ABSTRACT

Stable Up-Downwind Finite Difference Methods for Solving Heston Stochastic
Volatility Equations

Chong Sun, Ph.D.
Advisor: Qin Sheng, Ph.D.

This dissertation explores effective and efficient computational methodologies
for solving two-dimensional Heston stochastic volatility option pricing models with
multiple financial engineering applications. Dynamically balanced up-downwind fi-
nite difference methods taking care of cross financial derivative terms in the par-
tial differential equations involved are implemented and rigorously analyzed. Semi-
discretization strategies are utilized over variable data grids for highly vibrant fi-
nancial market simulations. Moving mesh adaptations are incorporated with exper-
imental validations.

The up-downwind finite difference schemes derived are proven to be numer-
ically stable with first order accuracy in approximations. Discussions on concepts
of the stability and convergence are fulfilled. Simulation experiments are carefully
designed and carried out to illustrate and validate our conclusions. Multiple con-
vergence and relative error estimates are obtained via computations with reality
data. The novel new methods developed are highly satisfactory with distinguished
simplicity and straightforwardness in programming realizations for option markets,
especially when unsteady stocks” markets are major concerns. The research also re-
veals promising directions for continuing accomplishments in financial mathematics

and computations.
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CHAPTER ONE

Introduction

1.1 Black-Scholes-Merton Framework

A financial derivative is a contract between two or more parties whose value is
based on an agreed-upon underlying financial asset such as a security or set of assets
such as an index. Options are special types of a financial derivative. A call option
gives the holder of the option the right to buy an asset by a certain date for a certain
price. A put option gives the holder the right to sell an asset by a certain date for
a certain price. The date specified in the contract is known as the expiration date
or the maturity date. The price specified in the contract is known as the exercise,
or the strike price. Options can be traditionally divided into the European type of
options or American type of options, with an emerging Asian option type. While
an European option can be exercised only at the expiration date, American options
can be exercised at any time up to the expiration date. Our investigations in this
dissertation are mainly focused upon European put options.

One of the effective mathematical models for pricing aforementioned options
was proposed by Fisher Black, Myron Scholes and Robert Merton in 1970s [5,43].
The theory leads to the Black-Scholes-Merton (BSM) model which plays as a back-
bone in modern financial modeling and computations [13,28,41,51,64].

In deriving a BSM formula for the value of an option as a function of asset

prices and time to maturity, the following seven assumptions must be stipulated.

(1) We are able to know the short-term riskless interest rate and the rate is

constant during the time period we are considering.

(2) The stock prices are assumed to follow geometric Brownian motion, that is,

d
gzudwadW(t), t >0, (L.1)
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where S is the price of the underlying asset at time ¢, p is the expected
constant return of the asset, r is the continuous dividend yielded propor-
tional to the asset price, and o is the constant volatility of the asset returns.
The function W(t) is a standard Brownian motion. The volatility in the

Black-Scholes-Merton model is considered to be constant.
(3) The stocks pay no dividends to the holders.

(4) No commission fees or any other types of costs are charged in buying or
selling the stocks or options.

(5) No restrictions or penalties are posed for short selling.

(6) Any fraction of the price of a security is available for borrowing at the short-
term riskless interest rate.

(7) Only European types of options are concerned.

Values of the options should depend only on asset prices and time to maturity
of options. To get rid of the uncertainty associated with the Brownian motion in
(1.1), a risk-neutral portfolio can be constructed. To this end, we let P(¢) denote
the value of the portfolio consisting of an option of value v(S,t) and A shares of the

underlying asset. It follows that
P(t) = S(t) — v(S,t)A.

Set A = 1/vg(S,t). The change in the value of the portfolio in a short time

interval [t,t 4+ At], where At < 1, is given by

Au(S,t)
=A - 1.2
£=As() - 2] (12
where AS(t) = S(t + At) — S(t) and Au(S,t) = u(S + AS,t + At) — u(S, ).
The value of Au can be expanded to yield the following equation:
Av = vgAS + %UQSQUSSAt + v At. (1.3)
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Substituting (1.3) into (1.2), the change in the value of the portfolio is ex-

pressed as
Au(S,t) vsAS + 10252055 At + v At
= AS(t)— —=—= = AS(t) — 2
I e B b5(5.0)
1 At
= — <§0252vss —I-Ut) Vs (1.4)

Since the return on the portfolio as expressed in (1.4) does not depend on a
Brownian motion, thus it is deterministic. Therefore, the return must be equivalent
to the riskless security in the period of [t,t 4+ At]. Because the return of riskless

securities during this particular time period is rAt, we obtain subsequently that

1
- (—025%53 s ) Al (s - i) P (1.5)
2 Ug (0

After cancelling At from both sides of the equation and a rearrangement of

variables, we arrive at the following partial differential equation,
1
vy = —502521)35 —rSvs +rv, S € (0,00), tel0,T]. (1.6)
In addition, for European put options with a strike price K, we have

K-S S<K,
v(S,T) = (1.7)

0, S> K.
It has been shown that solutions to (1.6) together with the terminal value
condition (1.7) is unique [5,31]. To derive the solution, we need the following two

basic lemmas.

Lemma 1.1. (It6’s Lemma [28]) Assume X; to be an Ito drift-diffusion process that

satisfies the stochastic differential equation
dXt = /,Ltdt + O_tth,

where Wy is a Wiener process. If f(t,z) is a twice-differentiable scalar function,

then

- — 4+ L | dt —dW,.
+’“ax + 2 0x? +Ut8x !

3
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Theorem 1.2. [28] If X is lognormally distributed, and
In X ~ N(u,0?),
then the expectation
E(max(K — X,0)) = E(X)F(d1) — KF(dy),

where

dy =

o o

—WEC)/K) 40?2~ IEX)/K] - o)

(1.8)

Proof. Herewith we give a more straightforward proof which is different from any

existing mathematical verification to our best knowledge. For this, we denote f(X)

as the probability density function of X. Hence,

mmmK_Xn»:/(K_Xﬁuwx

—00

(1.9)

Since X is lognormally distributed, we have, from the property of lognormally dis-

tributed variables,

0.2

E(InX) = W[E(V)] - 7.

Let m = E(InX) and

_lnX—m
— - )

Y
Thus, Y is normally distributed and subsequently,
Y ~ N(0,1).

Denote g(Y') as the probability density function of Y. Thus,

—_
»<
N

With (1.11), we may replace (1.9) by

(InK—m)/o
E(max(K — X,0)) = /_ (K — e t™)g(Y)dY

o0

(1.10)

(1.11)



(InK—m)/o (InK—m)/o
= K / g(Y)dY — / YTt g(Y)dY

—00 —0o0
nKkK — (InK—m)/o
— KF (u) —/ Yorm (Y)Y, (1.12)
0- —0oQ
Observe that
1 —@%t200+42m
Yo+m —_— == 1=
e Y) = e 2
9(Y) NG
1 —@-0)2+2Q0+2m+0>
fry [ 2
\ 27
0_2
€Mt T _(@-0)?
frg [ 2

Based on the above, (1.12) can be conveniently reformulated to

Q

Ink — .2 (InK—m)/
E(max(K — X,0)) = KF (u) —emt T / g(Y — )dY

InkK — o2 InkK —
_ kF (u) s (w_g)

g g
InK — InK —

_ KF(u)_E(V)F(u_J),
g g

Substituting (1.10) for m into the above equality, we arrive at

—In(E(V)/K) —|—02/2>

o

~In(E(V)/K) - o? /2)

E(max(K — X,0)) = KF(

g

—E(V)F (

which ensures the theorem. O

1.2 Risk-Neutral Valuations
Consider the Black-Scholes-Merton modeling equation (1.6). The partial dif-
ferential equation depends purely on the volatility of asset return, asset price, time to
maturity and risk-free interest rate. Since no risk preferences are referenced in (1.6),
the partial differential equation is independent of investors’ risk preferences. There-
fore we may assume that all investors are risk-neutral under Black-Scholes-Merton’s

mathematical formulation.



In a risk-neutral world, returns of all assets are equal to the risk-free interest
rate or there will be arbitrage opportunities [5,43,51]. To calculate a solution of
(1.6), we may adopt a put option on a stock of price Sy, maturing at time 7" that
does not pay dividends before the maturity date. We assume that this put option
has a strike price of K. In addition, we may let  denote a constant risk-free interest

rate. Hence, the variable price of the put option v in the risk-neutral world is given

by
v(S,t) = e " YEmax(K — Sr,0)]
_ e—T(T—t) [SOST(T—t)F(dl)—KF(dQ)]
= SyF(dy) — Ke"TYF(dy),
where
g - —In[E(S7)/K] + o*(T — t)/2 g — —In[E(S7)/K] — o*(T —t)/2
e oV —t P oV —t

1.8 Limatations of the Black-Scholes-Merton Model

However, there are two issues that cannot be handled well by the standard
Black-Scholes-Merton model due to multiple assumptions used.

[. Asymmetry and Excess Kurtosis: The asymmetry and fat tails of the em-
pirical distribution of daily log return of different indices have been observed in the
stock market and other asset markets. Further, large movements in asset prices
occur more often than a model with normal distribution assumption predicts. It is
the main reason for considering asset return with jumps.

II. Stochastic Volatility: Estimated volatilities changes over short period of
time. Also, there seems to be a succession of periods with high return variance and
with low return variance. This phenomenon is empirically observed in different stock

market indexes.



1.4 A Stochastic Volatility Model

Steven Heston introduced a highly effective stochastic volatility model in 1993
[19]. The new model is not based on the assumptions used upon a traditional Black-
Scholes-Merton model. Rather, it provides a closed-form solution for the price of
a European call option when the spot price for the underlying asset is correlated
with its volatility. It improves the accuracy of option-pricing for incorporating the
stochastic volatility. [28,32,64].

Heston begins by assuming that the spot price of the underlying asset at time

t follows from the following stochastic process [19]

%(tt)) = pdt 4+ /y(t)dWy (1), (1.13)

where S(t) is the spot price of the underlying asset at time ¢, i is the expected return
of underlying asset, y(t) is the volatility of the asset at time ¢ and W (t) is a Wiener
process. In addition, he proposes that the volatility follows the Ornstein-Uhlenbeck

process [11,19,52],

dy(t) = r(n —y(1)) + o/y(£)dWs(t), (1.14)

where 7 is the expected volatility,  is the rate of reversion of the volatility y(¢) to its
expected value k, o is the volatility of the volatility and W5(t) is a Weiner process.

We assume that the correlation between Wi (t) and Ws(t) is p, that is,
E[W1(5)Ws(t)] = p.

Let v(S,y,t), t > 0, denote the value of a European put option that is a
function of the asset price S, volatility y, and time . An application of It6’s Lemma
and standard non-arbitrage principle with a construction of risk-less portfolio leads
to [13,16,19,30],

1 o?
v + aySQUSS + poySvg, + Tyvyy +rSvs + k(n —y)v, =1v, S,y >0. (1.15)
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Let
v(S,y,T) =max{K — 5,0}, S,y>0,

be the terminal condition associated with (1.15), where 7" is the maturity time and
K is the strike price. We adopt the following mixed boundary conditions for S,y > 0

and 7>t > 0 [12-14],

v(0,y,t) = Ke T, (1.16)
lim v(S,y,t) = 0, (1.17)
S—o0

v, (S,0,8) = 0, (1.18)
lim v,(S,y,t) = 0. (1.19)
y—00



CHAPTER TWO

Mathematics Preliminary

2.1 Parabolic Partial Differential Equations
Since (1.15) is in fact a typical parabolic partial differential equation, we dedi-
cate this chapter to the studying of properties of general parabolic partial differential

equations.

Definition 2.1. [15,21] Let U be an open bounded subset of R" and Uy = U x (0,7

for some fixed time 7" > 0. We have the equation

where f: Ur — R and g : U — R is the unknown, v = u(z,t). The letter L denotes

for each time ¢, a linear second-order partial differential operator, having the form

L 52 L o
L=— (gt b (,t) m— t
> e ) g+ D B g +elen)

ij=1 i=
for given coefficients a*,b’, and ¢ for 4,5 = 1,...,...,n. We say that the partial

differential equation (2.1) is parabolic if there exists a constant § > 0 such that

n

Y adi(z &g < 01EP

ij=1
for all (x,t) € Ur, £ € R".

General second-order parabolic partial differential equations describe, in phys-
ical applications, the time-evolution of the density of some quantity u, say a chemical
concentration, within the region Q. The second-order term Y7\, " (,)uy,,; de-
scribes the diffusion, the first-order term Y ' | b*(x,t)u,, describes transport, and
the zeroth-order term cu describes creation or depletion.

We start by reviewing the properties of different differential operators. The

first and foremost important ones are the eigenvalues and eigenfunctions of operators.

9



Definition 2.2. [35] The function v, not identically zero, is said to be an eigenfunction
of the differential operator L in domain 2 and X is the corresponding eigenvalue if

v vanishes along 02 and satisfies with 2 the equation Lv = \v.

2.2 Finite Difference Methods

It has been known that, of the numerical approximation methods available for
solving financial differential equations such as (2.1), those based on finite-differences
or finite element settings are used more frequently and desirable than others uti-
lizing Monte Carlo simulation or finite volume methods [8,9, 31, 44]. Among the
first two, finite difference methods are still more friendly to use than finite element
methods for solving financial differential equations. Possible reasons include the fol-
lowing. Firstly, finite difference methods are convenient to formulate and implement.
Further, in financial fields, domains for modeling differential equations are often rect-
angle which makes the finite difference approximations a better choice than weak
finite element formulations. Usually finite difference methods are used on uniform
grids for simplicity. However implementation of finite difference methods on uniform
grids can be costly to get desired accuracy. In later situations, nonuniform grids and
adaptive methods become more affordable. To further explain our particular finite

difference methods, let us introduce the following definitions and notations.

Definition 2.3. Let €2 C R" be a connected open set with piecewise smooth boundary.

A grid defined on €2 is a set G C 2 such that
G = {(l‘l,il)xzig 7xn,in) | 2] 2071727Nj +17 j: 1,2,“'71},

where x;;, 1 > ;. Further, we require that B = {(z1,4,, %24, " ,Tns,) | 3 J =
1,2,--- ,n,such that i; = 0 or i; = N;+1} C 99Q. Each point (21, T2, -+ s Tnyi,) €
(G is called an interior grid point. And points in B are called boundary points.

Further, we define the i;th step size in the x;—direction as

h:vj,ij :xj,ij-‘rl _xj,ijv J= 1727"' y Ny, 15 = 0717N]

10



If o,

= hmj’ijJrl for VJ = 1, 2, .

--,mn, 45 =0,1,---N;, we call G is a uniform grid.

Otherwise, we call G' a nonuniform grid.

To explain the backbone of a multi-dimensional finite difference methods on a

non-uniform mesh, we consider a twice-differentiable function g : € — R. We let
iy jin,in = 9(5B1,¢17$2,i2 T ,ZUn,z‘n),
hy, = maXz'j:l,z,---Njhxi,ij,
h = HlaXZ‘:LQ’...nhm.
We define the following linear operators
Girsiz,ijyin — Giryin,ij—1,in
Agj—Girjigyin = W : (2.2)
Tj,i
Girjig,ij+1,in — Girjiz,-ij, in
ij7+gi17i27"'in = h ) (23)
:Ej,ij
it yia,ij41/2,in — Gin i, ij—1/2,in
Aﬂ?j,ﬁgil,iz,"-in - h ) (24)
Tj,i
9 . 29,‘171'27...1‘].4_17...1'” 291‘171‘27...1'].7...@‘"
(Ej,(]gilyi%”'in - -

hm]-,ij (h:vj,ij—l + hl’j,i]’)

2gi17i27"'ij_17"'in

hacj ) hzj,ij—l

(2.5)

hxj,ij—lhwj,ij—l

Linear operators defined in (2.2), (2.3) and (2.4) are called backward difference
operator, forward difference operator and central difference operator, respectively.

These operators are used for the approximation of the first derivatives, that is,

9y

Ay —Girsigyin = a—mj(l'umx?,iz'“axn,z’n)+0(h)7
9y

Ayj 4 Giniinyin = %(fﬁl,mi'fuz“'af’fn,z'n)JrO(h)?
J
9y

Ay, 0Girinyin = a—%(ﬂﬁlmaﬂ?uz“',xn,in)+0(h2)-

The operator defined in (2.5) is also a central difference operator. How-

ever, it is for an approximation of the second derivative of g at the mesh point

, Tns, ). 1t is readily to show that
2 g

A:):j,ogilyi%“'in = 072 (xl,il y L2ig * "
J

(xl,ila T2y """
7xn,in) + O(hp)’ p Z 1.

11



2
z5,0

We further observe that Aij,ogil,iz,min = Ay, 0(As;,00i i, ). SO essentially, A
NN

To further investigate properties of the aforementioned operators, we need the
concepts of consistency and accuracy of a finite difference scheme [35,61,63]. We let
Dy denote a finite difference operator evaluated at a point x € ). Further, we let
I, x € G be the evaluation operator such that for any function ¢ whose domain

contains 2, we have Iy¢ = ¢(x).

Definition 2.4. [63] Let P a differential operator. Let P¢(x) = f(x), x € Q be
a well-posed partial differential equation. We say that the finite difference scheme

defined by Dy¢ = I f, x € GG is consistent with the partial differential equation if
I4Pp— Dy — 0, h -0, x € Q.
The convergence is point-wise at each mesh point in x € €.

Definition 2.5. [63] A scheme Dyx¢ = f(x) that is consistent with the differential

equation Pu = f is accurate of order p > 0 if for any smooth funtion ¢ : 2 — R,
Dy¢ — I,Pp=0O(R?), h—0" xeG.
We say that such a scheme is accurate of order p.

It is convenient to check by Taylor expansion that the operators given in (2.2)-
(2.5) are of first-order if we are considering nonuniform grids. If instead, uniform
grids are employed, then the accuracies of schemes (2.4) and (2.5) increase to second-

order while (2.2) and (2.3) stay as first-order schemes.

2.2.1 FExponential Splitting and Padé Approximation
We consider exponential splitting methods for solving a two-dimensional parabolic
partial differential equation in this section. The methodology discussed in this sec-

tion can be extended to multi-dimensional option modeling cases.

12



To this end, we consider the following linear initial-boundary value problem,

U = AUy +buy,, (z,y)€Q, 0<t<T, (2.6)
u = 0, (z,y) €0, 0<t<T, (2.7)
u = ug, (r,y)€Q, t=0, (2.8)

where a, b and ug are functions of x and ¥, and 2 is a finite domain in R2.
A semi-discretized system corresponding to (2.6)-(2.8) can be formulated to
w = Au+Bu, 0<t<T, (2.9)
u = uy t=0, (2.10)
where matrix A is derived from the discretization of the au,, term and matrix B is

from bu,, in (2.6), together with (2.7) [35,47-50,57-59]. The formal solution to the
system (2.9) and (2.10) is given by

u(t) = e A+By,. (2.11)
It will be costly if we try to evaluate e/A*+5) directly, since sizes of the matrices
A and B can be huge and the matrix A + B is relatively dense. However, both
A and B will be relatively sparse and easier to handle separately. This motivates
a dimensional splitting. There are different splitting formulas. Herewith, we only

consider three most well-established ones [40,47,50,54,55].

The first formula is the first-order exponential splitting method
SHAYE) — tAtB | 0(12) ¢ 5 07,
or
HA+E) — otBetd | 0(12) ¢ 5 0T
It can be verified via a Taylor expansion that

GMATB) _ tAGtB . HA+E) _ (tBotd — 0(42) ¢y OF,
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The Strang splitting method proposed by Gilbert Strang [40,54,62] is given by
pt(A+B) _ 3B tA B + O(t3), t— 07,

or
AHB) — e34ctBesd L O(3), ¢ — 0.

Both above formulas are of second order.

Our third exponential splitting method is the parallel splitting,

HA+B)

(e +ePelt) + O(?), t—07.

| —

The parallel splitting method is also of second order accuracy.
Splitting methods shown above can be extended for multi-dimensional appli-

cations. To see this, we consider the following matrix exponential function

M:exp{tzmz/lj}, (2.12)

which is typical from a semi-discretization of m—dimensional evolution partial dif-
ferential equation. Although the size of each of the matrices A;, j =1,2,--- ,m can
be very large, each of the matrices are relatively sparse as compared to Z;nzl Aj.
Thus, the approximation of the matrix exponential M via an exponential splitting
procedure may simplify the computation and improve the efficiency [40,54]. To this
end, either the first-order splitting, Strang splitting and parallel splitting methods

can be used:

M = [ +o#), t—o0, (2.13)
j=1
M = exMerte. . eatmigtimeadnat o3tz L O3 ¢t — 0T, (2.14)
m 1
1
M o= 5 (H ey + ] e“‘j> + 0%, t—0". (2.15)
j=1 j=m
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It was proven by Qin Sheng in 1989 that the highest order of accuracy of a stable
exponential splitting method without iusing negative or complex steps is two [54].
Numerous researchers have made progress since then in developing higher order
splitting schemes, in particularly by introducing complex or negative time steps [6,7].
However here we will concentrate on stable splitting schemes with only positive real-
valued time steps for better applicabilities in financial applications. To use iterative
methods to get the final solution of (2.11), we can derive the fully discretized system
by approximating the matrix exponential with or without exponential splitting. A
large literature has been devoted to studying the efficient ways for approximating the
matrix exponentials [45]. Here we are mainly concerned with a particular method
called Padé approximation.

The basic idea of Padé approximation is to approximate an exponential func-
tion with a rational function. Now let P; be the set of all polynomials with degree of
d >0, and P, /3 be the set of all rational functions with the form 1;—;, where p, € P,
and pg € Pjs.

Definition 2.6. Let p > 0. We say that 7(z) € Py,3 is an order p a/ Padé approxi-

mation to an exponential function f(z) = e* if
f(2) =7(2) = 0", Izl = 0*.

The most widely used Padé approximations are 1/0, 0/1 and 1/1 Padé ap-
proximations. Each of them leads to a fully discretized a linear system from the
semi-discretized scheme (2.11).

Denote N = A+ B in (2.11). The fully discretized system of (2.11) under an

1/0 Padé approximation is
u= (I +tN)uy, (2.16)

which is in fact the Euler’s method. On the other hand, an application of the 0/1
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Padé approximation yields
u= (I —tN) "u, (2.17)

which is the backward Euler’s method. Finally an 1/1 Padé approximation gives us

u= (1 _ %N>_1 <1 + %N) w, (2.18)

which is the standard Crank-Nicolson method [63].
While both Euler’s method (2.16) and backward Euler’s method (2.17) are of

first order accurate, the Crank-Nicolson’s method (2.18) is a second-order method.

2.8  Logarithmic Norm
For the sake of stability analysis, we need a very important concept called

logarithmic norm.

Definition 2.7. We let A € R™*™ and || - || be an induced matrix norm. Then the

logarithmic norm g : R™™ — R of A is defined as

. +hRA|| -1
A)= lim —.
A= B
Lemma 2.8. [35] The corresponding logarithmic norm to the spectral norm || - ||o is

given by
1
pa(A) = 5 | A+ 4],

The logarithmic norm corresponding to the oco—mnorm is given by

fisc(A) = sup ([A]” + Z HA]M) )

i=1,2,n —
J#i

where [Al];; denotes the element of A in the ith row and jth column.

2.4 Mowving Mesh Methods
Adaptive numerical methods are promising because of their capability to place
grid points or computational degrees of freedom at locations where the largest com-

putational errors may occur without the treatments. Moving mesh methods are
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typical adaptive strategies used for finite difference schemes. They can be very ef-
fective as long as two fundamental requirements are satisfied: (1) The region of the
domain where refinement is required must be limited to a relatively small fraction
of the computation domain. Roughly no more than 1/3 of the domain should be
at the finest grid spacing. (2) The numerical order of a scheme should be as close
as possible to the numerical order of the computational data and should not exceed
it. That is, if one has a solution flow that is essentially shock dominated, roughly
of piecewise linear structure, and if the shocks never fill more than 1/3 of the do-
main, then low order adaptive schemes can offer a large computational savings when
compared to other numerical methods of calculations.

In the past two decades, several moving mesh adaptations have been well

developed. They can be categorized as follows [24-26].

e h-method. The h—method automatically refines or coarsens the mesh grids
based on certain error estimate function called monitor function.

e p—method. The p—method involves the adaptive enrichment of the polyno-
mial order.

e r—method, also known as moving mesh method (MMM). It relocates grid
points in a mesh having a fixed number of nodes in such a way that the
nodes remain concentrated in regions where rapid variation of the solution
is observed.

The moving mesh methods require to generate a bijective mapping from a set of
mesh grids to another set of mesh grids on the same domain by allocating more
grids in the areas with high error estimates [2-4]. The key ingredients of the moving

mesh methods include the following two elements [24-26, 56].

e Monitor functions. A monitor function is function used to redistribute the
mesh grids depending on the solution arc-length (in 1D), curvature, or cer-
tain error estimates.

e Interpolations. If the mesh equations are time-dependent and are solved
simultaneously with the given differential equations, then interpolation of
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dependent variables from the original mesh grids to the new mesh grids is
unnecessary. Otherwise, some kind of interpolation is required to pass the
solution on the original mesh grids to the newly generated mesh grids.
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CHAPTER THREE

Semi-Discretized Scheme for Heston Volatility Model Equations

3.1  Up-downwind Formulation and Semi-Discretization

A closed form solution of the model was obtained by Steven Heston under a set
of specific boundary and initial values for assets of the European type [19]. However,
to meet a growing demand from American options and other assets, pricing equa-
tions often need to be placed together with more realistic initial boundary conditions
or even free boundary conditions. Closed forms of solutions are in general unavail-
able. Thus, numerical approximations of such solutions have become important and
necessary. This chapter is concerned with European options. The scheme we plan
to develop can also be extended directly to price Asian and American options. How-
ever, due to free boundary conditions associated with Asian and American options,
the stability and convergence analysis of the scheme becomes rather complicated.
Therefore they have become our continuing endeavor.

There have been numerous recent publications on the numerical solution of
Heston modeling equations [17,30,32-34,38,44, 51, 53,60, 66,67]. For instance, cer-
tain first-order up-downwind algorithms are proposed and studied by several recent
investigators [38]. Stability analysis are carried out via standard von Neumann anal-
ysis for Cauchy problems or problems with periodic boundary conditions. Although
numerical stabilities have been under investigations for even high order schemes
on nonuniform grids [13], rigorous analysis are only available in cases where cross-
derivative terms have been neglected. The challenge for a stable method contin-
ues [38,47,56].

But cross-derivatives are essential in a Heston Option Process. Heston model-

ing formulations also require more realistic Dirichlet, Neumann, or mixed bound-
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ary conditions [1,19]. These have motivated our approach. In this study, we
are particularly interested in computations based on a Heston put option model
[12,13,30,32,67]. We are primarily interested in the numerical stability over nonuni-
form data grids. We also wish to effectively reduce the computational costs and
raise the algorithmic efficiency for put option computations. These results can be
extended for call options in similar ways.

To implement our finite difference methods for solving the Heston stochastic
volatility partial differential equation (1.15), we need to carry out some transforma-
tion for the original modeling equation.

Set 7 =T — t. Equation (1.15) can be rewritten as

2 2

S
vy = yTvSS + poySvg, + %yvyy +rSvs + k(n —y)vy, —rv, T >7>0.

S v
Let leng, u = ?e”. For —oco <z < oo, y >0, T > 7 >0, we observe that

2

) oy Y
Ur = S Uag + poyuy, + 5 Uy <§ — 7") Uy + K(N — y)uy, (3.1)
together with constraints [12,13,67],
u(z,y,0) = max{l —e* 0}, —oo<z<oo, y>0, (3.2)
lim u(x,y,7) = 1, y>0, T>71>0, (3.3)
T——00
lim w(z,y,7) = 0, y>0,T>71>0, (3.4)
T—r00
uy(z,0,7) = 0, —oco<z<oo, T>7>0, (3.5)
lim uy(x,y,7) = 0, —oo<xz<oo, T'>71>0. (3.6)
y—)OO

We may extend the temporal domain for (3.1)-(3.6) by allowing 7" = oco. Further,
for the sake of computations, we consider a truncated spatial domain Q = {(z,y) :
—X <2< X; 0 <y < Y} for sufficiently large X and Y in the rest of our

investigations.
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Let =X =20 <21 < - <zay <ay1 =X, 0=9 <y < - <
ynv < yny1 = Y, for which z,, — o1 = Py Y — Yno1 = kny, 0 < by, by < 1,
m=12,... M+1, n=1,2,...,N+1.

Let Zmn = Zmna(7) be an approximation of z(zp,, Yn,7), 0 <m < M +1, 0 <
n<N+1, 0<7<T. Further, let Ay, Ay_ and Ay be forward, backward and
central difference operators in the ¢-direction, respectively, where ¢ € {x,y} [47].

Similarly, for appropriate indexes, we define

2Zma1 2z 2Zm-1
Ai P A— m+1,n . m,n + m—1,n : 37
07 Pt (Mgt + i) P h P (g1 4 hapa) (3.7)
Al 0zZmn = Cmptl _ ZEmn  _ ZEmincd (3.8)

kn+1<kn+1 + kn) knJrlkn kn(knJrl + k'n) .

We now approximate the diffusion terms in (3.1) by using the above, and derivatives

in (3.5) and (3.6) via the following,

1 1
Ay,-i-um,O(T)v uy(xmv Y7 7_) ~ Ay,—um,N.q_l(T), O0<7t<T.
hy hy,

Uy (T, 0,7) &

We approximate the advection terms in (3.1) through three different channels
depending upon relations between values of n and r.
Case 1: n > 2r.
Uy (Tyy Yns T) R Dy 4 Uiy Uy (T Yy T) R DAy 4 Uy s 2r>y >0, (3.9
Uy (T, Yns T) R DUy Uy(Ton, Y, T) = Dy 4 Uiy, 12>y > 21, (3.10)
Up (T, Yns T) R Dy Uiy Uy (T Yy T) = Dy Uy, Y >y>n (3.11)
Case 2: n < 2r.
Us (T, Yny T) R Dy Uiy Uy (T Yy, T) = Dy U, 1>y >0, (3.12)
U Ty Yns T) R Dy 4 Uiy Uy (T, Yy T) R Dy U, 2r >y >mn, (3.13)
Ug (T, Yny T) R Dy Uy Uy (T Yy T) = Dy Uy, Y >y >2r. (3.14)
Define

homin = min Ay, hpax = max by knn = min k,, knae = max k.
m=1,2-M m=1,2--M n=12--N n=12-N
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i—1,j+1 Lj+1 it1,j+1 i—1,j+1 Li+1 it+1,j+1 i—1,j+1 Li+1l _i41,j+1 i—1,j+1 Lj+1 _i4+1,j+1

Figure 3.1. Computational stencil for (3.9) - (3.13).

To approximate the cross-derivative in (3.1) dynamically, we have

3.2 Case for p € [-1,0].

For the smoothness of nonuniform grids [24,56], we require that
1
_pkmax S Uhmin S Uhmax S __kmin- (315)
P
We propose that
1
Uy (Tiny Yy T) = é(A%JFAy’_ + A Ay D)t (T) + O(hmax + kmax). (3.16)

Substitute all spacial derivative approximations into (3.1) and let w denote the

approximate solution to u. We acquire the following linear system,
w'(1) = Aw() + f(7), (3.17)

where w, f € RMN and A € RMNXMN g 3 block tridiagonal matrix in the form of

Dy Q - 0
P, Dy Q 0

Pr—o Dyr—o Qur—2 0
Py—1 Dy—r Qu—a
0 i ... . Py Dus
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where P, D;,Q € RN 4 =23,...,M; j =

1,2,... . M; k=1,2,....,M— 1.

Nontrivial entries of the matrices P,,, D,, and @,, are as follows.

(

Yn POYn
hm(hm+hm+1) 2hmkn+1’ 0 < y’l’b S 27‘7
(m) _ Yn, POYn Yn—2r
Pnn [ — pY + 2 2r < Yn < Y — k?N+17
YN ynN—2r _ _ .
\ hm(hm+hm+1) 2h'm ? y'fl - Y kNJFl’
Pnpt1 = — )
’ 2h,.ky,
.
%yn PIYn <
d(m) o kn(kn+kn+1) 2hrn-!—lkn7 kl < yTL - 777
nn—1 T
%yn poyn _ _ K(N=yn) _ .
\ kn(kn+kn+1) + 2hm+lkn kn ) 77 < yn S Y kN+1’
p
y1=2r _ K(m—y1) _
AOm,1 + 2mt1 ka Yn = kla
Binm + yn—2r _ K(MN—yn) L, < <9
m,n 2R 1 kni1 1 Yn > )
(m) _ Yn—21 K(N—1yn)
dnm Bm,n T 2hm kni1 2r < Yn S 7,
/8 _ yn*27' _|_ H(Tlfyn) < < Y _ k
m,n 2R kn n Yn N+1,
Y N — yn=2r K(N—yn) yn =Y — kngt;
\ m, 2hm kny +1
o?yn PTYn K—yn) () <y, < n
d(m) _ kn+1(kn+kn+1) 2hmkn+1 kn+1 ’ n — ’
nn+1l T
a2yn PIYn _ .
PG tFrD) T By < Un <Y =k
(m) POYn .
Appn-1 = _2h k. Yn > kl)
m+1vn
p
Y1 _ yi—2r —
hm+1(hm+hm+1) 2hm41”’? Yn kl’
(m) _ y poY Yn—21
= n n _ n <
T hm+1(hm+hm+1) 2hm+41kn 2hm+1’ kb <y <2,
Yn POYn < _
L Pt 1 (A thme1) 2hm41kn’ 2r <y Y — by,
where
2
S Yn Y PIYn
m,n - - - )
hmhm—l—l kn+1(kn + kn+1) thkn—i—l
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Figure 3.2. Computational stencils of (3.16) (left) and (3.19) (right).

g o U Yo POYn  POYn
o hmhm—i-l knkn—&—l th—i—lkn thkn+1 7
~ N oy, __ POYn
e hmhm—l—l kn(kn + kn—l—l) th—f—lkn'

It is observed that in the event if p = —1, we have hypin = hmax = b, Fuin = Fnax =
k, k = oh due to (3.15). They indicate that uniform spacial grids must be deployed.
Thus, (3.17) reduces to

w'(1) = Agw(T) + f(7).

Nontrivial entries of A, are readily to obtain based on above discussions.

3.3 Case for p € (0,1].

We need the following restrictions on mesh steps in the case [20,47]:

pkmax S Uhmin S Uhmax S kmin- (318>

Sl

Apparently, when p = 1, a uniform spacial mesh with h = ok again must
be used. Otherwise, different from (3.16), we consider a new dynamically balanced

formula,
1
Uy (Toms Yy T) = i(A%_Ay,_ + Ap Ay U (T) + O(hmax + Kmax)- (3.19)

Computational stencils for (3.16) and (3.19) are shown in Figure 2.

In this circumstance, we obtain the following new system,

w'(1) = Aw(7) + f(7), (3.20)
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where w, f(T) € RMN and A € RMN*MN g hlock tridiagonal, that is,

N
|

0 -0 . Py

Nontrivial entries of P,,, D, and Q,, within their respective ranges of m are given

by
Prn— Yn > ku;
nn 1 thk‘n’ n Y
(
Y1 —
R (hm+hm11)’ Yn kl;
5 — Yn PTYn
pn,n [ (I — T Shkn kfl < Yn S 27“,
Yn _ _POYn Yn—21 _ .
\ hm(hm+hm+l) 2hmkn + 2hm ’ 2T < yn S Y kN+1’
(
U2yn PTYn
n,n—1 =
o2yn poYn  _ K(M—yn) _ .
(
~ y1—2r  k(n—y1) _
am,l + 2hm+1 knJrl 9 yl - kl)
3 Yn—2r K(M—yn)
5m,n + 2hmi1  kni1 kl < Yn < 2Ta
™ — w2 w(1-un)
n,n B G i1 2r <yn <,
) n—2r K(N—yYn
6m7n_y2hm + (kn )7 n<yn<Y—kN+17
5 _un=2r K(M—yn) —Y —k .
\f)/m,N 2hm kn Yn = N+1,
,
0'2yn _ PTYn ’i("]_yn) <
d‘(m) _ kn+1(kn+kn+1) 2hm+1kn+1 kn+1 ’ 0 < yn - 77’
nn+1l T
o%yn PTYn — .
\ kn+1(kn+kn+1) 2h'm+1kn+1’ TI < yn < Y kN-i—l’
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(

Yn _ POYn _ yn*ZT <
hm41(hm~+hm+1) 2hmt1kn41 2hm41’ 0 <y <2r

~7§Ln’:/l) f— Yn _ POYn
’ hm41(hm~+hm+1) 2hmt1knt1”’

2r<yn <Y—kN+17

YN — _ .
hm+1(hm+hm+1)? Yn = Y kNJrl’

\

~(m) PIYn
Gy, = ———, 0<y, <Y — kN1,
m+l 21 ki Y N+1
where
A - Y o Yn L PTYn POYn
e hmhm—H kn—&-l(k:n + kn-‘,—l) 2hm+1kn+1 thkn7
T N Yn __PTYn POYn
e hmhm+1 knknJrl 2hm+1 knJrl 2hmk'n ’
- n 7Y TYn
o Yo Yo, POY

a hmhm+1 kn(kn + knJrl) thkn .
Apparently, (3.20) reduces to a uniform scheme with nontrivial matrix A when

p=1

3.4 wvon Neumann Necessary Condition for Stability

Lemma 3.1. [35,37] The semi-discretized scheme (3.17) is stable if

lim ( max

hk—0 \ 7€[0,7%]

) < el
where t* € (0,T).

Lemma 3.1 is called the von Neumann necessary condition for stability. We

prove that our scheme possess the Neumann stability property.

Lemma 3.2. [22,23,35,36,39] Let B € C™?. Then o(B) C U, S;, where

d
Si = {Z e C: |Z_b'i,i’ S Z |bZ’J’}
=1,
and o(B) is the set containing all eigenvalues of B. Moreover, A € o(B) may lie
on 0Sp for some i® € {1,2,...,d} only if A € 9S; for alli =1,2,...,d. The S; are

known as Gersgorin discs.
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Lemma 3.3. [22] The matriz exponential, e, tends to a zero matriz as t — +oo if

and only if all the eigenvalues of A have strictly negative real parts.
Theorem 3.4. The semi-discretized schemes (3.17) and (3.20) are linearly stable.

Proof. We only need to show that each of the M N Gershgorin discs of A lies on the

left side of the complex plane [38,44]. There are four types of discs to consider:

(1) discs centered at an internal mesh point;
(2) discs centered on one of the Dirichlet boundaries;
(3) discs centered on one of the Neumann boundaries;

(4) discs centered at one of the intersection mesh points of one Dirichlet bound-
ary and the Neumann boundary.

When p € (0,1] and 2r < 7, we have the following.
CASE 1: Consider the situation in which n < y, < Y. Let z € S5; be any
complex number, where S; is a Gershgorin disc centered at an internal point of the

spacial grids. Hence,

e YUn O POYn  POYn Yo =2 K] Ya)
hmhm+1 knkn+1 2hm+1kn+1 thkn th kn
Yo PoYn K=y | o%Yn _ POYn
- kn(kn + knJrl) 2hmkn kn kn+1<kn + kn+1) 2hm+1kn+1
i Yn ___ POYn PO Yn PO Yn
hm+1(hm + hm—|—1) 2hm+1kn+1 2hm+1kn+1 2hmkn
Yn POYn Yn — 2r
— . 3.21
* ‘hm(hm Fhed) 2k T 20 (3:21)

Let a be the real part of z. Since we are concerned only about the upper bound
of the real part of the eigenvalues, we may replace z by « via a triangle inequality,
and remove absolute value sign on the left hand side of (3.21). As a consequence,

(3.21) renders to

oY TYa  POYn  POYn  Yn =2 KD Yn)
hmhm—H knkn—&—l 2hm+1kn+1 thkn 2hm kn
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N L L U ) N T*Yn _ PTYn
- kn(kn + kn-{—l) thkn kn kn—i—l(kn + kn+1) 2hm-{—lkn—i—l
i Yn __ PIYn PTYn PO Yn
hm+1(hm + hm-‘,—l) th—i—lkn—i-l th—i—lkn—i-l thkn
Yn POYn | Yn — 21
— ) 3.22
oo + o)~ 20k + 20 (322)
Recall (3.18) and that p > 0. We have
2 2 p

_kna _kn+1 2 hm + herl and hM7 hm+1 Z _(kn + knJrl)-
pPo pPo g

The above lead to

7Y > PTYn T*Yn o __PTYn
kn(kn + kn—i—l) o thkn7 kn+1(kn + kn+1> o 2hm+1kn+1’
Yn > POYn Yn > POYn

hm—i—l(hm + hm—i—l) B 2hm+1kn+1’ hm(hm + hm—l—l) B thkn

Furthermore, since y > n > 2r, we conclude that

= 9n) S g and 22 s

kn - 2hy,

Therefore, the term inside each pair of absolute signs in (3.22) must be positive. We

may remove all absolute signs in (3.22), and, subsequently, yields
a <0,

which is what we expect. Generalizations of the discussion for cases involving y < 7
are straightforward. Therefore all eigenvalues contained in .S; must lie on the left

half of the complex plane. Now consider the situation in which 2r <y, <.

v U O POYn  POYn Yo =2 K] = Ya)
hmherl knknJrl 2hm+1kn+1 2hmkn th kn
Yo PoYn K=y | T*Yn _ PTYn
- kn(kn + knJrl) thkn kn knJrl (kn + knJrl) 2hm+1kn+1
i Yn . PO Yn PO Yn PO Yn
herl(hm + hm+1) 2hm+1kn+1 2hm+1kn+1 2hmkn
Yn POYn Yn — 2r
— 3.23
R D S Y T (3:23)
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Let « be the real part of z. Since we are concerned only about the upper bound
of the real part of the eigenvalues, we may replace z by « via a triangle inequality,
and remove absolute value sign on the left hand side of (3.23). As a consequence,

(3.23) renders to

n oy, oYn, Y n—2r k(N —y,
@t hmngLm_H * knkiﬂ - 2h:+fk:n+1 - QZmykn * thm + (nkny :
Yo oY K= yn)| o Yn _ PTYn
ST Gon + Fnen) 2 o Tt Uen + Fonet) 2heaknes
. Yu ~ poya PTYn PTYn
Tos Oos &+ o) 2okt | | 2hmeabnss | 2Bk
n TYn, n — 2T
- hm(hmy+ o) 2phmykn +4 | (3:24)

Recall (3.18) and that p > 0. We have

2 2
_kna _knJrl Z hm + hm+1 and hm7 herl Z B(kn + knJrl)-
po pPo g

The above lead to

T*Yn > P%Yn T*Yn o _ P%Yn
kn(kn + kn-‘,—l) o 2hmkn’ kn+1(kn + kn+1) o th—ﬁ-lkjn—‘rl7
Yn > POYn Yn > POYn

herl(hm + herl) o 2hm+1kn+1’ hm(hm + herl) o 2hmkn

Furthermore, since n > y > 2r, we conclude that

K(n_yn) yn_2’r
—_— 7 > > 0.
o > (0 and Sh = 0

Therefore, the term inside each pair of absolute signs in (3.24) must be positive. We

may remove all absolute signs in (3.24), and, subsequently, yields
a <0,

which is what we expect. Generalizations of the discussion for cases involving y <7
are straightforward. Therefore all eigenvalues contained in S; must lie on the left

half of the complex plane.
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Now consider the situation in which 0 < y,, < 2r. . Hence,

2
n n n n n - 2 — 9n
sy Un L TYn  POYn  POYn Yo =2 KO yn)
hmhm—i—l knkn—i-l 2hm—i—lkn—ﬁ—l thkn 2hm kn
Yo PoYn K=y | T*Yn _ PTYn
o kn(kn + kn+1) thkn kn kn+1 (kn + knJrl) 2hm+1kn+1
i Yn . PO Yn PO Yn PO Yn
herl(hm + hm+1) 2hm+1kn+1 2hm+1kn+1 2hmkn
Yn POYn Yn — 21
_ — 3.25
R T S Y S (3:25)

Let a be the real part of z. Since we are concerned only about the upper bound
of the real part of the eigenvalues, we may replace z by « via a triangle inequality,
and remove absolute value sign on the left hand side of (3.25). As a consequence,

(3.25) renders to

2
n n n n n 2 — 9n
o Yn L TYn  POYn  POYn | Yn =20 K0 = Yn)
hmhm—l-l knkn+l 2hm+1kn+1 thkn th kn
O-Qyn o POYn + H(n B yn) + UQyn N POYn
o kn(kn + kn—l—l) thkn kn kn—i—l (kn + kn—i—l) 2hm+1kn+1
4 Yn _ POYn POYn POYn
hm—i—l(hm + hm—i—l) 2hm+1kn+1 2hm+1kn+1 2hmkn
Yn PO Yn Yn — 2r
— — 3.26
T i+ homsa) 2k 2 (3:26)

Recall (3.18) and that p > 0. We have

2 2
i, g1 > b+ By and o, e > 2 (i bga).
po po o

The above lead to

Y PTYn o*Yn > _ PTYn
k:n(kn + kn-‘,—l) - 2hmkn’ kn+1(kn + k:n—&—l) - 2h’rn—&—1]'€n—&—17
Yn > POYn Yn > PO Yn

herl(hm + herl) o 2hm+1kn+1’ hm(hm + herl) o 2hmkn

Furthermore, since n > y > 2r, we conclude that

’i(n - yn) Yn — 2r
— 7 > — > 0.
i >0 and oh = 0
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Therefore, the term inside each pair of absolute signs in (3.26) must be positive. We

may remove all absolute signs in (3.26), and, subsequently, yields
a <0,

which is what we expect. Generalizations of the discussion for cases involving y <7
are straightforward. Therefore all eigenvalues contained in S; must lie on the left
half of the complex plane.

CASE 2: Now consider the case of x = z; and n < y < Y. Thus, for any

complex number z € S;, where S; is a Gershgorin disc satisfying

2
sy Yn L Y POYn  POYn | Yn =20 K(D =)
Donhmst  kpknsr  2Pmetkner  2hmkn | 2k K
OYn _ POYa K= a)| Y _ pOYn
TN kn (ko 4 kng1)  2Pankn, K ki1 (kn 4 kns1)  2hmg1kns
N Yn _ POYn ' PIYn |
it (R + Pont1)  2hmsrbner | | 2Rt ks

Similar to the previous case, we take «, the real part of z. Thus,

n 1 1 n — 2
a < Y - )Y r < 0.
hm+l hm + hm+1 hm 2hm

The above apparently implies that such an S; must lie strictly on the left half of
the complex plane, and the origin cannot be on its boundary. This ensures our
expectation.

Now consider the case of z = x; and 2r < y < n. Thus, for any complex

number z € S;, where S; is a Gershgorin disc satisfying

n o’ n OYn TYn, n — 21 k(N — Yn,
vy Un L OYn __ POYn _ POYn Y L B0 = yn)
hmhm—i-l knkn—i-l 2hm—&-ll{:n—‘rl thkn th kn
Yo PoYn K=y | T*Yn _ PTYn
o kn<kn + kn+1) 2hmkn kn kn+1 (kn + knJrl) 2hm+1kn+1
N Yn _ PO | ' Poyn |
Pt (R + hing1)  2hms1kna 2hmy1kni

Similar to the previous case, we take «, the real part of z. Thus,
n 1 1 n — 2
a < 4 ~ )Y T < 0.
hm—i—l hm + hm+1 hm 2hm
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The above apparently implies that such an S; must lie strictly on the left half of
the complex plane, and the origin cannot be on its boundary. This ensures our
expectation.

Now consider the case of + = x; and 0 < y < 2r. Thus, for any complex

number z € S;, where S; is a Gershgorin disc satisfying

s Yn L TYn  POYn  POYn Yo =2 KD yn)
Bonbmst  knknsr 2Bkt 2hmkn  2hm Fn
Yo oY K= yn)| o Yn _ PTYn
TN kn(kn + kns1)  2hmkn K ki1 (kbn + kns1)  2hmstkni
N Yn _ POYn ' PIYn |
it (R + Bont1)  2hos1kngt | | 2hmg ko

Similar to the previous case, we take «, the real part of z. Thus,

Un 1 1 Yn — 21
< - — < 0.
“= herl (hm + herl hm) - 2hm

The above apparently implies that such an S; must lie strictly on the left half of
the complex plane, and the origin cannot be on its boundary. This ensures our
expectation.

CASE 3: In the circumstance, when n < y < Y, Gershgorin discs, S;, concerned
are centered at boundary points where a Neumann condition is imposed. Hence, for

any z € S; we have

n 2 n n n n - 2r K — Yn
sy Yn L TYn  PTYn  POYn Y L 50 = yn)
hmhm—i-l knkn—i-l 2hm—i—lkn—&—l thkn th kn
Yo POYu K=y | T*Yn _ PTYn
o kn<kn + kn—l—l) thkn kn kn-ﬁ-l (kn + kn—i—l) 2hm+1kn+1
PIYn Yn POYn | Yn — 27
T ohden | oo+ Tomss)  2hben 20 |

The above indicates that «, the real part of z, must satisfy

o < Yn Yn

— < 0.
o hm<hm + hm—l—l) hmhm—H
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In the case when 2r < y < 7, GerShgorin discs, 5;, concerned are centered at

boundary points where a Neumann condition is imposed. Hence we have

2

n n n n n - 2 — In

e Un L TYn  POYn  POYn | Yn =20 KO yn)
hmhm+1 knkn+1 2hm+1kn+1 thkn 2hm kn
Yo PoYn K=y | oY _ POYn
o kn(kn + knJrl) thkn kn kn+1<kn + kn+1) 2hm+1kn+1
PIYn Yn POYn | Yn — 21
T om | T oo + o) 2Bk 20 |

The above indicates that «a, the real part of z, must satisfy

o < Yn Yn

— < 0.
- hm<hm + hm—l—l) hmhm—H

In the case when 0 < y < 2r, Gershgorin discs, S;, concerned are centered at

boundary points where a Neumann condition is imposed. Hence, for any z € .S; we

have
v YUn O POYn  POYn Yo =2 K] Ya)
hmhm+1 knkn+1 2hm+1kn+1 thkn th kn
Yo PoYn K=y | 7Y _ POYn
- kn(kn + knJrl) thkn kn kn+1<kn + kn+1) 2hm+1kn+1
POYn Yn POYn Yo — 21
+ - —~ —~ :

2hmkin | | T (o & Bons1)  2hokn 2k

The above indicates that «a, the real part of z, must satisfy

o< Yn Yn

— < 0.
- hm(hm + hm—l—l) hmhm+1

CASE 4: In the circumstance, when n < y < Y, Gershgorin discs, .S;, concerned
are centered at boundary points where a Neumann condition is imposed. Hence, for

any z € S; we have

I\ oy _ POYN | Yn Z2r k(1 — yn)
hhmsr — kn(knir +kn)  2hpky 2h, kn
T*Yn _ PI9YNn K(n — yn) YN
kn(ky + kni1)  2hmky kn Bt (B + Mg
POYN YN POYN YN — 2r
ki | | P (P + Bmy1)  2hmky 2Ry,
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The above indicates that «, the real part of z, must satisfy

YN YN

< — < 0.
“= (hm + hm+1)2 hmhm—l—l

When 2r < y < n, Gershgorin discs, S;, concerned are centered at boundary

points where a Neumann condition is imposed. Hence, for any z € S; we have

YN o*yn POYN yn —2r  K(n—yn)
z+ + — +
hphms1  kn(kng1 +kn) 2Ry ky 2N, kn
o’yn _ poyn | K —yn) YN
kn(kn + Ent1)  2hnky kn Pt (R 4 Pog1)

POYN YN POYN YN — 21

2hmkin | | P (B + hnsr)  2hmky 2D

+

+ ‘ +

The above indicates that «, the real part of z, must satisfy

Yn YN

< —
“= (hm + hm+1)2 hmhm—l—l

< 0.

When 0 < y < 27, Gershgorin discs, .5;, concerned are centered at boundary

points where a Neumann condition is imposed. Hence, for any z € S; we have

yn o%yn poyy  Yn —2r k(N —yn)
z+ + — - +
hiphms1  kn(kng1 +kn) 2Ry ky 2h, kn
a’yn _ poyn | K —yn) YN
kn(kn +kni1)  2hpmky kn Pons1 (B + Buns1)
POYN YN pPOYn YN — 2r

2hmkin | | BB + hnir)  2hmky 2D

+

- ‘ +

The above indicates that a, the real part of z, must satisfy

Yn YN

— < 0.
P + hint1)? hphmia

ag(

When p € (0,1] and n < 2r, we have the following.
CAse 1: Consider the situation in which 2r < y, < Y. Let z € S; be any
complex number, where S; is a Gershgorin disc centered at an internal point of the

spacial grids. Hence,

2

n n n n n 2 — Yn

sy Yn L O POYn  POYn Yo =20 K(0 =)
hmhm—i-l knkn+1 2hm—l—lkn—l—l thkn 2hm kn

34



N L L U ) N T*Yn _ PTYn
- kn(kn + kn-{—l) thkn kn kn—i—l(kn + kn+1) 2hm-{—lkn—i—l
N Yn _ POYn PTYn PTYn
hm+1(hm + hm-‘,—l) th—i—lkn—i-l th—i—lkn—i-l thkn
Yn POYn | Yn =27
_ ) 3.27
oo + o)~ 20k + 20 (3:27)

Let a be the real part of z. Since we are concerned only about the upper bound
of the real part of the eigenvalues, we may replace z by « via a triangle inequality,
and remove absolute value sign on the left hand side of (3.27). As a consequence,

(3.27) renders to

oY TYn __ POYn _ POYn Yo =2 K] = Ya)
hmhm—H knkn—H 2hm+lkn+1 thkn th kn
N L L U ) N T*Yn _ pOYn
o kn(kjn + kn-i—l) thkn kn kn—i—l(kn + kn+1) 2hm+1kn+l
Yn PO Yn PO Yn PO Yn
+ - + +
hm+1(hm + hm+1) 2hm+1kn+1 2hm+1kn+1 thkn
Yn POYn | Yn =27
_ ) 3.28
oo+ Tomet)  2hkon 20 (3:28)

Recall (3.18) and that p > 0. We have

2 2
iy g1 > o+ By and o, e > 2 (ki bga).
po po o

The above lead to

OYn o PTYn T*Yn o __PYn
kn(kn + kn—l—l) - thkn’ kn+1(kn + kn+1> - 2hm+1kn+1’
Yn > POYn Yn S POYn

hm-l—l(hm + hm—i—l) a 2hm+1kn+1’ hm(hm + hm—l—l) a thkn

Furthermore, since y > 2r > 7, we conclude that

/ﬁ(n - yn) Yn — 2r
—_ 7 > d
o = Oand o

> 0.

Therefore, the term inside each pair of absolute signs in (3.28) must be positive. We

may remove all absolute signs in (3.28), and, subsequently, yields

a < 0.
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Now consider the situation in which n < y,, < 2r. . Hence,

2
n n n n n - 2 — In
saUn L OYn  POYn  POYn Yo =20 KO )
hmhm—i—l knkn—i-l 2hm—i—lkn—ﬁ—l thkn th kn
Yo PoYn K=y | T*Yn _ PTYn
o kn(kn + kn+1) thkn kn kn+1 (kn + knJrl) 2hm+1kn+1
i Yn . PO Yn PO Yn PO Yn
herl(hm + hm+1) 2hm+1kn+1 2hm+1kn+1 2hmkn
Yn PIOYn | Yo — 27
_ _ 3.29
T oo+ Tomet)  2hkn 20 (3:29)

Let a be the real part of z. Since we are concerned only about the upper bound
of the real part of the eigenvalues, we may replace z by « via a triangle inequality,
and remove absolute value sign on the left hand side of (3.29). As a consequence,

(3.29) renders to

2
n n n n n 2 — 9n
o Yn L TYn  POYn  POYn | Yn =20 K0 = Yn)
hmhm—l-l knkn+l 2hm+1kn+1 thkn th kn
O-Qyn o POYn + H(n B yn) + UQyn N POYn
o kn(kn + kn—l—l) thkn kn kn—i—l (kn + kn—i—l) 2hm+1kn+1
4 Yn _ POYn POYn POYn
hm—i—l(hm + hm—i—l) 2hm+1kn+1 2hm+1kn+1 2hmkn
Yn PO Yn Yn — 2r
— ) 3.30
R D S Y S T (3:30)

Recall (3.18) and that p > 0. We have

2 2
i, g1 > b+ By and o, e > 2 (i bga).
po po o

The above lead to

Y PTYn o*Yn > _ PTYn
k:n(kn + kn-‘,—l) - 2hmkn’ kn+1(kn + k:n—&—l) - 2h’rn—&—1]'€n—&—17
Yn > POYn Yn > PO Yn

herl(hm + herl) o 2hm+1kn+1’ hm(hm + herl) o 2hmkn
Furthermore, since 2r > y > n, we conclude that

kn m

> 0.
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Therefore, the term inside each pair of absolute signs in (3.30) must be positive. We
may remove all absolute signs in (3.30), and, subsequently, yields @ < 0, which is
what we expect.

Now consider the situation in which 0 <y, <. . Hence,

2
n n n n n 2 — Jn
sy Yn L OYn  POYn  POYn Yo =20 K0 =)
hmhm—l—l knkn—l-l 2hm+1kn+1 thkn 2hm kn
Yo oY K= y)| Yo _ pIYn
o kn<kn + kn+1) thkn kn kn—i—l (kn + kn-‘,—l) 2hm+1kn+1
Yn POYn POYn POYn
- — - -
hm+1<hm + hm—i—l) 2hm+1kn+1 2hm+1kn+1 2hmkn
Yn PO Yn Yn — 2r
— — 3.31
oo+ Tomis) 2Bk 20 (3:31)

Let a be the real part of z. Since we are concerned only about the upper bound
of the real part of the eigenvalues, we may replace z by « via a triangle inequality,
and remove absolute value sign on the left hand side of (3.31). As a consequence,

(3.31) renders to

n a2y, TUYn Y n—2r k(N —uy,
@+ hm%mﬂ + knkzﬂ - 2h,5+1ykn+1 - 2/;:/% * y2hm * (nkny !
Yo PoYn K=y | o Yn _ PTYn
= on(kn + kng1) 2Rk k, Kot (kin + kns1)  2homsibn
+ Yn . PO Yn PO Yn POYn
it (B + hnet) 2hmsikner | | 2hmsrkner | | 2Rk
Yn POYn Yo — 21
oo+ Fomet) 2k 20 | (3.32)

Recall (3.18) and that p > 0. We have

2 2
_kna

it > B 4 oy and By, gy > 2k 4+ Foga).
po po o

The above lead to

O*Yn o POYn T*Yn - _ POYn
kn(kn + knJrl) - thkn’ kn+1<kn + kn+1> - 2hm+1kn+17
Yn > POYn Yn > POYn

hm—l—l(hm + hm—l—l) o 2hm+1kn+17 hm(hm + hm—l—l) o thkn
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Furthermore, since n > y > 0, we conclude that

K(1N — Yn) Y — 2
DI - > 0.
o >0 and oh 0

Therefore, the term inside each pair of absolute signs in (3.32) must be positive. We
may remove all absolute signs in (3.32), and, subsequently, yields o« < 0, which is
what we expect.

CAseE 2: Now consider the case of x = x; and 2r < y < Y. Thus, for any

complex number z € S;, where S; is a Gershgorin disc satisfying

n 2 n n n n - 2r K — In
e Un L OYn  POYn  POYn Y K — yn)
hmhm+l knk;n+1 2hm+1kn+1 2hmkn th kn
Yo PoYn K=y | Y _ POYn
- kn(kn + knJrl) thkn kn kn+1<kn + kn+1) 2hm+1kn+1
N Yn _ POYa ' POYn
Rt (R 4+ homg1)  2himg1knsa 2hmy1kng1

Similar to the previous case, we take «, the real part of z. Thus,

n 1 1 = 2
a < Y ( __)_y T<O.

= hps1 \ A+ A1 Ay 2h,
The above apparently implies that such an S; must lie strictly on the left half of
the complex plane, and the origin cannot be on its boundary. This ensures our
expectation.
Now consider the case of x = x; and n < y < 2r. Thus, for any complex

number z € S;, where S; is a GerShgorin disc satisfying

e U O POYn  POYn Yo =2 K] Yn)
Bohmit  knknsr  2hmiiknit  2hmkn 2k i
T L=y | T*Yn _ PTYn
N kn(kn + kns1)  2hmkn kn ki1 (kn & knp1)  2hmar ks
N Yn P9y ‘ PoYn |
Pt (R + Png1)  2hpg1 b 2hmy1knia

Similar to the previous case, we take «, the real part of z. Thus,
n 1 1 n — 2
a < 4 ~ )Y T < 0.
hm—i—l hm + hm+1 hm 2hm
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The above apparently implies that such an S; must lie strictly on the left half of
the complex plane, and the origin cannot be on its boundary. This ensures our
expectation.

Now consider the case of z = 27 and 0 < y < 7. Thus, for any complex number

z € 5;, where S; is a Gershgorin disc satisfying

s Yn L TYn  POYn  POYn Yo =2 KD yn)
Bonhmsr  knknsr  2hmirknsr  2hmkn 2R kn
Yo oY K= yn)| o Yn _ POYn
N kn(kn + k1) 2Rk kn kni1(kn + knp1) 2tk
N Yn _ POYn ' PIYn |
w1 (P 4 s 1) 2honi1knit | | 2hmst kg

Similar to the previous case, we take «, the real part of z. Thus,

Un 1 1 Yn — 21
< - — < 0.
“= herl (hm + herl hm) * 2hm

The above apparently implies that such an S; must lie strictly on the left half of
the complex plane, and the origin cannot be on its boundary. This ensures our
expectation.

CASE 3: In the circumstance, when 2r < y < Y, Gershgorin discs, S;, con-
cerned are centered at boundary points where a Neumann condition is imposed.

Hence, for any z € S; we have

n 2 n n n n - 2r K — Yn
sy Yn L TYn  PTYn  POYn Y L 50 = yn)
hmhm-l—l knkn—i-l 2hm—i—lkn—&—l thkn 2h’m kn
Yo POYu K=y | T*Yn _ PTYn
o kn<kn + kn—l—l) thkn kn kn+1 (kn + kn—i—l) 2hm+1kn+1
PIYn Yn POYn | Yn — 27
T ohden | oo+ Tomss)  2hben 20 |

The above indicates that «, the real part of z, must satisfy

o < Yn Yn

— < 0.
o hm<hm + hm+1> hmhm—l—l

In the case when n < y < 2r, Gershgorin discs, S;, concerned are centered at

boundary points where a Neumann condition is imposed. Hence, for any z € .S; we

39



have

e YUn O POYn  POYn Yo =2 K] = Ya)
hmhm+1 knkn+1 2hm+1kn+1 thkn th kn
Yo PoYn K=y | %Y _ POYn
o kn(kn + knJrl) 2hmkn kn kn+1<kn + kn+1) 2hm+1kn+1
POYn, Yn POYn | Yn — 2T
T om | T oo+ Bones) 2B 20

The above indicates that «, the real part of z, must satisfy a < m —

Yn
oy < 0.

In the case when 0 < y < n, Gershgorin discs, S;, concerned are centered at

boundary points where a Neumann condition is imposed. Hence, for any z € .S; we

have
S Yo PTYn  POYn  Yn =21 K[ = Yn)
hmhm+1 knkn+l 2h/m+1kn+1 2hmkn th kn
Yo PoYn K=y | Y _ POYn
o kn(kn + kn+1) thkn kn kn+1<kn + kn+1) 2hm+1kn+1
POYn Yn POYn  Yn — 21
+ - —~ — :

2hmkin | | T (B & Bons1)  2hmkn  2him

The above indicates that «, the real part of z, must satisfy

o < Yn Yn

— < 0.
- hm(hm + herl) hmhm+1

CASE 4: In the circumstance, when 2r < y < Y, Gershgorin discs, 5;, con-
cerned are centered at boundary points where a Neumann condition is imposed.

Hence, for any z € S; we have

P\ oAy _ poyn yn —2r  K(n—yn)
hohms1  kin(knat + ky)  2hmky 2k kn
o’y poyn K —yn) YN

kn(ky +kya1)  2hnky  ky ot (hin + Pins1)
YN POYnN | Yn —2r

+

POYN _
2hp kN hon(B + Bny1)  2hky 2h,

+ ‘ +

The above indicates that «, the real part of z, must satisfy

YN .\
hm + hm+1>2 hmherl

40
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When 1 < y < 2r, Gershgorin discs, S;, concerned are centered at boundary

points where a Neumann condition is imposed. Hence, for any z € S; we have

LN o*yn _ poyy | yn =20 K1 = y)
honhmsr  kn(kyes +ky)  2hmky 2k, kn
o’y _ oYy k(0= yn) Yy

kn(ky + k1) 2hmky kn ot (P + hmt1)

Yn POYN_ YN = 2r

POYN _
(B 4 Bny1)  2hikn 2h,

z

_|_

_|_

* ‘thkN

The above indicates that «, the real part of z, must satisfy

YN YN
hm + hm+1)2 hmhm—l—l

ag( < 0.

When 0 < y < 7, Gershgorin discs, S;, concerned are centered at boundary
points where a Neumann condition is imposed. Hence, for any z € .S; we have

2 o —2r  k(n-—
LN oUYn POYN YN N (n—uyn)
hmhm—i-l

kn(knit + kn)  2hmky  2hm ke
o’yn poyn K —yn) YN

- +
kn(ky +Eni1)  2hmkn kn Pt (R + Bing1)
yn POYN Yy —2r

POYN _
2hp kN (B, 4+ Bny1)  2hikn 2h,

+

+

|

The above indicates that «, the real part of z, must satisfy

YN _ YN
P + Bng1)? haphima

ag( < 0.

When p € [—1,0] and 2r < 7, we have the following.

CASE 1: Consider the situation in which n <y, <Y. Hence,

sy U Y L PTYn PTYn_ Yo =20 K01 = Yn)
hmhm+1 knkn+1 2h/m+1kn+1 thkn 2hm kn
Yo POYn K=y | Y L PTYn
- kn(kn + knJrl) 2hmk'n kn kn+1<kn + kn+1) 2hm+1kn+1
Yn POYn POYn PO Yn
+ + + |+ |-
hm+1 (hm + hm+1> 2hm+1kn+1 2hm+1kn+1 thkn
Yn POYn Yn — 2r
3.33
oo+ Fomet) 2k © 20 (3:33)
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Let « be the real part of z. Since we are concerned only about the upper bound
of the real part of the eigenvalues, we may replace z by « via a triangle inequality,
and remove absolute value sign on the left hand side of (3.33). As a consequence,

(3.33) renders to

2
Yn 0 Yn POYn POYn | Yo —2r  KE(N = Yn)
ot hmhm—H * knkn-l—l * 2hm+1kn+1 * thkn * 2hm kn
Yo Y KM= a)| 7Y PIYn
- kn(kn + kn-l—l) thkn kn kn+1(kn + kn+1) 2hm+lkn+1
Yn PTYn poYn poYn
- - I e
hm-‘,—l (hm + hm-‘,—l) th—i-lkn—i-l 2hm+1kn+1 ‘ 2hmk:n
Yn POYn Yn — 2r
. 3.34
R D S S S T (3:34)

Recall (3.18) and that p > 0. We have

2 2
— ki = kgt = 4 By and i, By > =2k Fga).
po po o

The above lead to

Yn o POYn o Yn > __ P%Yn
kn(kn + kn+1) o 2hmkn’ kn+1(kn + kn+1) o 2hm+1kn+l’
Yn > POYn Yn > _ POYn

hm+1(hm + hm+1) o _2h/m+1kn+1’ hm<hm + herl) o thkn ‘

Furthermore, since y > n > 2r, we conclude that

K(n_yn) Yn —2r
_ > > (.
o > (0 and o = 0

Therefore, the term inside each pair of absolute signs in (3.34) must be positive. We

may remove all absolute signs in (3.34), and, subsequently, yields
a <0,

which is what we expect. Generalizations of the discussion for cases involving y <7
are straightforward. Therefore all eigenvalues contained in S; must lie on the left

half of the complex plane.
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Now consider the situation in which 2r < y,, < 7. Hence,

2
Yn Y POYn POYn | Yn—2r  K(N—yn)
i hmhm—i-l * knkn—l—l * 2hm—i—lkn—ﬁ—l * thkn * 2hm * kn
Yo POYn K= y)| T*Yn PTYn
o kn<kn + kn+1) thkn kn kn+1 (kn + knJrl) 2hm+1kn+1
Yn POYn POYn POYn
- - e e R o
hm+1<hm + hm+1) 2hm+1kn+1 2hm+1kn+1 2hmk'n
Yn POYn | Yn — 21
. 3.35
R D S L R T (3:35)

Let a be the real part of z. Since we are concerned only about the upper bound
of the real part of the eigenvalues, we may replace z by « via a triangle inequality,
and remove absolute value sign on the left hand side of (3.35). As a consequence,

(3.35) renders to

2
Yn *Yn PTYn POYn | Yo —2r | (N — Yn)
ot hmhm—l—l * knkn—i—l * 2hm+1kn+1 thkn * th * kn
02 n n - Yn 2 n n
< y L PP K ) | oy L POy
kn<kn + kn+1) thkn kn kn—i—l (kn + kn—i—l) 2hm+1kn+1
Yn POYn PO Yn POYn
- - e e R
hm—i—l(hm + hm+1) 2hm+1kn+1 2hm+1kn+1 thkn
Yn POYn Yn — 27"
. 3.36
R D S R S (3:36)

Recall (3.15) and that p < 0. We have

2 2
__krm - _knJrl 2 hm + hm+1 and h/ma hm+1 2 _B(kn + knJrl)'
pPo po o

The above lead to

Yn o POYn o Yn > __ P%Yn
kn(kn + k:n—&—l) - 2hmkn’ kn+1(kn + k:n—&—l) - 2hm+1]€n+1’
Yn > POYn Yn > PO Yn

hm+1(hm + hm+1) o _2hm+1kn+1’ hm(hm + herl) - thkn ‘
Furthermore, since n > y > 2r, we conclude that

kn m

> 0.
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Therefore, the term inside each pair of absolute signs in (3.36) must be positive. We

may remove all absolute signs in (3.36), and, subsequently, yields
a <0,

which is what we expect. Generalizations of the discussion for cases involving y <7
are straightforward. Therefore all eigenvalues contained in S; must lie on the left
half of the complex plane.

Now consider the situation in which 0 < y,, < 2r. . Hence,

2
Yn o Yn POYn POYn Yo —2r K — Yn)
i hmherl * knknJrl * 2hm+1kn+1 * 2hmkn th * kn
2 _ 2
< Y POYn KO =) | oY L __POYn
kn<kn + kn+1) thkn kn knJrl (kn + knJrl) 2hm+1kn+1
Yn POYn PTYn POYn
+ + + ||+ |-
hm—i-l(hm + hm+1) 2hm+1kn+1 2hm+1kn+1 2hmkn
Yn POYn Yn — 2r
_ 3.37
oo+ homet) 2ok 2l (3:37)

Let a be the real part of z. Since we are concerned only about the upper bound
of the real part of the eigenvalues, we may replace z by «a via a triangle inequality,
and remove absolute value sign on the left hand side of (3.37). As a consequence,

(3.37) renders to

2
Yn 0" Yn POYn POYn Yn — 2r "6(77 B yn)
“r hmhm—i-l * knkn+1 * 2hm+1kn+1 * thkn th * kn
2 _ 2
< Y POYn KO =) | oY L __PTYn
kn<kn + kn+1) thkn kn kn+1 (kn + knJrl) 2hm+1kn+1
Yn POYn PO Yn POYn
+ + ||+ |-
hm+1<hm + hm+1) 2hm+1kn+1 2hm+1kn+1 thkn
Yn POYn Yn — 2r
_ 3.38
R D S R R (3:38)

Recall (3.18) and that p > 0. We have

2 2
ok — 1 = hon o+ s a0d By gt > — 2 (o + k).
po po o
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The above lead to

OYn o POYn Y o __ P%Yn
kn(kn + kn—H) - thkn’ kn+1(kn + kn—H) - th—&-lkn-l—l’
Yn > PO Yn Yn > POYn

hm+1(hm + herl) - _2hm+1kn+1’ hm(hm + herl) = 2hmkn .

Furthermore, since y > n > 2r, we conclude that

K(n_yn) Un —2r
— - > — > 0.
o > (0 and oh = 0

Therefore, the term inside each pair of absolute signs in (3.38) must be positive. We

may remove all absolute signs in (3.38), and, subsequently, yields
a <0,

which is what we expect. Therefore all eigenvalues contained in S; must lie on the
left half of the complex plane.
CASE 2: Now consider the case of x = z; and n < y < Y. Thus, for any

complex number z € S;, where S; is a Gershgorin disc satisfying

e Yn O POYn  POYn Yo =2 K] Ya)
hmhm+1 knkn+1 2hm+1kn+1 2hmkn 2hm kn
02yn . POYn . /Q(rr] — yn) + U2yn _ PO Yn
o kn(kn + kn—l—l) 2hmkn kn kn—i-l(kn + kn+1) 2hm+1kn+1
N Yn _ PYn ' POYn
Pt (M + Png1)  2hg1bngn 2Ny 1kt

Similar to the previous case, we take «, the real part of z. Thus,

n 1 1 L2
a < Y ~ )Y r < 0.
hm+l hm + hm+1 hm 2hm

The above apparently implies that such an S; must lie strictly on the left half of
the complex plane, and the origin cannot be on its boundary. This ensures our

expectation.
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Now consider the case of x = x; and 2r < y < 7. Thus, for any complex

number z € S;, where S; is a Gershgorin disc satisfying

n o? n OYn TYn n — 21 k(N — Yn,
vy Un L OYn _ POYn  _ POYn Y L B0 = Yn)
hmhm—i-l knkn—i-l 2hm—&-ll{:n—‘rl thkn 2hm kn
Yo PoYn K=y | T*Yn _ PTYn
B kn<kn + kn—i—l) 2hmkn kn kn-i—l (kn + kn—i—l) 2hm+lkn+l
N Yn _ PTYn ‘ POYn
Pt (R + hing1)  2hims1kna 2hmy1kni1

Similar to the previous case, we take «, the real part of z. Thus,

Yn 1 1 Yp — 21
< —— ) - < 0.
“= hm+1 (hm + hm+1 hm) th

The above apparently implies that such an S; must lie strictly on the left half of
the complex plane, and the origin cannot be on its boundary. This ensures our
expectation.

Now consider the case of x = 21 and 0 < y < 2r. Thus, for any complex

number z € S;, where S; is a Gershgorin disc satisfying

T R OYn  ___POYn _ PTYn _ Yu =20 K() = Ya)
Bonhmsr  knkpsr 2hmsrknsr  2hmkn 2R kon
Yo pOYn L5 =] T Yn _ PTYn
= Ton(kn + k1) 2honkn ko Koot (kin + knr1)  2horiknr
N Yn _ POYn ' PIYn |
hm-i-l(hm + hm—i—l) 2hmﬂ-lkn-i-l 2hmﬁ-ler&

Similar to the previous case, we take «, the real part of z. Thus,

Un 1 1 Yn — 21
< - — < 0.
“= hm—l—l <hm + hm—l—l hm) * 2hm

The above apparently implies that such an S; must lie strictly on the left half of
the complex plane, and the origin cannot be on its boundary. This ensures our
expectation.

CASE 3: In the circumstance, when < y < Y, Gershgorin discs, S;, concerned
are centered at boundary points where a Neumann condition is imposed. Hence, for
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any z € S; we have

2
n n n n n 2 — In
s U OYn  POYn  POYn  Yn =20 KO Y)
hmherl knknJrl 2hm+1kn+1 thkn 2hm kn
Yo PoYn K=y | 0%Yn _ POYn

o kn<kn + kn+1) thkn kn kn+1 (kn + knJrl) 2hm+1kn+1

LY | Yn _ POYn | Yn — 21

2hmkin| | T (B & Bons1)  2hkn 2P

The above indicates that o, the real part of z, must satisfy

o < Yn Yn

— < 0.
- hm(hm + hfm—l—l) hmhm+1

In the case when 2r < y < n, Gershgorin discs, S;, concerned are centered at

boundary points where a Neumann condition is imposed. Hence, for any z € 5; we

have
2

n n n n n - 2 - In

e Yn L TYn  POYn  POYn  Yn =20 KO y)
hmhm+1 knkn+1 2hm+1kn+1 thkn th kn
Yo PoYn K=y | 7Y _ POYn
- kn(kn + knJrl) thkn kn kn+1<kn + kn+1) 2hm+1kn+1
PIYn Yn POYn | Yn — 21
T om | T oo+ Bones) 2B 20

The above indicates that «a, the real part of z, must satisfy

o< Yn Yn

— < 0.
- hm(hm + hm—l—l) hmhm+1

In the case when 0 < y < 2r, Gershgorin discs, S;, concerned are centered at

boundary points where a Neumann condition is imposed. Hence, for any z € S; we

have
v YUn O POYn  POYn Yo =2 K] Ya)
hmhm+1 knkn+1 2hm+1kn+1 thkn th kn
Yo POYn K=y | 0%Yn _ POYn
o kn(kn + knJrl) 2hmkn kn kn+1<kn + kn+1) 2hm+1kn+1
+ POYn + Yn . POYn . Yn — 2r
2hmkin| | Tom (B & Bns1)  2hokn 2R
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The above indicates that «, the real part of z, must satisfy

o < Yn Yn

— < 0.
o hm(hm + hm—i—l) hmhm+1

CASE 4: In the circumstance, when n < y <Y, Gershgorin discs, .5;, concerned
are centered at boundary points where a Neumann condition is imposed. Hence, for

any z € S; we have

I\ o*yn _poyn | yn —2r  K(n—yn)
b ey (kver + kn) 2hokn 2k Fn
T*Yn _ PI9YNn K(n — yn) YN

In(ky + knat)  2hmky Fn Tornet i + Toe 1)

Yn POYN | Yn —2r

POYN _
2hmkn hon(B + Bny1)  2hky 2hp,

_|_

+

|

The above indicates that «, the real part of z, must satisfy

YN YN
(hm + hm+1)2 hmhm—i-l

a < < 0.

When 2r < y < n, Gershgorin discs, .S;, concerned are centered at boundary

points where a Neumann condition is imposed. Hence, for any z € S; we have

I\ oyn _ POYN | Yn —2r . k(N —yn)
Ty kn(knes + kn)  2hmkn 2k oy

o’yn _ PIYN 4 (1 — yn) YN
kn(ky + kny1)  2himkn kn Pt (Pam + o1
PIYN Yn _ POYN | Yn —2r
2hmkn | (P + hing1) 2Rk 2Ry,

+

+

|

The above indicates that «a, the real part of z, must satisfy

YN YN

< _
“= (hm + hm+1>2 hmhm+1

< 0.

When 0 < y < 2r, Gershgorin discs, S;, concerned are centered at boundary

points where a Neumann condition is imposed. Hence, for any z € S; we have

LU o*Yn _ POYN _yn —2r k(N — yn)
Tonhmss k(o - kn)  2hoky 20 Fn
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o’yn _ poyn KO —yn) | Yn
kn(kn +kni1)  2hpmkn kn a1 (B + Bina1)
" ‘PU?JN n YN _ POYnN  Yn —2r '
2h kN (B 4 Bny1)  2hikn 2h,,

The above indicates that «, the real part of z, must satisfy

YN YN
hm —+ hm+1>2 hmhm—i-l

aﬁ( < 0.

When p € (0,1] and n < 2r, we have the following. CASE 1: Consider the
situation in which 2r < gy, <Y. Let z € S; be any complex number, where 5; is a

Gershgorin disc centered at an internal point of the spacial grids. Hence,

T R Yo POYn  POYn | Yo —2r (1) — Yn)
hmhm—l—l knkn—l—l 2hm+1kn+1 thkn th kn
Yo poYs KN = Ya) N 7Y _ poYn
a kn(kn + kn+1) thkn kn kn+1(kn + kn—l—l) 2hm—&-ll{;n-‘rl

N Yn _ POYn POYn ‘ POYn
herl(hm + herl) 2hm+1kn+1 2hm+1kn+1 2hmkn
Yn PO Yn Yn — 2r
_ 3.39
oo 4 Fonss)  2hkn 20 (3:39)

Let « be the real part of z. Since we are concerned only about the upper bound
of the real part of the eigenvalues, we may replace z by « via a triangle inequality,
and remove absolute value sign on the left hand side of (3.39). As a consequence,

(3.39) renders to

2
n n n n n 2 — In
oY TYn  POYn  POYn Yo =20 K0 = Yn)
hmhm—H knkn—&—l 2hm+1kn+1 2hmkn 2hm kn
OYn _ POYa K= a)| T*Yn _ pYn
- kn(kn + kn-{-l) zhmkn kn kn+1<kn + kn+1) 2hm+1kn+1
Yn POYn POYn POYn
- — - -
hm+1(hm + hm-‘,—l) th—i-lkn—l—l th—i-lkn—l—l thkn
Yn POYn Yn — 2r
— . 3.40
T oo+ honet) 2l 20 (340)
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Recall (3.18) and that p > 0. We have

2 2
_kna _kn+1 Z hm + hm—l—l and hm7 hm-‘,—l Z B(kn + kn—l—l)-
pPo po g

The above lead to

T*Yn o~ POYn T Yn - _ POYn
kn(kn + knJrl) o thkn’ kn+1<kn + kn+1> - 2hm+1kn+17
Yn > POYn Yn > POYn

hm—l—l(hm + hm—l—l) - 2hm+1kn+17 hm(hm + hm—l—l) - thkn
Furthermore, since y > 2r > 7, we conclude that

_H<77_yn) > (0 and yn_QT

n m

> 0.

Therefore, the term inside each pair of absolute signs in (3.40) must be positive.

We may remove all absolute signs in (3.40), and, subsequently, yields
a <0,

Now consider the situation in which n < y,, < 2r. . Hence,

n 2 n n n n - 2r R - In
sy Un L OYn _ POYn  POYn Y L B0 = yn)
hmhm—i-l knkn—i-l 2hm—i—lkjn—ﬁ—l thkn th kn
Yo PoYu K=y | T*Yn _ PTYn
o kn(kn + kn+1) 2hmkn kn kn+1 (kn + knJrl) 2hm+1kn+1
Yn PO Yn PO Yn PO Yn
- — - -
herl(hm + hm+1) 2hm+1kn+1 2hm+1kn+1 2hmkn
Yn POYn | Yn — 21
— . 3.41
T oo+ homet)  2hkn 20 (341)

Let a be the real part of z. Since we are concerned only about the upper bound
of the real part of the eigenvalues, we may replace z by « via a triangle inequality,
and remove absolute value sign on the left hand side of (3.41). As a consequence,

(3.41) renders to

n 0-2 n g n n n - 2 — Yn
o Yn L TYn  POYn  POYn | Yn =20 K0 = Yn)
hmhm—l-l knkn+l 2hm+1kn+1 thkn th kn
< 02yn _ POYn + ’i(n _ yn) + UQyn i PTYn
o kn(kn + kn—l—l) thkn kn kn—i—l (kn + kn—l—l) 2hm+1kn+1
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n n n T Yn
+ hmﬂ(hj ) Qh::yknﬂ + th:yknﬂ + ‘2/;131@1
* hm(hmyi ) zpf;ygn * y,;;mzr ‘ (342)
Recall (3.18) and that p > 0. We have
2 2 p

_kna _kn+1 2 hm + herl and hm7 hm+1 2 _(kn + knJrl)'
pPo pPo g

The above lead to

Yn . PYn oY - _ POYn
kn(kn + knJrl) - thkn, kn+1<kn + kn+1> - 2hm+1kn+1’
Yn S PIYn Yn > PO Yn

hm-l—l(hm + hm—i—l) o 2hm+1kn+1’ hm(hm + hm—l—l) o thkn

Furthermore, since 2r > y > 7, we conclude that

H(n_yn) yn_QT
— V> d > 0.
o >0 an Sh =

Therefore, the term inside each pair of absolute signs in (3.42) must be positive. We

may remove all absolute signs in (3.42), and, subsequently, yields
a <0,

which is what we expect.

Now consider the situation in which 0 <y, < 7. . Hence,

2
n n n n n - 2 — 9n
sy Un L OYn  POYn  POYn Yo =2 KO yn)
hmhm—i—l knkn—i-l 2hm+lkn+l thkn 2hm kn
Yo POYn K=y | T*Yn _ PTYn ‘
- kn(kn + kn+1) thkn kn kn+1 (kn + knJrl) 2hm+1kn+1
Yn PO Yn PO Yn PO Yn
- — + +
herl(hm + hm+1) 2hm+1kn+1 2hm+1kn+1 2hmkn
Yn POYn Yn — 27
_ — 3.43
oo+ omss) 20 2 (343)

Let a be the real part of z. Since we are concerned only about the upper bound

of the real part of the eigenvalues, we may replace z by « via a triangle inequality,
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and remove absolute value sign on the left hand side of (3.43). As a consequence,

(3.43) renders to

2
n n n n n 2 — Jn
o Yn L TYn POYn  POYn | Yn =20 K0 = Yn)
hmhm—l-l knkn+l 2hm+1kn+1 thkn th kn
Yo oY K= yn)| Yo _ pIYn
- kn<kn + kn—f—l) thkn kn kn—l—l (kn + kn-{—l) 2hm+1kn+1
Yn POYn POYn POYn
+ — - +
hm—i—l(hm + hm—i—l) 2hm+1kn+1 2hm+1kn+1 thkn
Yn PO Yn Yn — 2r
— — 3.44
i 4 hea) 20k 2, (344)

Recall (3.18) and that p > 0. We have

2 2
_kna _knJrl 2 hm + herl and hm> herl Z B(kn + knJrl)-
pPo pPo g

The above lead to

Y PIYn o*Yn o _ PTYn
kn(kn + kn-‘,—l) - 2hmkn’ kn+1(kn + kn+1) a th—&—lkn—&—l’
Yn > PO Yn Yn > PO Yn

herl(hm + herl) o 2hm+1kn+1’ hm(hm + herl) o 2hmkn

Furthermore, since n > y > 0, we conclude that

’i(n - yn) Yn — 2r
— 7 > — > 0.
i >0 and on = 0

Therefore, the term inside each pair of absolute signs in (3.44) must be positive. We
may remove all absolute signs in (3.44), and, subsequently, yields o < 0.
CAseE 2: Now consider the case of x = x7; and 2r < y < Y. Thus, for any

complex number z € S;, where S; is a Gershgorin disc satisfying

S R Yo POYn  POYn | Yu—2r  K(D—Ya)
honbimstr  knknsr  2hmarknsr  2hmkn  2ha, K
Yo PoYn K=y | o Yn _ POYn
“Nkn(kn + knt1) 2Rk K ki1 (kn + k1) 2hmsr kst
N Yn _ POYa +' PIYn |
Pt (P + Png1)  2Rhumg1knga 2hm1kna
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Similar to the previous case, we take «, the real part of z. Thus,

n 1 1 n — 2
a < i N r < 0.
hm+1 hm + hm+1 hm th

The above apparently implies that such an S; must lie strictly on the left half of
the complex plane, and the origin cannot be on its boundary. This ensures our
expectation.

Now consider the case of x = x; and n < y < 2r. Thus, for any complex

number z € S;, where S; is a Gershgorin disc satisfying

n o? n OYn n n — 21 k(N — Yp
vy Un L OYn _ POYn _ POYn Y L 50— yn)
hmherl knknJrl 2hm+1kn+1 thkn th kn
Yo PoYn K=y | T*Yn _ PTYn
o kn(kn + knJrl) thkn kn knJrl (kn + knJrl) 2hm+1kn+1
N Yn _ POYn ' POYn
Pt (R + Png1)  2hg1 b 2hmy1kni

Similar to the previous case, we take «, the real part of z. Thus,

a < Y L 2r < 0.
hm—i—l hm + hm+1 hm th

The above apparently implies that such an S; must lie strictly on the left half of
the complex plane, and the origin cannot be on its boundary. This ensures our

expectation.
Now consider the case of z = x1 and 0 < y < 7. Thus, for any complex number

z € 5;, where S; is a Gershgorin disc satisfying

e Yo PTYn  POYn _ =2 K= )
Bohmit  knknsr  2hmstknit  2hmkn 2k Ky
Yo pOYn L=y | T*Yn _ PTYn
N kn(kn + kns1)  2hmkn kn ki1 (kn & knp1)  2hmar ks
N Yn P9y ‘ PTYn
Pt (R + Png1)  2hpg1 b 2hmy1knir |

Similar to the previous case, we take «, the real part of z. Thus,
UYn 1 1 Yn — 21
< - — < 0.
“= hm—l—l (hm + hfm—l—l hm) i 2hm
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The above apparently implies that such an S; must lie strictly on the left half of
the complex plane, and the origin cannot be on its boundary. This ensures our
expectation.

CASE 3: In the circumstance, when 2r < y < Y, Gershgorin discs, 5;, con-
cerned are centered at boundary points where a Neumann condition is imposed.

Hence, for any z € S; we have

n 2 n n n n - QT R - Yn
sy Yn L Y PTYn  POYn Y L 50 = yn)
hmhm-l—l knkn—i-l 2hm+1kn+1 thkn th kn
Yo PoYn K=y | o Yn _ POYn
o kn<kn + kn—l—l) 2hmkn kn kn—i—l (kn + kn-‘,—l) 2hm+1kn+1
POYn Yn POYn | Yn — 21
* 2h Ky, + hon(Po + hny1) 2k ky, + 2N |

The above indicates that «, the real part of z, must satisfy

Yn Yn

< — < 0.
“= h'm(hm + hm—i—l) hmhm—H

In the case when 1 < y < 2r, Gershgorin discs, S;, concerned are centered at

boundary points where a Neumann condition is imposed. Hence, for any z € .5; we

have
-4+ Yn + UZyn . POYn . POYn Yn — 2r o "{(77 — yn)
hmhm—l—l knkn+l 2hm+1kn+1 thkn 2hm kn
Yo poYn K = Ya) N T*Yn _ pIYn
- kjn(k:n + kn-{—l) thkn kn kn—i—l(k:n + kn—H) 2hm+1kn+1
i POYn i Yn _ POYn UYn — 2T
k| T (hom + Bomsn)  2hokn | 2R |

The above indicates that «, the real part of z, must satisfy

o < Yn Yn

— < 0.
o hm(hm + hm—i—l) hmhm—H

In the case when 0 < y < 1, Gershgorin discs, S;, concerned are centered at
boundary points where a Neumann condition is imposed. Hence, for any z € S; we

have

2+ Yn + U2yn B POYn N POYn o Yn — 2r . H(n B yn)
hmhm—i-l knkn+1 2hm—l—lkn—l—l thkn 2hm kn
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Yo poYn KN = Yn) o*Yn _ PIYn
- kn(kn + kn-{—l) thkn kn kn—i—l(kn + kn+1) 2hm-{—lkn—i—l
PIYn Yn POYn Yo — 27
+ - - - .
2hp ko, (B 4 Bny1) 20k, 2h,

The above indicates that «, the real part of z, must satisfy

o < Yn Yn

— < 0.
- hm(hm + hfm—l—l) hmhm+1

CASE 4: In the circumstance, when 2r < y < Y, Gershgorin discs, 5;, con-
cerned are centered at boundary points where a Neumann condition is imposed.

Hence, for any z € S; we have

I T yn _ poyn | yn —2r k(N —yn)
Bonhmsr  kn(kni1 + kn) 2hmky 2R kn
T’y _ poyn K —uyn) YN
n(kn + knet)  2hmkn kn Bt (Bon + 1)
POYN YN POYN | Yn — 2r
ki | (B + Poms1) 2Rk 2him

+

+

|

The above indicates that «, the real part of z, must satisfy

YN YN

< _
“= (hm + hm+1>2 hmhm—i-l

< 0.

When 1 < y < 2r, Gershgorin discs, S;, concerned are centered at boundary

points where a Neumann condition is imposed. Hence, for any z € .S; we have

YN o?yn poyn  Yyn —2r KN —yn)

- +
bt (kv A kn) ik 20 oy

o’y _ poyn | K(n—yn) YN
kn(kn 4+ kny1)  2hpky kn hpg1 (Bom + Pimg1)
POYN YN POYN_ | YN — 2r

ki | | PP + hnst)  2hmky 2D

z

+

- ‘ +

The above indicates that «, the real part of z, must satisfy

Yn YN

— < 0.
(hm + hm+1>2 hmhm—I—l

a <
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When 0 < y < 7, Gershgorin discs, S;, concerned are centered at boundary

points where a Neumann condition is imposed. Hence, for any z € S; we have

J S o’yn _ oYy yv = 2r  K(n = yn)
hohme1  kn(kna1 +En)  2hnky 2h, kn
o*yn _ poyn K01 = yn) Yy
kn(kn +knp1)  2hamky ky ot (P + hmt1)
POYN yn _ POYN  Yn —2r
2k | | B (o + Pons1)  2hmky 20 |

_|_

- ‘ +

The above indicates that «, the real part of z, must satisfy

YN YN
hm + hm+1)2 hmhm—l—l

ag( < 0.

Since the origin cannot lie on the boundary of every Gershgorin disc [44],
combining results from the three cases, we conclude immediately that all eigenvalues

of A must be strictly on the left half complex plane. Thus, we must have

lim < max

hmaxakmax_)0+ T€[07T*]

) < el
which ensures the numerical stability. O]

3.5 Sitmulation Fxperiments

Recall (3.1)-(3.6). Similar to existing experiments (see [67] and references
therein), we fix X =8, Y = 1. We first concentrate on experiments with p = —0.5
and T = 0.5. Next, to test against extreme cases in the option market, we proceed
with p = —1 and T' = 5. For demonstrating our numerical procedure and its rate
of convergence, we first consider uniform spacial grids. Results over nonuniform
grids will be presented afterwards. For this, let h,, = h, k, = k = ch, m =
1,2,...,.M; n=1,2,...,N.

Some key parameters used are shown in Table 3.1. Further, A7 be our tempo-
ral step. We experiment with different values of A = A7/c?, where ¢ = min {h, k}.

To numerically examine this through experiments, we employ a generalized Milne’s

26



device [47]. Then, for a selected terminal time 7', we denote the numerical solution
at point (T, Yn, 1), 1 <m < M;1 <n < N, &S Uy, n, for any particular spatial step
0 < h < 1. Likewise, we let i, ,.n/2 and ty, ,.n/4 be computed solutions obtained by
using h/2 and h/4, respectively. Thus, the point-wise rate of spatial convergence at

T can be evaluated via

1 ‘um,n;h - um,n;h/Z}

In

In2 ‘um,n;h/Q - um,n;h/4‘

R: .~ (3.45)

Table 3.1. Key parameter values for numerical simulations

key parameter value used
strike price K =100
volatility of volatility oc=1
risk-free interest rate r =0.05
mean reversion speed K=2

long-run mean of volatility n = 0.1

Table 3.2. Rates of convergence with o =1, p = —0.5, T = 0.5 and h = 0.01
conv. rates A=05 A=07 A=1

min,, (R ) 0.6193 06134  0.6026
max,.(R:,)  1.0024 09976  0.9811

mean,, , (R" 0.9026  0.90438  0.9053

m,n)

Table 3.3. Rates of convergence with o =1, p = —0.5, T'= 0.5 and h = 0.02
conv. rates A=05 A=075 A=1

min,, ,(RE,)  0.6324  0.6221  0.6206

max,,,(RL,) 09674 1.0007  1.0151

mean,, , (R" 0.8342  0.8300 0.8296

m,n)
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Figure 3.3. Price of an European put option and rate of convergence estimate.

Table 3.4. Rates of convergence with 0 =1, p = —0.5, T = 0.5 and h = 0.04
conv. rates A=05 A=075 A=1

ming, ,(RL,) 05824 05971 0.6179

max,,,(R:,) 09941  0.9437  0.9586

mean,, , (R" 0.7952  0.8015  0.8142

m,n)

Let h = 0.01 and o = 1. For simplicity of notations, we use the same letter
v for the approximate solution to (1.15). We show the solution v for p = —0.5 and
p = —1 in Figures 3.3 and 3.4 , respectively. It can be observed that the European
put option price is a decreasing function of the stock price S. This coincides well
with the financial theory that a put option price should have a negative correlation
with the underline stock price [1,28].

Let us plot the computed rate of convergence surfaces for cases when p = —0.5
and p = —1 in Figure 3.3 and Figure 3.4, respectively. In addition, a summary of
point-wise convergence rates for the former case on different spacial grids is given in
Table 3.2. Minor disturbances can be observed in regions where the solution changes
fast, in particularly in extreme situations with p = —1 as being demonstrated in
Figure 3.4. Further, the mean convergence rate for the two cases are given in the

caption of Figure 3.3 and Figure 3.4. In the extreme case when p = —1 and 7' = 5,
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Figure 3.5. A composite surface plot of 21 (5)z2(y)

we observed a smaller mean convergence rate. This is within our expectation due
to the more iterations to get the solution and the decrease in the well-posedness
of the original PDE. These results are consistent with those from well-established
high-order schemes [12,13,32,38,67]. A Matlab platform is used.

Now, consider simulations over nonuniform spacial grids. We are particularly

interested in the following nonlinear grid distribution governing functions [44, 47

1 25(5/K)10
= n <5< A4
Zl(S> 256 + 256[1 I (S/K)5]4a Smm = S = Smaxa (3 6)
104/0.5
2F) = = Yoin <Y S Yo (3.47)

In our simulation experiments, selections of monitoring functions z;, zy, are based
initially on the numerical solution v acquired on uniform spacial meshes. They are
chosen to reflect trends of solution curvatures [13,47].
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Figure 3.6. Solution on nonuniform grids and the relative difference .

Our nonuniform grids are generated via an arc-length equal-distribution prin-
cipal for functions 2y, 2o in S- and y-directions, respectively. The principal is com-
monly utilized in adaptive computations and serves as an initial exploration for more
sophisticated adaptations [30,47].

A composite surface plot of the mesh distribution function z;zy is given in
Figure 3.5. It characterizes the 2-dimensional profile of our grids distribution. The
numerical solution acquired over such nonuniform grids, with p = —0.5 at T'= 0.5
is given in Figure 3.6 .

Let Qn ar be a reference spacial mesh which can also be either our uniform mesh
or nonuniform mesh. We may map solutions vy,ir and vponunir, NumMerical solutions
obtained on the uniform mesh and nonuniform mesh, respectively, to Qy /.

We plot the following point-wise relative error,

|’Uunif(S, Y, t) - Unonunif(‘sa Y, t)|
Ey(S,y,t) =
d< Y ) |Uunif<S7y7t>| 7

(S,y,t) c QN,M; 0<t<T. (348)

in Figure 3.6. The mean relative difference E,.., is given in the caption of Figure
3.6. We can see that the solutions on the uniform and nonuniform grids agrees with

each other due to the small Fc.n.
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3.6 Summary

A numerically stable and dynamically balanced up-downwind semi-discretized
finite difference method is constructed and analyzed in this chapter based on ar-
bitrary option data grids which can be determined through a proper moving mesh
principal. The algorithm acquired is extremely convenient to use in realities. It is re-
liable and effective for computing Heston stochastic volatility option pricing model
solutions with cross-derivative terms in market realities. Rigorous mathematical
proofs are given to ensure the stability and convergence.

Simulation experiments further confirm our theoretical expectations on both
uniform and arbitrary spacial data grids given.

Our next endeavors include improving the computational efficiency through
exponential splitting methods, particularly variable step ADI or LOD approxima-
tions [10,32,47,51,56]. Compact schemes for raising the accuracy have also been in-
troduced in our study with initial successes in handling cross-derivatives dynamically
and well balances for pricing American and some Asian options [1,16,30,41,58,67].

Initial investigations have been very promising.
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CHAPTER FOUR

Exponentially Split Up-Downwind Method for Stochastic Heston Volatilities.

A nonuniform spacial mesh will be introduced in this chapter. Based on it, a
semi-discretized scheme will be introduced for approximating (3.1)-(3.6). Another
dynamically balanced up-downwind difference approximations will be implemented.
Numerical stability analysis will be conducted rigorously in Section 3. Computa-
tional experiments will be carried out in Section 4. Orders of convergence will also
be computationally evaluated. Last but not least, conclusions and further remarks

will be given in Section 5.

4.1 Dynamically Balanced Up-Downwind Semi-Discretization
Consider an arbitrary mesh Qj x = {(z, yn)}% "V over a optional domain €.
We further denote g = =X, xp01 = X; 4o =0, yyy1 =Y andlet 0 <z, — 21 =
hyp <1, m=12... M, 0<yp,—Yp1 =k, <1, n=1,2,...,N.
Let zy,,(7) be an approximation of the function value z(zp, Yn, 7), (Tm,Yn) €
Qpg, 0 <7 <T. It Apy, Ay and AZO are finite difference operators defined as

follows in the ¢-direction, where ¢ € {x,y}, then

Ax7+zm7n _ Zerl,n - Zm,n + O(h), A%_Zm’n _ Zm,n - mel,n + O(h),

hm-i—l hm
Zmmn — Zm.n Zmn T fmn—

Ayiomn = 2L IR OK), Az = -2 T O(F),

kn—l—l kn

2241 2z 2Zm-1
A?E P m+1,n _ m,n + m—1,n +Oh,

0 7 hm-‘,—l (hm—i-l + hm) hm+1hm hm(hm+1 + hm) ( )

2Zm n 22m n 2Zm n—

A = T s T+ O(k),

kn—l—l(kn—i-l + kn) kn+1kn kn(kn—i—l + kn)

where h = max{h,, hy11}, k = max{k,, k,.1} for appropriate indexes [35,47,56].
We now approximate the diffusion terms in (3.1) by using the above operators,

and derivatives in (3.5) and (3.6) via the following for 0 < 7 < T
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i—1,j+1 Lj+1 it1,j+1 i—1,j+1 Li+1 it+1,j+1 i—1,j+1 Li+1l _i41,j+1 i—1,j+1 Lj+1 _i4+1,j+1

Figure 4.1. Computational stencils for (3.9) - (3.13).
At the same time, we approximate advection terms in (3.1) dynamically through
three different channels depending upon relations between n and r.
Case 1: n > 2r.
Uy (T, Yns T) R Dy 4 Uiy Uy( Ty Yy T) = Dy 4 Uiy, 2r >y >0, (4.1
Uy (Tyy Yns T) R Dy _ Uy Uy (T Yy T) = DAy 4 Uy s n>y>r, (4.2)
U (T, Yy T) R Dy Uiy Uy (Tyny Yy T) Dy Uy, Y >y >m. (4.3)

Case 2: n < 2r.

Uz (T, Yns T) R Dy Uiy Uy (T, Yy T) = Dy 4 Uiy, n>y>0, (4.4)
U (Ts Ynis T) R D fUmms Uy (T Uy T) R Ay Uy,  2r >y >m,  (4.5)
Ug (T, Yny T) R Dy U, Uy(Tn, Yy T) R Dy Uy, Y >y>2r. (4.6)

Computational stencils for Case 1 and Case 2 are shown in Figure 4.1. Define

hmin = min  h,y,, hpax = max Ay, kpin = min k,, kpae = max k.
m=1,2-M m=1,2-M n=12-N n=122-N

We now approximate the cross-derivative in (3.1) dynamically. In particularly,

we have
4.1.1 Case for p € [-1,0).
First, for the smoothness of nonuniform grids [25,47], we require that
1
_pkmax S Uhmin S Uhmax S __kmin- (47)
P
We propose the following:

1
Uy (Tiny Yy T) = E(A%JFA%_ + Ay Ay D)t (T) + O(Pmax + Emax)- (4.8)
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Substitute all spacial derivative approximations into (3.1) and let w denote the

semi-discretized approximationn to u. We acquire immediately the following linear

ordinary differential equation system with a proper initial value,

Aw(t) + f(1), 7>0,

Wo,

where w, f € RMN and A € RMNXMN g hlock tridiagonal in the form of

Dy

P, D,
A —

0

0
Q2 0
Pr—o Dy—o Qu—2 0
Py_1 Dy Qu—a
Py Dy

where P, D;,Qr € RNV ¢ =23,...,M; j=1,2,....M; k=1,2,...,.M —1.

Nontrivial entries of the matrices P,,, D,, and @, for their respective ranges of m

are thee following.

Yn PIYn
hn (hm~4hm+1) + 2hmkn41’ 0< Yn < 2T7
(m) Yn PTYn Yn—2r
pn,n hm(hm+hm+1) + thknJrl + 2hm 27” < yn < Y - kN+17
YN yN—2r o _ .
\ hm(hm+hm+1) 2hm ) yn - Y kN+1’
nn+1l T )
2h k.,
O—Qyn PTYn
™ _ kn(kn+kn1) © 2hmyikn’ ke < yn <1,
n,n—1 =
*Yn poyn _ _ K(N—yn) _ )
T Gonthns) T Zhomsrn o N <Un <Y —knya;
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dm)

d(m)

n,n+1

q S,Y:L)— 1

g\

where

Am,n

(

y1—2r  k(n—y1) _
i1 B Un =k,

Qm,1 +

n—2 —Yn
Bm,n + ghm+: o “(:njl )’ kl < Yn < 27”,

n_2 —In
Brn — yzhmr - H(]?nfl )? 2r <yn <,

n—2 —Jn
/Bm’n _ y2hm7‘ + :‘f(nkny )7 /'7 < yn < Y _ kN+1)

_ yn—2r | k(N—YnN)
Ym,N e Tk

. UN =Y —knia;

o2y, POYn £(N—Yn) <
kn+l(kn+kn+l) + thkn+1 + kn+1 ) O < yTL - 77,

2
0" Yn + POYn ,’7<yn<Y_kN+1’

\ kn+l(kn+kn+l) 2hmkn+l )
PO Yn .
- ) Yn > R1;
2hm+1kn

(

Y1 _ yi—2r —
hm+l(hm+hm+l) 2hm+1 ’ yn kl’

n O Yn n—21
hm+l(hi+hm+l) + 2h€nflkn B ghm+1’ ky < y < 2,
\ T o) T Tk 27 < <Y =k,
2
Y o Yn _ PYn
hmhm—l—l kn+l(kn + kn+1) 2hmkn—i-l ’
g = U 0*Yn  POYn  POYn
e hmhm—l-l knkn—H 2hm+1 kn 2hmkn+1 ’
B Yn o*Yn POYn
P)/m,n - -

a hmherl kn(kn + kn+1> a 2hm+1kn.

It is observed that in the event if p = —1, we have the following due to (4.7):

hmin = hmax = h7 kmin = kmax = k, k= Jha

which indicate that uniform spacial grids must be employed. Thus, (4.9) reduces to

w'(1) = Agw(T) + f(7).

Nontrivial entries of A, are readily to obtain based on above discussions.
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i—1,j+1 Li+1 i+1,j+1 i—1,j+1 Li+1 i+1,5+1

Figure 4.2. Computational stencils of (4.8) (left) and (4.11) (right).

4.1.2 Case for p € [0,1].

We need the following restrictions on mesh steps in the case [47]:
1
pkmax S Uhmin S Uhmax S _kmin' (410)
p

Apparently, when p = 1, the above implies that a uniform spacial mesh with
h = ok must be used.
Different from (4.8), we consider a new dynamically balanced cross-derivative

approximation,

1
Uy (Tony Y, T) = §(Am7—Ay,— + Ay 4 Ay 1)U (T) + O(hmax + Emax)- (4.11)

Computational stencils for (4.8) and (4.11) are shown in Figure 4.2.

In this circumstance, we obtain the following new system,

w'(1) = Aw(T) + f(7), (4.12)

Dy Q - . o 0
f)2 f)2 Q2 . o 0
A = i i i :
Py—o Dy—o Qur—2 0
PM—l DM—I QM—l
0 PM DM
where
~(m) POYn
= n >k )
pnﬂ’b—l thkn7 y 1
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Y1 —
hm(hm+hm+1)’ yn o kl’

(m)

D = Yn _ _PIYn
pn,n S — k! kl < Un < 27’,
Yn __ _P9Yn Yn—2r _ .
| FonComthis ) Bhonks T 2k 2r <yp <Y = by
r
*yn PTYn
N(m) o kn(kn+kn+l) thkn’ kl < yn S n’
nn—1 =
7*yn PIYn K(1n—yn) .
!
~ y1=2r _ k(n—y1) _
A1 + 2hmi1 kni1 Uy = kl?

B’m,n _|_ Yn—21 _ "i("]_yn)’ kl < Yn S 271’

2hm+1 kn+1
=(m)  _ 5 Yn—21 k(n—yn)
T = Bm,n - th - ann o 2r <yn <,

2 n_2 —In
/Bm7n _ thm'f' + R(Wkny )’ ,’7 < yn < Y _ kN+17

= ynv—2r | K(M—yn)
’YmJV_ 2hm +

v YN =Y — knya;

\ kn
p
o%yn _ __pIYn #(1n—yn)
~(m) . kn+1(knt+knt1) 2hm41kn+1 + kny1 0< Yn < ;s
rn,n—l—l - )
o2Yn _ PTYn, _ .
L kn+1(knt+knt1) 2hm41knt1’ N<Yn< Y kNJrl’
r
Yn o POYn _ yn72r
hm+1(hm+hm+1) 2hm+1kn+1 2h7n+17 0 < yn S 2r7
~(m) — Yn POYn
. TG D) ~ Tk 27 < Un <Y = kv,
YN — _ .
ot 1 (et 1) yn =Y — knya;
(m) POYn 0
= — <y, <Y —k
n,n+1 2hm+1kn+1 ) Yn N+1,
where
A o Yn L PTYn PO
o hmhm—H kn—&-l(kn + kn-‘,—l) th—i—lkn—i-l thkn7
T N o*Yn POYn POYn
e hmhm+1 knknJrl 2hm+1 knJrl 2hmkn ’
N Yn o*Yn PTYn
TYmn = - +

a hmhm+1 kn(kn + knJrl) thkn ‘
The semi-discretized method (4.12) reduces to a uniform scheme when p = 1,
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that s,

Nontrivial elements of A and A, can be derived conveniently from simplifications of

the above formulas.

4.2 FEzxponential Splitting
Let us first introduce the theory of exponential splitting by considering the
following exploration formulations.
Let D be a two-dimensional spacial domain and consider the following partial

differential equation:

ou _

5 Fu+ Gu, (x,y) € D, t > to, (4.13)

where F, G are linear spacial differential operators. Assume that an appropriate
semidiscretization of (4.13), together with proper boundary conditions, yields the

following system:
vV'=Av+ Bv+ f, t>to, (4.14)

where A, B € C"*", AB # BA in general, v, f € C" and v approximates u on
D. Let v(ty) = vp be an initial vector given. Then for arbitrary 7 > 0, the exact

solution of (4.14) can be provided by the variation-of-constant formula,
t+1
v(t+7) =By (t) + / eCOATB) £de > . (4.15)
t
The matrix exponential in (4.15) can be approximated by
eTATB) = o™ L O(7%), T — 07, (4.16)

Now, an application of the [0/1] Padé approximation to (4.16), dropping all trunca-

tion errors, yields the following fully discretized implicit scheme

wt+71) = ([ —7A)YI —7B)  w(t).
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We further apply the exponential splitting and Padé approximation introduced
above to our semidiscretized schemes (4.9) and (4.12) for derivations of our fully

discretized schemes respectively in the following two consective subsections.

4.2.1 Cases for p € [—1,0].

The former solution to (4.9) is
Tn+1
w(Thy1) = 2 w(T,) + / A f(Ydt, n=0,1,..., (4.17)

Applying the first-order exponential splitting (4.16) to the matrix exponential term

in (4.17), we acquire that
Tn+1
W(Thy1) = 2T A2)(7,)) + / eE=Af(Ydt, n=0,1,..., (4.18)

where A; + Ay = A. Details of A; and A, are shown below.

G, K, - 0
Hy, Gy K, 0
Al - ;
Hy—o Gu—o K2 0
Hy—n Guor Ky
0o ... Hyy G
T, - - 0
Ly Ty - 0
Ay =
Ly—o Thr—o -+~ 0
Ly—1 Ty
0 --v ... Ly Ty

Here matrices H;, G, Ky, R;,Tj € RVN 4 =23 ... . M; j=12,....M; k =
1,2,..., M — 1. Nontrivial entries of matrices H,,, G,,, K,,, R,, and T}, within their

respective ranges of m are as follows.
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gt

k.(m)

n,n—1

n,n—1

(m)
tnr,riLJrl

Yn POYn <
hm(hm+hm+1) 2hmk”+17 0 < yn - 2717

Yn POYn Yn—2r _

2hm
YN ynN=2r =Y — :
\ hm(hm+hm+1) + th 9 y’n - Y kN+1?
4
. Yn  _ _poym Yn—21
[y — mbnt1 + g1’ k:l S Yn S 27”7
Y _P9Yn  _ Yn=2r —
e s 2N <Yp <Y — knga,
_ _ YN  _ yn—2r — — :
|~y o Yn =Y —kny;
PO Yn i
TR
2 m—+1vn

(

Y1 _ y1—2T —
hm+t1(hm~+hmt1) 2hmy1’? Yn = k1,

Yn POYn__ _ Yn=2r <
hmt1(hm~+hmy1) T 2hmy1kn 2Ry’ Fi < yn < 2r,
Yn PIYn < —
[ hmt1 (hmthm 1) T 2hmy1kn? 2r <y SV = kv,
_ POYn
2Nk,

;

2yn pPIYn
<
kn(kn+kn+1) + 2hmy1kn’ kl < yn - TI?

o2y, 4 _POYn n(ﬁ*yn)’ N < Yn <Y — kN+1;

{ kn(kntkns1) T 2hmyikn e
p
a2y1 H(U—?Jl) —
T ka(ka+k1) ka7 Yn = kl’
_ %Yy _poyn  _ KM=yn)  p o <
< Enkni1 2hm41kn Fntr 7 LS Yn =7
agyn PTYn K(n=yn)
o — e B <y, < Y — knoiq,
02yN POYN H(’?‘Z/N) — .
kn(En+knt1)  2hmyrkn v o UNT Y = ks

o2yn ) 4 _PTYn n(n—yn)7 0< Un <1,

Ent1(Fn+knt1 2hmknt1 Ent1
02yn PIYn :
 Fn+1(knthni1) + 2hmknt1’ N<Yn <Y = hng;
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4.2.2 Case for p € (0,1].

By the same token, the former solution to (4.12) is
i Tt .
w(Tpp1) = 2 w(T,) +/ A f(Ydt, n=0,1,..., (4.19)

Applying the first-order splitting scheme (4.16) to the matrix exponential term

in (4.19), we get
- ~ Tn+1 -
W(Thy1) = A2 (1) + / et Af)dt, n=0,1,..., (4.20)

where 1211 + A~2 = A. 1211 and flg are described as follows.

G, K, - 0
Hy, Gy K, 0
A = i i :
Hy—o Gy—2 Ky 0
Hyor Guor Ky
0 Hy Gy
and
_Tl . ; B}
y 0
A, = i i
Ty Ly—2 0O
Ty Lo
0 oo e .. TM
Here matrices I;, G, Ky, R;, Ty € RNV i =23 ... . M; j=1,2,...,M; k =
1,2, .. M—1.

Nontrivial entries of the matrices PNIm, Gm, f(m, R,, and T,, for their respective

ranges of m are as follows.

iL _ POYn .

n,n—1 thkn )
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Y1 —
hm(hm+hm+1)7 yn - kl?

pim)  — Yn _ _PIYn
mn hm(hm+hm+1) 2hmkn7 kl < yn S 2T7

Yn __ _P9Yn Yn—2r _ .
\ hm(hm+hm+1) thkn + th ) 2r < yn S Y k'N+17

(

__Yn POYn Yn—2r ki < <9
,
Fonhomin " Thmakogs T 2hmgr 1S Yn S 2T

gm = Yn POYn Yn—27
m Thhs T Stk Ok 2T < Un S Y — knya,
YN YN —2r o .
T hmhmir  2hm 0 Yn = Y — kN—H,
\
(
Yn _ POYn _ Yn—2r
hm+1(hm+hm+1) 2hm41kn+t1 2hm41 0< Yn < 27’,
m) . e .
n,n hm+1(hm+hm+l) 2hma1kni1’ 2’r < yn < Y kN'i‘].?
— N = —
\ hm+1(hm+hm+1)’ yN Y kN+1~
y
o2yn POYn
fm) - Fn(kntknt1)  2hmkn’ k1 <yn <,
nn—1 T
U2yn POYn 'i('r]*yn) .
\ k"(k"+kn+1) o 2hmkn - kn ? 7] < yn S Y - k'N+1,
.
oy poyn __ K(n—=y1) .
ko (ko+k1) + 2hmk1 ko ) Yn = kl,
o >yn + poyn_ __ K(N—yn) k< <
{{(m) — k”k"+1 2hmkn kn+1 ? 1 yTL — 777
n,n -
Uzyn POYn K(N—Yn)
_knkn+1 + 2hmkn + kn n<y,< Y ]{ZN+17
o?yn POYN K(n—yn) _ )
L _kN(kN+kN+1) 2hmkn + kny Yn = Y kN+1,
(
2y poyn K(1—yn) <
g(m) . k/'nJrl(kn"'knJrl) th+1k‘n+1 + k;nJrl ) 0 < yn -~ 777
nn+l T
o2y, PO Yn )
\ k”+1(kn+kn+l) 2hm+1kn+17 /’7 < yn < Y kN+17
Z(m) _ payn
nntl — L L -
2hm+1kn+1

4.8  Lax-Richtmyer Sufficient Condition for Stability
To obtain a fully discretized scheme, we use [0/1] Padé approximation to each

of the matrix exponentials in (4.17) and (4.19). We arrive at the following equations,
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respectively:

wnr = (I —=7A) (I = 7A2)  w; (4.21)
Wpy1 = (I—T/L)_l(l — TAQ)_IIU”. (4.22)

In this section we are concerned with a sufficient condition for stability pro-

vided by Lax and Richtmyer [37].

Theorem 4.1. [37] Let || - ||« be a well defined matriz norm. The schemes (4.21) and

(4.22) are linearly stable if

I —74) T = rA) M < 1,

(I —7A) NI —74)7 Y, < 1

Before we can prove our scheme is linearly stable, we need the following lem-

mas.
Lemma 4.2. Diagonal elements of matrices Ay, As, 1211 and 1212 are negative.

Proof. For the four matrices, we prove the case when k; < y, < 2r. Other cases
follow immediately from the proof.

Note that the diagonal entries of A; satisfy the following inequalities.

Y PIYn Yo —2r . Yn __POYUn
hmhm—i—l thkn—&—l 2hm—l—l B hmhm—l—l thkn-l—l

Yn 0hm+1
- B
hanhin 1 ( 2(_kn+1/p))

< Un 1+ !
~ hmhpma 2
W
2hmhmt
< 0.
Further, the diagonal entries of A, satisfy
O POYn KM =¥Y) _ O pOYn
knkn—&—l 2hm+1kn kn—l—l - knkn-‘rl th—i—lkn
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2 —pk

knkn+l 2hm+1/0-
2

< 20 (14 1
knkni1 2

_

B ankn+1

< 0.

The diagonal entries of A; satisfy
n OYn n - 2r n OYn
Y I POy I Y < Y I POy

_hmherl 2hm+1kn+1 2herl B hmherl 2hm+1kn+1

Yn phm
< 14—
hmherl ( 2(kn+1/0'))
Yn ohp,
< 14+
hmhm+1 ( Q(kn—i-l/p))
Yn 1
< -1+ =
= Tl ( " 2)
_ Yn
thhm+1
< 0
The diagonal entries of A, satisfy
Y POYn KM —Yn) O POYn
knkn—i-l 2hmkn kn+1 - knkn—l—l thkn

knkni1 2(hy /o)

< 02yn <_1+1)
Tenknin 2
o Yn

_ankn—i—l

< 0.

Lemma 4.3. The off-diagonal elements of A1, As, Ay and Ay are nonnegative.

Proof. We provide proofs for A; and Ay for 0 < y < 2r. These proofs can be
generalized to other cases. We need the condition (4.7) in each of the following
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discussions.

pm)  — Yn 4 PTYn
o hm(hm + hm—i—l) 2hmkn+1

_ YnO [ 1 1 }
hm U(hm + hm+1) 2(_kn+1/:0)

YnO 1 1
> _
“ hym \20hpmar  20hman

= 0.
GO I —L L)
n,n—1 2hm+1kn
Em) Yn POYn Yn — 21
nn + -
’ Pt (R + hing1)  2hpiakn, 2hm i1
> Yn n POYn

hm—l—l(hm + hm—i—l) 2hm+1kn

_ OUn { 1 B 1 1
hmir [0(hm + hmy1)  2(=kn/p)

S Yno 1 1
o hm—l—l 2O-hmax 20hmax

= 0.
Kr— A}
n,n+1 thkn+1
N Yo _POYn
myn—1 kn(kn + kn+1) 2hm+1kn
PI*Yn

1 1
B Ky, {—P(kn + Knt1) N 20hm+1]

S P9 1 1
o kn 2O-hmin 2Ghmin

= 0.
om oY I R U )
ot kn+1<kn + kn+1) thknJrl knJrl
Y TYn
> Y i POy

kn—i—l(kn + kn+1) thkn-l—l

PT*Yn { 1 1 }
kn+1 _p(kn + kn+1) 2O'hm

PI*Yn 1 1
knJrl 2O'hmin 2O-hmin

v

when k; <y, < 2r. Proofs of other cases follow from above discussions.
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On the other hand, diagonal entries of A; satisfy

Y POYn Y20 Yn_PIYn
hmherl thkn+1 2hm+1 - hmhm+1 thknJrl

Yn Uhm+1 )
= S I o
B b1 ( 2(—Fkns1/p)

Yn 1
< 14
— b < - 2)

- __ YW
2hmhm+1
< 0.
The diagonal entries of A, satisfy
O pOYn KM =Y) _ O pOYn
knkn—&—l 2hm+1kn kn—l—l B knkn-‘rl 2hm+1k:n
2 —pk
_ T (_HM)
Enkni1 2hm+1/0
2
< T (gL
knkni1 2
i
B ankn+1
< 0.
The diagonal entries of A; satisfy
n OYn n - 2r n O Yn
Y + PoyY +Z/ < - Y + pPoyY
hmherl 2hm+1kn+1 2herl hmherl 2hm+1kn+1

IN

Yn phm
14
BB 1 ( 2<kn+1/0))

< _Yn (_1+ ohp, )
- hmherl Q(knJrl/p)

Yn 1
< 14
= b ( * 2)

_ Y
thhm—H
< 0.
The diagonal entries of A, satisfy
02 n n - Yn 2 n n
_ O POYn ()= ) < _ T POy
knkn—l—l thkn kn+1 knkn—l—l 2hmk:n
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_ U2yn <_1+ J )
kpkniq 2(hpy /o)
a2y, 1

= knkn-ﬁ-l <_1+§)

Y
 2knkn

< 0.

Lemma 4.4. The off-diagonal elements of A1, As, Ay and Ay are nonnegative.

Proof. We provide proof for A; and A, for 0 < y < 2r. The proof can be generalized

to other cases. We need the condition (4.7) in each of the following piece of the proof.

pm Yn 4 PIYn
o hm(hm + hm—l—l) 2hmkn+1

_ YnO { 1 1 }
P Lo (hin + Puny1)  2(=kny1/p)

YnO 1 1
> _
= hy \20hmas 20 Nmax

= 0.
n,n—1 2hm+1kn
k(m) — Yn + POYn . Yn — 2r
e hm—l—l(hm + hm—l—l) 2hm+1kn 2hm+1
> Yn 4 POYn

hm—i—l(hm + hm—i—l) 2hm+1kn

_ OYn [ 1 B 1 1
hmir [0(hm + hmy1)  2(=kn/p)

S Yno 1 1
o hm—l—l 20hmam 20hmam

= 0.
n,n+1 thkn+1
t(m) _ UQyn + PO Yn
el kn(kn + kn+1) 2hm+1kn
PO Yn 1 1

ko | —p(kn + kni1) B 20 Nyt 1
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pI>Yn 1

1

(

)

= kn \20hmin  20hmin
= 0.
m T*Yn PoYn K = Yn)
tae Tt Uin + Fonet)  2hokones |
- o Yn L P
Fnii(kn +Fni1)  2hpkni
P02y, 1 1
N Fn+1 {_p(kn + kns1) - 20hm]
P7%Yn ( 11 )
- kni1 \20hmin  20hmin
=0

for k1 < y, < 2r. Other cases follow immediately from the above discussion.

Further, diagonal entries of A; satisfy

Y __P9Yn Yn — 21
hmhm—l—l 2hmkn+1 2hm+1 -
<
Diagonal entries of A, satisfy
_PYe poyn K= Yn)
knkn—H 2hm+1kn kn—l—l
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 Yn  pOYn
hmhm—i-l thkn—l—l

Yn Uhm+1 )
_1_|_—
P41 ( 2(=knt1/p)
Yn 1
14+ =
hmhmH( +2>
_ Yn
2hmhm+1
0.
~ %Ya poyn
o knkn—l-l 2hm+1kn
_ T*Yn 14 —pknt1
Frkn i1 2hm+1/0
2
< T (4 +1
= kpkpia 2
B T*Yn
- 2knkn+1
< 0.



Diagonal entries of A; satisfy

n n n - 2 n n
Y PYn U2 Y POY
hmherl 2hm+1kn+1 2hm+1 hmherl 2hm+1kn+1

Yn phm )
< 1+ =
hmherl ( 2(er»l/O-)
Yn ohp,
< 1+
hmherl ( 2(kn+1/p)>
Yn 1
< 14
- ( * 2)
_ Yn
thhm+1
< 0
Diagonal entries of A, satisfy
L OYn Y K)o e PO
knkn—i-l thkn kn+1 - knkn—l—l thkn

_ T (L PR
knkn—l-l Q(hm/a)

< 02yn <_1+1)
Kokt 2
o Yn

_2knkn+l

< 0.

The above completes our proof. O
Lemma 4.5. All off-diagonal elements of Ay, As, Ay and A, are nonnegative.

Proof. We provide proof for A; and A, for 0 < y < 2r. The proof can be generalized

to other cases. We use the condition (4.7) in each segment of the proof.

o hm<hm + hm—i—l) thkn+1

_ YnO { 1 B 1 ]
Pon L0 (hin 4 Pang1)  2(=kny1/p)

S Yo 1 1
T hg \20hmez 20hman

= 0.
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= ——F > 0.
n,n—1 2hm+1kn
m) Yn 4 POYn Yn 2w
o hm+1(hm + hm+1) 2hm+1kn 2hm+1
> Yn 4 POYn

hm+1(hm + hm-‘,—l) 2hm+1kn

S Yno 1 1
o hm+1 20hmam 20hmax

= 0.

l(m) o PO Yn

= —— > 0.
n,n+1 thkn+1

2
o Yo PTYn
’ kn(kn + kn-‘,—l) th—i—lkn
oY

1 1
S {—p(kﬁknﬂ)_%hmﬂ}

PO Yn 1 1
kn QO'hmin 20hmin

v

2
(m) 0" Yn POYn KN — Yn)
t =

ot kn—i-l(kn + kn—i—l) * thkn-l—l * kn+1

2
> 0" Yn 4 PO Yn
knJrl(kn + kn+1) 2hmkn+1

P7%Yn l 1 1 ]
ko1 | —plkn + kne1)  20hy,

PO Yn 1 1
kn+1 2O-hmin 2O-hmin

v

for 2r < y < n. The discussion can be generalized to show other cases. Let us again

use condition (4.7) in each part of the following proof.

h(m) _ Yn X PO Yn,
o hm<hm + hm+1) thknJrl
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_ YnO [ 1 B 1 }
hm U(hm + hm-i—l) 2(_kn+1/p)

YnO 1 1
> —
= hp \20hmas 20 hmax

= 0.
R o= P9y
n,n—1 th+1kn
jm) Yn L PTYn YT 2r
e hm+1<hm + hm+1) 2hm+1kn 2hm+1
> Yn i POYn

hm—i—l(hm + hm+1) 2hm+lkn

O [ 1 1 }
hmir L 0(hm + hiny1)  2(=kn/p)

S Yno 1 _ 1 _ 0
- hm+1 2ahmaz 2Uhma:z:

m o= 2o,
n,n+1 2hmkn+1
fm o TYa P9
mn—l kn(kn + knJrl) 2hm+1kn
 poyn [ 1 1 }
B kn _p(kn + kn—i—l) 2Jhm+1
o 11
- k:n 20hmin 20hmin
= 0.
t(m) _ U2yn + PO Yn _ /{(77 B yn)
et kn—i—l (kn + kn—l—l) thkn—i-l kn—H
2
> 0" Yn + POYn

kn-{—l (kn + kn—i—l) thkn—i-l

oY { 1 1 }
knJrl _p<kn + knJrl) 2O'hm

PO Yn 1 1
kn—l—l 2O-hmin 2O-hmin

v

for n < y < Y. The discussion can be again generalized to other cases. We use the

condition (4.7) in each of the following investigations.
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pm Yn X PIYn
o hm(hm + hm—f—l) 2hmkn+1

_ YnO { 1 1 }
B Lo (i + Pang1)  2(=kny1/p)

YnO 1 1
> _
“  hy \20hpmar 20hman

= 0.
GO I—_L L)
n,n—1 2hm+1kn
Em Yn POYn Yn — 21
n,n - +
’ Pt (o + hing1) 2R ks, 2hmi1
> Yn n PO Yn

hm—i—l(hm + hm—i—l) 2hm—i—lkn

_ OYn [ 1 B 1 }
hmir [0(hm + hmy1)  2(=kn/p)

S Wno 1 1
- hm—l—l 2ahmax 2ahmam

= 0.
K — R}
n,n+1 2hmkn+1
) Yo _PIYn
mn—l kn(k;n + kn+1) 2hm+1kn
PO*Yn 1 1

a Ky, {_P(kn + knt1) - 20hm+1:|

o 1 1
o kn 2ahmin 2Uhmin

= 0.
om %Y L P9 K0 yn)
ot kn+1(k7n + kn+1> 2hmkn+1 kn+1
- T*Yn L _PTYn
benit (kn + k1) 2hmknis
Py, 1 1

B K1 [_p(kn + Kni1) N 20hm}

o P9 1 1
o knJrl 2O'hlrnin 2O'hmin

These inequalities ensure our proof.
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Lemma 4.6. Ay, Ay, A; and Ay defined in Chapter 3 are diagonally dominant.

Proof. We consider the case when k; < y, < 2r for matrices A; and A;. We let
[A;];; to represent the entry of A; in the ith row and jth column for [ = 1,2. Lemma
4.1 and Lemma 4.2 results are used for each of the following derivations.

|[A1]n‘| - Z )[Al]z‘j

J#i

~ ok - ] - g -

n,n

/{:(m) ‘

n,n—1

S e A

n,n—1

_ _Yn L _PTYn Yn T2
hohmir  2hpmknir 2R
_ Yn __P9Yn
hon(Po + Bny1) 2Rk
B Yn _ POYn %rﬂr+ POYn,
Prg1 (P + Pmg1)  2Rmgikn 2Rmyn 2hpgaky
Yo Yn 3 Yn
hmhm+1 hm(hm + hm+1) hm+1(hm + hm-i-l)
Yn Yn

hm herl a hmherl

= 0.

n,n—1

b

— ‘tglm) _

N

(
tnr’,?zL)—l—l ‘ -

|[A2]n‘| - § ’[AQ]Z‘J‘
J#
= _gm) _ym) o y(m) g (m)

n n,n—1 n,n+1 n,n+1

_ O Y K= Yn)
knkn—l—l 2hm+1kn kn—l—l
T*Yn PIYn
kn(kn A+ Fng1)  2Pmarkn
T*Yn PoYn KM —Yn) | POYn

— -
kn—i—l(kn + kn—l—l) 2hmkn+1 kn-ﬁ-l thkn—l—l

2 2 2
0" Yn 0" Yn 0 Yn

knknJrl kn<kn + kn+1) B kn+1 (kn + knJrl)
Yo Yn

kn kn—l—l kn kn—l—l
= 0.

When 2r <y <,

|[A1]ii| - Z ‘[Al]ij

J#i

k(m)

n,n—1

g | = [Ri | = k| =
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— (m) _ p(m) _ /f,(f',? _ k(m)

= “Ynmw —pn n,n—1
_ U POYn Yn 2T
hmhm+1 thkn—l—l 2hm—0—1
. Yn __PTYn
hm<hm + hm+1) thknJrl
B Yn __PTYn Yn 20 POYn
herl(hm + herl) 2hm+1kn 2hm+1 2hm+1kn
Y Yn B Yn
hmhm—H hm(hm + hm+1) hm—i—l(hm + hm—i—l)
_ Un n
hmhm+1 hmherl
= 0.
|[A2]u‘| - Z ‘[AQ]ij = |t1(1w;z) - tg,ﬂ:z)fl - tq(zr,’:z)ﬂ - ZSZZL)JrI
J#i
= _tg?:z) - t%z)—1 - t%z)ﬂ - l7(:,,:1)+1
_ e P9Yn K0 =)
knkn+1 2hm+1kn knJrl
s R
kn(kn + knJrl) 2hm+1kn
B o Yn _ P9 K =) PO
kn+1 (kn + kn-‘,—l) thkn+l kn+1 2hmkn+l
_ UQyn O'Qyn 02yn
knkn—H kn(kn + kn—i—l) kn—f—l(kn + kn+1)
_ %Y T Yn
B knkn—H knkn—l-l
= 0.
When 2r <y <,
_ m m m (m)
(Al = D |Addy| = o] = IS = k] = [k
J#i
= gl — B - K
_ U PTYn Y2
h'mhm—H thkn-l—l 2hm—&—l
B Yn _ POYn
hm(hm + hm—i—l) 2hmkn+1
_ Yn _ POYn  Yn 21 4 _PIYn
hm—i—l(hm + hm—i—l) 2hm+1kn 2hm—‘,—l 2hm+1]{7n
Yn Yn Un

hmhm+1 hm<hm + hm+1) hm+1<hm + hm+1)
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Yo Yn
hm hm+1 hm hm+1

= 0.
|[A2]iz‘| - Z ‘[A2]ij = |t1(17r:1) - ti::z)fl - tfﬁ)ﬂ - ZSZZL)H
J#i
- _t1(17,nn) - tS?:L)A - tSZ)H - lmﬂ
_ 0% VPO K0 yn)
knkn+1 2hm+1kn k:nJrl
Py _ POYn
kn(kn + kn—i—l) 2hm+1kn
'y __P9Yn K= Ya) | POYn
kn+1(kn + kn—l—l) 2hmkn+1 kn—l—l 2hmkn+1
— O—Qyn o U2yn i Uzyn
knkn—&—l kn(kn + kn—i—l) kn—i—l(kn + kn+1)
_ T Yn T Yn
B knkn+1 knknJrl
= 0.
The above completes our proof. O

We let j10(A) denote the logarithmic norm of A € R™*™ associated with the

oco—norm || - ||« [22,23,54].

Theorem 4.7. [29]

ool 4) = sup ([A]MZHA],-A), i=1,2,...,m.

JFi
Theorem 4.8. [29] Let A € C™™ and 7 > 0, w € R. We have

A <wes |(I-7A)7Y < . whenever 1 — 71w > 0.

—TWw
Lemma 4.9. We have

maX{NOO(Al)v MOO<A2)7 ,uOO(Al)a ,uoo(A2>} <0.
Proof. The result is a straightforward application of the Lemmas 4.2 and 4.3. [

Theorem 4.10. The fully discretized schemes (4.21), (4.22) are linearly stable.
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Proof. By Theorem 4.7 and Lemma 4.8, we have

I(7 = 7A) (T = 742) Moo < 1T = 7AD) ool = 742) s

1 1
< — X —
= 1-0"1-0
= 1.
(1 =7A) 7 (I =7A2) Mo < (= 7A) ool (I = 7A2) Y|
1 1
< X
= 1-0"1-0
= 1

Theorem 4.11. [29] Consider a linear system w'(t) = Aw(t). If A satisfies
(1) [Al;; >0 fori# j and [Aly; > —a for all i, with a > 0;

(2) A has no eigenvalues on the positive real axis, then it implies positivity for

backward Euler for any step size T > 0.

Theorem 4.12. [37,63] A consistent finite difference scheme for solving a linear par-
tial differential equation for which the initial value problem s well-posed is convergent

if and only if it is linearly stable.
Theorem 4.13. The fully discretized schemes (4.21), (4.22) are convergent.

Proof. The result is true based on Theorem 4.4 and Theorem 4.11. O]

4.4 Simulation Experiments
Recall (3.1)-(3.6). Based on similar arguments in [64,67], in our option com-
putational experiments, we fix X = 8, Y = 1. We first concentrate on experiments
with p = —0.5 and T' = 0.5. Next, to test against extreme cases in nowadays option
markets, we proceed with p = —1 and 7" = 5. For demonstrating our numerical pro-

cedure and its rate of convergence, we first consider uniform spacial grids. Results
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Table 4.1. Key parameter values for numerical simulations

key parameter value used
strike price K =100
volatility of volatility o=
risk-free interest rate r =0.05
mean reversion speed k=2

long-run mean of volatility n = 0.1

Table 4.2. Rates of convergence with 0 =1, p = —0.5, T'= 0.5 and h = 0.01

conv. rates A=05 A=07 A=1

minmm(Rfmn) 0.8394  0.8406 0.8841
max,,(R:,) 12622  1.2410  1.2837
mean,, ,(R" ) 0.9980  0.9984 0.9969

over nonuniform grids will be presented afterwards. For the considerations, we let
hpmw = h, ky, =k =0ch, m=12,....M; n=1,2,...,N. Some key parameters
adopted are shown in Table 4.1. Further, A7 be our temporal step. We experiment
with different values of A = A7/c?, where ¢ = min {h, k} . To numerically examine
the numerical error and rate of convergence, we employ a generalized Milne’s de-
vice [47]. Then, for a selected terminal time 7', we denote the numerical solution at
point (p, Yn, T), 1 <m < M;1 <n < N, as Upn,, for any particular spatial step
0 < h < 1. Likewise, we let i, y.5/2 and ty, ,.;,/4 be computed solutions obtained by
using h/2 and h/4, respectively. Thus, the point-wise rate of spatial convergence at

T can then be effectively evaluated via

1 ’um,n;h - um,n;h/?}

In

In2 ‘um,n;h/Q - um,n;h/4‘

R: .~ (4.23)

Let h = 0.01 and o = 1. For simplicity of notations, we use the same letter
v for the approximate solution to (1.15). We show the solution v for p = —0.5 and
p = —1 in Figures 4.3 and 4.6 , respectively. It can be observed that the European
put option price is a decreasing function of the stock price S. This coincides well

with the financial theory that a put option price should have a negative correlation
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Table 4.3. Rates of convergence with 0 =1, p = —0.5, T'= 0.5 and h = 0.02

conv. rates A=05 A=07 =1
minm,n(Rﬁm) 0.6324 0.6221 0.6206

max,, (R ,)  0.9674 1.0007  1.0151
mean,, ,(R" ) 0.8342 0.8300  0.8296

Table 4.4. Rates of convergence with 0 =1, p = —0.5, T = 0.5 and h = 0.04

conv. rates A=05 A=07 A=1
min,, ,(RE ) 05824 05971  0.6179

max,  (RL ) 0.9941  0.9437  0.9586
mean,, (R ) 0.7952  0.8015  0.8142

with the underline stock price [1,28].
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Figure 4.3. Price of an European put option surface and contour plots.
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Figure 4.4. Pointwise rate of convergence and rate of convergence estimate contour.

88



0.9 T
S 0.1 0.7 =
= o
= 0.08 2
L
o 0.06 >0.5 '
2 0.04 2
T o.02 5
0.9
0.1
50 100 150 200 250
S
Figure 4.5. Pointwise relative error and rate of convergence contour.
Let us plot the computed rate of convergence surfaces for cases when p = —0.5
and p = —1 in Figure 4.4 and Figure 4.5, respectively. In addition, a summary of

point-wise convergence rates for the former case on different spacial grids is given in
Table 4.3. Minor disturbances can be observed in regions where the solution changes
fast, in particularly in extreme situations with p = —1 as being demonstrated in

Figure 4.6.

0 50 100 150 200 o250 0.1 .
s y

Figure 4.6. Price of an European put option surface and contour plots.

Further, the mean convergence rate for the two cases are given in the caption of
Figure 4.4 and Figure 4.5. In the extreme case when p = —1 and T'= 5, we observed a
smaller mean convergence rate. This is within our expectation due to the more

iterations to get the solution and the decrease in the well-posedness of the
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original PDE. These results are consistent with those from well-established high-

order schemes [8,12,13,32,38,67]. Again, an effective Matlab platform is used.
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8 0.9 >
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Figure 4.7. Pointwise rate of convergence estimate surface and contour plots.

Now, consider simulations over nonuniform spacial grids. We are particularly

interested in the following nonlinear grid distribution governing functions [44,47].

0.9 H
I i
o I
S 0.1 0.7 § | 5
5 0.08 L ! 5
© 0.06 >0.5 °
-% 0.04 Z
o 0'020 0.3 i &
0.9
0.1
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S

Figure 4.8. Pointwise relative error and rate of convergence estimate.

In our simulation experiments, selections of monitoring functions z;, zo, are
based initially on the numerical solution v acquired on uniform spacial meshes. They

are chosen to reflect trends of solution curvatures [13, 47].
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Figure 4.9. A composite surface plot of z1(S)z2(y)

Our nonuniform grids are generated via an arc-length equal-distribution prin-
cipal for inverse of mean values of convergence rates for S- and y-directions, respec-
tively. The principal is commonly utilized in adaptive computations and serves as

an initial exploration for more sophisticated adaptations [30,41,47].

A composite surface plot of the mesh distribution functions in the S— and y
—directions is given in Figure 4.9. It characterizes the 2-dimensional profile of our
grids distribution. The numerical solution acquired over such nonuniform grids, with

p=—0.5at T=0.5is given in Figure 4.10 .

Figure 4.10. Price of an European put option on nonuniform grids

Let Q2 arbe a reference spacial mesh which can also be either our uniform mesh
or nonuniform mesh. We may map solutions vy, and vyonunir, numerical solutions

obtained on the uniform mesh and nonuniform mesh, respectively, to 2y . We plot
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the following point-wise relative error,

’Uunif<Sa Y, t) - /Unonunif(sa Y, t)‘
Ey S,y t) =
d( d ) ‘Uunif(S7y7t)’ ’

(S,y,t) € Qyar, 0 <t <T. (4.24)

in Figure 3.6. The mean relative difference E,.., is given in the caption of Figure
3.6. We can see that the solutions on the uniform and nonuniform grids agrees with

each other due to the small Fean-

4.5 Summary

A numerically stable and dynamically balanced up-downwind semi-discretized
finite difference method is constructed and analyzed in this chapter based on ar-
bitrary option data grids, which are more preferable in nowadays trading markets.
The algorithm acquired is readily to use in financial realities. It is reliable and effec-
tive for computing Heston stochastic volatility option pricing model solutions with
cross-derivative terms in market realities. Rigorous mathematical proofs are given
to ensure the stability and convergence. Simulation experiments further confirm
our theoretical expectations on both uniform and arbitrary spacial data given. Our
continuing endeavors include further improvements of the computational efficiency
through higher order exponential splitting strategies, in particularly with adaptive
ADI or LOD formulations [10,32,47,51,56]. Highly accurate EEG monitoring mech-
anism will also be installed [3].

Compact schemes for raising the accuracy have also been introduced in our
study with initial successes in handling cross-derivatives dynamically and well bal-
ances for pricing American and some Asian options [1,16,30,67]. Our initial inves-

tigations have been very promising.
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CHAPTER FIVE

Conclusion

5.1  Contributions

In this dissertation, we developed a novel up-downwind finite difference method
for solving two-dimensional Heston stochastic volatility model with a cross-derivative
term. The mathematical model has been vital to option trading markets, especially
those operating primarily in European call/put systems. We strictly proved that
our new schemes are stable in both Neumann and linear senses.

In Chapter One, we derived and solved the basic Black-Shcoles-Merton model
and discussed various issues related to the Black-Scholes-Merton model. Dealing
with drawbacks of the model, we introduced stochastic volatility to the model and
arrived at a two-dimensional partial differential equation with a cross-derivative
term. Its associated initial-boundary conditions were also derived from the standard
financial theory.

Mathematical preliminaries were discussed in Chapter Two. The mathematical
theories needed to understand our methods and analysis include finite difference
approximations, exponential splitting strategies, Padé approximants, adaptive grid
designs and von Neumann, linear stability theories.

In Chapter Three, we transformed our stochastic volatility model equation to a
new form which is suitable for computations. Original infinity domains involved were
truncated to finite domains that are large enough for financial market simulations.
Our new finite difference methods are built. We creatively introduced dynamically
balanced up-downwind scheme by using seven-point stencils shown in Figure 3.2.
We discretized the diffusion terms with standard central difference approximations.

Discretizations of the cross-derivative term and advection terms consist of a combi-
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nation of forward differences and backward differences depending on flow directions
indicated by the coefficients of those terms. The new numerical method is proved
to be first order accurate in space. The following two attributes made our schemes
stand out as compared to all existing computational methods.
e We have provided rigorous mathematical proofs of the stability in both von
Neumann and linear senses for our scheme when applied to the Heston type
stochastic volatility model with a cross-derivative term. In fact, no higher

order scheme has been found to be numerical stable for solving our option
model equations.

e Our finite difference scheme offers accurate and smooth solution profiles
even in cases when the size of the coefficient of the cross-derivative term is
extremely large, or when the time to maturity is long. Known higher order
schemes are not able to handle such extreme situations [11,13,28].

Mathematical proofs of the von Neumann stability of our first scheme are provided
in this Chapter Three. Further, an [1/1] Padé approximant was used to build a
fully discretized scheme. Numerical experiments were carried out over a MATLAB
platform. We visulized the corresponding convergence surface and showed that the
average point-wise convergence rate in space is approximately one which well agrees
with the theoretical expectations. The finite difference scheme was further then
improved over adaptive nonuniform grids. The monitor function is designed to
follow changes of the solution surface. Simulation results obtained on the adaptive
grids are similar to those we acquired earlier on uniform meshes.

In Chapter Four, our attention was switched from von Neumann stability anal-
ysis to linear stability analysis. The co-norm was used throughout this chapter. We
proved that the oo-logarithmic norm was negative for the augmentation matrix in
the semi-discretized system. Thus the Padé [0/1] and [1/1] approximants yield lin-
early stable fully discretized schemes. Since the schemes were linearly stable, we
were able to state that the schemes were also convergent due to the Lax equivalence
theorem. Again, the Heston stochastic volatility model equation with a cross deriva-
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tive was targeted. A theoretical justification for employing our schemes for solving
the stochastic volatility model was provided. In addition, to improve further the ef-
ficiency and effectiveness of our scheme, we utilized first-order exponential splitting
and Strang splitting in our schemes. Theoretical justifications were again provided
for our fully discretized schemes with splitting under the oo-logarithmic norm. We
performed numerical experiments with the aforementioned exponential splitting for-
mulas. The numerical results were similar to those without the splitting. However,
with the help of exponential splitting, significant reductions of the running time was
observed. Therefore, we achieved greater accuracy with smaller step sizes for the
same amount of time. This fact made our schemes much more competitive as com-
pared to existing higher order schemes. Simulated point-wise convergence surface
again confirmed that our novel finite difference schemes equipped with exponential

splitting are first order accuracy in space.

5.2 Continue Ezxplorations

We plan to focus our investigations on several new topics in deep neural net-
work learning procedures for pricing option prices based on the Heston stochastic
volatility model.

The deep neural network is a neural network consists of multiple hidden layers
of neurons. Such a network we shall explore first will be based on the Heston model
in the sense that parameters from the model will be used as new input features.

The outputs expected will be single numbers that represent prices of the op-
tions we are interested in. So, essentially, this is a regression type of problems [9,42].

Immediate difficulties, however, are the following.

e To obtain appropriate data. Since we are using multiple layers of neurons

and the feature dimension is relatively large, a large amount of data is needed
to avoid the overfitting problem.

e To determine the number of hidden layers and the number of neurons in
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each layer. It is the same problem as applications of deep neural networks
in other areas. We can use grid search technique to let the learning algo-
rithm to choose the parameters automatically. However, the shear possible
combinations of layer numbers and neuron numbers per layer will be an in-
timidating work. Further, the grid search technique is likely to increase the
need for even much larger amount of data.

e To choose proper activation functions. Since we do not know yet what will
be the best number of layers. If the number of layers are large, then the
exploding gradient or dying neuron problem will occur. So the common
ReLU activation function will not be appropriate any more. We may need
to switch to the computation-demanding ELU activation functions etc.This
will likely increase the need for even better computation algorithms, software
and hardware.

Our future research will primarily target the last two points of the aforemen-

tioned difficulties.
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APPENDIX A
Future Work

In this appendix, we are going to highlight our side projects about predict-
ing stock prices with moving directions through k-mean clustering and deep neural
network. These are clearly associated with the next generation of machine learning
and artificial intelligence [18,65]. The research topics have attracted a tremendous
amount of recent attentions from researchers in numerical partial differential equa-
tions (for instance, see [18,50] and references therein). Our objectives within the
study are to forecast moving directions of stock prices in the next month through
unsupervised clustering and neural networks. The reason we are forecasting such a
monthly return as opposed to daily return is because very-short-term data tend to

be extremely noisy especially in nowadays financial markets [9,28,42,64].

A.1  Methodology

We consider monthly data from Jan. 1990 to Feb. 2017 for both clustering
and neural networks training [27]. We first cluster the 326-month data into four
groups based on four macroeconomic factors, that is, market return, Fed rate, un-
employment rate and inflation rate. Then we build a neural network for each group
based on three technical factors and one essential company factor: two-month price
moving average, three-month price moving average, current month stock return and
size of the company. Details of the designs, ideas behind them and results obtained

will be briefly addressed in following four subsections.

A.1.1 Experiments with Clustering

Our steps for clustering in the projects are as follows:

(1) Data preprocessing: we normalize the data by find the z-score of each of the
four types of macro data-market return, Fed rate, unemployment rate and
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inflation rate, respectively.

(2) We employ the K-means++ clustering algorithm to cluster the 326 months
into four groups based on the z-scores of four types of data in each month
[27]. The data are collected from the website of Bureau of Labor Statistics,
an official site of Federal Reserve and Yahoo Finance.

The reason for clustering and choosing four clusters is because:

(1) According to empirical research on business cycles, business cycle consists of
four stages: expansion, peak, contraction and trough. Each stage exhibits
different recognizable patterns in macro factors.

(2) Stock returns frequently exhibit different patterns during different stages.

A.1.2  Results of Clustering

We have implemented our K-means++ algorithm via Matlab, and all four
different clusters are accomplished.

Next, we examine aforementioned four groups closely, and compare them with

the business cycle figures found, we can draw following classifications:

(1) Group 1: it is represented by red diamond contains 133 points. It matches
roughly the recession period;

(2) Group 2: it is represented by blue asterisk contains 43 points. This group
matches the trough of the economy;

(3) Group 3: it is represented by magenta triangle contains 95 points. It matches
the expansion period;

(4) Group 4: it is the black circle which matches the peak period [28,42,64]. It
contains 55 points.

A.1.3 Neural Network Training
We have built one neural network for each group, respectively, via Matlab.
The neural networks have four layers and four nodes in the first hidden layer, and

three nodes in the second hidden layer [9,18,27,42]. We also use weighted constraint
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for second and fourth clusters due to small sample size available for these two groups.

The augmented error we consider can be expressed as

Erng(w) = En(w) + 2 S (w0Y. (A1)

l7i7j
Now we may proceed forward the training of each neural network with the ideas

behind the setting.

The training process of neural networks for each stock consists of:

(1) Data preprocessing in which we normalize the data by calculating z-score of
input data for neural networks for two-month price moving average, three-
month price moving average, current month stock return and size of the
company;

(2) Index of the data by each month they belong to;

(3) Separation of the data points into four groups according to the time index
of each point, based on the clustering results obtained earlier in Section 2.1.

(4) Construction of one neural network for each group with forward and back-
ward propagation and regularization. Here we utilize the concept of stochas-
tic gradient descent [41]. We set regularization parameter A = 0.01 in the
augmented error (A.1) for 2nd and 4th groups. The descent rate is set to be
1n = 0.1. Our stopping criteria used is to combine upper bounds for iterations
and controls of the error size in (A.1). We further adopt an upper bound
for number of iterations to be n = 10,000. We count one round of forward
and backward propagation for each data point as one round.

Reasons why we prefer the above type of designs of neural networks in our

projects include the following.

(1) Stock market data can be highly noisy and nonlinear. Neural networks are
suitable for handling such turbulent data [27].

(2) Stock returns in different stages of business cycles often exhibit different
patterns. Thus, to build one neural network for each group of clusters can
be an optimal decision.
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(3)

A.1.4

Reasons why we choose two-hidden-layer networks is because that we have
experimented with one-hidden-layer neural network, but it takes a while to
converge and they tend to have very large in-sample errors [18].

The way of node settings in each hidden layer is due to empirical results.

The need of regularization is that, without regularization, we may obtain
computational results that are seriously overfitting. Besides, Groups 2 and 4
have relatively smaller sizes of data as compared with the other two groups.

Our particular descent rate and early stopping settings are due to different
experiments with different combinations of the two terms. The use of n =
0.1 and n = 10,000 tend to offer us with lower validation errors within a
relatively smaller amount of time comparing to other combinations.

Results of Neural Networks

We have built neural networks for over 30 stocks chosen from different economic

sectors.

In this way, we may predict whether our model works better for one sector

than the other. The observations and analyses for these results can be highlighted

to the following: follows.

A1.5
(1)

Some Basic Analysis

Our clustering is not robust. That s, different initializations of first center
will result in quite different sizes of groups. When we finally chose a group,
we must make multiple and different initializations. We chose these clusters
if they have minimal errors and the size of smallest cluster is acceptable.

There is still overfitting in the neural networks despite of the effort that we
use early stopping and weight restraints. The gap is large even in Group 1
which has the largest data sizes.

The problem of overfitting is especially severe for the Group 2 which only
contains 43 points while Group 4 contains 55 data points. As we have seen,
in all the four stocks, Groups 2 and 4 have the high out-sample classification
errors.

Our weight constrains do help cure some extents from overfitting problems
as compared to those without weight constraints.
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(5)

One thing we wish to clarify is that our base rates are all close to 50% for
each group in projects. Our out-sample is relative low comparing to those
base rates. So, the predicting power of our computational model is stronger
than any purely random guesses.

But nevertheless, aforementioned base rates pose another concern. As we
can see our base rates are really close to 50% for all four groups for all
four stocks. So, does it mean that the stock movement is purely random
even inside each cluster? Is our small out-sample error only because of the
small sample effect? Further in-depth researches are need to be fulfilled
for answering these questions. Otherwise all types of our neural network
models may become less meaningful when stock movements become purely
random [18,65].

A.2 Conclusions and Continue Endeavors

Brief conclusions:

(1)

(2)

(3)

Stock market return is highly noisy and it is hard to design a perfect neural
network model.

Even within the same type of models, different initialization and choice of
different factors may yield different predictions.

It is safer to put money in index funds than active funds. Those active
funds are speculating by their different natures and performances. The track
record exhibited in neural networks may be random.

Anticipated continuing research work:

(1)
(2)
(3)

(4)
(5)

To add more fundamental data factors to our neural network input sets.
To have PCA and regularizations for avoiding overfitting difficulties.

To consider cross-validations for fighting problems with small numbers of
financial data points.

To introduce convolutional neural networks.

To carry out more detailed mathematical and numerical analyses.
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