
 

 

ABSTRACT 

Enhancing Hadron Jet Reconstruction  
in the CMS Level–1 Trigger Using Machine Learning 

Syed Mahedi Hasan, M.S. 

Advisor: Andrew Brinkerhoff, Ph.D. 

Level–1 Trigger (L1T) algorithms used in the Compact Muon Solenoid (CMS) 

experiment for detecting different physics objects must be optimized to ensure that CMS 

continues to collect the most interesting proton–proton collision events for analysis. In this 

thesis, a new machine learning based approach using boosted decision trees (BDTs) is 

presented, which improves the jet detection performance in the L1T. In the first step, a BDT 

is trained using 12 features of L1T jets to generate an importance ranking of the features. 

The results indicate that a new algorithm for mitigating the effect of simultaneous collisions 

(‘pileup’) called the ‘phi–ring’ algorithm could be better at detecting L1T jets than the 

current ‘chunky donut’ algorithm. New BDTs are then trained separately using phi–ring and 

chunky donut energies as input, to confirm the previous finding. Outputs of the BDTs that 

use phi–ring energies as input are found to be more stable in energy scale under varying 

pilepup conditions, with resolution similar to the current jet detection algorithm. Hence, we 

propose to use the phi–ring algorithm to calibrate jet energies and improve jet detection in 

the CMS L1T in Run 3 (2022–2025).
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CHAPTER ONE 

Introduction 

As far as our written history goes, in every civilization our curious ancestors pondered 

some common questions about the reality of our existence irrespective of their time and 

geographic location. Hence it is safe to assume that even before our recorded history, these 

questions stirred our psyche and many of them are still unanswered even though our 

understanding has increased immensely (hopefully) since ancient times. “What may be the 

fundamental or elementary substance with which our physical reality came into existence?” 

and “If we continue dividing a material, will we encounter something indivisible at the end 

of this process?” These are two such questions that are still difficult for us to answer properly. 

Thales of Miletus (626–545 BC) was probably the first person in the western world 

(at least in written history) who tried to answer the first question in an ‘intellectual manner’, 

which would later come to be known as ‘philosophy’. He thought water to be this mysterious 

fundamental substance, and argued that the proportion of water in every substance is the 

reason behind the variety of matter around us. Later his pupils Anaximander (610–546 BC) 

and Anaximenes (586–526 BC) respectively proposed ‘apeiron’ (an indefinite unknowable 

substance) and ‘air’ to be the fundamental substance1. Almost at the same time in India, a 

philosopher named Kanad (also spelled Kanada) came up with an idea to synthesize those 

two questions into one, and put forward the idea of an indivisible substance that he called 

‘Kana’ as the elementary substance2.   In Greece, similar ideas later came independently from 

Democritus (460–370 BC), who proposed the idea of an unchangeable indivisible 

fundamental substance called ‘atomos’ (Greek for ‘indivisible’). His work was based on the
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works of Parmenides (who lived around 500 BC) and Zeno (495–420 BC), who hailed from 

the Greek town of Elea and propounded a static view of the universe in which change or 

motion is nothing but an illusion. Their ideas were opposed by Heraclitus of Ephesus (535–

475 BC), who believed in a dynamic view of the universe where everything is changing in a 

constant manner, which means nothing is absolute and no fundamental substance exists. 

About a century later Plato (428–347 BC), made an alternative between these two 

contrasting views in his ‘theory of ideas’, where he proposed that, in the ‘world of ideas’ 

there exist fundamental substances that are absolute in nature, but in our physical world 

everything is constantly changing. His most famous pupil, Aristotle (384–322 BC), argued 

that every object in the physical world thus must be infinitely divisible. As arguably the most 

influential thinker of the classical world, he effectively cemented these arguments on 

divisibility for about 2000 years1. In 1803, a British chemist named John Dalton, while 

experimenting with gases, realized there are some unit substances that do not divide during 

a chemical reaction. He named them ‘atoms’, and put forward the modern atomic theory of 

elements, which created a paradigm shift and made atomism mainstream once again3. By the 

end of the 19th century the scientific community was pretty convinced about the 

indivisibility of the atoms since that idea could explain many experimental observations with 

great accuracy. But with the famous cathode ray tube experiment (1897) by J. J. Thomson 

and alpha particle scattering experiments (1908–1913) by Hans Geiger and Ernest Marsden 

(under the direction of Ernest Rutherford), it was discovered that atoms are not 

fundamental, but they are made up of ‘nuclei’ and ‘electrons’4. Further discoveries indicated 

that the nucleus is made up of ‘protons’ and ‘neutrons’. As a result, starting with the atom, 

we ended up with three elementary particles: protons (electrically positive), electrons 

(electrically negative) and neutrons (electrically neutral). In later years, it was discovered that 
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the protons and neutrons are divisible as well, being made up of smaller fundamental 

particles called ‘quarks’. Additionally, heavier ‘electron–like’ particles were also discovered, 

and together with electrons they are termed ‘leptons’5. By the late 1960s particle physicists 

came up with a list of almost all possible elementary particles that can exist from our current 

understanding of the physical universe, with some of them yet to be discovered 

experimentally. This list of the fundamental particles would come to be known as ‘the 

Standard Model of particle physics’ or simply ‘the Standard Model’ (SM) in later years.  

 

Figure 1.1: Elementary particles in the Standard Model of particle physics7 
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1.1 The Standard Model 

According to our current understanding, the physical world is made up of two 

different groups of elementary particles5. Particles of the first group are called fermions and 

are usually associated with matter. They have half–integer spin and follow a statistical 

distribution called ‘Fermi–Dirac statistics’. Particles of the other group have integer spin and 

follow a statistical distribution called ‘Bose–Einstein statistics.’ These particles are usually 

associated with force fields and are called bosons. Thus the Standard Model (Figure 1.1) is 

essentially a theory that incorporates all elementary matter particle fermions with all 

elementary field carrier bosons except gravity. Gravity is not a part of this framework for two 

reasons. First, the SM is obtained by extending the quantum field theory (the quantum 

mechanical fusion of classical field theory with the special theory of relativity) for subatomic 

particles, but mathematical synthesis of the general theory of relativity (the theory that 

describes macroscopic gravity) and quantum field theory (QFT) has not been achieved. 

Second, the elusive fundamental quantum excitation of gravity called the ‘graviton’ has not 

yet been discovered6. 

Fermions are responsible for making up the matter around us. They have two distinct 

classes (‘quarks’ and ‘leptons’) and three ‘generations’ in each class. The particles in the same 

generation in either class have no relation between them. The differences between 

generations in a single class are primarily attributed to the difference between their masses. 

There are a total of six quarks in the SM. Among them, the up, charm and top quarks are 

called up–type (uct) quarks, and down, strange and bottom quarks are called down–type 

(dsb) quarks due to their identical charges5. Since the names ‘top’ and ‘bottom’ are similar 

to ‘up’ and ‘down’, sometimes the top and bottom quarks are termed as ‘truth’ and ‘beauty’ 

quarks respectively. The quarks have fractional charges. Up–type quarks have charge +⅔, 
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and down–type quarks have charge –⅓ (as a fraction of the fundamental charge, i.e. the 

amount charge of an electron or a proton)5,6. The quark masses are as shown in Figure 1.1. 

Quarks can interact via all three fundamental forces described in the SM, i.e. the 

electromagnetic (EM) force, the weak force and the strong force. Leptons also have six 

members, where electron, muon and tau particles are categorized as electron–like (charged) 

leptons, and one neutrino is associated with each of them. In the SM, leptons only interact 

with neutrinos of the same type of ‘flavor’. Charged leptons and quarks of the higher 

generations usually decay into other quarks or leptons with lower masses. The charged 

leptons are massive, but the neutrinos are almost massless and the reason behind neutrino’s 

very small mass is yet to be discovered. All charged leptons have –1 charge, but neutrinos are 

neutral6. Unlike the quarks, leptons can interact only via the EM and the weak forces (Figure 

1.2). 

As the SM is a quantum field theory, these fundamental forces that are mediated 

through fields can be regarded as independent particles (discrete excitations) as well. In the 

SM we have four different bosons for three fundamental interactions7. For the EM force we 

have massless and chargeless photons (γ), and the interaction between photons and other 

SM particles depends on the electrical charge of the SM particles. Then we have W± and Z 

bosons which mediate the weak force. They have masses around 80 GeV/c2 (W boson) and 

91 GeV/c2 (Z boson). Z bosons are neutral but W± bosons have a charge ±1. To carry the 

strong force, we have the gluons, which are also massless and neutral and only mediate quark 

interactions. Gluons are responsible for quarks binding together to form protons and 

neutrons, which eventually assemble to form nuclei. These four bosons are called vector 

bosons since they have a spin of 1. They are also called gauge or force carrier bosons. The 

graviton, if it is discovered, will be classified as a gauge boson as well, with a spin of 2.  
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Figure 1.2: Standard Model couplings between leptons (l) and quarks (q) with fermion–
boson couplings in blue and boson–boson interactions in green.7 

 

In 1928, after Dirac applied the special theory of relativity to quantum mechanics, 

he predicted the existence of the ‘positron’, the positive counterpart (antiparticle) of the 

electron5. Soon it was realized that all particles have antiparticles. Antiparticles have the same 

mass as their SM counterparts, but all other properties are exactly opposite. When a particle 

and its antiparticle run into each other, they annihilate by producing gamma rays. For 

charged leptons they are denoted by the opposite charge sign, i.e. e– for the electron and e+ 

for the positron, while for all other antifermions they are denoted by a bar over the symbol 

for their SM counterparts, e.g. q for quarks and q   for the antiquarks. Neutral bosons are 

treated as their own antiparticles, and thus are denoted by the same symbol.  
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Before their discovery, it was already proposed that a quark can group with two other 

quarks to form a baryon, or with an antiquark to form a meson. This occurs with the help 

of gluons to create these composite particles through a process called hadronization. Only 

the top quark cannot group with other quarks, since it is very heavy in comparison to other 

quarks and decays very rapidly before any binding with other quarks is possible6,8. It was also 

known that the nuclei–forming protons and neutrons are generated by a combination of 

three quarks, up–up–down (uud) and up–down–down (udd) respectively. After these 

discoveries, physicists realized that there must be another degree of freedom beyond charge, 

mass and spin that is missing from the model, since the fermions follow the ‘Pauli exclusion 

principle’, which states that two fermions in a bound system can never be in the same 

quantum state. Thus, the quarks inside the baryons like Δ++ (uuu) or Δ– (ddd) can never be 

in the same quantum state. To resolve this issue, the idea of ‘color charge’ was introduced 

in the model. It is described as a property that determines how quarks interact with the 

gluons. There are three ‘fundamental’ colors, red (r), green (g) and blue (b), and their 

anticolors cyan ( r  ), magenta ( g  ) and yellow ( b  ). They are not real colors like in our 

macroscopic world but an analogy, in that their combination in hadrons (two or more quarks 

and/or antiquarks including mesons and baryons) must yield a ‘white’ (colorless) state, since 

we don’t observe them like the electric charges. With these six colors–anticolors, a total of 9 

colorless combinations are possible as given in Table 1.1. 

Table 1.1: Colorless combinations of color charge8 

Octet Singlet 

rb,rg, bg,br, gr,gb,12(rr–bb),16(rr+bb–2gg) 13(rr+bb+gg) 
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Among these nine states, the singlet state is not allowed since it would give rise to 

free massless gluons with infinite range, which is not possible within the framework of the 

SM. Thus we have a total of 8 gluons that interact with the quarks to form different hadrons. 

These gluons can interact with each other through their color charges as well.  

Weak isospin is another degree of freedom in the SM, which is a property of both 

quarks and leptons that comes from interacting with W and Z bosons7. It was needed in the 

SM to explain radioactive emission events where leptons are emitted from a decaying 

nucleus. While the W± bosons have a weak isospin of ±1, all left-handed neutrinos and up–

type quarks (uct) have a weak isospin of +½ and the charged leptons and down–type quarks 

(dsb) have a weak isospin of –½. Similar to gluons, W and Z bosons can interact with each 

other through weak isospin. In the 1960s, it was discovered that Z bosons and photons can 

be used interchangeably in describing the same kind of decay. Hence, a new idea was 

proposed where the EM interactions and weak interactions can be regarded as the part of a 

force called ‘electroweak force’ which is mediated by photons, W and Z bosons. Since 

photons are massless and W and Z bosons are heavy, there is an imbalance in their 

interactions, e.g. decay via photons is more probable. This is known as the breaking of 

‘electroweak symmetry’, which means there must be another degree of freedom associated 

with W and Z bosons that provides them their mass. To settle this, the existence of a new 

scalar (spin 0) boson called the ‘Higgs boson’ is predicted in the SM which would interact 

with the W and Z bosons, as well as with charged fermions, to give them their mass. The 

Higgs boson was discovered about fifty years after this prediction9.  

Except the electrons, neutrinos, gluons and up and down quarks, all other SM 

particles are very short–lived and can only be found in a measurable amount in cosmic rays 

and high–energy particle collisions. The primary triumph of the SM is its accuracy in 
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predicting the existence of charm, bottom and top quarks along with gluons, W and Z bosons 

long before their discovery in high energy particle colliders around the globe. The final 

missing piece in the current framework, the Higgs boson, was discovered to have a mass of 

125 GeV/c2 in 2012 at the ‘Large Hadron Collider’ (LHC) in the European Center for 

Nuclear Research (CERN) by the Compact Muon Solenoid (CMS) and A Toroidal LHC 

Apparatus (ATLAS) experiments9.  

1.2 The Large Hadron Collider 

In terms of energy and size, the Large Hadron Collider is the biggest particle collider 

on earth. It can produce a 13 TeV collision energy with luminosity 2.1×1034 cm–2s–1. This 

collision energy is about 8 times the previous world record of collision energy made by the 

Tevatron collider in 1985 10,11. It lies about 100 meters underground in a tunnel of 27 km 

circumference near Geneva at the French and Swiss border. It started its first collisions in 

2010, and since then, apart from the discovery of the Higgs boson, it has helped us to 

understand the SM in a better way and also to investigate physics beyond the standard model 

(BSM)10.  

The LHC houses a total of nine experiments (8 ongoing and 1 in construction). 

These experiments consists of collaborations with more than 10000 scientists from hundreds 

of institutions around the world. Among these experiments, CMS and ATLAS are dubbed 

as ‘general purpose’ detectors since they aim to investigate physical phenomena that involve 

all SM particles, while the other seven detectors have specific purposes and investigate 

particular phenomena in detail (Table 1.2)13.  

Data-taking periods of the LHC are known as ‘Runs’. Run 1 was between the years 

of 2009 and 2013, during which the LHC operated at 7 and 8 TeV collision energy. After 

that, the LHC had its first long shutdown (LS1) period from 2013–2015. During this period 
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many collider and detector components were repaired and upgraded, including an increase 

in collision energy to 13 TeV. Run 2 was performed from 2015–201810. The second long 

shutdown (LS2) period started in 2018 and is scheduled to end in April 2022. As before, 

LS2 was also utilized to repair and upgrade different components of the colliders and 

detectors. Run 3 will start in April 2022 with a collision energy of 13.6 TeV and is planned 

to end in 2025. 

Table 1.2: LHC experiments12 

Name Abbreviation Purpose 

ATLAS A Toroidal LHC Apparatus General purpose 

CMS Compact Muon Solenoid General purpose 

ALICE A Large Ion Collider 
Experiment 

Investigate quark–gluon plasma 

LHCb Large Hadron Collider Beauty Investigate phenomena related to 
beauty quarks 

TOTEM Total Elastic and Diffractive 
Crosssection Measurement 

Investigate elastic and diffractive 
crosssections 

LHCf Large Hadron Collider 
Forward 

Investigate neutral pions generated 
in the forward region 

MoEDAL Monopole and Exotics 
Detector at LHC 

Investigate magnetic monopoles 
and other stable massive particles 

FASER Forward Search Experiment Investigate high–energy neutrinos 

SND (In 
Construction) 

Scattering and Neutrino 
Detector 

Search for collider neutrinos and 
feebly interacting particles 

 

1.3 The CMS Detector 

The Compact Muon Solenoid (CMS) detector is a 21 m long, 15 m wide and 15 m 

high gigantic detector (Figure 1.3) that weighs about 14,000 tonnes10. At its heart is a 

cylindrical superconducting solenoid that has an internal diameter of 6 m and produces a 
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magnetic field of 3.8 T. Within the solenoid there are silicon pixels and strip trackers. There 

are also two other calorimeters, an electromagnetic calorimeter (ECAL) made up of lead–

tungsten crystals and a hadron calorimeter (HCAL), made up of brass and scintillator 

materials. These two calorimeters take data from three different regions within the detector. 

These regions are the barrel region (within the solenoid volume) and two endcap regions 

(both ends of the solenoid). HCAL also takes data from the forward region (within the 

detector but outside of the solenoid). Outside of the solenoid there are four gas–ionization 

muon collection chambers where muons are detected. These chambers are called drift tubes 

(DT), cathode strip chambers (CSC), resistive plate chambers (RPC) and gas electron 

multiplier (GEM)14. The absolute pseudorapidity (|η|) of DT is less than 1.2 and it covers 

the barrel region. The η coordinate is related to the polar angle (θ) of the emitted particle’s 

direction with respect to the beam axis in such a way that for θ = 900, |η|is zero and for θ = 

00, |η| goes to infinity10. Mathematically it is expressed as: η= –ln[tan(θ/2)]15. Thus, θ 

corresponding to the DT ranges from 33.50 to 900.  For CSC, |η| ranges from 0.9 to 2.4 (θ 

from 10.40 to 44.30) which covers the endcap regions primarily. For the RPC, |η| is less 

than 1.7 (θ from 20.70 to 900), and it covers both the barrel and endcap regions10. GEM is a 

new addition to the CMS detector with |η| greater than 2.0 (θ <15.40). It covers primarily 

the forward region10. An r–z slice of a quadrant of the CMS detector is shown in Figure 1.4, 

and a cross–sectional image of the CMS detector is shown in Figure 1.5. This whole system 

runs with a collaboration of over 5000 scientists from more than 200 institutions in about 

50 countries of the world.  

Even though the LHC produces about 30 million proton–proton collision events per 

second with an average of around 35 simultaneous collisions per event during its typical data 

taking period, it would be impractical to record the information of all these events. First, we 
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do not have enough data storage space to do so, and second, most of these events are not 

‘interesting’, which means that they are not able to provide any insight about novel 

phenomena. Thus, only about 1000 interesting events are selected per second from those 30 

million for further investigation. This feat is achieved with the help of the ‘Trigger System’ 

of the CMS detector17. 

 

Figure 1.3: The CMS detector16 

 

Figure 1.4: An r–z slice diagram of a quadrant of the CMS detector18 
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Figure 1.5: Cross–section of the CMS detector18 

The trigger system contains two different stages for filtering out the uninteresting 

events from the collisions. The first stage is called the ‘Level–1 Trigger’ (L1T). It reconstructs 

and measures the energy of various entities that come out of the collisions, including muons, 

taus, electrons, photons and jets (the collection of hadrons). After this preliminary 

reconstruction L1T selects only 100 thousand events from the total number of collision 

events and sends them to the next stage known as the ‘High Level Trigger’ (HLT). To do so, 

the L1T uses a list of predefined algorithms known as ‘seeds’ that reconstruct the collision 

events based on some predefined criteria. The full collection of seeds is called the trigger 

‘menu’. If any event satisfies the conditions of at least one seed in the menu, higher–

granularity data from all subdetectors (including the tracker) are sent to the HLT for further 

investigation. The HLT then performs a detailed reconstruction using high–performance 

processor farm and selects only about 1000 ‘most interesting’ events to be stored for physics 

analysis. Hence, the L1T and HLT algorithms must be optimized properly on a regular basis 

to make sure that the most promising collision events are selected from the trillions of 

events10. 
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With that in mind, this thesis describes a new technique to enhance the hadron jet 

reconstruction of the L1T using a machine learning tool called ‘boosted decision trees’ 

(BDTs). It also reports a noticeable improvement by providing a comparison between the 

current jet detection algorithm of the L1T and the new BDT approach.  
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CHAPTER TWO 

Jet Reconstruction in the Level–1 Trigger 

 Since CMS is a ‘general purpose’ detector, it is designed to investigate a wide variety 

of physical phenomena including (but not limited to) searches for exotic particles, 

supersymmetry, dark matter candidates, understanding the dynamics of quark–gluon plasma 

generated through heavy ion collisions, the interactions of SM particles with electroweak and 

QCD forces, the decay of top and bottom quarks, etc19. After the discovery of the Higgs 

boson, measuring its various properties and decay modes has also become very important to 

the CMS experiment20. The experiment performs all these tasks with the help of high 

performance triggering systems (L1T and HLT), which run various algorithms (seeds) which 

together form the ‘menu’. The L1T menu runs a total of 350 to 400 such seeds to select the 

most interesting events.  

The L1T seeds can be divided into two primary categories based on their 

application10. The first category consists of seeds that apply the selection criteria only to the 

same type of objects. These objects include electrons, photons, muons, taus, hadronic jets, 

transverse energy and energy corresponding to the missing momentum (ET(miss))10. The 

selection criteria are applied to the object based on the threshold of their transverse 

momentum (pT) or transverse energy (ET) and the value of their absolute pseudorapidity |η|. 

It should be mentioned that the term pT  and ET are used in this thesis interchangeably with 

the term ‘energy’. About 75% of the total selection rate (100 kHz) of the L1T is covered by 

these types of seeds (Figure 2.1). The second category is termed ‘cross’ seeds, which include  

multiple objects of different types. Simple cross seeds involve combining multiple (usually
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two) physics objects such as a jet and an electron. There are other cross seeds that work on 

calibrating the detectors, measuring the trigger efficiency and reconstructing more complex 

processes like Higgs boson production by vector boson fusion, jets decaying into leptons, etc. 

Trigger rate allocations for different kinds of seeds are shown in Figure 2.1. After receiving 

data from several components, the L1T uses these trigger algorithms to perform a 

reconstruction of all collision events, which are then selected or rejected by the menu10.          

 

Figure 2.1: Level–1 Trigger rate allocation for simple and cross seeds10 

2.1 Components of the Level–1 Trigger 

The Level–1 Trigger works by a combination of two trigger systems called the muon 

trigger system and the calorimeter trigger system (Figure 2.2)17. The muon trigger system gets 

data from short tracks known as trigger primitives (TPs) from the CSC and DT along with 

hits from RPC. These data are then passed to the concentrator and preprocessor fanout 

(CPPF) and a twin multiplexer (TwinMUX). These modules pass only some selected data to 

three muon track finders, which reconstruct muon tracks in different regions. These track 

finders are called the barrel muon track finder (BMTF), overlap muon track finder (OMTF) 
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and endcap muon track finder (EMTF). The reconstructed muons from the track finders are 

then sent to the global muon trigger (μGMT, pronounced as micro–GMT) for the 

penultimate selection. After that, the selected data are passed down to the global trigger 

(μGT) for final selection10.  

     

 

Figure 2.2: Components of the Level–1 Trigger10 

The calorimeter trigger has two stages called ‘Layers’. Layer–1 receives local energy 

deposit TPs from the HCAL and ECAL. These energies in calorimeters are deposited into 

ECAL crystals or HCAL modules of various shapes known as trigger towers (TTs). Layer–1 

calibrates and serializes the data and passes them on to Layer–2. It also combines ECAL and 

HCAL TPs into a single TP, which includes bits for the ECAL/HCAL energy ratio. Layer–

2 then uses these calibrated TPs to reconstruct the tracks of physics objects based on their 
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origin. TPs from ECAL are used to reconstruct electrons, and TPs from ECAL and HCAL 

are used to reconstruct jets, hadronic taus, etc. The selected objects are then sent to a 

demultiplexer (DeMUX) for reserialization and formatting before they are sent to the μGT 

for final selection. Each preprocessing node of the calorimeter trigger system obtains the 

information of an entire collision event with a granularity as small as Δη×Δφ = 0.087×0.087 

(where η is unitless and φ is the azimuthal angle in radians). Together with the data from 

μGMT and DeMUX, the μGT makes the final selection of the data to be passed over to the 

HLT according to the menu. The HLT then performs a detailed reconstruction including 

information from the inner tracker on those events to further select the events to be 

stored10,17. 

Trigger seeds are used to select the most interesting collision events. The efficiency 

of these trigger algorithms depends on their ability to differentiate between multiple objects 

that are generated due to the collision events. Since the number of simultaneous collisions 

per LHC bunch crossing (pileup) is large, this process becomes increasingly difficult because 

of the background noise10.  

2.2 Jet Reconstruction Algorithms 

Quarks cannot exist freely in nature since only the colorless states are allowed 

according to QCD confinement, so they interact with gluons and other quarks to form 

hadrons. The collections of such hadrons coming from collision events are known as 

jets21.  The jet algorithm used in Run 2 is based on a square jet approach known as the 

‘chunky donut algorithm’ (Figure 2.3)10. In this algorithm, a 9×9 square region is selected in 

TTs of ECAL and HCAL around a single jet ‘seed’ TT with transverse energy greater than 4 

GeV. In the barrel region, this 9×9 area corresponds to a 0.783×0.783 square in η×φ, 

approximating the 0.8 diameter circle in η vs. φ used for offline (known as particle flow or 
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PF) jet reconstruction, to be considered as a jet candidate, the energy of the central TT in 

the candidate must be equal or greater than the energy of every TT in the triangle below the 

diagonal of the 9×9 region, and greater than the energy of the TTs in the triangle above the 

diagonal of the 9×9 region. This serves two purposes. First it avoids double counting of the 

same jet seed, and second, it prevents vetoing the TTs with the same energies during the 

consideration of jet seeds. After identifying a jet candidate, the energy deposits of four 

neighboring 3×9 regions are also estimated. Among the four, the three regions with lowest 

energies are summed as the estimated pileup energy and subtracted from the jet candidate 

energy to obtain the final energy of the L1 jet. So, mathematically it can be written as:  

ET (PUS) = [Raw ET – Σ three lowest ET of 3×9 neighboring regions] × Layer–2 calib. (2.1) 

Here, ET (PUS) is the pileup-subtracted (PUS) transverse energy of the L1 Jet. Raw ET is the 

raw transverse energy of the jet candidate in the 9×9 square region without Layer–2 

calibration22.  

 

Figure 2.3: Chunky donut algorithm with a 9×9 square region in the center, and four 
neighboring 3×9 regions, with veto conditions22 



 

20 

 

Figure 2.4: Trigger tower rings from 1 to 28 that cover |η| < 3.018 

 

 

Figure 2.5: Trigger tower rings from 29 to 41 that cover 3.0 < |η| < 5.218 

There are a total of 40 TT rings in HCAL: 16 in the barrel region, 12 in the endcap 

region and 12 in the forward region. Each ring covering |η| < 2.65 has 72 TTs, while rings 

with |η|>2.65 have 36. They are shown in Figure 2.5 and Figure 2.6. TTs in the barrel and 

endcap regions span an angle of φ=50 (except in ring 28) and cover the η values from –3.0 

to 3.0. TTs in the forward region cover the |η| values from 3.0 to 5.2 and span an angle of 
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φ=100. The TT ring numbers are often labeled with iη or iEta, i.e. iEta=1–16 is in the barrel 

region, iEta=17–28 is in the endcap region and iEta=30–41 is in the forward region. Even 

though HCAL doesn’t have a TT ring at iEta=29, that number is not omitted from the iEta 

numbers. The width of the trigger towers in η as a multiple of Δη=0.087, are shown in Figure 

2.718.  Here we see that towers in the forward region, which receive the most energy from 

pileup, are a factor of 2 to 4 larger than in the barrel region. 

 

Figure 2.6: The width of the trigger towers in η as a multiple of Δη=0.08718 

However successful, the chunky donut algorithm has a major drawback. The 

reconstructed energy scale of the L1T jets relative to their true energies fluctuates heavily in 

the forward region, which may hinder proper triggering using jets in the forward region. This 
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is because the L1T jet area in η × φ corresponding to the 9×9 TTs gets larger in more forward 

regions, while the true area of the physical jets being measured remains the same. Also the 

geometrical area of the three 3×9 regions used to estimate the pileup does not match the 

area of the 9×9 L1T jet. The first issue could be mitigated by changing the size of L1T jets in 

the eta direction, depending on their location in η. To address the second issue, a new 

algorithm called the phi–ring algorithm can be used. The mathematical formulation of phi–

ring energy is:  

Phi–Ring ET (PUS)=[Raw ET–(1/7) Phi–Ring ET]×Layer–2 Calibration        (2.2)  

Here, Phi–Ring ET (PUS) is the PUS transverse energy of the jet candidate. Raw ET is the 

energy deposited in the 9×9 square region before PU subtraction and Layer–2 calibration, 

and Phi–Ring ET is the sum of transverse energy in the 9 full phi–rings of the 9×9 jet. The 

estimated PU energy in this case is 1/7 of the Phi–Ring ET. A phi–ring consists of a total of 

eight 9×9 regions with the same central η values as the jet, including the jet. To estimate the 

pileup energy, the Phi–Ring ET sums up the next seven 9×9 regions with the same η as the 

jet candidate, so the average is found by taking a mean of all these regions. The reduced 

energy scale fluctuation in the phi–ring algorithm, as demonstrated in Chapter 4, is 

attributed to its consideration of a greater surface area for calculating the pileup energy, 

whereas in the chunky donut algorithm the estimate is more local. Also, the phi–ring 

algorithm uses TTs with the same size and η location as the 9×9 jet, which gives a better 

prediction for PU in the 9×9 area. In our work, we have trained BDTs with both the chunky 

donut and phi–ring algorithms to compare their performance for calibrating L1T jets.
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CHAPTER THREE 

Computational Details 

Due to their amazing recent advancements, different machine learning (ML) 

methods like neural networks, decision trees, support vector machines, and others have 

made their presence felt in numerous fields. They have proven to be efficient in recognizing 

complex patterns from a massive amount of data (‘big data’). On the other hand, with 

advances in the collision energy and luminosity of particle colliders, experimental high 

energy physicists (HEP) must analyze a tremendous amount of collision data, which required 

a wide–scale integration of ML within HEP in recent years23. 

Machine learning can be defined as algorithms or processes that improve their 

accuracy in finding patterns and making predictions over a number of cycles and data. It 

tries to imitate how humans recognize patterns in their day–to–day experience, which makes 

it a branch of artificial intelligence24. A typical ML model starts with ‘training’ the model. In 

this process the model is fed a sufficient amount of input data along with the true or desired 

output data, if available. The input data are usually a number of events or occurrences that 

can contain one or more variables which the output of the model is dependent. These 

variables are known as input features24. During training, the model learns patterns among 

the features and generates output based on the input data, which are then compared to the 

desired output data to determine the loss or error in their decisions. If the error is higher 

than a predefined value (tolerance), the model is trained again with different parameters till 

the error is under the tolerance. After training, the models are used in classification, 

prediction, or regression, depending on their application24. Artificial feed-forward neural 
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networks (ANN) are perhaps the most extensively used ML techniques employed in many 

fields of investigation. While they can provide accurate results compared to other techniques, 

their training process becomes slower and slower with more and more data25. To alleviate 

this, often more computationally favorable methods based on decision tree learning 

techniques are used to create a balance between computational speed and accuracy. Boosted 

decision trees (BDTs) and bootstrap aggregating (bagging) trees are the two commonly used 

decision tree based techniques26. 

 

Figure 3.1: A simple decision tree 

3.1 Boosted Decision Trees 

A decision tree can be regarded as a tool that divides the data space into simple 

regions in order to classify (for discrete desired outputs) or regress (for continuous desired 

outputs) the provided inputs. In classification tasks the process doesn’t ‘count’ the numbers 

as they are, but merely classifies them into different categories. In regression tasks the model 

predicts the numerical value of the target quantity. It can be used for both qualitative and 

quantitative features26. A simple decision tree is shown in Figure 3.1. A ML method based 

on decision trees employs a large number of such trees to classify or regress to a true output. 

If the outputs of the trees in the method are dependent on one another, the method is called 

‘boosted decision trees’ (BDTs), otherwise they are called ‘bootstrap aggregating trees’ 
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(bagging trees)26,27. The term boosting refers to the fact that each tree is ‘boosted’ by 

(dependent on) its prior trees. Among the many types of boosting available to BDTs, the 

most popular ones are adaptive boosting (AdaBoost), gradient boosting and extreme gradient 

boosting (XGBoost)28,29.  

3.1.1 Regular and Extreme Gradient Boosting 

Gradient boosting (GB) is based on a popular optimization technique called the 

gradient descent algorithm. In this algorithm a local minimum of a search space is 

determined by taking repeated steps towards the opposite direction of the gradient of the 

given function at the current point. The size of these steps is called the learning rate of the 

gradient descent. GB does something similar, but instead of taking the gradient of the output 

function, it uses the gradient of the error function to minimize error or loss in the decision– 

making process30. A typical error function for GB trees has the form:     

L = [y(x) – f(x)]2                                                         (3.1) 

 dL/dx = 2[y(x)–f(x)]                                                      (3.2) 

Here, L is the loss function, x is the input, y(x) is the desired (true) output and f(x) is the 

prediction made by the model. The term [y(x)–f(x)] represents as the error (residual) of the 

decision–making process31. GB further updates the residual by the following equation: 

New prediction (GB) = Old prediction + Learning rate×Residual         (3.3) 

Thus, the new residual is always dependent on the previous residual and the total predictive 

model is a collection (ensemble) of all trees in the model. The individual trees in the 

ensemble are weak learners, i.e. they have a high error rate, but collectively an ensemble of 

weak learners can outperform models with strong learners due to their scalability (ease of 

modification) and computational speed30.  
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Extreme gradient boosting (XGBoost) is an advanced version of the GB technique29. 

In XGBoost, to avoid overfitting (when a model performs well on training data but works 

poorly on test data), regularization or penalty terms are added to the residual of GB. The 

search space is divided into further regions based on their distance from the mean or median 

of the total error. The regularization terms depend on this new error metric. Since XGBoost 

focuses more on smaller search spaces it reaches the optimized solution faster than GB29. It 

takes the form: 

New prediction (XGB) = New prediction (GB) + λ×ErrorBranch
                    (3.4) 

Here, λ is a regularization parameter and ErrorBranch is either the mean or the median of the 

error of the current branch. It is possible to add another regularization term to XGBoost to 

increase the optimization speed further. The second regularization parameter is often 

denoted by 𝛼. The values of λ and 𝛼 are usually small and depend on the residual and 

distribution of values in the search space29.  

3.1.2 Algorithms 

Let us consider an example of a dataset containing 4 observations where the desired 

outputs are 10, 12, 14 and 16. Let the initial predictions for both GB and XGB be 13 (mean 

of the distribution) for all cases. Further steps in GB are performed as follows: 

Step 1: The residual of each prediction is determined by subtracting the prediction from the 

true or desired outputs. 

Step 2: New predictions are made using Equation (3.3). Thus, for a learning rate of 0.1, for 

iteration 1 the predictions are: 

13+(0.1×–3)=12.7, 13+(0.1×–1)=12.9, 13+(0.1×1)=13.1, 13+(0.1×3)=13.3 

Step 3: Step 1 and Step 2 are repeated till the error is under a predefined value (tolerance). 

Table 3.1 shows another iteration of the prediction for GB.  
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Table 3.1: Regular gradient boosting 

True Prediction Residual Prediction 
(Iteration 1) 

Residual 
(Iteration 1) 

Prediction 
(Iteration 2) 

Residual  
(Iteration 2) 

10 13 –3 12.7 –2.7 12.43 –2.43 

12 13 –1 12.9 –0.81 12.81 –0.81 

14 13 1 13.1 0.9 13.19 0.81 

16 13 3 13.3 2.7 13.57 2.43 

 
Table 3.2: Extreme gradient boosting 

True Prediction Residual Prediction 
(Iteration 1) 

Residual 
(Iteration 1) 

Prediction 
(Iteration 2) 

Residual 
(Iteration 2) 

10 13 –3 12.5 –2.5 12.09 –2.09 

12 13 –1 12.7 –0.7 12.47 –0.47 

14 13 1 13.3 0.7 13.53 0.47 

16 13 3 13.5 2.5 13.91 2.09 

 
In XGBoost a cutoff point is defined at first, and the data are divided into multiple 

regions based on the cutoff. In the example above, the mean residual after the initial 

prediction is (–3–1+1+3)/4=0. Let us set the cutoff at zero. In real applications of XGBoost, 

where the number of observations are far higher than 4, such cutoffs are created periodically 

after a few iterations to reach the optimized solution faster. The steps of the algorithms are 

as follows: 

Step 1: Residual of each prediction is determined by subtracting the prediction from the true 

or desired outputs. 

Step 2: New predictions are made using Equation (3.4). As the cutoff is at zero, 4 data points 

can be divided into two branches: on the first branch the mean error is (–3–1)/2=–2 and on 
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the second branch the mean error is (3+1)/2=2. Thus, for a learning rate of 0.1 and λ=0.1, for 

iteration 1 the predictions are: 

13+(0.1×–3)+(0.1×–2)=12.5, 13+(0.1×–1)+(0.1×–2)=12.7, 

13+(0.1×1)+(0.1×2)=13.3, 13+(0.1×3)+(0.1×2)=13.5 

Step 3: Step 1 and Step 2 are repeated till the error is under a predefined value (tolerance). 

 Table 3.2 shows another iteration of the prediction for GB. From Table 3.1 and 3.2, 

we can see that after 2 iterations the residual is less in XGBoost, which means it converges 

faster than GB.  

3.2 BDT Training 

In our work, we implemented two different BDTs using the 2018 single muon data. 

The dataset for the first BDT (BDT1) contained 15 jet variables (features) and had about 4.5 

million jets of all energy ranges. The jet variables are listed in Table 3.3.  

These jet variables target different jet sizes and regions along the path of the jets. 

Since we wanted our BDT to differentiate between the high (more than 50 pileup vertices, 

nVtx > 50) and low pileup events (less than 25 pileup vertices, nVtx < 25), exactly 50% of 

the jets were in high pileup events and the remaining 50% were in low pileup events. We 

used 50% (randomly chosen) of our data as the training data and 50% were used as the test 

data. BDT1 was trained with a total of 12 variables (all except PFJetEtCorr, L1JetType and 

PileupEnvironment) and the output of the BDT was regressed to PFJetEtCorr as the desired 

output.  

Since ‘PFJetEtCorr’ is the target variable (desired output), it was omitted from the 

list of input features. The other two variables, L1JetType and PileupEnvironment, are 

omitted because, firstly, all jets of the dataset were of emulated type, so there is no point of 

including that in our training and secondly, as described above, we wanted our BDT to 
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differentiate between high and low pileup events on its own. We trained BDT1 with all 

possible variables to perform a feature ranking on them so that the features which are more 

important in reconstructing jets can be used in future modifications to the L1T jet algorithm. 

Table 3.3: List of jet variables 

Variable Definition 

PFJetEtCorr Transverse energy (ET) of particle flow offline (PF) jets 

L1JetType Type of L1T jet. Either emulated or unpacked jets. 
Current dataset only has emulated jets 

L1JetToweriEtaAbs Absolute value of iEta of L1T jet seed  

L1JetDefault_EtPUS ET of 9×9 (η × φ) L1T jets with PU subtraction and 
calibrations from Run 2 

L1JetDefault_RawEtPUS PU subtracted ET of 9×9 jets with chunky donut PU 
subtraction without Layer–2 calibration 

L1JetDefault_PU PU for 9×9 jets estimated with chunky donut algorithm 

L1Jet9x9_RawEt ET of 9×9 jets before PU subtraction and without Layer–2 
calibration 

L1Jet9x9_EtSum7PUTowers Sum of ET in full phi–ring of the 9×9 jet, excluding the 
9×9 jet area 

L1Jet7x9_RawEt ET of 7×9 (η × φ) jets before PU subtraction and without 
Layer–2 calibration 

L1Jet7x9_EtSum7PUTowers Sum of ET in full phi–ring of the 7×9 jet 

L1Jet5x9_RawEt ET of 5×9 (η × φ) jets before PU subtraction and without 
Layer–2 calibration 

L1Jet5x9_EtSum7PUTowers Sum of ET in full phi–ring of the 5×9 jet 

L1Jet3x9_RawEt ET of 3×9 (η × φ) jets before PU subtraction and without 
Layer–2 calibration 

L1Jet3x9_EtSum7PUTowers Sum of ET in full phi–ring of the 3×9 jet 

PileupEnvironment High (nVtx > 50) or low (nVtx<25) pileup 
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After analyzing the performance in high and low PU events, and the feature ranking 

plots of the BDT1, we realized that the phi–ring algorithm is better at detecting jets than the 

current chunky donut algorithm. Hence, we moved on to the training of energy calibration 

BDTs. At first, we calculated the phi–ring energies for all events in the dataset using equation 

(2.2), then we filtered out the jets with phi–ring energy values less than 10 GeV/c2 since the 

vast majority of low ET jets come from pileup. With all the jets having phi–ring energy equal 

to or more than 10 GeV/c2, the size of the dataset was reduced to 2.9 million jets with about 

1.6 million high PU and 1.3 million low PU jets. Then we set up three new sets of energy 

calibration BDTs with two input variables and four BDTs in each set. They are tabulated in 

Table 3.4. 

Table 3.4: BDT training with two input variables 

BDT Input Variable Target Variable 

Phi–Ring BDT L1JetToweriEtaAbs 

Phi–RingEnergy  

PFJetEtCorr 

Phi–RingEnergy/PFJetEtCorr 

log(PFJetEtCorr) 

log(Phi–RingEnergy/PFJetEtCorr) 

L1Jet BDT L1JetToweriEtaAbs 

L1JetDefault_EtPUS 

PFJetEtCorr 

L1JetDefault_EtPUS /PFJetEtCorr 

log(PFJetEtCorr) 

log(L1JetDefault_EtPUS /PFJetEtCorr) 

L1JetRaw BDT L1JetToweriEtaAbs 

L1JetDefault_RawEtPUS 

PFJetEtCorr 

L1JetDefault_RawEtPUS /PFJetEtCorr 

log(PFJetEtCorr) 

log(L1JetDefault_RawEtPUS /PFJetEtCorr) 
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We trained separately for chunky donut and phi–ring algorithms to check their 

performance against one another. Again, we used 50% of the data as the training data, and 

the rest were used to validate the performance of the training. In the training process, we 

trained each BDT 10 times with different random subsets of data. After each training we 

used a pseudo test dataset containing iEta values from 1 to 40 (except 29) with energy 

(chunky donut or phi–ring) values from 1 to 200 GeV/c2 for each iEta to obtain the scale 

factors of the trained BDTs associated with each iEta for a particular energy. These events 

mimic all possible iEta and ET values seen by the L1T system. After each set is trained, we 

took the values of mean scale factors from the 10 BDTs and plotted them against the input 

ET values for each iEta. For each iEta and ET pair as input, the BDT would produce the 

calibrated energy as the output. The energy calibration scale factors are then computed as 

the ratio of the BDT output energy to the BDT input energy. 

All BDTs were set up using xgboost library with python. The learning rate was set at 

0.01. The maximum depth in all BDTs was set at 5, and the number of trees in each depth 

was 1000.
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CHAPTER FOUR 

Results and Discussion 

This section is divided into two parts. In the first part, we discuss the results from 

the 12–variable BDTs where we compare the energy scale and resolution (the ratio of the 

square root of the variance and the energy scale) of the BDT output with the energy scale 

and resolution of the chunky donut algorithm, both with and without Layer–2 calibration. 

Importance rankings of input jet variables in different regions of the CMS detector are also 

provided. In the second part, we go into the performance of the 2–variable Phi–Ring, L1Jet 

and L1JetRaw BDTs by comparing their energy scales and resolutions.  

4.1 12–Variable BDT 

4.1.1 Energy Scale Plots 

In each of the energy scale plots of the 12–variable BDT, we have compared three 

energy distributions for training and testing datasets. These distributions are the output of 

the BDT, L1Jet energy (with Layer–2 calibration) and L1JetRaw energy (without Layer–2 

calibration). While there are no training and testing datasets associated with L1Jet pT and 

L1JetRaw pT, we provided their corresponding values for training and testing datasets to 

compare with the BDT output. Figure 4.1 shows the energy scale comparison of high and 

low PU for PF jets with all ranges of pT (mostly below 30 GeV), and PF jets with pT between 

60 and 90 GeV, a common range for L1T multijet triggers. Here, we can see that the energy 

scale of the L1Jet (orange) and L1JetRaw (green) are different in the barrel and endcap 

regions, but merge together in the forward region. This happens because in the L1Jet 

distribution, Layer–2 scale factors were applied but were turned off in the forward region. 
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 Thus, 2018 L1Jet and L1JetRaw both have the same pT in the forward region. The output 

of the BDT (blue) does not fluctuate much in comparison to the orange and green lines, 

indicating stable performance.   

 

Figure 4.1: Energy scale for high and low PU (top to bottom) for all PF jet pTs (left) and PF 
jets with pT between 60 and 90 GeV (right) 

 
Another superiority of the BDT output compared to the other two distributions is 

in high and low PU plots, the shapes of the orange and green lines are different in the 

forward region. In high PU plots, they go up sharply between iEta 30 and 35 then come 

down, for both ‘all pT’ and ‘60 GeV to 90 GeV’ ranges. But in low PU plots, the orange 

line comes down sharply in the forward region and merges onto the green line, whereas in 
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all plots irrespective of the PU type, the BDT output remains comparatively consistent. 

This is clearly visualized in Figure 4.2 where the ratio of high and low PU energy scale is 

nearly equal to 1 in all regions but for orange and green lines its is far higher in the 

forward region. This indicates that the BDT output is capable of differentiating between 

high and low PU events on its own, even if the input data didn’t explicitly include this 

information. 

 

Figure 4.2: Energy scale ratio (high vs low PU) for all PF jet pTs (left) and PF jets of pT 
between 60 GeV and 90 GeV (right) 

 
4.1.2 Resolution Plots 

Similar to the energy scale, we have compared the resolutions of three 

aforementioned energy distributions as well. The resolution is the ratio of the square root of 

the variance over the mean energy scale, thus a smaller variation among the data indicates 

better resolution and vice versa. From the resolution plots of Figure 4.3, it can be seen that 

for the full PF pT range the resolution of the BDT output is slightly better than the 

resolutions L1Jet and L1JetRaw. But in the 60–90 GeV range, the resolution of L1Jet is 

slightly better than the BDT output in the barrel and endcap regions, but similar in the 

forward region. The resolution ratio of the high and low PU energy distributions of the BDT 
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output is found to be very similar to the other distributions, thus we don’t observe any 

noticeable improvement in the resolution for BDT training as was observed for the energy 

scale. The difference between L1Jet and the 12–variable BDT is much larger for the energy 

scale (up to 20% of the jet energy) than it is for the resolution (less than 5%). 

 

Figure 4.3: Resolution for high and low PU (top to bottom) for all PF jet pTs (left) and PF 
jets of pT between 60 and 90 GeV (right)  
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Figure 4.4: Resolution ratio (high vs low PU) for all PF jet pTs (left) and PF jets of pT 
between 60 and 90 GeV (right) 
 

4.1.3 Ranking Plots of the BDT Variables  

Variable ranking plots for all regions (Figure 4.5) indicate that the variable 

L1JetDefault_EtPUS (L1 jet pT with PU subtraction) is the jet variable that is preferred most 

by the BDT in determining the PF jet energies. But when we probed deeper and trained five 

new BDTs in five separate regions of the HCAL, we obtained a different insight. These 

regions are: barrel (iEta less than or equal 16), endcap 1 (iEta 17–20), endcap 2a (iEta 21–

25), endcap 2b (iEta 26–28) and forward (iEta 30–41). In the barrel region (Figure 4.5), 

L1Jet9x9_RawEt (a variable from equation 2.2 which helps in determining the value of the 

Phi–Ring pT) is found to be the most important variable. In the endcap 1 region, the same 

variable is found to be the most significant with some strong contribution from 

L1Jet7x9_RawEt.  

This indicates that the BDT starts preferring smaller jet sizes (i.e. fewer trigger tower 

rings in iEta) as it progresses through different regions. We claim this to be the case since we 

see a strong contribution from L1Jet5x9_RawEt in the endcap 2a region (even though L1Jet 
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pT has the highest contribution in this region) and from L1Jet3x9_RawEt in endcap 2b and 

the forward region.  

 

Figure 4.5: Ranking plots for all regions (left), barrel (HB) region (right) 

 

Figure 4.6: Ranking plots for endcap 1 region (left), endcap 2a (HE2a) region (right) 
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Figure 4.7: Ranking plots for endcap 2b (HE2b) region (left), forward (HF) region (right) 

4.2 Energy Calibration BDT 

4.2.1 Phi–Ring BDTs 

As described in Table 3.4, we trained four BDTs with Phi–Ring pT and iEta values 

as inputs and compared their outputs with the values of Phi–Ring pT, L1Jet pT and L1JetRaw 

pT. From the graphs it is evident that Phi–Ring pT (pink) is more consistent in all regions 

than L1Jet pT (violet) and L1JetRaw pT (brown). The BDTs are regressed to PF pT, Phi–Ring 

pT/PF pT, log (PF pT) and log(Phi–Ring pT/PF pT) and their outputs are plotted in blue, 

orange, green and red respectively. These lines are quite similar in shape and differ mainly 

in scale factors. That is why we will keep the focus of our discussion primarily on the output 

of the PF pT BDT (blue). We generated energy scale and resolution plots for four PF pT 

ranges: 25–35 GeV, 40–55 GeV, 60–90 GeV and 100–200 GeV (Figure 4.8–Figure 4.11) to 

compare the performance in separate regions of the pT values for high and low PUs. Here 

we got results similar to the previous training with 12 variables, except now our BDT outputs 

have greater stability than the previous training. It can be understood from the high and low 

PU plot that better stability is achieved in the energy scale for BDT outputs than L1Jet and 
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L1JetRaw pTs. Since the resolution plots tell us that the resolution is similar to other 

distributions, we can conclude that Phi–Ring pT will be better for detecting jets with all 

ranges of pT.  To confirm this, we trained two similar sets of BDTs with L1Jet and L1JetRaw 

pTs respectively as inputs. Their results are described in the following sections. We also notice 

that the energy distributions become flatter as the energies of the PF jets increase.  

 

Figure 4.8: Energy scale of the Phi–Ring BDTs for PF jets with pT: 25–35 GeV (top left), 40–
55 GeV (top right), 60–90 GeV (bottom left) and 100–200 GeV (bottom right) in high PU 
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Figure 4.9: Energy scale of the Phi–Ring BDT for PF jets with pT: 25–35 GeV (top left), 40–
55 GeV (top right), 60–90 GeV (bottom left) and 100–200 GeV (bottom right) in low PU 
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Figure 4.10: Resolution of the Phi–Ring BDT for PF jets with pT: 25–35 GeV (top left), 
40–55 GeV (top right), 60–90 GeV (bottom left) and 100–200 GeV (bottom right) in high 
PU 



 

42 

 

Figure 4.11: Resolution of the Phi–Ring BDT for PF jets with pT: 25–35 GeV (top left), 40–
55 GeV (top right), 60–90 GeV (bottom left) and 100–200 GeV (bottom right) in low PU 
 

4.2.2 L1Jet and L1JetRaw BDTs 

We have generated similar plots described in the previous section for L1Jet BDTs 

(Figures 4.12–4.15). Although the individual outputs of the L1Jet BDTs are flatter when PF 

pT with all ranges are considered, they suffer a serious lack of stability in the lower pT ranges. 

It is also evident from the high to low PU plots that they do not achieve better stability in 

the energy scale compared to the Phi–Ring BDTs, i.e. the ratio is not close to 1 in the forward 

region (Figure 4.20). We suspect the reason for this involves the inputs of the BDT training. 

Since the BDT takes L1Jet pT (which fluctuates a lot in the forward region for both high and 
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low PU) as an input variable, and the output of the BDT also has similar tendencies. The 

resolution of the L1Jet BDT from resolution plots is found to be similar to other energy 

distributions as well. The resolution ratio (Figure 4.21) between the Phi–Ring and L1Jet 

BDTs also confirms this result. This is an expected outcome as we could not improve the 

resolution in the previous 12–variable trainings.  

 

Figure 4.12: Energy scale of the L1Jet BDTs for PF jets with pT: 25–35 GeV (top left), 40–55 
GeV (top right), 60–90 GeV (bottom left) and 100–200 GeV (bottom right) in high PU 
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Figure 4.13: Energy scale of the L1Jet BDTs for PF jets with pT: 25–35 GeV (top left), 40–55 
GeV (top right), 60–90 GeV (bottom left) and 100–200 GeV (bottom right) in low PU 
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Figure 4.14: Resolution of the L1Jet BDTs for PF jets with pT: 25–35 GeV (top left), 40–55 
GeV (top right), 60–90 GeV (bottom left) and 100–200 GeV (bottom right) in high PU 
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Figure 4.15: Resolution of the L1Jet BDTs for PF jets with pT: 25–35 GeV (top left), 40–55 
GeV (top right), 60–90 GeV (bottom left) and 100–200 GeV (bottom right) in low PU 

 
Training with L1JetRaw BDT generated similar results (Figures 4.16–4.19) to the 

L1Jet BDT (i.e. they also suffer from a lack of stability in lower energy ranges and in the 

forward region), except that the resolutions are slightly better for L1Jet BDTs in the barrel 

and endcap regions as they have Layer–2 calibration applied to them.   

These results confirm that the Phi–Ring BDT is superior in performance to the L1Jet 

and L1JetRaw BDTs, and hence would be more suitable for reconstructing L1T jets.  
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Figure 4.16: Energy scale of the L1JetRaw BDTs for PF jets with pT: 25–35 GeV (top left), 
40–55 Gev (top right), 60–90 GeV (bottom left) and 100–200 GeV (bottom right) in high 
PU 
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Figure 4.17: Energy scale of the L1JetRaw BDTs for PF jets with pT: 25–35 GeV (top left), 
40–55 GeV (top right), 60–90 GeV (bottom left) and 100–200 GeV (bottom right) in low 
PU 
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Figure 4.18: Resolution of the L1JetRaw BDTs for PF jets with pT: 25–35 GeV (top left), 40–
55 GeV (top right), 60–90 GeV (bottom left) and 100–200 GeV (bottom right) in high PU 
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Figure 4.19: Resolution of the L1JetRaw BDTs for PF jets with pT: 25–35 GeV (top left), 40–
55 GeV (top right), 60–90 GeV (bottom left) and 100–200 GeV (bottom right) in low PU 
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Figure 4.20: BDT energy scale ratios (high vs. low PU) for PF jets with pT: 25–35 GeV (top 
left), 40–55 GeV (top right), 60–90 GeV (bottom left) and 100–200 GeV (bottom right) 
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Figure 4.21: BDT resolution ratios (high vs. low PU for PF jets with pT: 25–35 GeV (top left), 
40–55 GeV (top right), 60–90 GeV (bottom left) and 100–200 GeV (bottom right) 
 

4.2.1 Scale Factor Plots 

After the training of each energy calibration BDT, we applied a pseudo test data set 

containing iEta values from 1 to 40 (except 29) with energy (chunky donut or phi–ring) 

values from 1 to 200 GeV for each iEta to obtain the scale factors of the trained BDTs 

associated with each iEta for a particular energy. After each set of 10 BDTs (each with a 

random 50% subset of events) is trained, we took the values of mean scale factors and plotted 

them against their input energy for each iEta. We obtained a total of 120 scale factor plots, 

40 iEtas for each set of BDTs. Here we present 4 from each set for different regions of HCAL. 

These plots are for iEta=1 (Barrel), iEta=20 (Endcap 1), iEta=28 (Endcap 2) and iEta=33 

(Forward). 
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These scale factors can be encoded in look–up tables (LUTs) in the Layer–2 firmware 

to perform online energy calibration in the Level–1 Trigger. This allows us to achieve high 

granularity value (separate scale factors for each iEta and pT) with high precision, as the BDT 

output is smooth across similar regions of iEtas for all pTs. This feat cannot be obtained with 

analytic fits which require division or ‘binning’ of iEta and pT regions by hand. 

 

Figure 4.22: Scale factors of the Phi–Ring BDTs for iEta=1 (top left), iEta=20 (top right), 
iEta=28 (bottom left) and iEta=33 (bottom right) 
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Figure 4.23: Scale factors of the L1Jet BDTs for iEta=1 (top left), iEta=20 (top right), iEta=28 
(bottom left) and iEta=33 (bottom right) 

 

Figure 4.24: Scale factors of the L1JetRaw BDTs for iEta=1 (top left), iEta=20 (top right), 
iEta=28 (bottom left) and iEta=33 (bottom right) 
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CHAPTER FIVE 

Conclusions 

A systematic investigation using the machine learning technique of boosted decision 

trees (BDTs) on the 2018 single muon dataset from CMS to improve the reconstruction of 

hadron jets in the Level–1 Trigger (L1T) is presented in this work. At first we implemented 

a BDT with 12 jet features to check if it could differentiate between high and low PU, and 

also to perform a variable ranking on the inputs. Our results indicate that the BDT output 

achieves much better stability in energy scale compared to the energy scales obtained from 

the current (Run 2) jet detection algorithm of L1T (chunky donut), without any 

deterioration in resolution. From the variable ranking plots, we observed that the BDT 

prefers the energies from fewer trigger tower rings in η for jets that are further forward. The 

data also indicate that the phi–ring algorithm (which is based on trigger tower rings) should 

perform better than the Run 2 algorithm. We further trained energy calibration BDTs by 

providing energies of phi–ring and chunky donut algorithms (with and without Layer–2 

calibration) separately to compare their performance with one another. Our results indicate 

that the BDT with phi–ring energy as input performs better in terms of energy scale vs. pileup 

and η than chunky donut, with similar resolution. With the BDT approach we can obtain 

smooth energy scale factors, which may be used to calibrate jets online with high granularity 

in Run 3. Our study can further be strengthened by performing similar investigations with 

Run 3 Monte–Carlo simulation events.
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