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An Explicit Description of Pieri Inclusions
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Mentor: Markus Hunziker, Ph.D.

By the Pieri rule, the tensor product of an exterior power and a finite-dimensional

irreducible representation of a general linear group has a multiplicity-free decompo-

sition. The embeddings of the constituents are called Pieri inclusions and were first

studied by Weyman in his thesis and described explicitly by Olver. More recently,

these maps have appeared in the work of Eisenbud, Fløstad, and Weyman and of

Sam and Weyman to compute pure free resolutions for classical groups. We give a

new closed form, non-recursive description of Pieri inclusions. For partitions with a

bounded number of distinct parts, the resulting algorithm has polynomial time com-

plexity whereas the previously known algorithm has exponential time complexity.
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CHAPTER ONE

Preliminaries

In this chapter we construct the Schur-Weyl modules, first giving the necessary

background, and then outline the description of Pieri Inclusions. We also give two

examples computing the image of a Pieri inclusion removing a single box, one acting

on a highest weight vector and one where the image must be straightened.

1.1 Partitions, Young Tableaux, and the Pieri Rule

1.1.1

A partition λ = (λ1, λ2, . . .) of a non-negative integer d is a sequence of non-

negative integers in weakly decreasing order where the sum of the λi is d. We call the

number of nonzero parts λi the length of λ, denoted by l(λ), which is clearly finite.

We will write partitions without trailing zeroes, e.g.

(5, 3, 1, 1, 0, 0, . . .) = (5, 3, 1, 1).

To each partition we can associate an array of boxes called a Young diagram where

the diagram associated to λ = (λ1, . . . , λk) has k rows with λ1 boxes in the first row

from the top, λ2 boxes in the second row from the top, etc. We will frequently denote

by λ both a partition and its corresponding Young diagram.

A Young tableaux of shape λ is a filling of a Young diagram λ with positive

integers. A Young tableaux is called semistandard if the entries are weakly increasing

across the rows and strictly increasing down the columns.
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Example. The Young diagram associated to λ = (5, 3, 1, 1) is

and a semistandard tableaux on the shape λ is

1 1 2 2 3

2 2 5

4 5 6

5

.

1.1.2

If V is a complex vector space of dimension n ≤ l(λ), we can apply the Schur–Weyl

functor Sλ as in (Fulton & Harris, 2013) to V to obtain an irreducible representation

Sλ(V ) of the general linear group GL(V ). It follows from Pieri’s formula for the

product of an elementary symmetric polynomial and a Schur polynomial that the

tensor product representation ∧m(V ) ⊗ Sλ(V ) decomposes multiplicity-free into a

direct sum of irreducible representations

∧m(V )⊗ Sλ(V ) ∼=
⊕
μ

Sμ(V ),

where the sum is over all partitions μ with l(μ) ≤ n whose Young diagram is obtained

from the Young diagram of λ by adding exactly m boxes, at most one to each row.

Since the decomposition is multiplicity-free, it is natural to ask for explicit descriptions

of the embeddings Φm : Sμ(V ) ↪→ ∧m(V ) ⊗ Sλ(V ). Following (Sam & Weyman,

2011), we call these embeddings (skew) Pieri inclusions. Similarly, Pieri’s formula
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for the product of a complete symmetric function and a Schur polynomial yields a

multiplicity-free decomposition of the tensor product representation Sm(V )⊗ Sλ(V )

into a direct sum of irreducible representations

Sm(V )⊗ Sλ(V ) ∼=
⊕
μ

Sμ(V ),

where the sum is over all partitions μ with l(μ) ≤ n whose Young diagram is obtained

from the Young diagram of λ by adding exactly m boxes, at most one in each column.

As the decomposition is again multiplicity-free, we can ask for explicit descriptions

of the (symmetric) Pieri inclusions Sμ(V ) ↪→ Sm(V )⊗ Sλ(V ).

1.1.3

Given a basis {e1, e2, . . . , en} of V , the representation Sλ(V ) is equipped with a

canonical basis indexed by the set of semistandard tableaux of shape λ with fillings

from the set {1, . . . , n}. In (Olver, 1982), Olver gave an explicit description of the

Pieri inclusions with respect to these canonical bases in the special case when m =

1. We will denote this description by Φ1. When m > 1, the Pieri inclusion Φm

can be obtained by iteration of the special case (Sam & Weyman, 2011, Corollary

1.8). The main purpose of this paper is to give a new combinatorial description of

Φm that (a) leads to a more efficient algorithm and (b) can be given in a general

closed form (avoiding iteration) for m ≥ 1. In regard to (a), we will show that

our algorithm achieves an exponential speed-up over Olver’s algorithm when it is

restricted to partitions with a bounded number of distinct parts. More precisely, if

we fix a positive integerN and consider partitions λ that can be written in exponential

notation as λ = (1h1 , 2h2 , 3h3 , . . . ) with at most N nonzero exponents hi, then our
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algorithm to compute the image of a highest weight vector under a Pieri inclusion

Φ1 : Sμ(V ) ↪→ V ⊗ Sλ(V ) has a run-time complexity of O(l(λ)N), whereas Olver’s

algorithm has a run-time complexity of Ω(2 l(λ)).

1.2 Constructing Schur–Weyl Modules

1.2.1

From now on, let λ = (λ1, . . . , λr) be a fixed partition of d. Let Tλ,n be the set of

all tableaux T of shape λ with filling from the alphabet {1, . . . , n}. Fix the canonical

tableau T0 of shape λ labeled with {1, . . . , d}, starting with the top left most box and

filling across each row, so the first box of the first row is labeled 1, the first box of

the second row is labeled λ1 + 1, etc.

Example. If λ = (6, 3, 3, 2, 1), then

T0 =

1 2 3 4 5 6

7 8 9

10 11 12

13 14

15

.

1.2.2

Via this labeling, the symmetric group Sd acts on the set of tableau with shape

λ with respect to any given alphabet. Let

P = Pλ = {π ∈ Sd : π preserves the rows of T0}

and

Q = Qλ = {σ ∈ Sd : σ preserves the columns of T0} .

4



As elements of the group algebra of Sd, CSd, define

Aλ =
∑
π∈P

π and Bλ =
∑
σ∈Q

(−1)σ σ.

The Young Symmetrizer is then defined as Cλ = AλBλ. Note this convention sym-

metrizes along rows first and antisymmetrizes along columns second (following, for

example, (Sternberg, 1995)).

1.2.3

From now on, fix a complex vector space V of dimension n. Let Sd also act on

elements of V ⊗d by permuting the coordinates. In particular, the Young symmetrizer

Cλ acts on V ⊗d. The corresponding Schur–Weyl module is

Sλ(V ) = Cλ · V ⊗d.

Clearly, Sλ(V ) is a GL(V )-module. When r, the number of non-zero parts or the

number of rows of λ, is at most n it is known that Sλ(V ) is an irreducible representa-

tion of GL(V ) and that all (in-equivalent) polynomial irreducible representations are

constructed this way.

Write {ei}1≤i≤n for the standard basis of V . For T ∈ Tλ,n, define eT ∈ Sλ(V ) by

eT = Cλ · ((eT11 ⊗ · · · ⊗ eT1λ1
)⊗ · · · ⊗ (eTr1 ⊗ · · · ⊗ eTrλr

))

where Tij is the entry in the ith row and jth column of T starting from the top left.

Clearly Sλ(V ) is spanned by such elements, and it is known that a basis is given by

the semistandard ones.
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1.2.4

Let V• be the standard flag in V ,

V• : Vi = span{e1, . . . , ei} (1 ≤ i ≤ n).

Let B ⊂ GL(V ) be the Borel subgroup given by

B = {g ∈ GL(V ) : gVi ⊂ Vi for 1 ≤ i ≤ n}.

Throughout this paper, all highest weights are with respect to B. The highest weight

vector of Sλ(V ) is

eTλ
= Cλ · ((e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸

λ1

)⊗ · · · ⊗ ((er ⊗ · · · ⊗ er︸ ︷︷ ︸
λr

)).

That is, Tλ is the tableau of shape λ with all ones in the first row, all twos in the

second row, etc.

Example. If λ = (5, 3, 3, 1, 1), then

Tλ =

1 1 1 1 1

2 2 2

3 3 3

4

5

and

eTλ
= Cλ · (e1 ⊗ e1 ⊗ e1 ⊗ e1 ⊗ e1 ⊗ e2 ⊗ e2 ⊗ e2 ⊗ e3 ⊗ e3 ⊗ e3 ⊗ e4 ⊗ e5).

1.2.5

For any subset A of boxes of T0, let wA be the maximum width of a row containing

an element of A. Let

SA = {σ ∈ Sd : σ preserves A and fixes T0 \ A} .
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When |A| > wA, define a Garnir operator as an element of CSd by

GA =
∑
σ∈SA

σ.

1.2.6

Let Fλ,n be the formal C-span of symbols T ∈ Tλ,n and let Rλ,n be the subspace

of Fλ,n generated by all

T1 − T2, where T1 and T2 agree up to a row permutation, (1.2.6.1)

and

GA(T ), where A ⊂ T0 with |A| > wA. (1.2.6.2)

Theorem. As GL(V )-modules, we have

Fλ,n/Rλ,n
∼= Sλ(V ).

Proof. The map is induced by T → eT . See, for example, (Fulton, 1997, §8), where

the convention is transpose to ours.

1.3 Outlining the General Formula for Pieri Inclusions

1.3.1

Our general formula for a Pieri inclusion Φm : Sμ(V ) ↪→ ∧m(V )⊗ Sλ(V ), where μ

is obtained from λ by adding m boxes with no two in the same row, is as follows. If

T is a semistandard tableau of shape μ with filling in {1, . . . , n} and eT ∈ Sμ(V ) is

the corresponding basis element, then

Φm(eT ) =
∑
P

(−1)P
H(P )

P (T )

7



where the sum is over a certain set of “m-paths” P which remove m boxes from the

shape λ, (−1)P is a sign, and H(P ) is a positive integer that is a product of certain

“hook lengths.” We will write the path P acting on T as

P (T ) = eYP
⊗ eTP

where eYP
= ei1 ∧ · · · ∧ eim ∈ ∧m(V ) is given by the entries of the boxes removed

by P , and TP is a (not necessarily semistandard) tableau of shape λ with filings in

{1, . . . , n} such that

{entries of T} = {entries of YP} ∪ {entries of TP}

as a multi-set. All of this will be defined rigorously in Chapter Two.

1.3.2

To illustrate how our formula works, we look at an example in the case when n = 4

andm = 1. Let λ = (2, 1, 1, 1), and μ = (2, 1, 1). Then the Schur–Weyl module Sλ(V )

appears as a summand in the decomposition of S(1)(V )⊗ S(2,1,1)(V ) = V ⊗ S(2,1,1),

⊗ = ⊕ ⊕ .

Consider the Pieri inclusion

Φ1 : S(2,1,1,1)(V ) ↪→ V ⊗ S(2,1,1)(V ).

By abuse of notation, we will identify semistandard tableaux and their corresponding

basis vectors. We will compute

Φ1

(
1 1
2
3
4

)
=
∑
P

(−1)P
H(P )

P

(
1 1
2
3
4

)
.
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The sum is over all “1-paths” P on λ. That is, certain maps on the boxes in λ

that removes a single box. In Figure 1.1 we illustrate all such 1-paths with arrows,

shading the boxes on which the path acts, and give the corresponding terms in the

image. We will view the box removed by a 1-path as being moved to a “zeroth row”

at the top of the diagram and we give the image up to a row permutation, so that it

is semistandard.

4
3
2
1 1

� − 4 ⊗
1 1
2
3

,

4
3
2
1 1

� 3 ⊗
1 1
2
4

,

4
3
2
1 1

� − 2 ⊗
1 1
3
4

,

4
3
2
1 1

� 1

4
1 ⊗

1 4
2
3

,

4
3
2
1 1

� −1

4
1 ⊗

1 3
2
4

,

4
3
2
1 1

� 1

4
1 ⊗

1 2
3
4

,

4
3
2
1 1

� 1

4
1 ⊗

1 4
2
3

,

4
3
2
1 1

� −1

4
1 ⊗

1 3
2
4

,

4
3
2
1 1

� 1

4
1 ⊗

1 2
3
4

Figure 1.1. The 1-paths acting on the highest weight vector Tλ for λ = (2, 1, 1, 1)
and the corresponding terms in the image Φ1 (Tλ).

Then up to row permutations we have

Φ1

(
1 1
2
3
4

)
=− 4 ⊗

1 1
2
3

+ 3 ⊗
1 1
2
4

− 2 ⊗
1 1
3
4

+
1

2
1 ⊗

1 4
2
3

− 1

2
1 ⊗

1 3
2
4

+
1

2
1 ⊗

1 2
3
4

.
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1.3.3

In the computation from Section 1.3.2, all terms TP that appeared were (after row

permutations) semistandard. We now compute an example where some of the terms

that appear in the image are not semistandard, and so must be straightened. Let Φ1

be as in Section 1.3.2. We will compute

Φ1

(
1 2
2
3
4

)
=
∑
P

(−1)P
H(P )

P

(
1 2
2
3
4

)
,

where the terms of the sum in the image are again indexed by the 1-paths on λ

removing a single box. In Figure 1.2 we illustrate all such 1-paths with arrows,

shading the boxes on which the path acts, and give the corresponding terms in the

image. As before, we give the image up to row permutations and we now star the

terms that need to be straightened.

4
3
2
1 2

� − 4 ⊗
1 2
2
3

,

4
3
2
1 2

� 3 ⊗
1 2
2
4

,

4
3
2
1 2

� − 2 ⊗
1 2
3
4

,

4
3
2
1 2 ∗� 1

4
1 ⊗

2 4
2
3

,

4
3
2
1 2 ∗� −1

4
1 ⊗

2 3
2
4

,

4
3
2
1 2

� 1

4
1 ⊗

2 2
3
4

,

4
3
2
1 2

� 1

4
2 ⊗

1 4
2
3

,

4
3
2
1 2

� −1

4
2 ⊗

1 3
2
4

,

4
3
2
1 2

� 1

4
2 ⊗

1 2
3
4

,

Figure 1.2. The 1-paths acting on the tableau

1 2
2
3
4

and the corresponding terms in

the image Φ1 (Tλ). The terms that require straightening are starred.
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In this case, we must straighten the image of two of the 1-paths (starred), which

we show in Section 2.1.8. After straightening we have, up to row permutations,

Φ1

(
1 2
2
3
4

)
=− 4 ⊗

1 2
2
3

+ 3 ⊗
1 2
2
4

− 3

4
2 ⊗

1 2
3
4

+
1

4
1 ⊗

2 2
3
4

+
1

4
2 ⊗

1 4
2
3

− 1

4
2 ⊗

1 3
2
4

.

1.4 Motivation and Organization

1.4.1

Part of the motivation for giving explicit descriptions of Pieri inclusions comes

from the frequent use of Pieri inclusions to construct differentials of complexes and

resolutions. For example, in results of Eisenbud, Fløstad, and Weyman (Eisenbud

et al., 2011) and of Sam and Weyman (Sam & Weyman, 2011), Pieri inclusions are

used to compute pure free resolutions for classical groups and in (Pragacz & Weyman,

1985), Weyman and Pragacz use Pieri inclusions to describe Lascoux resolutions. Sam

has also built a package for Macaulay2 (PieriMaps) (Sam, 2009) that computes Pieri

inclusions explicitly using the algorithm from (Sam & Weyman, 2011).

In a forthcoming paper, (Hunziker et al., n.d.), we will show how our descrip-

tion of Pieri inclusions can be used to explicitly describe the differentials in mini-

mal free resolutions of modules of covariants (in the context of Weyl’s fundamental

theorems). These resolutions will be obtained via Howe duality from Bernstein—

Gelfand—Gelfand resolutions of unitary highest weight modules, the terms of which

are direct sums of (parabolic) Verma modules.
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1.4.2

The rest of the dissertation is organized in the following way. In Chapter Two we

describe the construction of the Pieri inclusion in the one-box removal case (V ) and

the general m-box removal case (∧m(V )), respectively. In Chapter Three we show

that all Garnir relations are generated by Garnir relations of minimal size over hooks

and give tools for collapsing the sum in the image of a Pieri Inclusion. In Chapters

Four and Five we use the tools from Chapter Three to show that the Pieri inclusions

are GL(V )-maps in the one-box removal and m-box removal cases, respectively. In

Chapter Six we show that the one-box removal map is the negative of Olver’s descrip-

tion via the uniqueness of an equivariant map, then use this and (Sam & Weyman,

2011) to show that this same description of Pieri inclusions gives a map in the case

Sμ(V ) ↪→ Symm(V ) ⊗ Sλ(V ) and that iterating the the-box removal map is also a

GL(V ) map. In this chapter we also show that when removing a column of boxes

from a diagram the m-box removal map and iterating one-box removal m times differ

by a multiple of m!. Finally, in Chapter Seven we compare the computational com-

plexity of the one-box removal description to that of the description given by Olver

and use the Pieri inclusion removing one box to optimally describe the image of a

highest weight vector.
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CHAPTER TWO

Constructing the Pieri Inclusions

In this chapter we construct the Pieri inclusions, first for removing a single box

and then the general case removing many boxes.

2.1 Constructing the Pieri Inclusion for Removing One Box

2.1.1

We will write λ = (λ1, . . . , λr) in block form as λ = (wh1
1 , . . . , whN

N ), where wi <

wi+1 and exactly hi parts of λ are equal to wi. That is, N is the number of blocks in

the shape λ, where block [1] is the lowest geometrically, wb is the width of block [b],

and hb is the height of block [b]. See Figure 2.1.

w1
h1

w2

h2

...

wN−1

hN−1

wN

hN

block 1

block 2

block N − 1

block N

Figure 2.1. The shape λ with N blocks.
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Example. We will write (5, 2, 2, 2, 1, 1) in block form as (12, 23, 5),

(5, 2, 2, 2, 1, 1) = (12, 23, 5) =

block 1

block 2

block 3

.

2.1.2

For any box x ∈ T0 at the bottom right of some block k, let λ\{x} be the partition

whose shape is obtained by removing the box x from T0 as in Figure 2.2.

λ =

x

λ \ {x} =

Figure 2.2. Obtaining λ \ {x} from λ.

We will define the map

Φ1 : Fλ,n → V ⊗Fλ\{x},n

on a basis and then show that Φ1 descends to a GL(V )-module map as in Figure 2.3.

2.1.3

We first introduce further notation. For a given shape λ, let [b] denote the bth

block, [b](i) denote the ith row of the bth block, and [b](i, j) denote the box in block

14



Fλ,n V ⊗Fλ\{x},n

Fλ,n

/
Rλ,n

∼= Sλ(V ) V ⊗Fλ\{x},n
/
Rλ,n

∼= V ⊗ Sλ\{x}(V )

Φ1

Φ1

Figure 2.3. Φ1 descending to a GL(V )-module map.

[b], row i, and column j, with block 1 and row 1 the lowest geometrically and column

1 the furthest left. We write

[b](i, j) ≤ [c](k, l)

if [b](i, j) is geometrically (weakly) lower than [c](k, l), i.e. b < c or b = c and i ≤ k.

The strict inequality is defined in the natural way. We will extend this notation to

compare boxes, rows, and blocks in the natural way. For a given T ∈ Fλ,n, we denote

the entry in box [b](i, j) by T[b](i,j).

Example. If T is the tableau

T =

1 1 3 3 4

2 2

3 4

4 5

6

7

,

then T[1](2,1) = 6 and T[3](1,5) = 4.
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2.1.4

An evacuation route R is a selection of a string of boxes starting from the bottom

of some block. An example of an evacuation route on λ = (12, 3, 43, 72) is given by

the shaded boxes in the diagram in Figure 2.4.

Figure 2.4. A simple example of an evacuation route on λ = (12, 3, 43, 72).

An evacuation route has more freedom than the previous example shows, where

each of the chosen boxes was in the first column of the row. The boxes in an evacuation

route must be chosen starting from the bottom of some block, and the route can jump

up to higher blocks, however the boxes need not be only in the first column. The

chosen boxes can in fact be in any column in the diagram. Another example of an

evacuation route on λ = (12, 3, 43, 72) is given by the shaded boxes in the diagram in

Figure 2.5.

The above examples show that an evacuation route does not need to contain a box

from every row, however, it cannot skip rows within a block. The shaded selection

of boxes in Figure 2.6 is not an evacuation route on (2, 32, 54, 72) since a box in row

16



Figure 2.5. A more complex example of an evacuation route on λ = (12, 3, 43, 72).

[3](3) (that is, the third row in the third block) is selected, while there is no box

selected from row [3](2), which is below row [3](3) but still in block [3].

Figure 2.6. A non-example of an evacuation route on (2, 32, 54, 72).

Formally, we have the following definition.

Definition (Evacuation Route). An evacuation route R starting at [b0] is a subset

of boxes in T0 such that R contains a box in row [b0](1), R contains at most one

box per row, and if [b](i, j) ∈ R, then [b](k, jk) ∈ R for all 1 ≤ k < i and some

1 ≤ jk ≤ wb.
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2.1.5

A 1-path P on λ moves boxes up the diagram via some associated evacuation

route RP . We will treat a 1-path as acting on general shapes, where the highest box

in RP is “removed” by the 1-path and viewed as being moved to the box [N +1](1, 1)

attached to the top of T0. In Figure 2.7 we illustrate a 1-path moving boxes up a

diagram via an evacuation route, highlighting only the boxes in the evacuation route.

x

Figure 2.7. A simple example of a 1-path removing the box x.

As before, an evacuation route can contain boxes in any column in the diagram.

Another 1-path moving boxes up a diagram is shown in Figure 2.8.

Formally, we have the following definition.

Definition (1-path). Let X = {x1 := [b1](1, wb1)} and Y = {y1 := [N + 1](1, 1)},

where Y is viewed as block [N + 1] attached to the top of T0. A 1-path P removing

X is a map of boxes

P : λ ∪ Y → λ ∪ Y

along with an evacuation route R = RP such that the following hold.
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x

Figure 2.8. A more complex example of a 1-path removing the box x.

• R starts at [b1]. Note that R can contain x1, though this is not a requirement.

• P is geometrically increasing on rows, with P strictly increasing on R. That is,

for all boxes x ∈ λ ∪ Y , x ≤ P (x).

• If R1 is the orbit of x1 under PN, then y1 ∈ R1 and R ∪X ∪ Y = R1.

• P preserves row order in R within blocks. That is, if [b](i, j), [b](k, l) ∈ R with

i < k and P ([b](i, j)), P ([b](k, l)) ∈ [b], then P ([b](i, j)) < P ([b](k, l)).

• P fixes those boxes not in R or X, i.e. P = idλ∪Y except on R ∪ X, and

P (R) = R \X ∪ Y .

2.1.6

We now define the components of the formulation of the Pieri inclusion removing

one box, Φ1. For a 1-path P removing X with evacuation route RP , let hP be the

number of rows in RP and (−1)P := (−1)hP
. For b = b1, . . . , N , let hP

b to be the

number of rows in RP ∩ [b]. For b ≥ b1 + 1 define h(b) = wb − wb−1 + hb−1 to be the
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hook length of block [b], and for b = b1 + 1, . . . , N define

H(b) =
b∑

j=b1+1

h(j).

Then for b = b1 + 1, . . . , N , let

Hb(P ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if RP ∩ [b] = ∅

H(b) otherwise

,

and let Hb1(P ) = 1. Define

H(P ) =
n∏

b=b1

Hb(P ).

Example. For the partition (1, 32, 43, 62), shown in Figure 2.9, and X = {[1](1, 1)}

(shaded), we have h(2) = 3− 1 + 1 = 3, h(3) = 4− 3 + 2 = 3, h(4) = 6− 4 + 3 = 5,

H(1) = 1, H(2) = 3, H(3) = 6, and H(4) = 11.

h(2)

h(3)

h(4)

Figure 2.9. The hook length of a block, h(b).
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2.1.7

For T ∈ Fλ,n, denote by αP
1 the entry in the box P−1(y1) ∈ T and extend P to T

by acting on the entries, with the image

P (T ) = YP ⊗ TP ∈ V ⊗Fλ\X,n,

where

YP = EX αP
1 ,

which is standard form notation is eαP
1
∈ V , and TP ∈ Fλ\X,n is defined by

(TP )[b](i,j) = TP−1([b](i,j)).

We omit EX and just write

αP
1 in place of EX αP

1

in the image of P (T ).

Definition (Φ1). The map Φ1 : Fλ,n → V ⊗Fλ\{x},n is given by

Φ1(T ) =
∑
P

(−1)P
H(P )

P (T )

where the sum is over all 1-paths P removing X.

2.1.8

We now compute the straightening example from Section 1.3.3. If

A1 = {[2](1, 1), [2], (1, 2), [1](2, 1)} =

then modulo R(2,1,1),4 we have

1

2
GA1

(
2 4
2
3

)
= 2

2 4
2
3

+
2 2
4
3

.
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Then if

A2 = {[1](1, 1), [1](2, 1)} = ,

modulo R(2,1,1),4,

GA2

(
2 2
4
3

)
=

2 2
4
3

+
2 2
3
4

.

Thus modulo R(2,1,1),4 we get

1

4
1 ⊗

2 4
2
3

=
1

8
1 ⊗

2 2
3
4

.

Similarly, modulo R(2,1,1),4 we have

1

4
1 ⊗

2 3
2
4

= −1

8
1 ⊗

2 2
3
4

.

Note that in this example the terms that were straightened cancelled with each

other and so did not appear in the image. This will not be the case in general.

2.2 Constructing the Pieri Inclusion for Removing Many Boxes

2.2.1

Let X = {x1 = [b1](1, wb1), . . . , xm = [bm](im, wbm)} be a set of m boxes in λ with

xi < xi+1 so that removing the boxes in X from T0 gives a Young diagram and let

λ \X be the associated partition. See Figure 2.10.

We call such a set X a removal set for T0 (or for λ). As before, we will define the

map Φm : Fλ,n → Fm ⊗ Fλ\X,n on a basis, where Fm =
∧m V , and then show that

Φm is a GL(V )-map. See Figure 2.11.
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λ =

X

λ \X =

Figure 2.10. Obtaining λ \X from λ.

Fλ,n Fm ⊗Fλ\X,n

Fλ,n

/
Rλ,n

∼= Sλ(V ) Fm ⊗Fλ\X,n

/
Rλ,n

∼= Fm ⊗ Sλ\X(V )

Φm

Φm

Figure 2.11. Φm descending to a GL(V )-module map.

2.2.2

Extending the notion of a 1-path, an m-path on λ is a map of boxes that moves

boxes up the diagram via some associated evacuation route with m interlaced orbits.

As with 1-paths, we treat m-paths as acting on general shapes, where the highest

m boxes in RP are “removed” by the m-path and viewed as being moved to the

boxes [N + 1](1, 1), . . . , [N + 1](m, 1) attached to the top of T0. An example of a

2-path removing X is given in Figure 2.12, where we highlight only the boxes in the

evacuation route and distinguish the two distinct orbits.

The interlacing property for m-paths is not so strict as the above example sug-

gests. We require that an m-path interlaces orbits only within blocks while multiple

orbits are present. This is illustrated further in Figure 2.13, where we show a 2-

23



X

Figure 2.12. An example of a 2-path.

path removing X and again highlight only the boxes in the evacuation route and

distinguish the two distinct orbits.

Formally, we have the following definition.

Definition (m-path). Let X = {x1 = [b1](1, wb1), . . . , xm = [bm](im, wbm)} be a

removal set for T0 and Y = {y1 := [N +1](1, 1), . . . , ym := [N +1](m, 1)}, where Y is

viewed as block N +1 attached to the top of T0. An m-path P removing X is a map

of boxes

P : λ ∪ Y → λ ∪ Y

along with an evacuation route R = RP such that the following hold.

• R starts at [b1]. Note that R can intersect X, though this is not a requirement.
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X

Figure 2.13. An example of a 2-path showing the interlacing property.
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• P is geometrically increasing on rows, with P strictly increasing on R. That is,

for all boxes x ∈ λ ∪ Y , x ≤ P (x).

• If Ri is the orbit of xi under P
N, then yi ∈ Ri and R ∪X ∪ Y =

⊔m
i=1 Ri.

• If there are k distinct orbits in a block, then the first k rows of that block

must be in different orbits. i.e., if RP
i1
, . . . , RP

ik
intersect some block [b], then for

j = 1, . . . k, up to relabeling, RP
ij
∩ [b](j) �= ∅.

• P preserves row order in R within blocks, and so interlaces orbits. That is,

if [b](i, j), [b](k, l) ∈ R with i < k and P ([b](i, j)), P ([b](k, l)) ∈ [b], then

P ([b](i, j)) < P ([b](k, l)).

• P fixes those boxes not in R or X, i.e. P = idλ∪Y except on R ∪ X, and

P (R) = R \X ∪ Y .

2.2.3

For an m-path P with evacuation route RP , let hP , (−1)P , hP
b , and H(b) be

defined as in Section 2.1.6. For b = b1 + 1, . . . , N , let Hb(P ) = 1 if RP ∩ [b] = ∅ and

let Hb1(P ) = 1. If b ≥ b1 + 1 and
∣∣RP ∩ [b]

∣∣ = kb �= 0, then let

Hb(P ) =

kb∏
i=1

(H(b)− (m− i))

and

H(P ) =
n∏

b=b1

Hb(P ).
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2.2.4

For T ∈ Fλ,n, denote by αP
i the entry in the box P−1(yi) ∈ T and extend P to T

by acting on the entries, with the image

P (T ) = YP ⊗ TP ∈ Fm ⊗Fλ\X,n =
m∧

V ⊗Fλ\X,n.

Here

YP = EX

αP
m
...

αP
1

,

which is standard form notation is eαP
1
∧· · ·∧eαP

m
∈ ∧m V , and TP ∈ Fλ\X,n is defined

by (TP )[b](i,j) = TP−1([b](i,j)). As before, we omit EX and just write

αP
m
...

αP
1

in place of EX

αP
m
...

αP
1

in the image of P (T ).

Definition (Φm). The map Φm : Fλ,n → Fm ⊗Fλ\X,n is given by

Φm(T ) =
∑
P

(−1)P
H(P )

P (T ),

where the sum is over all m-paths P removing X.
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2.2.5

We now compute an example of the Pieri inclusion when m = 2. Let n = 6,

λ = (2, 2, 1, 1, 1, 1), and μ = (2, 2, 1, 1). Then the Schur–Weyl module Sλ(V ) appears

as a summand in the decomposition of S(1,1)(V )⊗ Sμ(V ), as seen in Figure 2.14.

⊗ = ⊕ ⊕ ⊕ ⊕

Figure 2.14. The Pieri rule for S(1,1)(V )⊗ S(2,2,1,1)(V ).

Consider the Pieri inclusion Φ2 : S(2,2,1,1,1,1)(V ) −→ S(1,1)(V ) ⊗ S(2,2,1,1)(V ). We

will show the image of the highest weight vector

T(2,2,1,1,1,1) =

1 1
2 2
3
4
5
6

under this map,

Φ2

(
T(2,2,1,1,1,1)

)
=
∑
P

(−1)P
H(P )

P
(
T(2,2,1,1,1,1)

)
,

where the sum is over all m-paths P on λ removing X = {x1 = [1](1, 1), x2 =

[1](2, 1)}. In Figure 2.15 we illustrate all such paths with arrows, where we shade

the boxes in the evacuation route, distinguishing the orbits of x1 and x2. For paths

hitting rows [2](1) and [2](2), we only show the path that hits the first column of

both rows, as the paths that hit the second column in either row will give the same
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result. As in the 1-box removal example, we give the images up to row permutations

and we star the paths whose images require straightening.

If

A1 = {[2](1, 1), [2], (1, 2), [2](2, 2)} =

then we have, modulo R(2,2,1,1),6,

1 5
2 4
3
6

=
1

2
GA1

(
1 5
2 4
3
6

)
−

1 2
4 5
3
6

−
1 4
2 5
3
6

.

Then if

A2 = {[2](1, 1), [2], (1, 2), [1](2, 1)} = ,

modulo R(2,2,1,1),6,

1 2
4 5
3
6

=
1

2
GA2

(
1 2
4 5
3
6

)
−

1 2
3 5
4
6

−
1 2
3 4
5
6

.

Thus, modulo R(2,2,1,1),6,

1 5
2 4
3
6

=

1 2
3 5
4
6

+

1 2
3 4
5
6

−
1 4
2 5
3
6

.
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Similarly, via straightening we have, modulo R(2,2,1,1),6,

1 5
2 3
4
6

= −
1 2
3 5
4
6

−
1 3
2 5
4
6

,

1 6
2 5
3
4

= −
1 2
3 6
4
5

−
1 2
3 5
4
6

−
1 5
2 6
3
4

,

1 6
2 4
3
5

=

1 2
3 6
4
5

−
1 2
3 4
5
6

−
1 4
2 6
3
5

,

1 6
2 3
4
5

= −
1 2
3 6
4
6

−
1 3
2 6
4
5

,

and

1 4
2 3
5
6

= −
1 2
3 4
5
6

−
1 3
2 4
5
6

.

Recall that for all 2-paths P , YP ∈
∧2 V , and so

α
β = − β

α .

Thus,

Φ2

⎛⎜⎜⎝
1 1
2 2
3
4
5
6

⎞⎟⎟⎠ = 5
6 ⊗

1 1
2 2
3
4

− 4
6 ⊗

1 1
2 2
3
5

+ 3
6 ⊗

1 1
2 2
4
5

− 1

2
2
6 ⊗

1 2
2 5
3
4

+
1

2
2
6 ⊗

1 1
2 4
3
5

−1

2
2
6 ⊗

1 1
2 3
4
5

+ 1
6 ⊗

1 2
2 5
3
4

− 1
6 ⊗

1 2
2 4
3
5

+ 1
6 ⊗

1 2
2 3
4
5

+ 4
5 ⊗

1 1
2 2
3
6

− 3
5 ⊗

1 1
2 2
4
6

+
1

2
2
5 ⊗

1 1
2 6
3
4

− 1

2
2
5 ⊗

1 1
2 4
3
6

+
1

2
2
5 ⊗

1 1
2 3
4
6

− 1
5 ⊗

1 2
2 6
3
4

+ 1
5 ⊗

1 2
2 4
3
6

− 1
5 ⊗

1 2
2 3
4
6

+ 3
4 ⊗

1 1
2 2
5
6

+
1

2
2
4 ⊗

1 1
2 5
3
6

− 1

2
2
4 ⊗

1 1
2 3
5
6

−1

2
2
4 ⊗

1 1
2 6
3
5

− 1
4 ⊗

1 2
2 5
3
6

+ 1
4 ⊗

1 2
2 3
5
6

− 1
4 ⊗

1 2
2 6
3
5

+
1

2
2
3 ⊗

1 1
2 4
5
6
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+
1

2
2
3 ⊗

1 1
2 6
4
5

− 1

2
2
3 ⊗

1 1
2 5
4
6

− 1
3 ⊗

1 2
2 4
5
6

− 1
3 ⊗

1 2
2 6
4
5

+
1

2
1
3 ⊗

1 2
2 5
4
6

+
2

5
1
2 ⊗

1 5
2 6
3
4

− 2

5
1
2 ⊗

1 4
2 6
3
5

+
2

5
1
2 ⊗

1 3
2 6
4
5

− 1

5
1
2 ⊗

1 2
3 5
4
6

−1

5
1
2 ⊗

1 2
3 4
5
6

+
2

5
1
2 ⊗

1 4
2 5
3
6

+
2

5
1
2 ⊗

1 3
2 4
5
6

− 2

5
1
2 ⊗

1 3
2 5
4
6

+
2

5
1
2 ⊗

1 2
3 6
4
5

.
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6
5
4
3
2 2
1 1

� 5
6 ⊗

1 1
2 2
3
4

,

6
5
4
3
2 2
1 1

� − 4
6 ⊗

1 1
2 2
3
5

,

6
5
4
3
2 2
1 1

� 3
6 ⊗

1 1
2 2
4
5

,

6
5
4
3
2 2
1 1

� −2

4
2
6 ⊗

1 1
2 5
3
4

,

6
5
4
3
2 2
1 1

� 2

4
2
6 ⊗

1 1
2 4
3
5

,

6
5
4
3
2 2
1 1

� −2

4
2
6 ⊗

1 1
2 3
4
5

,

6
5
4
3
2 2
1 1

� 4

4
1
6 ⊗

1 2
2 5
3
4

,

6
5
4
3
2 2
1 1

� −4

4
1
6 ⊗

1 2
2 4
3
5

,

6
5
4
3
2 2
1 1

� 4

4
1
6 ⊗

1 2
2 3
4
5

,

6
5
4
3
2 2
1 1

� − 5
4 ⊗

1 1
2 2
3
6

,

6
5
4
3
2 2
1 1

� 5
3 ⊗

1 1
2 2
4
6

,

6
5
4
3
2 2
1 1

� −2

4
5
2 ⊗

1 1
2 6
3
4

,

6
5
4
3
2 2
1 1

� 2

4
5
2 ⊗

1 1
2 4
3
6

,

6
5
4
3
2 2
1 1

� −2

4
5
2 ⊗

1 1
2 3
4
6

,

6
5
4
3
2 2
1 1

� 4

4
5
1 ⊗

1 2
2 6
3
4

,

6
5
4
3
2 2
1 1

� −4

4
5
1 ⊗

1 2
2 4
3
6

,

6
5
4
3
2 2
1 1

� 4

4
5
1 ⊗

1 2
2 3
4
6

,

6
5
4
3
2 2
1 1

� 3
4 ⊗

1 1
2 2
5
6

,

Figure 2.15. The 2-paths acting on T(2,2,1,1,1,1) with the distinct orbits distinguished
and the corresponding terms in the image Φ2

(
T(2,2,1,1,1,1)

)
. The terms that require

straightening are starred.
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6
5
4
3
2 2
1 1

� 2

4
2
4 ⊗

1 1
2 5
3
6

,

6
5
4
3
2 2
1 1

� −2

4
2
4 ⊗

1 1
2 3
5
6

,

6
5
4
3
2 2
1 1

� 2

4
4
2 ⊗

1 1
2 6
3
5

,

6
5
4
3
2 2
1 1

� −4

4
1
4 ⊗

1 2
2 5
3
6

,

6
5
4
3
2 2
1 1

� 4

4
1
4 ⊗

1 2
2 3
5
6

,

6
5
4
3
2 2
1 1

� 4

4
4
1 ⊗

1 2
2 6
3
5

,

6
5
4
3
2 2
1 1

� −2

4
3
2 ⊗

1 1
2 4
5
6

,

6
5
4
3
2 2
1 1

� −2

4
3
2 ⊗

1 1
2 6
4
5

,

6
5
4
3
2 2
1 1

� −2

4
2
3 ⊗

1 1
2 5
4
6

,

6
5
4
3
2 2
1 1

� 4

4
3
1 ⊗

1 2
2 4
5
6

,

6
5
4
3
2 2
1 1

� 4

4
3
1 ⊗

1 2
2 6
4
5

,

6
5
4
3
2 2
1 1

� 2

4
1
3 ⊗

1 2
2 5
4
6

,

6
5
4
3
2 2
1 1

� 4

5 · 4
1
2 ⊗

1 5
2 6
3
4

,

6
5
4
3
2 2
1 1

� − 4

5 · 4
1
2 ⊗

1 4
2 6
3
5

,

6
5
4
3
2 2
1 1

� 4

5 · 4
1
2 ⊗

1 3
2 6
4
5

,

6
5
4
3
2 2
1 1

∗� − 4

5 · 4
1
2 ⊗

1 5
2 4
3
6

,

6
5
4
3
2 2
1 1

� 4

5 · 4
1
2 ⊗

1 3
2 4
5
6

,

6
5
4
3
2 2
1 1

∗� 4

5 · 4
1
2 ⊗

1 5
2 3
4
6

,

Figure 2.15 (Cont.). The 2-paths acting on T(2,2,1,1,1,1) with the distinct orbits
distinguished and the corresponding terms in the image Φ2

(
T(2,2,1,1,1,1)

)
. The terms

that require straightening are starred.
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6
5
4
3
2 2
1 1

∗� 4

5 · 4
2
1 ⊗

1 6
2 5
3
4

,

6
5
4
3
2 2
1 1

∗� − 4

5 · 4
2
1 ⊗

1 6
2 4
3
5

,

6
5
4
3
2 2
1 1

∗� 4

5 · 4
2
1 ⊗

1 6
2 3
4
5

,

6
5
4
3
2 2
1 1

� − 4

5 · 4
2
1 ⊗

1 4
2 5
3
6

,

6
5
4
3
2 2
1 1

∗� 4

5 · 4
2
1 ⊗

1 4
2 3
5
6

,

6
5
4
3
2 2
1 1

� 4

5 · 4
2
1 ⊗

1 3
2 5
4
6

Figure 2.15 (Cont.). The 2-paths acting on T(2,2,1,1,1,1) with the distinct orbits
distinguished and the corresponding terms in the image Φ2

(
T(2,2,1,1,1,1)

)
. The terms

that require straightening are starred.
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CHAPTER THREE

Generating Garnir Relations and Tools for Collapsing Sums

In this chapter we will show that all Garnir relations are generated by Garnir

relations of minimal size, i.e. those GA with |A| = wA+1, where wA is the maximum

width of a row containing an element of A. We then show that all Garnir relations

of minimal size are themselves generated by Garnir relations over “hooks”, which are

those GA where A is of minimal size and consists of exactly a complete row and one

other box. We then give the tools for collapsing the sum in the image Φm(T ).

3.1 Generating All Garnir Relations by Those of Minimal Size

3.1.1

We start by formalizing the idea of a hook.

Definition (Hook). We say that A ⊂ T0 is a hook if for some row [b](r),

A = [b](r) ∪ {a0}

where

a0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[b](r − 1, 1) if r �= 1

[b− 1](hb−1, 1) if r = 1

.

That is,

A =

wb︷ ︸︸ ︷
· · ·
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Theorem. Let T ∈ Fλ,n and A ⊂ T0 such that |A| > wA. Then

GA(T ) ∈ 〈GA′(T ′) : T ′ ∈ Fλ,n, A′ is a hook〉.

3.1.2

To prove Theorem 3.1.1, we first show thatGA(T ) is generated by Garnir operators

of minimal size for any T ∈ Fλ,n and any A ⊂ T0 with |A| > wA. We will also show

that if |A| > wA + 1, then GA(T ) is generated by Garnir operators over A \ {y} for

any y ∈ A.

Lemma. Let T ∈ Fλ,n. If A ⊂ T0 with |A| > wA, then for any x ∈ T0 such that

|A ∪ {x}| > wA∪{x0},

GA∪{x}(T ) ∈ 〈GA(T
′) : T ′ ∈ Fλ,n〉.

Proof. Let A ⊂ T0 with |A| > wA and x ∈ T0 \ A. For all y ∈ A ∪ {x}, let τx,y be

the permutation that switches x and y and fixes the rest of A ∪ {x}. Then for any

σ ∈ SA∪{x},

σ(y) = x ⇐⇒ (στx,y) (x) = x ⇐⇒ στx,y ∈ SA.

Then,

GA∪{x}(T ) =
∑

σ∈SA∪{x}

σT

=
∑

y∈A∪{x}

∑
σ∈SA∪{x}
s.t. σ(y)=x

σT

=
∑

y∈A∪{x}

∑
σ∈SA∪{x}
s.t. σ(y)=x

(στx,y) (τx,yT )
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=
∑

y∈A∪{x}

∑
σ̃∈SA

σ̃ (τx,yT )

=
∑

y∈A∪{x}
GA(τx,yT ) ∈ 〈GA(T

′) : T ′ ∈ Fλ,n〉

3.1.3

We now show that all Garnir operators of minimal size are generated by Garnir

operators over a set consisting of a full row and a box below that row.

Lemma. Let T ∈ Fλ,n. If A ⊂ T0 of minimal size, then

GA(T ) ∈ 〈GA′∪{b0}(T
′) : T ′ ∈ Fλ,n, A

′ = [b](r) for some [b](r) ⊂ T0, b0 < [b](r)〉.

Proof. Let T ∈ Fλ,n and A ⊂ T0 such that A ⊂ [b](r). Assume, without loss of

generality, that r �= 1 (else, replace [b](r − 1) in the following argument with [b −

1](hb−1)). Let B ⊂ T0 such that B < [b](r), B �⊂ [b](r − 1), and |A ∪ B| = wb + 1.

Assume A �= [b](r), i.e. |B| �= 1. We will show that

GA∪B(T ) ∈ 〈GA′∪B′(T ′) : T ′ ∈ Fλ,n, A′ = [b](r), |B′| = 1, B < A〉.

Pick x0 ∈ [b](r) \ A and b0 ∈ B, as in Figure 3.1.

For all x ∈ A ∪ {x0} ∪ B, define τx0,x as before. Then for all σ ∈ SA∪{x0}∪B,

σ(x0) = x ⇐⇒ (τx0,xσ) x0 = x0 ⇐⇒ τx0,xσ ∈ SA∪B

and

σ(x0) = x ⇐⇒ (στx0,x) x = x ⇐⇒ στx0,x ∈ SA∪B∪{x0}\{x}.
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← row [b](r)x0

Figure 3.1. A set of boxes in T0 with a distinguished top row. The blue solid boxes
represent the set A and the red striped boxes represent the set B where
|A ∪B| = wb + 1.

Then,

GA∪{x0}∪B(T ) =
∑

σ∈SA∪{x0}∪B

σT

=
∑

a∈A∪{x0}

∑
σ∈SA∪{x0}∪B ,

σ(x0)=a

σT +
∑
b∈B

∑
σ∈SA∪{x0}∪B ,

σ(x0)=b

σT

=
∑

a∈A∪{x0}

∑
σ∈SA∪{x0}∪B ,

σ(x0)=a

τxo,a (τx0,aσ)T +
∑
b∈B

∑
σ∈SA∪{x0}∪B ,

σ(x0)=b

(στx0,b) τx0,bT

=
∑

a∈A∪{x0}

∑
σ̃∈SA∪B

τxo,aσ̃T +
∑
b∈B

∑
σ̃∈SA∪{x0}∪B\{b}

σ̃τx0,bT

=
∑

a∈A∪{x0}
τx0,aGA∪B(T ) +

∑
b∈B

GA∪{x0}∪B\{b}(τx0,bT )

and as τx0,a is a row permutation for all a ∈ A ∪ {x0}, up to row permutations we

have

GA∪{x0}∪B(T ) = |A ∪ {x0}|GA∪B(T ) +
∑
b∈B

GA∪{x0}∪B\{b}(τx0,bT ). (3.1.3.1)
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Solving for GA∪B(T ) in equation 3.1.3.1 we get

GA∪B(T ) =
1

|A ∪ {x0}|

(
GA∪{x0}∪B(T )−

∑
b∈B

GA∪{x0}∪B\{b}(τx0,bT )

)
.

By Lemma 3.1.2, GA∪B∪{x0} (T ) is generated by Garnir relations over A∪{x0}∪B\

{b0}. ThusGA∪B(T ) is generated by Garnir relations overA′∪B′, whereA′ = A∪{x0},

so that |A′ ∩ [b](r)| = |A ∩ [b](r)| + 1, and B′ = B \ {b} for some b ∈ B, so that

|B′| = |B| − 1. By induction, we get that

GA∪B(T ) ∈ 〈GA′∪B′(T ′) : T ′ ∈ Fλ,n, A′ = [b](r), |B′| = 1〉.

3.1.4

We now give a way to to write GA∪B(T ) as above as a sum of 2-cycles, which will

make our calculations easier throughout.

Lemma. Let A = [b](r) and b0 ∈ T0 \ A. Then for all T ∈ Fλ,n, modulo Rλ,n we

have

GA(T ) = wb!
∑
a∈A

τa,b0T.

Proof. As all σ̃ ∈ SA are row permutations and |A| = wb we have, modulo Rλ,n,

GA(T ) =
∑

σ∈SA∪{b0}

σT

=
∑
σ̃∈SA

∑
a∈A∪{b0}

σ̃τa,b0T

= wb!
∑

a∈A∪{b0}
τa,b0T.
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3.1.5

To prove Theorem 3.1.1, it remains to show that all Garnir relations of the form

GA∪B(T ) where A = [b](r) and |B| = 1, with B < A, are generated by Garnir

relations over hooks. We show that for any such A and B, GA∪B(T ) is generated by

Garnir relations over A′ ∪ B′ where A′ is a full row and |B| = 1 with B′ < A′, and

where the distance between A′ and B′ is less than the distance between A and B.

Theorem 3.1.1 is then proved by iterating this until we get that GA∪B(T ) is generated

(up to row permutation) by Garnir relations over hooks.

Lemma. Let T ∈ Fλ,n, A = [b](r), B ⊂ T0 with |B| = 1 and B < A. Then

GA∪B(T ) ∈ 〈GA′(T ′) : T ′ ∈ Fλ,n, A
′ is a hook〉.

Proof. Let A = [b](r) and B = {b0} with b0 ∈ [c](s) and [c](s) < [b](r). Let j be the

number of rows between [b](r) and [c](s). Without loss of generality we will assume

that r > j + 1 and b0 = [b](r − j − 1, 1). Then

GA∪B(T ) =
∑

σ∈A∪B
σT

=
∑
σ̃∈SA

∑
a∈A∪B

σ̃τa,b0T

= wb!
∑

a∈A∪B
τa,b0T.

We also have that for all a ∈ A ∪B,

G[b](r−j)∪B(τa,b0T ) = wb!

⎛⎝τa,b0T +
∑

x∈[b](r−j)

τx,b0τa,b0T

⎞⎠
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and hence

τa,b0T =
1

wb!
G[b](r−j)∪B(τa,b0T )−

∑
x∈[b](r−j)

τx,b0τa,b0T.

Now observe that for all a ∈ A ∪B and all x ∈ [b](r − j),

τx,b0τa,b0T = τa,xτx,b0T.

Then we have

GA∪B(T ) = wb!
∑

a∈A∪B
τa,b0T

= wb!

⎛⎝ ∑
a∈A∪B

1

wb!
G[b](r−j)∪B(τa,b0T )−

∑
x∈[b](r−j)

τx,b0τa,b0T

⎞⎠
=
∑

a∈A∪B
G[b](r−j)∪B(τa,b0T )− wb!

∑
a∈A∪B

∑
x∈[b](r−j)

τx,b0τa,b0T

=
∑

a∈A∪B
G[b](r−j)∪B(τa,b0T )− wb!

∑
x∈[b](r−j)

(
τx,b0T +

∑
a∈A

τx,b0τa,b0T

)

=
∑

a∈A∪B
G[b](r−j)∪B(τa,b0T )− wb!

∑
x∈[b](r−j)

(
τx,b0T +

∑
a∈A

τa,xτx,b0T

)

=
∑

a∈A∪B
G[b](r−j)∪B(τa,b0T )− wb!

∑
x∈[b](r−j)

GA∪{x}(τx,b0T ).

So for any T ∈ Fλ,n and any A ⊂ T0 with |A| > wA, GA(T ) is generated by Garnir

relations over hooks.

3.2 Collapsing the Sum in the Image of a Pieri Inclusion

3.2.1

The rest of this chapter is devoted to collapsing the sum in the image Φm(T ). We

first consider the 1-path case, where the idea is that the sum over all possible paths
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between two boxes can be collapsed to a single tableau, modulo Rλ\X,n, with parity

depending only on the number of rows between the two boxes. See Figure 3.2. We

then generalize the result to 2-paths, before considering the m-path case.

Definition (σA
k ). Let A ⊂ T0 be a hook with [b](r) the top row of A. Label the

boxes in [b](r) as a1, . . . , awb
and let a0 be the box in A below [b](r). For k = 0, . . . , wb,

define σA
k to be the permutation of A that switches a0 and ak and is the identity

otherwise. For T ∈ Fλ,n and 0 ≤ k ≤ wb, let Ak = Tak and extend σA
k to act on the

entries of T , so that σA
k Ak = A0 and σA

k is the identity on T otherwise. Then, by

Lemma 3.1.4, modulo Rλ,n

GA(T ) = wb!

wb∑
k=0

σA
k T.

z ← row r

u

∑
over all

possible paths

u

(original tableau)

z

← P−1(u)

∼ (−1)f(r)

Figure 3.2. Collapsing a sum of paths.
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3.2.2

It will be useful to be able to identify those paths that are similar to a given

m-path. Given an m-path P and two rows [b](r) and [c](s), a ([b](r), [c](s))-path ex-

tension of P is an m-path Q that is identical to P except on the interval of rows

([b](r), [c](s)) and on any boxes whose image under P is in the interval of rows

([b](r), [c](s)). In the row interval ([b](r), [c](s)), Q can differ from P , and in fact

can even act on different boxes.

Example. Let the 1-path P be as in Figure 3.3. For any ([2](2), [4](1))-path exten-

sion Q of P , it must be that {[1](1, 1), {[1](2, 1), [2](1, 3)} ⊂ RQ as these are the boxes

in RP outside of the interval of rows ([2](2), [4](1)). As [2](1, 3) ∈ P−1(([2](2), [4](1))),

Qmust be identical to P on {[1](1, 1), {[1](2, 1)}, but it can be the case thatQ([2](1, 3)) �=

P ([2](1, 3)). Two such examples of ([2](2), [4](1))-path extensions of P are given in

Figure 3.4.

Figure 3.3. An example of a 1-path.
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Figure 3.4. Two examples of ([2](2), [4](1))-path extensions of the 1-path in Figure
3.3.

Example. Let the 2-path P be as in Figure 3.5. For any ([3](1), [4](1))-path ex-

tension Q of P , it must be that RQ \ ([3](1), [4](1)) = RP \ ([3](1), [4](1)). As

{[2](2, 2), [2](3, 1)} ⊂ P−1(([3](1), [4](1))),

Q must be identical to P on

RQ \ (([3](1), [4](1)) ∪ {[2](2, 2), [2](3, 1)}) ,

but Q can differ from P otherwise. An example of a ([3](1), [4](1))-path extension of

P is given in Figure 3.6.

Given an evacuation route R and a row [b](r), define

R<[b](r) := {x ∈ R : x < [b](r)} and R>[b](r) := {x ∈ R : [b](r) < x}.

We formalize the notion of path extensions with the following definitions.

Definition 3.2.2.1 (Route Extension). Given an evacuation route R and two rows

[b](r) and [c](s) with [b](r) ≤ [c](s), an evacuation route B is a ([b](r), [c](s))-route

extension of R if R<[b](r) = B<[b](r) and R>[c](s) = B>[c](s).
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Figure 3.5. An example of a 2-path.

Definition 3.2.2.2 (Path Extension). Given an m-path P and two rows [b](r) and

[c](s) with [b](r) ≤ [c](s), an m-path Q is a ([b](r), [c](s))-path extension of P if:

• RQ is a ([b](r), [c](s))-route extension of RP ,

• P |RP
>[c](s)

= Q|RP
>[c](s)

• P |RP
<[b](r)

\I = Q|RP
<[b](r)

\I , where I = {x ∈ RP
<[b](r) : P (x) ∈ ([b](r), [c](s))}.

3.2.3

For any T ∈ Fλ,n, let

X = {x1 := [b1](1, wb1)} and Y = {y1 := [N + 1](1, 1)}

and let

z1 := T[bz ](i1,j1)
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Figure 3.6. An example of a ([3](1), [4](1))-path extension of the 2-path in Figure
3.5.

for some 1 ≤ b1 ≤ bz ≤ N , 1 ≤ i1 ≤ hbz , and 1 ≤ j1 ≤ wbz . Let u := T[bu](iu,ju)) for

some b1 ≤ bu ≤ bz, 1 ≤ iu ≤ hbu , and 1 ≤ ju ≤ wbu , and let P be any 1-path on λ

removing X such that P ([bu](iu, ju)) ∈ [bz](1) and P ([bz](i1, j1)) > [bz](i1), including

the case P ([bz](i1, j1)) = y1. Let

[P ] ={1-paths Q on λ : Q is a ([bz](1), [bz](i1))-path extension of P

with Q([bz](i1, j1)) = P ([bz](i1, j1))}

and T ′ ∈ Fλ\X,n be the unique tableau such that T ′ = TP on (λ \X), except on the

interval of rows ([bz](1), [bz](i1)), where T ′ = T , except T ′
[bz ](i1,j1)

= u. We then have

the following.
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Lemma. For [P ] as above, modulo F1 ⊗Rλ\X,n,∑
Q∈[P ]

Q(T ) = (−1)i1−1 αP
1 ⊗ T ′.

Proof. Assume, without loss of generality, that j1 = 1. We will show the case bu < bz,

the case bu = bz is similar. If i1 = 1, then [P ] = {P}, and so modulo F1 ⊗Rλ\X,n we

get

∑
Q∈[P ]

Q(T ) = P (T )

= αP
1 ⊗ T ′,

as desired. Let i1 = 2 and

A = {a1 := [bz](1, k), . . . , awbz
:= [bz](1, wbz)} ∪ {a0 := [bz](2, 1)}.

Then by Lemma 3.1.4 we have the following, modulo F1 ⊗Rλ\X,n. See Figure 3.7.

∑
Q∈[P ]

Q(T ) =

wbz∑
k=1

αP
1 ⊗ σA

k T
′

= αP
1 ⊗

(
1

wbz !
GA (T ′)− T ′

)
= − αP

1 ⊗ T ′.

ak
u
k

wb∑
k=1

∼ −
u

Figure 3.7. Collapsing a sum via Garnir relations on the bottom row of a block.
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Now let i1 > 2 and

B = {b1 := [bz](i1 − 1, k), . . . , bwbz
:= [bz](i1 − 1, wbz)} ∪ {b0 := [bz](i1, 1)}.

By Lemma 3.1.4 and induction applied to each entry in (i1 − 1)bz , see Figure 3.8,

modulo F1 ⊗Rλ\X,n we have

∑
Q∈[P ]

Q(T ) =

wbz∑
k=1

(−1)i1−2 αP
1 ⊗ σB

k T
′

= (−1)i1−2 αP
1 ⊗

(
1

wbz !
GB (T ′)− T ′

)
= (−1)i1−1 αP

1 ⊗ T ′.

Thus the claim holds for 1 ≤ i1 ≤ hbz .

wb∑
k=1

bk
u
k ∼(−1)i1−1

bk
u
k

Figure 3.8. Collapsing a sum via Garnir relations in the middle of a block.

3.2.4

Lemma 3.2.3 also allows for calculations of sums of 2-paths, by applying the

technique of the proof twice and “skipping” certain rows each time. That is, for any

T ∈ Fλ,n, let

X := {x1 := [b1](1, wb1), x2 := [b2](i2, wb2)},

Y := {y1 := [N + 1](1, 1), y2 := [N + 1](2, 1)}
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and let

z1 := T[bz ](i1,j1), z2 := T[bz ](i2,j2)

for some 1 ≤ b1 ≤ bz ≤ N , 1 ≤ i2 < i1 ≤ hbz , and 1 ≤ j1, j2 ≤ wbz . Let

u1 := T[bu1 ](iu1 ,ju1 )
, u2 := T[bu2 ](iu2 ,ju2 )

for some b1 ≤ bu1 , bu2 ≤ bz, 1 ≤ iu1 ≤ hbu1
, 1 ≤ ju1 ≤ wbu1

, 1 ≤ iu2 ≤ hbu2
, and

1 ≤ ju2 ≤ wbu2
. If bu1 = bu2 , then we also assume that iu1 �= iu2 . Let P be any 2-path

on λ such that

P ([bu1 ](iu1 , ju1)) ∈ [bz](1), P ([bu2 ](iu2 , ju2)) ∈ [bz](2)

and

P ([bz](i1, j1)), P ([bz](i2, j2)) > [bz](i1).

Assume, without loss of generality, that P ([bz](i1, j1)), P ([bz](i2, j2)) �∈ Y . Let

[P ] ={2-paths Q on λ : Q is a ([bz](1), [bz](i1))-path extension of P

with Q([bz](i1, j1)) = P ([bz](i1, j1)), Q([bz](i2, j2)) = P ([bz](i2, j2))}

and T ′ ∈ Fλ\X,n be the unique tableau such that T ′ = TP on (λ \X), except on the

interval of rows ([bz](1), [bz](i1)), where T ′ = T , except T ′
[bz ](i1,j1)

= u, T ′
[bz ](i2,j2)

= v.

See Figure 3.9.

Corollary. For [P ] as above, modulo F2 ⊗Rλ\X,n we have

∑
Q∈[P ]

Q(T ) = (−1)i1−2+i2−2
αP
2

αP
1

⊗ T ′.

Proof. Apply the techniques from the proof of Lemma 3.2.3 to get a sum of tableaux

with u1 in the box [bz](i1, j1), skipping row [bz](i2), then apply the techniques again

to get u2 in the box [bz](i2, j2), skipping row [bz](i2 − 1).
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z2 ← row i2

z1 ← row i1

u1 u2

∑
Q∈[P ]

u2

u1

(original tableau)

z2 z1

P−1(u1)→ ← P−1(u2)

∼ (−1)i1−2+i2−2

Figure 3.9. Collapsing a sum of 2-paths.

3.2.5

The same technique used in 3.2.4 immediately generalizes to sums of m-path

extensions. Fix m > 2. For any T ∈ Fλ,n, let

X = {x1 = [b1](1, wb1), . . . , xm = [bm](im, wbm)}

be a removal set and

zk = T[bz ](ik,jk) for 1 ≤ k ≤ m

for some 1 ≤ b1 ≤ bz ≤ N , 1 ≤ im < · · · < i1 ≤ hbz , and 1 ≤ jk ≤ wbz for 1 ≤ k ≤ m.

Let

uk = T[buk ](iuk ,juk )
for 1 ≤ k ≤ m

for some b1 ≤ buk
≤ bz, 1 ≤ iuk

≤ hbuk
, 1 ≤ juk

≤ wbuk
. If buk

= bul
for k �= l, then we

also assume that iuk
�= iul

. Let P be any m-path on λ such that, for 1 ≤ k ≤ m,

P ([buk
](iuk

, juk
)) ∈ [bz](k)
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and

P ([bz](ik, jk)) > [bz](i1).

Assume, without loss of generality, that P ([bz](ik, jk)) �∈ Y for 1 ≤ k ≤ m. Let

[P ] ={m-paths Q on λ : Q is a ([bz](1), [bz](i1))-path extension of P

such that Q([bz](ik, jk)) = P ([bz](ik, jk)) for 1 ≤ k ≤ m}

and T ′ ∈ Fλ\X,n be the unique tableau such that T ′ = TP on (λ \ X) except on

([bz](1), [bz](i2)), where T ′ = T except T ′
[bz ](ik,jk)

= uk for 1 ≤ k ≤ m.

Corollary. For [P ] and T ′ as above, modulo Fm ⊗Rλ\X,n,

∑
Q∈[P ]

Q(T ) = (−1)i1−m+···+im−m

αP
m
...

αP
1

⊗ T ′

Proof. Assume, without loss of generality, that

i1 > i2,

i2 > i3 + 1,

...

im−1 > im + (m− 1)− 1.

Otherwise, the following goes through by skipping the appropriate rows. Apply the

techniques from the proof of Lemma 3.2.3 to get a sum of tableaux with u1 in the box

[bz](i1, j1), skipping rows izm, . . . , i
z
2. Then iterate the techniques again to get uk in the

box [bz](ik, jk), skipping rows [bz](im), . . . , [bz](ik+1) and rows [bz](ik−1), . . . , [bz](ik−

(k − 1)).
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CHAPTER FOUR

The Pieri Inclusion Removing One Box is a GL(V )-map

In this chapter we show that the Pieri inclusion removing one box is a GL(V )-

map. We start by stating this as a theorem and then prove it in the two possible

cases.

4.1 The Theorem Statement and Set-Up

4.1.1

For all of Chapter 4, fix a removal set X = {x1 := [b1](1, wb1)} ⊂ T0. Let

Φ1 : Fλ,n → V ⊗Fλ\X,n

be as in Section 2.1.

Theorem. Φ1 is a GL(V )-map, i.e. Φ1 descends to

Φ1 : Sλ(V )→ F1 ⊗ Sλ\X(V )

and Φ1 is GL(V )-equivaraint.

4.1.2

For each simple root vector αi with respect the standard Cartan subalgebra, the

action of eαi
on a tableau T generates a sum of tableau T̃ where each entry i in T

is replaced by an i + 1. Similarly, for each e−αi
, where each entry i in T is replaced

by an i − 1. As Φ1 is a sum over 1-paths that move entries up the diagram, acting
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with eαi
and applying Φ1 to the sum is the same as the opposite order. Then as the

simple root vectors generate gl(V ), Φ1 is gl(V )-equivariant.

4.1.3

To prove Theorem 4.1.1, it remains to show that

Φ1(Rλ,n) ⊂ F1 ⊗Rλ\X,n.

It is clear that Φ1 preserves property 1.2.6.1 as it is a sum over all 1-paths. It remains

to show that property 1.2.6.2 holds, i.e. for all T ∈ Fλ,n and all A ⊂ T0 with |A| > wA,

Φ1(GA(T )) ∈ F1 ⊗Rλ\X,n. (4.1.3.1)

By Theorem 3.1.1, it is enough to show that equation 4.1.3.1 holds for all hooks

A. If A is a hook, either A is completely contained in a block [b], with 1 ≤ b ≤ N , or

A is contained in two blocks, [b] and [b+1], with 1 ≤ b ≤ N − 1 as in Figure 4.1. We

consider these two options separately.

A0

A1 · · · Awb

(a) A hook A ⊂ [b].

A0

A1 · · · Awb+1

(b) A hook A ⊂ [b] ∪ [b+ 1].

Figure 4.1. Hooks contained in a single block or two blocks.
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4.2 Preserving Garnir Relations for Hooks Contained in a Single Block

4.2.1

We first show that Equation 4.1.3.1 holds for all hooks A ⊂ [b], for some 1 ≤ b ≤

N . For the rest of Section 4.2, fix T ∈ Fλ,n and

A = {a0 := [b](i0, 1), a1 := [b](i0 + 1, 1), . . . , awb
:= [b](i0 + 1, wb)} ⊂ T0

with 1 ≤ i0 < hb, so that A ⊂ [b]. Denote the entries of A in T by Ak = Tak for

k = 0, 1, . . . , wb. Then by Lemma 3.1.4, modulo F1 ⊗Rλ\X,n we have

Φ1 (GA(T )) =
∑
P

(−1)P
H(P )

P

(∑
σ∈SA

σT

)
= C
∑
P

wb∑
k=0

(−1)P
H(P )

P
(
σA
k T
)
,

where the sum is over all 1-paths P on λ removing X. The set of all Pk := P (σA
k T ),

which we will generally call “paths,” appearing in the image Φ1 (GA(T )) above is the

union of the following disjoint sets.

The Pks that miss A,

T1 = {Pk : R
P ∩ A = ∅}. (4.2.1.1)

The Pks that hit A and keep A in block [b],

T2 = {Pk : R
P ∩ A �= ∅, P (A) ≤ [b]}. (4.2.1.2)

The Pks that hit A and move the entry Ai above block [b], including P (σA
k Ai) ∈ Y ,

T3 =

wb⊔
i=0

Ti
3, (4.2.1.3)

where

Ti
3 = {Pk : R

P ∩ A �= ∅, P (σA
k Ai) > [b]}.
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We then have, modulo F1 ⊗Rλ\X,n,

Φ1(GA(T )) = C
∑
P

wb∑
k=0

(−1)P
H(P )

P
(
σA
k T
)
= C

3∑
j=1

∑
Pk∈Tj

(−1)P
H(P )

Pk.

4.2.2

We show that for each of the cases (4.2.1.1) - (4.2.1.3),

∑
Pk∈Tj

(−1)P
H(P )

Pk ∈ F1 ⊗Rλ\X,n,

and hence equation 4.1.3.1 holds for all hooks A with A ⊂ [b].

Case (4.2.1.1). In this case we show that the sum over all paths that miss A is in

F1 ⊗Rλ\X,n, i.e.

∑
Pk∈T1

(−1)P
H(P )

Pk ∈ F1 ⊗Rλ\X,n.

Proof. As P misses A for all Pk ∈ T1, P |A = idA, and thus

P
(
σA
k T
)
= YP ⊗ σA

k TP for all 0 ≤ k ≤ wb.

Then modulo F1 ⊗Rλ\X,n we have

∑
Pk∈T1

(−1)P
H(P )

Pk =
∑
P0∈T1

wb∑
k=0

(−1)P
H(P )

P
(
σA
k T
)

=
∑
P0∈T1

wb∑
k=0

(−1)P
H(P )

αP
1 ⊗ σA

k TP

=
∑
P0∈T1

1

CA

(−1)P
H(P )

αP
1 ⊗GA(TP )

= 0.
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Case (4.2.1.2). In this case we show that the sum over all paths that hit A and

keep A in block [b] is in F1 ⊗Rλ\X,n, i.e.

∑
Pk∈T2

(−1)P
H(P )

Pk ∈ F1 ⊗Rλ\X,n.

Proof. For a 1-path P , let P−1 be the unique map of boxes

P−1 : λ ∪ Y → λ ∪ Y

such that for all x ∈ λ ∪ Y , P−1(P (x)) = x. For all k = 0, 1, . . . , wb, let

τAk := PσA
k P

−1 ∈ SP (A),

so that τAk permutes P (a0) and P (ak) and is the identity otherwise. Extend τAk to act

on the entries of TP .

Then, modulo F1 ⊗Rλ\X,n, we have

∑
Pk∈T2

(−1)P
H(P )

Pk =
∑
P0∈T2

wb∑
k=0

(−1)P
H(P )

P
(
σA
k T
)

=
∑
P0∈T2

wb∑
k=0

(−1)P
H(P )

P
(
σA
k P

−1 (P (T ))
)

=
∑
P0∈T2

wb∑
k=0

(−1)P
H(P )

αP
1 ⊗ τAk TP .

As P (A) ⊂ [b] and |P (A)| = wb+1, by the proof of Lemma 3.1.4 we have, modulo

F1 ⊗Rλ\X,n,

∑
P0∈T2

wb∑
k=0

(−1)P
H(P )

αP
1 ⊗ τAk TP =

∑
P0∈T2

1

CA

(−1)P
H(P )

αP
1 ⊗GP (A) (TP ) = 0.
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Remark. Notice that the proofs of Case (4.2.1.1) and Case (4.2.1.2) did not depend

on removing a single box nor on A being contained in a single block, and so this will

generalize to m ≥ 1 for both options of a hook A.

Case (4.2.1.3). In this case we show that the sum over all paths that hit A and

move the entry Ai above block [b] is in F1⊗Rλ\X,n. We will assume that b > b1, as the

case b = b1 can be treated similarly. It is enough to show that for each i = 0, . . . , wb,

∑
Pk∈Ti

3

(−1)P
H(P )

Pk ∈ F1 ⊗Rλ\X,n.

We will show the case i = 0, with the cases i = 1, . . . , wb being similar.

Proof. For the rest of Case (4.2.1.3) let T := T0
3 and, for any 1-path P , let h̃P :=

hP − hP
b . Define the relation ∼ on T by

Pk ∼ Qj ⇐⇒ Q is a ([b](1), [b](i0 + 1))-path extension of P.

It is clear that this defines an equivalence relation on T, so that

∑
Pk∈T

(−1)P
H(P )

Pk =
∑

[Pk]∈T/∼

∑
Qk∈[Pk]

(−1)Q
H(Q)

Qk.

Pick P0 ∈ T with [b](i, 1) ∈ RP for all i = 1, . . . , i0, and let [bu](iu, ju) =

P−1 ([b](1, 1)), with u := T[bu](iu,ju) as in Figure 4.2.

It is then enough to show that

∑
Qk∈[P0]

(−1)Q
H(Q)

Qk ∈ F1 ⊗Rλ\X,n.

In fact, as h̃Q = h̃P and H(Q) = H(P ) for all Qk ∈ [P0], it is enough to show that

∑
Qk∈[P0]

(−1)hQ
b Qk ∈ F1 ⊗Rλ\X,n.
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A0

A1 · · · Aw

u

Figure 4.2. A path P0 with [b](i, 1) ∈ RP for all i = 1, · · · , i0.

Observe that [P0] can be written as the disjoint union

[P0] =
3⊔

i=1

[P0]i,

where the [P0]i are defined as follows.

[P0]1 is the set of all paths acting on σA
0 T as in Figure 4.3,

[P0]1 = {Q0 ∈ [P0]}.

A0

A1 · · · Aw

u

Figure 4.3. The paths in [P0]1 acting on σA
0 T .

[P0]2 is the set of all paths acting on σA
k T for k �= 0 that hit a0 = σA

k ak as in

Figure 4.4,

[P0]2 = {Qk ∈ [P0] : k �= 0, a0 ∈ RQ}.

58



Ak

A0

k

u

Figure 4.4. The paths in [P0]2 acting on σA
k T for k �= 0 that hit a0 = σA

k ak.

[P0]3 is the set of all paths acting on σA
k T for k �= 0 that miss a0 = σA

k ak as in

Figure 4.5,

[P0]3 = {Qk ∈ [P0] : k �= 0, a0 �∈ RQ}.

Ak

A0

k

u

Figure 4.5. The paths in [P0]3 acting on σA
k T for k �= 0 that miss a0 = σA

k ak.

Let T ′ ∈ Fλ\X be the unique tableau with T ′ = TP on (λ \X) \ [b] and T ′ = T on

[b] except T ′
a0

= u, as in Figure 4.6.

Then by Lemma 3.2.3 and applications of GA, modulo F1 ⊗Rλ\X,n, we have

∑
Q0∈[P0]1

(−1)hQ
b Q0 = (−1)i0+i0−1 αP

1 ⊗ T ′

= − αP
1 ⊗ T ′,
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u
A1 · · · Aw

Figure 4.6. The unique tableau T ′ with T ′ = TP on (λ \X) \ [b] and T ′ = T on [b]
except T ′

a0
= u.

∑
Qk∈[P0]2

(−1)hQ
b Qk = (−1)i0+1+i0−1wb αP

1 ⊗ T ′

= wb αP
1 ⊗ T ′,

and

∑
Qk∈[P0]3

(−1)hQ
b Qk = (−1)i0+1+1+i0−1(wb − 1) αP

1 ⊗ T ′

= −(wb − 1) αP
1 ⊗ T ′.

As

∑
Qk∈[P0]

(−1)hQ
b Qk =

3∑
i=1

∑
Qk∈[P0]i

(−1)hQ
b Qk,

modulo F1 ⊗Rλ\X,n, we have

∑
Qk∈[P0]

(−1)hQ
b Qk = (−1 + wb − wb + 1) αP

1 ⊗ T ′

= 0.
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4.3 Preserving Garnir Relations for Hooks Contained in Two Blocks

4.3.1

We now show that Equation 4.1.3.1 holds for all hooks A ⊂ [b] ∪ [b+ 1] for some

1 ≤ b ≤ N − 1. For the rest of Section 4.3, fix T ∈ Tλ,n and

A = {a0 := [b](hb, 1), a1 := [b+ 1](1, 1), . . . , awb+1
:= [b+ 1](1, wb+1)} ⊂ T0,

so that A ⊂ [b]∪[b+1]. Denote the entries of A in T by Ak = Tak for k = 0, 1, . . . , wb+1.

Then by Lemma 3.1.4, modulo F1 ⊗Rλ\X,n, we have

Φ1 (GA(T )) =
∑
P

(−1)P
H(P )

P

(∑
σ∈SA

σT

)
= C
∑
P

wb+1∑
k=0

(−1)P
H(P )

P
(
σA
k T
)
,

where the sum is over all 1-paths P on λ removing X. The set of all Pk := P (σA
k T )

appearing in the image Φ1 (GA(T )) above is the union of the following disjoint sets.

The Pks that miss A,

T1 = {Pk : R
P ∩ A = ∅}. (4.3.1.1)

The Pks that hit A and keep A in blocks [b] and [b+ 1],

T2 = {Pk : R
P ∩ A �= ∅, P (A) ≤ [b+ 1]}. (4.3.1.2)

The Pks that hit A and move the entry Ai above block [b+ 1], including the case

P (σA
k Ai) ∈ Y ,

T3 =

wb+1⊔
i=0

Ti
3 (4.3.1.3)

where

Ti
3 = {Pk ∈ T3 : R

P ∩ A �= ∅, P (σA
k Ai) > [b+ 1]}.
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Then we have, modulo F1 ⊗Rλ\X,n,

Φ1(GA(T )) = C
∑
P

wb+1∑
k=0

(−1)P
H(P )

P
(
σA
k T
)
= C

3∑
j=1

∑
Pk∈Tj

(−1)P
H(P )

Pk.

4.3.2

We show that for each of the cases (4.3.1.1) - (4.3.1.3),

∑
Pk∈Tj

(−1)P
H(P )

Pk ∈ F1 ⊗Rλ\X,n,

and hence Equation 4.1.3.1 holds for all hooks A ⊂ [b]∪ [b+1]. Case (4.3.1.1) follows

from the proof of Case (4.2.1.1) and Case (4.3.1.2) follows from the proof of Case

(4.2.1.2). It remains to show Case (4.3.1.3).

Case (4.3.1.3). In this case we show that the sum over all paths that hit A and

move the entry Ai above block [b+1] is in F1⊗Rλ\X,n. It is enough to show that for

i = 0, . . . , wb+1,

∑
Pk∈Ti

3

(−1)P
H(P )

Pk ∈ F1 ⊗Rλ\X,n.

We will show the case i = 0, with the cases i = 1, . . . , wb+1 being similar.

Proof. Note that as we are considering paths that hit A in this case, we must have

that b ≥ b1 − 1. We will consider the case b = b1 − 1 (and hence awb+1
= x1) and the

case b > b1 − 1 separately.
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Subcase (4.3.1.3.1). We first show the case where b = b1 − 1. We want to show

that

∑
Pk∈T0

3

(−1)P
H(P )

Pk ∈ F1 ⊗Rλ\X,n.

Proof. As a0 < x1, for all Pk ∈ T0
3 we must have k �= 0. We can then write T0

3 as

T0
3 =
⊔

P1∈T0
3

TP1

where

TP1 = {Qk =∈ T0
3 : Q is a ([b+ 1](1), [b+ 1](1))-path extension of P}.

It is then enough to show that for each P1 ∈ T0
3 ,

wb+1∑
k=1

(−1)P
H(P )

P1(σ
A
k T ) ∈ F1 ⊗Rλ\X,n.

Pick a P1 ∈ T0
3 and let A′ = A \ {awb+1} ⊂ λ \X. As |A′| = wb+1 > wb+1 − 1, by the

proof of Lemma 3.1.4 we have

wb+1∑
k=1

P1(σ
A
k T ) =

wb+1∑
k=1

αP
1 ⊗ σA

k (TP )

=
1

CA

αP
1 ⊗GA′ (TP ) ∈ F1 ⊗Rλ\X,n.

Subcase (4.3.1.3.2). We now show the case b > b1. For the rest of Subcase

4.3.1.3.2, let T := T0
3 and for any 1-path P define h̃P := hP − hP

b and

˜H(P ) =
H(P )

Hb(P )Hb+1(P )
.
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Define the relation ∼ on T by

Pk ∼ Qj ⇐⇒ Qj is a ([b](1), [b+ 1](1))-path extension of P.

It is clear that this defines an equivalence relation on T, so that

∑
Pk∈T

(−1)P
H(P )

Pk =
∑

[Pk]∈T/∼

∑
Qk∈[Pk]

(−1)Q
H(Q)

Qk.

Pick P0 ∈ T with [b](i, 1) ∈ RP for all i = 1, . . . , hb, and let [bu](iu, ju) =

P−1([b](1, 1)) with u := T[bu](iu,ju) as in Figure 4.7.

P0 =
A0

A1 · · · Aw

u

Figure 4.7. A path P0 with [b](i, 1) ∈ RP for all i = 1, . . . , hb.

It is then enough to show that

∑
Qk∈[P0]

(−1)Q
H(Q)

Qk ∈ F1 ⊗Rλ\X,n.

In fact, as h̃Q = h̃P and ˜H(Q) = ˜H(P ) for all Qk ∈ [P0], it is enough to show that

∑
Qk∈[P0]

(−1)hQ
b

Hb(Q)Hb+1(Q)
Qk ∈ F1 ⊗Rλ\X,n.

Observe that [P0] can be written as the disjoint union

T =
6⊔

i=1

[P0]i,

where the [P0]i are defined as follows.
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[P0]1 is the set of all paths acting on σA
0 T as in Figure 4.8,

[P0]1 = {Q0 ∈ [P0]}.

A0

A1 · · · Aw

u

Figure 4.8. The paths in [P0]1 acting on σA
0 T .

[P0]2 is the set of all paths acting on σA
k T for k �= 0 that miss block [b] as in Figure

4.9,

[P0]2 = {Qk ∈ [P0] : k �= 0, RQ ∩ [b] = ∅}.

Ak

A0

k

u

Figure 4.9. The paths in [P0]2 acting on σA
k T for k �= 0 that miss block [b].

[P0]3 is the set of all paths acting on σA
k T for k �= 0 that hit a0 = σa

kak as in Figure

4.10,

[P0]3 = {Qk ∈ [P0] : k �= 0, a0 ∈ RQ}.
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Ak

A0

k

u

Figure 4.10. The paths in [P0]3 acting on σA
k T for k �= 0 that hit a0 = σa

kak.

[P0]4 is the set of all paths acting on σA
k T for k �= 0 that miss a0 = σa

kak but hit

row [b](hb) as in Figure 4.11,

[P0]4 = {Qk ∈ [P0] : k �= 0, [b](hb, j) ∈ RQ for some 2 ≤ j ≤ wb}.

Ak

A0

k

u

Figure 4.11. The paths in [P0]4 acting on σA
k T for k �= 0 that miss a0 = σa

kak but hit
row [b](hb).

[P0]5 is the set of all paths acting on σA
k T for k �= 0 that miss row [b](hb) and leave

block [b] from an odd row and [P0]6 is the set of all paths acting on σA
k T for k �= 0

that miss row [b](hb) and leave block [b] from an even row as in Figure 4.12,

[P0]5 = {Qk ∈ EP : k �= 0, Q([b](i, j)) = ak for some 1 ≤ j ≤ wb, 1 ≤ i < hb, i odd},

and

[P0]6 = {Qk ∈ EP : k �= 0, Q([b](i, j)) = ak for some 1 ≤ j ≤ wb, 1 ≤ i < hb, i even}.
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Ak

A0

k

u

Figure 4.12. The paths in [P0]5 and [P0]5 acting on σA
k T for k �= 0 that miss row

[b](hb) and leave block [b] from an odd or even row, respectively.

Let T ′ ∈ Fλ\X,n be the unique tableau with T ′ = TP on (λ \ X) \ ([b] ∪ [b+ 1])

and T ′ = T on [b] ∪ [b+ 1] except T ′
a0

= u, as in Figure 4.13.

u
A1 · · · Aw

Figure 4.13. The unique tableau T ′ with T ′ = TP on (λ \X) \ ([b] ∪ [b+ 1]) and
T ′ = T on [b] ∪ [b+ 1] except T ′

a0
= u.

By Lemma 3.2.3 and applications of GA we have, modulo F1 ⊗Rλ\X,n,

∑
Q0∈[P0]1

(−1)hQ
b Q0 =

(−1)hb+hb−1

H(b)
αP
1 ⊗ T ′

=
−H(b+ 1)

H(b)H(b+ 1)
αP
1 ⊗ T ′,

∑
Qk∈[P0]2

(−1)hQ
b Qk =

(−1)1+1

H(b+ 1)
αP
1 ⊗ T ′

=
H(b)

H(b)H(b+ 1)
αP
1 ⊗ T ′,
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∑
Qk∈[P0]3

(−1)hQ
b Qk =

(−1)hb+1+hb−1wb+1

H(b)H(b+ 1)
αP
1 ⊗ T ′

=
wb+1

H(b)H(b+ 1)
αP
1 ⊗ T ′,

∑
Qk∈[P0]4

(−1)hQ
b Qk =

(−1)hb+1+1+hb−1(wb − 1)

H(b)H(b+ 1)
αP
1 ⊗ T ′

=
1− wb

H(b)H(b+ 1)
αP
1 ⊗ T ′,

∑
Qk∈[P0]5

(−1)hQ
b Qk =

∑
1≤i<hb
i odd

(−1)i+1+1+i−1+1

H(b)H(b+ 1)
αP
1 ⊗ T ′

=
∑

1≤i<hb
i odd

1

H(b)H(b+ 1)
αP
1 ⊗ T ′,

and

∑
Qk∈[P0]5

(−1)hQ
b Qk =

∑
1≤i<hb
i even

(−1)i+1+1+i−1+1

H(b)H(b+ 1)
αP
1 ⊗ T ′

=
∑

1≤i<hb
i even

1

H(b)H(b+ 1)
αP
1 ⊗ T ′.

Then as H(b+ 1) = H(b) + wb+1 − wb + hb and∑
1≤i<hb
i odd

1

H(b)H(b+ 1)
αP
1 ⊗ T ′ +

∑
1≤i<hb
i even

1

H(b)H(b+ 1)
αP
1 ⊗ T ′

=
hb − 1

H(b)H(b+ 1)
αP
1 ⊗ T ′

we get, modulo F1 ⊗Rλ\X,n,∑
Qk∈[P0]

(−1)hQ
b Qk =

∑
i=1,...,6

∑
Qk∈[P0]i

(−1)hQ
b Qk
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=
−H(b+ 1) +H(b) + wb+1 + 1− wb + hb − 1

H(b)H(b+ 1)
αP
1 ⊗ T ′

= 0.

Thus Equation 4.1.3.1 holds for all hooks A ⊂ [b]∪ [b+1], which proves Theorem

4.1.1.
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CHAPTER FIVE

The Pieri Inclusion Removing Many Boxes is a GL(V )-map

In this chapter we show that the Pieri inclusion removing many boxes is a GL(V )-

map. As in Chapter Four, we start by stating this as a theorem and then prove it in

the two possible cases.

5.1 The Theorem Statement and Set-Up

5.1.1

Let X = {x1 = [b1](1, wb1), . . . , xm = [bm](im, wbm)} ⊂ λ be a removal set and

Φm : Fλ,n → Fm ⊗Fλ\X,n

be as in Section 2.2.4.

Theorem. Φm is a GL(V )-map, i.e. Φm descends to

Φm : Sλ(V )→ Fm ⊗ Sλ\X(V )

and Φm is GL(V )-equivariant.

5.1.2

As before, it is clear that Φm is gl(V )-equivariant by construction. To prove

Theorem 5.1.1, it remains to show that

Φm(Rλ,n) ⊂ Fm ⊗Rλ\X,n.

It is clear that Φm preserves Property 1.2.6.1 as it is a sum over all m-paths, and

hence we must show that Property 1.2.6.2 holds, i.e. for all T ∈ Fλ,n and all A ⊂ T0
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with |A| > wA,

Φm (GA(T )) ∈ Fm ⊗Rλ\X,n. (5.1.2.1)

Recall that by Theorem 3.1.1, it is enough to show that 5.1.2.1 holds for all hooks

A. As any hook consists of exactly two rows at most two orbits of any m-path can

intersect A, and so it is enough to show that Equation 5.1.2.1 holds for m = 2. As

before, there are two options for hooks in T0, which we consider separately. For the

rest of Chapter 5, fix the removal set

X = {x1 = [b1](1, wb1), x2 = [b2](i2, wb2)}.

5.2 Preserving Garnir Relations for Hooks Contained in a Single Block

5.2.1

We first show that Equation 5.1.2.1 holds when m = 2 for all hooks A ⊂ [b], for

some 1 ≤ b ≤ N . For the rest of Section 5.2, fix T ∈ Fλ,n and let

A = {a0 := [b](i0, 1), a1 = [b](i0 + 1, 1), . . . , awb
= [b](i0 + 1, wb)} ⊂ T0

with 1 ≤ i0 < hb, so that A ⊂ [b]. Denote the entries of A in T by Ak = Tak for

k = 0, 1, . . . , wb. Then by Lemma 3.1.4, modulo F2 ⊗Rλ\X,n,

Φ2 (GA(T )) =
∑
P

(−1)P
H(P )

P

(∑
σ∈SA

σT

)

= C
∑
P

wb∑
k=0

(−1)P
H(P )

P
(
σA
k T
)
,

where the sum is over all 2-paths P on λ removing X. The set of all Pk := P (σA
k T )

appearing in the image Φ2 (GA(T )) above is the union of the following disjoint sets.
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The Pks that miss A,

T1 = {Pk : R
P ∩ A = ∅}. (5.2.1.1)

The Pks that hit A and keep A in block [b],

T2 = {Pk : R
P ∩ A �= ∅, P (A) ⊂ [b]}. (5.2.1.2)

The Pks that have exactly one orbit in [b] and move Ai above [b],

T3 =
⊔

0≤i≤wb

Ti
3 (5.2.1.3)

where

Ti
3 = {Pk : exactly one of R1, R2 intersects [b] and P (σkAi) > [b]}.

The Pks that move Ai and Aj above [b],

T4 =
⊔

0≤i<j≤wb

T
i,j
4 (5.2.1.4)

where

T
i,j
4 = {Pk ∈ T4 : P (σA

k ai) > [b] and P (σA
k aj) > [b]}.

The Pks that move Ai and a box z ∈ [b], with z < A, above [b],

T5 =
⊔

0≤i≤wb, z=[b](iz ,jz),
1≤iz≤i0−1,1≤jz≤wb

T
i,z
5 , (5.2.1.5)

where

T
i,z
5 = {Pk ∈ T5 : P (σA

k ai) > [b], P (z) > [b]}.

The Pks that move Ai and a box z �∈ A in row i0 above [b],

T6 =
⊔

0≤i≤wb, 2≤j≤wb

T
i,j
6 (5.2.1.6)

where

T
i,j
6 = {Pk ∈ T6 : P (σA

k ai) > [b], P ([b](i0, j)) > [b]}.
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The Pks that move Ai and a box in [b] above A above [b],

T7 =
⊔

0≤i≤wb
1≤j≤wb

T
i,j
7 (5.2.1.7)

where

T
i,j
7 = {Pk ∈ T7 : P (σA

k Ai) > [b], [b](i0 + 2, j) ∈ RP}.

Then, modulo F2 ⊗Rλ\X,n, we have

Φ2 (GA(T )) = C
∑
P

wb∑
k=0

(−1)P
H(P )

P
(
σA
k T
)

= C
∑

j=1,...,7

∑
Pk∈Tj

(−1)P
H(P )

Pk.

5.2.2

We show that for j = 1, . . . , 7,

∑
Pk∈Tj

(−1)P
H(P )

Pk ∈ F2 ⊗Rλ\X,n,

and hence Equation 5.1.2.1 holds when m = 2 for all blocks A ⊂ [b]. The proofs of

Cases (5.2.1.1), (5.2.1.2), and (5.2.1.3) are similar to the proofs of Cases (4.2.1.1),

(4.2.1.2), and (4.2.1.3), respectively. It remains to show the proofs of Cases (5.2.1.4),

(5.2.1.5), (5.2.1.6), and (5.2.1.7). In each case we will assume b > b1, with the case

b = b1 being similar. We will also assume in each case that A∩X = ∅, as if A∩X �= ∅

we may follow the proof of Subcase (4.3.1.3.1).
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Case (5.2.1.4). In this case we show that the sum over all paths that move Ai

and Aj above [b] is in F2 ⊗Rλ\X,n. Recall that

T4 =
⊔

0≤i<j≤wb

T
i,j
4 ,

where

T
i,j
4 = {Pk ∈ T4 : P (σA

k ai) > [b] and P (σA
k aj) > [b]}.

It is enough to show that for 0 ≤ i < j ≤ wb,

∑
Pk∈Ti,j

4

(−1)P
H(P )

Pk ∈ F2 ⊗Rλ\X,n.

We will show the case i = 0 and j = 1, with rest being similar.

Proof. For the rest of Case (5.2.1.4) let T := T
0,1
4 . Observe that for all Pk ∈ T, either

k = 0 or k = 1, as otherwise σP
k A0 and σA

k A1 are in the same row.

Next we will define for each P0 ∈ T a unique P ′
1 ∈ T that agrees with P except

on {a0, a1}. See Figure 5.1. The conditions on P ′
1 will depend on whether or not P

“removes” (i.e. maps to Y ) either or both of a0, a1. We want to construct P ′
1 so that

it sends A0 and A1 to the same place P does, but with the freedom to do so with

either the orbit of x1 or x2. For each P0 ∈ T, let P ′
1 ∈ T such that P ′ ≡ P except on

{a0, a1}, and

• if {P (a0), P (a1)} ∩ Y = ∅,

P ′(σA
1 a0) = P (a0) and P ′(σA

1 (a1)) = P (a1).

• if P (a0) ∈ Y and P (a1) �∈ Y ,

P ′(σA
1 a0) ∈ Y and P ′(σA

1 (a1)) = P (a1).
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• if P (a0) �∈ Y and P (a1) ∈ Y ,

P ′(σA
1 a0) = P (a0) and P ′(σA

1 (a1)) ∈ Y.

• if {P (a0), P (a1)} = Y ,

{P ′(σA
1 a0), P

′(σA
1 (a1))} = Y.

P0 =

A0

A1 · · · Aw

u v
P ′
1 =

A1

A0 · · · Aw

u v

Figure 5.1. A path P0 removing the entries A0 and A1 from block [b] and its dual
path P ′

1.

It is clear that for for each P0 ∈ T the choice of P ′
1 is unique, and that all Q1 ∈ T

arise in such a way. Thus

∑
Pk∈T

(−1)P
H(P )

Pk =
∑
P0∈T

(
(−1)P
H(P )

P0 +
(−1)P ′

H(P ′)
P ′
1

)

As (−1)P = (−1)P ′
and H(P ) = H(P ′), it is then enough to show that∑

P0∈T
P0 + P ′

1 ∈ F2 ⊗Rλ\X,n.

We will in fact show that for each P0 ∈ T, P0 + P ′
1 ∈ F2 ⊗ Rλ\X,n. Pick P0

and the corresponding P ′
1 ∈ T and let u = P−1(a0) and v = P−1(A1). Let T ′ ∈

Fλ\X,n be the unique tableau with T ′ = TP on (λ \ X) \ {[b](i0), [b](i0 + 1)} and

T ′ = T on {[b](i0), [b](i0 + 1)} except T ′
a0

= u and T ′
a1

= v, as in Figure 5.2.
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Then, modulo F2 ⊗Rλ\X,n,

P0 + P ′
1 =

(
αP
2

αP
1

+
αP
1

αP
2

)
⊗ T ′

= 0.

u

v A2 · · · Aw

Figure 5.2. The unique tableau T ′ corresponding to the path P0.

Case (5.2.1.5). In this case we show that the sum over all paths that move Ai

and a box z ∈ [b], with z < A, above [b] is in F2 ⊗Rλ\X,n. Recall that

T5 =
⊔

0≤i≤wb, z=[b](iz ,jz),
1≤iz≤i0−1,1≤jz≤wb

T
i,z
5 ,

where

T
i,z
5 = {Pk ∈ T5 : P (σA

k ai) > [b], P (z) > [b]}.

It is enough to show that

∑
Pk∈T0,z

5

(−1)P
H(P )

Pk ∈ F2 ⊗Rλ\X,n,

for some z = [b](iz, jz) a fixed box with Z = Tz, 1 ≤ iz ≤ i0−1 odd, and 1 ≤ jz ≤ wb,

with the other cases being similar.
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Proof. For the rest of Case (5.2.1.5) let T := T
0,z
5 and, for any 2-path P , let h̃P :=

hP − hP
b . Define the relation ∼ on T by

Pk ∼ Qj ⇐⇒ Q is a ([b](1), [b](i0 + 1))-path extension of P

and if P (u) ∈ [b](1) for some box u < [b], then Q(u) ∈ [b](1).

It is clear that this defines an equivalence relation on T, so that

∑
Pk∈T0,z

5

(−1)P
H(P )

Pk =
∑

[Pk]∈T/∼

∑
Qk∈[Pk]

(−1)Q
H(Q)

Qk.

Pick P0 ∈ T with [b](i, 1) ∈ RP for all 1 ≤ i �= iz ≤ i0, and let [bu](iu, ju) =

P−1([b](1, 1)) and [bv](iv, jv) = P−1([b](2, 1)) with u = T[bu](iu,ju) and v = T[bv ](iv ,jv).

See Figure 5.3.

A0

A1 · · · Aw

Z

u v

Figure 5.3. A path P0 removing the entries A0 and Z from block [b].

It is then enough to show that

∑
Qk∈[P0]

(−1)Q
H(Q)

Qk ∈ F2 ⊗Rλ\X,n.

In fact, as h̃Q = h̃P and H(Q) = H(P ) for all Qk ∈ [P0], it is enough to show that∑
Qk∈[P0]

(−1)hQ
b Qk ∈ F2 ⊗Rλ\X,n.
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Observe that [P0] can be written as the disjoint union

[P0] =
3⊔

i=1

[P0]i,

where the [P0]i are defined as follows.

[P0]1 is the set of all paths acting on σA
0 T as in Figure 5.4,

[P0]1 = {Q0 ∈ [P0]}.

A0

A1 · · · Aw

Z

u v

Figure 5.4. The paths in [P0]1 acting on σA
0 T .

[P0]2 is the set of all paths acting on σA
k T for k �= 0 that hit a0 = σA

k ak as in

Figure 5.5,

[P0]2 = {Qk ∈ [P0] : k �= 0, a0 ∈ RQ}.

[P0]3 is the set of all paths acting on σA
k T for k �= 0 that miss a0 = σA

k ak as in

Figure 5.6,

[P0]3 = {Qk ∈ [P0] : k �= 0, a0 �∈ RQ}.

Let T ′ ∈ Fλ\X be the unique tableau with T ′ = TP on (λ \X) \ [b] and T ′ = T on

[b] except T ′
z = v and T ′

a0
= u as in Figure 5.7.
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Ak

A0

k

Z

u v

Figure 5.5. The paths in [P0]2 acting on σA
k T for k �= 0 that hit a0 = σA

k ak.

Ak

A0

k

Z

u v

Figure 5.6. The paths in [P0]3 acting on σA
k T for k �= 0 that miss a0 = σA

k ak.

u
A1 · · · Aw

v

Figure 5.7. The unique tableau T ′ with T ′ = TP on (λ \X) \ [b] and T ′ = T on [b]
except T ′

z = v and T ′
a0

= u.
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Then by Corollary 3.2.4 and applications of GA, modulo F2 ⊗Rλ\X,n we have

∑
Qk∈[P0]1

(−1)hQ
b Qk = (−1)i0+i0−2+iz−2

αP
2

αP
1

⊗ T ′

= − αP
2

αP
1

⊗ T ′,

∑
Qk∈[P0]2

(−1)hQ
b Qk = (−1)i0+1+i0−2+iz−2(wb)

αP
2

αP
1

⊗ T ′

= wb

αP
2

αP
1

⊗ T ′,

and

∑
Qk∈[P0]3

(−1)hQ
b Qk = (−1)i0+1+1+i0−2+iz−2(wb − 1)

αP
2

αP
1

⊗ T ′

= −wb + 1
αP
2

αP
1

⊗ T ′.

Thus modulo F2 ⊗Rλ\X,n we have

∑
Qk∈[P0]

(−1)hQ
b Qk = (−1 + wb − wb + 1)

αP
2

αP
1

⊗ T ′

= 0.

Case (5.2.1.6). In this case we show that the sum over all paths that that move

Ai and a box z �∈ A in row i0 above [b] is in F2 ⊗Rλ\X,n. Recall that

T6 =
⊔

0≤i≤wb, 2≤j≤wb

T
i,j
6 ,
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where

T
i,j
6 = {Pk ∈ T6 : P (σA

k ai) > [b], P ([b](i0, j)) > [b]}.

It is enough to show that

∑
Pk∈T0,2

6

(−1)P
H(P )

Pk ∈ F2 ⊗Rλ\X,n,

with the other cases being similar.

Proof. Let z := [b](i0, 2) and Z := Tz, and observe that T
0,2
6 is the union of the

following disjoint sets:

T
0,2,1
6 = {Pk ∈ T

0,2
6 : P (σA

k a0), P (z) �∈ Y },

T
0,2,2
6 = {Pk ∈ T

0,2
6 : P (σA

k a0) ∈ Y, P (z) �∈ Y },

T
0,2,3
6 = {Pk ∈ T

0,2
6 : P (z) ∈ Y, P (σA

k a0) �∈ Y }, and

T
0,2,4
6 = {Pk ∈ T

0,2
6 : P (σA

k a0), P (z) ∈ Y }.

It is enough to show that for 1 ≤ i ≤ 4,

∑
Pk∈T0,2,i

6

(−1)P
H(P )

Pk ∈ F2 ⊗Rλ\X,n.

Define the relation ∼i on T
0,2,i
6 , for 1 ≤ i ≤ 4, as follows. Define ∼1 on T

0,2,1
6 by

Pk ∼1 Qj ⇐⇒ Q is a ([b](1), [b](i0 + 1))-path extension of P,

Q(σA
j A0) = P (σA

k A0), and Q(Z) = P (Z).

Define ∼2 on T
0,2,2
6 by

Pk ∼2 Qj ⇐⇒ Q is a ([b](1), [b](i0 + 1))-path extension of P,

and Q(Z) = P (Z).
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Define ∼3 on T
0,2,3
6 by

Pk ∼3 Qj ⇐⇒ Q is a ([b](1), [b](i0 + 1))-path extension of P,

and Q(σA
j A0) = P (σA

k A0).

Define ∼4 on T
0,2,4
6 by

Pk ∼4 Qj ⇐⇒ Q is a ([b](1), [b](i0 + 1))-path extension of P.

It is clear that for 1 ≤ i ≤ 4 ∼i an equivalence relation on T
0,2,i
6 , so that

∑
Pk∈T0,2,i

6

(−1)P
H(P )

Pk =
∑

[Pk]∈T0,2,i
6 /∼i

∑
Qk∈[Pk]

(−1)Q
H(Q)

Qk.

Thus it is enough to show that for 1 ≤ i ≤ 4,

∑
[Pk]∈T0,2,i

6 /∼i

∑
Qk∈[Pk]

(−1)Q
H(Q)

Qk ∈ F2 ⊗Rλ\X,n.

We will show the case i = 1, with the rest being similar. For the rest of Case

(5.2.1.6), let T := T
0,2,1
6 . For l = 1, 2, let Txl

be the set of all Qk in T such that the

orbit of xl intersects the first row in [b],

Txl
= {Pk ∈ T : RP

l ∩ [b](1) �= ∅}.

As a0 = [b](i0, 1) and z = [b](i0, 2) are in the same row, it must be that 1 ≤ k ≤ wb

for all Pk ∈ T. Pick P1 ∈ T with [b](i, 1) ∈ RP for all i = 1, . . . , i0 − 1, and let

[bu](iu, ju) = P−1([b](1, 1)) and [bv](iv, jv) = P−1([b](2, 1)) with u = T[bu](iu,ju) and

v = T[bv ](iv ,jv) as in Figure 5.8.

It is then enough to show that

∑
Qk∈[P1]

(−1)Q
H(Q)

Qk ∈ F2 ⊗Rλ\X,n.
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ZAk

A0

k

u v

Figure 5.8. A path P1 with [b](i, 1) ∈ RP for all i = 1, . . . , i0 − 1.

In fact, as (−1)P = (−1)Q and H(Q) = H(P ) for all Qk ∈ [P1], it is enough to show

that ∑
Qk∈[P1]

Qk ∈ F2 ⊗Rλ\X,n.

Assume, without loss of generality, that P1 ∈ Tx1 , and let [P1]1 = [P1] ∩ Tx1 and

[P1]2 = [P1] ∩ Tx2 , so that

[P1] = [P1]x1

⊔
[P1]x2

.

See Figure 5.9.

ZAk

A0

k

u v

(a) Qk ∈ [P1]x1

ZAk

A0

k

u v

(b) Qk ∈ [P1]x2

Figure 5.9. Paths in [P1]x1 and [P1]x2 removing the entries A0 and Z from block [b].
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Let T ′ ∈ Fλ\X be the unique tableau with T ′ = TP on (λ \X) \ [b] and T ′ = T on

[b] except T ′
a0

= u and T ′
z = v. See Figure 5.10

u v
A1 · · · Aw

Figure 5.10. The unique tableau T ′ with T ′ = TP on (λ \X) \ [b] and T ′ = T on [b]
except T ′

a0
= u and T ′

z = v

By the proof of Lemma 3.2.3, the result of Corollary 3.2.4 still holds when moving

u and v to boxes in the same row, which we have here after applying GA. This gives,

modulo F2 ⊗Rλ\X,n,∑
Qk∈[P1]

Qk =
∑

Qk∈[P1]x1

Qk +
∑

Qk∈[P1]x2

Qk

= (−1)i0+1+1+2(i0−1)
αP
2

αP
1

⊗ T ′ + (−1)i0+1+1+2(i0−1)
αP
1

αP
2

⊗ T ′

= 0.

Case (5.2.1.7). In this section we show that the sum over all paths that move Ai

and a box in [b] above A above [b] is in F2 ⊗ Rλ\X,n. Note that for any such path,

there must be a box [b](i0 + 2, j) ∈ RP . Recall that

T7 =
⊔

0≤i≤wb
1≤j≤wb

T
i,j
7 ,
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where

T
i,j
7 = {Pk ∈ T7 : P (σA

k Ai) > [b], [b](i0 + 2, j) ∈ RP}.

For l = 1, 2, let T7,xl
be the set of all Pk in T7 such that the orbit of xl intersects the

first row in [b],

T7,xl
= {Pk ∈ T7 : R

P
l ∩ [b](1) �= ∅}.

Then

T7 = T7,x1

⊔
T7,x2 ,

and letting

T
i,j
7,xl

= T7,xl

⋂
T
i,j
7 ,

we have

T7 =
⊔

l=1,2, 0≤i≤wb
1≤j≤wb

T
i,j
7,xl

.

It is then enough to show that

∑
Pk∈T0,1

7,x1

(−1)P
H(P )

Pk ∈ F2 ⊗Rλ\X,n,

with z = [b](i0 + 2, 1) and Z = Tz, with the other cases being similar.

Proof. For the rest of Case (5.2.1.7) let S be the set of all Pk ∈ T
0,1
7,x1

that hit a box

other than a0 in row [b](i0),

S := {Pk ∈ T
0,1
7,x1

: [b](i0, j) ∈ RP for some 2 ≤ j ≤ wb},

and let T := T 0,1
7,x1

\ S. One can show

∑
Pk∈S

(−1)P
H(P )

Pk ∈ F2 ⊗Rλ\X,n
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by following the proof of Case (5.2.1.6). It remains to show

∑
Pk∈T

(−1)P
H(P )

Pk ∈ F2 ⊗Rλ\X,n.

Observe that T is the union of the following disjoint sets:

T1 = {Pk ∈ T : P (σA
k A0), P (Z) �∈ Y },

T2 = {Pk ∈ T : P (σA
k A0) ∈ Y, P (Z) �∈ Y },

T3 = {Pk ∈ T : P (Z) ∈ Y, P (σA
k A0) �∈ Y }, and

T4 = {Pk ∈ T : P (σA
k A0), P (Z) ∈ Y }.

So, it is enough to show that for 1 ≤ i ≤ 4,

∑
Pk∈Ti

(−1)P
H(P )

Pk ∈ F2 ⊗Rλ\X,n.

Define the relation ∼i on Ti, for 1 ≤ i ≤ 4, as follows. Define ∼1 on T1 by

Pk ∼1 Qj ⇐⇒ Q is a ([b](i0), [b](i0 + 1))-path extension of P,

Q(σA
j A0) = P (σA

k A0), and Q(Z) = P (Z).

Define ∼2 on T2 by

Pk ∼2 Qj ⇐⇒ Q is a ([b](i0), [b](i0 + 1))-path extension of P,

and Q(Z) = P (Z).

Define ∼3 on T3 by

Pk ∼3 Qj ⇐⇒ Q is a ([b](i0), [b](i0 + 1))-path extension of P,

and Q(σA
j A0) = P (σA

k A0).

Define ∼4 on T4 by

Pk ∼4 Qj ⇐⇒ Q is a ([b](i0), [b](i0 + 1))-path extension of P.
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It is clear that for 1 ≤ i ≤ 4, ∼i an equivalence relation on Ti, so that

∑
Pk∈Ti

(−1)P
H(P )

Pk =
∑

[Pk]∈Ti/∼i

∑
Qk∈[Pk]

(−1)Q
H(Q)

Qk.

Thus it is enough to show that for 1 ≤ i ≤ 4,

∑
[Pk]∈Ti/∼i

∑
Qk∈[Pk]

(−1)Q
H(Q)

Qk ∈ F2 ⊗Rλ\X,n.

We will show the case i = 1, with the other cases being similar.

Pick P0 ∈ T1 with A1 ∈ RP and let u := P−1(A0) and v := P−1(A1). See Figure

5.11 and note that the image of Z can be in block [b]. It is then enough to show that

∑
Qk∈[P0]

(−1)Q
H(Q)

Qk ∈ F2 ⊗Rλ\X,n,

with the other cases being similar.

A0

A1 · · · Aw

Z

v
u

Figure 5.11. A path P0 ∈ T1 with A1 ∈ RP .

In fact, as (−1)P = (−1)Q and H(Q) = H(P ) for all Qk ∈ [P0], it is enough to

show that ∑
Qk∈[P0]

Qk ∈ F2 ⊗Rλ\X,n.
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Let [P0]1 = {Q0 ∈ [P0]} and [P0]2 = {Qk ∈ [P0] : 1 ≤ k ≤ wb}, so that

[P0] = [P0]1
⊔

[P0]2 .

See Figure 5.12, where the image of Z can be in [b].

A0

Ak

kZ

v
u

(a) A path Q0 ∈ [P0]1.

Ak

A0

kZ

v
u

(b) A path Qk ∈ [P0]2.

Figure 5.12. The paths in [P0]1 and [P0]2 removing the entry Ak from block [b] and
acting on a box in [b] above A.

Let T ′ ∈ Fλ\X be the unique tableau with T ′ = TP on (λ\X){([b](i0), [b](i0+2))}

and T ′ = T on ([b](i0), [b](i0 + 2)) except T ′
z = v and T ′

a0
= u as in Figure 5.13.

u
A1 · · · Aw

v

Figure 5.13. The unique tableau T ′ with T ′ = TP on (λ \X){([b](i0), [b](i0 + 2))}
and T ′ = T on ([b](i0), [b](i0 + 2)) except T ′

z = v and T ′
a0

= u.
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Then by Corollary 3.2.4 and applications of GA we have, modulo F2 ⊗Rλ\X,n,

∑
Qk∈EP

QK =
∑

Qk∈[P0]1

QK +
∑

Qk∈[P0]2

QK = − αP
2

αP
1

⊗ T ′ − αP
1

αP
2

⊗ T ′ = 0.

5.3 Preserving Garnir Relations for Hooks Contained in Two Blocks

5.3.1

We now show that Equation 5.1.2.1 holds when m = 2 for all hooks A ⊂ [b]∪[b+1]

for some 1 ≤ b ≤ N − 1. For the rest of Section 5.3, fix T ∈ Fλ,n and let

A = {a0 := [b](hb, 1), a1 := [b+ 1](1, 1), . . . , awb+1
:= [b+ 1](1, wb+1)} ⊂ T0

so that A ⊂ [b]∪[b+1]. Denote the entries of A in T by Ak = Tak for k = 0, 1, . . . , wb+1.

Then by Lemma 3.1.4, modulo F2 ⊗Rλ\X,n we have

Φ2 (GA(T )) =
∑
P

(−1)P
H(P )

P

(∑
σ∈SA

σT

)

= C
∑
P

wb+1∑
k=0

(−1)P
H(P )

P
(
σA
k T
)
,

where the sum is over all 2-paths P on λ removing X. The set of all Pk := P (σA
k T )

appearing in the image Φ2 (GA(T )) above is the union of the following disjoint sets.

The Pks that miss A,

T1 = {Pk : R
P ∩ A = ∅}. (5.3.1.1)

The Pks that hit A and keep A in [b] ∪ [b+ 1],

T2 = {Pk : R
P ∩ A �= ∅, P (A) ≤ [b+ 1]}. (5.3.1.2)
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The Pks that have exactly one orbit in [b] ∪ [b+ 1] and move Ai above [b+ 1],

T3 =

wb+1⊔
i=0

Ti
3, (5.3.1.3)

where

Ti
3 = {Pk ∈ T3 : exactly one of RP

x1
, RP

x2
, intersect [b] ∪ [b+ 1]

and P (σA
k Ai) > [b+ 1]}.

The Pks that move Ai and Aj above [b+ 1],

T4 =
⊔

0≤i<j≤wb+1

T
i,j
4 , (5.3.1.4)

where

T
i,j
4 = {Pk : P (σA

k Ai) > [b+ 1], and P (σA
k Aj) > [b+ 1]}.

The Pks that move Ai and a box Z in [b] below A above [b+ 1],

T5 =
⊔

0≤i≤wb+1

z=[b](j,k), 1≤j<hb and 1≤k≤wb

T
i,z
5 , (5.3.1.5)

where

T
i,z
5 = {Pk : P (σA

k Ai) > [b+ 1], P (z) > [b+ 1]}.

The Pks that move Ai and a box other than a0 in row [b](hb) above [b+ 1],

T6 =
⊔

0≤i≤wb+1, 2≤j≤wb

T
i,j
6 , (5.3.1.6)

where

T
i,j
6 = {Pk : P (σA

k Ai) > [b+ 1], P ([b](hb, j)) > [b+ 1]}.

The Pks that move Ai and a box above A above [b+ 1],

T7 =
⊔

0≤i≤wb+1
1≤j≤wb+1

T
i,j
7 , (5.3.1.7)
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where

T
i,z
7 = {Pk : P (σA

k Ai) > [b+ 1], P ([b+ 1](2, j)) ∈ RP}.

Then we have, modulo F2 ⊗Rλ\X,n,

Φ2 (GA(T )) = C
∑
P

wb+1∑
k=0

(−1)P
H(P )

P
(
σA
k T
)

= C
∑

j=1,...,7

∑
Pk∈Tj

(−1)P
H(P )

Pk.

5.3.2

We show that for 1 ≤ j ≤ 7,

∑
Pk∈Tj

(−1)P
H(P )

Pk ∈ F2 ⊗Rλ\X,n,

and hence Equation 5.1.2.1 holds when m = 2 for all blocks A ⊂ [b] ∪ [b+ 1].

The proofs of Case (5.3.1.1) and Case (5.3.1.2) are similar to the proofs of Case

(4.2.1.1) and Case (4.2.1.2), respectively. The proof of Case (5.3.1.3) is similar to the

proof of Case (4.3.1.3), and goes through by observing that using the definition of

H(P ) for a 2-path only adds and subtracts 1 in some of the terms. The proofs of

Case (5.3.1.4) and Case (5.3.1.7) are similar to the proofs of Case (5.2.1.4) and Case

(5.2.1.7), respectively, as these proofs did not depend on H(P ). It remains to show

Case (5.3.1.5) and Case (5.3.1.6). In both cases we assume b > b1 and A∩X = ∅, as

if b = b1 or if A ∩X �= ∅ we may follow the proof of Subcase (4.3.1.3.1).
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Case (5.3.1.5). In this case we show that the sum over all paths that move Ai

and a box Z in [b] below A above [b+ 1] is in F2 ⊗Rλ\X,n. Recall that

T5 =
⊔

0≤i≤wb+1

z=[b](j,k), 1≤j<hb and 1≤k≤wb

T
i,z
5 ,

where

T
i,z
5 = {Pk : P (σA

k Ai) > [b+ 1], P (z) > [b+ 1]}.

It is enough to show that

∑
Pk∈T0,z

5

(−1)P
H(P )

Pk ∈ F2 ⊗Rλ\X,n,

where z = [b](iz, jz) is a fixed box with 1 ≤ iz ≤ hb − 1 odd, 1 ≤ jz ≤ wb+1, and

Z = Tz, with the other cases being similar.

Proof. For the rest of Case (5.3.1.5), let T := T
0,z
5 and, for any 2-path P on λ removing

X, let h̃P = hP −hP
b −hP

b+1 and
˜H(P ) =

H(P )

Hb(P )Hb+1(P )
. Observe that T is the union

of the following disjoint sets:

T1 = {Pk ∈ T : P (σA
k a0), P (z) �∈ Y },

T2 = {Pk ∈ T : P (σA
k a0) ∈ Y, P (z) �∈ Y },

T3 = {Pk ∈ T : P (z) ∈ Y, P (σA
k a0) �∈ Y }, and

T4 = {Pk ∈ T : P (σA
k a0), P (z) ∈ Y }.

So it is enough to show that for 1 ≤ i ≤ 4,

∑
Pk∈Ti

(−1)P
H(P )

Pk ∈ F2 ⊗Rλ\X,n.
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Define the relation ∼i on Ti, for 1 ≤ i ≤ 4, as follows. Define ∼1 on T1 by

Pk ∼1 Qj ⇐⇒ Q is a ([b](1), [b+ 1](1))-path extension of P,

Q(σA
j a0) = P (σA

k a0), and Q(z) = P (z).

Define ∼2 on T2 by

Pk ∼ Qj ⇐⇒ Q is a ([b](1), [b+ 1](1))-path extension of P,

and Q(z) = P (z).

Define ∼3 on T3 by

Pk ∼3 Qj ⇐⇒ Q is a ([b](1), [b+ 1](1))-path extension of P,

and Q(σA
j a0) = P (σA

k a0).

Define ∼4 on T4 by

Pk ∼4 Qj ⇐⇒ Q is a ([b](1), [b+ 1](1))-path extension of P.

It is clear that for 1 ≤ i ≤ 4, ∼i an equivalence relation on Ti, so that

∑
Pk∈Ti

(−1)P
H(P )

Pk =
∑

[Pk]∈Ti/∼i

∑
Qk∈[Pk]

(−1)Q
H(Q)

Qk.

Thus it is enough to show that, for 1 ≤ i ≤ 4,

∑
[Pk]∈Ti/∼i

∑
Qk∈[Pk]

(−1)Q
H(Q)

Qk ∈ F2 ⊗Rλ\X,n.

We will show the case i = 1, with the rest being similar. Pick P0 ∈ T1 with [b](i, 1) ∈

RP for all 1 ≤ i �= iz ≤ hb, and let [bu](iu, ju) = P−1([b](1, 1)) and [bv](iv, jv) =

P−1([b](2, 1)) with u = T[bu](iu,ju) and v = T[bv ](iv ,jv) as in Figure 5.14.

It is then enough to show that

∑
Qk∈[P0]

(−1)Q
H(Q)

Qk ∈ F2 ⊗Rλ\X,n.
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A0

A1 · · · Aw

Z

u v

Figure 5.14. A path P0 with [b](i, 1) ∈ RP for all 1 ≤ i �= iz ≤ hb.

In fact, as h̃Q = h̃P and ˜H(Q) = ˜H(P ) for all Qk ∈ [P0], it is enough to show that

∑
Qk∈[P0]

(−1)hQ
b +hQ

b+1

HQ
b H

Q
b+1

Qk ∈ F2 ⊗Rλ\X,n.

Observe that [P0] can be written as the disjoint union

[P0] =
7⊔

i=1

[P0]i ,

where the [P0]i are defined as follows.

[P0]1 is the set of all paths acting on σ0T as in Figure 5.15,

[P0]1 = {Q0 ∈ [P0]}.

A0

A1 · · · Aw

Z

u v

Figure 5.15. The paths in [P0]1 acting on σ0T .
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[P0]2 is the set of all paths acting on σA
k T for k �= 0 that hit σA

k ak as in Figure

5.16,

[P0]2 = {Qk ∈ [P0] : k �= 0, a0 ∈ RQ},

Ak

A0

k

Z

u v

Figure 5.16. The paths in [P0]2 acting on σA
k T for k �= 0 that hit σA

k ak.

[P0]3 is the set of all paths acting on σA
k T for k �= 0 that miss σA

k ak but hit row

[b](hb) as in Figure 5.17,

[P0]3 = {Qk ∈ [P0] : k �= 0, [b](hb, j) ∈ RQ for some 2 ≤ j ≤ wb},

Ak

A0

k

Z

u v

Figure 5.17. The paths in [P0]3 acting on σA
k T for k �= 0 that miss σA

k ak but hit row
[b](hb).
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[P0]4 is the set of all paths acting on σA
k T for k �= 0 that miss row [b](hb) with RP

2

leaving [b] in a row above Z as in Figure 5.18,

[P0]4 = {Qk ∈ [P0] : k �= 0, Q([b](i, j)) = ak for some iz < i < hb, 1 ≤ j ≤ wb},

Ak

A0

k

Z

← row i

u v

Figure 5.18. The paths in [P0]4 acting on σA
k T for k �= 0 that miss row [b](hb) with

RP
2 leaving [b] in a row above Z.

[P0]5 is the set of all paths acting on σA
k T for k �= 0 that miss row [b](hb) with RP

2

leaving [b] from a row [b](i) below Z with i even as in Figure 5.19,

[P0]5 = {Qk ∈ [P0] : k �= 0, Q([b](i, j)) = σA
k a0 for some 1 ≤ i < iz even,

and 1 ≤ j ≤ wb},

Ak

A0

k

Z

← row i

u v

Figure 5.19. The paths in [P0]5 acting on σA
k T for k �= 0 that miss row [b](hb) with

RP
2 leaving [b] in an even row [b](i) below Z.
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[P0]6 is the set of all paths acting on σA
k T for k �= 0 that miss row [b](hb) with RP

2

leaving [b] from a row [b](i) below Z with i odd as in Figure 5.20,

[P0]6 = {Qk ∈ [P0] : k �= 0, Q([b](i, j)) = σA
k a0 for some 1 ≤ i < iz odd,

and 1 ≤ j ≤ wb},

Ak

A0

k

Z

← row i

u v

Figure 5.20. The paths in [P0]6 acting on σA
k T for k �= 0 that miss row [b](hb) with

RP
2 leaving [b] in an odd row [b](i) below Z.

[P0]7 is the set of all paths acting on σA
k T for k �= 0 with RP

2 missing block [b] as

in Figure 5.21,

[P0]7 = {Qk ∈ [P0] : k �= 0, RP
2 ∩ [b] = ∅}.

Ak

A0

k

Z

u v

Figure 5.21. The paths in [P0]7 acting on σA
k T for k �= 0 with RP

2 missing block [b].
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Let T ′ ∈ Fλ\X be the unique tableau with T ′ = TP on (λ \X) \ [b] ∪ [b + 1] and

T ′ = T on [b] ∪ [b+ 1] except T ′
z = u and T ′

a0
= v as in Figure 5.22.

u
A1 · · · Aw

v

Figure 5.22. The unique tableau T ′ with T ′ = TP on (λ \X) \ [b] ∪ [b+ 1] and
T ′ = T on [b] ∪ [b+ 1] except T ′

z = u and T ′
a0

= v.

Then by Corollary 3.2.4 and applications of GA we have, modulo F2 ⊗Rλ\X,n,

∑
Qk∈[P0]1

(−1)hQ
b +hQ

b+1

HQ
b H

Q
b+1

Qk =
(−1)hb+hb−2+iz−2

H(b)(H(b)− 1)

A0

Z
⊗ T ′

=
−H(b+ 1) + 1

H(b)(H(b)− 1)(H(b+ 1)− 1)

A0

Z
⊗ T ′,

∑
Qk∈[P0]2

(−1)hQ
b +hQ

b+1

HQ
b H

Q
b+1

Qk =
(−1)hb+1+hb−2+iz−2(wb+1)

H(b)(H(b)− 1)(H(b+ 1)− 1)

A0

Z
⊗ T ′

=
wb+1

H(b)(H(b)− 1)(H(b+ 1)− 1)

A0

Z
⊗ T ′

∑
Qk∈[P0]3

(−1)hQ
b +hQ

b+1

HQ
b H

Q
b+1

Qk =
(−1)hb+1+1+hb−2+iz−2(wb − 1)

H(b)(H(b)− 1)(H(b+ 1)− 1)

A0

Z
⊗ T ′

=
−wb + 1

H(b)(H(b)− 1)(H(b+ 1)− 1)

A0

Z
⊗ T ′
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∑
Qk∈[P0]4

(−1)hQ
b +hQ

b+1

HQ
b H

Q
b+1

Qk =

hb−1∑
i=iz+1

(−1)i+1+1+i−2+iz−2+1

H(b)(H(b)− 1)(H(b+ 1)− 1)

A0

Z
⊗ T ′

=
hb − 1− iz

H(b)(H(b)− 1)(H(b+ 1)− 1)

A0

Z
⊗ T ′

∑
Qk∈[P0]5

(−1)hQ
b +hQ

b+1

HQ
b H

Q
b+1

Qk =
∑

1≤i<iz ,
i even

(−1)iz+1+1+iz−2+i−2+1

H(b)(H(b)− 1)(H(b+ 1)− 1)

A0

Z
⊗ T ′

=
∑

1≤i<iz ,
i even

(−1)i+1

H(b)(H(b)− 1)(H(b+ 1)− 1)

A0

Z
⊗ T ′

∑
Qk∈[P0]6

(−1)hQ
b +hQ

b+1

HQ
b H

Q
b+1

Qk =
∑

1≤i<iz ,
i odd

(−1)iz+1+1+iz−2+i−2+1

H(b)(H(b)− 1)(H(b+ 1)− 1)

Z

A0

⊗ T ′

=
∑

1≤i<iz ,
i odd

(−1)i+2

H(b)(H(b)− 1)(H(b+ 1)− 1)

A0

Z
⊗ T ′

and

∑
Qk∈[P0]7

(−1)hQ
b +hQ

b+1

HQ
b H

Q
b+1

Qk =
(−1)iz+1+1+iz−1

(H(b)− 1)(H(b+ 1)− 1)

Z

A0

⊗ T ′

=
H(b)

H(b)(H(b)− 1)(H(b+ 1)− 1)

A0

Z
⊗ T ′.

Then as H(b+ 1) = H(b) + wb+1 − wb + hb and

∑
1≤i<iz ,
i even

(−1)i
H(b)(H(b)− 1)(H(b+ 1)− 1)

A0

Z
⊗ T ′

+
∑

1≤i<iz ,
i odd

(−1)i+1

H(b)(H(b)− 1)(H(b+ 1)− 1)

A0

Z
⊗ T ′

=
iz − 1

H(b)(H(b)− 1)(H(b+ 1)− 1)

A0

Z
⊗ T ′
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we get, modulo F2 ⊗Rλ\X,n

∑
Qk∈[P0]

(−1)hQ
b +hQ

b+1

HQ
b H

Q
b+1

Qk =
∑

i=1,...,7

∑
Qk∈[P0]i

(−1)hQ
b +hQ

b+1

HQ
b H

Q
b+1

Qk

=
−H(b+ 1) + 1 + wb+1 − wb + 1 + hb − 1− iz −+iz − 1 +H(b)

H(b) (H(b)− 1) (H(b+ 1)− 1)

A0

Z
⊗ T ′

= 0

Case (5.3.1.6). In this case we show that the sum over all paths that move Ai

and a box other than a0 in row [b](hb) above [b+ 1] is in F2 ⊗Rλ\X,n. Recall that

T6 =
⊔

0≤i≤wb+1, 2≤j≤wb

T
i,j
6 ,

where

T
i,j
6 = {Pk : P (σA

k Ai) > [b+ 1], P ([b](hb, j)) > [b+ 1]}.

It is enough to show that

∑
Pk∈T0,2

6

(−1)P
H(P )

Pk ∈ F2 ⊗Rλ\X,n,

with the other cases being similar.

Proof. For the rest of Case (5.3.1.6), let z = [b](hb, 2) and Z = Tz, and observe that

T
0,2
6 is the union of the following disjoint sets.

T
0,2,1
6 = {Pk ∈ T

0,2
6 : P (σA

k a0), P (z) �∈ Y },

T
0,2,2
6 = {Pk ∈ T

0,2
6 : P (σA

k a0) ∈ Y, P (z) �∈ Y },

T
0,2,3
6 = {Pk ∈ T

0,2
6 : P (z) ∈ Y, P (σA

k a0) �∈ Y }, and

T
0,2,4
6 = {Pk ∈ T

0,2
6 : P (σA

k a0), P (z) ∈ Y }.
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So it is enough to show that for 1 ≤ i ≤ 4,

∑
Pk∈T0,2,i

6

(−1)P
H(P )

Pk ∈ F2 ⊗Rλ\X,n.

Now define the relation ∼i on T
0,2,i
6 , for 1 ≤ i ≤ 4, as follows. Define ∼1 on T

0,2,1
6

by

Pk ∼1 Qj ⇐⇒ Q is a ([b](1), [b+ 1](1))-path extension of P,

Q(σA
j A0) = P (σA

k A0), and Q(Z) = P (Z), and

Q−1(σA
j A0) and P−1(σA

k A0) are in the same row.

Define ∼2 on T
0,2,2
6 by

Pk ∼2 Qj ⇐⇒ Q is a ([b](1), [b+ 1](1))-path extension of P,

Q(Z) = P (Z), and

Q−1(σA
j A0) and P−1(σA

k A0) are in the same row.

Define ∼3 on T
0,2,3
6 by

Pk ∼3 Qj ⇐⇒ Q is a ([b](1), [b+ 1](1))-path extension of P,

Q(σA
j A0) = P (σA

k A0), and

Q−1(σA
j A0) and P−1(σA

k A0) are in the same row.

Define ∼4 on T
0,2,4
6 by

Pk ∼4 Qj ⇐⇒ Q is a ([b](1), [b+ 1](1))-path extension of P, and

Q−1(σA
j A0) and P−1(σA

k A0) are in the same row.

It is clear that for 1 ≤ i ≤ 4, ∼i an equivalence relation on T
0,2,i
6 , so that

∑
Pk∈T0,2,i

6

(−1)P
H(P )

Pk =
∑

[Pk]∈T0,2,i
6 /∼i

∑
Qk∈[Pk]

(−1)Q
H(Q)

Qk.
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Thus it is enough to show that for 1 ≤ i ≤ 4,

∑
[Pk]∈T0,2,i

6 /∼i

∑
Qk∈[Pk]

(−1)Q
H(Q)

Qk ∈ F2 ⊗Rλ\X,n.

We will show the case i = 1, with the rest being similar. For the rest of Case (5.3.1.6),

let T := T
0,2,1
6 .

For l = 1, 2, let Txl
be the set of all Qk in T such that the orbit of xl intersects

the first row in [b],

Txl
= {Pk ∈ T : RP

l ∩ [b](1) �= ∅}.

Note that as a0 = [b](hb, 1) is in the same row as z = [b](hb, 2), it must be that

1 ≤ k ≤ wb for all Pk ∈ T. Pick P1 ∈ T with [b](i, 1) ∈ RP for all i = 1, . . . , hb − 1,

and P−1(σ1A0) ∈ [b](i) with i odd, and let [bu](iu, ju) = P−1([b](1, 1)) and [bv](iv, jv) =

P−1([b](2, 1)) with u = T[bu](iu,ju) and v = T[bv ](iv ,jv), as in Figure 5.23.

Ak Z

A0

← row i

u v

Figure 5.23. A path P1 with [b](i, 1) ∈ RP for all i = 1, . . . , hb − 1 and
P−1(σ1A0) ∈ [b](i) with i odd.

It is then enough to show that

∑
Qk∈[P1]

(−1)Q
H(Q)

Qk ∈ F2 ⊗Rλ\X,n,
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with the other cases being similar. In fact, as (−1)P = (−1)Q and H(Q) = H(P ) for

all Qk ∈ [P1], it is enough to show that∑
Qk∈[P1]

Qk ∈ F2 ⊗Rλ\X,n.

Without loss of generality, assume P1 ∈ Tx1 and let [P1]x1
= [P1] ∩ Tx1 and

[P1]x2
= [P1] ∩ Tx2 , so that

[P1] = [P1]x1

⊔
[P1]x2

.

See Figure 5.24.

Ak Z

A0

k

← row i

u v

(a) Qk ∈ [P1]x1

Ak Z

A0

k

← row i

u v

(b) Qk ∈ [P1]x2

Figure 5.24. The paths in [P1]x1 and [P1]x2 removing the entry Z from block [b] and
the enrty A0 from block [b+ 1].

Let T ′ ∈ Fλ\X be the unique tableau with T ′ = TP on (λ \X) \ ([b] ∪ [b+ 1]) and

T ′ = T on [b] ∪ [b+ 1] except T ′
z = v and T ′

a0
= u as in Figure 5.25.

As in the calculations for the proof of Case 5.2.1.6, by the proof of Lemma 3.2.3,

the result of Corollary 3.2.4 still holds when moving u and v to boxes in the same

row, which we have here after applying GA. This gives, modulo F2 ⊗Rλ\X,n,
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u v
A1 · · · Aw

Figure 5.25. The unique tableau T ′ with T ′ = TP on (λ \X) \ ([b] ∪ [b+ 1]) and
T ′ = T on [b] ∪ [b+ 1] except T ′

z = v and T ′
a0

= u.

∑
Qk∈[P1]

Qk =
∑

Qk∈[P1]x1

Qk +
∑

Qk∈[P1]x2

Qk

= (−1)hb+1+1hb−2+i−2+1
αP
2

αP
1

⊗ T ′ + (−1)hb+1+1hb−2+i−2+1
αP
1

αP
2

⊗ T ′

= 0.

Thus Equation 5.1.2.1 holds for all hooks A ⊂ [b] ∪ [b+ 1], and so Theorem 5.1.1

holds.
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CHAPTER SIX

Relating Pieri Inclusion Descriptions

In this chapter we show that our description of the Pieri inclusion removing one

box, Φ1, is the negative of Pieri inclusion description removing one box given in

(Olver, 1982, §6). We then show that iterating Φ1 is still a GL(V ) map and that

our description of Pieri inclusions also describes the symmetric case. Finally, in the

special case where the removal set is a column of boxes in the diagram, we show that

iterating Φ1 and the Pieri inclusion removing many boxes, Φm, differ my m!.

6.1 Comparing the One Box Removal Description to Olver’s Description

Let Φ̃1 be the Pieri inclusion removing one box described in (Olver, 1982, §6) and

(Sam & Weyman, 2011) and Φ1 be the Pieri inclusion removing one box described in

2.1.7.

Theorem. For Φ1 and Φ̃1 as above,

Φ1 = −Φ̃1.

Proof. Let Tλ ∈ Tλ,n and Tλ\X ∈ Tλ\X,n be the diagrams corresponding to highest

weight vectors as in 1.2.4. Then, in the image of Tλ, the coefficient of

α ⊗ Tλ\X

where

α =
N∑

i=b1

hi
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is readily seen to be −wb1 in the image of Φ and wb1 in the image of Φ̃1. By uniqueness

of the Pieri inclusion up to scalar multiple (Schur’s Lemma), the result holds.

6.2 Iterating the One Box Removal Description and the Symmetric Case

6.2.1

Given a removal set X = {x1 = [b1](1, wb1), . . . , xm = [bm](im, wbm)} ⊂ λ, let

Ξ = X1 ⊂ X2 ⊂ · · · ⊂ Xm = X

be a filtration of X where each |Xk| = k so that the corresponding shapes λ \Xk are

Young diagrams. For each such filtration, define Φm
1 to be the map given by iterating

Φ1 where the box in X1 is removed first, then the box in X2 \X1, etc. That is, the

first iteration is

Φ1
1(T ) = Φ1(T ) =

∑
P

(−1)P
H(P )

P (T )

where the sum is over all 1-paths P on λ removing the box inX1 and, for k = 2, . . . ,m,

the kth iteration is

Φk
1 (T ) =

∑
P

(−1)P
H(P )

P
(
Φk−1

1 (T )
)

where the sum is over all 1-paths P on λ \Xk−1 removing the box in Xk \Xk−1 and

P (YQ ⊗ TQ) =
YP
YQ
⊗ P (TQ)

where YP is the box removed by P from TQ.

6.2.2

Lemma. Φm
1 is a GL(V )-map.
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Proof. By Theorem 6.1, this follows from the proof in (Sam & Weyman, 2011, Corol-

lary 1.8), where it is shown for the iteration of Olver’s map.

6.2.3

Define the map

Φ′
m : Sλ(V )→ Sm(V )⊗ Sλ\X(V )

just as we have defined Φm in 2.2.4 except for redefining for all m-paths P on λ

removing X

YP = EX αP
m · · · αP

1 ,

which is standard form notation is eαP
1
· · · eαP

m
∈ SmV .

Theorem. The map

Φ′
m : Sλ(V )→ Sm(V )⊗ Sλ\X(V )

is a GL(V )-map.

Proof. As Φm is a GL(V )-map, similar to (Sam & Weyman, 2011, Corollary 1.8), this

follows by the results of Chapters Four and Five by keeping track of a sign.

6.3 Relating The Pieri Inclusion Removing Many Boxes and the Iteration of the

Pieri Inclusion Removing One Box in the Case of Removing a Column

Let Φm be the Pieri inclusion removing m boxes constructed in 2.2.4 and let Φm
1

be the Pieri inclusion given by iterating one box removal constructed in 6.2.1.
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Theorem. For Φm
1 and Φm as above and for the removal setX = {x1 = [b](1, wb), x2 =

[b](2, wb), . . . , xm = [b](m,wb)},

Φm
1 = m! · Φm.

Proof. We will show that Φ2
1 = 2 · Φ2 and then proceed via induction. Let X0 =

{x1 = [b0](1, wb0), x2 = [b0](2, wb0)} be a removal set in λ and let Tλ ∈ Tλ,n and

Tλ\X0 ∈ Tλ\X0,n be the diagrams corresponding to highest weight vectors as in Section

1.2.4. In the image of Tλ under Φ2, the coefficient of

α2

α1

⊗ Tλ\X0

where

αk = (Tλ)xk
for k = 1, 2

is readily seen to be w2
b0

as the only 2-paths that remove the entries α1 and α2 are

the ones with

R1 ⊂ [b0](1) and R2 ⊂ [b0](2),

where R1 and R2 are the orbits of x1 and x2, respectively. See figure 6.1.

α1

α2

� w2
b0

α2

α1

⊗ Tλ\X0

Figure 6.1. The 2-paths removing the entries α1 and α2 from Tλ.

In the image of Tλ under Φ2
1, the only compositions of 1-paths that remove α1 and

α2 are the ones where the orbits of x1 and x2 are contained in the rows [b0](1) and
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[b0](2). See Figure 6.2. From this it is easy to see that the coefficient of

α2

α1

⊗ Tλ\X0

in the image of Tλ under Φ2
1 is 2 · w2

b0
. Then by uniqueness of the Pieri inclusion up

to scalar multiple we have that Φ2
1 = 2 · Φ2.

α1

α2

� −wb0 α1 ⊗
α2

� w2
b0

α2

α1

⊗ Tλ\X0

α1

α2

� w2
b0

α2 ⊗
α1

� −w2
b1

α1

α2

⊗ Tλ\X0

Figure 6.2. The compositions of 1-paths removing the entries α1 and α2 from Tλ.

We now show that Φ1 (Φm−1) = m · Φm, which proves the theorem. Let X =

{x1 = [b](1, wb), x2 = [b](2, wb), . . . , xm = [b](m,wb)} be a removal set in λ and let

Tλ\X be the diagram corresponding to the highest weight vector as in Section 1.2.4.

In the image of Tλ under Φm, the coefficient of

αm
...

α1

⊗ Tλ\X
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where

αk = (Tλ)xk
for k = 1, . . . ,m

is readily seen to be (−1)mwm
b as the only m-paths that remove the entries α1, . . . , αm

are the ones with

Rk ⊂ [b](k) for k = 2, . . . ,m

where Rk is the orbit of xk for k = 1, . . . ,m. See Figure 6.3.

...

α1

α2

αm

� (−1)mwm
b

αm
...

α1

⊗ Tλ\X

Figure 6.3. The m-paths removing the entries α1, . . . , αm from Tλ.

We now show that in the image Φ1 (Φm−1 (Tλ)) the coefficient of the term

αm
...

α1

⊗ Tλ\X

is m · (−1)mwm
b . As above, in the image of Tλ under Φm−1 the coefficient of the term

α1

...

αm−1

⊗ Tλ\{x1,...,xm−1}
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is (−1)m−1wm−1
b . Then in the image of this term under Φ1 the coefficient of the term

αm
...

α1

⊗ Tλ\X

is (−1)mwm
b as the only 1-paths acting on Tλ\{x1,...,xm−1} that remove αm are the ones

where the orbit Rm ⊂ [b](m), see Figure 6.4.

(−1)m−1wm−1
b

α1

...

αm−1

⊗
αm

� (−1)mwm
b

αm
...

α1

⊗ Tλ\X

Figure 6.4. The 1-paths removing the entry αm from Tλ\{x1,...,xm−1}.

Now fix an i = 1, . . . ,m − 1 and consider the (m − 1)-paths acting on Tλ that

remove the entries αk for k = 1, . . . , i − 1, i + 1, . . . ,m. Such (m − 1)-paths must

have that the orbits Rk ⊂ [b](k) for k = 1, . . . , i − 1, i + 1, . . . ,m − 1 and the orbit

Ri ⊂ [b](i) ∪ [b](m). See Figure 6.5.

Then in the image of Tλ under Φm−1 the coefficient of the term

α1

...

αi−1

αi+1

...

αm

⊗
αi

,
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...

...

α1

αi

αm

� (−1)mwm
b

α1

...

αi−1

αm

αi+1

...

αm−1

⊗
αi

Figure 6.5. The (m− 1)-paths removing the entries α1, . . . , αi−1, αi+1, . . . , αm from
Tλ for some i = 1, . . . ,m− 1.

after ordering the term in
m∧

V , is (−1)2−1−iwm
b . In the image of this term under Φ1

the coefficient of the term

αm
...

α1

⊗ Tλ\X ,

after again ordering the term in
m∧

V , is (−1)3m−2iwm
b = (−1)mwm

b as the only 1-path

acting on it is the one the evacuation route {xm}. See Figure 6.6.

(−1)2m−1−iwm
b

α1

...

αi−1

αi+1

...

αm

⊗
αi

� (−1)2m−iwm
b

α1

...

αi−1

αi+1

...

αm

αi

⊗ Tλ\X

Figure 6.6. The 1-path removing the entry αi from the box xm.
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Thus, in the image Φ1 (Φm−1 (Tλ)) the coefficient of the term

αm
...

α1

⊗ Tλ\X

is m · (−1)mwm
b . So, by the uniqueness of the Pieri inclusion up to scalar multiple,

we have that Φ1 (Φm−1) = m · Φm, which proves the claim.
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CHAPTER SEVEN

Computational Complexity and the Image of a Highest Weight Vector

In this chapter we compute an example that illustrates the difference in the de-

scriptions of Pieri inclusions removing one box given in Section 2.1 to that given in

(Olver, 1982, §6). We then describe the image of a highest weight vector under our

Pieri inclusion removing one box and show that this description is optimal and then

compare the computational complexities of the descriptions of Pieri inclusions.

7.1 Computing the Image of a Highest Weight Vector Under the Different

Descriptions of Pieri Inclusions Removing One Box

7.1.1

For a removal set X = {x1 = [b1](1, wb1)}, let

Φ1 : Sλ(V )→ V ⊗ Sλ\X(V )

be the Pieri inclusion removing one box described in Section 2.1 and let

Φ̃1 : Sλ(V )→ V ⊗ Sλ\X(V )

be the Pieri inclusion given in (Olver, 1982, §6) (see (Sam & Weyman, 2011, §1.2)

and (Sam, 2009, §4) for an updated description).
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7.1.2

The smallest example that illustrates the difference in the complexity of Φ1 and

Φ̃1 is

−→ ⊗ ,

i.e.

Φ1, Φ̂1 : S(1,1,1)(V )→ V ⊗ S(1,1)(V ).

We will compute the image of the highest weight vector

1

2

3

under these maps.

Following the notation in (Sam, 2009),

Φ̃1 =
∑
J∈B3

(−1)#JτJ
cJ

where B3 is the set consisting of all “paths” that take the box in the bottom row up

and out of the diagram (1, 1, 1), with each path indexed only by the rows in which it

acts,

B3 = {(0, 3), (0, 1, 3), (0, 2, 3), (0, 1, 2, 3)}.

Here row 0 is “removal,” row 1 is the top row in the shape, etc. (Note that this

convention is opposite ours, where we start counting from the bottom row of the

shape.) The τJ is the action of the path on the tableau, the (−1)#J is a sign, and the

cJ is a constant depending on the rows on which J acts.

115



Each of the following paths is pictured in Figure 7.1. The path (0, 3) results in

(−1)#(0,3)τ(0,3)
c(0,3)

⎛⎜⎝ 1

2

3

⎞⎟⎠ = τ0,3

⎛⎜⎝ 1

2

3

⎞⎟⎠ = 3 ⊗ 1

2
.

The path (0, 1, 3) results in

(−1)#(0,1,3)τ(0,1,3)
c(0,1,3)

⎛⎜⎝ 1

2

3

⎞⎟⎠ =
−τ1,3 ◦ τ0,1

3− 1

⎛⎜⎝ 1

2

3

⎞⎟⎠ = −1

2

(
1 ⊗ 3

2

)
.

The path (0, 2, 3) results in

(−1)#(0,2,3)τ(0,2,3)
c(0,2,3)

⎛⎜⎝ 1

2

3

⎞⎟⎠ =
−τ2,3 ◦ τ0,2

3− 2

⎛⎜⎝ 1

2

3

⎞⎟⎠ = −
(

2 ⊗ 1

3

)
.

The path (0, 1, 2, 3) results in

(−1)#(0,1,2,3)τ(0,1,2,3)
c(0,1,2,3)

⎛⎜⎝ 1

2

3

⎞⎟⎠ =
τ2,3 ◦ τ1,2 ◦ τ0,1
(3− 1)(3− 2)

⎛⎜⎝ 1

2

3

⎞⎟⎠ =
1

2

(
1 ⊗ 2

3

)
.

Figure 7.1. From left to right, the paths (0, 3), (0, 1, 3), (0, 2, 3), and (0, 1, 2, 3)
acting on (1, 1, 1).
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So via straightening we have

Φ̃1

⎛⎜⎝ 1

2

3

⎞⎟⎠ = 3 ⊗ 1

2
− 2 ⊗ 1

3
− 1

2

(
1 ⊗ 3

2

)
+

1

2

(
1 ⊗ 2

3

)

= 3 ⊗ 1

2
− 2 ⊗ 1

3
+ 1 ⊗ 2

3
.

We now compute

Φ1

⎛⎜⎝ 1

2

3

⎞⎟⎠ =
∑
P

(−1)P
H(P )

P

⎛⎜⎝ 1

2

3

⎞⎟⎠ ,

where the sum is over all 1-paths P on (1, 1, 1) removing [1](1, 1). Note that as (1, 1, 1)

has only one block, for each such 1-path we have H(P ) = 1. All such 1-paths are in

fact the same as the paths (0, 3), (0, 2, 3), and (0, 1, 2, 3) pictured in Figure 7.1. Thus

without any straightening and without combining any like terms we get

Φ

⎛⎜⎝ 1

2

3

⎞⎟⎠ = 3 ⊗ 1

2
− 2 ⊗ 1

3
+ 1 ⊗ 2

3
.

In particular, note that the path (0, 1, 3) pictured in Figure 7.1 is not a 1-path

as rows [1](1) and [1](3) are included, but row [1](2) is skipped. Further notice that

the coefficients in the definitions of Φ̃1 and Φ1 are similar, however the cJ depend on

each row on which a path acts while the H(P ) depend only on the blocks on which

a path acts.
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7.2 Describing the Image of a Highest Weight Vector

7.2.1

Given a removal set X = {x1 = [b1](1, wb1)} ⊂ λ, it is clear by the construction

of 1-paths that for all 1-paths on λ removing X, (Tλ)P is semi-standard. Define the

relation ∼ on the set of all 1-paths on λ removing X by

P ∼ Q ⇐⇒ RQand RP intersect the same set of rows.

This clearly defines an equivalence relation. Let

[P ] = {Q : Q ∼ P}.

Then for all Q ∈ [P ] we have (−1)Q = (−1)P and H(Q) = H(P ), and, when con-

sidering the image of a highest weight vector where each entry in a given row is the

same,

YQ ⊗ (Tλ)Q = YP ⊗ (Tλ)P .

For distinct [P ] and [P ′] we have (by construction) that YP⊗(Tλ)P and YP ′⊗(Tλ)P ′

are linearly independent. Thus, Φ1(Tλ) can be written as

Φ1(Tλ) =
∑
[P0]

(−1)P0 |[P0]|
H(P0)

P0(Tλ)

where the sum is over all 1-paths P0 on λ removing X which only hit boxes in the

first column of λ. From the above, the terms in the image of Φ1(Tλ) written as above

are linearly independent and do not require straightening, and so this description is

optimal. Two such examples are computed in Sections 1.3.2 and 7.1.2. To see the

optimal description from the example in Section 1.3.2, take only the first six terms

shown in Figure 1.1.
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7.2.2

For a given 1-path P0 as in 7.2.1, we now describe the corresponding term in the

image of Tλ. Let {ri}1≤i≤|RP0 | be the rows in λ that P0 hits, so that λi > λi+1 and

r|RP0 | = [b1](1). Then

|[P0]| =
|P |∏
i=1

λri

and (Tλ)P0 ∈ Sλ\X(V ) has λ1 ones in the first row, λ2 twos in the first row, etc. except

for each row ri, 1 ≤ i ≤ |RP0 |, where the last entry in row ri of (Tλ)P0 is

((Tλ)P0)(ri,λri )
= ri+1.

7.2.3

We have built an algorithm computing this optimal description of the image of a

highest weight vector using Macaulay2, with the output given as a hash table. With

this one can quickly compute the image of the highest weight for very large examples.

Figures 7.2 and 7.3 show the timed computation for the image of a highest weight vec-

tor, where the partition is given as the first input of the function oneboxremovalHW

and the second input of the function is the row (from the top of the tableau) of the

box to be removed.

Figure 7.2. Computing the image of the highest weight vector for the inclusion
S(10,10,10,10)(V )→ V ⊗ S(10,10,10,9)(V ). Only the first four terms in the hash table are
shown.
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Figure 7.3. Computing the image of the highest weight vector for the inclusion
S(10,10,10,10,10,10,10,7,7,7,7,7,7,3,3,3,3,3)(V )→ V ⊗ S(10,10,10,10,10,10,10,7,7,7,7,7,7,3,3,3,3,2)(V ). Only
the first three terms in the hash table are shown.

7.3 Comparing the Computational Complexity of the Descriptions

7.3.1

We now formalize the difference in the computational complexity of the descrip-

tions for Φ̃1 and Φ1.

Theorem. Fix a positive integer N and consider partitions λ that have at most N

blocks. Then the algorithm to compute the image of a highest weight vector under

a Pieri inclusion Φ1 : Sλ(V ) ↪→ V ⊗ Sλ\X(V ) has a worst-case time complexity of

O(l(λ)N). On the other hand, the algorithm to compute the image of a highest

weight vector under a Pieri inclusion Φ̃1 : Sλ(V ) ↪→ V ⊗ Sλ\X(V ) has a worst-case

time complexity of Ω(2 l(λ)).

Proof. Let λ = (wh1
1 , . . . , whN

N ). We first consider the time complexity of the algorithm

as given by Olver’s construction. As in Section 7.2, when considering the image of

a highest weight vector we only need to select paths on λ removing X that act on

the first column of λ. From the description of the map Φ̃1 removing X, the number

of such paths in the computation of Φ̃1 is equal to the number of choices of rows in

λ above row [b1](1). Thus the complexity of the map Φ̃1 acting on a highest weight
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vector is

2hb1
−1 ·

N∏
i=b1+1

2hi ≤ 1
2
·

N∏
i=1

2hi = 1
2
· 2

∑N
i=1 hi = 1

2
· 2 l(λ).

In the worst-case when b1 = 1, the inequality is in fact an equality. Furthermore, the

paths that act on the first column of λ using Olver’s algorithm can result in tableaux

which are not semi-standard, and so must be straightened. Hence the worst-case

complexity of Olver’s algorithm is Ω(2 l(λ)).

The map Φ1 removing X restricts the choices of paths to those that act on a set

of rows which describes an evacuation route, and hence the number of 1-paths acting

on the first column of λ in the computation of Φ1 is equal to the number of choices

of rows in λ above row [b1](1) made without skipping rows within blocks. It is also

clear from the definition of 1-paths that the image of a highest weight vector under

a 1-path is semi-standard. Thus the complexity of the map Φ1 acting on a highest

weight vector is

hb1 ·
N∏

i=b1+1

(hi + 1) <
N∏
i=1

(hi + 1) ≤ (l(λ) + 1)N = Θ(l(λ)N).

Remark. Similar to the Theorem 7.3.1, by restricting the maximum possible width

of a block in λ we get that Φ1 is an exponential speed up of Φ̃1 on the image of basis

vectors (semi-standard tableaux) in Sλ(V ).
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7.3.2

This exponential to polynomial speed up can be seen in the computation time

for computing Pieri maps in Macaulay2 by replacing the description of Φ̃1 within

Sam’s PieriMaps package (Sam, 2009) with the description of Φ1. This comes down

to restricting all possible paths to 1-paths and redifining the coefficient, which we

have done via editing the pieriHelper function.

The computation time difference can be seen for even small examples. For exam-

ple, computing the map

S(6,6,6) → S(1) ⊗ S(6,6,5)

was an order of magnitude faster, see Figure 7.4.

(a) Using the algorithm for Φ̃1. (b) Using the algorithm for Φ1.

Figure 7.4. Computing the inclusion S(6,6,6)(V )→ V ⊗ S(6,6,5)(V ).

Computing the map

S(7,7,7)(V )→ V ⊗ S(7,7,6)(V )

was four orders of magnitude faster, see Figure 7.5.

In Figure 7.6 we show the timed computations for computing the map

S(8,8,8)(V )→ V ⊗ S(8,8,7)(V ).
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(a) Using the algorithm for Φ̃1.
(b) Using the algorithm for Φ1.

Figure 7.5. Computing the inclusion S(7,7,7)(V )→ V ⊗ S(7,7,6)(V ).

Using the algorithm for Φ̃1 (as built in to PieriMaps), the process was interrupted

after an hour with no output. Using the algorithm for Φ1 computing this map takes

only 0.07 seconds.

(a) Using the algorithm for Φ̃1.

(b) Using the algorithm for Φ1.

Figure 7.6. Computing the inclusion S(8,8,8)(V )→ S(1)(V )⊗ S(8,8,7)(V ).

We can also see this exponential speed up for examples with more than one block.

In Figures 7.7 and 7.7 we show the computation times for the Pieri inclusion

S(3,1,1,1,1,1,1,1,1,1)(V )→ V ⊗ S(3,1,1,1,1,1,1,1,1)(V )

using the algorithms for Φ̃1 and Φ1, respectively. Using the algorithm for Φ̃1 this com-

putation takes over eleven seconds, while using the algorithm for Φ1 this computation

takes less than two seconds.
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Figure 7.7. Computing the inclusion S(3,1,1,1,1,1,1,1,1,1)(V )→ V ⊗ S(3,1,1,1,1,1,1,1,1)(V )

using the algorithm for Φ̃1.

Figure 7.8. Computing the inclusion S(3,1,1,1,1,1,1,1,1,1)(V )→ V ⊗ S(3,1,1,1,1,1,1,1,1)(V )
using the algorithm for Φ1.
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