ABSTRACT

A Comparative Analysis of Fecal Sterol Distribution to Investigate the Disappearance of

Mastodon at the Page-Ladson Sinkhole

Arham Siddiqui

Director: Dr. James Fulton, Ph.D.

The Page-Ladson sinkhole in Florida is a historic site which provides rich stratified deposits of late Pleistocene specimens and artifacts. Evidence from the site indicates coexistence of the prehistoric species of mastodon M. americanum and pre-Clovis humans. However, the relationship between the two species is not yet clear, and the disappearance of mastodons in the early Holocene is still being studied. A way to understand the relationship between species over time is to analyze their chemical remains preserved in sediments, and the comparative analysis of fecal sterol/steroid-derived compounds might provide new evidence regarding the extirpation of mastodons over time. In this study, we retrieved fecal samples from different mammals and sediments from the Page-Ladson sinkhole and extracted lipid fractions for GC/MS analysis. The lipid extract analysis revealed a number of sterol and steroid derived compounds, many of which successfully matched with the Page-Ladson compounds. Further interpretation can reveal methods for detecting past ranges of different mammalian species.

APPROVED BY DIRECTOR OF HONORS THESIS:

Dr. James Fulton, Department of Geosciences

APPROVED BY THE HONORS PROGRAM:

Dr. Elizabeth Corey, Director

DATE: _____

A COMPARATIVE ANALYSIS OF FECAL STEROL DISTRIBUTION TO INVESTIGATE THE DISAPPEARANCE OF MASTODON AT THE PAGE-LASON SINKHOLE

A Thesis Submitted to the Faculty of

Baylor University

In Partial Fulfillments of the Requirements for the

Honors Program

By

Arham Siddiqui

Waco, TX

April 2019

TABLE OF CONTENTS

Acknowledgements.	iii
Introduction	1
Chapter One: Materials and Methods	4
Chapter Two: Sterol Distribution from Page-Ladson	13
Chapter Three: Sterol Distribution from Cameron Park Zoo	20
Chapter Four: Sterol Distribution from Martens Farm	26
Chapter Five: Discussion.	30
Conclusion	36
Appendices:	
Appendix A: Sample Information	38
Appendix B: Name Index	40
Appendix C: Distribution Index – Page Ladson	47
Appendix D: Distribution Index – Cameron Park Zoo - Elephant	52
Appendix E: Distribution Index – Cameron Park Zoo – White-Tailed Deer $\ .$	58
Appendix F: Distribution Index – Cameron Park Zoo – Black Bear	64
Appendix G: Distribution Index – CPZ and Martens Farm – Bison/Holstein	70
Appendix H: Distribution Index – Martens Farm – Remaining	76
Bibliography.	80

ACKNOWLEDGEMENTS

Thanks are due to the following individuals for their contributions to the success of this thesis. Dr. James Fulton Ph.D. from the Baylor University Department of Geosciences for serving as the director and mentor for this thesis project. Dr. William Hockaday Ph.D. from the Baylor University Department of Geosciences and Zhao Wang for the mentorship on the thesis and the use of the lab. Dr. Michael Waters, Texas A&M University for the Page-Ladson samples. Manda Butler, the Animal Care Manager of Mammals at Cameron Park Zoo and the Animal Care and Use Committee for the Cameron Park Zoo samples. Dr. Paul and Candace Martens for the kind donation of the Martens Farm samples.

INTRODUCTION

The end of the Pleistocene epoch has shown evidence from bones, teeth, tusks, and human lithic artifacts of mastodon extinction (*Mammut americanum*) in different regions of North America. Before extinction, evidence shows that the spread of the species of mastodon *M. americanum* has been found in areas such as Mexico and as far east as Florida according to evidence from the Page-Ladson sinkhole.^{1,4} Migration to North America through a land corridor in the Bering Strait allowed for the similar species of *Mammuthus columbi* and *Mammuthus primigenius* to spread across the present day United States, inhabiting northern areas such as South Dakota and southern locations including Kansas, California, and even Florida.^{2,3,4} Understanding the habits and characteristics of the different mammoth and mastodon populations (e.g. migration patterns) can allow for a better understanding of their behaviors prior to extinction as well as illuminate a better picture of other species that dwelled in areas at the same time (e.g. different mammals such as early humans).

The Page-Ladson sinkhole has shown traces of both mastodons and humans indicating not only that there was a pre-Clovis human occupation of Florida, but that these humans lived along with the masotdons.⁵ For example, some lithic artifacts were found near a cut-marked mastodon tusk which indicates mastodon butchering.⁶ The significance of these discoveries is rooted in the collective findings of the Quaternary extinction events. The end of the Pleistocene epoch of the Quaternary period has shown

the most evidence of megafaunal species extinctions throughout each continent due to human hunting activity.¹⁰ With that being said, as the Pleistocene epoch progressed towards the Holocene epoch, it has been hypothesized that there was a co-habitation of humans and mastodon at and around the Aucilla River (location of the present-day Page-Ladson sinkhole) followed by evidence of extinction.¹¹ Evidence of pre-Clovis human occupation with mastodon in Florida places humans at the area earlier than previously expected and has encouraged further study of the extirpation of the American mastodon.

Fecal sterol analysis provides a potential mechanisms to study mastodon or mammoth occurrence in the absence of other fossil evidence. Human fecal matter is rich in sterols such as coprostanol¹², and sterols have been used by many researchers to study the influence of human waste in aquatic systems and their subsequent environmental impacts. Argiriadis et al. of The Ca' Foscari University of Venice studied the presence of coprostanol in New Zealand to illuminate mankind's presence in the area and their impact on the environment/climate.⁷ Fecal sterol biomarkers were also used in a study in Brazil to determine factors related to sewage contamination.⁸ Studying the patterns and characteristics of different species can therefore be conducted by comparing and analyzing their fecal sterol distributions. Fecal sterol distributions can be thought of as a unique footprint which can identify a certain species at a certain period in time. A study looking at surface sediment at Sungai Tebrau, Johor found that the fecal sterol distribution of the surface had four principal sterols which were coprostanol, cholesterol, epicoprostanol, and cholestanol. This study used these distributions to see if the surface was contaminated with sewage.⁹

Fecal sterols from non-human mammals have also been studied. For example, fecal biomarkers in pigs, dogs, cows, horses, goats, sheep, and other mammals were studied to distinguish between modern and past environments.¹³ Moreover, this strategy can be used to reconstruct the history of ancient species as well. In a similar way as the previously mentioned studied, identifying the characteristic fecal sterols of a certain mammalian species and charting the distribution of those sterols over time can illuminate the species' appearance and disappearance during a certain period. For instance, the decline of mammalian fecal sterols during a certain period and the rise of mastodon fecal sterols during the same time could indicate a predator-prey relationship. With that being said, sterols from mastodon and mammal samples can be isolated and then compared to the soil from Page-Ladson which can highlight patterns of the species that lived or went extinct during the transition to the early Holocene epoch.

The objectives for this study therefore include (1) analyzing lipid extracts from sediment core samples from the Page-Ladson site for distinctive sterol compounds, (2) identifying the sterol compositions of manure from mammals that might have inhabited Florida during sediment deposition in the Page Ladson sinkhole, and (3) examining chemical transformations during the transfer of mammalian fecal sterols from fresh manure to underlying soil layers. These data and interpretations can help develop methods for detecting past ranges of mammalian species where physical fossils are not found. Interpretation of the timing of the appearance and disappearance of species at the Page-Ladson sinkhole can improve our understanding of how and why the mastodons disappeared in the area near the end of the Pleistocene epoch.

CHAPTER ONE

Materials and Methods

Samples

Samples for sterol extraction in this study were obtained from an array of fecal and sedimentary samples. Four samples from a sediment core with ages of approximately 8500, 9245, 10590, and 11810 years were obtained from Dr. Michael Waters, Texas A&M University. The oldest sample corresponds with sedimentological evidence for the occurrence of mastodons and the younger samples appear to have been deposited after mastodons last appeared in the area. The Page-Ladson sinkhole samples were sent to Baylor in vials which were stored frozen at -20 °C prior to analysis. Appendix A shows that each vial is associated with a number, the higher of which is associated with a deeper sample in the core (i.e. Vial 4 (PL3 - 25) was the deepest sample received). Six manure samples (E1-E6) from African Elephants (Loxodonta africana), representing the closest living relative to *M. americanum*, were provided by the Cameron Park Zoo, Waco, Texas. Additional manure samples from large mammals endemic to North America were also donated, including four samples of bison (B1-B4), six samples of white-tailed deer (WTD1-WTD6), and six samples of North American Black Bear (BB1-*BB6*). These samples were kindly provided by Manda Butler, the Animal Care Manager of Mammals at Cameron Park Zoo and approved by the Animal Care and Use Committee. The samples were collected by zoo staff in sealed plastic bags which were promptly stored in the freezer at Baylor at -20 °C.

Through the kind cooperation with Dr. Paul and Candace Martens, we acquired domestic mammalian samples including those from domesticated chicken (Gallus gallus domesticus), Dexter cattle (Bos taurus), Holstein cattle (Bos taurus), and American LaMancha goat (Capra aegagrus hircus). Soil slabs were also obtained from the site to study the migration of compounds of feces down into the soil after mammal defecation. Within the A soil horizon, we dug down to a maximum of 10.5 inches to obtain the soil slab samples. Three soil samples were obtained at different levels of the 10.5-inch slab by scraping the sides of the slab with a stainless-steel spatula or spoon. The levels included between 0-1 inches, 4-5 inches, and 8-9 inches. While on the farm site, samples were obtained by filling Whirl-Pak[®] bags, sealing them, and labeling them. Methanol and Kimwipes[®] were used to clean and dry the spoon and spatula between each sample. Pictures with a ruler next to each sample were taken to reference as a scale. The samples acquired at Martens farm as a whole comprised of feces from a domesticated chicken (C), a fresh sample from a Dexter cow (DF), mixed Dexter and Holstein cattle (DH), an American LaMancha goat (LMG), three Holstein cattle (H1, H2, H3), a sample of older Holstein manure under Dexter cattle manure (*HUD*), as well as well as three soil slabs (S1, S2, S3) (Figure 1) and soil under a Holstein fecal sample (DUF). After obtaining the samples they were brought back to the lab and stored at -20 °C in the freezer.

Figure 1: Slabs of dirt obtained from Martins' Farm

Sample Preparation

In order to identify the sterol distribution of each sample, they were first freezedried to remove any water. The Labconco FreeZone 4.5L Freeze-Dryer (Lyophilizer) was used to freeze-dry the samples. To begin the freeze-dry process, the drain line on the front of the freeze-dryer was opened and any water that had accumulated in the reservoir was removed. Then the chiller was turned on to the manual settings, and when the temperature reached around -40 °C, it was ensured that all valves on the condensation chamber were closed so that the vacuum pump could be turned on. When the pressure in the condensation chamber reached around $100 \times 10-3$ mbar, the samples from the Martens farm, Cameron Park Zoo, and the Page-Ladson sinkhole were inserted into the holding chamber. The pressure inside the chamber was promptly recorded at each stage of the freeze-dry process for each cluster of samples. After opening both of the isolation valves between the condensation chamber and the drying chamber, the pressure was allowed to settle until reaching $100 \times 10-3$ mbar or lower.

After around a day of freeze-drying, the samples from each respective cluster were ready for grinding to homogenize and prepare them for extraction. Using a mortar and pestle, each sample was ground, sieved (mesh size 20) to remove large chunks of plant material, transferred into glass jars, and labeled so that they could be extracted. Between each grinding, the mortar and pestle were thoroughly washed with soap and water, dried with Kimwipes[®], washed with DCM and then dried with Kimwipes[®] again. This cleaning step was repeated multiple times in order to ensure that there was no cross contamination between different fecal or sedimentary samples.

Lipid Extraction

To extract the fecal sterols from the various samples, we used the Accelerated Solvent Extractor (ASE^{TM}). The ASE^{TM} 200 was used by $Dionex^{TM}$ to extract our samples. Multiple ASE^{TM} sessions were conducted for each respective cluster of samples. Before extraction, the stainless-steel holding tubes and the glass collection tubes were cleaned to ensure no cross contamination. As a part of the pre-extraction, the stainless-steel holding tubes were washed by putting them through one cycle through the ASE^{TM} empty at 100 °C and at 1500 psi. The glass collection tubes were cleaned by combusting them 460°C for around 12 hours. For each cluster of samples, the samples were prepared into the stainless-steel holding tubes with 11 mL, 22 mL or 33 mL capacity. First, between half a gram to two grams of the samples were weighed using aluminum foil as a base. This

amount was used so that the rest of the space in the holding tubes could be filled with diatomaceous earth (DE). Still on the aluminum foil, each sample was mixed with DE and then poured into the prepared holding tube. The rest of the space in the tube was filled with DE. The function of DE is to take up space in the steel cells and promote solvent flow through the cells by preventing clump formation. After loading the holding tubes into the ASE[™], the extractor was ready for preparation. First the solvent reservoirs were checked, and if any were below one liter they were filled up using HPLC solvents. The solvents used in this extraction were methanol and dichloromethane. The gases used in the ASE[™] must also be turned on, including nitrogen as they serve the function of building up pressure. Each gas must be kept at a certain level such as the nitrogen gas chamber at minimum levels of 500 psi. Compressed air must also be turned on before beginning the extraction to increase the pressure in the ASE[™] before extraction. The pertinent settings for the extraction are listed in Figure 2.

Temperature	100 °C
Pressure	1500 psi
Flush %	30 vol
Purge	60 sec
Static	5 min
Heat	5 min
Preheat	1 min

Figure 2: ASE[™] settings for the extraction of fecal and sedimentary samples

The extractions for each cluster of samples were run for 12 hours. After each extraction, the stainless-steel holding tubes were emptied, washed with soap and water, and then

ultrasonicated using the VWR B2500A - MT for reuse. The holding tubes were ultrasonicated three times, each thirty minutes long, with the first sonication having the tubes immersed in water with Alconox and the other two sonications having the tubes in 90:10 DCM-Methanol solution. The holding tubes can then be pre-extracted again through the ASE[™] with fresh solvents again for reuse. The glass collection vials were evaporated using the TurboVap[®] LV Evaporator in order to concentrate the samples and get rid of any unnecessary volatile organic solvents. The content in the collection vials were then transferred using a pipette to 1.5 mL vials.

Open-column Chromatography

Before the samples were ready for gas chromatography analysis, we first wanted to obtain the total lipid extraction of each. They had to be run through open column chromatographs in order to maximize the concentration of sterols in the vials and eliminate any leftover aqueous material. First, sodium sulfate (Sodium Sulfate, Anhydrous, Granular (12-60 Mesh)) was added to each vial (filled to around a sixth of the vial volume), and in order to mix the contents, the Barnstead Lab Line Multi-Wrist Shaker was used. While waiting for the contents of the vial to mix, open column chromatographs were set up using Pasteur pipettes, which were previously combusted at 460°C to get rid of any organic contamination. DMCS Treated Glass Wool was then inserted into the pipette in order to keep the to be added sodium sulfate from falling to the other side. A longer Pasteur pipette was used to push the glass wool into place at the bottom of the smaller pipette. To handle the glass wool, forceps were used which were cleaned using methanol and dichloromethane (DCM) in order to eliminate organic contamination. After the glass wool was added, approximately 4 centimeters of silica gel

was added to the pipette. VWR Weighing Paper was used to transfer the silica gel from its original container to the pipette. The silica gel acts as the stationary phase of the column which will bind to most polar organic compounds. To condition the column, 1 mL of DCM was run through the silica gel in order to make sure that the interacting sterols don't bind so tightly to the column. Small vials or beakers were added under each pipette so that the initial DCM which ran through the column could drop without spilling. These vials and beakers were promptly removed once the DCM finished wetting the column. The samples from the shaker were then removed and allowed to settle. Using a pipette with a rubber top, the organic layer (containing the sterols) was withdrawn and inserted into each respective pipette. Caution was taken to make sure the sodium sulfate at the bottom of the vials were not taken. For around 20 minutes, the liquid samples were allowed to run through column. Liquid which finally reached the bottom of the column leaked into 1.5 mL gas chromatographic collection vials. As soon as this dripping started, a 1 mL aliquot of DCM was added and allowed to run through the column for around 25 minutes. The DCM acts as the mobile phase of the column as it is relatively nonpolar. After the samples completely ran through the column, the vials were topped with Argon in order to prevent contact with oxygen (avoiding oxidation).

Derivatization

Before gas chromatography-mass spectrometry (GC/MS), the samples must first be derivatized. Specifically, we prepared them using trimethylsilyl (TMS) ethers. The purpose of derivatization is to have the TMS react with alcohols, acids, and amines to make the compounds of interest more volatile. The derivatization protocol we followed used the reagent bis(trimethylsilyl)trifluoroacetamide (BSTFA). We also used pyridine to act as a base catalyst which can decrease the time of the reaction, especially those including compounds that have steric hinderance. 500 μ L of the sample was obtained from the original sample volume using the FlexiVap Work Station. The 500 μ L of samples in the GC vials were then transferred to DCM (an aprotic solvent) since protic solvents such as methanol would react with the BSTFA 125 μ L of pyridine and BSTFA were added to each sample and were heated at 65°C for around 20 minutes to ensure the reaction goes to completion. After the samples cooled to room temperature, they were stored in the refrigerator.

Gas Chromatography

The batches of samples were then ready for gas chromatography-mass spectrometry (GC-MS) analysis. The HP 6890 GC System was used to analyze the samples in Dr. Bill Hockaday's Organic Geochemistry Lab. Gas chromatography analysis can be used to identify the compounds in the sample by identifying the peaks from the GC and finding their respective mass spectrum. The column type was HP-5 5% Phenyl Methyl Siloxane. The column dimensions were 30.0 m x 250 μ m x 0.25 μ m nominal. The injection volume was 2.0 μ L. Figure 3 shows the temperature program run for the GC.

Oven	°C/min	Next °C	Hold	Run
Ramp			min	Time
Initial	-	70	2.00	2.00
Ramp 1	5.00	210	0.00	30.00
Ramp 2	3.00	300	10.00	70.00

Ramp 3	0.00	-	-	-
Post Run	-	70	0.00	70.00

Figure 3: The temperature program for the GC analysis

A vial of hexane was added first to function as both a blank and for rinsing during the GC analysis. Acetone and DCM were both used as cleaning solvents for the autosampler syringe and the carrier gas was helium. For each session, after loading an aliquots of the samples in the autosampler carousel, the sample identification and GC method were entered into the Chemstation software that controls the GC. After starting the system, the sample program ran for 75 minutes per vial and the results were analyzed using Chemstation data analysis software before running the next batch. Chemstation software linked to the NIST database provides initial identification information for unknown compounds, but without the additional consideration of molecular structural information related to retention time, misidentification is possible.

CHAPTER TWO

Sterol Distribution from Page-Ladson

Distribution Index Analysis (See Appendix C)

The gas chromatograms and mass spectra for the four Page-Ladson site samples were analyzed for compounds of interest, which included those that had a steroid backbone as well as others such as n-alkanes and α -tocopherol. A comprehensive index was made which highlighted the initial identification of a variety of compounds identified using Chemstation software and comparison with the NIST database and their individual chromatographic retention times. Compounds that were found in common among the Page-Ladson samples were checked to see if they had matching retention times. This is because if they did not have the same retention times, the compounds are not the same, and at least one must have been misidentified

For compounds that had a steroid backbone, the Chemstation software indicated the common presence of Cholest-7-en-6-one, 3-(acetyloxy)-9-hydroxy-, $(3\beta,5\alpha)$ -, Pregnane-3,11,20-trione, (5β) -, Pregn-4-ene-3,20-dione, 11,21-bis[(trimethylsilyl)oxy]-, bis(O-methyloxime), (11 β)-, Urs-9(11)-en-12-one-28-oic acid, 3-acetoxy-, methyl ester (14 β ,20 β), and Pregnane-3,20-dione, 11,21-bis[(trimethylsilyl)oxy]-, bis(Omethyloxime), (5 α ,11 β)- in the Page-Ladson samples. There were also additional compound identifications that were only observed in individual samples. Based on the expected retention time for steroid compounds around 50 to 60 minutes on the GC method, we focused on the later eluting compounds in Figure 4, which displays the steroid compounds and their retention times. The earlier eluting compounds must have

been misidentified by the software.

Pregn-5-en-20-one, 3,16-bis[(trimethylsilyl)oxy]-,	
(3β,16α)-	51.132 min
Pregn-4-ene-3,20-dione, 21-(acetyloxy)-17-hydroxy-6-	
methyl-, 3,20-bis(O-methyloxime), (6α)-	37.069 min
Bilirubin	35.319 min
Cholan-24-oic acid, 3,7-dioxo-, (5β)-	35.319 min
Chol-7-ene, (5β)-	35.959 min
Bufa-20,22-dienolide, 3-(acetyloxy)-14,15-epoxy-16-	
hydroxy-, (3β,5β,15β,16β)-	35.879 min
1H-Cyclopropa[3,4]benz[1,2-e]azulene-2,5-dione, 9,9a-	
bis(acetyloxy)-3-[(acetyloxy)methyl]-	
1a,1b,4a,7a,7b,8,9,9a-octahydro-4a,7b-dihydroxy-1,1,6,8-	
tetramethyl-, [1aR-(1aα,1bβ,4aβ,7aα,7bα,8α,9β,9aα)]-	36.359 min
Phorbol 12,13-dihexanoate	37.085 min
DES-A-ARBORANE	37.537 min
Bufa-20,22-dienolide, 14,15-epoxy-3,16-dihydroxy-,	
(3β,5β,15β,16β)-	38.143 min
4H-Cyclopropa[5',6']benz[1',2':7,8]azuleno[5,6-b]oxiren-4-	
one, 8-(acetyloxy)-1,1a,1b,1c,2a,3,3a,6a,6b,7,8,8a-	
dodecahydro-3a,6b,8a-trihydroxy-2a-(hydroxymethyl)-	
1,1,5,7-tetramethyl-,	
(1aα,1bβ,1cβ,2aβ,3aβ,6aα,6bα,7α,8β,8aα)-	39.949 min
4,13,20-Tri-O-methylphorbol 12-acetate	41.435 min
14β)3,19-Epoxyandrosta-5,7-diene, 4,4-dimethyl-3-	
methoxy-17-methylthiomethoxy-	50.728 min
5,16,20-Pregnatriene-3beta,20-diol diacetate	51.591 min
Cholestane-3,7,12,25-tetrol, tetraacetate, $(3\alpha,5\beta,7\alpha,12\alpha)$ -	51.591 min

Figure 4: Retention times for unique compounds in Page-Ladson samples

An important feature to note about Figure 4 is that aside from the first two compounds on

the list, the remaining thirteen were uniquely identified just from PL3-25, or in other

words the lowest depth sample given to us from the Page-Ladson site which dates back

11,810 years ago.

The compounds without a steroid backbone which were found in all of the samples from the Page-Ladson site included the n-alkanes nonacosane $(C_{29}H_{60})$, hentriacontane $(C_{31}H_{64})$, and tritriacontane $(C_{33}H_{68})$. These long-chain hydrocarbons, which had the strongest MS signals among the compounds eluting near 50 minutes, are derived from plants and are commonly called "leaf waxes" due to their concentration in the cuticle of leaves. The four Page-Ladson samples also included trace concentrations of tocopherols, which are plant-derived oils that have vitamin E activity. Further discussion of the leaf waxes and tocopherol in mammal fecal samples will follow in the later chapters. The PL3-25 sample also included six distinctive chromatographic peaks from trace concentrations of compounds found in mammalian feces that elute between 51 and 60 minutes. These compounds appear to be steroid-related, were detected in diverse mammalian samples, and will be discussed in the following chapters. These stillunidentified compounds might be related to bile acids and have potential mammal biomarker implications. Figures 5 shows the chromatogram for E2 specifically for the 129.00 ion fragment between 45.00 and 65.00 minutes which indicates the three sterols and their stereoisomers. Figure 6 shows the chromatogram for E2 in the range 45.00 minutes to 60.00 minutes which identifies n-alkanes, squalene, and α -tocopherols.

Figure 5: 129.00 Ion fragment chromatogram of E2 between 45.00 and 65.00 minutes

Figure 6: N-alkanes, squalene, and tocopherols from 45.00 to 60.00 minutes of E2

Ion Fragment Analysis

When looking at the mass spectra of the four Page-Ladson site samples, there were three distinctive compounds (six peaks total, with two probable stereoisomers for each) which appear to be sterol-related. These chromatographic peaks were first detected on an extracted ion chromatogram for the m/z129.0 ion fragment, which is commonly

employed for detecting sterols such as cholesterol in a wide range of samples. We did not detect any of the common sterols and stanols that we hypothesized for the Page-Ladson sediments. These six peaks detected as trace components in the PL3-25 sample were relatively abundant in many of the Cameron Park Zoo and Martens Farm samples. However, these peaks were not found in the other three Page-Ladson samples, indicating a distinguishing factor between the lowest depth sample of the Page-Ladson site (PL3-25) and the other samples of higher depths. The three sterol-related compounds of interest include those with m/z 480, 508, and 536 ions. These might be the molecular ion peaks, though higher m/z features (up to m/z 645) with very low signal intensity suggest the compounds could have higher masses in line with bile acids. Figures 7, 8, and 9 show the mass spectra (from *E2* as a reference) for the 480, 508, and 536 ions respectively.

Figure 7: Mass spectrum indicating the 480 m/z ion

Figure 8: Mass spectrum indicating the 508 m/z ion

Figure 9: Mass spectrum indicating the 536 m/z ion

For PL3-25, the 480 peak and its stereoisomer were found with retention times 51.745 and 52.568 minutes. The 508 peak and its stereoisomer were found with retention times 55.535 and 56.289 minutes. The 536 peak and its stereoisomer were found with retention times 59.164 and 59.867 minutes. Figure 10 shows information on each peak and its isomer.

Sample	Ion Fragm	Ret Time	Туре	Width	Area	Start Time	End Time
PL3-25	480	51.741	rVV	0.086	390	51.7	51.785
PL3-25	480	52.543	rBV	0.154	374	52.454	52.608
PL3-25	508	55.546	rBB	0.12	676	55.489	55.609
PL3-25	508	56.291	rVB	0.171	815	56.209	56.381
PL3-25	536	59.166	rBV	0.171	872	59.09	59.261
PL3-25	536	59.88	rBB	0.154	625	59.81	59.964

Figure 10 – Ion Fragment Information on sample PL3-25.

CHAPTER THREE

Sterol Distribution from Cameron Park Zoo

Distribution Index Analysis (See Appendices D, E, F and G)

The mass spectra for the Cameron Park Zoo samples were analyzed for compounds of interest which included those that had a steroid backbone as well as others such as n-alkanes and α -tocopherol. A comprehensive index was made which highlighted the presence of a variety of compounds while noting each individual retention time. For each species from Cameron Park Zoo, compounds which were found in common among the replicate samples were cross-checked for similar retention times. Characteristic distributions for many compounds were found for individual species and collectively among the mammals.

For compounds identified by the Chemstation software as having a steroid backbone, the Cameron Park Zoo samples showed the common presence of Cholest-7-en-6-one, 3-(acetyloxy)-9-hydroxy-, $(3\beta,5\alpha)$ -, 9,19-Cyclolanostane-3,7 β -diol, diacetate (20R,14 β), 9,19-Cyclolanostan-7-ol, 3-acetoxy-, Arundoin, 9,19-Cyclocholestan-3-one, 4,14-dimethyl-, Pregn-4-ene-3,20-dione, 11,21-bis[(trimethylsilyl)oxy]-, bis(Omethyloxime), (11 β)-, Urs-9(11)-en-12-one-28-oic acid, 3-acetoxy-, methyl ester (14 β ,20 β), Pregnane-3,20-dione, 11,21-bis[(trimethylsilyl)oxy]-, bis(Omethyloxime), (11 β)-, Cholestan-3-one, 2-[1-hydroxy-2-(3-methylphenyl)ethyl]-, Anthiaergosta-5,7,9-trien-3-one, β -Sitosterol trimethylsilyl ether, and Cholestan-3-ol, 5-chloro-6-nitro-, $(3\beta,5\alpha,6\beta)$ -. The compounds that were only observed once are displayed in Figure 11 with their retention times.

Dotriacontane	53.261 min	WTD2
19-Norpregna-1,3,5(10)-trien-20-yne, 3,17-		
bis[(trimethylsilyl)oxy]-, (17α)-	45.996 min	B2
Cholest-4-ene-3,6-dione	49.225 min	E6
17-(2-Hydroxy-1,5-dimethyl-hex-4-enyl)-4,4,10,13,14-		
pentamethyl-2,3,4,5,6,7,10,11,12,13,14,15,16,17-		
tetradecahydro-1H-cyclopenta[a]phenanthrene	40.943 min	BB5
5H-Cyclopropa[3,4]benz[1,2-e]azulen-5-one, 2,9,9a-		
tris(acetyloxy)-3-[(acetyloxy)methyl]-		
1,1a,1b,2,3,4,4a,7a,7b,8,9,9a-dodecahydro-3,4a,7b-		
trihydroxy-1,1,6,8-tetramethyl-, [1aR-		
(1aα,1bβ,2α,3β,4aβ,7aα,7bα,8α,9β,9aα)]-	48.791 min	BB5
Bufa-20,22-dienolide, 3,5,14-trihydroxy-, (3β,5β)-	50.631 min	BB5
Methanesulfonic acid, 2-(3-hydroxy-4,4,10,13,14-		
pentamethyl-2,3,4,5,6,7,10,11,12,13,14,15,16,17-		
tetradecahydro-1H-cyclopenta[a]phenanthryl)-	50.631 min	BB5
Androst-4,9(11),16-trien-3-one, 16-[2-(methylcarbonyloxy)-		
1-oxoethyl]-	35.197 min	BB3
Fluoxymesterone	35.512 min	BB3
3,9-Epoxypregn-16-en-14-ol-20-one, 11,18-diacetoxy-3-		
methoxy-	36.580 min	BB3
Cholesterone	37.609 min	BB3
Cholesterol trimethylsilyl ether	52.549 min	BB3
β-Sitosterol acetate	51.382 min	BB1
Stigmast-5-en-3-ol, oleate	51.382 min	BB1
(22R)-6α,11β,21-Trihydroxy-16α,17α-		
propylmethylenedioxypregna-1,4-diene-3,20-dione	42.083 min	WTD6
3,9-Epoxypregnan-14-ol-20-one, 3,11,18-triacetoxy-	57.864 min	WTD6
1H-Cyclopropa[3,4]benz[1,2-e]azulene-4a,5,7b,9,9a(1aH)-		
pentol, 3-[(acetyloxy)methyl]-1b,4,5,7a,8,9-hexahydro-		
1,1,6,8-tetramethyl-, 5,9,9a-triacetate, [1aR-		
(1aα,1bβ,4aβ,5β,7aα,7bα,8α,9β,9aα)]-	38.531 min	WTD5
9,19-Cyclolanost-6-en-3-ol, acetate	42.172 min	WTD5
9,19-Cyclolanost-24-en-3-ol, acetate	42.903 min	WTD5
22R)-21-Acetoxy-6α,11β-dihydroxy-16α,17α-		
propylmethylenedioxypregna-1,4-diene-3,20-dione	36.595 min	WTD3
Hyocholic acid	40.195 min	WTD2
9,19-Cycloergostan-3-ol-7-one, 4,14-dimethyl-	50.786 min	WTD2
Betamethasone Acetate	51.163 min	WTD2
1,2,6a,6b,9,9,12a-Heptamethyl-10,13-dioxo-		
1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-		
eicosahydropicene-4-carboxylic acid, methyl ester	35.898 min	WTD1
D-Homo-24-nor-17-oxachola-20,22-diene-3,16-dione,		
14,15:21,23-diepoxy-7-hydroxy-4,4,8-trimethyl-,		
(5α,7α,13α,14β,15β,17aα)-	41.271 min	WTD1

D-Homo-24-nor-17-oxachola-20,22-diene-3,16-dione,		
14,15:21,23-diepoxy-7-hydroxy-4,4,8-trimethyl-,		
(5α,7α,13α,14β,15β,17aα)-	41.271 min	WTD1
9,19-Cyclolanost-7-en-3-ol	44.980 min	WTD1
Oleanolic acid	49.859 min	E4
Urs-12-ene-3β,11β-diol, diacetate	52.134 min	E4
β-k-Strophanthin	48.125 min	E3

Figure 11: Retention times for unique compounds in Cameron Park Zoo samples

The compounds without a steroid backbone which were found to match other samples from the Cameron Park Zoo included the n-alkanes Heptacosane (E2-E5, WTD2-WTD6, B1-B4), Octacosane (WTD2, B4), Nonacosane (E3-E6, WTD1-3, WTD5-6, BB1-3, BB5-6, B1-B4), Tetratetracontane (E1-E4, WTD1-WTD6, BB1, BB4, BB6, B1, B3, B4), Triacontane (WTD2), Hentriacontane (E1-E6, WTD1-WTD6, B1, B3, B4), Tetratriacontane (WTD1, WTD4), and Tritriacontane (E2, E4, E6, WTD1-2, WTD4-6, B2-B4). Other noteworthy non-steroid backbone compounds included Squalene (E1, E3, E5-6, WTD1-4, BB3-4, BB6), β Carotene (E2, B4), (+)- α -Tocopherol acetate (E2, WTD1-WTD6, BB1, BB6), and α -Tocopherol (vitamin E), trimethysilyl derivative (E2, WTD1-WTD6, B2, B4). Both Tocopherol compounds (i.e. Vitamin E) were found in each White-Tailed Deer sample, as well as in other Cameron Park Zoo samples. Dotriacontane was identified in *WTD2* as n-alkane; however, it was only found once so it is in Figure 5.

Ion Fragment Analysis

The peaks that were found in the Page-Ladson sample PL3-25 were similarly found with higher signals in several of the Cameron Park Zoo samples. These include elephant samples such as E1, E2, and E4 as well as the bison samples B2, B3, and B4. The two mammals actually show the presence of an additional compound derived from the sterol which has a 549 peak and its respective stereoisomer. Finally, several of the deer samples gave strong signals of just the 508 peak and not any of the other noted peaks. For E2 (which had the clearest signal among the elephant samples), the 480 peak and its stereoisomer were found with retention times 51.758 and 52.558 minutes. The 508 peak and its stereoisomer were found with retention times 55.553 and 56.307 minutes. The 536 peak and its stereoisomer were found with retention times 59.171 and 59.874 minutes. The 549 peak and its stereoisomer were found with retention times 62.936 and 63.834 minutes. For B2 (with similar signals to B3 and B4) the 480 peak and its stereoisomer were found with retention times 51.751 and 52.557 minutes. The 508 peak and its stereoisomer were found with retention times 55.546 and 56.306 minutes. The 536 peak and its stereoisomer were found with retention times 59.158 and 59.873 minutes. The 549 peak and its stereoisomer were found with retention times 62.948 and 63.834 minutes. For WTD3 (with similar signals to WTD2, WTD4-6) the 508 peak with its stereoisomer which were found with retention times 55.553 and 56.302 minutes. Figure 12 shows information on each peak and its isomer for the elephant, bison, and deer samples.

Sample	Ion Fragm	Ret Time	Туре	Width	Area	Start Time
E2	480	51.751	rVB	0.24	6755	51.648
E2	480	52.558	rBB	0.24	5721	52.454
E2	508	55.546	rBV	0.206	15015	55.437
E2	508	56.302	rVB	0.189	13218	56.209
E2	536	59.162	rBV	0.189	10077	59.055
E2	536	59.869	rBB	0.274	8958	59.707
E2	549	62.931	rBV	0.24	1439	62.793
E2	549	63.838	rVV	0.171	1277	63.771
B2	480	51.751	rVB	0.24	6755	51.648
B2	480	52.558	rBB	0.24	5721	52.454
B2	508	55.546	rBV	0.206	15015	55.437
B2	508	56.302	rVB	0.189	13218	56.209
B2	536	59.162	rBV	0.189	10077	59.055
B2	536	59.869	rBB	0.274	8958	59.707
B2	549	62.931	rBV	0.24	1439	62.793
B2	549	63.838	rVV	0.171	1277	63.771
WTD3	508	55.562	rVV	0.343	304759	55.445
WTD3	508	56.317	rVB	0.36	330674	56.216

Figure 12 – Ion Fragment Information on E2, B2 and WTD3

CHAPTER FOUR

Sterol Distribution from Martens Farm

Distribution Index Analysis (See Appendices G and H)

The mass spectra for the Martens Farm samples were analyzed for compounds of interest which included those that had a steroid backbone as well as others such as nalkanes. A comprehensive index was made which highlighted the presence of a variety of compounds while noting each individual retention time. As previously mentioned, for each Martens Farm sample, compounds which were found in common between the samples were checked to see if they had similar retention times. This was a cross analysis with compounds from Page-Ladson and Cameron Park Zoo as well.

For compounds that had a steroid backbone, the Martens Farm samples showed the common presence of Cholest-7-en-6-one, 3-(acetyloxy)-9-hydroxy-, $(3\beta,5\alpha)$ -, 9,19-Cyclolanostane-3,7 β -diol, diacetate (20R,14 β), 9,19-Cyclo-9 β -lanost-7-en-3 β -ol, acetate, 9,19-Cyclolanostan-7-ol, 3-acetoxy-, 9,19-Cyclolanostane-3,7-diol, Cholestane, 2formyl-3-(2-methylbenzylidene)-, 3,9 β ;14,15-Diepoxypregn-16-en-20-one, 3,11 β ,18triacetoxy-, and 9,19-Cyclocholestan-3-one, 4,14-dimethyl-. The compounds that were only observed once are displayed in Figure 13 with their retention times.

9,19-Cyclolanostane-6,7-dione, 3-acetoxy-	50.963 min	DUF
3-Heptafluorobutyriloxy-3,5,10-pregnatrien-20-		
one	55.564 min	HOL 1
4,4,6a,6b,8a,11,11,14b-Octamethyl-		
1,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-		
octadecahydro-2H-picen-3-one	63.937 min	HOL 1
9,19-Cycloergost-24(28)-en-3-ol, 4,14-dimethyl-,		
acetate, (3β,4α,5α)-	53.991 min	LMG
Pregn-5-en-20-one, 12-(acetyloxy)-3,8,14-		
trihydroxy-, (3β,12β,14β)-	48.456 min	Slab 1
10-Acetoxy-2-hydroxy-1,2,6a,6b,9,9,12a-		
heptamethyl-		
1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-		
octadecahydro-2H-picene-4a-carboxylic acid,		
methyl ester	55.179 min	Slab 2
Pregn-4-ene-3,20-dione, 11,18,21-		
<pre>tris[(trimethylsilyl)oxy]-, bis(O-methyloxime),</pre>		
(11β)-	40.726 min	Slab 3

Figure 13: Retention times for unique compounds in Martens Farm samples

The compounds without a steroid backbone which were found to match other samples in Martens Farm included the n-alkanes Heptacosane (DH, DUF, DF, HUD, H1, H3, LMG), Nonacosane (DH, DUF, DF, HUD, H1, H2, H3, LMG), Triacontane (H1), Hentriacontane (DH, DF, HUD, H1, H2, H3, LMG), Tetratriacontane (HUD), Tritriacontane (Same as Hentriacontane), and Pentatriacontane (HUD, LMG). Other noteworthy non-steroid backbone compounds, which were similarly found in the Martens Farm samples, included Squalene (DH, DF, H1, LMG), β Carotene (DH, H1, H3, LMG), (+)- α -Tocopherol acetate (LMG), and α -Tocopherol (vitamin E), trimethysilyl derivative (DF).

Ion Fragment Analysis

The Martens Farm mammals that shared the similar sterol peaks of 480, 508, 536, and in some cases 549 included *DF*, *DH*, *LMG*, and *H1-H3*. For the Dexter Fresh sample, the 480 peak and its stereoisomer were found with retention times 51.752 and 52.541 minutes. The 508 peak and its stereoisomer were found with retention times 55.530 and 56.301 minutes. The 536 peak and its stereoisomer were found with retention times 59.142 and 59.868 minutes. There was no 549 peak associated with *DF*. These peaks were similarly found in Dexter and Holstein sample as well as the La Mancha Goat sample. For the Holstein sample (*H1*), the 480 peak and its stereoisomer were found with retention times 51.769 and 52.569 minutes. The 508 peak and its stereoisomer were found with retention times 51.769 and 52.564 and 56.319 minutes. The 536 peak and its stereoisomer were found with retention times 59.188 and 59.897 minutes. It is noteworthy to mention that *H1* had the clearest and strongest signal among the Holstein samples.

Sample	Ion Fragm	Ret Time	Туре	Width	Area	Start Time	End Time
Dex Fresh	480	51.783	rVB	0.257	19065	51.689	51.946
Dex Fresh	480	52.556	rVB	0.377	23182	52.461	52.838
Dex Fresh	508	55.572	rVB	0.292	24989	55.461	55.753
Dex Fresh	508	56.299	rBV	0.137	12006	56.216	56.353
Dex Fresh	536	59.156	rVB	0.274	39030	59.062	59.336
Dex Fresh	536	59.889	rVB	0.171	23650	59.816	59.988
HOL 1	480	52.158	rBV	0.206	41264	52.032	52.238
HOL 1	480	52.574	rVV	0.257	187539	52.478	52.735
HOL 1	508	55.568	rVB	0.257	347442	55.478	55.736
HOL 1	508	56.402	rBV	0.669	367562	56.233	56.902
HOL 1	536	59.173	rVB	0.463	1290246	59.011	59.474
HOL 1	536	60.019	rBV	0.909	881299	59.782	60.691
HOL 1	549	63.197	rBV	0.892	311526	62.869	63.76
HOL 1	549	63.956	rBV	1.2	362545	63.76	64.96

Figure 14 – Ion fragment analysis of Martens Farm samples (DF and H1)

The three slab samples (*S1*, *S2*, and *S3*) were obtained from under Holstein fecal sample did not show peaks of interest for the sterol with either 480, 508, 536, and 549 peaks.

CHAPTER FIVE

Discussion

The sterol distributions figures and ion fragment analyses from the Page-Ladson site, Cameron Park Zoo, and Martens Farm reveal pertinent information to the characteristics of mammals in the past and the present. First, assumptions will be based off the common compounds found in each dataset. Then, deductions will be made from the ion fragments as to the common sterol found in the various mammals. Finally, using the data, hypotheses will be considered as to the characteristics of the mastodon and bison that inhabited the Page-Ladson site over 10,000 years ago.

Common Compounds in Each Dataset

The compound that was found in common among the Page-Ladson, Cameron Park Zoo, and Martens Farm dataset (26 of the 38 total samples) was Cholest-7-en-6-one, 3-(acetyloxy)-9-hydroxy-, $(3\beta,5\alpha)$ - which eluted around 46.000 minutes for each samples. This is also known as Viperidone acetate. (Figure 10)

Figure 10: Viperidone acetate

Found common between Page-Ladson and Cameron Park Zoo included both Pregn-4-ene-3,20-dione, 11,21-bis[(trimethylsilyl)oxy]-, bis(O-methyloxime), (11 β)- and Pregnane-3,20-dione, 11,21-bis[(trimethylsilyl)oxy]-, bis(O-methyloxime), (5 α ,11 β)-. What is interesting about these two compounds is that these are most likely derivatives of progesterone (pregn-4-ene-3,20-dione). These compounds were found in both Page-Ladson and elephant samples which indicate that this hormone was used by elephant and mastodon as a part of their respective normal bodily processes. In fact, this is the case, as there have been studies reaffirming the ovarian function of elephants including their luteinizing hormone and progesterone cycles.¹⁴ These progesterone derivatives are also found with single retention times (Figures 4,6, and 8) in various mammals further supporting evidence of this hormone. Pregnane-3,11,20-trione, (5 β)-, found in the Page-Ladson dataset, is a derivative of 11-ketoprogesterone or ketogestin which is another important steroid hormone (Figure 11).

Figure 11: 11-Ketoprogesterone

Another interesting compound which we found in black bears is Anthiaergosta-5,7,9-trien-3-one. The reduction of this compound can result in ergosterol, which through ultraviolet irradiation will turn into ergocalciferol (vitamin D_2) that can promote bone growth in mammals.^{15, 16} The same two black bears which showed the ergostatrienone
also showed signatures of β -Sitosterol trimethylsilyl ether. There was also (+)- α -Tocopherol acetate and α -Tocopherol trimethysilyl derivative which are different forms of vitamin E. This compound was found throughout each dataset, which is evidence of tocopherols being broadly distributed in all mammalian fecal matter. This is indicative of how mammalian waste incorporates into sediments throughout deposition. There are even traces of these tocopherols in the Page-Ladson samples which is further evidence of the it being distributed in fecal matter. Another manifestation of vitamins in our results includes β Carotene, which is a precursor to vitamin A.

Plant leaf waxes, the long-chain n-alkanes nonacosane ($C_{29}H_{60}$), hentriacontane ($C_{31}H_{64}$), and tritriacontane ($C_{33}H_{68}$) were present in all Page-Ladson samples as well as in all of the mammal fecal matter samples of mammals. (Figure 12).

Figure 12: Heptacosane

The plant origin of these compounds is well established, but it is worth noting that mammalian fecal matter can transfer long-chain n-alkanes to depositional environments like sink holes. This process could bias distributions of specific n-alkanes in sediments if the mammal's dietary preference were for specific plants on the landscape.

Ion Fragment Analysis

The mass spectra for the chromatographic peaks of interest (the sterol-related compounds) included features similar to cholesterol trimethylsilyl ether but lacked distinctive ions with m/z in the 300-400 range as expected for many sterol and stanol derivatives. Figure 13 shows the mass spectrum for this compound.

These potential sterol derivatives included m/z 480, 508, and 536 ions that might be the molecular ions, though they might also have been fragment ions from larger molecules such as bile acids that are found in mammal digesta. The 480 peak with its stereoisomer is 22 Da greater than cholesterol, which can result from several different transformations including additions of carbon and oxygen-containing moieties and additional double

bonds. The 508 peak with its stereoisomer is attributed to the 480 peak plus 28 which comes from an addition of an ethyl group (C_2H_4). The 536 peak with its stereoisomer is attributed to the 508 peak plus 28 which comes from another addition of an ethyl group.

These peaks were found among the mammals with the strongest signal in *E2*, *B2*, *WTD3*, *DF*, and *H1*. The La Mancha Goat also showed a weaker signal of these peaks; however, none of the black bears showed these peaks. Therefore, these cholesterol compounds are unique to specific mammals and are most likely involved in the digestion process, the products of which manifest themselves as cholesterol derivatives such as the bile acids in fecal matter. What makes this finding more interesting is that only the deepest sample from Page-Ladson (PL3-25), which was indicated to have been the time where mastodons lived, showed the same but weak peaks of these cholesterol compounds. The younger Page-Ladson samples did not show these sterols, which indicates that these sterols could be associated with mastodon living near the Aucilla River. If this hypothesis is valid, loss of the sterol peaks signal after PL3-25 indicate that the mastodon went extinct sometime between 10590 and 11810 years ago in the area, and higher resolution sampling could refine this date.

Bison, a species thought to have grazed the area as well during the time, showed these sterol-related peaks as well. The Holstein and Dexter cattle (that are close relatives to the bison species) also showed these sterol-related peaks. With that being said, if bison grazed the area near the Page-Ladson sinkhole long after the mastodon went extinct, there should be signature of these peaks in other Page-Ladson samples. However, since they were not detected, it is possible that either the sterol-related compounds from bison were

oxidized and not preserved, or that the bison disappeared from the area due to migration or hunting activity.

The absence of the sterol-related compounds from the three soil slab samples taken from under aged Holstein manure supports the oxidation hypothesis that the sterols were chemically transformed. Analysis of the ion fragment of the Holstein samples indicate that the sterol-related compounds were present in the Holstein manure but were not transferred to soil during the ca. 3-6 months following deposition on the soil surface. Applying this to the Page-Ladson sinkhole, bison fecal matter might not be detected as it could be chemically transformed in the soil. It is therefore evident that the could have bison continued to exist in the area of the Aucilla River even after mastodon extirpation.

The other less plausible hypothesis which explains bison disappearing from the area could be entertained if considering the relationship between mastodon and bison. Grazing bison flourish when mastodon maintained the landscape of the valley where the bison lived.¹⁷ If mastodon were hunted to extinction, bison could have left the area which would favor grazing and survival. However, it is unlikely that an extirpation of mastodon would force a mass migration of bison to another region. Additionally, since the major species of bison in the last Pleistocene became extinct later during the mid-Holocene, the hypothesis that they were hunted to extinction when transitioning from the late Pleistocene to early Holocene epoch is not as feasible.¹⁸

CONCLUSION

The Page-Ladson sinkhole in its deepest depths shows evidence of mastodon with a variety of steroid compounds and unique mammalian sterols. The steroid compounds found in each dataset's distribution index give indications to the bodily processes of the mammal's such as progesterone in female ovarian cycles. These sterols can be cross referenced with mammals received from the Cameron Park Zoo and Martens Farm to deduce that mastodons between the period of 10590 and 11810 years ago disappeared due to the hunting activity of pre-Clovis humans during the transition from the late Pleistocene to early Holocene epoch. Bison did not show these sterol peaks due to chemical transformations of the fecal matter when depositing into the soil. Nonetheless, the bison still co-existed with humans and mastodon in the area and most likely continued to graze well into the Holocene epoch following mastodon extirpation. Further study can not only attempt deduce the significance of the various cholesterol derivatives found in the 129.00 ion fragment in mammals, but it can also seek to highlight the chemical transformations of mastodon sterols over time from areas including and excluding the Page-Ladson sinkhole.

APPENDIX

APPENDIX A

Sample Information

Location: Cameron Park Zoo Martens Farm Page-Ladson Site

Elephant #1 (E1)	11/29/2018	0.1
Elephant #2 (E2)	11/27/2018 0.1 Tembo	
Elephant #3 (E3)	11/27/2018 0.1 Tanya	
Elephant #4 (E4)	11/28/2018 0.1 Tembo	
Elephant #5 (E5)	11/28/2018 0.1 Tanya	
Elephant #6 (E6)	11/29/2018 0.1 Tanya	
Bison #1 (B1)	11/30/2018 2 Males 1 Female	
Bison #2 (B2)	11/30/2018 2 Males 1 Female	
Bison #3 (B3)	11/30/2018 2 Males 1 Female	
Bison #4 (B4)	11/30/2018 2 Males 1 Female	
White-Tailed Deer #1 (WTD1)	11/28/2018 Male #1	
White-Tailed Deer #2 (WTD2)	11/28/2018 Male #2	
White-Tailed Deer #3 (WTD3)	11/30/2018 1 Male 3 Females	
White-Tailed Deer #4 (WTD4)	11/28/2018	1.3
White-Tailed Deer #5 (WTD5)	11/30/2018 Male #4	
White-Tailed Deer #6 (WTD6)	11/28/2018 Male	
NA Black Bear #1 (BB1)	11/28/2018	1.0
NA Black Bear #2 (BB2)	11/29/2018	0.1
NA Black Bear #3 (BB3)	11/27/2018	0.1
NA Black Bear #4 (BB4)	11/29/2018	1.0
NA Black Bear #5 (BB5)	11/28/2018	0.1
NA Black Bear #6 (BB6)	11/27/2018	1.0

Sample Name (Abbreviation)	Date Collected Additional Information
Chicken (C)	9/13/2018 Sample #4
Holstein #1 (H1)	9/13/2018 Sample #1
Holstein #2 (H2)	9/13/2018 Sample #2
Holstein #3 (H3)	9/13/2018 Sample #3
Dirt Under Feces (DUF)	9/13/2018 Sample #7
Dexter Fresh (DF)	9/13/2018 Sample #11
Slab #1 (S1)	9/13/2018 Sample #8
Slab #2 (S2)	9/13/2018 Sample #9
Slab #3 (S3)	9/13/2018 Sample #10
Dexter and Holstein (DH)	9/13/2018 Sample #5
La Mancha Goat (LMG)	9/13/2018 Sample #12
Holstein Under Dexter (HUD)	9/13/2018 Sample #6
Vial #1 (V1)	11/14/2018 14 - 2.33 g
Vial #2 (V2)	11/14/2018 17 - 2.4 g
Vial #3 (V3)	11/14/2018 25 - 2.34 g
Vial #4 (V4)	11/14/2018 6 - 2.35 g

APPENDIX B

Name Index

Compounds highlighted do not have a steroid backbone

Glycine, N-[(3α,5β,7α,12α)-24-oxo-3,7,12-tris[(trimethylsilyl)oxy]cholan-24-yl]-

- 1 , methyl ester
- 2 Heptacosane
- 3 Cholest-7-en-6-one, 3-(acetyloxy)-9-hydroxy-, $(3\beta,5\alpha)$ -
- 4 Lanost-8-ene-3,7-dione, $(13\alpha, 14\beta, 17\alpha)$ -
- 5 Octacosane
- 6 Nonacosane
- 7 Propanoic acid, 2-(3-acetoxy-4,4,14-trimethylandrost-8-en-17-yl)-Acetic acid, 17-acetoxy-3-hydroxyimino-4.4,13-trimethyl-
- 8 hexadecahydrocyclopenta[a]phenanthren-10-ylmethyl ester
- 9 9,19-Cyclolanostane-3,7β-diol, diacetate (20R,14β)
- 10 9,19-Cyclo-9β-lanost-7-en-3β-ol, acetate
- 11 9,19-Cyclolanostan-7-ol, 3-acetoxy-
- 12 9,19-Cyclolanostane-6,7-dione, 3-acetoxy-
- 13 Tetratetracontane
 - (5β) Pregnane-3,20 β -diol, 14 α ,18 α -[4-methyl-3-oxo-(1-oxa-4-azabutane-1,4-
- 14 diyl)]-, diacetate
- 15 7,8-Epoxylanostan-11-ol, 3-acetoxy-
- 16 Squalene
- 17 Cholestane, 3,5-dichloro-6-nitro-, $(3\beta,5\alpha,6\beta)$ -17-(1,5-Dimethylhexyl)-10,13-dimethyl-3-
- 18 styrylhexadecahydrocyclopenta[a]phenanthren-2-one 25-Norisopropyl-9,19-cyclolanostan-22-en-24-one, 3-acetoxy-24-phenyl-4,4,14-
- 152 170 here = 122 102 here = 122 1
- 17β -Acetoxy-1',1'-dicarboethoxy-1β,2β-dihydro-17α-methyl-3'H-cycloprop[1,2]-
- 20 5α-androst-1-en-3-one
- 21 Anodendroside E 2
- 22 Triacontane
- 23 Lycopene
- 24 Hentriacontane
- 25 3'H-Cycloprop(1,2)-5-cholest-1-en-3-one, 1'-carboethoxy-1'-cyano-1,2-dihydro-
- 26 Dotriacontane

- 27 Tetratricontane
- 28 Tritriacontane
- 29 3-Heptafluorobutyriloxy-3,5,10-pregnatrien-20-one
- 30 Arundoin
- 31 Lup-20(29)-en-3-ol, acetate, (3β)-
- 32 Pentatriacontane
- β Carotene
 4,4,6a,6b,8a,11,11,14b-Octamethyl 1,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-octadecahydro-2H-picen-3-
- 34 one
- 35 Betulin
- 36 Ethyl iso-allocholate

(22S)-21-Acetoxy-6α,11β-dihydroxy-16α,17α-propylmethylenedioxypregna-1,4-

- 37 diene-3,20-dione
- 38 Cholestan-3-one, 2-[1-hydroxy-2-(3-methylphenyl)ethyl]-
- 39 Hexatriacontane

```
Pregn-4-ene-3,11,20-trione, 6,17,21-tris[(trimethylsilyl)oxy]-, 3,20-bis(O-
```

- 40 methyloxime), (6β) -
- 41 8-Androsten-3-ol, 17-(2-methylallyl)-4,4,14-trimethyl-
- 42 5-Chloro-6beta-nitro-5alpha-cholestan-3-one
- 43 9,19-Cyclocholestene-3,7-diol, 4,14-dimethyl-, 3-acetate
- 44 9,19-Cyclolanostane-3,7-diol

Acetic acid, 17-(4-chloro-5-methoxy-1,5-dimethylhexyl)-4,4,10,13,14-

- 45 pentamethyl-2,3,4,5,6,7,10,11,12,13,14,15,16,17-tetradecahydro-1-phenanthryl-
- 46 Anodendroside A
- 47 Cholesta-8,24-dien-3-ol, 4-methyl-, $(3\beta,4\alpha)$ -
- 48 a-Homocholest-4a-en-3-one
- 49 Glycine, N-[$(3\alpha, 5\beta)$ -24-oxo-3-[(trimethylsilyl)oxy]cholan-24-yl]-, methyl ester
- 50 Cycloartenol acetate
- 51 Cholestane, 2-formyl-3-(2-methylbenzylidene)-Carda-4,20(22)-dienolide, 3-[(6-deoxy-3-O-methyl-α-D-allopyranosyl)oxy]-1,14-
- 52 dihydroxy-, $(1\beta, 3\beta)$ -(22S) 21 Acetoxy 66 116 dihydroxy, 16α 17 α propylmothylonodioyyprogno 1.4
- (22S)-21-Acetoxy-6β,11β-dihydroxy-16α,17α-propylmethylenedioxypregna-1,4diene-3,20-dione
- (22S)- 6α , 11 β , 21-Trihydroxy- 16α , 17 α -propylmethylenedioxypregna-1, 4-diene-54 3, 20-dione
 - (22R)- 6β , 11β , 21-Trihydroxy- 16α , 17α -propylmethylenedioxypregna-1, 4-diene-
- 55 3,20-dione
- 56 _6-Azacholest-4-en-7-one, 6-benzyl-3α-hydroxy-
- 57 (+)- α -Tocopherol acetate
- 58 9,19-Cycloergost-24(28)-en-3-ol, 4,14-dimethyl-, acetate, $(3\beta,4\alpha,5\alpha)$ -

2-(16-Acetoxy-11-hydroxy-4,8,10,14-tetramethyl-3-

oxohexadecahydrocyclopenta[a]phenanthren-17-ylidene)-6-methyl-hept-5-enoic acid_methyl_ester

- 59 acid, methyl ester
- 60 3,9β;14,15-Diepoxypregn-16-en-20-one, 3,11β,18-triacetoxy-Pregnan-20-one, 3,11-dihydroxy-17,21-bis[(trimethylsilyl)oxy]-, O-
- 61 methyloxime, $(3\alpha, 5\beta, 11\beta)$ -
- 62 11β,19-Cyclopregn-5-ene-3,20-dione, 11-hydroxy-, cyclic bis(ethylene acetal)
- 63 Pregn-5-en-20-one, 12-(acetyloxy)-3,8,14-trihydroxy-, (3β,12β,14β)-
- 64 Cholestan-3-ol, 5-chloro-6-nitro-, acetate (ester), $(3\beta,5\alpha,6\beta)$ -
- 65 Gamabufotalin
- 66 Olean-12-ene-3,15,16,21,22,28-hexol, (3β,15α,16α,21β,22α)[5-(3-Methoxymethoxy-10,13-dimethyl-2,3,4,9,10,11,12,13,14,15,16,17-
- 67 dodecahydro-1H-cyclopenta[a]phenanthren-17-yl)-hex-1-ynyl]-trime
- 68 Glycine, N-[(3α,5β,12α)-3,12-dihydroxy-24-oxocholan-24-yl]-
- 69 Anodendroside E 2, monoacetate
- 70 3,9-Epoxypregn-16-ene-14,20-diol, 7,11,18-triacetoxy-3-methoxy10-Acetoxy-2-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-
- 71 carboxylic acid, methyl esterPregn-4-ene-3,20-dione, 11,17-bis[(trimethylsilyl)oxy]-, bis(O-methyloxime),
- 72 (11β)Pregn-4-ene-3,20-dione, 11,18,21-tris[(trimethylsilyl)oxy]-, bis(O-methyloxime),
 73 (11β)-
- 74 1',1'-Dicarboethoxy-1β,2β-dihydro-3'H-cycloprop[1,2]cholesta-1,4,6-trien-3-one
 D-Glucopyranoside, (3β,22α,25S)-22,25-epoxy-3-methoxyfurost-5-en-26-yl
- 75 2,3,4,6-tetra-O-methyl-
- 76 9,19-Cyclocholestan-3-one, 4,14-dimethyl-
- 77 (25S)-3Beta-acetoxy-5alpha,22beta-spirost-9(11)-en-12beta-ol

7-(1,5-Dimethyl-hexyl)-4-(2-methoxycarbonyl-ethyl)-4,10a,10b-trimethyl-5,8-dioxotetradecahydro-9-oxa-pentaleno[2,1-a]naphthalene-3-carboxylic acid,

- 78 methyl ester
- 79 Bufalin
 - Acetic acid, 17-acetoxy-3-hydroxyimino-4,4,13-trimethyl-
- 80 hexadecahydrocyclopenta[a]phenanthren-10-ylmethyl ester
- 81 Anodendroside E 1
 - 18-Norcholest-17(20),24-dien-21-oic acid, 16-acetoxy-4,8,14-trimethyl-3,11-
- 82 dioxo-, methyl ester
- 83 Pregnan-11-one, 3,17,20,21-tetrakis[(trimethylsilyl)oxy]-, (3α,5β,20S)-
- 84 α-Tocopherol (vitamin E), trimethysilyl derivative
- 85 Cholestan-3-one, cyclic 1,2-ethanediyl aetal, (5β) -

5H-Cyclopropa(3,4)benz(1,2-e)azulen-5-one, 1,1a- α ,1b- β ,4,4a,7a- α ,7b,8,9,9a-decahydro-7b- α ,9- β ,9a- α -trihydroxy-3-hydroxymethyl-1,1,6,8- α -tetramethyl-4a-

86 methoxy-, 9,9a-didecanoate

87	Tetratriacontane
88	3'H-Cycloprop(1,2)cholesta-1,4,6-trien-3-one, 1'-carboethoxy-1'-cyano-1β,2β- dihydro-
00	1' 1'-Dicarboethoxy-18 28-dihydro-178-
89	propionoxy(3'H)cyhcloprop[1,2]androsta-1,4.6-trien-3-one
0,	Pregn-4-ene-3 20-dione, 11-hydroxy-17,21-bis[(trimethylsilyl)oxy]-, bis(O-
90	methyloxime), (11β) -
91	4a-Phorbol 12,13-didecanoate
92	5H-Cyclopropa[3,4]benz[1,2-e]azulen-5-one, 3,9,9a-tris(acetyloxy)-3- [(acetyloxy)methyl]-2-chloro-1,1a,1b,2,3,4,4a,7a,7b,8,9,9a-dodecahydro-4a,7b-dihydroxy-1,1,6,8-tetramethyl-, [1aR-(1a α ,1b β ,2 α ,3 β ,4a β ,7a α ,7b α ,8 α ,9 β ,9a α)]-
93	5H-Cyclopropa[3,4]benz[1,2-e]azulen-5-one, 9,9a-bis(acetyloxy)-3- [(acetyloxy)methyl]-2-chloro-1,1a,1b,2,3,4,4a,7a,7b,8,9,9a-dodecahydro-3,4a,7b-trihydroxy-1,1,6,8-tetramethyl-, [1aR-(1a α ,1b β ,2 α ,3 α ,4a β ,7a α ,7b α ,8 α ,9 β ,9a α)]-
94	(22S)- 6β , 11 β , 21-Trihydroxy-16 α , 17 α -propylmethylenedioxypregna-1, 4-diene- 3.20-dione
<i>,</i>	5H-Cyclopropa[3,4]benz[1,2-e]azulen-5-one, 2,4a,9,9a-tetrakis(acetyloxy)- 3,[(acetyloxy)methyl]-1,1a,1b,2,3,4,4a,7a,7b,8,9,9a-dodecahydro-2,7b-
95	dihydroxy-1,1,6,8-tetramethyl-, [1aR-(1aα,1bβ,2α,3β,4aβ,7aα,7bα,8α,9β,9aα)]-
96	Pregn-5-en-20-one, 3,16-bis[(trimethylsilyl)oxy]-, (3β,16α)-
	4H-Cyclopropa[5',6']benz[1',2':7,8]azuleno[5,6-b]oxiren-4-one, 8,8a-
	bis(acetyloxy)-2a-[(acetyloxy)methyl]-1,1a,1b,1c,2a,3,3a,6a,6b,7,8,8a-
07	dodecahydro-6b-hydroxy-3a-methoxy-1,1,5,7-tetramethyl-, [1aR-
97	$(1\alpha\alpha,1b\beta,1c\alpha,2\alpha\alpha,3\alpha\beta,6\alpha\alpha,6b\alpha,7\alpha,8\beta,8\alpha\alpha)]$ -
98	3,9-Epoxypregnane-11,14,18-triol-20-one, 16-cyano-3-methoxy-, 11-acetate
99	Pregnane-5,11,20-thone, (5p)-
100	Pregn-4-ene-3,20-dione, 21-(acetyloxy)-17-nydroxy-6-metnyl-, 3,20-bis(O-
100	Pregn_4_ene_3 20_dione_11 21_bis[(trimethylsilyl)oxylbis(O_methyloxime)
101	(118)-
102	Urs-9(11)-en-12-one-28-oic acid, 3-acetoxy-, methyl ester (14 β ,20 β)
103	3'H-Cycloprop(1,2)-5α-cholest-1-en-3-one, 1',1'-dicarboethoxy-1β,2β-dihydro-
	Pregnane-3,20-dione, 11,21-bis[(trimethylsilyl)oxy]-, bis(O-methyloxime),
104	(5α,11β)-
105	5H-Cyclopropa[3,4]benz[1,2-e]azulen-5-one, 2,9,9a-tris(acetyloxy)-3- [(acetyloxy)methyl]-1,1a,1b,2,4a,7a,7b,8,9,9a-decahydro-4a,7b-dihydroxy- 1,1,6,8-tetramethyl-, [1aR-(1aα,1bβ,2β,4aβ,7aα,7bα,8α,9β,9aα)]-
	5H-Cyclopropa[3,4]benz[1,2-e]azulen-5-one, 9,9a-bis(acetyloxy)- 1,1a,1b,2,4a,7a,7b,8,9,9a-decahydro-2,4a,7b-trihydroxy-3-(hydroxymethyl)-
106	1,1,6,8-tetramethyl-, $[1aR-(1a\alpha,1b\beta,2\beta,4a\beta,7a\alpha,7b\alpha,8\alpha,9\beta,9a\alpha)]$ -
107	Bilirubin
108	Unolan-24-01c acid, $3, /-dioxo-, (5\beta)-$

109 Lanosta-7,9(11)-diene- 3β ,18,20-triol, 3,18-diacetate, (20R)-

 $17\beta - Acetoxy - 1', 1' - dicarboethoxy - 1\beta, 2\beta - dihydrocycloprop[1,2] - 5\alpha - and rost - 1 - en-2\beta - and rost -$

- 110 3-one
- 111 Chol-7-ene, (5β)-
- 112 Bufa-20,22-dienolide, 3-(acetyloxy)-14,15-epoxy-16-hydroxy-, (3β,5β,15β,16β)-
- 3,9-Epoxypregn-16-ene-14-18-diol-20-one, 7,11-diacetoxy-3-methoxy1H-Cyclopropa[3,4]benz[1,2-e]azulene-2,5-dione, 9,9a-bis(acetyloxy)-3[(acetyloxy)methyl]-1a,1b,4a,7a,7b,8,9,9a-octahydro-4a,7b-dihydroxy-1,1,6,8-
- 114 tetramethyl-, $[1aR-(1a\alpha, 1b\beta, 4a\beta, 7a\alpha, 7b\alpha, 8\alpha, 9\beta, 9a\alpha)]$ -
- 115 Phorbol 12,13-dihexanoate
- 116 DES-A-ARBORANE
- Bufa-20,22-dienolide, 14,15-epoxy-3,16-dihydroxy-, (3β,5β,15β,16β) 5H-Cyclopropa[3,4]benz[1,2-e]azulen-5-one, 4,9,9a-tris(acetyloxy)-3 [(acetyloxy)methyl]-1,1a,1b,4,4a,7a,7b,8,9,9a-decahydro-4a,7b-dihydroxy-
- 118 1,1,6,8-tetramethyl4H-Cyclopropa[5',6']benz[1',2':7,8]azuleno[5,6-b]oxiren-4-one, 8-(acetyloxy)1,1a,1b,1c,2a,3,3a,6a,6b,7,8,8a-dodecahydro-3a,6b,8a-trihydroxy-2a-
- 119 (hydroxymethyl)-1,1,5,7-tetramethyl-, $(1a\alpha, 1b\beta, 1c\beta, 2a\beta, 3a\beta, 6a\alpha, 6b\alpha, 7\alpha, 8\beta, 8a\alpha)$ -
- 4,13,20-Tri-O-methylphorbol 12-acetate
 4H-Cyclopropa[5',6']benz[1',2':7,8]azuleno[5,6]oxiren-4-one, 8,8a-bis(acetyloxy)-2a-[(acetyloxy)methyl]-1,1a,1b,1c,2a,3,3a,6a,6b,7,8,8a-dodecahydro-6b-hydroxy-3a-methoxy-1,1,5,7-tetramethyl-, [1aR-
- 121 (1aα,1bβ,1cβ,2aβ,3aα,6aα,6bα,7α,8β,8aα)] 1H-Cyclopropa[3,4]benz[1,2-e]azulene-5,7b,9,9a-tetrol, 3-[(acetyloxy)methyl] 1a,1b,4,4a,5,7a,8,9-octahydro-1,1,6,8-tetramethyl-, 9,9a-diacetate, [1aR-
- 122 $(1a\alpha, 1b\beta, 4a\alpha, 5\beta, 7a\alpha, 7b\alpha, 8\alpha, 9\beta, 9a\alpha)$]-
- 123 Cholest-5-ene-16,22-dione, 3β ,26-dihydroxy-, 3-acetate, (20S,25R)-14 β)3,19-Epoxyandrosta-5,7-diene, 4,4-dimethyl-3-methoxy-17-
- 124 methylthiomethoxy-
- 125 5,16,20-Pregnatriene-3beta,20-diol diacetate
- 126 Cholestane-3,7,12,25-tetrol, tetraacetate, (3α,5β,7α,12α)1H-Cyclopropa[3,4]benz[1,2-e]azulene-5,7b,9,9a-tetrol, 1a,1b,4,4a,5,7a,8,9octahydro-3-(hydroxymethyl)-1,1,6,8-tetramethyl-, 9,9a-diacetate, [1aR-
- 127 $(1a\alpha, 1b\beta, 4a\beta, 5\beta, 7a\alpha, 7b\alpha, 8\alpha, 9\beta, 9a\alpha)$]-
- 128 D:A-Friedo-2,3-secooleanane-2,3-dioic acid, dimethyl ester, (4R)-19-Norpregna-1,3,5,7,9-pentaen-21-al, 3,17-bis[(trimethylsilyl)oxy]-, O-
- methyloxime, (17α) (22R)-21-Acetoxy-6β,11β-dihydroxy-16α,17α-propylmethylenedioxypregna-1,4-
- 130 diene-3,20-dione
- 131 3,9-Epoxypregnan-14-ol, 3-methoxy-11,18,20-triacetoxy-
- 132 19-Norpregna-1,3,5(10)-trien-20-yne, 3,17-bis[(trimethylsilyl)oxy]-, (17α) Pregn-4-en-18-al, 3-(methoxyimino)-20-oxo-11,21-bis[(trimethylsilyl)oxy]-, 18-
- 133 (O-methyloxime), $(11\beta, 17\alpha)$ -
- 134 Cholest-4-ene-3,6-dione

- 135 Cholestan-3-one, 2-[1-hydroxy-2-(3-methylphenyl)ethyl]-
- 136 Cholestano[7,8-a]cyclobutane, 3-methoxy-6-oxo-2'-methylene-Acetic acid, 17-(4-hydroxy-5-methoxy-1,5-dimethylhexyl)-4,4,10,13,14pentamethyl-2,3,4,5,6,7,10,11,12,13,14,15,16,17-
- 137 tetradecahydrocyclopenta[a]phenanthryl ester
- 138 13,27-Cycloursan-3-ol, acetate, (3β,13β,14β) 17-(2-Hydroxy-1,5-dimethyl-hex-4-enyl)-4,4,10,13,14-pentamethyl 2,3,4,5,6,7,10,11,12,13,14,15,16,17-tetradecahydro-1H-
- 139 cyclopenta[a]phenanthrene
 5H-Cyclopropa[3,4]benz[1,2-e]azulen-5-one, 2,9,9a-tris(acetyloxy)-3-[(acetyloxy)methyl]-1,1a,1b,2,3,4,4a,7a,7b,8,9,9a-dodecahydro-3,4a,7b-
- 140 trihydroxy-1,1,6,8-tetramethyl-, $[1aR-(1a\alpha,1b\beta,2\alpha,3\beta,4a\beta,7a\alpha,7b\alpha,8\alpha,9\beta,9a\alpha)]$ -
- 141 Bufa-20,22-dienolide, 3,5,14-trihydroxy-, (3β,5β) Methanesulfonic acid, 2-(3-hydroxy-4,4,10,13,14-pentamethyl-2,3,4,5,6,7,10,11,12,13,14,15,16,17-tetradecahydro-1H-
- 142 cyclopenta[a]phenanthryl)-
- 143 Anthiaergosta-5,7,9-trien-3-one
- 144 β-Sitosterol trimethylsilyl ether
- 145 Androst-4,9(11),16-trien-3-one, 16-[2-(methylcarbonyloxy)-1-oxoethyl]-
- 146 Fluoxymesterone
- 147 3,9-Epoxypregn-16-en-14-ol-20-one, 11,18-diacetoxy-3-methoxy-
- 148 Cholesterone
- 149 Cholesterol trimethylsilyl ether
- 150 Ursa-9(11),12-dien-28-oic acid, 3-(acetyloxy)-, methyl ester, (3β) -
- 151 β -Sitosterol acetate
- 152 Stigmast-5-en-3-ol, oleate
 - $(22R) 6\alpha, 11\beta, 21 Trihydroxy 16\alpha, 17\alpha propylmethylenedioxypregna 1, 4 diene-ny 1, 4$
- 153 3,20-dione
- 154 3,9-Epoxypregnan-14-ol-20-one, 3,11,18-triacetoxy 1H-Cyclopropa[3,4]benz[1,2-e]azulene-4a,5,7b,9,9a(1aH)-pentol, 3 [(acetyloxy)methyl]-1b,4,5,7a,8,9-hexahydro-1,1,6,8-tetramethyl-, 5,9,9a-
- 155 triacetate, $[1aR-(1a\alpha, 1b\beta, 4a\beta, 5\beta, 7a\alpha, 7b\alpha, 8\alpha, 9\beta, 9a\alpha)]$ -
- 156 9,19-Cyclolanost-6-en-3-ol, acetate
- 157 9,19-Cyclolanost-24-en-3-ol, acetate

5H-Cyclopropa[3,4]benz[1,2-e]azulen-5-one, 9-(acetyloxy)-3-[(acetyloxy)methyl]-1,1a,1b,4,4a,7a,7b,8,9,9a-decahydro-4a,7b,9a-trihydroxy-

- 158 1,1,6,8-tetramethyl-, [1ar-(1aα,1bβ,4aβ,7aα,7bα,8α,9β,9aα)]22R)-21-Acetoxy-6α,11β-dihydroxy-16α,17α-propylmethylenedioxypregna-1,4-
- 159 diene-3,20-dione
- 160 Hyocholic acid
- 161 Cholestan-3-ol, 5-chloro-6-nitro-, $(3\beta,5\alpha,6\beta)$ -
- 162 4-Norlanosta-17(20),24-diene-11,16-diol-21-oic acid, 3-oxo-16,21-lactone
- 163 9,19-Cycloergostan-3-ol-7-one, 4,14-dimethyl-

- 164 Betamethasone Acetate
 - 1,2,6a,6b,9,9,12a-Heptamethyl-10,13-dioxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-eicosahydropicene-4-
- 165 carboxylic acid, methyl esterD-Homo-24-nor-17-oxachola-20,22-diene-3,16-dione, 14,15:21,23-diepoxy-7-
- 166 hydroxy-4,4,8-trimethyl-, $(5\alpha,7\alpha,13\alpha,14\beta,15\beta,17a\alpha)$ -
- 167 9,19-Cyclolanost-7-en-3-ol
- 168 Oleanolic acid
- 169 Urs-12-ene- 3β ,11 β -diol, diacetate
- 170 β -k-Strophanthin

APPENDIX C

Distribution Index – Page-Ladson

	PL1 - 14	PL2 - 17	PL3 - 25	PL4 - 6
	40.369	38.809	45.996	35.305
1	min	min	min	min
2				
	45.993		45.996	
3	min		min	
4		•		
5				
			47.299	
6			min	
	54.572	51.514	41.932	36.631
7	min	min	min	min
8				
9				
10				
11				
12				
12	47 296		38 863	43 106
13	min		min	-43.100 min
10		48,862	49.842	
14		min	min	
	39.472		36.765	49.291
15	min		min	min
16		•		
-	44.679		48.242	
17	min		min	
	38.626	40.209	37.222	40.832
18	min	min	min	min
	47.582	35.723	41.435	36.768
19	min	min	min	min
			35.433	55.806
20			min	min
		45.073	49.328	49.291
21		min	min	min
22				

	35.879		
112	min		
	36.359		
113	min		
	36.359		
114	min		
	37.085		
115	min		
	37.537		
116	min		
	38.143		
117	min		
	38.994		
118	min		
110	39.949		
119			
120	41.455 min		
120	11111		
121	47.055 min		
121	49 242	40 832	
122	min	min	
	50.236		
123	min		
	50.728		
124	min		
	51.591		
125	min		
	51.591		
126	min		
	54.174	36.631	
127	min	min	
		39.294	
128		min	
420		41.912	
129		min 44.055	
120		44.055	
130		min	

APPENDIX D

Distribution Index- Cameron Park Zoo - Elephant

	E1	E2	E3	E4	E5	E6
	45.995	35.057	45.993	54.723	40.228	41.407
1	min	min	min	min	min	min
		43.116	43.118	43.109	43.108	
2		min	min	min	min	
	45.995	45.991	45.981	45.973		45.985
3	min	min	min	min		min
4						
5						
			47.296	47.293	47.309	47.299
6			min	min	min	min
	45.572	35.297	48.125		37.204	46.128
7	min	min	min		min	min
8						
		53.970				
9		min				
10						
11						
12						
	38.856	38.864	38.866	38.857	40.982	38.857
13	min	min	min	min	min	min
		58.119	46.290			
14		min	min			
	40.874	40.881	35.316	36.511	45.103	39.560
15	min	min	min	min	min	min
	45.743		45.747		45.737	45.733
16	min		min		min	min
17		-		_		
		35.057	36.145		45.555	45.916
18		min	min		min	min
	45.572	48.620	45.113	35.193	48.721	53.278
19	min	min	min	min	min	min
			54.400		51.744	
20			min		min	
						45.099
21						min

	49.835					
113	min					
114						
115						
116						
117						
118						
119						
120						
121						
		36.766			49.304	
122		min			min	
123						
124						
125						
126						
127						
128						
129						
			43.84	6		
130			min			
131						
132						
133						40.225
134						49.225 min
135						52.300 min
136						
137						
138						
139						
140						
141						
142						
143						
144						
145						
146						
147						
148						
149						
					39.285	
150					min	

151				
152				
153				
154				
155				
156				
157				
	53.265			
158	min			
159				
160				
161				
162				
163				
164				
165				
166				
167				
			49.859	
168			min	
			52.134	
169			min	
170		48.125		
T/0		min		

APPENDIX E

Distribution Index - Cameron Park Zoo - White-Tailed Deer

	WTD1	WTD2	WTD3	WTD4	WTD5	WTD6
		53.924	38.801	52.111		51.897
1		min	min	min		min
		43.105	43.117	43.098	43.103	43.118
2		min	min	min	min	min
		45.974	45.991	46.002	46.001	45.981
3		min	min	min	min	min
4						
		45.214				
5		min				
	47.306	47.317	47.317	47.787	47.310	47.296
6	min	min	min	min	min	min
		53.690	43.208		50.825	
7		min	min		min	
			49.832			
8			min			
			50.061	50.031		
9			min	min		
					41.440	
10					min	
				50.031		
11				min		
12						
	38.853	38.852	38.864	38.846	38.863	38.860
13	min	min	min	min	min	min
	35.898		52.570		49.825	47.038
14	min		min		min	min
	36.647	40.864	37.378	45.121	38.194	36.888
15	min	min	min	min	min	min
	45.752	36.097	45.757	45.756	36.096	36.105
16	min	min	min	min	min	min
		50.946		38.486		42.112
17		min		min		min
	36.333	44.173	37.950	38.280	37.199	42.083
18	min	min	min	min	min	min
	57.023	51.163	47.855	52.111	53.746	38.071
19	min	min	min	min	min	min

- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- ...
- 156
- 157
- 158
- 36.595 159 min 40.195 160 min 42.094 42.099 min min 161 49.821 50.786 min min 162 50.786 163 min 51.163 164 min 35.898 min 165 41.271 min 166 44.980 min 167

	42.083
	min
	57.864
	min
38.531	
min	
42.172	
min	
42.903	
min	
50.825	
min	

APPENDIX F

Distribution Index - Cameron Park Zoo - Black Bear

	BB1	BB2	BB3	BB4	BB5	BB6
	37.265	35.734	37.609	36.177	40.212	35.714
1	min	min	min	min	min	min
2						
	45.993	45.982	45.977	45.979		45.979
3	min	min	min	min		min
4						
5						
	47.313	47.297	47.297		47.310	47.322
6	min	min	min		min	min
	45.221	51.160	53.081		43.224	40.218
7	min	min	min		min	min
8						
	50.062					
9	min					
10						
	50.062					
11	min					
12						
	38.865			38.852	36.754	38.858
13	min			min	min	min
	48.748	40.975			52.540	
14	min	min			min	
	35.122	39.907	36.466	46.150	45.093	36.480
15	min	min	min	min	min	min
			45.737	45.744		45.750
16			min	min		min
17						
	37.014	37.826	40.210		42.298	36.183
18	min	min	min		min	min
	37.265	50.692	56.882	49.265	46.110	36.183
19	min	min	min	min	min	min
• •			62.254	47.905	51.402	48.151
20			min	min	min	min
~ 4					39.703	43.733
21					min	min

115						
116						
117						
			35.077			
118			min			
119						
120	44.001		42 014	l		
121	44.661 min		43.811 min			
		•				49.803
122						min
123						
124						
125						
126						
127						
128						
129						
130						
131						
132						
122		37.826				
133		min				
134						
122	50 719	49 840				50 694
136	min	min				min
						53.261
137						min
	59.093					58.444
138	min					min
120					40.943	
139					min /19 701	
140					40.791 min	
110					50.631	
141					min	
					50.631	
142					min	
4 4 2	50.959				50.934	
143			FC 200			
1/1/1	51.382 min		56.299 min		51.385 min	
744		•	35.197			
145			min			

			35.512	
146			min	
			36.580	
147			min	
			37.609	
148			min	
			52.549	
149			min	
		35.300		
150		min		
	51.382			
151	min			
	51.382			
152	min			

APPENDIX G

Distribution Index - Cameron Park Zoo and Martens Farm - Bison and Holstein

	B1	B2	B3	B4	HOL 1	HOL 2	HOL 3	HUD
	35.714	35.193	35.175	57.558	47.837	55.612	40.338	40.377
1	min	min	min	min	min	min	min	min
	43.116	43.115	43.116	43.121	43.122		42.312	43.109
2	min	min	min	min	min		min	min
	45.985	45.996	45.980	45.978	57.576			57.569
3	min	min	min	min	min			min
4						-		
				45.123				
5				min				
	47.305	47.304	47.300	47.293	47.317	47.353	47.315	47.287
6	min	min	min	min	min	min	min	min
	52.300	51.517	46.117			48.902	40.891	46.435
7	min	min	min			min	min	min
8				-				
				53.951				
9				min				
10					-			
11								
11 11								
12	20.057	45 224	20.050					41 (0)
17	38.857	45.224	38.858	38.851				41.692
13	mm	45.000			45.405			
		45.098	54.450		45.105			45.069
14	45 440	min 40.220	min 20.120	40.226		44,020		min 42.040
4 5	45.110	49.236	39.138	49.236	45.105	41.020	45.115	42.840
12	11111	11111					mm	11111
16				45.744 min	45.750 min			
10					11111			
17				42.555	48.248			
τ/		20.240			11111	45 110	44 4 2 7	40.170
10	39.955	38.240	35.175	38.308	48.288	45.118	41.13/	48.179
τŏ			11111	min		min		min
10	50.940 min	35.193	40.876		48.351 min		41.137 min	
19								
20	58.833		45.517		48.546			
20	min		min		min			

			49.820		49.249			41.806
21			min		min			min
				-	49.340			
22					min			
	36.114	35.559	36.103	45.464	49.934	46.718	44.446	43.961
23	min	min	min	min	min	min	min	min
	51.311		51.312	51.328	51.380	51.405	51.356	51.322
24	min		min	min	min	min	min	min
	37.034	35.193	55.987		52.169			
25	min	min	min		min			
26								
27								
		55.180	55.164	55.163	55.216	55.234	55.197	55.174
28		min	min	min	min	min	min	min
					55.564			
29					min			
20		57.564			57.576			
30		min					F0 047	
21					58.290 min		50.047 min	
21					58 862			55 17/
22					50.002 min			55.174 min
52		41 903	59 863	59 147	59 182		59 198	
33		min	min	min	min		min	
					63.937			
34					min			
					67.772			
35					min			
						41.020		
36						min		
		35.393	38.058	36.102		41.923	52.545	
37		min	min	min		min	min	
		52.300	52.295	52.288		52.342	52.316	52.294
38		min	min	min		min	min	min
				38.851		55.234		
39	F 4 0 4 4	25 724	25 520	min		min	40.000	10.150
40	54.941	35./31	35.538	45.464			40.338	43.452
40	min	min	min	min			min 41.024	min
11							41.834 min	
41							/12 017	
<u>1</u> 2							45.017 min	
74							43 017	
4२							min	
.5	45,985	57,564					43.943	
44	min	min					min	
	40.864	36.771	36.241	44.555			44.446	
45	min	min	min	min			min	
					-			-

49.836	
min	
50.390	
min	
50.390	
min	
50.630	
min	
50.973	
min	
52.316	
min	
	40.531
	min

48.424 min

41.383	
min	

44.664 min

45.870 min 51.322 min

	37.034	37.439	36.241	35.519
103	min	min	min	min
104		_		-
	47.562		52.112	
105	min		min	
106				
107				
108				
109		I		
110	53.718 min			
111 111	11111	l		
117 117				
117		37.834	1	
113		min		
114			•	
115				
116				
117				
118				
119				
120				
121				
	46.671		44.922	
122	min		min	
177			49.546	
123 124			11111	l
⊥∠4 12⊑				
125 126				
120 127				
127 178				
170				
129				48.019
130				min
	38.400	48.876		
131	min	min		
		45.996		
132		min	28 620	
122			56.030 min	
T))				

APPENDIX H

Distribution Index – Martens Farm – Remaining

		Dex and		Dex				
	Chicken	Hol	DUF	Fresh	LMG	Slab 1	Slab 2	Slab 3
	35.742	35.211	41.916	40.704	43.041	40.380	40.078	40.498
1	min	min	min	min	min	min	min	min
		43.121	43.116	43.110	41.132			
2		min	min	min	min			
		46.013	45.991	45.991		46.009		45.996
3		min	min	min		min		min
			45.991		_		_	
4			min					
5				-				
		47.316	47.300	47.294	47.310			
6		min	min	min	min			
	40.240	46.316	48.877		41.920	40.208	43.565	43.213
7	min	min	min		min	min	min	min
			48.877		58.787			
8			min		min			
			50.055				50.058	
9			min				min	
			50.055				50.063	
10			min				min	
			50.055				50.058	50.054
11			min				min	min
			50.963					
12			min					
		49.339	55.170	40.990		47.301		
13		min	min	min		min		
	38.040				53.228	40.380		45.070
14	min		_		min	min		min
	36.497	40.903		45.105	40.223	45.215	43.588	42.955
15	min	min		min	min	min	min	min
		45.767		45.745	45.761			
16		min		min	min			
					44.229			
17					min			
	38.897	43.464		48.140	41.646	40.397	45.211	41.572
18	min	min		min	min	min	min	min

	40.840	50.631
19	min	min
20		
20	15 058	
21	43.038 min	
22		-
	38.806	42.612
23	min	min
24		51.357
24 25		- 11111
25		
27		
		55.186
28		min
29		
20		
30 31		
51		
32		
		59.199
33		min
34		
35		
		39.389
36		min
77		
3/		52,323
38		min
39		
40		
41		
42		
43		
		43.938
44		min
15		
4J		59.536
46		min

40.075
min
40.726
min
40.761
min
41.429
min
41.812
min
43.390
min
43.390
min
47.316
min
49.808
min
52.077
min

101			
102			
103			
104			
105			
106			
107			
108			
109			
	39.932		
110	min		
111			
112			
113			
114			
115			
116			
117			
118			
119			
120			
121		35.211 min 38.566	
122		min	
123			
124			
125			
126			
	38.040		
127	min		

BIBILIOGRAPHY

- Polaco, O.J., et al. 2001. The American mastodon Mammut americanum in Mexico. Pp, 237-242, in: La Terra degli Elefanti (G. Cavarretta, P. Gioia, M. Mussi, and M.R. Palombo, eds.). Consiglio Nazionale delle Ricerche, Rome.
- 2. "About Mammoths." San Jose Mammoth Page, www.ucmp.berkeley.edu/mammal/mammoth/about_mammoths.html.
- 3. Hodges, Glenn. "Stone Knife and Mastodon Bones Point to Earlier Arrival of First Americans." National Geographic, National Geographic Society, 13 May 2016, news.nationalgeographic.com/2016/05/160513-first-americans-clovis-mastodonflorida-page-ladson/.http://advances.sciencemag.org/content/2/5/e1600375.full
- 4. S. David Webb (ed.), First Floridians and Last Mastodons: The Page-Ladson Site in the Aucilla River, 403-435 ©2006 Springer
- "Reconstructing Human History with the Help of Fecal Sterols." ScienceDaily, ScienceDaily, 10 Oct. 2018, www.sciencedaily.com/releases/2018/10/181010105539.htm.
- Fracácio, Renata, et al. "Fecal Sterols in Estuarine Sediments as Markers of Sewage Contamination in the Cubatão Area, São Paulo, Brazil." SpringerLink, Springer, 4 Apr. 2012, link.springer.com/article/10.1007/s10498-012-9167-2.
- Nordin, N., and M. M. Ali. "Distribution of Fecal Sterols in Surface Sediment of Sungai Tebrau, Johor." Stability of Plane Couette Flow of Carreau Fluids Past a Deformable Solid at Arbitrary Reynolds Numbers: Physics of Fluids: Vol 30, No 7, AIP Publishing LLC, 27 Nov. 2013, aip.scitation.org/doi/abs/10.1063/1.4858698.
- 8. S. David Webb (ed.), First Floridians and Last Mastodons: The Page-Ladson Site in the Aucilla River, 493-515 ©2006 Springer
- 9. S. David Webb (ed.), First Floridians and Last Mastodons: The Page-Ladson Site in the Aucilla River, 215-246 ©2006 Springer
- 10. Martin P. S. (1967). "Prehistoric overkill". In Martin, P.S.; Wright, H.E. Pleistocene extinctions: The search for a cause. New Haven: Yale Univ. Press.
- 11. Gorman, James (13 May 2016). "Humans and Mastodons Coexisted in Florida, New

Evidence Shows". The New York Times.

- 12. Sadzikowski, M R et al. "Cholesterol-reducing bacterium from human feces." Applied and environmental microbiology vol. 34,4 (1977): 355-62.
- Harrault L, Milek K, Jarde´ E, Jeanneau L, Derrien M, Anderson DG (2019) Faecal biomarkers can distinguish specific mammalian species in modern and past environments. PLoS ONE 14(2)
- Plotka, E. D.; Seal, U. S.; Zarembka, F. R.; Simmons, L. G.; Teare, A.; Phillips, L. G.; Hinshaw, K. C.; Wood, D. G. Biology of Reproduction 1988, 38 (2), 309–314
- 15. Heilbron, I. M.; Kennedy, T.; Spring, F. S.; Swain, G. Journal of the Chemical Society (Resumed) 1938, 869.
- 16. Britannica, T. E. of E. Ergosterol. https://www.britannica.com/science/ergosterol (accessed Apr 11, 2019).
- 17. Why Mastodons Matter. https://mastodonvalleyfarm.com/why-mastodons-matter/ (accessed Apr 11, 2019).
- 18. McDonald, J. N. (1981). North American bison: their classification and evolution. Berkeley: University of California Press.