
ABSTRACT

Two-Dimensional Hořava-Lifshitz Theory of Gravity

Baofei Li, Ph.D.

Advisor: Anzhong Wang, Ph.D.

In this dissertation, two-dimensional Hařava theory of gravity has been stud-

ied on the classical and quantum mechanical levels. The classical solutions of the

projectable and nonprojectable Hořava gravity have been found and their spacetime

structures are investigated by Penrose diagrams. When quantizing the theory in the

canonical approach, the integral Hamiltonian constraint in the projectable case will

generate the so-called Wheeler-DeWitt equation which can be exactly solved if the

invariant length and its conjugate momentum are used as the new variables. On the

other hand, for the nonprojectable case, the lapse function is no longer a Lagrangian

multiplier but one of the canonical variables. This results in a local and second-class

Hamiltonian constraint which can be solved for the lapse function. The quantization

of nonprojectable case is carried out by directly dropping the unphysical degrees of

freedom, that is, replacing Poisson brackets with Dirac brackets. In the last part of

the dissertation, the interactions between two-dimensional Hořava gravity and a non-

relativistic scalar field are considered. In the projectable case, the minimal coupling is

adopted and canonical quantization is implemented in the same way as we have done

for the pure gravity case. In the nonprojectable case, we turn to the non-minimal

couplings and find both Killing and universal horizons from the classical solutions.



Two-Dimensional Hořava-Lifshitz Theory of Gravity

by

Baofei Li, B.S., M.S.

A Dissertation

Approved by the Department of Physics

Dwight P. Russell, Ph.D., Interim Chairperson

Submitted to the Graduate Faculty of
Baylor University in Partial Fulfillment of the

Requirements for the Degree
of

Doctor of Philosophy

Approved by the Dissertation Committee

Anzhong Wang, Ph.D., Chairperson

Gregory A. Benesh, Ph.D.

Gerald B. Cleaver, Ph.D.

Klaus Kirsten , Ph.D.

Walter Wilcox, Ph.D.

Accepted by the Graduate School
December 2017

J. Larry Lyon, Ph.D., Dean

Page bearing signatures is kept on file in the Graduate School.



Copyright c© 2017 by Baofei Li

All rights reserved



TABLE OF CONTENTS

LIST OF FIGURES vii

ACKNOWLEDGMENTS viii

DEDICATION ix
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1.2.4 Development of Hořava-Lifshitz Gravity Since 2009 . . . . . . 11

1.2.5 Organization of Dissertation . . . . . . . . . . . . . . . . . . . 14

2 Projectable Two-Dimensional Hořava-Lifshitz Theory of Gravity 16
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CHAPTER ONE

Introduction to Hořava-Lifshitz Theory of Gravity

1.1 Problems in General Relativity

1.1.1 Somes Aspects of General Relativity

Since Albert Einstein wrote his paper on field equations of general relativity (GR)

in 1915 [1], great achievements have been attained with the development of the theory

in the last one hundred years. The first exact solution with spherical symmetry was

discovered by Schwarzschild [2] in 1915 shortly after Einstein’s paper was written. It

describes the spacetime around an uncharged and non-rotating spherical body which

collapses into a black hole when its radius is less than Schwarzschild radius. Later,

the charged black hole solution was independently found between 1916 and 1918

by Reissner [3] and Nordstrom [4]. It was as late as in 1963 that the uncharged,

rotating black hole solution was discovered by R. P. Kerr [5]. Soon, the no-hair

theorem about black holes was proposed by Werner Israel in 1967 [6]. This theorem

postulates that the black hole solutions can be completely characterized by only three

classical parameters: mass, electric charge and angular momentum. This finally led

to the discovery of four laws of black hole mechanics. In 1973, Bekenstein-Hawking

black hole entropy was presented in its current form. The next year, S. Hawking

published his work on the Hawking radiation. The black hole thermodynamics was

thus constructed. On the other hand, together with cosmological principle and Weyl’s

postulate, general relativity has become one of the three bases in the big bang model

of cosmology where the cosmic background radiation (CMB) [7] was discovered and

the abundances of the light elements in the universe (BBN) were explained. Later in

order to resolve the horizon and magnetic monopole problems in the big bang model,

inflation was also proposed.
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In the development of general relativity, one of the important modifications to the

classical Einstein-Hilbert action is the inclusion of the surface term. The necessity of

adding the boundary term was first realized by J. W. York [8], later it was redefined

by Gary Gibbons and S. Hawking1 [9] in their path-integral formulation of general

relativity. They showed that in order to have a well-defined variational principle for

a manifoldM with a boundary ∂M, the complete action of general relativity should

be

S =
1

16πG

{∫
M
d4x
√
−g4 (R− 2Λ) + 2

∮
∂M

d3x
√
|h|K

}
, (1.1)

where G is Newton constant, g4 the determinant of four-dimensional metric, R the

four-dimensional Ricci scalar, Λ the cosmological constant, h the determinant of the

induced metric on the boundary and K the trace of the extrinsic curvature of the

boundary. The surface term also plays an important role in the Hamiltonian formu-

lation of the theory. One can derive the gravitational Hamiltonian from the covariant

action, however, if the surface term in the action is ignored. The resultant Hamil-

tonian will only consist of constraints even for the asymptotically flat spacetime,

this implies the energy for any gravitational system is zero which obviously does not

make any sense. The solution to this question, as shown in [15], is that the Hamilto-

nian also requires a boundary term for the noncompact spacetimes. This boundary

term does not vanish on the constraint surface so it gives the definition of so-called

Arnowitt-Deser-Misner (ADM) energy of the system. Besides, the boundary term

also makes the equations of motion (EOM) in the phase space well defined. It can

been shown [10] that the surface terms in the Hamiltonian can be directly derived

from the boundary terms in the action Eq. (1.1).2

1 Therefore, this surface term is usually called Gibbons-Hawking-York boundary term. For a
more recent discussion of variational principle and surface terms, see [10,14].

2 Unlike other field theories, the physical quantities in general relativity, like energy, momentum,
and angular momentum, are usually given by integrals at the boundaries of the spacetime, this is
due to the general covariance which makes the contribution from the bulk vanish, as well as the
special asymptotic behavior of the metric at the boundaries: different from gravity, fields in other
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1.1.2 Non-renormalizability of General Relativity

Despite all the successes achieved with general relativity, some intrinsic problems

in the theory imply that the theory has its own limitations. Firstly, the presence

of spacetime singularities in general relativity signifies its incompleteness. These

singularities usually show up in two circumstances, one is in the black hole solutions

while the other in the big bang cosmology. The singularities in the black hole solutions

can be better understood in terms of geodesic incompleteness by Penrose-Hawking

singularity theorem [11]. It states the geodesics can not be extended beyond a certain

affine parameter and any physics processes simply terminate at the singularities where

either the matter density or the curvature becomes infinite. The initial singularity

in the big bang cosmology even predicts at the beginning of the time the universe

is in a state of infinite density and energy. So both of these singularities are related

with the infinite physical quantities which demand further treatment from a higher

perspective. Just like the problem of the electron’s infinite self-energy in the classical

electromagnetic theory is finally resolved by its quantized version QED, one possible

way to overcome the singularity problem is to solve it in the context of quantum

gravity. However, the search of quantum gravity poses one of the biggest challenges

in physics since it turns out general relativity defies a consistent quantum mechanical

description: it is non-renormalizable in the covariant quantization approach.3

In simple words, the non-renormalizability of general relativity is deeply rooted

in the fact that the only coupling constant of the theory, Newton constant G, has

a negative dimension [m]−2.4 Thus, according to the simple argument in [13], the

perturbation expansion of a physical quantity F in powers of the Newton constant

branches of physics are always assumed to approach zero at a rate a little bit faster than 1/r3/2 at
infinity.

3 See [12] for a brief history of quantum gravity before 2000.
4 Of course, we use natural units ~ = 1 and c = 1, so [m] indicates the dimension of mass/energy.
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must be in the form

F =
∞∑
n=0

an
(
GE2

)n
, (1.2)

which implies that the expansion breaks up when the energy of the system E be-

comes larger than G−1/2. So the theory is inevitably UV divergent and perturbation

approach fails. Another viewpoint to look at the same question is due to S. Weinberg.

It is shown in [16] that the loop integral in nth order Feynman diagram for perturba-

tion calculation behaves like
∫
dppA−nD at large momentum, where A depends on the

specific process and D denotes the dimension of coupling constant, thus if the cou-

pling constant is of negative dimension, then the integral will become divergent for

any process at any sufficiently large orders, so correspondingly in order to renormalize

this type of theory, in principle, an infinite number of counter-terms is required to

absorb these divergences at higher orders.5 As a result, GR is perturbatively non-

renormalizable: the divergences at each order of perturbation expansion can not be

absorbed into a redefinition of fields and coupling constants.

1.2 Hořava-Lifshitz Theory of Gravity

1.2.1 High Derivative Theory

Since general relativity is non-renormalizable in the covariant quantization pro-

gramme, in the 1970s, people began to study high derivative theory in the hope of

finding a version of modified GR in the UV regime which would give a renormalizable

perturbation expansion. In 1977, Stelle [18] showed that once terms quadratic in the

curvature are added to the Einstein-Hilbert action, the new action6

S =

∫
d4x
√
−g
(
αRµνR

µν + βR2 + γR
)
, (1.3)

5 See [17] for an example of two loop divergences in Einstein’s theory, there the divergent term
is composed of high-order terms in Riemann tensor.

6 It is understood that a common factor 1
16πG has already been absorbed into the coefficient of

each term in the action.
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becomes renormalizable with an appropriate choice of the coupling constants. How-

ever, due to the appearance of time derivatives with orders higher than one, the

theory is plagued with the problem of not being stable since there exist negative

energy modes which kinematically make the energy of the system unbounded from

below. Actually, as early as in 1850, Ostrogradsky [19] found that any system with

a nondegenerate higher time derivative Lagrangian is not stable. It can be shown

clearly that the Hamiltonians of these systems will include terms linear in the canon-

ical momentum so there exists no lowest energy state (ground sate) and the system

itself is unstable. Therefore, any high derivative theory with Lorentz invariance (LI)

appears a poor extension of general relativity.

On the other side, the possibility of breaking LI at high energy scales was studied

by several groups of researchers [20–24]. From the viewpoint of field theory, one can

treat Lorentz symmetry breaking as a regulator to regularize the divergences in the

loop integrals of perturbation expansion. The renormalizability of these LI breaking

theories is analyzed in the papers [25, 26]. In order to understand some preliminary

concepts of these theories, one can simply start with an action of scalar field in d+1

dimensions

Sfree =

∫
dtddx

{
φ̇2 − φ(∆)zφ

}
, (1.4)

here dot means time derivative of the scalar field, ∆ = ~∇2 is the spatial Laplacian and

z is the dynamical critical exponent. Based on the fact that the kinetic and potential

terms in the action should have the same dimension, one can conclude

[t] = [x]z. (1.5)

Besides, since the action is a dimensionless quantity in the units ~ = 1, the dimension

of the scalar field is

[φ] = [x](z−d)/2 = [m](d−z)/(2z), (1.6)
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where [m] denotes the dimension of energy. Thus if one introduces polynomial inter-

actions

Sinteraction =

∫
dtddx

{
N∑
n=1

gnφ
n

}
, (1.7)

the dimensions of coupling constants gn are

[gn] = [m][d+z−n(d−z)/2]/z, (1.8)

Now for the power-counting renormalizable theories, the dimensions of coupling con-

stants can not be negative (as discussed in the last section) which will identically hold

if the dynamical critical exponent z is no less than spatial dimensions d.7

The lessons we can learn from above analysis are twofold: firstly, to find a high

derivative unitary theory, there should only be first-order time derivatives in the

action. Besides, to make the theory power-counting renormalizable, the order of the

spatial derivative operators in the action can not be lower than twice of the spatial

dimensions. Actually, these are exactly two important features of the Hořava-Lifshitz

gravity which will be introduced below.

1.2.2 3+1 Decomposition of General Relativity

One of the basic features of general relativity is that the theory is invariant under

the diffeomorphism

t→ t′(t, xk), xi → x′
i (
t, xk

)
. (1.9)

This invariance, usually termed as general covariance, is also the origin of the problem

of time in general relativity. In any theory with time reparametrization symmetry,

we are forced to distinguish two different types of time: one is the coordinate time as

that appears in the coordinate transformation, the other is the physical time which

is much more subtle and elusive to identify. In the canonical formulation of general

relativity, for the Lorentzian manifold, one has to choose a timelike direction and slice

7 One can find the same conclusion from the analysis of superficial degrees of divergence of the
loop integrals [25].
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the entire manifold into a sequence of spacelike hypersurfaces. The ADM (Arnowitt-

Deser-Misner) decomposition [27] is a particular foliation of spacetime where the

spacelike hypersurfaces are given by t = Constant, thus

M = R× Σt, (1.10)

here Σt represents the spacelike hypersurfaces t = Constant and t ∈ R. In this

decomposition, the future-directed normal vector nµ of the hypersurfaces8 are given

by the lapse function N and the shift vectors N i

nµ =

(
1

N
,−N

i

N

)
, (1.11)

and the metric takes the well-known form

ds2 = −N2dt2 + gij
(
N idt+ dxi

) (
N jdt+ dxj

)
. (1.12)

Now by applying the Gauss-Godazzi relations, the covariant action Eq. (1.1) also

acquires its decomposition form [28]

S =
1

16πG

∫
d4x
√
gN
(
KijKij −K2 + (3)R

)
, (1.13)

here g represents the determinant of 3-metric gij,
(3)R is the intrinsic curvature of

the hypersurface, K the trace of extrinsic curvature Kij of the hypersurface which is

defined as

Kij =
1

2N
(−ġij +∇iNj +∇jNi) . (1.14)

Here ∇i represents the covariant derivative with respect to the 3-metric gij and

ġij ≡ ∂gij
∂t

. The action (1.13) serves as the starting point to shift to the Hamilto-

nian formulation of general relativity. Furthermore, with the help of the DeWitt

metric

Gijkl =
1

2

(
gikgjl + gilgjk

)
− gijgkl, (1.15)

8 From now on, the Greek letters are reserved for the indices of 4-dimensional tensors while the
Latin letters for the indices of 3-dimensional tensors on the hypersurface.
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the kinetic terms in the action can be put into a symmetric form

KijKij −K2 = KijG
ijklKkl. (1.16)

1.2.3 Foliation-Preserving Diffeomorphism

Hořava-Lifshitz gravity was first proposed in 2009 [29] with the purpose of modi-

fying the UV behavior of general relativity while keeping the Ostrogradsky ghost out

of the theory. This purpose was realized by assuming the anisotropic scaling between

time and space

t→ b−zt, xi → b−1xi, (1.17)

where z is the dynamical critical exponent. As discussed in Sec. 1.2.1, in order to

make the theory power-counting renormalizable, one sufficient condition is z ≥ d.

Thus Lorentz symmetry is broken at high energy and later re-emerge when energy

becomes low. In this theory, the coordinate time plays a more special role than in

general relativity as Hořava assumed that the general covariance is broken to the

so-called foliation-preserving diffeomorphism

t→ t′(t), xi → x′
i (
t, xk

)
, (1.18)

which is usually denoted by Diff(M, F). This modified symmetry indicates there ex-

ists a fixed foliation of spacetime, one can rescale the coordinate time in any arbitrary

way but can not rotate the time direction. Therefore, the most natural coordinate

system for this spacetime is that of the ADM variables (N , N i, gij) introduced in the

last subsection. The scaling dimensions of these variables are assumed to be [29]

[N ] = [gij] = 0, [N i] = z − 1. (1.19)

Besides, under the infinitesimal Diff(M, F)

t→ ξ0(t), xi → ξi
(
t, xk

)
, (1.20)
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the change of the 4d metric gµν is just its Lie derivative along the direction (ξ0, ξ
i).

In terms of ADM variables, their variances can be shown as [30]

δN = ξk∇kN + Ṅξ0 +Nξ̇0,

δNi = Nk∇iξ
k + ξk∇kNi + gikξ̇

k + Ṅiξ0 +Niξ̇0,

δgij = ∇iξj +∇jξi + ξ0ġij. (1.21)

With the transformation properties of the metric components, one can find that the

basic building blocks of the action that is invariant under the Diff(M, F) are the

3-dimensional Ricci tensor Rij, the extrinsic curvature Kij, the covariant derivative

with respect to 3-metric ∇i and the 3-vector ai ≡ d lnN
dxi

, so the general form of the

action is9

S =

∫
d4x
√
gN (LK − LV ) , (1.22)

where the kinetic term LK is a functional of Kij. Since there appears to be only two

independent scalars quadratic in the velocity ġij, which are KijK
ij and K2, we must

have

LK = KijK
ij − λK2. (1.23)

The parameter λ approaches one in the relativistic limit. On the other hand, the

potential term LV is a functional of Rij, ∇i and ai, so any scalar composed of these

three tensors are allowed in the action with only one restriction coming from the

renormalizability condition, that is, for the d+1 dimensional Hořava-Lifshitz gravity,

the potential LV should include all the independent scalars with spatial derivatives

up to the 2zth order. As one can expect the number of independent terms in LV is

huge in the 4-dimensional theory10 . Therefore, there are too many coupling constants

in the theory which greatly restrict the predictive power of the theory. In order to

reduce the number of free parameters, in his seminal paper [29], Hořava introduced

two more conditions: the projectable and detailed balance.

9 Here we set 16πG to unity.
10 One can refer to [13] for a list of independent terms up to the order [k]6.
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Firstly, the projectable condition is guaranteed by the Diff(M, F) as it can be

seen directly from the infinitesimal transformation (1.21) that if the lapse function

only depends on time, it will remain so after the coordinate transformation (1.18).

So once we assume the lapse funtion N stays constant on each spacelike hypersurface

Σt, all the terms related with ai in the potential will drop out. On the other hand,

the condition in which N also changes with the locations is called the nonprojectable

condition. There are various versions of Hořava-Lifshitz gravity based on whether the

lapse funtion depends on the space coordinates. I will talk a little about each version

in the next section.

In order to further reduce the number of the independent coupling constants,

Hořava imposed detailed balance condition which requires the special form of the

potential

LV = EijGijklEkl, (1.24)

√
gEij =

δW [gkl]

δgij
, (1.25)

where W [gkl] is the superpotential11 and Gijkl the generalized DeWitt metric

Gijkl =
1

2

(
gikgjl + gilgjk

)
− λgijgkl. (1.26)

Thus, the number of free parameters in the original version of Hořava-Lifshitz gravity

are reduced to five: the Newton constant, cosmological constant, λ in the generalized

DeWitt metric and the other two constants from the superpotential. It looks like a

promising candidate for quantum gravity with UV completion and a decent amount

of parameters. However, as it turns out, this version is also plagued by inconsistency

due to the additional degree of freedom: the scalar mode.

1.2.3.1. The Scalar Mode There are at least two different viewpoints to under-

stand why, other than the spin-two graviton, there is such a scalar mode in the original

11 See [29] for more details on the expression of the superpotential.

10



Hořava-Lifshitz theory of gravity. Firstly, as is well known, the physical degrees of

freedom for any system is the same as the dimension of the reduced phase space

which in turn depends on the constraints in the theory12 . Now since the projectable

condition in which the lapse function is only a function of time is applied, there is no

local Hamiltonian constraint in the canonical formalism of the theory. As a result,

the number of local constraints are reduced by two which results in the addition of

two degrees of freedom (i.e. the scalar mode) to the reduced phase space. Besides,

the most straightforward way to verify that this scalar mode is also a propagating

mode of the theory is to consider the linear scalar perturbations of the metric on the

Minkowski background as we will discuss in the next section.

1.2.4 Development of Hořava-Lifshitz Gravity Since 2009

In addition to the ghost and instability problems caused by the extra scalar mode

in the original Hořava-Lifshitz gravity [32–34], the detailed balance condition will

entail a non-zero cosmological constant of the wrong sign to be compatible with

observation and consequently the Minkowski spacetime is not compatible with the

detailed balance condition either. Therefore, in the so-called minimal theory, only

the parity invariance and projectable condition are adopted [35]. A study of scalar

perturbation on the Minkowski background shows that in order to evade the ghost

problem in the theory, the parameter λ in the kinetic term (1.23) must take the values

in the intervals λ > 1 or λ < 1/3 [36]. However, the instability problem still persists as

it turns out the dispersion relation will carry a negative sign in front of the k2 term in

the infrared limit (IR). Now path diverges when people want to resolve the instability

problem of the minimal theory. There are mainly two directions as one can follow to

get out of this problem. The first one due to Hořava himself is to eliminate the scalar

mode from the theory. Since the appearance of the scalar mode is a direct result

from the Diff(M, F) which can be viewed as a reduced symmetry group of general

12 See Appendix A for details.
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covariance, Hořava introduced into the theory an extra U(1) symmetry to eliminate

this degree of freedom [37]. Therefore, this version is called the projectable Hořava-

Lifshitz gravity with U(1) symmetry. In order to realize this extra U(1) symmetry,

two auxiliary fields, the gauge field A and Newtonian pre-potential φ have to be

introduced. Under the U(1) transformation, these fields, together with the ADM

variables, are assumed to change like

δαA = α̇−N i∇iα, δαφ = −α,

δαNi = N∇iα, δαgij = δαN = 0, (1.27)

where α is an arbitrary function of spacetime. While under the foliation-preserving

diffeomorphism (1.20), they transform as

δA = ξi∇iA+ ξ̇0A+ ξȦ,

δφ = ξ0φ̇+ ξi∇iφ. (1.28)

In Hořava’s paper [37], it is asserted that the parameter λ is forced to be one by

U(1) symmetry since this symmetry is passed over to the complete theory from its

linearized version in which the global U(1) transformation leaves the action invariant

only at λ = 1. However, the extension to the version with an arbitrary value of λ

was soon proposed in [38] where the author used minimal substitution approach to

construct the Lagrangian. Since the gauged shift vectors and extrinsic curvature

Ñi = Ni +N∇iφ,

K̃ij = Kij −∇i∇jφ, (1.29)

still act like a scalar under the U(1) transformation, one can simply replace Kij in

the minimal theory by its tilded counterpart. As for the gauge field A, one can also

introduce a new field

a = −φ̇+N i∇iφ+
N

2
∇iφ∇iφ. (1.30)
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Then, it can been shown that this field acts in the way as the gauge field A under

the U(1) transformation, thus the combination A− a is left invariant under the U(1)

transformation. Therefore, the total Lagrangian takes the form

S̃ = S[N,Ni +N∇iφ, gij] +

∫
dtd3xN

√
g (R− 2Ω) (A− a) , (1.31)

where S represents the action from the minimal theory while the second term incor-

porates the couplings between the metric and the gauge field. The extra scalar mode

is still eliminated by the Gauss constraint R = 2Ω which is generated by the variation

of the total action S̃ with respect to the gauge field A [38,39].

Another approach to alleviate the problems caused by the scalar mode is to live

with it but introduce the nonprojectable condition, i.e. the lapse function also de-

pends on the space coordinates. Therefore, terms related to the vector ai should be

added into the action in this case. In the IR, the only relevant term is aia
i, so the

action will become

SIR =

∫
dtd3xN

√
g
(
LK + (3)R + βaia

i
)
, (1.32)

where β is a coupling constant to be fixed by stability conditions. The linear scalar

perturbation of the metric on the Minkowski background will generate the dispersion

relation [40,41]

ω2 =
λ− 1

3λ− 1

(
2

β
− 1

)
k2. (1.33)

Thus, the scalar mode can be stabilized if β ∈ (0, 2). The requirement λ > 1 or

λ < 1/3 is still necessary to circumvent the ghost problem. As it turns out the lapse

function in the nonprojectable Hořava-Lifshitz gravity becomes one of the canonical

variables since the terms related to the vector ai will make the local Hamiltonian

constraint depend on the lapse function.

Therefore, the Hamiltonian constraint and the canonical momentum of the lapse

function are both the second-class constraints of the theory which leads to the con-

clusion that nonprojectable condition alone will not eliminate the scalar mode in the
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minimal theory, that is why the fourth version, nonprojectable Hořava-Lifshitz grav-

ity with U(1) symmetry was proposed in a series of papers [42–44]. This is actually

the final version of the Hořava-Lifshitz gravity with a local Hamiltonian constraint

and 4-dimensional symmetry at each point of the spacetime which makes it as one of

the best candidates for quantization of gravity.

Apart from the four different versions of the Hořava-Lifshitz gravity mentioned

above, λ = 1/3 is actually a special case when the generalized DeWitt metric (1.26)

becomes degenerate. This degeneracy results in the emergence of two additional

second-class constraints which remove the extra scalar mode in the theory. Besides,

when λ = 1/3, the kinetic term LK becomes conformal invariant, so this version is

called Hořava-Lifshitz gravity at the kinetic-conformal point. One can refer to [45–47]

for the discussion of this special version.

1.2.5 Organization of Dissertation

In this dissertation, I will mainly focus on the two dimensional Hořava-Lifshitz

gravity. Unlike Einstein’s theory, the two dimensional Hořava-Lifshitz gravity is non-

trivial due to the special Diff(M, F). So Chapter Two will discuss the projectable 2d

Hořava-Lifshitz gravity, the classical solutions will be derived and the corresponding

spacetime structure will be studied by using Penrose diagram. Then the metric will be

quantized in the canonical approach. This chapter is a published paper co-authored

by the author of this dissertation. Dr. A. Wang and Dr. Y. Wu are Baylor physics

professors. Dr. Z.C. Wu is a professor from Zhejiang University of Technology. Dr.

A. Wang supervised the whole project. Dr. Y. Wu and Dr. Z.C. Wu gave some

advise. The author of this dissertation completed most of the calculations in this

paper.

In Chapter Three, the nonprojectable 2d Hořava-Lifshitz gravity will be consid-

ered. In this case, the Hamiltonian constraint will be solved and the quantization is

also implemented in the canonical approach. This chapter is a published paper co-
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authored by the author of this dissertation. Dr. A. Wang is Baylor physics professor

who supervised the whole project. V. H. Satheeshkumar and Baofei Li are Baylor

physics Ph.D. students who are research performers. They are approximately equal

contributors to this paper.

Chapter Four will be devoted to the discussion of the coupled system between

Hořava-Lifshitz gravity and a non-relativistic scalar field. The attention will be fo-

cused on the search of black hole solutions and finding the event and universal horizons

and Hawking radiation temperature. This chapter is a published paper co-authored

by the author of this dissertation. Dr. A. Wang is Baylor physics professor who

supervised the whole project. Madhurima Bhattacharjee and Baofei Li are Baylor

physics Ph.D. students who are research performers. They are approximately equal

contributors to this paper.

In the last chapter, I will summarize my work and give a general overview on the

status quo of the quantization of the Hořava-Lifshitz gravity.
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CHAPTER TWO

Projectable Two-Dimensional Hořava-Lifshitz Theory of Gravity

This chapter published as [48]: Bao-Fei Li, Anzhong Wang, Yumei Wu, Z.C. Wu,
“Quantization of (1+1)-Dimensional Hořava-Lifshitz Theory of Gravity,” Phys. Rev.

D 90, 124076 (2014).

2.1 Introduction

In this chapter, the spacetime structure and quantization of two-dimensional pro-

jectable Hořava-Lifshitz gravity will be addressed. I shall first provide a brief review

on the 2d HL gravity from which it can be seen that, unlike the 2d GR, the 2d HL

gravity is non-trivial even without coupling to matter. This point can be further

confirmed by the fact that there exist non-trivial vacuum solutions of the theory with

the projectability condition. Studying the local and global properties of these solu-

tions will give us a general view of the structure, especially the singularities, of the

spacetime. Then the quantization of the 2d HL gravity is carried out explicitly with

the canonical quantization method. It turns out that the problem can be reduced to

the quantization of a simple harmonic oscillator [49], for which the expectation value

of the gauge-invariant length operator in the ground state provides a fundamental

length scale.

2.2 Horava-Lifshitz Theory of Gravity in (1+1)-Dimensions

Einstein’s theory of gravity in (1+1)-dimensional spacetimes is trivial, as the

Riemann and Ricci tensors Rµνβγ and Rµν are uniquely determined by the Ricci

scalar R via the relations [50]

Rµνβγ =
1

2
(gµβgνγ − gµγgνβ)R,

Rµν =
1

2
gµνR, (2.1)
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where the Greek letters run from 0 to 1. Then, the Einstein tensor Eµν [= Rµν− 1
2
gµνR]

always vanishes, and the Einstein-Hilbert action 1

SEH = ζ2

∫
d2x
√

(2)g
(
R− 2Λ + ζ−2LM

)
, (2.2)

leads to a set of non-dynamical field equations, in which the metric gµν is directly

related to the energy-momentum tensor Tµν via the relation

Λgµν = 8πGTµν , (2.3)

where ζ2 = 1/(16πG) 2 . Therefore, in order to have a non-trivial theory of gravity

in 2-dimensions (2d), extra degrees are often introduced, such as a dilaton [51] or a

Liouville field [52].

However, this is not the case for the HL gravity [29–31], as the latter has a dif-

ferent symmetry, the foliation-preserving diffeomorphisms (1.18). Then, the general

gravitational action takes the form (1.22), that is

SHL = ζ2

∫
dtdxN

√
g (LK − LV ), (2.4)

where N denotes the lapse function in the ADM decompositions [27], and g ≡ det(gij),

here gij is the spatial metric defined on the leaves t = Constant. LK is the kinetic

part of the action in Eq. (1.23)

LK = KijK
ij − λK2, (2.5)

where λ is a dimensionless constant, and Kij denotes the extrinsic curvature tensor

of the leaves t = Constant as given by Eq. (1.14)

Kij =
1

2N
(−ġij +∇iNj +∇jNi) , (2.6)

1 In 2d spacetimes, the integral
∫
d2x
√

(2)g R always gives a boundary term. So, normally one
does not consider it. This can also be seen from the field equations (2.3).

2 It should be noted that, unlike in the 4-dimensional case, now ζ is dimensionless (so is G).
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and K ≡ gijKij. Here as mentioned previously ġij ≡ ∂gij/∂t, ∇i denotes the covariant

derivative of the metric gij, and N i the shift vector. In the (1+1)-dimensional case,

since there is only one spatial dimension, we have i, j = 1, and

K = g11K11 = − 1

N

(
γ̇

γ
− N ′1
γ2

+
N1γ

′

γ3

)
, (2.7)

where γ ≡ √g11, γ
′ ≡ ∂γ/∂x, etc.

On the other hand, LV denotes the potential part of the action, and is made of

R, ∇i and ai, that is

LV = LV (R, ∇i, ai) , (2.8)

where ai ≡ N,i/N and R denotes the Ricci scalar of the leaves t = Constant, which

identically vanishes in one-dimension, i.e., R = 0. As pointed out in Sec. 1.2.1,

power-counting renormalizibility condition requires that LV should contain spatial

operators with the highest dimensions that are not less than 2z, where z ≥ d [25,29],

and d denotes the number of the spatial dimensions. Taking the minimal requirement,

that is, z = d, we find that in the current case (d = 1) we have

LV = 2Λ− βaiai, (2.9)

where Λ denotes the cosmological constant, and β is another dimensionless coupling

constant. Collecting all the above together, we find that the gravitational action of

the HL gravity in (1 + 1)-dimensional spacetimes can be cast in the form

SHL = ζ2

∫
dtdxN

√
g
[
(1− λ)K2 − 2Λ + βaia

i
]
. (2.10)

2.3 Classical Solutions of the 2d HL Gravity with the Projectable Condition

Assuming the projectability condition, we have [29]

N = N(t), (2.11)

from which we immediately find ai = 0. In the rest of this section, we shall assume

this condition. Then, the variations of the action SHL with respect to N and N1 yield
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the Hamiltonian and momentum constraints, and are given, respectively, by∫
dxγ(K2 + 4Λ̃) = 0, (2.12)

K ′ = 0, (2.13)

where Λ̃ ≡ Λ/[2(1− λ)]. The variation of the action SHL with respect to γ, on the

other hand, yields the dynamical equation

K̇ +
1

2
N(K2 − 4Λ̃) +

Kγ̇

γ
− 2KN ′1

γ2

+

(
N1K

γ2

)′
+

3KN1γ
′

γ3
= 0. (2.14)

Using the gauge freedom of Eq. (1.18), without loss of the generality, we can

always set

N = 1, N1 = 0, (2.15)

so that the 2d metric takes the form

ds2 = −dt2 + γ2(t, x)dx2. (2.16)

It should be noted that Eq. (2.15) uniquely fixes the gauge only up to

t′ = t+ t0, x′ = ζ(x), (2.17)

where t0 is a constant, and ζ(x) is an arbitrary function of x only.

With the above gauge choice, Eq. (2.14) reduces to

K2 − 2K̇ + 4Λ̃ = 0. (2.18)

On the other hand, from the momentum constraint (2.13) we can see that K is

independent of x, so the Hamiltonian constraint Eq. (2.12) reduces to,

(K2 + 4Λ̃)

∫
dxγ(t, x) = 0. (2.19)

Therefore, there exist two possibilities

i) K2 + 4Λ̃ = 0, ii)

∫
dxγ(t, x) = 0. (2.20)

In the following, we consider them separately.
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2.3.1 K2 + 4Λ̃ = 0

In this case, the extrinsic curvature K is just a constant given by

K = ±2
√
−Λ̃, (2.21)

which makes sense only when Λ̃ < 0. From Eq. (2.25), we can find

γ = e±2
√
−Λ̃t+F (x), (2.22)

here F (x) is an arbitrary function of x only. Using the gauge residual (2.17), we can

always set F (x) = 0, so the metric reduces to

ds2 = −dt2 + e4
√
−Λ̃tdx2. (2.23)

This is nothing but the de Sitter spacetime.

2.3.2
∫
dxγ(t, x) = 0

In this case, we can see that γ(t, x) has to be an odd function of x, i.e., γ(t, x) =

−γ(t,−x). Then, from Eq. (2.18) we find that

dK

K2 + 4Λ̃
=

1

2
dt. (2.24)

Since K is independent of x, we find

γ̇

γ
= −K(t). (2.25)

To solve the above equations under the constraint
∫
dxγ(t, x) = 0, it is found conve-

nient to consider the cases Λ̃ > 0, Λ̃ < 0, and Λ̃ = 0, separately.

2.3.2.1. Λ̃ > 0 Straightforward integration of Eq. (2.24) gives us

K = β tan

[
β

2
(t− t0)

]
, (2.26)

where β ≡
√

4|Λ̃|. Then, from Eq. (2.25) we find

γ = cos2

(
β(t− t0)

2

)
γ̂(x). (2.27)
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To satisfy the Hamiltonian constraint, γ̂(x) must be an odd function of x, so that∫ L∞

−L∞
γ̂(x)dx = 0, (2.28)

where x = ±L∞ denote the boundaries of the spacetime in the spatial direction,

which can be taken to infinity. With this in mind, we can introduce a new coordinate

x′ by dx′ = γ̂(x)dx, so the metric takes the form

ds2 = −dt2 + cos4

(
βt

2

)
dx′

2
. (2.29)

Note that in writing the above expression, we had set t0 = 0 by using another gauge

freedom given in Eq. (2.17). Setting

T =
2

β
tan

(
βt

2

)
, (2.30)

the above metric can be cast in the conformally-flat form

ds2 =

(
1 +

β2

4
T 2

)−2 (
−dT 2 + dx′

2
)
, (2.31)

for which we have

K =
β2

2
T. (2.32)

That is, the space-time is singular at T = ±∞. This is a real space-time singularity in

the HL gravity [53], since it is a scalar one and cannot be removed by any coordinate

transformations allowed by the symmetry of the theory. The corresponding Penrose

diagram is given by Fig. 2.1.

2.3.2.2. Λ̃ < 0 In this case, Eq. (2.24) has the solution

K =


−β tanh

[
β
2
(t− t0)

]
, |K| < β

−β coth
[
β
2
(t− t0)

]
, |K| > β

(2.33)

In the following, let us consider the two cases separately, as they will have different

properties.
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Figure 2.1: The Penrose diagram for the solution (2.31), in which the space-time is singular
at both past and further null infinities (T = ±∞), denoted by the lines AC, AD, BC and
BD.

Case a) |K| < β: Then, from Eq. (2.25) we find that

γ = cosh2

[
β

2
(t− t0)

]
γ̂(x). (2.34)

Again, using the gauge residual (2.17), without loss of the generality, we can always

set t0 = 0 and dx′ = γ̂(x)dx, so the metric finally takes the form

ds2 = −dt2 + cosh4

(
βt

2

)
dx2. (2.35)

Note that we dropped the prime from x in writing down the above expression. Then,

we can see that the metric is singular at t = ±∞. However, Eq. (2.33) shows that K

is finite at these two limits. In addition, the corresponding 2d Ricci scalar R is given

by

R = β2 cosh(βt)

cosh2
(
βt
2

) , (2.36)

which is also finite as t→ ±∞. To further study the properties of these singularities,

let us consider the tidal forces experienced by a free-falling observer, whose trajectory
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is given by the timelike geodesics, satisfying the Euler-Lagrange equation

∂Lp
∂xµ
− d

dτ

(
∂Lp
∂ẋµ

)
= 0, (2.37)

where τ denotes the affine parameter along the geodesics, and

Lp ≡
(
ds

dτ

)2

= −ṫ2 + cosh4

(
βt

2

)
ẋ2, (2.38)

but now with ṫ ≡ dt/dτ , etc. For timelike geodesics we have Lp = −1. Since the

metric (2.35) does not depend on x explicitly, Eq. (2.37) yields the conservation law

of momentum

2 cosh4

(
βt

2

)
ẋ = p, (2.39)

where p denotes the momentum of the observer. Inserting the above expression into

Eq. (2.38), we find that

ṫ = ±

√
4 cosh4

(
βt
2

)
+ p2

2 cosh2
(
βt
2

) , (2.40)

where “+” (“-”) corresponds to the observer moving along the positive (negative)

direction of the x-axis. Setting eµ(0) = dxµ/dτ , we can construct another space-like

unit vector, eµ(1) as

eµ(1) =

± p

2 cosh2
(
βt
2

) ,
√

4 cosh4
(
βt
2

)
+ p2

2 cosh4
(
βt
2

)
 , (2.41)

which is orthogonal to eµ(0), and parallelly transported along the time-like geodesics

gµνe
µ
(a)e

ν
(b) = ηab, eµ(1);νe

ν
(0) = 0, (2.42)

where ηab = diag.(−1, 1), and a semicolon “;” denotes the covariant derivative with

respect to the 2d metric gµν . Projecting the 2d Ricci tensor onto the above orthogonal

frame, we find that

R(0)(0) = −R(1)(1) = −β
2 cosh(βt)

2 cosh2
(
βt
2

) ,
R(0)(1) = 0, (2.43)
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which are all finite as t → ±∞. Therefore, the singularities at t = ±∞ must be

coordinate ones. In fact, they represent the boundaries of the space-time. To see

this, let us consider the proper time that the observer needs to travel from a given

time t0 to t =∞, which is given by

∆τ =

∫ ∞
t0

2 cosh2
(
βt
2

)√
4 cosh4

(
βt
2

)
+ p2

=∞, (2.44)

for any finite t0. That is, starting at any given finite moment, t0, the observer always

needs to spend infinite proper time to reach the time t =∞. In other words, t =∞

indeed represents the future timelike infinity of the space-time. Similarly, one can see

that t = −∞ represents the past timelike infinity.

To study its global structure, let us first introduce the new timelike coordinate T

via the relation

T =
2

β
tanh

(
βt

2

)
, (2.45)

we find that the metric takes the form

ds2 =

(
1− β2

4
T 2

)−2

(−dT 2 + dx2), (|T | ≤ 2/β) . (2.46)

It is interesting to note that the above metric is singular at T = ±2/β. But, as shown

above, this corresponds to coordinate singularities. In fact, they are the space-time

boundaries, and any observer will need infinite proper time to reach them starting

from any finite time. The corresponding Penrose diagram is given by Fig. 2.2.

Finally, we note that the similarity of the metric (2.35) with the dS2 metric

ds2
dS2

= −dt2 + cosh2(βt)dχ2, (2.47)

where 0 ≤ χ ≤ π with the hypersurfaces χ = 0 and χ = π identified, so the whole

space-time has a R1 × S1 topology. The space-time is complete in these coordinates.

This can be seen clearly by embedding Eq. (2.47) into a 3-dimensional Minkowski
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Figure 2.2: The Penrose diagram for the solution (2.35), in which the singularities at

t = ±∞, denoted by the curves ÂEB and ÂFB, are coordinate ones, and represent the
physical boundaries of the space-time.

space-time ds2
3 = −dv2 + dw2 + dX2 with [11]

v =
1

β
sinh(βt), w =

1

β
cosh(βt) cos

(
χ

β

)
,

X =
1

β
cosh(βt) sin

(
χ

β

)
, (2.48)

which is a hyperboloid

−v2 + w2 +X2 = β−2, (2.49)

in the 3-dimensional Minkowski space-time. The two metrics (2.35) and (2.47) be-

comes asymptotically identical when |t| � β−1, provided that the coordinate χ is

unrolled to −∞ < χ <∞.

Case b) |K| > β: In this case, following what was done in the last case, it can

be shown that

K = −β coth

(
βt

2

)
, γ = sinh2

(
βt

2

)
γ̂(x), (2.50)

and the corresponding line element takes the form

ds2 = −dt2 + sinh4

(
β

2
t

)
dx′

2
. (2.51)
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Similar to the last case, the metric is singular at t = ±∞. However, these are

coordinate ones, as in the last case. In fact, following what we did there, we find that

the following forms a freely-falling frame

eµ(0) =

(
±
√

1 +
p2

4 sinh4
(
βt
2

) , p

2 sinh4
(
βt
2

)) ,
eµ(1) =

± p

2 sinh2
(
βt
2

) ,
√

1 + p2

4 sinh4(βt2 )

sinh2
(
βt
2

)
 , (2.52)

for which we have

R(0)(0) = −R(1)(1) = −1

2
β2 cosh(βt) cosh−2

(
βt

2

)
,

R(1)(0) = 0. (2.53)

It is clear that all of these components, representing the tidal forces exerted on the

observer, are finite. From Eq. (2.52) one can also show that

∆τ =

∫ ∞
t0

2 sinh2
(
βt
2

)√
4 sinh4

(
βt
2

)
+ p2

=∞, (2.54)

for any finite t0. That is, starting at any given finite moment, t0, the observer will

reach t =∞ after spending infinite proper time, i.e., t =∞ represents the space-time

boundary. Similarly, one can show that t = −∞ represents the past timelike infinity.

However, in contrast to the last case, the space-time now becomes singular at

t = 0. This singularity is a scalar singularity, as one can see from Eq. (2.50) and the

expression for the 2-dimensional Ricci scalar

R = β2

[
1 + coth2

(
β

2
t

)]
. (2.55)

To study its global properties, we first introduce the new coordinate T via the

relation

T = − 2

β
coth

(
β

2
t

)
, (2.56)
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Figure 2.3: The Penrose diagram for the solution (2.51), in which the space-time is sin-
gular at both past and further null infinities (T = ±∞ or t = 0), denoted by the lines

AC, AD, BC and BD. The curved lines, ÂEB and ÂFB, are free of space-time singular-
ities, and represent the physical boundaries of the space-time.

which maps t ∈ (−∞, 0) into the region T ∈ (2/β,∞), and t ∈ (0,∞) into the region

T ∈ (−∞,−2/β). In particular, the times t = 0± are mapped to T = ∓∞, and

t = ±∞ to T = ∓2/β. In terms of T , we find that

ds2 =

[
1− β2

4
T 2

]−2 (
−dT 2 + dx′

2
)
, (|T | ≥ 2/β) . (2.57)

The corresponding Penrose diagram is given by Fig. 2.3, from which we can see that

the nature of the singularity at t = 0 is null.

It is remarkable to note that the metrics (2.46) and (2.57) take the same form,

but with different covering ranges. In Eq. (2.46) we have |T | ∈ (0, 2/β), while in

Eq. (2.57) we have |T | ∈ (2/β,∞). The metrics are singular at |T | = 2/β, which

represent the boundaries of the spacetimes, represented, respectively, by Eqs. (2.46)

and (2.57).

2.3.2.3. Λ̃ = 0 Following what we have done in the above, it can be shown that

K = −2

t
, γ = t2γ̂(x), (2.58)
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and the line element takes the form

ds2 = −dt2 + t4dx′
2
. (2.59)

Setting

T = 1/t, (2.60)

then in the new coordinates we find that the metric takes the form

ds2 =
1

T 4

(
− dT 2 + dx′

2)
, (2.61)

for which we have

K = −2T. (2.62)

That is, the space-time is singular at T = ±∞, and the corresponding Penrose

diagram is similar to that given in Fig. 2.1.

2.4 Quantization of 2d Hořava-Lifshitz Gravity

In the projectable Hořava-Lifshitz gravity, the action (2.10) reduces to

SHL = ζ2

∫
dtdxNγ

[
(1− λ)K2 − 2Λ

]
, (2.63)

where K is given by Eq. (2.7). In the following, we’ll quantize the field by following

Dirac’s approach.

2.4.1 Hamiltonian Formulation and Dirac Quantization

Starting from the action Eq. (2.63), if we treat γ as a dynamical variable, its

canonical momentum is found to be

π ≡ ∂L
∂γ̇

= 2ζ2(λ− 1)K. (2.64)

After the Legendre transformation, the corresponding canonical Hamilton is given by

Hc(t) =

∫
dx
(
NH(x) +N1(x)H1(x)

)
, (2.65)
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here the time variable is suppressed. With the projectability condition, the momen-

tum constraint is local while the Hamiltonian constraint is global, that is

H1 = −π
′

γ
≈ 0, (2.66)∫

dxH(x) =

∫
dx
( π2γ

4ζ2(1− λ)
+ 2Λζ2γ

)
≈ 0. (2.67)

Straightforward calculations give us their Poisson brackets

{H(x),H(x′)} = 0,

{H(x),H1(x′)} =
H(x′)

γ2(x′)
δx′(x− x′)

+
πH1δ(x− x′)
ζ2(1− λ)

≈ 0,

{H1(x),H1(x′)} =
2H1(x′)δx′(x− x′)

γ2(x′)

−2γ′H1

γ3
δ(x− x′) +

H′1
γ2
δ(x− x′)

≈ 0. (2.68)

Therefore, we’ve got all the constraints and the physical degrees of freedom of the

theory per space-time point (N ) is given by

N =
1

2

(
dimP − 2N1 −N2

)
,

=
1

2

(
4− 2 ∗ 2− 0

)
= 0. (2.69)

Here dimP means the dimension of the phase space, N1 (N2) denotes the number

of first-class (second-class) constraints. Meanwhile, the local momentum constraint

indicates that π is a function of time only, i.e.

π(x, t) = π(t). (2.70)

Note also that the canonical momentum π(t) is invariant under the gauge transfor-

mation, as can been seen from the expression{
π(x),

∫
dx′ξ(x′)H1(x′)

}
=
ξ(x)H1(x)

γ(x)
, (2.71)
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which vanishes on the constraint surface. For completeness, we also give the variation

of γ under the spatial diffeomorphism{
γ(x),

∫
dx′ξ(x′)H1(x′)

}
=

(
ξ

γ

)′
. (2.72)

Since the momentum π is only a function of time, we can obtain an equivalent

constraint by integrating Eq. (2.67) directly, and then we have

H(π, L) =
π2L

4ζ2(1− λ)
+ 2Λζ2L ≈ 0, (2.73)

with

L(t) =

∫
dxγ(t, x), (2.74)

which is gauge-invariant owing to Eq. (2.72). It’s worth noting that π(t) can be

regarded as conjugate momentum to the invariant length L(t). Starting from the

basic relation

{γ(x), π(y)} = δ(x− y), (2.75)

then integrating both sides with respect to x, since π is independent of spatial coor-

dinate y, we directly get

{L(t), π(t)} = 1. (2.76)

Now following Dirac’s approach, by promoting Eq. (2.76) to the commutation relation

[L̂, π̂] = i, we get the Wheeler-DeWitt equation in the coordinate representation,

ĤΨ = 0. (2.77)

However, there is ordering ambiguity arising from the term Lπ2 in Eq. (2.73) [49].

In the following we consider each of the possible orderings separately.

2.4.1.1. : π2L : = L̂π̂2 In this case, the Hamiltonian constraint reads

L

(
∂2

∂L2
− εΛ̃µ

2

)
Ψ = 0, (2.78)
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where µ ≡ 4ζ2|1− λ|
√
|Λ̃|, and εΛ̃ is a sign function which is one for Λ̃ > 0, zero for

Λ̃ = 0 and negative one for Λ̃ < 0. For Λ̃ > 0, the general solution is

Ψ(L, t) = C1e
µL + C2e

−µL. (2.79)

It can be shown that this solution is not normalizable even with C1 = 0 with respect

to the measure L−1dL in the interval (0,+∞). For Λ̃ = 0, we have

Ψ(L, t) = A1L+ A2, (2.80)

while when Λ̃ < 0, we find

Ψ(L, t) = B1 sin (µL+B2) , (2.81)

here A1, A2, B1 and B2 are some parameters independent of L. Again none of these

wavefunctions are normalizable with respect to the measure L−1dL.

2.4.1.2. : π2L : = π̂L̂π̂ In this case, we have

∂

∂L

(
L
∂Ψ

∂L

)
− εΛ̃µ

2LΨ = 0. (2.82)

When Λ̃ > 0, its general solution is given by the linear combination of the modified

Bessel functions of the first and second kind which are denoted respectively by I and

K, so

Ψ(L, t) = C3I0(µL) + C4K0(µL). (2.83)

However, the normalizable condition with the flat measure dL in the interval (0,+∞)

leads to

C3 = 0, C4 =
2

π

√
µ. (2.84)

For Λ̃ = 0, we obtain

Ψ(L, t) = A3 lnL+ A4, (2.85)
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which cannot be normalized in the interval (0,+∞). When Λ̃ < 0, the general solution

is given by

Ψ(L, t) = B3J0(µL) +B4Y0(µL), (2.86)

which is a linear combination of Bessel functions of the first and second kind. This

wave function can’t be normalized either.

2.4.1.3. : π2L : = π̂2L̂ In this case, we have

∂2

∂L2

(
LΨ
)
− εΛ̃µ

2LΨ = 0. (2.87)

When Λ̃ > 0, the general solution of the above equation is given by

Ψ(L, t) =
1

L

(
C5e

−µL + C6e
µL
)
, (2.88)

where C5 and C6 are the integration constants. Similar to the first case, the wave-

function now is also not normalizable for any given C5 and C6 with respect to the

measure LdL in the interval (0,+∞). When Λ̃ = 0, the solution is

Ψ(L, t) = A5 +
A6

L
, (2.89)

For Λ̃ < 0, we find

Ψ(L, t) =
1

L
[B5 sin (µL+B6)] . (2.90)

None of these wavefunctions are normalizable with respect to the measure LdL in the

interval (0,+∞).

2.4.2 Simple Harmonic Oscillator

In this subsection, we shall show that under canonical transformation the above

system can be reduced to that of a simple harmonic oscillator. By using the gauge

freedom, we can always set

N(t) = 1, N1 = 0. (2.91)
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Then, applying the momentum constraint (2.70), the canonical Hamilton (2.65) re-

duces to

H(L, π) = L

[
π2

4ζ2(1− λ)
+ 2ζ2Λ

]
, (2.92)

with L given by Eq. (2.74). After the canonical transformation,

L = x2, π =
p

2x
, (2.93)

we find that Eq. (2.76) yields {x, p} = 1, and Eq. (2.92) takes the form

H ′(x, p) =
p2

16ζ2(1− λ)
+ 2Λζ2x2. (2.94)

However, this new Hamilton constraint (2.94) can only be equivalent to the original

one (2.92) on the classical level. One can immediately understand this point when

trying to find the solution to the corresponding Wheeler-DeWitt equation

H ′(x̂, p̂)Ψ = 0, (2.95)

which yields no physical states due to non-vanishing of the energy of the ground state

of the quantized oscillator. Hence, we employ the following ansatz for the quantum

canonical transformation

L̂ = x̂2, π̂ =
1

4

(
1

x̂
p̂+ p̂

1

x̂

)
. (2.96)

Correspondingly, some terms can be transformed into the forms

L̂π̂2 =⇒ p̂2

4
+
i

2

1

x̂
p̂− 5

16x̂2
, (2.97)

π̂L̂π̂ =⇒ p̂2

4
− 1

16x̂2
, (2.98)

π̂2L̂ =⇒ p̂2

4
− i

2

1

x̂
p̂+

3

16x̂2
. (2.99)

Now setting

Lπ2 7→ 1

3

(
L̂π̂2 + π̂L̂π̂ + π̂2L̂

)
, (2.100)
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we find that the new Hamilton under the canonical transformation (2.96) is given by

H̃ =
p̂2

16ζ2(1− λ)
+ 2Λζ2x̂2 − 1

64ζ2(1− λ)x̂2
. (2.101)

Then, we can introduce the creation and annihilation operators

a = c0

(
x+

ip

8ζ2(1− λ)
√

Λ̃

)
,

a† = c0

(
x− ip

8ζ2(1− λ)
√

Λ̃

)
, (2.102)

with c0 ≡ 2ζ
√

1− λΛ̃1/4, and

[a, a†] = 1. (2.103)

In terms of a, a† and x̂, we find

H̃ = ~ω
(
a†a+

1

2

)
− 1

64ζ2(1− λ)x̂2
, (2.104)

where ~ω ≡
√

Λ̃. Clearly, to have a well defined vacuum, we must require Λ̃ > 0,

that is

Λ

1− λ
> 0. (2.105)

Then, the Wheeler-DeWitt equation reads

H̃(x̂, p̂)|Ψ〉 = 0. (2.106)

Expanding |Ψ〉 in terms of the complete set {|n〉}

|Ψ〉 =
∞∑
n=0

an|n〉, (2.107)

we find that

a0 + 10
√

2a2 = 0, (2.108)

17a1 + 14
√

6a3 = 0, (2.109)

and for n ≥ 2,

(4n− 6)
√
n(n− 1)an−2 + (8n2 + 8n+ 1)an

+(4n+ 10)
√

(n+ 1)(n+ 2)an+2 = 0. (2.110)
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Therefore, the wavefunction is given by

Ψ(x) = 〈x|Ψ〉 =
∞∑
n=0

anψn(x), (2.111)

where x =
√
L, and

ψn(x) ≡ 〈x|n〉 =
(2µ)2n+1

π1/4
√

2nn!

×
(
x− 1

2µ

d

dx

)n
e−µx

2

. (2.112)

Thus, we find that Ψ(L) ∝ e−µL, which is similar to the ones obtained by the Dirac

quantization, although they are not precisely equal, as we used two quite different

approaches to obtain the corresponding Hamiltons of quantum mechanics, as one can

see from Eqs. (2.73) and (2.104).

It should be noted that, in the above studies, either in terms of the Dirac quan-

tization or in terms of the harmonic oscillator, we implicitly assumed L(t) 6= 0.

Classically, this corresponds to the case studied in Sec. III.A, in which solutions exist

only when Λ̃ > 0, and the resulted space-time is de Sitter. But, quantum mechani-

cally the quantization can be carried out for any Λ̃. In addition, classical solutions

exist even when L(t) = 0. In order to deal with this case, we first note in the classical

solutions, we assume γ(t, x) = γ̂(x)γ(t), then γ̂(x) should be an odd function of x and

γ(t) satisfies the EOM (2.18). Of course, in this case constraints (2.12) and (2.13) are

satisfied simultaneously. Now we only need to start from the EOM (2.18), in terms

of γ it can be recast into the form

2γ̈γ − γ̇2 + 4Λ̃γ2 = 0. (2.113)

Then its corresponding Lagrange can be found as

L =
γ̇2

γ
− 4Λ̃γ. (2.114)

After Legendre transformation, the Hamilton turns out to be

H =
p

4
γ2 + 4Λ̃γ, (2.115)
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where p is conjugate momentum. This Hamilton happens to take the similar form as

Eq. (2.73).

2.5 Summary

In this chapter, all the solutions in the projectable case of 2d Hořava gravity are

found. These solutions can be divided into three different classes, and each of them

have different local and global properties. Their corresponding Penrose diagrams are

given, respectively, by Figs. 2.1, 2.2 and 2.3. After solving the momentum constraint

explicitly for the projectable pure HL gravity, we have showed that the resulting

Hamilton can be quantized by using the standard Dirac quantization. In addition, it

can also be written in the form of a simple harmonic oscillator, with the expectation

value of the gauge-invariant length operator L(t) defined by Eq. (2.74) given by

〈0 |L(t)| 0〉 =
1

16ζ2

√
2

(1− λ)Λ
≡ `HL, (2.116)

which defines a fundamental length of the theory. Here (λ− 1) denotes the deviation

of the kinetic part of the gravitational action from the relativistic one [cf. Eq. (2.5)],

and Λ denotes the cosmological constant. In order for the oscillator to have a stable

ground state, one has to assume that

Λ

1− λ
> 0, (2.117)

which also guarantees that `HL is real. A remarkable feature is that the space-time

can be quantized, even it classically has various singularities [cf. Fig. 2.1 ]. In this

sense, the singularities are indeed smoothed out by the quantum effects.
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CHAPTER THREE

Nonprojectable Two-Dimensional Hořava-Lifshitz Theory of Gravity

This chapter published as [54]: Bao-Fei Li, V. H. Satheeshkumar, Anzhong Wang,
“Quantization of 2d Hořava Gravity: Nonprojectable Case,” Phys. Rev. D 93,

064043 (2016).

3.1 Introduction

In this chapter, we examine the two-dimensional version of Hořava-Lifshitz (HL)

theory without projectability, where I shall extend the canonical quantization tech-

niques employed in the projectable version of the theory in the last chapter to the

nonprojectable case. I’ll first give the action of the two-dimensional HL theory with-

out projectability and discuss its classical solutions, then analyze its Hamiltonian

structure and quantize the theory.

The general gravitational action of the HL gravity is given by Eq. (1.22)

SHL = ζ2

∫
dt dxN

√
g (LK − LV ), (3.1)

where N denotes the lapse function in the Arnowitt-Deser-Misner (ADM) decompo-

sition [27], and g ≡ det(gij). As discussed in the last chapter, in the 2-dimensions,

the action can be reduced to a simple form (2.10), that is

SHL = ζ2

∫
dt dxNγ

[
(1− λ)K2 − 2Λ + βaia

i
]
, (3.2)

where γ ≡ √g11, γ
′ ≡ ∂γ/∂x, and

K = g11K11 = − 1

N

(
γ̇

γ
− N ′1
γ2

+
N1γ

′

γ3

)
, (3.3)

with N1 ≡ g1iN
i = γ2N1.

With regard to the above general action (3.2), it is interesting to note that, in a

particular gauge, the so-called T -gauge [55, 56], in which the aether field ua can be
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written as [57], ua = t,a/
√
−t,bt,b, where t is the global time introduced above in the

HL gravity, the action of the 2d Einstein-aether theory [58] is identical to the action

(3.2). It should be noted that this identification is only on the action level, as the

two theories have different gauge symmetries, and the 2d HL theory is only a gauge-

fixed form of the 2d Einstein-aether one. Contrary examples can be found in [53,56].

Besides, one can also find the general classical solutions of the 2d Einstien-aether

theory without the cosmological constant Λ in detail in [58].

3.2 Classical Solutions

The line element in terms of N, N1 and γ, takes the form

ds2 = −N2(t, x)dt2 + γ2(t, x)
(
dx+N1(t, x)dt

)2
, (3.4)

with the gauge freedom

t′ = ξ0(t), x′ = ξ1 (t, x) , (3.5)

where ξ0(t) and ξ1 (t, x) are arbitrary functions of their indicated arguments. Vari-

ations of the action Eq. (3.2) with respect to γ, N , and N1 yield, respectively, the

following equations

2(1− λ)

[
K̇ − NK2

2
− KN ′1

γ2
+

2KN1γ
′

γ3
+

(
KN1

γ2

)′]
− βN ′2

Nγ2
− 2ΛN = 0, (3.6)

(1− λ)γK2 + 2Λγ + 2β
( N ′
Nγ

)′
+ β

N ′2

N2γ
= 0, (3.7)

and K ′ = 0. Thus, we have K = K(t). Using the gauge freedom (3.5), we can always

set N1(t, x) = 0 without loss of the generality. It should be noted that this gauge

choice does not completely fix the gauge freedom, and the remaining one is

t′ = ξ0(t), x′ = ξ̂1 (x) . (3.8)
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With the gauge N1 = 0, Eq. (3.3) reduces to K(t) = −γ̇/(Nγ), while Eqs. (3.6) and

(3.7) reduce to

(1− λ)K2 − 2(1− λ)
K̇

N
+ βy2 + 2Λ = 0, (3.9)

2y′ +
(
y2 − g(t)

)
γ = 0, (3.10)

where y ≡ N ′/(Nγ) and g(t) ≡ −β−1 [(1− λ)K2 + 2Λ]. Equation (3.10) has the

general solution,

y(t, x) = −
√
g(t) tanh ∆(t, x),

∆(t, x) ≡ −
√
g(t)

[∫ x
γ(t, x′)dx′

2
− c1(t)

]
, (3.11)

where c1(t) is an arbitrary function of t only. On the other hand, from Eqs. (3.9)

and (3.10), we find that

(1− λ)γK̇ + βNy′ = 0, (3.12)

from which, together with Eq.(3.11), we find N(t, x) = N0(t) N̂(t, x), where N̂(t, x) =

2 cosh2 ∆(t, x) and N0(t) = (λ− 1)K̇/[βg(t)]. Using the remaining gauge freedom of

Eq. (3.8), we can always absorb the factor N0(t) into t′, so the lapse function finally

takes the form

N(t, x) = 2 cosh2 ∆(t, x). (3.13)

Inserting it, together with y given by Eq. (3.11), into Eq. (3.12) we find that

K̇(t)−K2(t) + η = 0, (3.14)

where η ≡ 2Λ/(λ− 1). When K̇ = 0, Eq. (3.14) has the solution K = ±√η. Clearly,

for K to be real, we must assume η ≥ 0. Then, from (3.13), we find that g(t) = 0

and N(t, x) = 2. Redefining t, we can always set N = 1. Then, from Eq. (3.12), we

find that γ(t, x) = γ0(x)e∓2
√
η(t−t0), where γ0(x) is an arbitrary function of x, and t0

is a constant. Using the gauge residuals of Eq. (3.8), we can always set γ0(x) = 1
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and t0 = 0, so the corresponding metric finally takes the form,

ds2 = −dt2 + e∓4
√
ηtdx2, (K̇ = 0), (3.15)

which is nothing but the de Sitter spacetime.

When K̇ 6= 0, Eq. (3.14) has a solution, K(t) = −√η tanh
[√
η(t−t0)

]
, from which

we find that, g(t) = −(2Λ/β) cosh−2
[√
η(t− t0)

]
. On the other hand, combining Eqs.

(3.12) and (3.13) we find

γ̇ + 2K(t) cosh2 ∆γ = 0, (K̇ 6= 0), (3.16)

where ∆(t, x) is given by Eq. (3.11).

3.3 Hamiltonian Structure and Canonical Quantization

Now, let us turn to the Hamiltonian structure and canonical quantization. For

such a purpose, in this section, we shall not restrict ourselves to any gauge. Then,

from the action (3.2), we find that the canonical momenta are given by,

πN ≡ ∂L
∂Ṅ

= 0, πN1 ≡
∂L
∂Ṅ1

= 0,

π ≡ ∂L
∂γ̇

= 2ζ2(λ− 1)K,

with K given by Eq. (3.3). After Legendre transformation, the Hamiltonian density

is given by

H =
Nγπ2

4ζ2(1− λ)
+ 2ζ2ΛγN − N1π

′

γ

− βζ2N

γ

(
N ′

N

)2

+ πNσ + πN1σ1, (3.17)

where σ and σ1 are the Lagrangian multipliers. Then, the Hamiltonian takes the

form,

H =

∫
dxH(x).
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Now, the preservation of the primary constraints, πN ≈ 0 and πN1 ≈ 0, gives us the

secondary constraints. By evaluating the poisson brackets we find

π̇N1 =
{
πN1 , H

}
= −H1 ≈ 0,

π̇N =
{
πN , H

}
= −H2 ≈ 0.

Here

H1 ≡ −π
′

γ
, (3.18)

H2 ≡
π2γ

4ζ2(1− λ)
+ 2ζ2Λγ

+ βζ2 N
′2

N2γ
+ 2βζ2

(
N ′

Nγ

)′
. (3.19)

Rearranging the Hamiltonian in terms of the constraints, we end up with

H = N1H1 +NH2 + πNσ + πN1σ1

−2βζ2

(
N ′

γ

)′
. (3.20)

In the following analysis, we will drop the last surface term. By straightforward

calculations, we can obtain the structure functions of the constraints, which are given

by {
H1(x),H1(x′)

}
=

(
H1(x′)

γ2(x′)
+
H1(x)

γ2(x)

)
∂x′δ(x− x′),{

H1(x),H2(x′)
}

= −π(x)H1(x)

ζ2(1− λ)
δ(x− x′)

+
H2(x)

γ2(x)
∂xδ(x− x′)

+
2βζ2N ′

γ3N
∂xxδ(x− x′)

− 2βζ2

(
N ′γ′

Nγ4
+

N ′2

N2γ3

)
∂xδ(x− x′)

− βζ2

γ

(
N ′2

γ2N2

)′
δ(x− x′). (3.21)

Clearly, H1 and H2 don’t commute with each other on the constraint surface due to

the last three terms on the right-hand side of Eq. (3.21) (all the functions on the
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right-hand side of this commutator are functions of x). In addition, we also have

{
H2(x),H2(x′)

}
= − 2βπ(x)N ′(x)

(1− λ)N(x)γ(x)
∂xδ(x− x′)

− β

1− λ

(
N ′π

Nγ

)′
δ(x− x′),{

πN(x),H2(x′)
}

= − 2βζ2

N(x′)γ(x′)
∂x′x′δ(x− x′)

− 2βζ2∂x′

(
1

N(x′)γ(x′)

)
∂x′δ(x− x′)

+
2βζ2

N

(
N ′

Nγ

)′
δ(x− x′).

So, πN and H2 don’t commute either. In this case, we need to define a new constraint

via the relation

H̃1 = H1 +
N ′

γ2
πN . (3.22)

As it turns out that H̃1 commutes with both H2 and πN on the constraint surface,

and their structure functions are given by

{
H̃1(x),H2(x′)

}
= −π(x)H̃1(x)

ζ2(1− λ)
δ(x− x′)

+
H2(x)

γ2(x)
∂xδ(x− x′),{

H̃1(x), πN(x′)
}

=
πN(x)

γ2(x)
∂xδ(x− x′),{

H̃1(x), H̃1(x′)
}

=

(
H̃1(x′)

γ2(x′)
+
H̃1(x)

γ2(x)

)
∂x′δ(x− x′).

Correspondingly, the Hamiltonian now takes the form 1

H̃ = N1H̃1 + σ1πN1 +NH2 + σπN . (3.23)

Then, one can show that πN1 ≈ 0 and H̃1 ≈ 0 are the first-class constraints, while

πN ≈ 0 and H2 ≈ 0 are the second-class constraints. These constraints are preserved

1 Hamiltonian structure of four-dimensional HL theory without the projectability condition was
studied in [61], and a similar structure was obtained (See also [62]). We thank T. Jacobson for
pointing this out to us.
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under time evolution. So, the physical degrees (N ) of freedom of the theory per

spacetime point is given by the formula (2.69), that is

N =
1

2

(
dimP − 2N1 −N2

)
,

=
1

2

(
6− 2 ∗ 2− 2

)
= 0.

Here dimP means the dimension of the phase space, and N1 (N2) denotes the number

of first-class (second-class) constraints. It is interesting to note that N is not equal

to −1, as in the usual 2d relativistic case [59], due to the new gauge symmetry (3.5)

of the theory. It is also interesting to note that in the projectable case, the physical

degrees of freedom is also zero.

Now we proceed to the canonical quantization of the system by following Dirac

[60]. First, for the two second-class constraints πN ≈ 0 and H2 ≈ 0, we can make

them strongly equal to zero,

(i) πN = 0, (ii) H2 = 0, (3.24)

by simply replacing the Poisson bracket with the Dirac bracket. The first condition

is actually empty, while from the second condition, we can express N as a functional

of γ and π by solving the equation H2 = 0, where H2 is given by Eq. (3.19). The

general solution is given by

N(t, x) = N0(t) exp

{∫ x

y(t, x′)γ(t, x′)dx′
}
, (3.25)

where N0(t) is an integration function of t only, and y(t, x) is given by Eq. (3.11).

As a result, we can drop N and πN by going to the “reduced” phase space spanned

by (N1, πN1 ; γ, π). However, the phase space can be further reduced by noting that

the first-class constraint πN1 ≈ 0 simply yields

−i~ δψ
δN1

= 0,

that is, the wave function ψ will not depend on N1 and πN1 . Then, the reduced phase

space actually becomes two-dimensional, spanned by γ and π.
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On the other hand, with the first condition (3.24), the first-class constraint H̃1 ≈ 0

reduces to H1 ≈ 0, as one can see from Eq. (3.22). This in turn implies

π − α(t) ≈ 0,

where α(t) ≡ 2ζ2(λ − 1)K(t). Then, the corresponding Wheeler-DeWitt equation

takes the form (
−i~ δ

δγ
− α(t)

)
ψ (γ; t) = 0, (3.26)

which has the general (plane wave) solution

ψ (γ, t) = ψ0e
iα
~ L. (3.27)

Here, L ≡ L(t) is the gauge-invariant length, defined in Eq. (2.74),

L(t) ≡
∫ L∞

−L∞
γ(t, x)dx, (3.28)

where x = ±L∞ represent the boundaries of the one-dimensional spatial space. The

integration “constant” ψ0 in general is a function of t. But, the normalization con-

dition,
∫ L∞
−L∞ |ψ|

2 dx requires ψ0 = eiβ(t)/(2L∞), where β(t) is real and otherwise

arbitrary function of t only. However, without loss of the generality, we can always

set β(t) = 0.

3.4 Summary

In this chapter, we have studied the quantization of 2d Hořava theory of gravity

without the projectability condition, that is, the lapse function N in general is a

function of both time and space, N = N(t, x). The classical solutions have been

studied in some detail and shown that the extrinsic curvature of the leaves t =

constant is always independent of the spatial coordinates. In the case of a constant

extrinsic curvature, the corresponding spacetime is de Sitter, while in the general

case, the dynamical variable γ(t, x) satisfies a master equation given by Eq. (3.16).

Once γ is known, the rest of metric coefficients can be found algebraically.
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Our investigation of the Hamiltonian structure of the theory shows that the system

consists of two first-class and two second-class constraints. As a result, the number

of total degrees of freedom is zero. Following Dirac [60], we have first turned the

two second-class constraints into strong ones, by requiring that they be strongly

equal to zero, from which we can express the lapse function N as a functional of the

canonical variable γ and its momentum conjugate π, so the phase space is reduced

from six to four dimensions, spanned by (N1, πN1 ; γ, π). But, one of the two first-

class constraints further tells us that the actual dimension of the phase space is

two, since the wave function of the system is independent of the shift vector N1

and its momentum conjugate πN1 . As a result, the corresponding Wheeler-DeWitt

equation simply takes the form of Eq. (3.26) and has a plane wave solution (3.27),

in terms of the gauge-invariant length L(t) defined by Eq. (3.28). Therefore, similar

to the projectable case , this system is also quantum mechanical in nature. This is

understandable, as this system also has zero-degree of freedom. However, what is a

bit surprising is that the corresponding Wheeler-DeWitt equation simply yields the

plane wave solution.

In addition, the classical spacetimes do not play important role in the process of

quantization. In particular, it does not matter whether the classical background is de

Sitter or not, the wave function is always a plane wave solution. The only effects of

the classical backgrounds are encoded in the phase of the plane wave, in terms of the

extrinsic curvature K(t) of the leaves t = constant, where t is the time coordinate,

with which the spacetime is foliated globally.
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CHAPTER FOUR

Two-Dimensional Hořava-Lifshitz Theory of Gravity Coupled with Matter

This chapter published as [63]: Bao-Fei Li, Madhurima Bhattacharjee, Anzhong
Wang, “Universal Horizons and Hawking Radiation in Nonprojectable 2d Hořava

Gravity Coupled with A Non-relativistic Scalar Field,” Phys. Rev. D 96,
084006(2017).

4.1 Introduction

In this chapter, we will first generalize our studies to the case where the projectable

Hořava-Lifshitz gravity is minimally coupled to a scalar field, which shares the same

gauge symmetry as the 2d Hořava-Lifshitz gravity. Unlike the vacuum case, we find

that now the momentum constraint cannot be solved explicitly except for the case

in which the fundamental variables depend only on time. Similar to the vacuum

case, now the system can also be quantized by the standard Dirac quantization.

When the self-interaction of the scalar field vanishes, the problem reduces to two

independent simple harmonic oscillators, one has positive energy and the other has

negative energy. In the second part of this chapter, we will study universal horizons

and their thermodynamics in 2d nonprojectable Hořava gravity, coupled with a non-

relativistic scalar field. The existence of universal horizons is closely related to the

existence of a globally defined time-like khronon field ϕ [13]. Then, all the particles are

assumed to move in the increasing direction of ϕ. At the beginning, universal horizons

were studied in the framework of the Einstein-aether theory with spherical symmetry,

in which the time-like aether naturally plays the role of the khronon field [64,65]. To

generalize such concepts to other theories, including Hořava-Lifshitz gravity, in which

the aether field is not part of the theory, one can consider the khronon field as a

test field [66], a role similar to a Killing vector field ξµ, which satisfies the Killing

equations, ∇(νξµ) = 0, on a given spacetime background gµν . In this chapter, we

shall adopt this generalization, and assume that the test khronon field satisfies the
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same equations as the aether field, the most general second-order partial differential

equations in terms of the aether four-velocity [67].

4.2 2D Projectable Hořava-Lifshitz Gravity Coupled with a Scalar Field

When the 2d HL gravity couples to a scalar field φ, the total action becomes

S = SHL + Sφ, (4.1)

where SHL is the action of 2d projectable Hořava-Lifshitz gravity given by Eq. (2.4)

while Sφ denotes the action of the scalar field. To be power-counting renormalizable,

the marginal terms of Sφ must be at least of dimension 2z with z ≥ d. Since φ is

dimensionless, one can see that the marginal terms are ∇iφ∇iφ and ai∇iφ. Then, Sφ

must take the form

Sφ =

∫
dtdxN

√
g
[1

2
(∂⊥φ)2 − α0 (∇iφ)2 − V (φ)

−α1φ∇iai − α2φa
i∇iφ

]
. (4.2)

Here ∂⊥ ≡ N−1 (∂t −N i∇i), V (φ) denotes the potential of the scalar field, and αn

are dimensionless coupling constants. Since the scalar field φ is dimensionless, these

coefficients in principle can be arbitrary functions of φ. In this chapter, we consider

only the case where they are constants. Besides, in the relativistic limit, we have

(α0, α1, α2)GR = (1/2, 0, 0).

4.2.1 Classical Field Equations

In the projectable case, we have ai = 0 and the last two terms in Eq. (4.2)

vanish. Then, the variations of the total action with respect to N, γ,N1 and φ yield,
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respectively, ∫
dx

{[
γ̇2

κγ
+ 8ζ2Λγ

]
+

2c2
φ

γ
φ′2

+
[
2γφ̇2 + 4γV (φ)

]}
= 0, (4.3)(

γ̇

γ

).
+

1

2

(
γ̇

γ

)2

+ 2Λ̃ = κ

(
φ̇2 +

c2
φ

γ2
φ′2 − 2V (φ)

)
,

(4.4)(
γ̇

γ

)′
= 2κφ̇φ′, (4.5)(

γφ̇
)·
− c2

φ

(
φ′

γ

)′
+ γ

dV (φ)

dφ
= 0, (4.6)

where c2
φ ≡ 2α0 must be non-negative in order for the scalar field to be stable, and

κ =
1

4ζ2 (1− λ)
. (4.7)

Note that in the vacuum case γ is a function of t only, as shown previously.

However, because of the presence of the scalar field, now it is in general a function of

both t and x. To compare it with the vacuum case, in the following let us consider the

case γ = γ0(x)γ(t) only. In fact, as to be shown below, this is also the case where the

corresponding Hamiltonian constraint becomes local, while the momentum constraint

can be solved explicitly.

Setting γ = γ0(x)γ(t), from Eq. (4.5) we can choose that φ = φ(t). Then, Eqs.

(4.3), (4.4) and (4.6) reduce, respectively, to∫
dx

{
γ̇2

κγ
+ 8ζ2Λγ + 2γφ̇2 + 4γV (φ)

}
= 0, (4.8)(

γ̇

γ

).
+

1

2

(
γ̇

γ

)2

+ 2Λ̃ = κ
(
φ̇2 − 2V (φ)

)
, (4.9)(

γφ̇
)·

+ γ
dV (φ)

dφ
= 0. (4.10)

To solve the above equations, we further assume that V (φ) = Λ̃ = 0. Then from

Eq. (4.10), we know

φ̇ =
φ0

γ(t)
, (4.11)
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here φ0 is a constant. Combining with Eq. (4.9), we derive an equation for γ(t)

γ̈(t)γ(t)− 1

2
γ̇(t)2 = κφ2

0. (4.12)

One of the solutions can be easily obtained, and is given by

γ(t) = (c0 + c1t)
2 +

κφ2
0

2c2
1

, (4.13)

φ(t) =

√
2

κ
arctan

(√
2

κ

c1(c0 + c1t)

φ0

)
+ φ1, (4.14)

where c0, c1 and φ1 are constants. In order to make our solution consistent with the

integral constraint (4.8), we require γ(t, x) to be an odd function of x, so that the

integration of γ over the whole interval x ∈ (−∞,∞) vanishes. Keeping this in mind

and then using the residual gauge freedom, we find the metric takes the form,

ds2 = −dt2 +
(
t2 + εκt

2
s

)2
dx2, (4.15)

here εκ ≡ sign(κ), and

t2s ≡
|κ|φ2

0

2c4
1

. (4.16)

Following what we did in Chapter I, we can derive the extrinsic curvature K, Ricci

scalar R, and the components of the tidal forces, given respectively by

K = − t
2
R = − 2c2

1t

t2 + εκt2s
, (4.17)

R(1)(1) = −R(0)(0) =
2c2

1

t2 + εκt2s
. (4.18)

Therefore, the singularities of the spacetime are determined directly by the signs of

κ. In particular, if λ ≤ 1, the spacetime is free of space-time singularities. For λ > 1,

on the other hand, there is a curvature singularity located at

t = ±ts. (4.19)

The corresponding Penrose diagrams are given in Fig. 4.1.

It should be noted that, instead of imposing the condition that γ is an odd function

of x, we can set the integrand of the Hamiltonian constraint to zero. But, this will

require c1 = 0, and the corresponding space-time is flat.
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Figure 4.1: (a) The Penrose diagram for the solution (4.15) with λ ≤ 1 (or κ ≥ 0), in
which the whole space-time is free of space-time singularities. (b) The Penrose diagram for
the solution (4.15) with λ > 1 (or κ < 0), in which the space-time is singular on t = ±ts,
denoted by the thick solid curves ĈED and ĈE′D. Thus, in this case the two regions I
and I ′ are causally disconnected.

4.2.2 Hamiltonian Structure and Canonical Quantization

When coupling with the scalar field, the Hamiltonian and momentum constraints

become ∫
dxH(x) =

∫
dx

[
π2γ

4ζ2(1− λ)
+ 2Λζ2γ +

π2
φ

2γ

+
α0φ

′2

γ
+ γV (φ)

]
, (4.20)

H1 = −π
′

γ
+
πφφ

′

γ2
, (4.21)

here πφ denotes the canonical moment conjugate to the scalar field φ. Similarly, the

Poisson brackets of the two constraints are given by

{H(x),H1(x′)} =
H(x′)δx(x− x′)

γ2(x′)
+
πH1δ(x− x′)
ζ2(1− λ)

,

{H1(x),H1(x′)} =
2H1(x)δx′(x− x′)

γ2(x)

+
2γ′H1

γ3
δ(x− x′)− H

′
1

γ2
δ(x− x′).

(4.22)

For the non-local Hamiltonian constraint we also find{∫
dxH(x),

∫
dx′H(x′)

}
= 0, (4.23)
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as long as πφφ
′/γ2 vanishes on boundaries.

In the rest of this section, we only consider the quantization of the system for the

case

φ′ = 0 = π′, (4.24)

in order to compare with what we obtained in the pure gravity case. As a matter

of fact, this also makes the problem considerably simplified and become tractable.

Under the above assumption, the Hamiltonian constraint reads

H(t) =
π2L

4ζ2(1− λ)
+ 2Λζ2L+

Lφ̇2

2
+ LV (φ) ' 0. (4.25)

It must be noted that in writing down the above expression, we performed the spatial

integration and used the fact that

πφ = γφ̇, (4.26)

with the gauge choice N = 1 and N1 = 0. On the other hand, from the canonical

relation

{φ(x), πφ(y)} = δ(x− y), (4.27)

we can integrating both sides with respect to the spatial coordinates x and y, and

then use Eq. (4.26) and the constraint φ = φ(t), to obtain

{φ(t), L(t)φ̇(t)} = 1, (4.28)

which enables us to identify πφ as πφ = Lφ̇. Now making this substitution in the

Hamiltonian constraint (4.25), we find the Hamilton with two discrete physical degrees

of freedom, L and φ, takes the form

H(t) =
π2L

4ζ2(1− λ)
+ 2Λζ2L+

π2
φ

2L
+ LV (φ). (4.29)

Thus, the Wheeler-Dewitt equation now reads

Ĥ(t)Ψ(L, φ; t) = 0. (4.30)
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If we further assume that the potential of the scalar field can be ignored, V (φ) ' 0,

we are able to find solutions to Eq. (4.30) by separation of variables. In this case,

assuming

Ψ(L, φ) = X(L)Y (φ), (4.31)

we obtain two independent equations

Y ′′(φ) +mY (φ) = 0, (4.32)[
Lπ2

]
X(L) +

(
µ2L+ ελ

mµ

2
√

Λ̃L

)
X(L) = 0. (4.33)

here [Lπ2] means some specific ordering of L and π, m is an undetermined parameter,

µ is given as in the pure gravity case, and ελ is one for λ < 1 and negative one for

λ > 1. Just as in the pure gravity case, there are three different orderings, which will

be considered below, separately.

4.2.2.1. : π2L : = L̂π̂2 In this case, the Hamiltonian constraint reads

L2X ′′ −
(
εΛ̃µ

2L2 + k2
)
X = 0, (4.34)

where k2 = 2ελmζ
2|1 − λ| and εΛ̃ is defined in Sec. 2.4.1.1. For Λ̃ > 0, the general

solution is given by the linear combination of the modified Bessel functions of the

first and second kind, denoted by Iν and Kν respectively, that is

X =
√
L {C1Iν(Lµ) + C2Kν(Lµ)} , (4.35)

Here ν ≡
√

1 + 4k2/2. Generally, this wave-function is not normalizable with respect

to the measure dL/L in the interval (0,+∞). However, if |Re(ν)| < 1/2, we have

normalized function as

Xnorm =
1

π

√
4µ

sec (πν)
Kν (Lµ) . (4.36)

In this particular case for −1/4 ≤ k2 < 0, depending on the value of λ, m can

be either positive or negative. In both cases, in order to have a normalizable wave
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function (4.31), we need to restrict the domain of φ to some finite region, for example

(0, 2π), then it would be straightforward to normalize Y (φ) from Eq. (4.32) in that

finite region.

For Λ̃ = 0, the solution is given by

X =
√
L
(
A1L

+ν + A2L
−ν) , (4.37)

while for Λ̃ < 0, we find

X =
√
L (B1Jν(µL) +B2Yν(µL)) . (4.38)

Here ν is defined as in the case Λ̃ > 0. None of these two wave functions are normal-

izable with respect to the measure L−1dL in the interval (0,+∞).

4.2.2.2. : π2L : = π̂L̂π̂ In this case, we have

L2X ′′ + LX ′ −
(
εΛ̃µ

2L2 + k2
)
X = 0. (4.39)

Thus, for Λ̃ > 0, the general solution is given by

X = C1Ik(Lµ) + C2Kk(Lµ). (4.40)

Again, for 0 ≤ k2 < 1/4, we have the normalized function X(L) given by

Xnorm =
1

π

√
4µ

sec (πk)
Kk (Lµ) . (4.41)

The same discussion from above applies to Y (φ).

When Λ̃ = 0, its general solution is

X = A1L
k + A2L

−k, (4.42)

while for Λ̃ < 0, it is given by

X = B1Jk(µL) +B2Yk(µL). (4.43)
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It can be shown that none of these two wavefunctions are normalizable in the interval

(0,+∞).

4.2.2.3. : π2L : = π̂2L̂ In this case, we have

L2X ′′ + 2LX ′ −
(
εΛ̃µ

2L2 + k2
)
X = 0. (4.44)

Then, for Λ̃ > 0, we find

X = C1j−ν−1/2(−iLµ) + C2y−ν−1/2(−iLµ), (4.45)

here jν , yν denote the spherical Bessel functions of the first and second kind. When

Λ̃ = 0, we find that

X = L−1/2
(
A1L

ν + A2L
−ν) , (4.46)

while for Λ̃ < 0, we have

X = C1jν−1/2(µL) + C2yν−1/2(µL). (4.47)

It can be shown that in this case none of these wave functions are normalizable with

respect to the measure LdL in the interval (0,+∞).

Just like in the pure gravity part, in the L(t) = 0 case, we can again assume

γ(t, x) = γ̂(x)γ(t), then requiring γ̂(x) to be an odd function, in this condition, the

constraints (4.3) and (4.5) are automatically satisfied, then from the equations of

motion (4.4) and (4.6), we are able to deduce the corresponding Lagrange

L =
γ̇2

γ
+ 2κγφ̇2 − 4Λ̃γ − 4κγV (φ), (4.48)

Here p is the canonical momentum conjugate to γ, P is conjugate momentum to φ.

After Legendre transformation, the Hamilton reads

H =
p2

4
γ +

P 2

8κγ
+ 4Λ̃γ + 4κγV (φ), (4.49)

which has the similar form as the Hamilton constraint (4.29).
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4.2.3 Two Interacting Simple Harmonic Oscillators

Similar to what we have done in the pure gravity case, we can also treat the

Hamilton given by Eq. (4.29) as consisting of harmonic oscillators. To this goal, let

us first make the transformations

L(t) = y2
1(t)− y2

2(t),

φ(t) =
√

2ζ2(λ− 1) ln

(
y1(t) + y2(t)

y1(t)− y2(t)

)
, (4.50)

for which we are able to convert Eq. (4.26) into the form

L =
1

2
m
[ (
ẏ2

1 − ω2y2
1

)
−
(
ẏ2

2 − ω2y2
2

) ]
−Ve(y1, y2), (4.51)

but now with

m ≡ 8(1− λ)ζ2, ω2 ≡ Λ

2(1− λ)
,

Ve(y1, y2) ≡
(
y2

1 − y2
2

)
V
(
φ(y1, y2)

)
. (4.52)

Clearly, Eq. (4.51) describes the interaction between two simple harmonic oscilla-

tors, one with positive energy and the other with negative energy. Thus, in order for

the system to have a total positive energy, the interaction between them is important.

4.3 2D Nonprojectable Hořava-Lifshitz Gravity Coupled with a Scalar Field

For the nonprojectable case, the gravitational action of Hořava-Lifshitz gravity is

given in the last chapter by Eq. (3.2) which is

SHL = ζ2

∫
dt dxNγ

[
(1− λ)K2 − 2Λ + βa1a

1
]
, (4.53)

where a1 = (lnN)′, and

K = − 1

N

(
γ̇

γ
− N ′1
γ2

+
N1γ

′

γ3

)
, (4.54)
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with γ′ ≡ ∂γ/∂x, etc. On the other hand, the action for a non-relativistic scalar field

takes the form,

Sφ =

∫
dt dxN

√
g

{
1

2
(∂⊥φ)2 − α0 (∇iφ)2

−V (φ)− f(φ)R

}
, (4.55)

where ∂⊥ ≡ N−1(∂t − N i∇i), α0 is a dimensionless coupling constant. In the rela-

tivistic case, it is equal to 1/2. The function f(φ) is arbitrary and depends on φ only,

and R denotes the Ricci scalar of the 2d spacetimes. The total action is

S = SHL + Sφ = ζ2

∫
dt dxN

√
gL. (4.56)

4.3.1 Hamiltonian Structure

The 2d spacetimes are described by the general metric

ds2 = −N2dt2 + γ2
(
dx+N1dt

)2
, (4.57)

subjected to the gauge freedom (1.18), where N,N1 and γ are in general functions of

t and x. To be as much general as possible, we shall not impose any gauge conditions

in this section. Then, in terms of N,N1 and γ, the matter action takes the form

Sφ =

∫
dtdxNγ

{ 1

2N2

(
φ̇− N1φ

′

γ2

)2

− α0

γ2
φ′2

−V (φ)− f(φ)R
}
, (4.58)

where

R =
2

Nγ

[
∂µ(NγnµK)−

(
N ′

γ

)′]
. (4.59)

Here nµ ≡ N−1(1,−N1) denotes the normal vector to the hypersurfaces t = Constant.

Then, we find

πN ≡ ∂L
∂Ṅ

= 0, πN1 ≡
∂L
∂Ṅ1

= 0,

π =
∂L
∂γ̇

= 2K(λ− 1)− 2f ′
φ̇

N
+ 2f ′

φ′N1

Nγ2
,

πφ =
∂L
∂φ̇

=
γ

N
(φ̇−N1

φ′

γ2
) + 2f ′γK. (4.60)
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After a Legendre transformation, it can be shown that the Hamiltonian can be cast

into the form

H0 = NH +N1H1 − 2β

(
N ′

γ

)′
, (4.61)

where

H1 = −π
′

γ
+
πφφ

′

γ2
, (4.62)

H = −πφπ
2f ′

+
(λ− 1)πφ

f ′
K + (1− λ)K2γ

+2Λγ + α0
φ′2

γ
− γ

2

(
πφ
γ
− 2f ′K

)2

+γV (φ)− 2

(
f ′φ′

γ

)′
+β

N ′2

Nγ
+ 2β

(
N ′

Nγ

)′
. (4.63)

Here K can be expressed in terms of the canonical fields and their momenta

K =
πγ + 2f ′πφ

4γf ′2 − 2γ(1− λ)
. (4.64)

A straightforward evaluation of poisson brackets between momentum constraints

shows {
H1(x),H1(x′)

}
=

(
H1(x′)

γ2(x′)
+
H1(x)

γ2(x)

)
∂x′δ(x− x′), (4.65)

which is the same as in the pure gravity Eq. (3.21). The poisson bracket between H

and H1 will not vanish on the constraint surface because of the terms related to the

lapse function N in the Hamiltonian constraint H. Therefore, we need to redefine

the momentum constraint by adding a term proportional to the primary constraint

πN , which generates the diffeomorphisms of N ,

H̃1 = H1 +
N ′

γ2
πN . (4.66)

In principle, one can also add a term generating diffeomorphisms of N1. However, in

the present case, since the Hamiltonian constraint doesn’t depend on N1, this term
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is not mandatory. In terms of H̃1, the structure of Eq. (4.65) will not change, while

one can show that H̃1 now commutes with H on the constraint surface,

{
H̃1(x),H(x′)

}
= −

(
4cπ +

2bπφ
γ

)
H̃1(x)δ(x− x′)

+
H(x)

γ2(x)
∂xδ(x− x′). (4.67)

Here c ≡ −α/2 − 2ξ2α2 and b ≡ αξ(2β − 1) − 1
2ξ

[1 + 2α(1 − λ)], where α−1 ≡

4ξ2 +2(λ−1). Note that in writing down the above expression, we had set f(φ) = ξφ

for the sake of simplicity. Thus, the total Hamiltonian of the coupled system can be

written as

Ht = NH +N1H̃1 + σπN + σ1πN1 . (4.68)

For this coupled system, there are two first-class constraints H̃1 and πN1 , and two

second-class constraints H and πN .

Note that no other constraints will be generated by the EOM of the said four

constraints because the secondary constraint H̃1 will not give rise to any tertiary

constraints due to Eqs. (4.65) and (4.67), while on the other hand the preservation of

H will only produce two differential equations for the lapse function N and Lagrange

multiplier σ since H is a second-class constraint. Thus, the Dirac procedure of finding

all the constraints in the Hamiltonian formulation terminates at the level of secondary

constraints, and the physical degrees of freedom in the configuration space is one which

is due to the introduction of the scalar field into the whole system, while in the pure

gravity case it is zero as shown in Eq. (3.24).
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4.3.2 Field Equations

The variations of the total action S with respect to N,N1, γ and φ, yield, respec-

tively,

(1− λ)γK2 + 2β

(
N ′

Nγ

)′
+
βN ′2

N2γ
+ γ (2Λ + V )

+
γ

2N2

(
φ̇− N1φ

′

γ2

)2

+
α0φ

′2

γ

+
2K

N

(
f ′φ̇γ − f ′φ′N1

γ

)
−
(

2f ′φ′

γ

)′
= 0,

(4.69)

2(1− λ)K ′

γ
+

φ′

Nγ

(
φ̇− N1φ

′

γ2

)
+

2f ′φ′K

γ
+

(
2f ′φ̇

Nγ
− 2f ′φ′N1

Nγ3

)′
+

2γ′

Nγ3

(
f ′φ̇γ − f ′φ′N1

γ

)
= 0, (4.70)

2(1− λ)

(
K̇ +

N1K
′

γ2
− NK2

2

)
− βN ′2

Nγ2

+
1

2N

(
φ̇− N1φ

′

γ2

)2

+
2N1φ

′

Nγ2

(
φ̇− N1φ

′

γ2

)
−N(2Λ + V ) + 2f ′φ̇K + 2f ′φ′

N1K

γ2

+ 2f ′φ′
N ′

γ2
+ α0φ

′2N

γ2
− 2K

(
f ′φ̇− f ′φ′N1

γ2

)
+

(
2f ′φ̇γ

Nγ
− 2f ′φ′N1

Nγ2

)
,t

− 2N ′1
γ2

(
f ′φ̇γ − f ′φ′N1

γ

)
+

4N1γ
′

Nγ4

(
f ′φ̇γ − f ′φ′N1

γ

)
+

(
2N1f

′φ̇

Nγ2
− 4f ′φ′N2

1

Nγ4

)′
= 0, (4.71)
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(
γφ̇

N
− N1φ

′

Nγ

)
,t

−

(
N1φ̇

Nγ
− N2

1φ
′

Nγ3

)′
− 2α0

(
Nφ′

γ

)′
+NγV ′ − 2f ′′φ̇γK + 2(f ′γK). + 2f ′′φ′

N1K

γ

−2

(
f ′N1K

γ

)′
+ 2f ′′φ′

N ′

γ
− 2

(
f ′N ′

γ

)′
= 0. (4.72)

Here f ′(φ) ≡ df(φ)/dφ, etc. Note Eqs. (4.69)-(4.72) hold for any function f(φ).

4.4 Stationary Spacetimes

In this section, we will study stationary spacetimes of the 2d Hořava gravity

coupled with a non-relativistic scalar field, presented in the last section. Setting all

the time derivative terms to zero in Eqs. (4.69)-(4.72), and

f(φ) = ξφ, (4.73)

where ξ is a constant, we find that

(1− λ)γK2 + 2β

(
N ′

Nγ

)′
+
βN ′2

N2γ
+
N2

1φ
′2

2N2γ3

+
α0φ

′2

γ
+ γ(2Λ + V )− 2Kξφ′N1

Nγ

−
(

2ξφ′

γ

)′
= 0, (4.74)

2(1− λ)K ′

γ
− N1φ

′2

Nγ3
+

2ξφ′K

γ

−
(

2ξφ′N1

Nγ3

)′
− 2ξφ′γ′N1

Nγ4
= 0, (4.75)

2(1− λ)

(
N1K

′

γ2
− NK2

2

)
− βN ′2

Nγ2
− 3N2

1φ
′2

2Nγ4

+ α0φ
′2N

γ2
+ 4ξφ′

N1K

γ2
+ 2ξφ′

N ′

γ2

−N(2Λ + V ) +
2ξN ′1φ

′N1

γ3

− 4ξγ′φ′N2
1

Nγ5
−
(

4ξφ′N2
1

Nγ4

)′
= 0, (4.76)
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(
N2

1φ
′

Nγ3

)′
− 2α0

(
Nφ′

γ

)′
+NγV ′

− 2ξ

(
N1K

γ

)′
− 2ξ

(
N ′

γ

)′
= 0. (4.77)

4.4.1 Diagonal Solutions

When the metric is diagonal, we have

N1 = 0, (4.78)

so the extrinsic curvature K vanishes and Eq. (4.75) holds identically, while Eqs.

(4.74), (4.76) and (4.77) reduce, respectively, to

2β (ν ′′ − ν ′µ′) + βν ′
2 − 2ξ (φ′′ − φ′µ′) + α0φ

′2

= −(V + 2Λ)e2µ, (4.79)

βν ′
2 − 2ξφ′ν ′ − α0φ

′2 = −(V + 2Λ)e2µ, (4.80)

2ξ
(
ν ′′ + ν ′

2 − ν ′µ′
)

+ 2α0 (φ′′ − φ′µ′ + ν ′φ′)

= e2µV ′, (4.81)

where ν ≡ lnN and µ ≡ ln γ.

It should be noted that static diagonal solutions were studied recently in [68] with

Λ = 0 = ξ. However, comparing the above equation (4.79) with Eq. (12) given in [68],

it can be seen that the second-order derivative term ν ′′ (or N ′′) is missing there. This

is because, when taking the variation of the total action with respect to N , the authors

of [68] incorrectly assumed that a1 is independent of N . Unfortunately, as a result, all

the solutions resulted from Eq. (12) given in [68] in general are not solutions of the

field equations of the 2d Hořava gravity coupled with a non-relativistic scalar field.

Using the gauge freedom given by Eq. (1.18), without loss of the generality, we

can always set µ = −ν, that is

N =
1

γ
= eν . (4.82)
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To solve Eqs. (4.79)-(4.81), let us further consider the case where V = −2Λ, so that

Eqs. (4.79) - (4.81) reduce to

2β
(
ν ′′ + ν ′

2
)

+ βν ′
2 − 2ξ (φ′′ + φ′ν ′)

+ α0φ
′2 = 0, (4.83)

βν ′
2 − 2ξφ′ν ′ − α0φ

′2 = 0, (4.84)

ν ′′ + 2ν ′
2

+
α0

ξ
(φ′′ + 2ν ′φ′) = 0. (4.85)

Then, from Eqs. (4.83) and (4.84) we find that

ν ′′ + 2ν ′
2 − ξ

β
(φ′′ + 2ν ′φ′) = 0. (4.86)

Thus, Eqs. (4.85) and (4.86) show that there are two possibilities,

(i) α0β + ξ2 6= 0; (ii) α0β + ξ2 = 0. (4.87)

4.4.1.1. α0β + ξ2 6= 0 In this case we must have

ν ′′ + 2ν ′
2

= 0, (4.88)

φ′′ + 2ν ′φ′ = 0, (4.89)

which have the solutions

N =
√
C0x+ C1,

φ = φ0 ln (C0x+ C1) + φ1, (4.90)

where Ci and φi are the integration constants. Without loss of the generality, we can

always set C0 = 1, so the metric and scalar field finally take the form

ds2 = − (x− x0) dt2 +
dx2

x− x0

,

φ = φ0 ln (x− x0) + φ1, (4.91)
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where x0 ≡ −C1. Clearly, the scalar field is singular at x = x0, so is the corresponding

spacetime.

4.4.1.2. α0β + ξ2 = 0 In this case, there are only two independent equations

which are Eqs. (4.84) and (4.85). Now if substituting the relation α0 = −ξ2/β into

these equations and defining a new constant κ = ξ/β, one can easily arrive at

ν ′2 − 2κφ′ν ′ + κ2φ′2 = 0, (4.92)

ν ′′ + ν ′2 − κφ′′ − κ2φ′2 = 0. (4.93)

The first equation tells us that ν ′ and φ′ are linearly dependent, that is

ν =
ξ

β
(φ− φ0) , (4.94)

which also makes the second equation hold identically, where φ0 is a constant. There-

fore, in the current case for any chosen φ, the solution (4.94) will satisfy the field

equations (4.83)-(4.85). The corresponding metric takes the form

ds2 = −e
2ξ(φ−φ0)

β dt2 + e−
2ξ(φ−φ0)

β dx2, (4.95)

for α0 = −ξ2/β.

4.4.2 Non-Diagonal Solutions

In this case, using the gauge transformations (1.18), without loss of generality, we

can always set

γ = 1, (4.96)

so the metric takes the form

ds2 = −N2(x)dt2 +
(
dx+ h(x)dt

)2
. (4.97)
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Then, Eqs. (4.74)-(4.77) reduce to

(1− λ)K2 + 2β

(
N ′

N

)′
+
βN ′2

N2
+ 2Λ + V (φ) +

h2φ′2

2N2

+ α0φ
′2 − 2Kξφ′h

N
− 2ξφ′′ = 0, (4.98)

2(1− λ)K ′ − hφ′2

N
+ 2ξφ′K −

(
2ξφ′h

N

)′
= 0, (4.99)

2(1− λ)

(
hK ′ − NK2

2

)
− βN ′2

N
− 3h2φ′2

2N

−N(2Λ + V ) + α0φ
′2N + 4ξφ′hK

+ 2ξφ′N ′ + 2ξh′φ′h−
(

4ξφ′h2

N

)′
= 0, (4.100)(

h2φ′

N

)′
− 2α0(Nφ′)′ +NV ′ − 2ξ(hK)′ − 2ξN ′′ = 0,

(4.101)

where

K =
h′

N
. (4.102)

To solve the above equations, in the following we shall consider some particular cases.

4.4.2.1. N(x) = 1 In this case, let us first consider the solution with φ = φ0,

where φ0 is a constant. Then, from Eq. (4.98) we find that

h′
2

=
2Λ̂

λ− 1
, (4.103)

where Λ̂ ≡ Λ + V (φ0)/2. The above equation has the solution

h(x) = ±

√
2Λ̂

λ− 1
x = ±ηx. (4.104)

It can be shown that in this case a killing horizon exists, located at xKH = ±η−1.
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4.4.2.2. ξ = 0 When ξ = 0, Eqs. (4.98)-(4.101) reduces to

(1− λ)

(
h′

N

)2

+ 2β

(
N ′

N

)′
+
βN ′2

N2
+ V̂

+ α0φ
′2 +

h2φ′2

2N2
= 0, (4.105)

2(1− λ)

(
h′′

N
− h′N ′

N2

)
− hφ′2

N
= 0, (4.106)

2(1− λ)

(
h′′

N
− h′N ′

N2
− h′2

2hN

)
− βN ′2

hN
− 3hφ′2

2N

+
N

h

(
α0φ

′2 − V̂
)

= 0, (4.107)(
h2φ′

N

)′
− 2α0(Nφ′)′ +NV̂ ′ = 0, (4.108)

where V̂ ≡ V + 2Λ. To solve the above equations, let us consider the case

N = h, V̂ = 0, (4.109)

for which the above equations reduce to

2βν ′′ + (1− λ+ β)ν ′
2

= −1 + 2α0

2
φ′

2
, (4.110)

2(1− λ)ν ′′ = φ′
2
, (4.111)

2(1− λ)ν ′′ − (1− λ+ β)ν ′
2

=
3− 2α0

2
φ′

2
, (4.112)

(1− 2α0) (eνφ′)
′
= 0, (4.113)

where ν = lnN . To solve the above equations, let us consider the cases α0 = 1/2 and

α0 6= 1/2 separately.

Case B.2.1) α0 = 1/2: This is the relativistic case, and Eq. (4.113) is satisfied

identically, while from Eqs. (4.110) and (4.112), we find

(1− λ+ β)ν ′′ = 0. (4.114)

If λ 6= β + 1, it can be shown that the above equations have only the trivial solution

in which ν and φ are all constants. On the other hand, when λ = β + 1, Eqs.

(4.110)-(4.112) reduce to a single equation

2βν ′′ = −φ′2, (β = λ− 1). (4.115)
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for the two arbitrary functions ν and φ. Again, similar to Case A.2 considered in the

last subsection, the solutions are not uniquely determined. In fact, for any given φ,

the solution

ν(x) = − 1

2β

∫ x

dx′
∫ x′

φ′
2
(x′′)dx′′ + C1x+ C0, (4.116)

will satisfy the field equations (4.110) and (4.112), where C1 and C0 are two integration

constants.

Case B.2.2) α0 6= 1/2: In this case, from Eq. (4.113) we find

φ′ = C0e
−ν , (4.117)

where C0 is another constant. Substituting it into Eq. (4.111), we obtain

NN ′′ −N ′2 +D = 0, (4.118)

where D ≡ C2
0/(2(λ− 1)). The above equation has two particular solutions

NA(x) =
1

2C2
1

eC1(x+C2) − D
2
e−C1(x+C2), (4.119)

NB(x) =
1

2C2
1

e−C1(x+C2) − D
2
eC1(x+C2), (4.120)

where C1 and C2 are two integration constants. Correspondingly, the scalar field φ is

given, respectively, by

φA(x) = − 2√
D

tanh−1

(
eC1(C2+x)

√
DC1

)
, (4.121)

φB(x) =
2√
D

tanh−1
(
C1

√
DeC1(C2+x)

)
. (4.122)

4.5 Universal Horizons and Hawking Radiation

In this section, we shall consider two issues, universal horizons and the correspond-

ing Hawking radiations. As a representative case, we shall focus on the solution given

by Eqs. (4.97) and (4.104) with N = 1. Without loss of the generality, we consider

only the case with “-” sign, that is

ds2 = −dt2 + (dx− ηxdt)2

= −
(
1− η2x2

)
dt2 − 2ηxdtdx+ dx2, (4.123)
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where −∞ < t, x <∞. The corresponding inverse metric is given by

gtt = −1, gtx = −ηx, gxx = 1− η2x2, (4.124)

which is non-singular, except at the infinities x = ±∞. The latter are coordinate

singularities, similar to the 4d de Sitter space. In fact, the extrinsic curvature and

2d Ricci scalar are all finite, and given by −η and 2η2, respectively. However, there

exist two cosmological Killing horizons located, respectively, at xKH = ±η−1. Similar

to the 4d de Sitter space, the time-translation Killing vector, ξµ = δµt , is time-like

only in the region x2 < x2
KH . In the regions x2 > x2

KH , the Killing vector becomes

spacelike, and only in these regions can the universal horizon exist, as the latter is

defined by [13],

(ξ · u) = 0. (4.125)

Since the four-velocity u of the khronon field is always time-like, Eq. (4.125) has

solutions only when ξ becomes spacelike, which are the regions in which x2 > x2
KH

holds.

To see the difference between the physics at Killing horizons and that at universal

horizons, let us first consider Hawking radiation at the Killing horizon.

4.5.1 Hawking Radiation at the Killing Horizon

As shown in [69], at a Killing horizon only relativistic particles are radiated quan-

tum mechanically. So, in this subsection we consider only the relativistic limit in

which the dispersion relation of radiated massless scalar particles satisfies k2 ≡ kλk
λ =

0. Considering only the positive outgoing particles, kt = −ω < 0, we find

k±x =
ω(h± 1)

1− h2
, (4.126)

which is singular for k+
x at the Killing horizon at which we have h (xKH) = 1. Then,

from the following formula [69],

2ImS = Im

∮
k+

x dx =
ω

TKH

, (4.127)
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we find that

TKH = −h
′(xKH)

2π
=

η

2π
, (4.128)

where xKH = −η−1. On the other hand, the surface gravity at the Killing horizon is

given by [11]

κKH ≡
√
−1

2
(Dµχν) (Dµχν)

= η, (4.129)

where Dµ denotes the covariant derivative with respect to the 2d metric gµν , and

χµ = δµt is the timelike Killing vector. Therefore, the standard form

TKH =
κKH
2π

, (4.130)

holds.

4.5.2 Universal Horizons and Hawking Radiation

The existence of a universal horizon is closely related to the existence of a globally

defined timelike scalar field ϕ [13, 66],

uµ =
∂µϕ√

−gαβ∂αϕ∂βϕ
, uλu

λ = −1, (4.131)

where the equation of ϕ is given by the action [58]

Su =

∫
dtdxNγ

[κ1

2
FαβFαβ + κ2(Dαu

α)2

+σ(uαuα + 1)
]
, (4.132)

where Fαβ ≡ Dαuβ − Dβuα, σ is a Lagrange multiplier, and κ1,2 are two coupling

constants. It should be noted that the action (4.132) remains unchanged under the

transformations

ϕ = F(ϕ̃), (4.133)

where F(ϕ̃) is a monotonically increasing or decreasing function of ϕ̃ only. In the

following, we shall use this property to choose F(ϕ̃) so that dϕ is along the same

direction as dt in the regions we are interested in.

68



Under the background (4.123), we find that the equations of motion are given by

κ1(1− η2x2)u′′0 − σu0 = 0, (4.134)

κ1ηxu
′′
0 + κ2(u1)′′ − σu1 = 0, (4.135)

u2
0 + 2ηxu0u1 − (1− η2x2)u2

1 − 1 = 0. (4.136)

Generally, these coupled non-linear equations are difficult to solve. One simple solu-

tion can be obtained when κ1 = 0, in which we find σu0 = 0. Since u0 6= 0 we must

have σ = 0, and Eqs. (4.134)-(4.136) have the solution 1

u0 =
ηxu1 −

√
G(x)

η2x2 − 1
, u1 = cx+ d,

G(x) ≡
(
c2 − η2

)
x2 + 2cdx+

(
d2 + 1

)
, (4.137)

or inversely

u0 = −
√
G(x),

u1 =
−(cx+ d) + ηx

√
G(x)

η2x2 − 1
, (4.138)

where c and d are two integration constants. In asymptotically flat spacetimes, these

two constants can be determined by requiring that [64, 66]: (a) it be aligned asymp-

totically with the time translation Killing vector; and (b) the khronon have a regular

future sound horizon. However, the spacetime we are studying is asymptotically de

Sitter, and these conditions cannot be applied to the present case. Instead, we shall

leave this possibility open, as long as it allows a globally defined khronon field ϕ.

Since only the latter is essential for the existence of the universal horizon, as ex-

plained previously in the Introduction Sec. 4.1. Then, one may ask what is their

physical meanings. To see these, let us first calculate the quantity

∇αuβ = csαsβ + ĉuαsβ, (4.139)

1 Eq. (4.136) is a quadratic equation for u0, so in general it has two solutions. In the following
we shall consider only the one with the minus sign, as the one with the plus sign will give the same
results.
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where

ĉ ≡ xη2 − c(cx+ d)√
1 + (cx+ d)2 − x2η2

. (4.140)

Thus, c is directly related to the expansion of the aether. In fact, we have θ ≡

gαβ∇αuβ = c. On the other hand, assuming that the aether is moving alone the

trajectory xµ = xµ(τ), where τ is the proper time measured by aether, from Eq.

(4.137) we find

u1 ≡ dx(τ)

dτ

∣∣∣∣
c=0

= d, (4.141)

that is, the parameter d is directly related to the constant part of the velocity of the

aether.

In order to have the solution (4.137) well-defined for all the values of x ∈ (−∞,∞),

we must assume that G(x) ≥ 0, which yields

c2 ≥
(
1 + d2

)
η2. (4.142)

On the other hand, the universal horizon is located at [13], (u · ξ) = −
√
G(x) = 0.

Since G(x) ≥ 0 for x ∈ (−∞,∞), we must have [70],

G (xUH) = 0,
dG(x)

dx

∣∣∣∣
x=xUH

= 0, (4.143)

at the universal horizon x = xUH . Inserting Eq. (4.137) into the above equations, we

find that

c = εcη
√

1 + d2, xUH = −εc
√

1 + d2

ηd
, (4.144)

where εc = Sign(c). It is interesting to note that the above solution for c saturates

the bound of Eq. (4.142). We also note that

x2
UH − x2

KH =
1

(ηd)2
> 0, (4.145)

as expected.

On the other hand, from Eqs. (4.131) and (4.133), we find that the khronon field

takes the form

ϕ = t+ f(x), (4.146)

70



xUH
xKH

φ= φ0

-4 -2 2 4
x

-6

-4

-2

2

4

6
t

Figure 4.2: The curves of ϕ = Constant. In this figure, we choose εc = 1, d = 1, η =
√

2.
The universal horizon (dotted vertical line) is located at xUH = −1, and the black vertical
line denotes the location of the cosmological Killing horizon located at xKH = − 1√

2
.

where we had chosen F = −ϕ̃, and dropped the tilde from ϕ̃ for the sake of simplicity,

without causing any confusions. The function f satisfies the differential equation

f ′(x) =
u1 − ηx

√
G(x)

(η2x2 − 1)
√
G(x)

. (4.147)

In Fig. 4.2, we show the curves of Constant ϕ, from which it can be seen clearly

the peeling behavior of the curves of constant ϕ at the universal horizon, while these

curves are well-behaved across the Killing horizon.

From Eq. (4.137), we can construct a spacelike unit vector sµ = s0δ
t
µ+s1δ

x
µ, which

is orthogonal to uµ. It can be shown that sµ has the non-vanishing components

s0 = −(cx+ d),

s1 =
ηxu1 −

√
G(x)

η2x2 − 1
. (4.148)

Then, we can project kµ onto uα and sα, and obtain

ku ≡ (k · u) = −ωu0 + kxu
1,

ks ≡ (k · s) = −ωu1 − kxu0. (4.149)

To proceed further, we need to consider the aether four-velocity uµ in the regions

x > xUH and x < xUH , separately. In particular, εc is set to unity in Eq. (4.144)
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which leads to the solution

u0 = −|dηx+
√
d2 + 1|,

u1 = d,

u0 =
√
d2 + 1,

u1 = η
√
d2 + 1x+ d,

f ′ = − d

xηd+
√
d2 + 1

,

f = −1

η
ln
(
ηxd+

√
d2 + 1

)
, (4.150)

for x>xUH . When x<xUH , we find that u0 and u1 remain the same while u0, u1, f ′

and f are changed to

u0 =
η2x2
√
d2 + 1 + 2dηx+

√
d2 + 1

η2x2 − 1
,

u1 = −2ηx
√
d2 + 1 + dη2x2 + d

η2x2 − 1
,

f ′ =
d

xηd+
√
d2 + 1

+
2ηx

1− x2η2
,

f =
1

η
ln

(
dxη +

√
d2 + 1

1− x2η2

)
, (x<xUH). (4.151)

At the universal horizon, similar to the (3+1)-dimensional case [69], relativistic

particles cannot be emitted in the form of Hawking radiation. Thus, in the following

we consider only the particles with the following non-relativistic dispersion relation

[69]

k2
u = k2

s + a2
k4
s

k2
0

, (4.152)

where a2 is a dimensionless constant of order one, and k0 is the cutoff energy scale.

For k � k0, the particles become relativistic. Then, from Eq. (4.149) we find

ku = − 1

u0

(ksu
1 − ω),

kx = − 1

u0

(ωu1 + ks). (4.153)
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Combined with the dispersion relation (4.152), we find that ks has a simple pole at

the universal horizon x = xUH with u0(xUH) = 0. Thus, we assume that near the

universal horizon we have

ks = −b(x)

u0

, (4.154)

where b(x = xUH) 6= 0. To calculate the temperature given by Eq. (4.127) but now

at the universal horizon, in principle we only need the Laurent expansion of kx in the

neighborhood of the universal horizon. Setting ε = x−xUH , for the special case given

by Eq. (4.150), we find

u0 = −dηε,

u1 = −1

d
+ εη
√
d2 + 1,

b(x) = b0 + b1ε+O
(
ε2
)
,

kx =
b0

η2d2ε2
+

1

ε

(
ω

η
+

b1

η2d2

)
+O (1) , (4.155)

for x > xUH , where

b0 = ± k0√
a2d

,

b1 = ηd2ω − ηdb0

√
d2 + 1. (4.156)

When x < xUH , the Taylor expansions of u1 and b(x) remain the same as in Eq.

(4.155) while u0 and kx are changed to

u0 = dηε,

kx =
b0

η2d2ε2
+

1

ε

(
−ω
η

+
b1

η2d2

)
+O (1) , (4.157)

Correspondingly, with the help of dispersion relation Eq. (4.152), one can show

b0 = ± k0√
a2d

,

b1 = −ηd2ω − ηdb0

√
d2 + 1. (4.158)

In order to figure out the temperature at the universal horizon, one needs to analyti-

cally continue the radial momentum kx to the complex plane, combining Eqs. (4.155)
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and (4.157), it’s easy to conclude that, by setting x = xUH + εeiθ, for θ ∈ (0, 2π)

kx =
b0

η2d2ε2e2iθ
+

2ω

ηεeiθ
− b0

√
d2 + 1

ηdε
, (4.159)

Then, using Eq. (4.127)

ω

TKH
= Im

∮
k+

x dx =
4πω

η
, (4.160)

from which we find that

TUH =
η

4π
. (4.161)

The surface gravity at the universal horizon is given by [13] 2

κUH =
1

2
Du(u · ζ) =

η

2
, (4.162)

from which we find that the standard relation

TUH =
κUH
2π

, (4.163)

is satisfied at the universal horizon. This is similar to the (3+1)-dimensional case

[69,71,72]. For more general case with the dispersion relation

k2
u = k2

s

2z∑
n=0

an

(
ks
k0

)n
, (4.164)

it can be shown that the (3+1)-dimensional results [69]

T z≥2
UH =

κz≥2
UH

2π
=

(
2(z − 1)

z

)(κUH
2π

)
, (4.165)

can be also obtained.

4.6 Summary

In this chapter, 2d projectable Hořava-Lifshitz gravity is coulped minimally to a

scalar field, the momentum constraint of this coupled system can be solved only in

2 It should be noted that κUH given by Eq. (4.162) can also be obtained by considering the
peeling behavior of the khronon field ϕ given by Eq. (4.146), as it was done in [71].
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the case where the fundamental variables are functions of time only. In this particular

case, the quantization of the coupled system can also be carried out by the standard

Dirac process. However, when the system is written in terms of two simple harmonic

oscillators, one of them has positive energy, while the other has negative energy,

whenever their interactions are ignored. The total energy of the system is always non-

negative, provided that the expectation values of the gauge-invariant length operator

L for any given physical state |n1, n2〉must be non-negative. For the case when 2d non-

projectable Hořava-Lifshitz gravity is coulped non-minimally with a non-relativistic

scalar field, the Hamiltonian structure of this coupled system is very similar to that

of pure gravity case. There exist two first-class constraints and two second-class

constraints (The combinations of two second-class constraints will generate two global

first-class constraints which account for global time reparametrization symmetry of

Hořava gravity as first pointed out in [61]). Therefore, the local degrees of freedom

is one due to the presence of the scalar field.

We also found diagonal static solutions for the couplings f(φ) = ξφ, and showed

that Killing horizons exist in such solutions, but the scalar field turns out to be

singular at these Killing horizons. For the non-diagonal stationary solutions, when

the lapse function and the spatial metric component g11 are set to one, we found that

the solutions represent black holes, in which both Killing and universal horizons exist.

At the Killing horizon, the temperature of Hawking radiation is proportional to its

surface gravity defined as in the relativistic case [cf. Eq. (4.129)] [11].

To study locations of the universal horizons, we first considered a test timelike

scalar field in such a fixed background [66], and found solutions of the test field,

whereby the universal horizons located at χ·u = 0 were found. By using the Hamilton-

Jacobi method [69], we calculated the temperature at the universal horizon, and

found that it is proportional to the modified surface gravity defined by Eq. (4.162).

For z = 2 of the dispersion relation (4.164), the modified surface gravity given by
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Eq. (4.66) satisfies the standard relation with its temperature, TUH = κUH/(2π),

similar to the (3+1)-dimensional case [71, 72]. But, in more general cases, both of

them will depend on z, as shown by Eq. (4.165), although the standard relation,

T z≥2
UH = κz≥2

UH /(2π), is still expected to hold [73,74].

The results presented in this chapter show clearly that the existence of univer-

sal horizons and their thermodynamics are independent of dimensions of spacetimes

concerned. Therefore, the 2d Hořava gravity provides an ideal place to address these

important issues, which often technically become very complicated in higher dimen-

sional spacetimes.
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CHAPTER FIVE

Conclusions and Outlook

This dissertation is mostly centered around the topic of low dimensional Hořava-

Lifshitz theory of gravity. I have studied both the projectable and nonprojectable

versions of the theory. Although Hořava-Lifshitz gravity is not trivial in 1+1 di-

mension, from the Hamiltonian formulation of the theory, I find there is actually no

local degree of freedom which makes the quantization of the theory easy to handle.

The difference between two versions of the theory mainly lies in the behavior of the

constraints. In the projectable case, since the lapse function only depends on time,

there is only integral Hamiltonian constraint which can be directly solved to yield

Wheeler-Dewitt equation. While for the nonprojectable case, the Hamiltonian con-

straint become both local and second-class, so one has to find the solution of the

Hamiltonian constraint and its accompanied Lagrangian multiplier in order to show

the theory is self-consistent. Later, I have considered the interactions between matter

sector and the low dimensional gravity. It turns out that the constraint algebra will

not be altered except the contributions from the scalar field should also be added

into the constraints. In the special case when the nonminimal coupling is taken into

account, universal horizon has been found from the classical solutions.

As a matter of fact, there are at least three approaches for the quantization of

a theory, the covariant approach which turns to the perturbation expansion of the

fields on the background of classical solutions (usually Minkowski spacetime), the

canonical approach which is based on the Hamiltonian formulation of the theory and

try to quantize it by solving the Wheeler-Dewitt equation, the path-integral approach

which deals with the generating functional of the correlation functions of the theory.

What I have followed in this dissertation is the canonical approach since for the pure

gravity in two dimensions, there is no propagating degrees of freedom. The covariant
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approach is more appropariate for the higher dimensional theories where there are

local degrees of freedom that can be considered as the fluctuations on the Minkowski

background. In this direction, the renormalization of projectable Hořava-Lifshitz

gravity in 2+1 dimensions has been studied in [75], recently they have also calculated

the renormalization group flow and found the theory is asymptotically free [76]. As

for the path integral approach, the typical example is the lattice theory called causal

dynamical triangulations [77]. In this approach, the spacetime is discretized so one

can apply numerical methods to compute the generating functional.

There is lots of work that is worth my efforts in the future. The first thing I would

like to do is to study the coupled system of 2d Hořava gravity and the scalar field since

the degree of freedom of this coupled system is one which makes it a good situation

to apply the perturbation expansions and I want to see how the gravity sector would

affect the matter part. Secondly, the 2+1 nonprojectable Hořava-Lifshitz gravity

is still imposing challenges due to the second-class constraints, the closure of the

constraint algebra after quantization is an interesting topic to study.
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APPENDIX A

Dirac’s Algorithm for Constrained Systems

A.1 General Aspects of Dirac’s Algorithm for Singular Lagrangian

In this Appendix, I will give a brief description of Dirac’s Algorithm for discovering

all the constraints of the degenerate systems. Here I shall focus on the systems with

discrete degress of freedom for simplicity of notations. It can be easily extended to the

systems with continuous degrees of freedom. Important procedures and results will be

presented in a concise way, as for the details, since there exists a voluminous collection

of references on this subject, I’d like to refer those interested readers to [78–84] as

they cover a variety of topics as well as applications to concrete examples.

For the system described by a Lagrangian which is quadratic in velocities and free

of high derivative operators 1

S =

∫
dtL(qi, q̇i), (A.1)

where superscript i denotes different degrees of freedom, the momentum in this case

is defined by

pi =
∂L
∂q̇i

. (A.2)

Now there exits an operator called Hessian matrix denoted by Wij = ∂2L
∂q̇i∂q̇j

, whose

determinant W = det(Wij) can be used to distinguish between degenerate and non-

degenerate systems. If W is nonzero, there is one-to-one correspondence between the

coordinate-velocity space (spannd by qi and q̇i) and the phase space (spannd by qi

and pi), therefore, all the velocities q̇i’s can be uniquely determined as some functions

1 If Lagrangian contains high-order time derivative terms, the system is unstable since the energy
is not bounded from below due to the presence of Ostrogradsky’s ghosts [19,85], on the other hand,
if Lagrangian contains a polynomial of velocities which usually appears in some modified gravity
theories [86], different techniques should be applied in order to obtain a unique Hamiltonian of the
system as discussed in [87].
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of qi and pi

q̇i = fi(q
i, pi). (A.3)

Then after applying Legendre transformation

H = piq̇
i − L, (A.4)

the Hamiltonian can thus be derived so are the first-order EOM in the phase space

which are equivalent to Euler-Lagrange equations directly obtained from the action

by variational method.

Now comes the nondegenerate systems with constraints2 which are featured by

vanishing Hessian determinant W = 0. In this case, one can’t solve for all the

velocities from the definition of momentum (A.2). Assuming the rank of Hessian

matrix Wij is m and there are n degrees of freedom (i, j range from one to n), thus

it can be shown that only m velocities q̇α (α takes the values from one to m) can

be solved as functions of qi, pα and q̇s, where s = m + 1, ..., n. The remaining

n−m definitions of ps’s will be reduced to n−m relations between the phase space

variables which are called primary constraints φs(q
i, pi). Therefore, after Legendre

transformation Eq. (A.4) is performed, the resulting canonical Hamiltonian reads

H = H0(qi, pα) + usφs, (A.5)

where summation over s from m + 1 to n is understood.3 As a result, the EOM in

the phase space take the form of Poisson bracket

ζ̇ i ≈
{
ζ i, H

}
,

(A.6)

2 The original purpose of studying nondegenerate systems is to quantize Einstein’s theory of grav-
ity. Although Bergmann and his students [88] first set out to formulate the difficulties encountered in
the canoncial formulation of degenerate systems and partially solve them, it was Dirac [89] who pro-
posed his method, known as Dirac’s algorithm nowadays, to systematically unveil the Hamiltonian
and all the constraints of degenerate systems.

3 Actually us equals undetermined velocities q̇s, generally H0 is a nonzero quantity except when
the action is invariant under time reparametrization transformation [82], see [90] for a simple proof.
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where ζ i = (qi, pi) and ” ≈ ” is called ”weakly equals” which implies that the equa-

tions should be evaluated on the primary constraint surface which is carved out of

the whole phase space by φs = 0 and therefore all the trajectories of the motion will

be confined to it. However, this is not the end of the story since the primary con-

straints are identities due to the definition of momenta and degeneracy of the singular

Lagrangian, they should be satisfied as the system evolves over the time, this equally

states

φ̇s ≈
{
φs, H

}
≈ 0. (A.7)

There are three possibilities resulting from the above evolution equation,

Case (a) Eq. (A.7) can be simply reduced to the trivial identity on the constraint

surface, i.e. ”0 ≈ 0” which signifies the end of Dirac’s procedures.

Case (b) Eq. (A.7) is now equivalent to an algebraic (for discrete case) or partial

differential equation (for continuum case) of Lagrangian multiplies us which indicates

the us must be restricted by the evolution of the system. In this case, the existence

and uniqueness of the solutions of us is a vital test for the viability and consistency

of the theory.4

Case (c) Generally, Eq. (A.7) will fall into this category in which the secondary

constraints will be generated. In this case, the evaluation of Eq. (A.7) can give us

relations between canonical variables

χr(q
i, pi) ≈ 0, (A.8)

which are independent of the primary constraints. These relations are called sec-

ondary constraints since they impose further restrictions on the possible surface where

trajectories of the motion can exist. Now the particles can only travel on the sub-

space spanned by φs = χr = 0. Once all the secondary constraints are derived, it’s

necessary that they should be preserved over the time, so one simply evaluates the

4 see [45] for one example on this topic.
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time evolution of secondary constraints until case (a) or (b) is reached which termi-

nates the whole process. In this way, all the constraints of the theory can be found

systematically. In the rest part of this appendix, the secondary constraints will be

denoted collectively by χr.
5

A.2 First- and Second-Class Constraints

Based on the analysis in the last section, one can obtain canonical Hamiltonian

H in Eq. (A.5) of the constrained system with primary and secondary constraints,

i.e. φs̄ and χr̄ (or ψn̄
6 collectively). The motion of the particles is confined to the

constraint surface spanned by ψn̄ = 0. In order to find the dimension of the physical

phase space, the knowledge of first- and second-class constraints is required.

The first-class constraints σµ̄ are those which commute with all the constraints on

the constraint surface, that is, {
σµ̄, ψn̄

}
≈ 0, (A.9)

here µ̄ = 1, ..., µ. For the second-class constraints τν̄ (ν̄ = 1, ..., ν), there at least

exists one constraint τν̄′ which fails to commute with τν̄ ,

Mν̄ν̄′ =
{
τν̄ , τν̄′

}
6≈ 0. (A.10)

One notable feature of matrixMν̄ν̄′ is that its determinantM is nonzero.7 Therefore,

the inverse matrix M̃ν̄ν̄′ exists. In order to reveal the intrinsic difference between first-

and second-class constraints, one can consider the extended Hamiltonian defined by

Hext = H0 + αµ̄σµ̄ + β ν̄τν̄ . (A.11)

5 No difference will be made between secondary and so-called tertiary constraints which are
generated by time preservation of secondary constraints. All the constraints other than primary
constraints will be called secondary constraints.

6 Here the subscripts s̄, r̄ and n̄ indicate the numbers of constraints are s, r, n respectively, so
there is relation n = s+ r.

7 If M is zero, then there must be a linear combination of τν̄ which commutes with all the τν̄′

which goes against the hypothesis that τν̄s constitute an irreducible set of second-class constraints.
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Correspondingly, the evolution of any functions of canonical variables is given by the

EOM

ḟ(qi, pi) ≈
{
f(qi, pi), Hext

}
. (A.12)

As a result, time invariance of the constraints immediately leads us to the conclusion

that all the αµ̄ are truly arbitrary while the coefficients of the second class constraints

must be fixed as

β ν̄ = −M̃ν̄ν̄′
{
τν̄′ , H0

}
. (A.13)

Substituting the solution of β ν̄ back into the evolution equation Eq. (A.12), one

finally arrives at

ḟ(qi, pi) ≈
{
f,H0 + αµ̄σµ̄

}
−
{
f, τν̄′′

}
M̃ν̄

′′
ν̄′
{
τν̄′ , H0 + αµ̄σµ̄

}
. (A.14)

This form of evolution equation provides us a way to find the right definition of Dirac

bracket which is {
f, g
}
D

=
{
f, g
}
−
{
f, τν̄′′

}
M̃ν̄

′′
ν̄′
{
τν̄′ , g

}
, (A.15)

here f and g are two arbitrary functions of canonical variables. Dirac bracket inherits

most of algebraic properties of Poisson bracket [82] while, on the other hand, has its

own advantages: the second-class constraints are rendered strongly equal to zero once

Poisson bracket is replaced with Dirac bracket in the EOM, since{
τν̄ , f

}
D

= 0, (A.16)

for any function f in the phase space. As a result, the EOM in terms of Dirac bracket

can be cast into the form

ḟ ≈
{
f,H0 + αµ̄σµ̄

}
D
. (A.17)

This clearly shows that given the initial conditions which satisfy the first-class con-

traints at the initial time, the solutions of the motion can not be uniquely determined

at a later time, and the degrees of freedom caused by the arbitrariness of αµ̄ are called

gauge degrees of freedom, a reflection of gauge invariance of the degenerate theory.
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A.3 Gauge Conditions and Reduced Phase Space

As pointed out at the end of the last section, the gauge degrees of freedom are

closely related to the first-class constraints of the theory. Actually, it can be shown

explicitly that the first-class constraints are the generators of gauge transformations

which leave the EOM in the Hamiltonian formulation form-invariant. A generic form

of these generators is of the type

Gi(ε, ε̇, ..., ε
(k)) =

k∑
l=0

ε
(l)
i Gn, (A.18)

where l stands for lth time derivative of gauge parameters εi, and Gn are some linear

combinations of first-class constraints which can be fixed in the Dirac’s procedure as

discussed in Sec. A. 1 [81]. The number of independent gauge parameters εi coincides

with the number of primary first-class constraints.8

In order to uniquely fix the trajectories of the motion, one needs to fix the coef-

ficients αµ̄ in Eq. (A.17). The basic idea is to add the same number of additional

conditions σ̄µ̄
9 as that of first-class constraints so that all the first-class constraints

together with the gauge conditions become second-class. So the EOM in terms of

Possion bracket now becomes

ḟ ≈
{
f,H0 + αµ̄σµ̄ + β ν̄τν̄ + αµ̄

′
σ̄µ̄′
}
. (A.19)

The preservation of all the constraints σµ̄, τν̄ and σ̄µ̄′ in time will generate (2µ + ν)

equations of their coefficients. Now an important question arises: whether these

(2µ+ν) equations have unique solutions? The fact is that only with a discreet choice

of gauge conditions, these equations can be solved for the coefficients αµ̄, β ν̄ , and

αµ̄
′
.10 Once the solutions of these coefficients are substituted back into Eq. (A.19),

8 For example, in canonical formalism of general relativity, there are four primary first-class
constraints which are canonical momenta of the lapse function and shift vectors, so there are also
four independent gauge parameters which are the arbitrary functions in the general coordinate
transformation.

9 These conditions, called gauge conditions, are relations of canonical variables which are regarded
as additional constraints added to the theory so that gauge degrees of freedom can be eliminated.

10 See [91,92] for a discussion of admissible gauge conditions for constrained systems.
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the gauge degrees of freedom are eliminated and unique solutions of motion can be

found as long as initial conditions are provided. The motion of particles are now

confined to the subspace spanned by the constraints σµ̄, τν̄ and σ̄µ̄′ . This subspace is

called reduced phase space whose dimension can be calculated by the formula

D = 2N − 2µ− ν, (A.20)

with the understanding that half of D amounts to the physical degrees of freedom

in the coordinate space. The reduced phase space is physical in the sense that the

actual motion of particles can be parameterized by the canonical variables in that

space. Once the reduced phase space is found, the quantization of the system can

be implemented by promoting canonical variables to operators and replacing Poisson

brackets with commutators. However, this reduced phase space is generally difficult

to find. So when it comes to the quantization of systems with gauge symmetry,

instead of diminishing the dimensions of the phase space, people usually expand the

phase space by adding more degrees of freedom with opposite Grassman parity. The

study of this subject is outside the scope of this dissertation.
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