2) 21,258 (14,510-28,005) 17,376 (13,079-21,674)

No mortalities were observed for media controls. On day 42, acute mortality was
reassessed during stationary growth phase. No acute mortalities were observed for any
nutrient treatment level or replicate carboy for fathead minnow and zebrafish larvae.
Therefore, sublethal bioassays were initiated on study days 44 and 45 with the following
dilution levels: 10, 50 and 100% with cell densities ranging between 1,000-15,000
cells/mL (Table 1.4). No mortalities occurred in dilution levels or controls during the
sublethal exposure for both fish species.

Table 1.4. P. parvum whole culture dilutions and corresponding nominal cell densities

(cells/mL) used in the sublethal studies. Cell densities were counted using a

haemocytometer. Dilutions were prepared using either nutrient sufficient (f/2) or
deficient (f/8) culture media, which also served as control for toxicology studies.

Treatment Nutrient Nutrient Nutrient Nutrient
Level Sufficient Sufficient Deficient Deficient
(rep 1) (rep 2) (rep 1) (rep 2)
10% 1,000 1,000 1,250 1,500
50% 5,000 5,000 6,250 7,500
100% 10,000 10,000 12,500 15,000
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Biochemical Oxidative Stress Endpoints

Differential responses were observed among fish species and P. parvum dilutions
of nutrient treatment levels. A significant (p < 0.05) decrease in total glutathione
concentration was observed in fathead minnow after exposure to nutrient deficient
conditions. Although not significant (p > 0.05), a nutrient sufficient culture resulted in
overall higher glutathione concentrations in fathead minnow with an induction at 50% P.
parvum culture when compared with culture one. Zebrafish significantly (p < 0.05)
elicited total glutathione depletion under nutrient sufficient conditions for all dilution
levels of experimental carboy replicate 2 with maximal depletion at 50% P. parvum
culture (Figure 1.2).

Fathead minnow larvae experienced an increase, though not significant, in MDA
concentration with increasing cell density of a nutrient deficient culture (Figure 1.3).
Unfortunately, samples were lost for fathead minnow larvae exposed to nutrient sufficient
and deficient replicate one carboys, therefore MDA could not be determined for these
cultures. A significant (p < 0.05) increase in MDA concentration in zebrafish larvae was
observed for 10% of a nutrient sufficient culture (Figure 1.3). In fathead minnow, a
significant (p < 0.05) increase in oxidative DNA damage occurred after exposure to 10%
of a nutrient sufficient culture (Figure 1.4). This 8-OH-dG concentration was almost
double that of the remaining cultures with an overall higher response across dilution
levels. A significant (p < 0.05) increase in zebrafish oxidative DNA damage resulted

from exposure to 100% of nutrient deficient culture.
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Figure 1.2. Total glutathione concentration (uUM) in fathead minnow (P. promelas, A) and
zebrafish (D. rerio, B) following a 48 h exposure to P. parvum grown under two nutrient
conditions (f/2, nutrient sufficient and /8, nutrient deficient) in duplicate (represented as
rep 1 and 2). Controls were f/2 or f/8 media without P. parvum cells. Results analyzed
using Sigma Plot and represented as mean + S.E. One-way ANOVA followed by
Dunnett’s post hoc test determined statistical significance (N=3,* p < 0.05) from control.
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Behavior Analysis

Behavioral responses varied among species and nutrient condition (Figures 1.5-8).
The photomotor responses (PMR) was originally used in the biomedical sciences as a
tool to identify therapeutic targets for novel compounds, but has since been adopted to
toxicological studies (Kokel et al., 2010; Kokel and Peterson, 2011; Noyes et al., 2015).
PMR observed for fathead minnow exposed to media control indicate a preference for
light conditions due to the negative or smaller changes in distance traveled from light to
dark. By contrast, zebrafish PMR indicated a preference for dark conditions by the
negative dark to light and positive light to dark PMR after exposure to media controls and
P. parvum treatment levels. Significant (p < 0.05) increases in fathead minnow PMR
were observed after exposure to nutrient deficient cultures (Figure 1.6). A larger
zebrafish PMR was observed for sudden changes from dark to light conditions regardless
of culture condition (Figure 1.5 & 1.6). Fathead minnow PMR responses were more
variable than zebrafish PMR (Figures 1.5 & 1.6).

Exposure to nutrient sufficient cultures resulted in no significant (p > 0.05)
behavioral alterations for fathead minnow (Figure 1.7). By contrast, zebrafish behavior
increased in both light and dark conditions. Fathead minnow and zebrafish behavior
exhibited similar behavioral effects after exposure to nutrient deficient cultures.
Stimulatory responses for both species are indicated by an increase in bursting activity in
light and dark conditions (Figure 1.8). Fathead minnow behavior decreased significantly
(p < 0.05) for the majority of swimming behavior end points selected, however, a
stimulatory response across bursting speeds was observed in the light and dark

conditions.
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Figure 1.3. Lipid peroxidation (malondialdehyde (MDA) concentration (UM per mg
protein)) in fathead minnow (P. promelas; A) and zebrafish (D. rerio; B) following a 48
h exposure to P. parvum grown under two nutrient conditions (f/2, nutrient sufficient and
/8, nutrient deficient) in duplicate (represented as rep 1 or 2). Controls were /2 or {/8
media without P. parvum cells. Results analyzed using Sigma Plot and represented as
mean * S.E. One-way ANOVA followed by Dunnett’s post hoc test determined statistical
significance (N=3,* p <0.05) from control.
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Figure 1.4. DNA damage (8-OH-dG (pg) per mg of DNA) in fathead minnow (P.
promelas; A) and zebrafish (D. rerio; B) following a 48 h exposure to P. parvum grown
under two nutrient conditions (f/2, nutrient sufficient and {/8, nutrient deficient) in
duplicate (represented as rep 1 or 2). Controls were {/2 or f/8 media without P. parvum
cells. Results analyzed using Sigma Plot and represented as mean [ | S.E. One-way
ANOVA followed by Dunnett’s post hoc test determined statistical significance (N=3,*
p <0.05) from control.
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Discussion

P. parvum is a eury- and thermohaline species that continues to invaded inland
bodies of water along the southern regions of North America and has begun expansion to
northern U.S.A. States, primarily due to climate change and anthropogenic activities
(hydrologic alterations, storm water runoff, and unconventional natural gas extraction)
(Roelke et al., 2015). Understanding the effects of P. parvum to fish is extremely
important due to the mass mortality and community alterations that occur after P. parvum
HAB events that often result in large economic losses. As previously noted, current
literature of P. parvum sublethal toxicity is lacking and comparative in vivo toxicological
studies between vertebrates are nonexistent (Table 1.1). Sublethal responses are
important to understand potential impacts on an organism/population and may provide
biomonitoring strategies for blooms. This study sought to examine sublethal effects of P.
parvum cultured under nutrient sufficient or insufficient conditions by evaluating
photomotor behavioral response patterns and common biochemical biomarkers of OS to
answer the simple question: what happens to fish when they don’t die following a HAB
event? The results of the current study demonstrate, for the first time, that exposure to
sublethal cell densities of P. parvum alter behavioral responses and elicit OS.

P. parvum is a relatively slow growing species with optimal growth rates between
0.8-1.8 d”! (Baker et al., 2007). Under stressful conditions representative of inland Texas
HABs (including nutrient limitation, lower salinity, and winter temperatures),
reproductive growth rates have been shown to decrease to around 0.1-0.3 d"! (Baker et al.,
2009a). The specific growth rates of the current study represent cultures below optimal

reproductive growth rates and fall within the range of growth rates observed for inland
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Texas HABs. Maximal cell densities of the present study were smaller than previously
reported laboratory P. parvum cultures at the end of exponential growth phase (Baker et
al., 2009a; Brooks et al., 2010; Lindehoff et al., 2010; Lundgren et al., 2016; Skingel et
al., 2010; Valenti, 2010). However, these studies were inoculated with higher cell
densities of P. parvum with cultures grown under higher temperatures or salinities, which
may explain the differences observed in maximum cell densities.

Relationships between algal respiration, growth and temperature have been
established through the Q1o principle (Davison, 1991). The stock culture was maintained
at a higher salinity and temperature, close to the optimal growth conditions mentioned
previously for this algal species. Inoculation of this culture to the experimental conditions
with lack of acclimation to these conditions may have resulted in decreased ability to
maintain homeostasis and thus cell lysis. Physiological shock treatments, including lower
temperature and salinity, were studied for effects on P. parvum toxicity. Lower toxicity
and down regulation of polyketide synthase gene expression was noted for the low
temperature shock treatment, which was within the temperature inhibition range for P.
parvum growth (Baker et al., 2007; Freitag et al., 2011).

Acute mortality bioassays were employed to monitor and confirm acute toxicity
of all cultures throughout the study because analytical methods verifying toxins
production are not available. Roelke et al (2007) determined an approximate cell density
of 10,000 cells/mL is associated for acute toxicity to be observed in the field. The results
of the current study are similar to LCso values reported for laboratory grown cultures and
confirm that all cultures were toxic during exponential growth phase (Blossom et al.,

2014; Brooks et al., 2010; Valenti, 2010). Acute mortality was greatest when P. parvum
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cultures were grown under nutrient deficiency, which is consistent with reported
laboratory and field studies (Baker et al., 2009a; Errera et al., 2008; Graneli, 2003;
Roelke et al., 2007). Similarly, the majority of the sublethal responses observed in the
present study occurred after exposure to nutrient limited conditions in fathead minnow
suggesting that sublethal endpoints would be an adequate marker of P. parvum toxicity.
Further investigation of nutrient limitation in conjunction with other environmentally
stressful P. parvum growth parameters will lead to a better understanding of sublethal
responses and resulting toxicity to enhance monitoring strategies.

Two toxins have been identified as prymnesins 1 and 2, while other metabolites
contributing to the deleterious effects of P. parvum exposure are relatively unknown
(Bertin, 2012, 2014; Blossom. H.E., 2014; Henrikson, 2012; Igarashi et al., 1996, 1999b).
Toxicity tests are routinely employed to determine bioavailable toxins due to lack of
analytical standards and an inability to detect toxins in the water. Consistent with toxin
elucidation, no mechanisms of actions have been determined for these metabolites. The
gills have been suggested as the primary target tissue of toxicity in fish by disrupting ion
permeability and regulation (Shilo, 1967). Other studies have reported cell lysis (e.g.,
plankton, erythrocytes, human cancer and gill cells) occurring following P. parvum
exposure further recognizing that different toxins are responsible for the multiple effects
observed.

The degree of acute toxicity has been associated with other environmental abiotic
factors including temperature, pH, irradiance, and salinity similar to other algal toxins
(Baker et al., 2007; Baker et al., 2009b; James et al., 2011; Valenti, 2010). For example,

previous research done by my laboratory linked pH increases with increased toxicity and
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concluded that prymnesins are ionizable weak bases and uptake of toxins is greatest
under basic pH conditions (Valenti, 2010). The structure of prymnesins is similar to
another algal toxin, maitotoxin, that is frequently involved in hemolysis, fish mortality,
and the human illness ciguatera fish poisoning (Murata, 2000). A comparable pH
dependency has also been demonstrated for this toxin (Igarashi et al., 1999a). In addition,
maitotoxin is a calcium channel activator inducing mortality through calcium influxes to
the cell (Igarashi et al., 1999b). Similar calcium signaling has been disrupted following P.
parvum exposure, however these perturbations were observed more rapidly than
maitotoxin. In addition, P. parvum toxicity to a freshwater fish was enhanced after
addition of Ca*" contributing to conformational changes of toxins allowing for
interactions with specific components on cell membranes (Igarashi et al., 1998; Manning
and La Claire, 2010). Oxidative stress (OS) causes Ca*" influxes to the cytoplasm from
the external environment via cell membrane or endoplasmic reticulum (Ermak and
Davies, 2002). This influx of Ca** disrupts normal cell function leading to cell death. The
influence of OS has not been studied for maitotoxin or P. parvum, which could be a
contributing mechanism behind the Ca** toxicity and gill impairment observed for both
algal toxins.

Glutathione concentration, lipid peroxidation, and DNA damage have been well-
studied biochemical markers of OS and previously used to assess adverse effects of
chemicals in commerce and other algal toxins (Evans et al., 2004; Kohen and Nyska,
2002). The role of OS has been previously studied for P. parvum using an in vitro model.
No significant differences were observed for superoxide dismutase, catalase, and lactate

dehydrogenase activities in rainbow trout gills cells after exposure to P. parvum cell
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densities reaching 5.725 x 10° cells/mL (Dorantes-Aranda et al., 2015). The production of
superoxide radical was also quantified for lyzed P. parvum cells, which revealed very

low concentrations (0.15 pmol cell! hr!") (Dorantes-Aranda et al., 2015). These results
suggest that OS is minimal at the site of the gill. The biochemical markers of the present
study can only elucidate the contribution of OS toxicity on the entire organism, and not a
specific cell or tissue.

GSH is a tripeptide that serves as a cosubstrate during phase II metabolism for
xenobiotic detoxification and is an essential electron donor for the reduction of
hydroperoxides, by serving as an electron donor to glutathione peroxidases. GSH is
located largely in the cytosol primarily in its reduced form and is oxidized into
glutathione disulfide (GSSG) upon contact with electrophilic compounds. An increase in
GSSG leads to a depletion of cellular GSH, suggesting oxidative stress and other
pathological conditions (Wu et al., 2004). Therefore, the GSH depletion observed for
larval zebrafish and fathead minnow is indicative of oxidative stress and suggests that
GSH is actively involved in detoxification or decreased synthesis in response to exposure
to P. parvum toxins. Compared to the other biochemical markers chosen, GSH was the
most sensitive endpoint selected which highlights the utility of this endpoint as a
biomarker of P. parvum exposure. Previous comparative toxicological work with the
fathead minnow and zebrafish showed GSH more significantly affected among the same
biochemical markers chosen in the present study (Corrales et al., 2017).

Lipid peroxidation is the oxidative damage to lipids, often leading to the
impairment of cell membranes. MDA has been a commonly studied end product of lipid

peroxidation that can react with biomolecules forming adducts. These adducts can then
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undergo secondary reactions with DNA and proteins, altering properties of biomolecules
and accumulate during aging and chronic diseases (Ayala et al., 2014). Consequently, an
increase in lipid peroxidation is suggestive of OS as observed in the present study by the
increase in MDA concentration for both species. Fathead minnow MDA concentration
increased in a dose dependent manner under the same P. parvum condition that depleted
GSH concentration (nutrient limitation). Zebrafish MDA concentration did not exhibit an
increase in concentration with dilution level. However, similar to the fathead minnow, the
same culture condition elicited both an increase in MDA and GSH depletion (nutrient
sufficient). These observations suggest a relationship between GSH and MDA. Mice
exposed to a cyanotoxin exhibited an increase in lipid peroxidation at 16 h post exposure
and a decrease at 24 and 32 h in conjunction with a large decrease in unconjugated
glutathione (Gehringer et al., 2004). Similar results were observed in zebrafish exposed
to low and high concentrations of the cyanotoxin alphantoxin in which MDA content
increased within the first 12 h and then decreased to levels similar to the control (Zhang
et al., 2013). The OS biochemical markers were only analyzed at the conclusion of 48 h,
therefore the results do not provide a representation of lipid peroxidation effects through
time.

8-hydroxy-2’-deoxuguanosine (8-OH-dG) is the most common oxidative DNA
damage product that has been studied as an indicator of oxidative stress and
carcinogenesis. Oftentimes, 8-OH-dG will be analyzed in conjunction with other
biological markers to confirm that an increase in 8-OH-dG is accurately representative of
oxidative stress (Kasai, 1997). The results of this study reveal that exposure to P. parvum

cell densities increases 8-OH-dG concentrations in larval fathead minnow and zebrafish,
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indicating oxidative stress. These responses occurred under opposite culture conditions
that elicited GSH and lipid peroxidation further supporting that different toxins may be
produced in response to varying levels of stress. Similarly, accumulation of oxidized
purines were observed in human hepatoma HepG?2 cells after exposure to microcystin-LR
(Zegura et al., 2004). Other studies have also shown the role of pretreatment protection
(including GSH) against microcystin-LR DNA damage, however DNA damage still
occurred in pretreated individuals but to a lesser extent (Lakshmana Rao and
Bhattacharya, 1996). In the present study, cultures that exhibited highest DNA damage
did not have significantly different GSH content compared to controls. However, the
cultures with the highest GSH content, exhibited the lowest DNA oxidative damage when
comparing across cultures, suggesting similar GSH protection.

The biochemical endpoints chosen have differential sensitivities and occur at
various points throughout a cell. Glutathione is one of the most prevalent antioxidants
that is utilized rapidly upon exposure to xenobiotics. Whereas MDA and oxidative DNA
damage are products of OS. Although repair mechanisms exist, sustained perturbations
lead to life history constraints ultimately leading to population level consequences
(Birnie-Gauvin et al., 2016; Metcalfe and Alonso-Alvarez, 2010). An understanding of
mechanisms responsible for the observed toxicity is important for development of
adverse outcome pathways to better understand effects at different biological
classifications that will aid in conducting risk assessments (Ankley et al., 2010). Fish
behavior is an invasive tool linking biochemical and molecular responses wo whole
organism responses. Behavior includes sensitive endpoints at which effects are observed

at concentrations magnitudes below those that induce acute mortality (Gerhardt, 2007).
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Fish behavioral responses are utilized in both ecotoxicology and biomedical
applications, with a particular emphasis on zebrafish behavior for pharmacological
applications. Some observation behaviors of adult fish after exposure to P. parvum has
been documented, but these behavioral changes were not quantified by standardized
behavior methods (tracking system or scoring) and occurred during an active bloom site.
Effected fish were lethargic, swam with coordination problems, slow movement, and
remained at the surface of the water gasping for air (Vasas et al., 2012). To my
knowledge, this is the first quantitative examination of fish behavioral responses to P.
parvum.

High throughput, behavioral profiling (rest/wake and anxiety-related phenotypes)
tools using early life stage zebrafish have been utilized in pharmacology to screen
behavioral changes associated with mechanisms of action (Egan et al., 2009; Rihel et al.,
2010a). Behavioral syndromes were established for juvenile fathead minnow and are
defined as hypoactivity, hyperactivity and physical deformity syndrome (Drummond and
Russom, 1990c). The larval behavioral responses to P. parvum indicate hyperactivity
responses due to the observed stimulatory responses for both species (Figures 7 & 8).
Chemical classes that also produced a hyperactivity syndrome in 30 d old fathead
minnows include primary aliphatic amines, phenols and halogenated phenols (Drummond
and Russom, 1990c). These compounds elicit toxicity through disruption of metabolic
activity and function, which is consistent with the proposed fish mode of action for P.
parvum (Shilo, 1967). Stimulatory responses have been observed in copepods after
exposure to the red tide, Alexandrium fundyense (Lasley-Rasher et al., 2016a). However

for fathead minnow, exposure to one nutrient deficient culture, resulted in hypoactivity
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suggestive of nervous system disruption (Figure 8; Drummond and Russom, 1990b).
Neurotransmitter disturbances in rat synaptosomes and decreased muscle contractions in
guinea pig intestine after neurotransmitter inhibition have been observed following
exposure to isolated prymnesin toxins (Bergmann et al., 1964; Mariussen et al., 2005;
Meldahl and Fonnum, 1995).

Different behavioral responses were observed for chemicals within the same class
due to variations in mode of actions inferring that nutrient stress could cause variations in
P. parvum secondary metabolite production (Drummond and Russom, 1990c). Similar
differences between doses were observed for microcystin-LR. Lower concentrations of
microcystin-LR (0.5 and 5 pg/L) increased daytime and decreased nighttime motility,
whereas higher concentrations (15 and 50 pg/L) decreased daytime and increased
nighttime motility as well as shifted the maximum behavioral peak by 11 hours (Baganz
et al., 1998a). As mentioned previously, species sensitivity to P. parvum suggests that
various secondary metabolites are produced under varying conditions and/or elicit
varying effects through multiple modes of action. Although investing these mechanisms
were outside the scope of this study, the different behavioral responses observed for the
various growth conditions, may indicate differential toxin production.

Consistent with acute mortality, fathead minnows were more susceptible to P.
parvum grown under nutrient limitation, with the exception of DNA oxidative damage. P.
parvum acute mortality data are lacking for zebrafish; therefore, comparisons among
previous work are difficult (Table 1.1). As stressed in Brooks et al. (2010), absence of
standardized culture conditions presents a challenge when comparing previous

toxicological work as growth conditions in laboratory and field studies have been shown
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to influence growth and toxicity. The observed differences among the behavioral
responses and three biochemical OS markers could be explained by the model organisms.
Although acute and sublethal responses were examined for the Texas strain, P. parvum
HABs occur globally. To maximize comparisons of study findings for fathead minnow
and zebrafish, standardized methods were chosen for each species that are employed in
regulatory and international settings. The initiation of these methods occurred at early life
stages at which susceptibility to contaminants is believed to be greatest and involve
dosing each species at different development stages. The influence of development on
toxicity was outside the scope of this study, although influences in uptake and
metabolism along development have been demonstrated for multiple fish species exposed
to environmental contaminants including algal toxins (Kristofco et al., 2018; Otte et al.,
2010; Wiegand et al., 1999). Whether the observed effects between the fathead minnow
and zebrafish in the present study are species, age, or both species and age related is
unclear and requires future attention.

Oxidative stress responses to other HAB toxins are dose and time dependent. The
exposures of the current study only focused on one growth phase of P. parvum, which
has been shown to influence toxicity. The behavior and OS responses varied among
culture dilution of P. parvum cultures, suggesting that there may be a dose/cell density
dependency. However, P. parvum cell density does not always determine the degree of
acute toxicity, which may be consistent with sublethal responses (Baker et al., 2007).
Future work is needed to understand the influence of different P. parvum growth phases

on behavioral and OS effects. In addition, comparisons among multiple model organisms
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and toxicity across developmental stages and exposure duration time are essential to
furthering understanding of toxicity.

In conclusion, exposure to sublethal cell densities of P. parvum resulted in
behavioral alterations and OS. Future research needed to determine the extent to which
the observed effects lead to population level impacts, and whether such effects would
occur in natural fish populations. OS has been implicated in redox cycling disruptions
leading to inflammation and many disease states while behavioral alterations increase
susceptibility to predation, alter feeding and social (courting and schoaling/schooling)
behaviors. Responses were observed at cell densities at or below the current toxicity
threshold, therefore a reevaluation of what is deemed toxic especially for environmental
assessment and management purposes is required. Behavioral activity across slower
speed thresholds was the most sensitive behavioral endpoint for both species. Whether
such responses would translate to increased predation risks is unknown. In addition, total
glutathione concentration was the most sensitive biochemical endpoint selected across
treatment level and fish species, showing the potential utility of these endpoint as a
biomarker for P. parvum exposure. Fathead minnow and zebrafish assays, which
followed standardized methods and were thus initiated at different ages, displayed
different sensitivities to P. parvum grown under varying nutrient conditions. Selection of
other sublethal endpoints and the examination of selected endpoints across multiple P.
parvum growth conditions along with identification of secondary metabolites across these
conditions will further the understanding of underlying mechanisms of P. parvum

toxicity, which will ultimately advance bloom monitoring, assessment and management.
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CHAPTER TWO
Salinity and Nutrients Influence Prymnesium parvum Related Oxidative Stress and
Behavioral Responses in Two Common Fish Models
Introduction

The frequency, duration, and intensity of harmful algal blooms (HABs) are
increasing at a global scale primarily due to eutrophication, urbanization, climate change,
altered hydrology, and storm water and agricultural runoff (Granéli et al., 2008;
Hallegraeff, 1993; Paerl and Huisman, 2009; Roelke et al., 2012a). The successful
invasion of HABs are due to multiple interlinking factors (both anthropogenic and
natural) typically specific to each algal species providing challenges when assessing and
managing HABs. Environmental impacts include lower dissolved oxygen concentrations,
altered community structure, impairments to recreational uses, and nuisance taste and
odor compounds (Paerl et al., 2001). Adverse effects resulting from HABs include human
health illnesses and extensive fish kills leading to potential substantial threats to coastal
and inland waters (Brooks et al., 2016; Grattan et al., 2016).

Prymnesium parvum is a mixotrophic (autotrophic and heterotrophic modes of
nutrition) invasive species capable of forming HABs leading to massive fish kills
resulting in large economic losses (estimated damages in millions of U.S.A. dollars)
(Roelke et al., 2015; Southard et al., 2010). P. parvum typically blooms in marine and
brackish waters, although blooms have occurred in inland bodies with characteristic
lower salinity concentrations. The presence of P. parvum in the United States was first

observed in the Pecos River, Texas, U.S.A. Since its discovery, recurrent blooms of P.
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parvum have occurred in Texas and expansion into other areas of the U.S. across latitudes
and various climates has occurred (Roelke et al., 2015). The successful invasion of P.
parvum can be attributed to toxin production which functions as an allelochemical to
outcompete other algal species, an antipredatory mechanism to deter grazers and/or as an
aid for mixotrophic nutrition (Carvalho and Granéli, 2010; Driscoll et al., 2013; Granéli
and Johansson, 2003; Tillmann, 1998; Tillmann, 2003). In addition, P. parvum is
tolerable to various temperatures and salinities (e.g., 10 °C below and salinities 10 times
lower than optimal conditions) that have been shown to influence toxin production
(Baker et al., 2007).

Two toxins have been identified as prymnesins I and II, however, the full suite of
toxins have not been identified but remains an active area of research (Bertin et al.,
2012a, 2012b; Blossom et al., 2014a; Blossom et al., 2014b; Henrikson et al., 2010;
Manning and La Claire, 2010), and quantification of these toxins remains elusive.
Monitoring of P. parvum HABs has thus been challenged due to lack of sufficient
characterization of the toxins produced and their corresponding analytical standards for
sufficient verification. To supplement these challenges, aquatic toxicity studies are
employed to determine the occurrence of bioavailable toxins. Adding to the challenge of
understanding P. parvum HAB potency is a lack in standard published culture procedures
leading to inconsistencies with culture conditions and the use of different toxicological
study methods, making the comparison between P. parvum toxicity studies difficult
(Brooks et al., 2010). The importance of establishing standardized culturing conditions
for toxicological experiments is due to the influence of environmental stressors that have

been linked to P. parvum bloom formation and toxicity, in which the greatest adverse
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acute toxicity effects to aquatic life have been observed under suboptimal growth
conditions (Baker et al., 2007; Roelke et al., 2015).

Global climate change and increasing urbanization create stress on aquatic
ecosystems resulting in changes to inland water chemistry metrics (e.g., temperature,
salinity, pH). In addition, water transportation practices will increase to meet water
demands, potentially facilitating the introduction of P. parvum to new areas. In
combination with these concerns, increased water sequestration could be exacerbated by
climate change, which is predicted to decrease instream flow by 60% in the South Central
U.S. alone and has been shown to influence P. parvum HABs (Brooks et al., 2011).
Practices including natural resource extraction operations have the potential of
discharging produced waters containing high total dissolved solids (TDS) levels into
aquatic ecosystems. This scenario has already occurred along Dunkard Creek located
along the West Virginia/Pennsylvania border triggering a P. parvum HAB that resulted in
devastating ecological losses (Brooks et al., 2011). Therefore, salinization of inland
bodies of water, as a result of evaporation and anthropogenic sources, have the potential
to increase the development of P. parvum HABs especially in water bodies prone to
eutrophication.

Eutrophication resulting from storm water/agriculture runoff and effluent
discharges lead to imbalanced nitrogen to phosphorus ratios that select for opportunistic
primary producers which can produce toxic secondary metabolites when stressed. Similar
to salinity, nutrient limitation and stoichiometric imbalances (primarily nitrogen and
phosphorus) are a contributing factor in P. parvum bloom dynamics and differential

toxicity (Granéli and Johansson, 2003; Lindehoff et al., 2010; Lundgren et al., 2016;
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Roelke et al., 2007). Historical data of three Texas reservoirs revealed a relationship
between salinity and in flow events that have the potential to dilute blooms/secondary
metabolites but also increase nutrient loading, which has been shown to deter P. parvum
HABs (Roelke et al., 2011). However, in stream flows are predicted to decrease as a
result of climate change and urbanization (Roelke et al., 2012). A predicted increase in
HABES, including P. parvum, as a result anthropogenic activities and global climate
change create additional challenges and a need to develop appropriate assessment,
monitoring and management strategies to prevent/mitigate blooms before ecosystem
disruption occurs.

In addition to acute mortality responses, sublethal endpoints associated with
adverse outcomes in aquatic life are relevant to ecological risk assessment and
management (Ankley et al., 2010; Bradbury et al. 2004). For example, my preliminary
results revealed sublethal responses following exposure to P. parvum cell densities below
those inducing acute mortality, which is currently the main endpoint determinate for
toxicity (see CH 1). Traditional sublethal endpoints (growth and reproduction) can have
severe chronic impacts on species survival; however, these assays are relatively
nonspecific regarding molecular and cellular pathways by which toxicity is elicited. In
addition, these assays can be time and resource intensive. Adverse outcome pathways
(AOP) provide a conceptual framework linking molecular initiating events cascading
across multiple levels of biological organization leading to adverse outcomes at the
individual and population level. AOPs can be used to develop acute and chronic HAB
toxicity pathways (Ankley et al., 2010). An AOP was recently developed for P. parvum

after oxygen consumption and respiration were affected in rainbow trout. However, the
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molecular initiating event and osmotic cost of gill damage up to the population level
remains unknown (Svendsen et al., 2018). Endpoints including fish behavioral alterations
and biochemical and molecular markers have been examined for multiple environmental
stressors including algal toxins (Amado and Monserrat, 2010; Drummond and Russom,
1990; Lushchak, 2011; Valavanidis et al., 2006); however, these endpoints have not been
investigated following P. parvum exposure. Further, an understanding of sublethal
toxicity associated with P. parvum HABs are largely unstudied, particularly across
gradients of factors known to alter acute toxicity.

Fish are the most sensitive in vivo model organism to exposure; however, the
most common endpoint selected for these exposures have been acute mortality (Brooks et
al., 2010). Because fish kills are routinely caused by P. parvum, fish responses provide
important information for various toxins/toxicants and share conserved toxicity pathways
relevant to human health. Fathead minnows (Pimephales promelas) and zebrafish (Danio
rerio) are commonly employed fish models used in toxicological research. Early life
stage studies have been demonstrated to routinely be sensitive developmental stage
following contaminant exposures (McKim, 1977). Application and comparisons of larval
bioassays evaluating multiple sublethal endpoints are lacking following P. parvum
exposure and would provide insight to more effective biomonitoring strategies and
environmental assessments.

The current study objectives were to determine the influence of various growth
conditions, including higher and lower salinity and nutrients, to the acute and sublethal
toxicity of P. parvum using two common model fish species, fathead minnow and

zebrafish. In addition to current acute mortality endpoints, antioxidant gene expression,
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common biochemical oxidative stress (OS) markers and fish behavior were examined to
determine sublethal toxicity effects in fish. Fathead minnow and zebrafish endpoints were
compared to determine whether species specific differences exist between the two model
fishes following P. parvum exposure to potentially identify HAB biomarkers of exposure
and/or toxicity. I hypothesized that exposure to sublethal cell densities of P. parvum
would result in OS and altered behavioral responses due to preliminary investigations
(CH 1). In addition, these responses were hypothesized to be heightened under conditions
representative of the most suboptimal to growth (low salinity, low nutrients) due to the
previously reported increases in acute mortality and sublethal toxicity (CH 1) in response
to stressful growth conditions. Lastly, differential toxicity to fathead minnow and
zebrafish was expected due to previously reported comparative toxicological

investigations by this laboratory (CH 1).

Methods

Laboratory Cultures

A Texas strain was obtained from the University of Texas at Austin Culture
Collection of Algae (UTEX LB 2797, Austin, TX, USA). Stock cultures were grown at 4
ppt, /2 medium, 20 °C on a 12:12 light:dark cycle at Baylor University. Prior to study
initiation, stock culture were gradually acclimated to 15 °C and evaluated for acute
mortality to fish to confirm that the stock culture was acutely toxic prior to performing
this experiment. A super stock of artificial seawater (ASW) was prepared by dissolving
Instant Ocean salt (Spectrum Brands, Blacksburg, VA, USA) in Nanopure water (18.2

megohm ionic purity; Barnstead, ThermoFisher, Wilmington, DE, USA; Brooks et al.,

51



2010). Media for salinity treatment levels were prepared by diluting the ASW super stock
using Nanopure water to 2.4 and 5 ppt. Water was then enriched with either /2 or /8
nutrients, with full trace metals and vitamins for both nutrient conditions (Table A1,
Appendix A; Guillard, 1975), for nutrient treatment levels. Two replicates of each
experimental unit were included in a 2 x 2 experimental design for 8 total experimental
units. ASW and all media stocks were autoclaved before use and acclimated to 15 C.
Approximately 100 cells/mL were introduced to 15 L for experimental unit, which were
20 L glass carboys. Experimental units were incubated at 15 °C, on a 12:12 light:dark
cycle, swirled and rotated daily. Every second day, chlorophyll a fluorescence was
determined using a handheld fluorometer (Turner Designs, San Jose, CA) to identify
growth status of each culture. These subsamples collected for chlorophyll a fluorescence
were preserved with 200 puL of 25% aqueous glutaraldehyde for cell counts. Cell counts
were determined using a haemocytometer following previously published methods
(Southard, 2005). At study initiation, during exponential and stationary growth, dissolved
nitrogen (nitrate/nitrite) and phosphorus (phosphate) concentrations were analyzed for
each treatment level (salinity and nutrient conditions) according to standard methods
using a flow-injection auto-analyzer (Lachat QuikChem 8500 and Series 520 XYZ
Autosampler; APHA (Clesceri et al. 1998). N and P concentrations (ng/L) for each

treatment level and experimental carboy are reported in Table B1. (Appendix B).

Fish Cultures
Fathead minnow (P. promelas) and zebrafish (D. rerio) used in toxicity studies
were cultured at Baylor University. Fathead minnow cultures were maintained using a

flow through system that introduced aged dechlorinated tap water to individual aquaria.
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Cultures were maintained at 25+1 C under a 16:8 light:dark cycle. Fish were fed brine
shrimp (Artemia sp. naupli; Pentair AES, Apopka, FL, USA) twice daily. Embryos were
collected from sexually mature adults aged to at least 120 d before breeding (1:4-5 male
to female ratio). Larvae within 24-48 h post hatch were used for toxicity studies. Tropical
5D wild type zebrafish were cultured using a z-mod recirculating system (Marine Biotech
Systems, Beverly, MA, USA). Fish were maintained at a density of <4 fish per liter in
260 ppm instant ocean with a pH of 7.0, temperature of 2741 C under a 16:8 light:dark
cycle. Fish were fed Artemia sp. nauplii (Pentair AES, Apopka, FL, USA) with flake
food (Pentair AES, Apopka, FL, USA) twice daily. Embryos used for this experiment
were collected from sexually mature adults, and were used for toxicity experiments at 48
h post fertilization. All experimental procedures and fish culture protocols followed

Institutional Animal Care and Use Committee protocols approved at Baylor University.

Acute Bioassays

Due to the lack of P. parvum toxin analytical standards, acute mortality bioassays
using fathead minnow were employed to determine acute toxicity of cultures throughout
growth stages similar to previous published methods in our laboratory (Brooks et al.,
2010; Valenti et al., 2010). Bioassays were conducted weekly and initiated when cell
densities reached 10,000 cell/mL, the minimum cell density that is considered to be
associated with HAB events in the field (Roelke et al., 2007). Acute mortality of fathead
minnow was determined following U.S. Environmental Protection Agency (EPA)
Toxicity Identification Evaluation (TIE) (US EPA 1991). Serial dilutions following a 0.5
dilution scheme were prepared for a total of six dilutions (e.g. 100, 50, 25, 12.5, 6.25,

3.125). Media matched to experimental treatments (2.4 and 5 ppt salinity, f/2 and /8
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nutrients) served as the dilution water and treatment control. Five < 24 hour post hatch
(hph) fathead minnow larvae were loaded into 80 mL of each culture dilution in
duplicates. The pH of each solution was titrated to 8.5 using 1 N hydrochloric acid or I N
sodium hydroxide, due to the relationship between increasing pH and acute toxicity
(Valenti et al., 2010). Bioassays were performed in temperature controlled incubators at
25 °C in the dark to prevent photo-degradation (James et al., 2011). Acute mortality was
assessed 48 hours to estimate the dilution to cause 50% organism lethality (LCso), which
was then normalized to P. parvum cell density. Identical acute mortality studies were
performed during P. parvum culture stationary growth phase with fathead minnow and
zebrafish larvae (48 hph fathead minnow, 48 hour post fertilization (hpf) zebrafish) to
determine LCso values and subsequent sublethal study cell densities. Zebrafish bioassays

were conducted in a temperature controlled chamber set to 27 °C in the dark.

Sublethal Bioassays

The experimental design for toxicity studies followed previously published
methods by this laboratory (Corrales et al., 2017; Valenti et al., 2010). Sublethal studies
with fathead minnow and zebrafish were performed according to standardized toxicity
methods from the US EPA Whole Effluent Toxicity (WET) methods (EPA 2002) and
Organization for Economic Cooperation and Development (OECD) Fish Embryo
Toxicity Test (FET), respectively (OECD no. 236). Three dilution levels (Table 2.1) per
experimental replicate carboy were selected below the 48 h LCso value and cell densities
were targeted at which responses were observed in preliminary studies (CH 1). This
approach was taken to aid in comparisons between treatment and dilution levels. Here

again, media (2.4 or 5 ppt, /2 or {/8) served as the diluent and control to derive dilution
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levels. Fish were acclimated to experimental media for approximately 2 hours in a 50:50
ratio of culture water: P. parvum media or reconstituted hard water (RHW) served as a
negative control. The pH of each solution was titrated to 8.5 using 1 N hydrochloric acid
or 1 N sodium hydroxide, due to the positive relationship between pH and toxicity
(Valenti et al., 2010). Bioassays were conducted in temperature controlled chambers set
to 25 or 27 »C for fathead minnow and zebrafish respectively, and in the dark to prevent
toxin photodegradation (James et al., 2011). Briefly, 48 hph fathead minnow larvae were
placed in 200 mL of experimental solutions. Each experimental carboy replicate (8 total)
dilution level consisted of eight experimental units of ten fathead minnow. Zebrafish at
48 hpf were exposed to 30 mL of each experimental dilution. Each experimental carboy
dilution consisted of twelve experimental units with fifteen zebrafish each. These
volumes were chosen to ensure that the loading density did not exceed acceptable levels
for standardized guidelines. At 24 and 48 h mortalities and abnormalities were observed.
At 48 h, tissue samples were collected, frozen at -80 °C, and saved for antioxidant
related gene expression and biochemical OS determination and fathead minnow and
zebrafish behaviors were observed. Collection of tissue and behavioral analysis were
randomized per experimental unit using random.org per dilution of each experimental 15
L carboy. Four fathead minnow were analyzed individually for behavior from one
experimental unit. Five and ten fathead minnow were pooled per experimental unit for
qPCR gene expression and OS biochemical determination respectively. A total of three
experimental units were collected for both endpoints. A total of three experimental units
were randomly selected for behavioral analysis. Fifteen and ten zebrafish were pooled per

beaker for OS biochemical and qPCR gene expression respectively. Similar to fathead
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minnow, a total of three experimental units were collected per endpoint. If no mortalities
occurred, remaining tissue were collected for additional DNA and RNA extractions. Six
zebrafish were analyzed individually for behavior from one experimental unit. A total of
four experimental units were randomly selected for behavioral analysis. Each collection
of organisms per experimental unit represented a biological replicate. Therefore, a total
number of three biological replicates were statistically analyzed for all endpoints for each
dilution of experimental 15 L carboys. Zebrafish behavior consisted of four biological
replicates that were statistically analyzed following previously published methods by this
laboratory (Corrales et al, 2018; Steele et al., Accepted).

Table 2.1. P. parvum whole culture dilutions (low, medium and high doses with
nominal cell densities (cells/mL)) selected for sublethal exposure to larval fathead
minnow and zebrafish. Cultures were grown in duplicate and represented as rep 1 and 2.
Media (2.4 or 5 ppt and {/2 or f/8) served as diluent and control. Significant mortalities
(represented by *, N=2, p < 0.05) of each dilution level from media control were

determined by a Fisher Exact test. Dilution levels that were significant from media
control were not measured for sublethal endpoints.

Fathead minnow Zebrafish
Low Medium High Low Medium High
Culture Condition

2.4 ppt /2 medium 1,540 15,400 38,500 1,540 15,400 38,500
(rep 1)

2.4 ppt /2 medium 2,120 21,200 53,000%* 2,120 21,200 53,000
(rep 2)

2.4 ppt f/8 medium 1,240 12,400 31,000%* 1,240 12,400 31,000
(rep 1)

2.4 ppt f/8 medium 1,080 10,800%* 27,000%* 1,080 10,800 27,000
(rep 2)

5 ppt /2 medium 2,320 4,640 11,600 11,600 23,200 232,000%*
(rep 1)

5 ppt /2 medium 2,336 4,672 11,680%* 11,680 23,360 233,600*
(rep 2)

5 ppt /8 medium 1,496 2,992 7,480 7,480 14,960 149,600*
(rep 1)

5 ppt /8 medium 1,488 2,976 7,440* 7,440 14,880 148,800*
(rep 2)
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Antioxidant Gene Expression;, gPCR

Changes in mRNA abundance were measured for glutamate cysteine ligase
catalytic subunit (gclc), glutathione-s-transferase (gs?), superoxide dismutase (sod), and
nuclear factor erythroid-2 like 2 (n7f2) in order to determine changes in genomic activity
associated with OS. Specific isoforms measured in zebrafish were gstp1, nrf 2a, and
sod1, though due to the poor annotation of this gene family in fathead minnows we were
not able to identify the specific isoforms in this species. Gene expression was determined
following previously described methods (Corrales et al., 2017). RNA was extracted from
whole larval fish using RNAzol (Molecular Research Center, Cincinnati, OH, USA) and
cleaned and purified using RNeasy Mini kit (Qiagen, Valencia, CA, USA). Total RNA
was measured using a Nanodrop20000 and 500 ng of RNA was reversed transcribed.
RNA was reversed transcribed to cDNA using TagMan Reverse Transcription reagents
(Applied Biosystems by Life Technologies, Carlsbad, CA, USA) to yield 25 ng/uL
reaction.

Relative abundance of target genes was determined by real time reverse
transcription polymerase chain reaction (QPCR). This reaction consists of 1 pL cDNA,
300 nM of each forward and reverse primer, and 1X Power SYBR Green PCR Master
Mix. Gene amplification reaction conditions were 95 °C for 10 min, followed by 40
cycles of 95 «C for 10 s, and 60 °C for 1 min using a StepOnePlus Real-Time PCR
System (Applied Biosystems by Life Technologies, Carlsbad, CA, USA). Reaction of
each sample was performed with two technical replicates per biological replicate
(triplicate). Prior to performing assays, amplification efficiencies of all primer pairs were

determined at >90%. Beta-actin (actb), glyceraldehyde-3-phosphate dehydrogenase
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(gapdh), and hypoxanthine phosphoribosyltransferase 1 (hprtl) were selected as
reference genes. The geometric mean of actbl and gapdh for zebrafish and that of gapdh
and Aprtl for fathead minnow were used as controls to normalize the starting quantity of

mRNA in target genes.

Biochemical Oxidative Stress Assays

Total glutathione concentration, lipid peroxidation, and oxidative DNA damage
also followed previously described methods by my lab (Corrales et al., 2017). All
biochemical marker analyses consisted of three biological replicates and two technical
replicates per dilutions of experimental 15 L carboys. Each biological replicate contained
pooled organisms, including five fathead minnow or fifteen zebrafish. Briefly, total
glutathione (GSH) concentration was determined using a commercially available kit
(Cayman Chemical Company, Ann Arbor, MI, USA). Prior to conducting the assay,
samples were deproteinated with 1.25 M metaphosphoric acid and 0.2 M triethanolamine.
DTNB (5,5,-dithio-bis-2-nitrobenzoic acid) was added to deproteinated tissue supernatant
initiating a reaction between the GSH present in tissue samples and DTNB yielding TNB
(5-thio-2-nitrobenzoic acid). The rate of TNB production is directly proportional to the
GSH concentration due to the recycling of GSH by glutathione reductase present. Total
glutathione concentrations were normalized to sample protein content. Protein content
was determined following the Bradford protein assay by which a Bio-Rad protein dye
was reacted with tissue supernatant (Sigma-Aldrich, St. Louis, MO, USA Cat. No. A7906
and 5000006).

Lipid peroxidation was determined by the concentration of malondialdehyde

(MDA) present in tissue samples. MDA is a reactive carbonyl compound that is a natural
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product of lipid peroxidation. MDA concentration was quantified using a Thiobarbituric
Acid Reactive Substances assay (TBARS) (Cayman Chemical Company, Ann Arbor, MI,
USA). Thiobarbuturic acid (TBA) was added to each tissue sample, producing a MDA-
TBA adduct which was fluorometrically detected. Elevated MDA concentrations are
proportional to the MDA-TBA adducts formed. MDA concentration was also normalized
to sample protein content. Protein content was determined following the Pierce BSA
assay by which a working dye reagent was reacted with tissue supernatant (Thermo
Scientific Wilmington, DE, USA, Cat No. 23225).

DNA oxidative damage was determined by presence of the oxidatively damaged
guanine species, 8-hydroxy-2’-deoxyguanosine (8-OH-dG), measured using a
commercially available enzyme immunoassay (EIA) (Cayman Chemical Company, Ann
Arbor, MI, USA). Prior to development of EIA, DNA was extracted using DNAzol
(Molecular Research Center, Cincinnati, OH, USA) following the manufacturer’s
instructions. Extracted DNA samples were cleaned and purified using Zymo Genomic
DNA Clean and Concentrator (Zymo Research, Irvine, CA, USA) prior to DNA
quantification. DNA concentrations were quantified using a Nanodrop2000 (Thermo
Scientific, Wilmington, DE, USA), and 5 pg DNA per sample was prepared for the EIA
by diluting DNA with Cayman Ultrapure water to yield a 50 pg/mL sample. The amount
of 8-OH-dG present in the sample competed with an added 8-OH-dG-
acetylcholinesterase conjugate for binding to an oxidative damage monoclonal antibody.
This antibody was bound to seeded goat polyclonal antimouse IgG cells. After an 18 hour

incubation, each plate was washed five times and Ellman’s reagent was added to develop
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the plate. The intensity of the signal is inversely proportional to the amount of free 8-OH-

dG or oxidatively damaged DNA.

Behavioral Analysis

Behavioral responses of fathead minnow and zebrafish were observed after 48 h
sublethal exposures to P. parvum following previously described methods (Kristofco et
al., 2016; Steele et al., In press; Steele et al., Accepted). Twelve fathead minnows of each
dilution level were loaded into 24 well plates, each well containing two mL of dilution
level solution. Twenty-four zebrafish of each dilution level were loaded into 48 well
plates with each well containing one mL of dilution level solution. All well plates were
preloaded and maintained in exposure conditions until analysis. Fish were acclimated to
the well plate for at least 30 minutes before behavioral platform loading. To minimize
time of day behavioral effects, plates were analyzed from approximately 9:00 am to 2:00
pm for fathead minnow and 2:00-7:00 pm for zebrafish with each plate analyzed
immediately after the conclusion of previous plate (Kristofco et al., 2016).

Larval swimming patterns were observed and recorded using automated tracking
software (ViewPoint, Lyon, France) and associated platform (Zebrabox, ViewPoint,
Lyon France). This system was set in tracking mode and behavioral recordings took place
over 50 minutes with a ten minute dark acclimation period followed by two altering ten
minute light/dark cycles. Observations were recorded for total distance swam and total
number of movements. Additionally, distance swam, number of movements, and duration
of movements were recorded for activity across three different speed thresholds. These
speeds are categorized as bursting (>20mm/s), cruising (5-20 mm/s), and freezing (<5

mm/s) to characterize stimulatory and refractory behaviors. To measure larvae swimming
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responses to a sudden change in photoperiod condition, a photomotor response (PMR)
was observed following methods previously used (Beker van Woudenberg et al., 2013)
with slight modifications. PMR for each photoperiod transition (two light and two dark
responses) was calculated as the change in mean distance traveled (mm) between the last

minute of an initial photoperiod and the first minute of the following period.

Statistical Analysis

P. parvum specific growth rates were calculated using the equation:

r=(In Na—1In No)/ t

where r is the growth rate (divisions/day), Nd is the number of organisms at the beginning
of the steady growth state, No is the number of organisms at study initiation, and t is the
time (days) to reach steady state growth. Steady state growth was determined as the time
at which the maximum P. parvum density was reached and followed by a general decline.

The lethal concentration to cause 50% morality (LCso) values from acute studies
with each of the cultures were calculated using the Toxicity Relationship Analysis
Program version 1.30a (EPA). Sigma Plot (Systat Software Inc., San Jose, CA, USA)
software was used for statistical analyses of P. parvum growth and antioxidant gene
expression, biochemical (glutathione concentration, lipid peroxidation, and DNA
damage), and fish behavioral data. Significant mortalities (0¢=0.05) from control at 48 h
were determined for all sublethal dilutions using a Fisher Exact test. All sublethal
responses were not measured for treatment dilutions with significant mortalities from
media control. Prior to analysis antioxidant gene expression data, data were normalized to
the geometric mean of reference/endogenous genes and then normalized to media

controls to determine linearized 2—ACt values, prior to normality and equivalence of
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variance analyses. For biochemical and behavioral data were normalized to cell density
(cells/mL) after which normality and equivalence of variance were analyzed.

Significant differences (0=0.05) in mRNA fold changes, biochemical OS
endpoints, and behavior movement patterns were identified among dilution levels from
each experimental replicate carboy using a One-Way ANOVA if normality and variance
assumptions were met. Dunnett’s post hoc test was performed to identify dilution level
differences from media controls and used to derive No Observable Effect Concentration
(NOEC) and Lowest Observable Effect Concentration (LOEC). For data not meeting
ANOVA assumptions, an ANOVA on ranks was performed. NOEC values were log
transformed prior to statistical analysis to meet normality assumptions. NOEC values less
than the lowest dilution level selected were excluded in statistical analysis. Significant
differences (0=0.05) of maximal cell densities and growth rates were identified for main
and interacting treatment factors (salinity, nutrients, salinity x nutrients) for NOEC values
determined for each experimental carboy replicate using General Linear Models (GLM)
with SPSS software (IBM Corp., Armonk, NY, USA). Main and interacting treatment
factors (salinity, nutrients, salinity x nutrients) effects were also determined with GLMs

for NOEC values for OS related endpoints and behavior.

Results
P. parvum Growth
The specific growth rate of each culture ranged from .1456-.1606 divisions per
day (Table 2.2). Cultures grown under the same growth conditions were not significantly
different (p > 0.05) and were influenced by salinity and nutrient factors (Table 2.3).

Cultures grown under nutrient deficient conditions had a slower growth rate and lower
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maximal cell densities when compared to nutrient sufficient conditions regardless of
salinity (Figure 2.1). The low salinity, nutrient sufficient cultures were comparable to
those grown under high (5 ppt) salinity with deficient nutrients. Maximal cell densities
also varied with salinity and nutrient condition and were significantly (p < 0.05)
influenced by main and interacting growth factor conditions (Table 2.3). High salinity
and sufficient nutrients resulted in the highest cell densities observed, followed by high
salinity with deficient nutrients, low salinity with sufficient nutrients and low salinity
with deficient nutrients. Exponential growth began on day 26 of the study for all cultures.
Stationary growth was reached at day 48 for 2.4 ppt cultures and day 54 for 5 ppt

cultures.

Acute Bioassays and Sublethal Survival

Larval fathead minnow LCso values indicate that all cultures were highly toxic
throughout the duration of P. parvum growth (Table 2.4). Fathead minnow and zebrafish
survival was not affected by both salinity and nutrient condition (control survival >90%).
Acute mortality was observed at the start of exponential growth and continued to
stationary growth phase (Table 2.4). Acute mortality of fathead minnow decreased per
study day (Figure 2.2 and Table 2.4) for all cultures with the highest mortality occurring
during early exponential growth phase. Acute toxicity was highest under nutrient
limitation across both salinities. However, acute mortality was greatest on a per cell basis
under higher salinity and deficient nutrient conditions (Figure 2.2). Zebrafish exhibited
biphasic toxicity after exposure to the high salinity cultures, with greatest mortality
between 37,200-292,000 cells/mL (Table 2.5). Similarly, survival was greatest for

nutrient sufficient conditions compared to nutrient deficient conditions during the
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sublethal exposures for both species (Figure 2.3). Significant (p < 0.05) differences in
mortality were observed for the highest dilution levels selected for experimental carboy
replicates that were acutely toxic prior to sublethal exposures; these dilution levels were
omitted in sublethal response evaluations (Figure 2.3).

Table 2.2. P. parvum growth rates (divisions/day) represented as mean + S.D (n=5)
grown at 2.4 and 5 ppt, 15 °C with a 12:12 light:dark cycle, under nutrient sufficient (f/2)
and deficient (f/8) conditions in duplicate (represented as rep 1 and 2). Growth rates were

determined when stationary growth phase was reached at study day 48 for 2.4 ppt
cultures and study day 54 for 5 ppt cultures.

2.4 ppt 2.4 ppt 2.4 ppt 2.4 ppt S ppt S ppt S ppt S ppt
72 72 178 178 72 72 178 178

medium medium medium medium medium medium < medium  medium
(rep 1) (rep 2) (rep 1) (rep 2) (rep 1) (rep 2) (rep 1) (rep 2)

0.15236  0.15874  0.14586  0.14586  0.1605 0.1606 0.1522 0.1529
+0.00099 +0.00055 +£0.00134 =+0.00134 +0.00021 +0.00043 +0.00042 =£0.00057

Table 2.3. Influence of P. parvum growth treatment factors (salinity, nutrients, salinity x
nutrients) on P. parvum mean growth rate (divisions/day, n=5) and maximal cell densities
(cells/mL, n=5). Growth conditions included 2.4 or 5 ppt with sufficient (f/2) or deficient

(f/8) nutrient conditions at 15 C with a 12:12 light:dark cycle in duplicate. Statistical
differences (N=2, p < 0.05, in bold) determined using General Linear Models.

Interactive effect Salinity Nutrients
Mean growth rate 0.626 0.022 0.05
(divisions/day)
Mean maximal cell 0.001 <0.001 <0.001
density (cells/mL)
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—@— 2.4 ppt Nutrient Sufficient (rep 1)
—O— 2.4 ppt Nutrient Sufficient (rep 2)
60 1 —O— 2.4 ppt Nutrient Deficient (rep 1)
—®— 2.4 ppt Nutrient Deficient (rep 2)

50 A

Prymnesium parvum cell density (1 0* cells/mL)

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68
Study day

70

—&— 5 ppt Nutrient Sufficient (rep 2)
—A— 5 ppt Nutrient Deficient (rep 1)
—A&— 5 ppt Nutrient Deficient (rep 2)

—aA— 5 ppt Nutrient Sufficient (rep 1) l i

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

Prymensium parvum cell density (10* cells/mL)

Study day

Figure 2.1. Growth of P. parvum represented as mean cell density (cells/mL, n=5) + S.D.
per study day. Cultures were grown in duplicate at A) 2.4 and B) 5 ppt 15 °C with a 12:12
light:dark cycle, under nutrient sufficient (f/2) and deficient (f/8) conditions. Cell
densities were determined using a haemocytometer. Acute toxicity tests were initiated
every 7 days after exponential growth phase began as indicated by arrows. Line indicates
bloom toxicity threshold (10,000 cells/mL).
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—@— 2.4 ppt Nutrient Sufficient (rep 1)
—O0— 2.4 ppt Nutrient Sufficient (rep 2) *
—O— 2.4 ppt Nutrient Deficient (rep 1)

20 - —@®— 2.4 ppt Nutrient Deficient (rep 2)

15 1

10

Pimephales promelas LC, (1 0* cells/mL)

20 30 40 50 60 70
Study day

25

—a&— 5 ppt Nutrient Sufficient (rep 1)
—&— 5 ppt Nutrient Sufficient (rep 2)
—4— 5 ppt Nutrient Deficient (rep 1)
—&— 5 ppt Nutrient Deficient (rep 2)

Pimephales promelas LC, (1 0* cells/m L)

0 T T T T 1
20 30 40 50 60 70

Study Day

Figure 2.2. P. promelas lethal concentration to cause 50% mortality (LCso £95% C.1.; P
parvum cells/mL) per study day. Cultures were grown in duplicate at A) 2.4 and B) 5 ppt
under nutrient sufficient (f/2) and deficient (f/8) conditions. Acute mortality bioassays
employing larval fathead minnow (P. promelas <24 hph) were performed weekly after
exponential growth phase began through stationary growth phase. Cultures that resulted
in no mortality are represented by observed cell density at the time of initiation (denoted

by *).
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Antioxidant Gene Expression

Relative gene expression (mRNA fold change) were significantly (p < 0.05),
unless otherwise stated, induced in both species but varied among P. parvum culture
condition. Fathead minnow gclc and nrf2 induction (p<0.05) occurred after exposure to
high salinity treatments (Figures 2.4 & 2.6). A low salinity deficient nutrient culture also
significantly (p<0.05) induced nrf2 expression (Figure 2.6). Fathead nrf2 NOEC values
were the lowest cell densities observed and comparable among cultures that elicited acute
mortality prior to sublethal study (Tables 2.4& 2.7). High salinity sufficient nutrients
cultures induced gclc expression in zebrafish which was significantly (p<0.05) influenced
by salinity (Figures 2.4, Table 2.6, 2.9). Significant (p<0.05) inductions of nrf2a were
also observed after exposure to this same culture (Figure 2.6). Comparable to GSH and
lipid peroxidation, nrf2 expression in fathead minnow was significantly (p<0.05)
influenced by nutrient condition and interactive effects (Table 2.9), whereas nrf2a
expression was only influenced by nutrients (Table 2.9). Although not significant (p >
0.05), large inductions were observed for fathead minnow while zebrafish elicited
depletions of gclc and gst when exposed to nutrient deficient cultures (Figures 2.4-5).
Similar to fathead minnow, nrf2a expression was induced after exposure to the same low
salinity deficient nutrient culture (Figure 2.6). High salinity with deficient nutrients
resulted in a significant (p<0.05) depletion of gstp! in zebrafish (Figure 2.5). No
significant differences were observed for sod/sodl expression for either species however,
significant influences of salinity and nutrients were observed for zebrafish NOEC values

(Figure 2.7, Table 2.9).
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Biochemical Oxidative Stress Endpoints

Fathead minnow and zebrafish exhibited differential biochemical OS responses
across culture conditions. Statistically significant (p < 0.05) depletion of total glutathione
and increases in lipid peroxidation were observed in fathead minnow exposed to low
salinity, deficient nutrient conditions with similar trends after exposure to remaining
culture conditions (Figures 2.8-9). Both of these responses were significantly (p < 0.05)
influenced by nutrient condition and the interaction between salinity and nutrients (Table
2.9). NOECs were comparable among cultures that elicited acute fathead minnow
mortality with the most significant responses observed after exposure to low salinity, low
nutrient conditions (Table 2.8). Increases in oxidative DNA damage were observed after
exposure to high salinity cultures, however these were not significant (Figure 2.10). By
contrast, zebrafish elicited a decrease in lipid peroxidation after exposure to high salinity,
high nutrient conditions (Figure 2.9). High salinity, low nutrient conditions resulted in a
significant increase in oxidative DNA damage in zebrafish (Figure 2.10). Although not
significant (p > 0.05), high salinity low nutrients induced total glutathione concentration
in zebrafish (Figure 2.8). GSH, lipid peroxidation and DNA damage in zebrafish
exhibited a significant influence of salinity and nutrient conditions (Table 2.9). No
significant glutathione depletion was observed as indicated by NOEC values, therefore
this significant influence could be controlled by the dose of P. parvum cells (Table 2.8).
Lipid peroxidation and DNA damage were observed at the lowest dose thus an accurate

NOEC value could not be determined (Table 2.8).
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Fish Behavior

Behavior varied across species and culture conditions. Fathead minnow activity
was greatest in light conditions indicated by the positive dark to light photomotor
responses (PMRs) and reduced light to dark PMRs (Figures 2.11-14). Statistically
significant (p < 0.05) decreases in swimming activity occurred in the light and dark
conditions for low salinity with sufficient nutrients and high salinity with deficient
nutrients, with responses observed at lower cell densities when grown under higher
salinity conditions (Figures 2.11 & 2.14). Although decreased activity was significantly
(p < 0.05) affected across freezing and cruising speed thresholds, stimulatory response
trends were observed for bursting speed thresholds (Figure 2.11-14). An increase in
activity was observed for fathead minnow exposed to high salinity with sufficient
nutrients (Figure 2.13). Stimulatory response trends across bursting thresholds were
observed for fathead minnow exposed to all culture conditions. Salinity and nutrient
conditions in addition to interaction effects did not significantly (p > 0.05) influence

swimming behavior or PMR responses (Tables 2.10-11).
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Zebrafish activity was greatest in dark conditions indicated by the negative dark
to light and positive light to dark PMRs. A statistically significant (p < 0.05) increase in
PMR was observed under high salinity low nutrient conditions (Figures 2.17). Low
salinity with sufficient nutrients elicited significant (p < 0.05) stimulatory responses in
zebrafish swimming behavior in the light (Figure 2.15). Similar to the fathead minnow,
stimulatory trends were observed for bursting speed threshold with heightened responses
in light conditions, although some decreases in activity were observed (Figures 2.15-18).
Contrary to fathead minnow, salinity and nutrients did influence swimming behavior and
PMR zebrafish responses (Tables 2.10-11). Although there were a significant (p < 0.05)
influence of both these experimental factors, it should be noted that these NOEC values

were the highest dilution level exposed to zebrafish, except for light to dark PMR.
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Discussion

P. parvum is a mixotrophic and euryhaline alga capable of forming harmful algal
blooms (HABs) enabling for the invasion of Texas inland waters and other regions of the
U.S. P. parvum HABs are characterized by massive mortality events that primarily target
gill breathing organisms and are predicted to increase due to climate change, watershed
modifications and urbanization. Nation and international scale monitoring networks and
databases are relatively nonexistent for P. parvum identifying concern due to the
projected increase and expansion in HABs. Establishment of standardized monitoring
methods is necessary to properly assess and predict P. parvum blooms, especially since
this species is expanding. In the present study, a novel approach was taken to understand
sublethal P. parvum toxicity by examining multiple molecular, biochemical and
behavioral responses. The influence of nutrients and salinity were investigated to
understand these effects at conditions representative of Texas inland HABs. To our
knowledge, this is the first study to report induced oxidative stress and behavioral
alterations in two common fish models after exposure to sublethal cell densities of P.
parvum. | found that these responses were heightened under suboptimal growth
conditions, which is consistent with previously reported acute mortality.

The growth rates observed in the present study indicate that P. parvum growth
was not optimal for any of the experimental conditions and are comparable with those of
wintertime, low salinity Texas HABs (Baker et al., 2007; Baker et al., 2009). Suboptimal
growth conditions such as low salinity, temperature, and nutrients have been studied and
suggested as indicators of P. parvum bloom formation and acute toxicity (Brooks et al.,

2011; Roelke et al., 2015). However, previous laboratory studies have seldom compared
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multiple salinity and nutrient conditions concurrently (Brooks et al., 2010). A double
salinity threshold has been established for P. parvum in which growth is able to occur
between 1-25 ppt that causes enough stress to produce toxins supporting P. parvum
bloom development (Roelke et al., 2015). A relationship between temperature and low
salinity conditions exist in which the optimal temperature for growth decreases with
decreasing salinity (Baker et al., 2009). In the current study, P. parvum growth (maximal
cell density and growth rate) was greatest under the high salinity condition chosen. Slight
increases in salinity have been shown to increase P. parvum blooms in South Central
U.S.A. (Hambright et al., 2014; Roelke et al., 2011), which are consistent with the
present study. Conversely, sublethal toxicity in the present study was greatest under
lower salinity conditions consistent with conditions observed for documented Texas
HABEs. In addition, I observed lower maximal cell densities and growth rates and an
increase in acute fish mortality and sublethal responses in cultures grown under nutrient
limitation regardless of salinity. In fact, the growth treatment factor that significantly
influenced responses observed most frequently was nutrient limitation (Table 2.9-11).
Nutrient availability is a major environmental parameter frequently observed to influence
harmful plankton succession (Heisler et al., 2008; Paerl and Scott, 2010).

Associations among water quality parameters have been established for P.
parvum in Texas (Israél et al., 2014; Patifio et al., 2014; VanLandeghem et al., 2014).
However, with anticipated human population growth and climate change alterations in
precipitation and evaporation will occur in arid to semi-arid regions and ultimately
influence in flow events, which have been shown to alleviate P. parvum HABs (Roelke et

al, 2012; Roelke et al., 2015). In addition, nutrient loadings from point (effluent) and
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nonpoint (urban storm water and agriculture runoff) sources may increase with watershed
modification (Brooks et al., 2011). In the present study, significant main and interactive
effects between salinity and nutrients were observed for OS biochemical responses for
both species (Table 2.9). P. parvum is mixotrophic and can therefore assimilate nutrients
from multiple sources. For example, additions of tertiary sewage effluent stimulated
growth and substantially increased cellular nitrogen content of laboratory grown P.
parvum cultures confirming that this species can assimilate nutrients from multiple
inorganic and organic sources (Lindehoff et al., 2009). Autotrophy and heterotrophy
appear to be permanent nutritional adaptations; however, the degree of contribution likely
varies among growth nutrient condition and presence/absence of prey. Laboratory grown
cultures resulted in higher organic nitrogen content than those grown under nutrient
sufficiency suggesting higher phagotrophic activity that is believed to be enabled by toxin
production (Carvalho and Granéli, 2010).

Highest concentrations of prymnesins have been reported throughout late
exponential and stationary growth for cultures grown under similar conditions as the
present study (La Claire et al., 2015). As mentioned previously, no analytical standards
exist for prymnesin I and II. Therefore, acute bioassays were employed to determine the
presence of toxins. Low salinity and nutrient sufficient conditions became nontoxic
during late stationary phase suggesting that prymnesins were not the primary toxins
responsible for the acute fish mortality observed (Figure 2.2, Table 2.4). In fact, fathead
minnow mortality decreased per study day with the highest toxicity per cell observed

during early exponential phase for all cultures (Figure 2.2). Whether prymnesins
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contributed to the observed mortality and sublethal toxicity is unknown and requires
further investigation.

Multiple toxins, in addition to prymnesins have been suggested including fatty
acids, fatty acid amides, and other golden algae toxins (GATs) with much discrepancy
among these results (Schug et al., 2010; Henrikson et al.,2010; Bertin et al., 2012a; Bertin
et al., 2012b; Blossom et al, 2014). Different P. parvum culturing conditions were chosen
and different toxicological bioassays were utilized to confirm toxicity/presence of toxins.
Growth and toxicological endpoints have been shown to be influenced by P. parvum
growth condition. In addition, comparative toxicity work has confirmed differential
responses of routine model organisms selected for these assays (Brooks et al., 2010). A
plausible explanation for the discrepancy among proposed toxins could be influenced by
different toxins and/or the magnitude of these toxins produced under different growth
conditions, during different growth phases, observed toxicity, and/or a combination of
these factors. Future investigations are required to better understand mechanisms
contributing to toxin production and resulting toxicity.

Fathead minnow and zebrafish were found to exhibit differential acute toxicity.
Fathead minnow mortality was greatest under nutrient limited conditions for both
salinities which is consistent with previously reported results (Baker et al., 2009a; Errera
et al., 2008; Graneli, 2003; Valenti et al, 2010). P. parvum grown at 2.4 ppt under the
same nutrient limited conditions (f/8) resulted in a mean LCso value of 21,800 cells/mL
for larval fathead minnow during stationary growth phase (Brooks et al., 2010) similar to
one carboy grown under 2.4 ppt and nutrient deficient conditions in the present study.

Fish mortality in response to P. parvum grown under 5 ppt conditions have not been
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previously reported (CH 1, Table 1.1). Mortality of 10-14 day old fathead minnow
following exposure to P. parvum grown at 6 ppt resulted in a mean LCso value of 51,560
cells/mL during stationary growth (Remmel and Hambright, 2012). Although this
suggests that increasing salinity conditions decreases fish morality responses, increased
larval fathead minnow mortality in response to increased P. parvum salinity growth
conditions have been observed previously by this laboratory (Prosser et al., unpublished).
As stressed in Brooks et al. (2010) the development and application of standardized
growth and toxicity procedures are required in order to adequately compare reported
toxicity. Embryonic zebrafish assays were employed to determine P. parvum toxicity
across urban and rural landscapes (VanLandeghem et al. 2012). The authors noted similar
mortality responses between zebrafish and fathead minnow, contrary to the observed
mortality responses. In the present study, fathead minnow mortality was more sensitive to
P. parvum cultures than zebrafish (Table 2.4, 2.5).

Fathead minnow were more sensitive to P. parvum exposure than zebrafish
(consistent with CH 1), which exhibited biphasic toxicity. Valenti et al (2010) predicted
various physiochemical properties of prymnesin toxins, which indicate that
bioavailability influences of pH to these toxins are similar to bases. Although study
solutions were manipulated to pH 8.5, physiochemical properties of toxin metabolites not
related to pH such as salinity may explain the biphasic toxicity observed for zebrafish.
Additions of co-factors, especially mono- and divalent cations led to increased toxicity of
P. parvum, which led to an earlier conclusion that an activation of these toxins by
cofactors is required (Ulitzer and Shilo, 1964). Acute mortality was greatest under high

salinity conditions which could be explained by more available cations (Na*) in the
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media. Clearly this area deserves additional study. Model organism sensitivity also varied
and followed similar trends for the sublethal responses chosen.

Although the Texas strain was the focus of the present study, P. parvum HABs
occur globally. Regulatory and international standardized methods for fathead minnow
and zebrafish were chosen to maximize comparisons of study findings. The initiation of
these standardized methods occurred at early life stages at which susceptibility to
contaminants is believed to be particularly sensitive and involved initiating studies with
each species at different development stages. Although the influence of development on
toxicity was outside the scope of this study, increased uptake and metabolism along
development have been demonstrated for multiple fish species exposed to environmental
contaminants including algal toxins (Kristofco et al., 2018; Otte et al., 2010; Wiegand et
al., 1999). Zebrafish have been used as a model organism to determine adverse effects of
algal toxins; however, to my knowledge, this is the first study to employ larval zebrafish
in an acute or sublethal P. parvum toxicological experiment. Zebrafish are a global
toxicological fish model that contains similar copies of human genes facilitating read
across extrapolations (Gunnarson et al., 2008; Howe et al., 2013; Rand-Weaver et al.,
2013).

Oxidative stress (OS) is a common component in any substantial stress that results
in an imbalance between reactive oxygen species (ROS) and antioxidant capabilities to
detoxify these molecules. Since exposure to increased ROS may fluctuate, organisms are
able to respond to this stress by inducing antioxidant related enzymes. The Keap1-Nrf2
signaling pathway is important in regulating antioxidant enzymes in response to

xenobiotics that is conserved in vertebrate systems including the fathead minnow and
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zebrafish (Kaspar et al., 2009; Lushchak, 2011; Nguyen et al., 2009). Nrf2 is a leucine
zipper transcription factor that under normal physiological conditions is complexed with
the repressor protein Keapl (Kelch-like ECH associating protein 1) in the cytosol. Cell
exposure to oxidants changes the confirmation of Keap1, leading to the release of Nrf2,
which migrates to the nucleus and binds to the antioxidant response element (ARE)
activating gene transcription (Lushchak, 2011). The present study evaluated the
expression changes of four genes after exposure to P. parvum: nuclear factor erythroid 2—
like 2 (nrf2), glutamate cysteine ligase catalytic subunit (gclc), glutathione-s-transferase
(gst) and superoxide dismutase (sod). The specific gene isoforms for zebrafish were
nrf2a, gstpl, and sod1. To my knowledge, this is the first study to investigate relative
gene expression changes to gcle, gst, and nrf2 after exposure to P. parvum toxins. Gelc,
gst, nrf2 and sod expression changes have been reported for mammalian (mice) and fish
following other algal exposures, primarily cyanobacteria (Gongalves-Soares et al., 2012;
Jos et al., 2005; Qiu et al., 2007; Wang et al., 2006).

Relative gene expression was widely induced across both species, highlighting the
sensitivity of these antioxidants in response to OS elicited by algal toxins. For fathead
minnow, nrf2 expression was the most sensitive antioxidant gene selected. This is not
surprising due to the major role that the Nrf2-Keap1 pathway plays in OS defense as
mentioned previously. The second most sensitive antioxidant gene was gclc for both
species. Glutamate cysteine ligase (gc/) consists of a catalytic (gclc) and a light or
modifier subunit (gc/m) that is involved in the first step of GSH synthesis. Gclc is the rate
limiting step for GSH synthesis thus expression is upregulated when increased cellular

defenses are needed but if insults persist may become dysregulated (Lu, 2013). Another
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GSH related enzyme, glutahtione-s-transferase (gst), specifically the cytosolic family,
was also selected for investigation and exhibited induction in zebrafish. Gst facilitates the
conjugation between GSH and a reactive molecule increasing hydrophilicity for
excretion. Induction of gst expression has occurred in response to OS induced by
environmental contaminants and algal toxins (Limon-Pacheco and Consebatt, 2009).
Superoxide dismutase (sod) is responsible for the partitioning of superoxide radicals into
hydrogen peroxide and molecular oxygen that is often induced in aquatic organisms as a
result of OS (Di Giulio et al., 1989). No significant responses were observed for sod in
both species, which is supported by in vitro investigations of P. parvum exposure to gill
cells (Dorantes-Aranda et al., 2015). Changes in gene expression were more statistically
significant for zebrafish when compared to fathead minnow responses, especially under
conditions at high salinity. These responses suggest a successful antioxidant protection
due to lack of altered biochemical markers.

The implications of OS include damage to tissues, inflammation, carcinogenesis
and neurodegenerative diseases in humans and wildlife (Kensler et al., 2007; Scandalios,
2005). OS is somewhat paradoxical due to the requirement of oxygen for life; however,
organisms have adapted adequate antioxidant defenses to combat the generation of ROS.
The main targets of ROS include proteins, lipids, and nucleic acids therefore the
alterations of glutathione concentrations, lipid peroxidation, and DNA damage have been
well studied biomarkers of OS. Environmentally induced OS and the utility of
biomarkers in aquatic organisms have been reviewed (Di Giulio et al., 1989; Limon-

Pacheco and Consebatt, 2009; Lushchak, 2011; Valavanidis et al., 2006).
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In the present study, all fish OS biochemical markers responded similarly, with
neither more sensitive than the others. Glutathione depletion, increased lipid peroxidation
and DNA damage have all been associated with OS and were observed in both species
indicating P. parvum induced OS. Similar to previous sublethal toxicity studies (CH. 1),
DNA damage was highest under different growth conditions that elicited glutathione and
lipid peroxidation responses, further suggesting that different secondary toxin metabolites
are produced under varying growth conditions (refer to CH 1). Interestingly, lipid
peroxidation was decreased in zebrafish, indicating an antioxidant response rather than an
OS elicited effect. A possible explanation for this decline is metabolism of MDA and
detoxification as supported by an induction of nrf2a observed after exposure to the same
culture (Ayala et al., 2014). Lipid peroxidation was induced within 12 h of exposure to
microcystin-LR but decreased to control levels after 24 h in zebrafish brain (Zhang et al.,
2013). This recovery, although incomplete due to induction of antioxidant related genes
at 24 h, suggests that these responses occur rapidly. A similar increase and decrease in
lipid peroxidation corresponding with an induction of an antioxidant enzyme was
observed in mice (Gehringer et al., 2004). P. parvum toxins elicit high lethality to fish
due to the rapid mortality observed in a short amount of time and exposures to an
invertebrate resulted in decreased toxicity overtime indicating potential loss of
bioavailable toxins (Tillmann, 2003). The sublethal endpoints were only evaluated at 48 h
post exposure, which may only partially represent the antioxidant response. Investigation
of the selected biochemical endpoints at smaller durations of exposure are needed to
understand the full scope of biochemical mechanisms following P. parvum exposure. In

addition, linking these responses to higher levels of biological organization will
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contribute to the development of AOPs and facilitate risk assessment of P. parvum
HAB:s.

Behavior represents an organism’s adaptable response to internal (physiological)
and external (social) factors and is essential for survival (Gerhardt, 2007). Therefore,
alterations to behavior after exposure to algal toxins may result in negative impacts on
individual survival. Behavioral responses to other environmental contaminants including
algal toxins have been observed at concentrations magnitudes below which would elicit
effects routinely examined for acute toxicity studies (Lasley-Rasher et al., 2016; Lefebvre
et al., 2004; Steele et al., In press: Steele et al., Accepted; Valenti et al., 2012; Zhang et
al., 2013). Behavioral alterations have been revealed for algal toxins including
stimulatory and refractory behavior in response to photoperiod and stimuli. Zebrafish
exposed to a low dose of microcystin-LR exhibited stimulatory responses while behavior
activity decreased in response to a high dose in light conditions (Baganz et al., 1998). By
contrast, zebrafish locomotor activity and acetylcholinesterase activity decreased as a
result of low and high doses of aphantoxins (Zhang et. al, 2013). In the present study,
behavioral alterations were observed at cell densities below those inducing acute
mortality and were one of the most sensitive endpoints selected (Figures 2.5-12). A
current limitation of behavioral ecotoxicology is the application of laboratory
observations to field applications. However, behavioral observations including predator
avoidance, food capture, and social behavior (courting and shoaling/schooling) have been
used as indicators of exposure and monitoring strategies (Chew et al., 2009; Kuklina et
al., 2013). Recent advances in computational and tracking technologies allow for high

throughput screening (HTS) of fish models, primarily during early life stages. Fish
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behavioral syndromes and phenotypes of a wide array of chemicals have been studied in
order to associate specific behavioral alterations with chemical mode/mechanism of
action (Drummond and Russom, 1990; Rihel et al., 2010). As mentioned previously,
behavioral observations have been demonstrated for algal toxins, however specific
behavioral phenotypes have not been associated with mechanisms of action, and
comparisons among classes of algal toxins are lacking.

Swimming activity was significantly reduced in fathead minnow across the
freezing and cruising speed thresholds indicating refractory responses after exposure to P.
parvum grown under all experimental conditions. These behavioral responses observed in
the present study differ from those observed in our previous studies (refer to CH 1). Algal
growth was reduced and acute mortality was nonexistent in the previous study,
suggesting that different toxins may have been produced at varying growth phases. Fish
behavioral responses may not only represent P. parvum toxin exposure but also indicate
differences in the amounts or types of toxins produced at specific growth phases.
Zebrafish behavior exhibited differential responses to varying doses of microcystin with
decreased behavior and spawning at higher toxin concentrations and some stimulatory
responses at lower doses (Baganz et al., 2004; Baganz et al., 1998). The consistent
behavioral patterns observed across both species demonstrate the utility of using
behavioral assays to indicate exposure to P. parvum HABs. Further investigation is
needed to understand if these responses may result in population level impacts, and
whether such effects would occur in natural fish populations.

Some consistencies were present among the sublethal endpoints. The same P.

parvum culture (low salinity x deficient nutrient) elicited total glutathione depletion and
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an increase in lipid peroxidation in conjunction with an increase in nrf2a expression in
fathead minnow. Decreased swimming behavior was observed for fathead minnows
exposed to the same culture conditions (low salinity x deficient nutrient) suggesting that
sublethal toxicity increases with increasing suboptimal growth conditions. A similar
relationship has been established with acute fish mortality further proposing that
sublethal endpoints are an adequate endpoint to determine P. parvum exposure and
resulting toxicity. Fathead minnow morality was observed throughout the growth of low
salinity nutrient deficient conditions, although this toxicity was reduced on a per cell
basis compared to cultures grown under higher salinity. Higher salinity induced gene
expression of gclc and nrf2 in fathead minnow and resulted in behavioral alterations. In
the present study, relative gene expression was a more sensitive endpoint in relation to
the selected biochemical endpoints. For example, induction of nrf2 was observed after
exposure to P. parvum grown at multiple salinities and nutrient conditions whereas
significant glutathione depletion and increased lipid peroxidation were only observed
following exposure to low salinity and low nutrient treatment in fathead minnow (Figures
2.4-6 & 2.8-9). Similarly, more significant relative gene expression (nrf2a, gclc) was
observed in zebrafish compared to biochemical endpoints (glutathione and lipid
peroxidation). The greater gene induction and behavioral responses may suggest different
toxin production from that inducing fish morality or produced to a different degree.

As mentioned previously, an induction of nrf2a occurred in zebrafish in
conjunction with a decrease in MDA concentration. Similar to the fathead minnow,
stimulatory response trends occurred in conjunction with molecular and biochemical

markers. These observations occurred after exposure to growth conditions that were more
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optimal (higher salinity, higher nutrients) thus P. parvum toxins may have been produced
to a lesser extent. Zebrafish mortality was only observed at higher salinities with greater
mortality under nutrient deficient conditions (Table 2.5). Although significant molecular
and biochemical responses were primarily observed for fish exposed to nutrient sufficient
conditions, toxins produced in response to salinity changes may have contributed to both
the mortality and sublethal response observed. More research is therefore warranted to
understand the influence of OS in P. parvum toxicity in addition to the mechanisms
behind stress tolerance and toxin production.

Variations in sublethal responses occurred between culture replicates warranting
future investigations of sublethal and/or chronic longer-term responses during exposure
to P. parvum HAB events. Focusing on influences across environmental gradients
including temperature, salinity, and varying N:P will further aid in this understanding.
Isolation and elucidation of toxin profile will facilitate not only linking specific
toxicological responses to specific toxins but how concentrations of these vary with
growth phase. Other algal toxins have shown varying time and dose-response OS
relationships. Whether a similar response pattern exists for P. parvum toxins is currently
unknown and may explain the variations between culture replicates. The difference in
mortality and sublethal responses suggest that the identified prymnesins may not be the
most important toxins contributing to fish mortality during late stationary growth phase.
The rapid expansion of P. parvum throughout the U.S. indicates a strong need for well-
established monitoring networks and a proactive approach to bloom management due to

the sublethal responses observed in the present study occurring below induced mortality.

107



Conclusions

Historical HABs of P. parvum elicit profound fish kills, and thus fish mortality
has been most commonly studied. My novel observations indicate sensitive sublethal
responses to P. parvun under conditions associated with HABs, and further suggest that
these sublethal endpoints represent important considerations for the assessment and
management of P. parvum, especially due to the predicted increase and expansion of
these HABs. To my knowledge this is the first study to combine gene expression,
biochemical and behavioral changes associated with OS following P. parvum exposure
with two common toxicological fish models. Traditional biochemical markers indicated a
contribution of OS to P. parvum toxicity. Induction of antioxidant gene expression
confirmed this contribution and indicated that organisms can potentially combat the algal
toxin induced OS. Behavior alterations were a sensitive indicator of P. parvum exposure
and were associated with cellular and molecular responses. Two experimental factors
(salinity and nutrients) associated with HAB events influenced both P. parvum growth
rates and sublethal fish responses; however, future investigations of such relationships are
needed across environmental gradients. More research is also needed to understand the
mechanistic underpinning of these responses, and the identification and production of P.
parvum toxins. In addition, read across approaches from fish to mammals is unknown for
P. parvum and deserves attention due to heightened antioxidant gene expression elicited

in relation to the conserved antioxidant pathway in all vertebrate systems.
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APPENDIX A

Media Recipe and Measured Nutrients for Chapter One

Table A1. Media stock recipes for culturing P. parvum experiments. Stocks were added
at a concentration of 1 mL per 1L of artificial seawater. All stocks were autoclaved and
cooled prior to use. Vitamin stock was filtered sterilized using a 45 pm pore filter.
Recipes were modified from standardized culture methods (Guillard, 1975).

Stock Solution é\; lrllgifll(l); Reagent Amount V(I)\{ilrlr?epl(lrrrfL)
Nutrients /2 NaNOs 7.50 g 100
NaH2PO4 H20 0.50 g 100
/8 NaNOs3 1.88 g 100
NaH2PO4 H20 0.13 g 100
Trace Metals /2, 1/8 Na2 EDTA 2.18¢g 500
FeCls 6H20 1.58 g
CuSO4 7TH20 3.4 mg
ZnS0O4 TH20 11.5mg
CoCl2 4H20 7.1 mg
MnCl. 2H20 76.0 mg

Na:MoO4 2H20 3.70 mg

Vitamins /2, 1/8 Thiamin HCI 100 mg 500
Biotin 0.53 mg
Bi2 0.28 mg
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Table A2. Analytically measured dissolved nitrogen (nitrate/nitrite) and phosphorus
(phosphate) concentrations of nutrient stock solutions for Chapter 1 experiment. Samples
were collected at time of inculcation.

. Dissolved Nitrogen Dissolved Phosphorus
Culture Condition
(ng/L) (ug/L)
2.4 ppt £/2 medium 1450 119
2.4 ppt /8 medium 332 27.7
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